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1 Additional Proofs

Proof of Lemma A.1 We will generalize the proof in Imbens, Newey and Ridder (2006). For (i) we
will show

E [HQM - Qwﬂm < C-C(K)K/N

so that the result follows by Markov’s inequality. Note first that E[{, k] = Q, k so that,

. 2
[
=E {tr (quK) +tr (02, ) — 2tr (Qw,KQw,KH
= tr (IE [Q?UKD +tr (2 ) — 2tr (E [QwK} Qw,K)
=tr (]E {qul{]) —tr (Q2 4)- (B.1)

The first term of equation (B.1) is

(o)

For a random variable U with E |U| < co and an event G with Pr (G) > 0, then

E[U -1g]

Using this we may rewrite equations (B.2) and (B.3) as,
K K
. N N(N—1)
tr (E [quKD = Ty 2 O B[R (X2 R (X)?| W = w] + 7 ——=

W k=11=1 w

tr(Q, k). (B4)



To deal with the first term of equation (B.4) consider,

K K
ZE Rig(X)*Ri(X)?|W =w] =E | Y Rpx(X)?)  Rig(X)*| W = w]

k=11=1 k=1 =1

<C(K)? Y E[Rig(X)?|W = w] (B.5)
=1

= ((K)? tr (Qu, i)
S )\max( K) ( )
< C-((K)*K. (B.6)

Equation (B.5) follows by,

SIS

K
((K) = sup || Rk (z)|| = sup <Z Rix(%))
T T =1

which then implies that

K
> Rig(@) < ((K)*.
k=1

Equation (B.6) follows since the maximum eigenvalue of 2, x is O (1) (see below). Thus, the first term
of equation (B.4) is

ZZE Rk (X)*Rig (X)?|W =w] < C-{(K)°’ KN (B.7)
W g=11=1

To deal with second term of equation (B.4) and the second term of equation (B.1) we have,
tr(22, 1) < Amax (22 k) K = Anax (Qu,x)’ - K < C- K.
Thus,

(WiJV(]J\Vng - 1) tr(Q, k) = (—J‘; + 0(1)) O(K)=0(KN™"). (B.8)

Combining the results from equations (B.7) and (B.8) yields,
R 2
E [HQw,K ~ Qe } = O (C(KPKN"Y + 0 (KN"Y) = 0 (¢(K)2KN).

For (i1), first note that for any two positive semi-definite matrices A and B, and conformable vectors a
and b, if A > B in a positive semi-definite sense, then for

Amin(4) = mln1 a'Aa=ad'Aa, Inin(B) = bI/I;m b’ Bb = b’ Bb,

and

Amax(4) = max a’Aa = @ Aa, Amax(B) = max b Bb = ' Bb,

a’a=1

we have that,

AInin(fél) 2 )\min(B) (Bg)



and
Amax(A4) > Anax(B). (B.10)
Now, let fu(x) = fxw (W = w) and define
a(z) = fol@)/ 1 (@)
and note that by Assumptions 2.3 and 3.1 we have that
0< g <gqx) <g<oo
Thus we may define ¢(z) = ¢ + ¢(x) so that,
Qo.xc = E[R(¢)Ryc(2)|W = 0]
— [ Ric@)Ruc@) fofa)do
— [ Ri@)Rac(o)o(a) fi(w)ie
_ / Ric(2)Ric(2)' (¢ + 4(@)) o (x)d
— 4 [ Rc@)Ruc@) fla)do + [ Ruc(o)ac(o) (o) i (o)
g it [ Ruco) o)) i (o)
—g- % k+Q

Q is a positive semi-definite matrix, which implies that Qo,x > g+, x in a positive semi-definite sense.
Thus by equation (B.9)

)\min (QO,K) 2 g : )\mzn (Ql,K) - g
and the minimum eigenvalue of {2y g is bounded away from zero. Next, observe that
0<g(z) < g—g< o0

and so by the above we have that
Qi =g i+ [ Ruclo)Rac(o)la) i o)do
<q-Q i+ (q‘ - g) /RK(x)RK(m)’fl(x)dm
= q . Ql,Kv
in a positive semi-definite sense. Now by equation (B.10) we have

/\max (QO,K) < )\max ((j . Ql,K) =q

and the maximum eigenvalue of () i is bounded. Both the minimum and maximum eigenvalue of )1 x
are bounded away from zero and bounded, respectively, by construction. For (iii) consider the minimum



eigenvalue of Qw’ K,
)\min (Qw’]{) = min d/ (Qva) d
d’'d=1

— min (d’ (Quoic)d+ d (QM - QmK) d)

d’'d=1
> min d} (Qu.x)dy + min d) (Qw,KmeK) ds
& dy=1 dlyda=1

= Amin (Quw,x) + Amin (Qw,K - Qw,K>
> Amin (Quw,x) — HQw,K - Qw,KH (B.11)
= Anin () = Op (CE)KM2N1/2) (B.12)
Where (B.11) follows since for a symmetric matrix A
JAIP = tr (42) > Amin(A)?,
and since the norm is nonnegative
JA[| > —=Amin(A)
and
JA]| > Ain(A)

for all values of Ayin(A). Finally, (B.12) follows by part (i). Next, consider the maximum eigenvalue
of Qw,K-

Amax (Qw,K) = max d' (Qw’K) d

d’d=1

= max (d' (Qur)d+d (Qw,K - Qw,K) d)
d’'d=1

< max d} (Qu x)di + max df (Qw,K - Qw,K) do
td1=1 dhdo=1

= )\max (Qw,K) + )\max (Qw,K - Qw,K)
S /\Inax (Qw,K) + HQw,K - Qw,KH (B13)

= A (i) + Op (C(R)KM2N1/2) (B.14)

Where (B.13) follows by similar arguments as above and (B.14) follows by part (7). For (iv) let us first
define

. R Dy xRy .
zwﬁ:vaN—”, Do i = diag {1, (W) 2 5i=1,...,N}.

Next recall that for matrices A and B we have that

1A+ B|* <2 A" +2|B*.



Thus,

A 2 ~ - 2
E[Suk — Suk| =E[Sux - Suk + Sk - Tuk|

N - 2 - 2
<2.E sz,K - Ew,KH +2-E sz,K - Ew,KH

2

, ~
w, K (Dw,K - Dw,K) Rw,K
Ny

=2.E

(B.15)

~ 2
+2-]EHZW7K—ZUJ,KH (B.16)

Before we deal with equations (B.15) and (B.16), we need to establish conditions for consistency of the
estimated errors. Note that,

(Ew,i = w,i) (Xi) = (Yi — i (X)) = (Vi — phu (X3)) = paw (Xi) — frw (X5)

and so by Lemma A.6 (v)

D |(Buns = 00) ()] = Oy (C (K KNT1) + 0 (¢ () K77,

T

Moreover,

i S = 2w (Bui = 2w) + Oy (C(K) KNTH) 40 (¢ () K1),

and so, for M € Ry

Pr ( éfm — 53”| > M)

B ‘é%u,i - 5121;1|
- M

E ‘2511),1' (Ew,i — €w,si) +Op (C (K)? KN*1> +0 (¢(K) K*S/d)‘
- M
< El2ewi (Bui —wi)l Op (C (K)” KN*) +0 (¢ (K) K—s/1)
< 2 7

E |ew,q

< O sup (Eui — i) ()] =17+ 0y (CUK) KN ) 0 (¢ () K1)
=0, (< (K)? KN*) +0 (g (K) K*S/d) ,
and so

&=l =0y (CKP KN 4 ¢ (K) K1), (B.17)
We begin with equation (B.16) first. First note that E {XNIWK} =X,k and so,
. 2 . .
E[Sux = S| =E [t ($21) = 2t (S S ) + 0 (52, 1)

tr (E [ ] ) = 2t (E [Su x| Buic) +tr (52, 1)

tr (IE [zi,KD —tr (32 ). (B.18)

[5]



The first term of equation (B.18) is

K K N N

tr (E [ii},K}) = % Z Z Z ZE [lw (W) 1, (W) €§€§Rk;{(Xi)RlK(Xi)RkK(Xj)RlK(Xj)]

W k=1 1=1 i=1 j=1

1 K K
N K K
= 3 2 2 [l (V) el Rue (X0 A (X))
MRS i i (E [Lyy (W) €2 R (X) Ric (X)])*
N2 w

S
o
—
Il
=

Equation (B.19) may be rewritten as,

N K K
Nl > E 1, (W) e Rir (X)*Rig (X)?]
]kvzl lljl p
=7 Z E [1, (W)E [e},| X, 1, (W)] Rex (X)?Rix (X)?]
N k;l lI:(I
=Nz DD B[l (W)E [e,| X] R (X)* Ri (X)?]
1;1 l;(l N 2 2
<C- 7z ZZE (L, (W) Reg (X)*Rix (X)?]
W =1 1=1
N K K ) )
<C- WZZE [Rier (X)) R (X)?| W = w].

=~
I
=
-~
Il
—

Thus by equation (B.7) we have that equation (B.19) is,
N KK
Nl > Y E [y (W) ey Rer(X)*Rix (X)?] < C - ((K)?KN™.
Wg=11=1

Equation (B.20) and the second term of equation (B.18) are,

R ST(E [Lw (W) 2 R (X)Rixc (X)]) — tr (22, )

The first factor is,

N (N —1) 1
2 —
Wwigj—l——f-f—o(l)

- WTZZ (E [02 (X) Roxc (X) Ruxc (X)| W = w])? — tr (52 x)

(B.19)

(B.20)

(B.21)

(B.22)



By Assumption 3.2 the second factor is

tr (22 ) < Amax (2 k) - K <7 Anax (Qux)’ - K < C- K (B.23)
and so equation (B.22) is,

K K
T L2 (B [l () b e (O Rac(X)]) i () = O (KN ),

Thus, by equations (B.21) and (B.23) we have

E | Sux - szHz = O (C(K)*KN"Y) + 0 (KN1) = 0 (C(K)?KN™Y) .

(B.24)
Now consider equation (B.15).

we have,
1 K K N N
W;;;;E[lw (W) 1w (W) (67 — €7) (5 — & )RkK( X)) Rk (X)) R (X)) R (X)]
- [Op (c (K2 KN+ ¢ (K) K—s/d)}
1 K K N N
X 2D DS B [l (W3) L (W) Rere (X0) Rusc (Xi) R (X;) Rusc (X))
W k=11=1 i=1 j=1

From the proof of (i), we have that

tr (E [Q?KD ~0 (g (K)? KN*) +O (KN +0(K)=0(K),

and so we have,

2
R,k (Dw K — Dy K) Ry x
E

NU}

[op (g (K)? KN‘1> +0 (g (K) K—s/d)]2 O(K). (B.25)



Combining equations (B.24) and (B.25) yields,

~ 2
Rl i (Dui = D) Bu i

Ny

~ 2 - 2
E Sk — S| <2-E|Sux - Sux| +2-E

¢
() KAN72) + 0 (¢C(K) KK /7) + 0, (¢ (K)* K2K /N ")
=0y (C(K)' K*N72) + 0 (¢ (K) KK /7)),
and the result follows. For (v) note that,
0% Qur <Swr <% Qi
in a positive semi-definite sense. Thus,
Amin (Zw,5) = Amin (6% Qo k) = 0%+ Amin (Qu,x) > ¢ -min (g, 1) .
Similarly,
Amax (Zw,x) < Amax (67 Q) € 6°  Amax (Qu,x) < 6% - max (4,1) .

For (vi) consider,

. 3 = 1 / )
i (Busc) = puin ¢ (S d
= dI’Icllifnl |:d/ (ZU),K) d+d (Zw,K - 2A:w,K) d}

> min d} (Syx)di+ min d (zw’K - iw,K) ds

1di=1 pd2=
= Amin (Zw, k) + Amin (2w,K - 210,1()
> Amin (Bw,x) — sz,K — iw,KH
= Amin (Bwx) — Op (g (K)? K3/2N—1) -0, (g (K) K1/2K‘S/d) .
Next,

/\max (iw,K) = (?gixl d/ (iw,K) d

= max {d' (Ewr)d+d (ZMK — f]w)K) d}

drd=1
< max dy (X x)di + max d (EWK — XAIMK) ds
dydy=1 dlydy=1

== /\max (Ew,K) + >\max (Zw,K - 2A:w,K)
S )\max (Zw7K) + sz,K - 2'umKH

= Amax (Yw,x) + Op (C (K)? K3/2N‘1) +0, (C (K) K1/2K‘S/d) .

8]



Proof of Lemma A.2 For this proof we need two results. Let A be a symmetric positive definite
matrix and B a conformable matrix, then

Amin (B’AB) > Amin (A) - Amin (B'B), Amax (B'AB) < Amax (A) - Amax (B'B) .
Using the above result we have,

Amin (Q;}KEWKQI‘U}K)

> Amin (Zw,&x) * Amin (Q;2K>

> 0% min (,1) - Amax (22 1))

> ¢ - min (g, 1) - [max (g, 1)] 7, (B.26)
and,
)\max (Q; ,1K Ew,KQ;}K>

< )\max ( w K) : /\max (Q;2K>

<o max (g,1) - Panin (22 1))
:62~max(§,1)- |:( mln(QwK)) :|
< &% max(q,1)- [mln (q, 1)] -2, (B.27)

Now consider,

) 1 _ 1 _
Amin (N . V) = dr/%lznl d <7_[_OQO,}(EO7KQO,}( + 7_(_191,}(21,1(91,}() d

1 1
> — i d'%; S0k Q ked + — — in d (Ql LS kO K) d

1 _ _ 1 _ _
= 7Amin (QO }(EO,KQO }() + 7Amin (Ql }(217[(01 }() )
0 ) ) m ) )

which is bounded away from zero by equation (B.26) and Assumption 2.3. Finally, consider
Amax (N : V) = max d iQ_l Yo KQ_l + iQ_l Y1 KQ_l d
d’d=1 0 0,K ) 0,K ™ 1,K s 1,K

1 1
< - max d Q. 2o, k€ red+ — (%ax d <Q1 21,k K)
1 1

:A—Amm(QaKEQKQaK)+~—AWK(Q;KELKQ;K),
i) ™1 ’ ’



which is bounded by equation (B.27) and Assumption 2.3. For (ii) we have,
i (01 S0 )
e (5] e (253
> [)\min (Bwx) — Oy (g (K)? K3/2N—1) ~0, (g (K) Kl/QK—S/d)} - Amin (Q;}K)Q
> [Min (Bu.0) = 0y (¢ ()P K¥2NT) = 0, (¢ (1) KK —17) |
Toun (553) -0 (s )
= Amin (Zw, k) [Amin (Q;}K)r +0, (c (K)? K3/2N‘1) +0, (g (K) Kl/QK_s/d) . (B.28)
In addition,
Amax (Q;}Kiw’l(ﬂfu,lﬁ
< A (S ) A (%)
< [ (Zus) 0y (€ 0P KN 1) 40, (¢ (1) KK /)] A (01 )
< [Amax (Bux) + O, (g (K)? K3/2N—1) +0, (g (K) Kl/QK—S/d)}
e (1) + 05 (€ () K1/2N*1/2)]2

= Amax (Sw.x) [Amax (Q;}K)} ‘1o, (C (K)? K3/2N*1) +0, (c (K) K1/2K*S/d) . (B29)

)\min (N . V) = min d ( OQO KZO KQ + 791 KEl Kﬂl K)

Y

N N .
N, nin (Qo LSk K) A+, min (Q;}(ELKQ;%() d
N e N e o

ﬁoAmin (Qo,}(EO,KQO,}() + EAmin <Q1,KZLKQ1}<)

is bounded away from zero in probability by equation (B.28), Assumption 2.3 and Assumptions 3.2 and
3.3. Finally,

~ N - ~ ~ N - ~ ~
Amax (N : V) — max d (NQQ;EO,KQO}f + ngzl,xﬂl}() d

IN

N Aol A N -1 % 4

o s d (25K Sox 5k ) d+ N d (OTk x0Tk ) d
N NP a_ N Al e A

F@Amax (QO}(EO,KQ()}() + EAmaX (QL}(ELKQL}()

which is bounded in probability by equation (B.29), Assumption 2.3 and Assumptions 3.2 and 3.3. m

Proof of Lemma A.6 For (i) note that we would like to provide regressors up to a certain power, say
n, including cross product terms. However, we would like to relate the number of covariates, d, and the
uppermost power desired, n, to the number of terms in the series, K. We may do so by,

I z”:(wrd—l) (nt1) (n—l—Z—l)

=0

[10]



Then note that,

(n-l—d—l) _(n+d-1)

n n!(d—1)!
(ntd—1)---(n+1)
B (d—1)---1
d—1
:Fl(j“)
<(n+1)""

Thus, we have that K = C; - (n+ 1)%, or equivalently that n = Cy - K¢ (and so n™* = €y * - K—5/4)
for some C1,Cs € Ry. Finally, by Lorentz (1986, Theorem 8) we have that

up [ () — Ric (#)/ 43| = 0 (n™%) = 0 (K1),

as desired. The proofs of (i) and (iv) may be found in Imbens, Newey and Ridder (2006). For (4i7)
consider,

e = el = | 2t RV = 5 0 R R |
HN Q;K (Y — Ry - ’YwK)H
oo 05 [ ]
By Lemma A.1, the first factor is,
Amae (Q;}/f) = Ao (Q 1/2) +0, (c( )K1/2N—1/2) —0(1)+0, (g (K) KWN—W) . (B.30)

The second factor may be broken up into,

et

H 70 I/QR/ JKEw

VTY2R ¢ (Yo i (X) i (X) — Ry 20 ) H

(B.31)

H Nl Rl 1 (1o (X) = R '7’2;,K)H : (B.32)



For equation (B.31) we have,

2
HQ_I/QR/ KE&w

1
=K |:tr (mewa KQ 1 R;,K€w>:|

1 .
= E {tr (Rw,K (Rl g Rui) " R;U,Ksu,sﬁu)}

1
= Ni’w tr (E |:Rw,K (R'Iw,KvaK)

TR, kEleel,| X]))

IN
QI

2 NLE {tr (Rw,K (R;;,KRw’K)_l R;JK)}

1
~2
7 "N
<C-KN7!

and so

HQ_UZR’ KEwl =0, (K1/2N—1/2) (B.33)

by Markov’s inequality. For equation (B.32) we have,

2
HQ 1/2Rl (Mw (X) — Ry k- ’Vg;,K)

( (X) — Ry i '72;,1()/ Ry k (R’/LU,KR’W7K)_1 R;U,K (Mw (X) - Ry, i '72;,1{)

1
SN (1 (X) = Ruric - Yoo 1) (o (X) = R - Yo i)
< sup |y (2) — R () 7%
-0 (K—2s/d) )
by (i), and so
HQ YR ke (ptw (X) = Ruic =70 K)H o (K_S/d) (B.34)

Note that the third line of the penultimate display follows since Ry, i (R}, jRuw, K)_l R, is a
projection matrix. Combining equations (B.30), (B.33) and (B.34) yields,

ik =%l = [0 ) + 0, (¢ (&) K2N2)] [0, (K/2N"12) + 0 (K~/7)]
=0, (K”QN*W) +0 (K*S/d) +0, (C(K)EN") +0, (g (K) K1/2Kfs/dzvﬂ/z)
=0 (K~*/") + 0y (C (K) KN") 40, (¢ (K) KK —*/IN-1/2).
However, by Assumption 3.3, we have that,
Oy (C (K)K”ZK*S”N*I/Q) =0, (K’S/d) = 0,(1)

and so

ik = k]l = O (¢ (K) KNT!) + 0 (K~/1),

[12]



as desired. Finally, for (v) we have,

Sup | (2) = fru, e (@) < 5P |1 (@) = iy g (@)] + 5P 1ty (@) = fru i (2)]
The first term is O (K~*/¢) by (i). For the second term we have,

sup |y () = o, ¢ ()]

= sup |Ri (2)" (Vo 16 — Fw.ic) |

< sup | Rx ()] ||’YSJ,K — Y, |

=) [0, ( NN 40 (K]
=0, (¢ (K)? ) 0 (¢ (k) K17,

where we use the definition of ¢ (K) and the result from (iv). Thus,
Sup [p () = frw, i (2)] = O (5=/) + 0, (¢ (5 KN7Y) +0 (¢ (5) K1)
=0, (¢ EN"Y) +0 (¢ (K) K1),
as desired.

Proof of Lemma A.7 (Additional Details) Equation (A.4) is

e Al 112 o a1 17V26
N 1/2 {Q;}wa,KQ;}K} Q_KRw KEw,K — [Q;}KZWKQI_U}K] Q_KR K Ew

w

< H[E Ot }71/2
= w,K38y K

‘lel/{2Rw p (Ew o — € /Nl/QH
The first factor is,
otz

1/2 A—1/2H
< (522 23]

< A (502) A (0 5) 16172

[ qu( 1/2) +O0,(C (K K¥*N"1 + 0, (C (K) K1/2K*S/d)}

X {)\max (Ql/z ) ‘o, (C( )Kl/QN_l/Q)} K1/2

= Amax (E;f,/f) Ama (91/2 ) K24 0,(¢C(K)?K* N1+ 0 (g (K) KK‘S/d)

=0 (K'?) +0,(C (K) K*N~Y) + 0, (¢ (K) KK /7).

[13]




For the second factor we have,

ALl 2
E HQw%KRiu,K (‘g;ku,K - Ew) /mH
=E Nitr ((EZ,K - €w)/Rw,KQ;,1KR;U,K (ep i — sw))]

L w
!

=E :((EZ},K - €w) Rw,K (R;U’K'ij()il R'/LU,K (EZ}’K — g,w))i|
<E {(EZ,,K - ew>/ G sw)} (B.35)
=E _(/J“’LU(X) - Rw,K’Y'Z),K)/ (Mw(X) - Rw,K’YZ;,K)]

. |2
< Ny - sup |ﬂw(x) - RK(I)/'YUJ,K|

< N sup (| (@) = Rac(2) 20, ic] + [ Rac (@) 101 = Bic(@)75.c)”

2
=N, (O (K~#)+0 (C(K)K%K*%)) (B.36)
—ow)- (o (g(K)K%K*%))Z
Thus,

|00 R (e = 20) [ NA2 | = 0, ()M 2R o/4N12)
by Markov’s inequality. Equation (B.35) follows by the fact that Ry, x (R}, jRuw, k) "R, x is a projec-
tion matrix and equation (B.36) follows from Lemma A.6 (i) and (iv). Then equation (A.4) is

-1/ -1/2 1 ,

2
—1/2 A—1 X A1 ¢ A—1
N’w Qw,KRw,KEw,K - [Qw,KZ’UhKQw,K:I w,KRw,K “Ew

[Q;}Kiw,KQ;}K]
= [0 (K2) + 0(¢ (K KN 1) + 0, (¢ (K) KK /)| [0, (¢(R)K/2K*/IN"2)]
= 0y (CROKE/IN2) + 0, (C(K KK/ INTY2) 4 0, (¢(K) K2 K2/ INY2)
= 0 (CRPRPPE /1N,

by Assumption 3.3. Next, equation (A.5) is

_1/2 A1 ’ A1 -1 _1/2 A—1 ’
Qw,KRw.,K “Ew — [Qw,szvKQw,K} Qw,KRw,K "Ew

N R —1/2 —-1/2 n ,
gH[EmKQl‘U}K} — [Surk] H HN;1/2Q;,1I/<2RM7K.€MH

The first factor is

{iw,KQ;}K} R [EM,KQ;}K} o, (g (K)? KQN_1)+OP (g (K) KN—1/2)+O,, (g (K) KK‘S/d)

[14]



by Lemma B.2. The second factor is,

A1 2

B[k - Bl e/ VNG|
1 .

=K vatr (EZURw,KQw}KR;u,KE’w)]
—F [tr (fs;uRwK (Rl i Rux) R;7K€w)
= E [tr (Ru.ic (Rl s Ruo) " Rl ceuet,)

v (B [Ruic (Rl e Ruie) " Rl cElewe’|X]) )

2 tr (IE [RWK (135;,7;(3“,,}()71 L;K]
—1

ANl
Qi =

|
QI
2N

QI

QI
g gN g

QI

Thus, the the second factor is O, (K'/2) by Markov’s inequality. Putting this together yields,

N-1/2 }’1/2 - -1/2 ,

-1 p A—1 -1 -1
Qw,KRw,K “Ew — [Qw,sz7KQw,K:| Qw7KRw,K "Ew

A—1 ¥ A—1
|:Qw7KwaKQw,K

— [op (g (K)? KQN’l) +0, (g (K) KN*W) +0, (g (K) KK*s/d)} 0, <K1/2>
= 0y (C(B) K¥2NY2) 10, (¢ (K) K¥/2K+/1).
Finally, equation (A.6) is

-1/2 , ,

~ 71/2 ’
NJUQ {Q;}sz,KQ;}K} Q;}KRU),K “E€w — [Q;}KZUHKQ;}K} Q;,IKRUJ,K “Ew

< H[E ot ]_1/2
=~ w,K 38y K

0~ g [N R e
The first factor is,

H [zw,KQw}K}_l/QH <c-|I|=0 (K1/2) .

[15]



The second factor is O, (¢ (K) K'/?N~1/2) by Lemma A.1. For the third factor consider,

2
£ e

) L\}tr (E;Rw,KRgu,KEw):|

1
E {Nwtr (R;7K6ws’luRw7K)}

1
tr <Nw]E (R, kE[ewe),|X] Rw,K]>
o tr (B[R, xRk /Nuw))
5) - tr (Qw,K)
2

K- /\maac (Qw,K)

I IA
Q QI

IN
Q

Thus, the third factor is O, (K 1/ %) by Assumption 3.2, Lemma A.1 (i) and Markov’s inequality. Putting
this together yields,

’ /

1/2 2 a1 -1 -1 172 4
Nw Qw,KRw,K “Ew — [Qw,szvKQw,K} w,KRw7K "Ew

A—1 -1
{Qw,KwaKQw,K}

-0, (g (K) K3/2N*1/2) :

Before proving Theorem 3/3. we need the following lemma.

Lemma B.1 We may partition VoandV analogously to the partition of Vp and Vp in Section 3.4.
- Voo Vi )
V = N N
< Vio Vi
Voo Vou
V =
< Vio Vi1 )

where Voo and Vo are scalars, Voi and Voy are 1 x (K —1) vectors, Vio and Vig are (K —1) x 1 vectors
and Vi1 and Vi1 are (K — 1) x (K — 1) matrices. Then,

and

Auwin ([N V]7H) < i (IV V1] 7)) Amas (IN V1Y) 2 A (I - Vi ™)

and if Oy (C(K)? K32N"1) + 0, (¢ (K) KK —*4) = 0, (1),

- ([N-VT) < Ao ([N.Vu}l) Ao ([N.V}l) > Amax ([N.Vu}l)

with probability approaching one.

Proof The proof follows by the interlacing theorem, (see, for example, Li and Mathias (2002)): If A is
an n x n positive semi-definite Hermitian matriz with eigenvalues A1 > ... > \p, B is a k X k principal
submatriz of A with eigenvalues A\ > ... > A\, then

Xi > X > Nignk, =1,k

[16]



In our case, N - V and N -V are positive semi-definite, symmetric and thus positive semi-definite,
Hermitian. So then, by the interlacing theorem

N (V- V) < Ain (N Vin) = A ([N V]71) = A (V- V1] ™)
and

Amax (N - V) > Ao (N - Vi1) = Amin ([N : V]_l) < Amin ([N : vll]—l) .

Moreover, by Lemma A.2, N - V is nonsingular with probability approaching one so that again by the
interlacing theorem we obtain

- (N . V) < (N . f/u> 5 Ao ([N : V]_1> > Amax ([N . VH}_1>

and

Amas (N : V) > Amas (N : VH) — Amin ([N : V} 1> < Amin <[N : Vn}l> .

Proof of Theorem 3.3 When the conditional average treatment effect is constant we may choose the
two approximating sequences, 78’ x and 7?7 i to differ only by way of the first element (the coefficient
of the constant term in the approximating sequence). To simplify notation, define

N A ~ * % *
01k = Y11,8 — Jo1,K, Kk =M1,x — V01K

We may again follow the logic of Lemmas (A.3), (A.4), and (A.5) to conclude that
/! ¢ * s —1 ¢ * d
T = ((51K ~0ik) Vit (duk = otk ) — (K - 1))/ V2K — 1) -4 (0, 1)

We need only show that [T — T"| = 0,(1) to complete the proof. First, note that

K

’7:;1,[( - 72;1,1{”2 = Z (WZl,K,i - 731,1{,1‘)2
i=2

K

(V'Zl,K,i - 73;1,1(,1')2 + (%t;o,K - ”Ygo,K)2
—

1
= ’ ’YZ;,K - ’YS;,KHz

- 0 (KK‘Qs/d) , (B.37)

by Lemma A.6 (i7) and

i =10l = S Gurrs =100 x)’

-

1=2

(Y1, ki — 72;1,1(,1‘)2 + (w0, — '72)071()2

-

I
N

K2
= A =l

= [0, (C(K)KNTY) +0 (K—S/dﬂ2 . (B.38)

[17]



by Lemma A.6 (7). We may choose the last (K — 1) elements of the approximating sequence to be
equal, 79, g = 70, - This allows us to bound,

oo = Anrke = Forl

311,50 = 91,5 + 01,5 — Yok ||
1511, = 1| + 01,5 — For k||

= 0, (C(K)KN"Y+0 (K’S/d) (B.39)

IN

by equation (B.38). Also,

o1l = ||7T1,K - 731,1(”
HWTLK - 7?1,1{ + 781,1{ - 731,[(”
HWE,K - ’7?1,1{” + H%?LK - 781,1(”

0 (Kl/QK*S/d) (B.40)

IAN

by equation (B.37). Next note that,
~ N ~ ~ ~ ~
(B =01 7" (B 1) — oV o ) / VEGR =)
= (01 Vi ik — 2 BV o1k ) [ VR (K 1) (B.41)

7~

First consider,

5IKIV1;15TK‘
tr (5TK/‘>1_115TK>‘
)

< N (VW] ) Dl

< Nl [V 7] ) il? (B.42)
- N. {O (1) + O, (C (K) K3/2N*1/2> +0, (C (K) K3/2K75/d)] o (KK72s/d)

= 0, (C(K) K2R 2/INY2) (B.43)

where equation (B.42) follows by Lemma B.1 and equation (B.43) follows from Lemma B.2 and the proof

[18]



of Theorem 3.1. Now consider,

5/11(‘71_1153('
tr (5/11(‘71_115;1()‘
tr (A;K {N : VM} o 63*K> ’

N - Amax ([N : ‘711}1) HSIKH 107kl

N -

IN

IN

N - Anax ([N . f/}l) H&KH 165 || (B.44)
= N-l01)+0, (C (K) K3/2N—1/2) 10, (C (K) KS/ZK—s/d>]
ot o) o (x4
- 0 (g K2K*35/dN) (B.45)
(

where equation (B.44) follows by Lemma B.1 and equation (B.45) follows from Lemma B.2 and the proof
of Theorem 3.1. Thus, we have that equation (B.41) is,

‘T*’ B T" - 0 (K—1/2) [Op (C (K) K5/2K—25/dN1/2) +0, (C (K) KzK—:as/dN)}
_ Op (C(K) KZK—Zs/le/Z) +Op (C (K) K3/2K—3s/dN)
which is o, (1) under Assumptions 3.2 and 3.3. ]

Proof of Theorem 3.4 First, note that we may partition R (z) as

Ric(z) = ( RK]i(x) )

Next, consider

pn -sup [A(z)| = sup lp1(x) — po(z) — 7|
zeX
< sup|RK ’le p(z ‘+SUP‘RK ’YOK po(x )’
+sup [Ri (€)' 30,5 — Ri (€)' 70 | +sup | R ()" 41,k — Ric (€)' |
zeX zeX
+sup |[Rx—1(2)' 411,58 — Rxk—1(2) Y01, x| + |R1910,k — R1900,K — 7|
zeX
< su§|RK ’YOK fo(x “FSUP‘RK ’YlK pa(w )’
S
‘*‘SUI}zHRK )|l - |50, — 70 KH"‘SUPHRK - |13, =Wkl
TE
+Su§ |IRx—1(x)| - 1911,k — Yo1,x || + |[R1Y10,x — R1%00,x — 7]
Te
< sup |Ri ()70 x — po(2)] + sup |Ri (). — pa ()]
xre
+C(K) - ||F0.x — 0.k + CHE) - A5 — W || + CE) - An1.6 — For x|

+|R1%10,x — Rido0,x — 7| -

[19]



Thus,
ik = Forxl = C(E)™ - pw Sup [Az)] = ¢(K)™! sup | R (2)"70, — ho(z)|
—C(K)™ Sup ‘RK Nx —m@)| = [Fox — x| — |75 =9kl
—¢(K)- |R1'710,K — Ri%00,c — T/
We may follow the steps of the proof of Theorem 3.2 to obtain, for any M’,
Pr (N1/2< ()2 K2 |30k — Aonx || > M') L (B.46)
Next, we show that this implies that

Pr C-(A.x —Fo1.x) Vit Gk —Yo1.) — (K — 1) M
2 (K — 1)

(B.47)

for an arbitrary constant C' € Ry4. Denote Apin ([N - Vll]fl) and Apax ([V - Vll]fl) by Ay, and Ajq,
respectively and note that by Lemma A.2 and Lemma B.1 it follows that A;; is bounded away from zero
and A7 is bounded.

Pr (C" (115 —Ao1.x) Viit Grarxg —Aorx) — (K — 1) - M)

2K _ 1)
_ Gk —Fo1k) [N - Vil ™ Bk — Aor,x) — (K — 1) oM
3K - 1)
= PI‘ (’YllK 701 K) [N~V11}_1 (’A)/ll,K—’Ayol,K) >M\/2(K—1)—|—K—1)

> Pr AHC N - (311x —Ao1,k) Bk —Aok) > M2 (K — 1)+ K — 1)

= <NC L (k= Aonx) Bk — Jon,x) > (Ané)il CK) 'K {Mﬂ(K - 1)1/2 +K — 1})

—1/2

_ . N ~ -~ B _ 1/2
= Pr (NW((K) V2RV 40k — Aovk| > (AHC> C(K)~Y? (M\@K WK-1)"+1-K 1) )

Since for any M, for large enough N, we have

(AHC*)_I/2 ¢ (k)2 (M\/ﬁK*I (K-1D)Y* 41— K*1>1/2 <2 (Aé)

it follows that this probability is for large N bounded from below by the probability

_ B ) N -\ —1/2
Pr (N1/2< (K) 1/2K 1/2 ||7117K _701,K|| ) (Ac) )

—1/2

which goes to one by (B.46). To conclude we must show that this implies that

(115 — A1) Vit Grarg —Aorx) — (K — 1)
2(K - 1)

Pr(T’>M)Pr< >M>‘>1.

Let Ay; = Amin([N - Vi1]™1) for simplicity of notation. Let A; denote the event that A;; > A;,/2 which
satisfies Pr(4;) — 1 as N — oo by Lemmas A.1, A.2, and B.1 along with Assumptions 3.2 and 3.3.
Also define the event A,

(M1/2) N - (Gix — Fo1.x) Gix — For,x) — (K — 1)
2K 1)

> M.

[20]



Note that

Pr C- (Arx —Ho1.x) Vii't Gk — Jor.x) — (K — 1) M
2K - 1)

_ pr C-N-(A1.x —Aor.x) [N -Via] " Grx —Aor.x) — (K —1) .y
2K —1)

< Pr MiC N - (iix —Ao1.x) ik — A1) — (K — 1) oM
2(K - 1)

which goes to one as N — oo by equation (B.47). Since C' was arbitrary we may choose C' = (A;;/2)-A\[{!
and so Pr(Az) — 1 as N — oo. Thus, Pr(4;NAz) — 1 as N — oco. Finally, note that the event
Ay N Ay implies that

o (k= Jo1,x) ViT' Gk —Aork) — (K — 1)
(K1)
-1
N (Firx —Aorx) [N . Vu} (F11,x — Jo1,x) — (K — 1)
B 2(K — 1)
> AN - Gk —So1,x) Bk — Aorx) — (K — 1)
= 2 (K —1)
S (AM1/2)N - i1,k — For,x) (it — For,i) — (I — 1)
2K - 1)
> M.
Hence Pr(T" > M)) — 1. [ ]

Lemma B.2 Suppose Assumptions 2.1-2.3 and 3.1-8.2 hold. Then (i),

S0k = Sur 3l | = 0p (CIKP KN 4.0, (¢(K) KN2) 40, (¢ () KK /),
and (i)
‘Q;}KiuhKQ;,lK — Q;}KZ“}’KQ;}KH =0, (C (K) K3/2N—1/2) ‘o, (C (K) KB/QK—s/d) '

Proof For (i) note that,

’iw,KQ;}K - Ew,KQ;}K ‘ = Hiw,KQ;}K - Ew,KQ;}K + Ew,KQ;}K - Ew,KQ;}KH
< [ B0 o
1wl |05 — 92| (B.49)

First, consider equation (B.48),

‘iw,K - Ew’KH =0, (C (K)? K3/2N—1> Lo, (Cj (K) K1/2K_s/d>
by Lemma A.1. Next,

[0l = 572 A (931) = 0 (86172) + 0, (¢ (B) KN T2).

[21]



For equation (B.49) we have that,

||Ew,K|| S K1/2 : /\max (Zw,K) =0 (KI/Z) .

Also, we have

k- 0] -0, (e e 1) w0

by Lemma A.1. Thus,

[entit - onnh|

= [0t ) 0 00 05 o 1) 0, ()
+ [0 (KW)} [op (g (K) Kl/zN—l/z)]

= 0y (C(K) KENTY) 4+ 0, (C(K) KNTY2) + 0, (¢ (B) KK /1) .

For (it) note that,

’QilKiwyKQ;,lK - QQIKEw,KQ;lK H

= Q;}Kﬁ]uhKﬁw K leKEw KQ; KT leKEw KQ Q;}sz,KQ;,IKH
e o o st wan
e [kt - St )

For equation (B.51) the first factor is O, (¢ (K) KY/2N~1/2) by equation (B.50) and the second factor

is

Thus, e

oot

< e () [

< Amax (i;w’,{) Ama (Qw,K) ek

= Amax (B, k) Amax () K2+ 0, (g (K)2K2N*1) +0, (g (K) KK*S/d)

)

-0 (K1/2) ( KQN‘l) +0, (g (K) KK‘s/d) .

quation (B.51) is

Ot — k| S0l = 00 (¢ ) KNTV2) 0, (¢ () K¥/2K 54N 12)

For equation (B.52) the first factor is,

]| < A (2015) 11 = 0 (K72).

The second factor is

by ().

iw,KQ;}K Y, KQ H = ( KQN—l) +0, (C (K) KN—1/2) +0, (C (K) KK—s/d)

Thus, equation (B.52) is

Ul Sl = Sun3lc| = 05 (CB) K2N12) 4 0, (¢ () K3/2K+14)

[22]



Finally,
HQ;,lKinQ;}K - Q;}KEM,KQ;}KH
=0, (( (K) KN—l/z) +0, (C (K)>2 K3/2K—s/dN—1/2)
+ 0, (( (K) K3/2N—1/2) +0, (< (K) K3/2K_s/d>

=0, (g (K) K3/2N*1/2) +0, (g (K) K3/2K*S/d) .

[23]
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