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Abstract

This study contributes to the debate on how government spending shapes the
growth process. We take the analysis in three new directions. First, we consider
government spending, both as a flow and as a cumulated stock, in a scale-invariant
Schumpeterian model of endogenous innovation. Second, we allow public spending to
be the catalyst that precipitates an industrial takeoff. Third, we postulate a produc-
tion structure that generates robust endogenous growth by violating the conventional
condition for endogenous growth, namely, that the economy’s reduced-form production
function must be linear in the accumulated factor. With non-distortionary taxation,
increasing productive government spending causes an earlier industrial takeoff and
faster economic growth. With distortionary labor-income tax under elastic labor sup-
ply, instead, increasing productive government spending has a U-shaped effect on the
timing of the industrial takeoff and an inverted-U effect on economic growth. Using
cross-country panel data, we document a hump-shaped relationship between produc-
tive government spending and economic growth. Calibrating the model to the US,
we find that raising productive government spending from its historical value to its
growth-maximizing value causes an earlier industrial takeoff by over two decades and
an increase in the long-run level of output by about 40%. We also explore the robust-
ness of our results under a consumption tax and a corporate income tax.
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1 Introduction

The goal of this study is to contribute to the debate on the role of government spending in
shaping the growth process. We follow previous studies to focus on the government’s provi-
sion of productive public services to the private sector. We then take the analysis in three
new directions. First, we investigate the role of government spending in a scale-invariant
Schumpeterian model of endogenous innovation. Second, we allow public spending to be
the catalyst that precipitates the takeoff of the economy. This is a question never raised
before in the theoretical work on the growth effects of public spending. Third, we postulate
a production structure with government spending that generates robust endogenous growth
by violating the conventional condition for endogenous growth identified by Barro (1990),
namely, that the economy’s reduced-form production function must be linear in the accu-
mulated factors. Consequently, our results expand significantly the conditions under which
general-equilibrium growth models produce constant exponential growth in steady state, in
particular innovation-driven growth that starts at a specific date, accelerates throughout the
secular transition, and in steady state is scale invariant and subject to policy action.
Given our emphasis on the provision of productive public services as the catalyst of the

takeoff, a classic example of productive government spending driving our model is that it
represents the allocation of resources to building and maintaining a public infrastructure
that produces a flow of productive services that enhances the productivity of the private
sector.1 The evidence on the importance of infrastructure is extensive and motivates a
similarly extensive literature that discusses the desirability of governments taking an active
role in building and maintaining infrastructure. This literature emphasizes that history
provides several examples of infrastructure building that arguably triggered dramatic growth
accelerations. Examples of empirical studies in this vein are Fernald (1999) and Agrawal et
al. (2017). They both consider road-building investment in the 20th century and provide
evidence that such public infrastructure has significant positive effects on productivity and
innovation in the US economy. Similarly, Donaldson and Hornbeck (2016) consider the
expansion of the railroad network in the 19th century and find significant effects on the
agricultural sector of the US economy. As an example of the policy arguments that build on
this literature, consider one of the United Nations Sustainable Development Goals: "to build
resilient infrastructure, promote sustainable industrialization and foster innovation", the
rationale being that "sustained growth must include industrialization that [. . . ] is supported
by innovation and resilient infrastructure".2 This quote describes quite well the main results
produced by our theoretical model, which we now outline.
As mentioned, to study the effects of public spending on industrialization and the emer-

gence of innovation, we develop a scale-invariant Schumpeterian growth model that features
an endogenous takeoff and a productive structure that is not linear in the accumulated
factors, firm knowledge alone in the model’s baseline specification and firm knowledge and
public capital jointly in the extended specification. The provision of productive government
services makes private activity more productive and increases the level of output. As in

1Another example of productive government spending is military spending. A recent empirical study by
Antolin-Diaz and Surico (2024) shows that military spending in the US indeed has positive effects on R&D
and innovation.

2https://www.un.org/sustainabledevelopment/infrastructure-industrialization/
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Barro (1990), the magnitude of this effect depends on the elasticity of output with respect
to government spending in the production function for a final homogenous good. Differently
from Barro (1990), our Schumpeterian model generates endogenous growth even when this
elasticity is zero due to the property of robust endogenous growth first reported in Peretto
(2018) in a model that does not consider productive government spending. Extending that
framework, we make this elasticity positive to enable productive government spending to
have a positive effect on firm size and economic growth and to explore how varying this
elasticity generates different cases for the dynamics of the economy. We then investigate
how public spending and its financing affect the timing of the takeoff and the overall shape
of the secular growth process.
Given that government needs to collect tax revenue to finance its spending, the modelling

of taxation plays an important role in our growth-theoretic analysis. We first consider a
simple case in which government spending is financed by a non-distortionary labor income
tax under inelastic labor supply. In this case, higher productive government spending yields
an earlier industrial takeoff and a higher transitional growth rate by increasing firm size in
the short run. It does not, however, affect economic growth in the long run (steady state)
due to scale invariance, i.e., the sterilization of the strong scale effect in our Schumpeterian
growth model with endogenous market structure.3

We then consider the more realistic case in which government spending is financed by a
distortionary labor income tax that reduces employment under elastic labor supply. In this
case, although productive government spending continues to have no effect on the steady-
state growth rate due to the model’s scale invariance, it has a U-shaped effect on the timing
of industrial takeoff and a hump-shaped effect on the transitional growth rate. To link this
theoretical result to the data, we revisit the cross-country evidence and document with the
most recent panel data a hump-shaped relationship between productive government spending
and economic growth. We also calibrate our model to the US as a representative advanced
economy and find that raising productive government spending from its historical value to
its growth-maximizing value causes an earlier industrial takeoff by over two decades and an
increase in the long-run level of output by roughly 40%.
Given the importance of different tax instruments in different time periods, we explore

the robustness of our results under other tax instruments: a consumption tax and a corporate
income tax. We find that when a consumption tax finances government spending, increasing
the tax rate leads to an earlier industrial takeoff and a higher transitional growth rate but
does not affect steady-state growth. These results are in line with the effects of the non-
distortionary labor income tax because the consumption tax does not affect the equilibrium
level of employment, so that in the short run only the positive effect of productive government
spending is at work.
When a corporate income tax finances government spending, increasing the tax rate has a

U-shaped effect on the timing of industrial takeoff. This result is also in line with the effects
of the distortionary labor income tax, except that in this case the negative effect arises from
the reduction of firm entry (rather than employment) caused by the corporate income tax.
The more important difference is that the effect of productive government spending on the
steady-state growth rate in the industrial era becomes positive because the corporate income

3See Laincz and Peretto (2006) for a discussion of the scale effect in the Schumpeterian growth model.
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tax increases firm size in the long run by discouraging firm entry.
In the final part of the paper, we extend the model to allow for the accumulation of pub-

lic capital. Specifically, we make the provision of productive public services to the private
sector a stock variable instead of a flow variable. This extension brings the model closer
to the empirical evidence on infrastructure mentioned above. We find again that raising
the government spending ratio hastens the industrial takeoff with inelastic labor supply and
has an ambiguous effect on the timing of the industrial takeoff with elastic labor supply,
while it has no affect on the steady-state growth rate regardless of whether labor supply is
elastic or perfectly inelastic. However, the inclusion of public capital changes fundamentally
the transitional dynamics of the model and produces new insights. In particular, the accu-
mulation of public capital alone fuels the growth of the economy in the pre-industrial era,
since the private sector does not invest in innovation. However, this process is subject to
decreasing returns to scale (DRS) to public capital and slows down as long as private sector
technology remains constant. In other words, public capital accumulation is not an engine of
long-run growth. Yet, it is the catalyst of industrialization because it expands the size of the
market and thus creates the conditions for private sector innovation. When industrialization
occurs, the growth rate of public capital stops falling and starts growing due to the fact that
technological innovation by the private sector raises output, and thereby tax revenue, so fast
that it compensates for the falling average product of public capital. This interdependence
between the accumulation of public and private productive assets shapes the growth path of
the economy in the industrial era. Scale invariance, however, still holds and in steady state
the growth rate does not depend on the public spending ratio. Therefore, this extended
model as well produces effects that agree with the evidence of a hump-shaped relationship
between productive government spending and economic growth that we discussed above.
Our study relates to the literature that examines how government spending affects eco-

nomic growth. Barro (1990) introduces government spending as a way to obtain an AK
endogenous growth model that features constant returns to scale to physical capital as an
equilibrium outcome. This growth-theoretic framework is an excellent point of departure to
illustrate the novelty of our approach because it is analytically transparent and delivers a
convincing fundamental insight about the positive contribution that government expendi-
ture can make to economic growth. Specifically, the model produces a hump-shaped relation
between economic growth and government spending as a fraction of GDP, a relation that
reflects the competing effects of productive public services and distortionary taxation. Since
its development more than three decades ago, this insight has stood the test of time and
has received strong empirical support. Subsequent studies, such as Barro and Sala-i-Martin
(1992), Futagami et al. (1993), Glomm and Ravikumar (1994), Futagami and Mino (1995),
Turnovsky (1996, 2000), Futagami et al. (2008), Chatterjee and Turnovsky (2012) and
Maebayashi et al. (2017), explore different ways to model productive government spending
in capital-based growth models. Our study complements these contributions by introduc-
ing productive government spending to a scale-invariant Schumpeterian innovation-driven
growth model with endogenous industrial takeoff.
The empirical literature on the growth effects of public spending is quite large, see for ex-

ample, Kormendi and Meguire (1985), Ahmed (1986), Aschauer (1989), Levine and Renelt
(1992), Evans and Karras (1994), Andres et al. (1996), Devarajan et al. (1996), Kneller
et al. (1999) and Folster and Henrekson (2001). Several of these studies identify either
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a positive, a negative or even an insignificant effect of government spending on economic
growth.4 For our purposes, Kneller et al. (1999) stand out because they test explicitly the
Barro (1990) model and pay close attention to the financing of public spending. That is,
they incorporate the government’s budget constraint as an explicit element of the regression
analysis. Their main conclusion validates the core prediction of Barro (1990): productive
public spending financed with non-distortionary taxes boosts growth, unproductive public
spending financed with distortionary taxes lowers growth. Since in the real world, most
governments engage in a mixture of productive and non-productive spending and of distor-
tionary and non-distortionary taxes, it is not surprising that many studies that do not check
explicitly for the government’s budget constraint do not reach clear conclusions on the sign
of the growth effect of public spending. Kneller et al. (1999), in contrast, account for the
government’s budget constraint and as a consequence identify cleanly the tradeoff driving
the seminal insight in Barro (1990).
Our study also relates to the literature on innovation and economic growth. The seminal

study in this literature is Romer (1990), who develops the first R&D-based growth model
driven by the development of new products (horizontal innovation). The roughly contem-
poraneous study by Aghion and Howitt (1992) develops the quality-ladder Schumpeterian
growth model in which innovation is driven by the improvement of the quality of products
(vertical innovation); see also Grossman and Helpman (1991) and Segerstrom et al. (1990).
Subsequent studies in this literature combine the two dimensions of innovation to develop
the Schumpeterian growth model with endogenous market structure that removes the scale
effect; see Smulders and van de Klundert (1995) and Peretto (1998, 1999) for the variant with
creative accumulation and Howitt (1999) for the variant with creative destruction.5 Peretto
(2015) builds on these contributions and develops a model that features the endogenous
activation of the two dimensions of innovation when the economy crosses dimension-specific
thresholds or market size, a property that produces an endogenous takeoff. This study ex-
pands the scope of this literature by exploring the effects of productive government spending
in the scale-invariant Schumpeterian growth model with endogenous market structure and
endogenous takeoff.
Therefore, our study also relates to the branch of the literature that examines the effects

of fiscal policy on innovation and economic growth. For example, Lin and Russo (1999),
Zeng and Zhang (2002), Peretto (2003, 2007a, 2007b, 2011), Haruyama and Itaya (2006),
Chen et al. (2017), Jaimovich and Rebelo (2017), Akcigit et al. (2022) and Arawatari et
al. (2023) explore the effects of various fiscal policy instruments in different variants of
the innovation-driven growth model. Among these studies, Peretto (2007b) also studies the
effects of distortionary taxes that finance productive public spending in the scale-invariant
Schumpeterian growth model with endogenous market structure; however, he considers only
local dynamics around the steady state and follows the literature’s conventional wisdom in
postulating a productive structure that is linear in firm knowledge. Introducing agents with
heterogeneous R&D abilities to the model in Romer (1990), Arawatari et al. (2023) consider
the effect of productive government spending on innovation and show that it becomes non-

4For a recent exhaustive review of this literature, see Arawatari et al. (2023).
5Garcia-Macia et al. (2019) provide evidence that innovation is mostly driven by the creative accumulation

of incumbent firms.
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linear due to the presence of heterogeneous agents. Our study contributes to this literature
by exploring the effects of productive government spending and various tax instruments on
the endogenous transition of an economy from pre-industrial stagnation to innovation-driven
growth.
Finally, our study also relates to the literature on endogenous takeoff and economic

growth. Galor and Weil (2000) develop the seminal model of Unified Growth Theory (UGT)
to capture the transition from a pre-industrial economy to a modern economy with techno-
logical progress. Subsequent studies include Galor and Moav (2002), Galor and Mountford
(2008), Galor et al. (2009) and Ashraf and Galor (2011) and provide supportive evidence for
UGT.6 In a related branch of the literature, Peretto (2015) develops a Schumpeterian growth
model with endogenous takeoff to capture the transition from a pre-industrial economy to
a modern economy with innovation-driven growth.7 Our study contributes to this branch
of the literature by being the first study to explore the effects of productive government
spending on the industrialization of an economy in a Schumpeterian growth model with
endogenous takeoff.
The rest of this study is organized as follows. Section 2 provides some stylized facts. Sec-

tion 3 presents the Schumpeterian growth model. Section 4 explores the effects of productive
government spending. Section 5 considers two extensions with different tax instruments.
Section 6 extends the approach to public capital. The final section concludes.

2 Stylized facts

In this section, we revisit the stylized facts from cross-country panel data that motivate our
study. There exists an established empirical literature that examines the relationship between
government spending and economic growth. While many of the early studies found either
a positive, a negative or even an insignificant effect of government spending on economic
growth, the more recent studies that account for the government’s budget constraint find a
hump-shaped relationship between government spending and economic growth; see Coayla
(2021) for a recent review.8 As stated, this result validates the Barro (1990) insight. It is
useful to review the existing evidence with recent data and provide fresh support for the
hump-shaped relation between public spending and economic growth. This relation is the
key empirical fact that informs and disciplines our theoretical exercise.9

6Galor (2005, 2011) provides a comprehensive review of UGT.
7See also Iacopetta and Peretto (2021), Chu, Fan and Wang (2020), Chu, Kou and Wang (2020), Chu,

Furukawa and Wang (2022), Chu, Peretto and Wang (2022), Chu and Peretto (2023) and Chu, Peretto and
Xu (2023), who explore other mechanisms, such as corporate governance, status-seeking culture, intellectual
property rights, rent-seeking government, agricultural revolution, income inequality and international trade,
of endogenous takeoff in the Schumpeterian growth model.

8Most of these studies are based on a single country or a small number of countries. A notable exception
is Asimakopoulos and Karavias (2016), who also consider cross-country panel data.

9In this study, we are interested in additional aspects of the growth path that the literature has not
examined before, most prominently the timing of the transition from stagnation to growth and the potential
role of public spending in explaining large difference in income across countries as the result of the secular
cumulation of differences in growth rates. Ideally, we would examine these other aspects with data on the
timing of the takoff in various countries. Such data, unfortunately, is not available.
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Our theoretical model exhibits a hump-shaped effect of productive government spending
on the contemporaneous growth rate under distortionary taxation as long as the economy
hasn’t reached yet the balanced growth path. Since we are not necessarily interested in the
specific tax instrument that induces the non-monotonic relationship, we use the following
empirical specification to document the hump-shaped relation between public spending and
growth:

git = ϑ1γit + ϑ2γ
2
it + ϑ3yit−1 + ϕi + %t + εit,

where git denotes the average annual growth rate (of real GDP, real GDP per capita or
real GDP per worker) in country i in period t, γit denotes the average value of productive
government spending, defined as government spending on education, health, defence, and
economic affairs as in Devarajan et al. (1996), as a share of GDP in country i at period t,
γ2
it denotes the quadratic term of γit in country i at period t, and yit−1 is the log value of
per capita GDP in country i at the beginning of period t to capture the country’s initial
income level. ϕi is the country fixed effect, %t is the period fixed effect, and εit is the error
term. The data is from 1975 to 2015, and we consider five years as a period to remove
cyclical fluctuations. So, we have 8 periods. After merging data from the IMF Government
Finance Statistics and the Penn World Table, we have a sample of 189 observations covering
59 countries. We report the summary statistics of the variables in Appendix B.
Table 1 reports our baseline regression results. The dependent variable in column (1)

is the average annual growth rate of real GDP, capturing output growth. The dependent
variable in column (2) is the average annual growth rate of real GDP per capita, capturing
income growth. The dependent variable in column (3) is the average annual growth rate of
real GDP per worker, capturing labor productivity growth. In all columns, the coeffi cients
on productive government spending are significantly positive, whereas the coeffi cients on
the quadratic term are significantly negative. Therefore, the empirical relationship between
productive government spending and economic growth follows a hump-shaped pattern.

Table 1: Effects of productive government spending on economic growth
(1) (2) (3)

GDP growth per capita GDP growth per worker GDP growth
γit 1.748*** 1.547*** 1.284***

(0.361) (0.347) (0.269)
γ2
it -5.599*** -5.035*** -3.773***

(1.189) (1.200) (0.798)
yit−1 -0.082*** -0.085*** -0.071***

(0.015) (0.015) (0.007)
Country fixed effects Yes Yes Yes
Period fixed effects Yes Yes Yes
Observations 189 189 189
R-squared 0.706 0.687 0.717

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Cluster-robust standard errors are in parentheses. The

dependent variable in column (1) is the average annual growth rate of real GDP. The dependent variable in

column (2) is the average annual growth rate of real GDP per capita. The dependent variable in column (3)

is the average annual growth rate of real GDP per worker.
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In Table 1, we do not control for other explanatory variables. To mitigate omitted variable
bias, we introduce a vector of control variables κit to our regression model as follows:

git = ϑ1γit + ϑ2γ
2
it + ϑ3yit−1 + Γκit + ϕi + %t + εit.

Specifically, we control for the log value of population size, the log value of capital stock,
and the degree of trade openness (measured by the average ratio of export plus import
to GDP).10 Population size captures the scale effect, whereas the capital stock captures
the effect of capital accumulation. Trade openness captures the effect of international trade.
Table 2 reports the regression results. As before, the dependent variables in the three columns
are the average annual growth rates of real GDP, real GDP per capita, and real GDP per
worker, respectively. In all columns, the coeffi cients on productive government spending
are significantly positive, whereas the coeffi cients on the quadratic term are significantly
negative. Therefore, the hump-shaped relationship between productive government spending
and economic growth remains robust to controlling for additional explanatory variables κit.

Table 2: Effects of productive government spending on economic growth (with controls)
GDP growth per capita GDP growth per worker GDP growth

(1) (2) (3)
γit 1.435*** 1.263*** 1.159***

(0.483) (0.456) (0.303)
γ2
it -4.761*** -4.293*** -3.464***

(1.564) (1.549) (0.945)
yit−1 -0.106*** -0.113*** -0.090***

(0.016) (0.016) (0.015)
Control variables Yes Yes Yes

Country fixed effects Yes Yes Yes
Period fixed effects Yes Yes Yes
Observations 189 189 189
R-squared 0.754 0.744 0.746

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Cluster-robust standard errors are in parentheses. The

dependent variable in column (1) is the average annual growth rate of real GDP. The dependent variable in

column (2) is the average annual growth rate of real GDP per capita. The dependent variable in column

(3) is the average annual growth rate of real GDP per worker. The additional control variables are the log

value of population size, the log value of capital stock, and the degree of trade openness.

To test whether the effect of productive government spending on the growth rate vanishes
as the economy approaches the balanced growth path, we divide the full sample into two
subsamples using the top 25th percentile of log GDP per capita as the income threshold,
thereby defining countries that have reached the top quartile of income as economies on the
balanced growth path. Table B2 in Appendix B presents the baseline subsample regressions,
which show that for countries that haven’t reached the balanced growth path, the coeffi -
cients on productive government spending are significantly positive, while the coeffi cients

10We consider the average value within each period.
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on the quadratic term are significantly negative, indicating a humps-shaped relationship on
the transition path. In contrast, for the high-income group, the estimated coeffi cients are
smaller in magnitude and statistically insignificant, consistent with a zero effect of produc-
tive government spending on the balanced growth path. These results remain robust when
we incorporate additional control variables in our regressions, as shown in Table B3.

3 A Schumpeterian model with productive government
spending

We introduce government spending modeled as in Barro (1990) in the Schumpeterian growth
model with endogenous takeoff developed in Peretto (2015). In the benchmark case, we
consider labor income taxation as it is distortionary under elastic labor supply. The model
features both entry of new products (horizontal innovation) and improvement of the quality
of existing products (vertical innovation). We characterize the entire transition path, from
pre-industrial stagnation to endogenous innovation-driven growth. The model also has the
property of robust endogenous growth first discussed in Peretto (2018) because the elasticity
of output with respect to the quality of products in the aggregate production function does
not need to be one to generate endogenous growth.

3.1 Household

There is a representative household with Lt = L0e
λt identical members (population), where

L0 = 1 and the parameter λ ∈ (0,∞) is the growth rate of the mass household members.
The household has lifetime utility function

U =

∫ ∞
0

e−(ρ−λ)t [ln ct + η ln (1− lt)] dt, (1)

where the parameter ρ > λ is the subjective discount rate. The variable ct denotes consump-
tion per capita of a final good (our numeraire good). Accordingly, aggregate consumption
is Ct ≡ ctLt. Finally, the variable lt ∈ (0, 1] is the fraction of time that each member of the
household allocates to work and the parameter η ≥ 0 determines the importance of leisure
relative to consumption.
The household maximizes utility subject to the asset-accumulation equation

ȧt = (rt − λ)at + (1− τt)wtlt − ct, (2)

where at is the real value of assets held by each member of the household and the aggregate
value of assets is At ≡ atLt. rt is the real interest rate and wt is the real wage rate.
The government levies a tax rate τt on wage income. Dynamic optimization yields the
consumption growth rate

ċt
ct

= rt − ρ (3)

and the labor supply of each individual

lt = 1− ηct
(1− τt)wt

. (4)
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3.2 Final good

The final good is produced by competitive firms with the technology

Yt =

∫ Nt

0

Xθ
t (i)

[
Zα
t (i)

(
Gt

Lt

)κ
Ly,t

N1−σ
t

]1−θ

di, (5)

where {θ, σ} ∈ (0, 1), α > 0 and κ ≥ 0. We interpret this Cobb-Douglas production structure
as featuring constant returns to scale (CRS) with respect to two rival inputs: intermediate
goods and augmented labor. It then follows directly that θ ∈ (0, 1). For the purposes of this
study, the core property of this structure is that it features two augmentation terms: the
quality Zt(i) of intermediate goods and the provision of government services Gt. Moreover,
it features two forms of congestion due to the rival nature of the physical inputs intermediate
goods and labor Ly,t.
Specifically, Xt (i) is the quantity of non-durable intermediate good i ∈ [0, Nt], where Nt

is the variety of intermediate goods available at time t. We allow for partial congestion of
labor across intermediate goods (one intermediate good cannot be used by all the workers)
and partial congestion of intermediate goods across units of labor (one worker cannot use
all of the intermediate goods) and measure this effect with the parameter σ ∈ (0, 1), which
removes the scale effect from the model.
Next, the contribution of intermediate good i to the productivity of labor, the model’s

first augmentation term, depends on its own quality Zt (i) with parameter α > 0. This
representation defines quality as the contribution of an intermediate good to increasing the
flow of labor services obtained by the good’s user (the final producer) from each unit of labor
supplied by the household. The second augmentation term is similar: it is the contribution of
government services Gt to increasing the flow of labor services obtained by the final producer
from each unit of labor supplied by the household. We capture the magnitude of this channel
with the parameter κ ≥ 0. We also make public services subject to congestion on a per capita
basis as in, among many others, Peretto (2007b).11

This production structure delivers endogenous growth even with κ = 0, a restriction
that reduces the model to a variant of the one in Peretto (2015), further elaborated in
Peretto (2018), which does not consider productive government spending. In this study,
we introduce G with κ > 0 to investigate the interaction between productive government
spending and endogenous innovation-driven growth. Crucially, we do not impose a priori
restrictions designed to produce steady-state constant endogenous growth on the parameters
{σ, α, κ}, but we will derive such restrictions later on from the equilibrium of the model under
the criterion that the model delivers a transition from initial stagnation to the takeoff and
then to the steady state with endogenous growth driven by the accumulation of knowledge
by firms. The analysis will reveal that the model requires an upper bound on σ, reflecting
market share dilution in equilibrium, and allows for α + κ being less than, equal to or
greater than one because our model generates endogenous growth regardless of whether the

11We could specify this form of congestion as partial by raising Lt to some additional parameter ranging
from zero to one. The results would not change in any interesting way. Note also that our Cobb-Douglas
structure nests congestion of public services across intermediate good in the parameter σ already character-
ized.
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aggregate production function in equilibrium is concave, linear or convex in the average level
of quality Zt, which is the model’s key accumulated factor.
To close this subsection, we now characterize the behavior of the representative final

producer. Profit maximization yields the conditional demand for labor,

Ly,t = (1− θ) Yt
wt
, (6)

and the conditional demand for each intermediate good,

Xt (i) =

[
θ

Pt (i)

]1/(1−θ)

Zα
t (i)

(
Gt

Lt

)κ
Ly,t

N1−σ
t

, (7)

where Pt (i) is the price of good i. Accordingly, the final producer pays (1− θ)Yt = wtLy,t
for labor and θYt =

∫ Nt
0
Pt (i)Xt (i) di for intermediate goods.

3.3 Intermediate goods and in-house R&D

Amonopolistic firm produces differentiated intermediate good i with a linear technology that
uses Xt (i) units of final good to produce Xt (i) units of intermediate good i at quality Zt (i).
This implies that the marginal cost of production is one. The firm also pays φZα

t (i)Z1−α
t

units of final good as a fixed operating cost, where Zt ≡
∫ Nt

0
Zt (j) dj/Nt is the average quality

of all intermediate goods.12 Finally, to improve the quality of its product, the monopolistic
firm devotes It (i) units of final good to in-house R&D with the innovation technology

Żt (i) = It (i) . (8)

With this structure, the monopolist’s before-R&D profit flow is

Πt (i) = [Pt (i)− 1]Xt (i)− φZα
t (i)Z1−α

t (9)

and the value of the monopolistic firm is

Vt (i) =

∫ ∞
t

exp

(
−
∫ s

t

rudu

)
[Πs (i)− Is (i)] ds. (10)

The monopolistic firm maximizes (10) subject to (7) and (8).
It is important to note here that this firm-level problem is well defined if and only if

it features concavity with respect to the firm-specific state variable Zt (i). This is the case
when 0 < α < 1. This is the first restriction implied by the model’s structure for our core
parameters. It is worth stressing that it is a restriction that has nothing to do with the
ability of the model to generate endogenous growth but it stems from the model’s deeper
micro structure, specifically, the requirement that the investment problem of the typical
intermediate firm be well-defined.
12Our results are robust to a more general specification for the fixed operating cost: φZχt (i)Z

1−χ
t , where

χ ∈ (0, 1). Given that it is a fixed operating cost, it is independent of the quantity Xt(i) of production.
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Dynamic optimization of the monopolistic firm yields the unconstrained profit-maximizing
markup ratio 1/θ (see Appendix A). However, we follow Chu et al. (2020) to allow for dif-
fusion of knowledge from monopolistic firms to competitive fringe firms, which can produce
Xt(i) with the same quality Zt(i) but at the higher marginal cost µ > 1. To price these
fringe firms out of the market, the monopolistic firm sets

Pt(i) = min {µ, 1/θ} = µ, (11)

where we assume µ < 1/θ. The firm’s optimization problem also yields the rate of return to
in-house R&D

rqt (i) = α

{
(µ− 1)

Xt (i)

Zt (i)
− φ

[
Zt
Zt (i)

]1−α
}
,

which is increasing in quality-adjusted firm size Xt (i) /Zt (i).

3.4 Entrants

A new firm pays βXt units of final good (where β > 0 is an entry-cost parameter) to develop
a new differentiated good with average quality Zt and start serving the market.13 Once in
the market, the new firm behaves like the incumbent firm characterized above. Therefore,
at any point in time the value of all firms – incumbents and entrants – is governed by the
asset-pricing equation

rt =
Πt − It
Vt

+
V̇t
Vt
. (12)

When entry is positive, the free-entry condition

Vt = βXt (13)

holds. Substituting (7), (8), (9), (11) and (13) into (12) yields the return to entry as

ret =
1

β

(
µ− 1− φ+ zt

Xt/Zt

)
+
Ẋt

Xt

,

where zt ≡ Żt/Zt is the growth rate of average quality. The return to entry ret is also
increasing in quality-adjusted firm size Xt/Zt.

3.5 Government

The government balances its fiscal budget at each point in time and finances its spending
with the revenues from a flat rate tax on labor income. Therefore, the government’s budget
constraint is

Gt = τtwtLy,t. (14)

13This characterization of entry preserves the symmetry of the intermediate goods market equilibrium at
all times. Generalizing the entry cost βXt to make it dependent on quality Zt would complicate the dynamics
of the model.

12



Following Barro (1990), we focus on spending as the key policy variable and thus assume
that the government sets

Gt = γYt, (15)

where γ ∈ (0, 1− θ) is the fiscal policy instrument. Consequently, in our analysis we take γ
as exogenous and τt as the endogenous tax rate that balances the fiscal budget (14).

3.6 Equilibrium

The equilibrium of this economy is a time path of allocations {At, Ct, lt, Yt, Xt, It, Gt}, prices
{rt, wt, Pt(i), Vt} and labor income tax rate τt such that:

• the household chooses consumption ct and labor supply lt to maximize utility taking
{rt, wt, τt} as given;

• competitive firms produce Yt to maximize profits taking {wt, Pt(i)} as given;

• monopolistic intermediate-good firms choose {Pt(i), It} to maximize Vt taking rt as
given;

• entrants make entry decisions taking the maximized value Vt as given;

• the aggregate value of monopolistic firms equals the household’s wealth, atLt = NtVt;

• the government balances the fiscal budget, Gt = τtwtLy,t;

• the labor market clears, Ly,t = ltLt;

• the market for the final good clears, Yt = Ct +Gt +Nt (Xt + φZt + It) + ṄtβXt.

3.7 Aggregation

Under the conditions discussed in Peretto (2015), the equilibrium of this model is symmetric:
intermediate firms charge the same price, produce the same quantity and grow at the same
rate. In such equilibrium, (7), (11) and (15) yield the reduced-form aggregate production
function

Yt =

[(
θ

µ

)θ/(1−θ)
γκltN

σ
t Z

α
t

]1/(1−κ)

Lt, (16)

where the elasticity of output with respect to product variety, Nt, is σ/(1 − κ) and the
elasticity of output with respect to (average) product quality, Zt, is α/(1−κ). For this to be
a sensible representation of production, we must impose κ < 1 so that these two elasticities
are finite and positive.
As stated in the introduction, our model generates endogenous growth even when κ = 0,

in which case the two elasticities are {σ, α} < 1. An important property of this class of
models is that product variety expansion is not an engine of endogenous growth because of
the fixed operating cost borne by firms. Therefore, whether the model produces endogenous
growth or not depends only on the elasticity α. Given α < 1, the conventional wisdom
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in the literature says that this model cannot generate endogenous growth. Peretto (2018)
has challenged such conventional wisdom in a simpler variant of this model. In this study,
we generalize the challenge by nesting the basic model in a structure that (a) allows for the
additional labor augmentation channel via government spending in the spirit of Barro (1990)
and (b) removes the knowledge spillover term that early versions of the theory posited.14

For future use, we close this discussion with the derivation the growth rate of final output
per capita, yt = Yt/Lt. According to the production function (16), the growth rate is

gt ≡
ẏt
yt

=
1

1− κ

(
σnt + αzt +

l̇t
lt

)
(17)

and consists of three components: the variety growth rate nt ≡ Ṅt/Nt; the quality growth
rate zt; and the growth rate of individual labor supply l̇t/lt.

4 Productive government spending and takeoff

In this section, we first solve for the entire path of the economy from stagnation to steady-
state growth. The economy experiences four stages of economic growth governed by the
evolution of firm size. It begins in a pre-industrial era in which the growth rate of final
output per capita is zero. It then enters the industrial era, which consists of two phases.
In the first phase, the entry of new firms that bring to market new products drives the
growth rate of output per capita. In the second phase, the improvement of the quality of
existing products by existing firms adds its contribution to economic growth and produces an
acceleration of the growth rate.15 The economy finally converges to a balanced growth path
that features constant growth in output per capita fueled by both vertical and horizontal
innovation.
Next, we show that productive government spending shapes this process of phase tran-

sitions and convergence, by determining the timing of the first phase transition (i.e., the
endogenous takeoff of the economy) and the timing of the second phase transition (i.e., the
activation of vertical innovation), which further accelerates economic growth. Importantly,
we find that due to the model’s scale invariance, productive government spending does not
affect the steady-state growth rate.

14Specifically, those models specify the augmentation term for quality as Zαt (i)Z
1−α
t , which in symmetric

equilibrium becomes Zt. This specification accepts the conventional wisdom that endogenous growth requires
production Yt to be linear in Zt. Here, we reject such conventional wisdom and remove the second term
from this expression, obtaining nevertheless endogenous growth even under κ = 0.
15We consider the realistic case in which the activation of variety innovation happens before the activation

of quality innovation. See Peretto (2015) for a comprehensive discussion of this property of the baseline
growth model.
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4.1 Dynamics

Our characterization of government spending in (15) and the reduced-form production func-
tion (16) yield that per capita public spending is

Gt

Lt
=

[(
θ

µ

)θ/(1−θ)
γltN

σ
t Z

α
t

]1/(1−κ)

. (18)

Using (7), (11) and (18), we express quality-adjusted firm size as

Xt (i)

Zt (i)
=
Xt

Zt
=

[(
θ

µ

) 1
1−θ−κ

γκlt

] 1
1−κ

Z
α
1−κ−1

t Lt

N
1− σ

1−κ
t

.

We then define the following composite variable:

xt ≡
1

(γκlt)
1

1−κ

Xt

Zt
=

(
θ

µ

) 1−κ(1−θ)
(1−κ)(1−θ) Z

α
1−κ−1

t Lt

N
1− σ

1−κ
t

, (19)

which is the state-variable component of quality-adjusted firm sizeXt/Zt = (γκlt)
1

1−κxt. This
state variable xt compresses the three state variables Lt (population), Zt (average quality)
andNt (mass of products/firms) into the ratio Z

α/(1−κ)−1
t Lt/N

1−σ/(1−κ)
t and, therefore, makes

the analysis of the model’s dynamics simple. Moreover, this expression shows that for the
model to exhibit the sensible property that in equilibrium firm size is decreasing in the mass
of firms, we must assume σ/(1−κ) < 1. This is the second restrictions on the parameters that
we impose not to obtain endogenous growth but to ensure that the model’s microstructure
produces realistic properties in equilibrium. Our model generates a stationary long-run level
of employment per firm Lt/Nt in the special case κ = 1 − α and σ = 0. Importantly, it
generates a stationary quality-adjusted firm size Xt/Zt = (γκlt)

1
1−κxt even without these

parameter restrictions.
To see in more detail the previous point, we use equation (19) to write the rate of return

to quality improvement as

rqt = α
[
(µ− 1)(γκlt)

1
1−κxt − φ

]
(20)

and the rate of return to entry as

ret =
1

β

[
µ− 1− φ+ zt

(γκlt)
1

1−κxt

]
+
ẋt
xt

+ zt +
1

1− κ
l̇t
lt
. (21)

Both rates of return are increasing in quality-adjusted firm size (γκlt)
1/(1−κ)xt and are thus

decreasing in the mass of firms for σ/(1 − κ) < 1. This property captures the main force
driving this class of models: as the mass of firms rises, each firm captures a smaller share of
the market and experiences falling profitability and thereby a weaker incentive to innovate.
The government budget constraint, Gt = τtwtLy,t, yields the labor income tax rate

τt = τ =
γ

1− θ , (22)
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which is increasing in the government spending ratio γ. The combination of labor supply
(4) and labor demand (6) yields the equilibrium fraction of time allocated to work

lt =

(
1 +

η

1− θ − γ
ct
yt

)−1

. (23)

This equation says that given the consumption-output ratio ct/yt, the fraction of time al-
located to work lt is decreasing in the government spending ratio γ via the higher tax rate
τ .
Finally, equation (19) yields the equilibrium law of motion of the state variable xt,

ẋt
xt

= λ+

(
α

1− κ − 1

)
zt −

(
1− σ

1− κ

)
nt. (24)

In this expression, the entry rate nt and the quality growth rate zt are either zero or increas-
ing functions of quality-adjusted firm size (γκlt)

1/(1−κ)xt (as we show below). If these two
functions have the required properties, the composite variable xt converges to its constant
steady-state value. Thus, the core of the analysis in this section is the characterization of
these two functions as equilibrium objects.

4.2 The pre-industrial era

We follow the configuration of the pre-industrial intermediate goods sector in Chu et al.
(2022). In the pre-industrial era, initial demand for each intermediate good is insuffi cient for
a would-be monopolist operating the increasing-returns technology characterized in Section
3 to earn positive profit (see Appendix A for details). As a result, competitive firms produce
the existing N0 intermediate goods. They make zero profit at the limit price Pt(i) = µ and
consequently have zero stock-market value.16 Anticipating such zero value, entrepreneurs
do not pay the sunk entry cost, which implies that there is no variety innovation (no entry
of products). Therefore, all technologies in the pre-industrial era exhibit constant returns
to scale, and xt grows solely due to exogenous population growth (i.e., ẋt/xt = λ). In this
pre-industrial era, the initial mass of intermediate goods N0 is exogenous and predetermined,
whereas the market structure in each product line (i.e., the number of firms and the size of
each firm) is indeterminate.
The demand for intermediate goods eventually becomes suffi ciently high for a would-be

monopolist operating the increasing-returns technology to earn positive profit. However, al-
though the increasing returns technology becomes viable, agents do not deploy it yet because
this technology requires the sunk entry cost. In other words, only innovation allows a new
firm to monopolize an existing market. Therefore, the pre-industrial era ends only when the
present value of monopolistic firms becomes suffi ciently high for the free-entry condition (13)
to hold.
As a result of the pre-industrial market structure outlined above, in the pre-industrial era

the household’s financial wealth is zero and the household’s consumption is ct = (1−τt)wtlt =

16Extending the baseline model to allow for positive monopolistic profits in the pre-industrial era com-
plicates the pre-industrial dynamics but does not change the main results of the paper. Derivations are
available upon request.
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(1− θ − γ)yt, which yields
c

y
=

(
c

y

)
0

≡ 1− θ − γ. (25)

Substituting this result into (23) yields

l = l0 ≡
1

1 + η
. (26)

This says that the equilibrium fraction of time allocated to work in the pre-industrial era is
stationary and independent of the government spending ratio γ. The associated growth rate
of output per capita is

gt =
1

1− κ

(
σnt + αzt +

l̇t
lt

)
= 0 (27)

because nt = zt = l̇t/lt = 0.

4.3 The industrial era: phase 1

Horizontal innovation (but not yet vertical innovation) starts when firm size grows suffi ciently
large. This event marks the beginning of the industrial era. In the first phase of this era, we
have a positive variety growth rate nt > 0 and a zero quality growth rate zt = 0. To see this,
note first that when the free-entry condition holds, the consumption-output ratio ct/yt and
the fraction of time allocated to work lt jump to the following steady-state values (derived
in Appendix A): (

c

y

)∗
= 1− θ − γ +

βθ

µ
(ρ− λ); (28)

l∗ =
1

1 + η
[
1 + βθ(ρ−λ)

µ(1−θ−γ)

] . (29)

The second equation shows that the equilibrium fraction of time allocated to work in the
industrial era is decreasing in the government spending ratio γ.
In the first phase of the industrial era, the growth rate of output per capita is gt =

σnt/(1 − κ) because zt = 0. Using the fact that in equilibrium ret = rt = ρ + gt = ρ +
σnt/(1− κ), we derive the growth rate of product variety nt as

nt =
1

β

[
µ− 1− φ

(γκl∗)
1

1−κxt

]
+ λ− ρ, (30)

which is increasing in firm size (γκl∗)1/(1−κ)xt and is positive if and only if

xt >
φ

(γκl∗)
1

1−κ [µ− 1− β(ρ− λ)]
≡ xN , (31)

where xN is decreasing in γκl∗. Given this activation threshold, we use the fact that in the
pre-industrial era ẋt/xt = λ to compute the time of the industrial takeoff,

TN =
1

λ
log

(
xN
x0

)
, (32)
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where x0 is the initial value of the composite state variable xt. This result says that given
xt = x0 at time t = 0, it takes TN years for the economy to reach the threshold xN and thus
experience the industrial takeoff.
With these expressions in hand, we can investigate the effects of government spending.

If labor supply is perfectly inelastic (i.e., η = 0), the term γκl∗ is monotonically increasing in
the government spending ratio γ because l∗ = 1. In this case, raising productive government
spending leads to an earlier takeoff by decreasing xN and a higher growth rate by increasing
nt. If labor supply is elastic (i.e., η > 0), the term γκl∗ becomes a hump-shaped function of
the government spending ratio γ because l∗ is decreasing in γ. In this case, raising productive
government spending γ has a U-shaped effect on the date of the industrial takeoff, TN , and
a hump-shaped effect on the transitional growth rate gt.
To fully characterize this phase, we note that equations (24) and (30) yield that the

dynamics of the economy are governed by the linear differential equation

ẋt =

(
1− σ

1−κ
)
φ
β

(γκl∗)
1

1−κ
−
[(

1− σ

1− κ

)(
µ− 1

β
− ρ
)
− σλ

1− κ

]
xt, (33)

where we argued above that σ/ (1− κ) < 1.

4.4 The industrial era: phase 2

When firm size is suffi ciently large, horizontal and vertical innovation occur simultaneously.
This is the second phase of the industrial era. Given active horizontal innovation, the
consumption-output ratio and the fraction of time allocated to work lt remain at the steady-
state values (28)-(29). Therefore, we can use the relation rqt = rt = ρ+gt to write the growth
rate gt as

gt = α
[
(µ− 1)(γκl∗)

1
1−κxt − φ

]
− ρ, (34)

which is linearly increasing in firm size (γκl∗)1/(1−κ)xt. Therefore, raising productive govern-
ment spending γ has a hump-shaped (a positive) effect on the transitional growth rate gt if
labor supply is elastic (perfectly inelastic).
Next, we use the fact that ret = rt = ρ+ gt = ρ+ σnt/(1− κ) + αzt/(1− κ) to write the

entry process driving the dynamics of xt as

nt =
1

β

[
µ− 1− φ+ zt

(γκl∗)
1

1−κxt

]
+ λ− ρ. (35)

Manipulating (34), (35) and gt = σnt/(1− κ) +αzt/(1− κ) yields the growth rate of quality
zt as a function of the state variable xt, namely, zt = z (xt), where

z (xt) ≡

[
(µ− 1)(γκl∗)

1
1−κxt − φ

] [
α(1− κ)− σ

β(γκl∗)
1

1−κ xt

]
− ρ(1− κ) + σ (ρ− λ)

α− σ
β(γκl∗)1/(1−κ)xt

. (36)

This expression says that quality growth is positive if and only if xt > xZ , where

xZ ≡ arg solve
x

{
(µ− 1)(γκl∗)

1
1−κx− φ

ρ(1− κ)− σ (ρ− λ)

[
α(1− κ)− σ

β(γκl∗)
1

1−κx

]
= 1

}
(37)
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and, as argued earlier, we work with a configuration of parameters that yields xZ > xN .
Substituting (36) in (35) and rearranging terms, we write nt = n (xt), where

n (xt) ≡
[κ(µ− 1)− β(ρ− λ)](γκl∗)

1
1−κxt + (1− κ)ρ/α− κφ

β(γκl∗)
1

1−κxt − σ/α
, (38)

which expresses the rate of entry as a function of the state variable xt. Finally, using (36)
and (38), we write the equilibrium law of motion

ẋt
xt

= λ+

(
α

1− κ − 1

)
z (xt)−

(
1− σ

1− κ

)
n (xt) . (39)

This equation is non-linear but relatively straightforward to study.
Summing up the results of the analysis of each phase, we have reduced a seemingly

complex model to a representation of the equilibrium dynamics that consists of a piece-wise
differential equation in the composite state variable xt. The equation has the properties that
the first two pieces in the pre-industrial era and the first phase of the industrial era are linear
while the last piece in the second phase of the industrial era is non-linear but not particularly
challenging. Armed with this representation, we next discuss the conditions under which the
model converges to a steady state with endogenous growth and how the process depends on
government spending.

4.5 Convergence to the balanced growth path

We showed above that the state variable xt grows exponentially in the pre-industrial era
due to the exogenous growth of the population. Therefore, the economy experiences the
takeoff in finite time as long as the threshold xN is finite. This property gives us the
third restriction that we impose to characterize the global dynamics of the model, namely,
µ − 1 > β(ρ − λ). This restriction simply says that the fundamentals are such that the
gross profit rate earned by monopolistic firms can cover the flow cost due to the decision to
undertake entry. Specifically, the right hand side of the inequality is the initial sunk cost
of entry, β, multiplied by the interest rate that the firm must pay at each point in time
to finance that initial expenditure (think of the entrant firm taking a loan to finance β or,
equivalently, issuing equity that must promise the market rate of return).
In phase 1 of the industrial era, the economy obeys the linear differential equation (33),

which says that the economy crosses the threshold xZ in finite time if (33) has the property

ẋt (xZ) =

(
1− σ

1−κ
)
φ
β

(γκl∗)
1

1−κ
−
[(

1− σ

1− κ

)(
µ− 1

β
− ρ
)
− σλ

1− κ

]
xZ > 0.

This is simply a restriction on the parameters that ensures that the process of entry does not
saturate the market so much that incumbent firms cannot cross the threshold of profitability
that activates in-house quality innovation. It is the analog of the condition discussed above
that guarantees that the first phase transition occurs. In other words, this condition guaran-
tees that the second phase transition occurs. On reflection, we can express these conditions
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in more compact terms. We rewrite the inequality above as

ρβ +

[(
1− σ

1−κ
)
φ
β

(γκl∗)
1

1−κxZ
+

σλ

1− κ

]
β

1− σ
1−κ

> µ− 1.

Combining this inequality with the inequality derived for the first phase transition, we obtain

ρβ +

[(
1− σ

1−κ
)
φ
β

(γκl∗)
1

1−κxZ
+

σλ

1− κ

]
β

1− σ
1−κ

> µ− 1 > β(ρ− λ) (40)

as the suffi cient condition for the dynamics of the model to yield the full sequence: pre-
industrial era → industrial era phase 1 → industrial era phase 2.
Perhaps intuitively, the conditions just discussed are subsumed in the conditions that we

obtain by looking directly at the model’s global dynamics, paying special attention to what
happens in phase 2 of the industrial era. Figure 1 plots the phase diagrams for the three
cases (α + κ = 1, α + κ > 1 and α + κ < 1) and shows that in each case xt can converge
to the steady-state value x∗ that features both quality improvement (z∗ > 0) and variety
expansion (n∗ > 0) in the long run. Note that under the suffi cient condition (40) in all three
panels the piece of the differential equation in the interval [xN , xZ ] is above the horizontal
axis.17 The conditions for the model to produce endogenous growth conventionally defined,
therefore, are the conditions under which in each case the steady state x∗ exists and is the
global attractor of the economy’s equilibrium dynamics. We now characterize each case.

Figure 1a: α + κ = 1 Figure 1b: α + κ > 1 Figure 1c: α + κ < 1

Case 1. Consider α+κ = 1. In Appendix A, we show that the steady-state value of the
state variable xt is

x∗ =
1

(γκl∗)
1

1−κ

(κφ− ρ)
(
1− σ

1−κ
)
− σλ

α

[κ(µ− 1)− β(ρ− λ)]
(
1− σ

1−κ
)
− βλ

. (41)

The associated growth rate of income per capita is

g∗ = α

[
(µ− 1)

(κφ− ρ)
(
1− σ

1−κ
)
− σλ

α

[κ(µ− 1)− β(ρ− λ)]
(
1− σ

1−κ
)
− βλ

− φ
]
− ρ, (42)

17In an online appendix (see Appendix C), we show the phase diagrams for other possibilities.
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which is fueled by the variety growth rate n∗ = (1 − κ)λ/(1 − κ − σ) > 0 and the quality
growth rate z∗ = g∗ − (σ/α)n∗. Note that the steady-state firm size, (γκl∗)1/(1−κ)x∗, the
steady-state growth rate, g∗, and the steady-state rate of quality innovation, z∗, are all
independent of the government spending ratio γ due to the model’s scale invariance.
The conditions for endogenous growth are (i) that the values x∗, g∗ and z∗ exist and

are positive and (ii) that the model’s dynamics allow the state variable xt to converge to
the steady state x∗. Inspecting the phase diagrams shows that under condition (40) if the
steady state x∗ exists, then it is locally stable and, therefore, the global attractor of the full
dynamical system. We provide a more formal characterization of this property in the proof
of Proposition 1 below. The condition for x∗ > 0 is(

1− σ

1− κ

)
> max

{
σλ

α (κφ− ρ)
,

βλ

κ(µ− 1)− β(ρ− λ)

}
, (43)

which says that both the numerator and the denominator of (41) are positive. The conditions
for g∗ > 0 and z∗ > 0 add, respectively, the inequalities:

α

[
(µ− 1)

(κφ− ρ)
(
1− σ

1−κ
)
− σλ

α

[κ(µ− 1)− β(ρ− λ)]
(
1− σ

1−κ
)
− βλ

− φ
]
> ρ;

α

[
(µ− 1)

(κφ− ρ)
(
1− σ

1−κ
)
− σλ

α

[κ(µ− 1)− β(ρ− λ)]
(
1− σ

1−κ
)
− βλ

− φ
]
> ρ+

σλ

1− κ− σ . (44)

Note that the latter implies the former, which we can thus ignore. Summarizing, the condi-
tions that ensure that the economy converges to x∗ under the model’s equilibrium dynamics,
where x∗ exhibits endogenous growth, are (40), (43) and (44). These are inequality restric-
tions. Nowhere the model requires an equality restriction representing a knife-edge condition
on the parameters.

Case 2 and Case 3. To characterize the next two cases, we derive in Appendix A the
steady-state firm size and the steady-state growth rate given, respectively, by:

(γκl∗)1/(1−κ)x∗ =
a2 −

√
a2

2 − 4a1a3

2a1

; (45)

g∗ = α

[
(µ− 1)

a2 −
√
a2

2 − 4a1a3

2a1

− φ
]
− ρ. (46)

To work with compact notation, we defined the coeffi cients:

a1 ≡ αβ(µ− 1)(1− κ)(α + κ− 1);

a2 ≡ (α + κ− 1){[µ− 1− β(ρ− λ)]σ + β(1− κ)(ρ+ φα)}
+ α(1− κ− σ)[(µ− 1)κ− β(ρ− λ)]− αβλ(1− κ);

a3 ≡ (α + κ− 1)φσ + (1− κ− σ)[αφκ− (1− κ)ρ]− σλ(1− κ).
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Note that once again both the steady-state firm size, (γκl∗)1/(1−κ)x∗, and the steady-state
growth rate, g∗, are independent of the government spending ratio γ due to the model’s scale
invariance. We now examine each case using these expressions. Before doing so, we note the
new property that arises in these cases, namely, the equation

λ+

(
α

1− κ − 1

)
z∗ =

(
1− σ

1− κ

)
n∗,

which says that there exists a relation between variety growth and quality growth dictated
by the sign of the coeffi cient α + κ − 1. Recall that 1 > σ/ (1− κ). This new property
yields that since g∗ = (σn∗ + αz∗) / (1− κ), the breakdown of economic growth in its two
components – variety and quality growth – is:

z∗ =
(1− κ) g∗ − σλ(1−κ)

1−κ−σ
σ(α+κ−1)

1−κ−σ + α
;

n∗ =
λ (1− κ) + (α + κ− 1) z∗

1− κ− σ .

The new result here is that for α + κ 6= 1 the rate of entry is not pinned down by the rate
of growth of the population but is jointly determined with the rate of quality growth. In
Appendix A, we provide a more detailed discussion of the two cases: α+κ > 1 and α+κ < 1.

4.6 Summary of results

We can summarize our result on the main global dynamics in Proposition 1.

Proposition 1 Assume that x0 < xN < xZ. Then, the economy begins in the pre-industrial
era with no innovation of any kind. It then experiences an industrial takeoff and enters the
first phase of the industrial era where horizontal innovation alone fuels industrial growth.
After that, the economy enters the second phase of the industrial era with both vertical and
horizontal innovation and converges to the balanced growth path.

Proof. See Appendix A.

In Proposition 2, we summarize the effects of productive government spending, which
depend on whether labor supply is elastic or not. If labor supply is perfectly inelastic, then
the labor income tax has no distortionary effect. In this case, raising productive government
spending causes an earlier industrial takeoff and increases the transitional growth rate by
enlarging firm size in the short run; however, it has no effect on long-run economic growth
due to the absence of the scale effect. If labor supply is elastic, then the labor income tax has
a distortionary effect on employment. In this case, raising productive government spending
has a U-shaped effect on the timing of industrial takeoff and an inverted-U effect on the
transitional growth rate.
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Proposition 2 The effects of productive government spending are as follows. If labor supply
is perfectly inelastic (i.e., η = 0), then raising productive government spending γ leads to
an earlier industrial takeoff and a higher transitional growth rate gt during the industrial
era. If labor supply is elastic (i.e., η > 0), then there exists a threshold value γ̃ ∈ (0, 1− θ)
such that raising productive government spending γ leads to an earlier (a delayed) industrial
takeoff when γ < γ̃ (γ > γ̃). During the industrial era, i.e., xt ∈ (xN , x

∗), an increase in γ
increases (decreases) the transitional growth rate gt when γ < γ̃ (γ > γ̃). In the long run,
the government spending share γ does not affect the steady-state growth rate (regardless of
whether labor supply is elastic or perfectly inelastic).

Proof. See Appendix A.

It is useful to note that the threshold level γ̃ of government spending that gives rise to the
earliest takeoff and the highest transition growth rate is the same. Once again, due to the
endogenous market structure removing the scale effect, any changes in government spending
have no effect on long-run economic growth.

4.7 Quantitative illustration

In this section, we calibrate the model to the US as a representative advanced economy,
due to its data availability, and perform a quantitative analysis to gauge the magnitudes
of the effects that the model produces. The model features the following 11 parameters:
{κ, λ, α, µ, γ, θ, ρ, β, φ, η, σ}. In the reduced-form production function (5), the exponent on
productive government spending Gt is κ; therefore, κ is the key parameter that determines
the strength of the effects of productive government spending on the timing of industrial
takeoff and the transitional growth rate. In light of its importance, we consider a wide range
of values for κ ∈ [0.10, 0.55].18 Then, we set λ = 1.6%, equal to the average growth rate of
employment in 1978-2019 from the Business Dynamics Statistics (BDS). We follow Iacopetta
and Peretto (2021) to set the elasticity of profit with respect to own knowledge α to 0.333.
We set markup ratio µ to 1.3, which is within the range of aggregate markup ratios estimated
in De Loecker et al. (2020). To capture productive government spending γ, we consider the
sum of government expenditures on education, health, defence and economic affairs as a
share of GDP in the US, which is about 0.2 on average in recent decades. The labor income
share 1−θ is around 60%, so that θ = 0.4. We set the discount rate ρ to a conventional value
of 0.03. Then, we calibrate the remaining parameters {β, φ, η, σ} by matching the following
moments. The parameters {β, φ} mainly target a long-run growth rate of output per capita
of 2% and R&D as a share of output of 2.7%. The relative importance of leisure η matches
labor supply as a share of labor endowment of 0.3. The social return to variety σ matches
a net firm entry rate of 1% (also from the BDS). We summarize the calibrated parameter
values in Table 3, which shows that we have α + κ < 1 for our entire range of values for κ.

18As κ rises above 0.566, σ would become negative, which is empirically implausible because a negative σ
implies that variety innovation contributes negatively to economic growth.
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Table 3. Calibrated parameter values
κ λ α µ γ θ ρ β φ η σ γ̃

0.100 0.016 0.333 1.300 0.200 0.400 0.030 5.837 0.116 2.195 0.933 0.359
0.250 0.016 0.333 1.300 0.200 0.400 0.030 5.837 0.116 2.195 0.633 0.435
0.400 0.016 0.333 1.300 0.200 0.400 0.030 5.837 0.116 2.195 0.333 0.466
0.550 0.016 0.333 1.300 0.200 0.400 0.030 5.837 0.116 2.195 0.033 0.485

Table 3 also computes the value of productive government spending share γ̃ that max-
imizes γκl∗ under different values of κ. It is useful to note from (31), (30) and (34) that a
larger γκl∗ implies a lower industrial-takeoff threshold xN and a higher transitional growth
rate gt in the two phases of the industrial era. For the value of κ, we choose 0.1, which is
a conservative value within the range of empirical estimates reported in Ramey (2021). In
this case, the growth-maximizing productive government spending share is γ̃ = 0.359. Fur-
thermore, under this set of parameter values, the growth rate of average employment Lt/Nt

is λ − n∗ = 0.6%, which is in line with the annual growth rate of average employment per
firm in the BDS of 0.62% from 1978 to 2019. Furthermore, given that in-house R&D share
of output NtIt/Yt is a constant in the steady-state, the model-produced growth rate of firms’
R&D spending is g∗I ≡ İt/It = g∗+λ−n∗ = 2.6%, which is roughly in line with the empirical
estimate of 2.9%.19 Figure 2 simulates the time path of the equilibrium growth rate gt under
the growth-maximizing productive government spending share γ̃ = 0.359 and also two coun-
terfactual growth paths with γ ∈ {0.010, 0.500}. Given the number of years on the horizontal
axis, Figure 2 shows that when the productive government spending share increases from the
historical value of 0.010 in the early 19th century20 to the growth-maximizing value of 0.359,
the industrial takeoff of the economy occurs earlier by 23 years. However, further increasing
the productive government spending share to 0.500 then delays the takeoff by 4 years. We
also compute how the balanced-growth level of output would change when the government
raises its spending share γ from its historical value of 0.01 to the growth-maximizing value γ̃
of 0.359 for the benchmark case of κ = 0.1. This exercise shows that although the growth rate
would converge to the same steady-state value of 2%, the balanced-growth level of output
would increase by 38.6%.

19From OECD statistics, the average annual growth rate of nominal R&D expenditures is 6.1% in the US,
which translates to a real growth rate of 3.9% and a real growth rate of R&D per firm of 2.9% (recall that
the net entry rate of firms is 1%).
20Data source: IMF Government Finance Statistics and IMF Public Finances in Modern History Database.

As in Section 2, we follow Devarajan et al. (1996) to define productive government spending as the sum
of government expenditures on education, health, defence, and economic affairs. The IMF Government
Finance Statistics provides data on these four items from 1970 to 2021, and their average share of US
government expenditures is 0.55. The IMF Public Finances in Modern History Database provides data on
total government expenditures as a share of US GDP from 1800 to 2022. We multiply this data by 0.55
to obtain an estimate for productive government spending share of US GDP in 1800, by assuming that the
expenditure share of the above four items within the government budget remains the same as modern data.
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Figure 2: Deviating from the growth-maximizing value γ̃.

5 Other taxes

Given the importance of other tax instruments at different points in time, we consider two
extensions of the model with different tax instruments in this section. Section 5.1 considers
a consumption tax. Section 5.2 considers a corporate income tax.

5.1 Consumption tax

This section replaces the labor income tax with a consumption tax and explores the effects of
productive government spending on the dynamics of the economy from pre-industrial stag-
nation to innovation-driven growth. To conserve space, we do not repeat all the derivations
but focus on the equations that are different from the baseline model.
The household’s asset-accumulation equation becomes

ȧt = (rt − λ)at + wtlt − (1 + τc,t)ct,

where τc,t is the consumption tax rate. Individual labor supply becomes

lt = 1− η(1 + τc,t)
ct
wt
.
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As for the fiscal budget constraint, it becomes

Gt = τc,tCt.

The rest of the model remains the same as before. Following the same derivations in the
baseline model, we derive equilibrium individual labor supply

lt =

[
1 +

η(1 + τc,t)

1− θ
ct
yt

]−1

.

In the pre-industrial era, the consumption-output ratio jumps to

c

y
=

(
c

y

)
0

≡ 1− θ
1 + τc

,

where the consumption tax rate is stationary and given by

τc =
γ

1− θ − γ ,

which is increasing in the government spending ratio γ. Therefore, equilibrium individual
labor supply in the pre-industrial era jumps to

l = l0 ≡
1

1 + η
.

In the industrial era, the consumption-output ratio jumps to

c

y
=

(
c

y

)∗
≡ 1

1 + τ ∗c

[
1− θ +

βθ

µ
(ρ− λ)

]
,

where the consumption tax rate is stationary and given by

τ ∗c =
γ

1− θ − γ + βθ(ρ− λ)/µ
,

which is increasing in the government spending ratio γ. Therefore, the equilibrium level of
labor in the industrial era jumps to

l = l∗ ≡ 1

1 + η
[
1 + βθ(ρ−λ)

µ(1−θ)

] ,
which is independent of the government spending ratio γ because (1 + τc)c/y is independent
of τc. Therefore, raising productive government spending γ continues to have a positive effect
on firm size (γκl∗)1/(1−κ)xt via the term γκ, but the negative effect of γ via equilibrium labor
l∗ in the baseline model disappears because consumption tax does not affect employment l∗.
The dynamics of the economy are captured by (30) to (46) and (A9) to (A11) in Ap-

pendix A as in the baseline model. We can now summarize the global dynamics under the
consumption tax as follows.
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Proposition 3 When government spending is financed by a consumption tax τc,t, the effects
of productive government spending γ are as follows. In the pre-industrial era, i.e., xt ∈
(x0, xN), an increase in γ leads to an earlier industrial takeoff. In the industrial era, i.e.,
xt ∈ (xN , x

∗), an increase in γ raises the transitional growth rate gt but does not affect the
steady-state growth rate g∗.

Proof. From (31), one can show that a larger γ reduces xN . From (30) and (34), one can
show that a larger γ increases gt in both the first phase and second phase of the industrial
era, i.e., xt ∈ (xN , x

∗). Then, (46) shows that g∗ is independent of γ.

5.2 Corporate income tax

This section replaces the consumption tax with a corporate income tax. For simplicity and
tractability, we consider the special case with κ = 1− α. Before the industrial takeoff, firms
make zero corporate income, i.e., Πt = 0. Therefore, we keep the labor income tax as in
the baseline model to ensure that government spending Gt is positive and financed by labor
income tax before the industrial takeoff. Again, we do not repeat all the derivations but
focus on the equations that are different from the baseline economy.
Given the corporate income tax, the value of monopolistic firm i becomes

Vt (i) =

∫ ∞
t

exp

(
−
∫ s

t

rudu

)
(1− τΠ,s) [Πs (i)− Is (i)] ds.

The government levies the corporate income tax τΠ,t on the firm’s cash flow net of R&D
expenditure, which implies that R&D is fully expensible. Then, the asset-pricing equation
becomes

rt =
(1− τΠ,t) (Πt − It)

Vt
+
V̇t
Vt
.

The fiscal budget constraint becomes

Gt = τwtLy,t + τΠ,tNt(Πt − It).

In the pre-industrial era, it must be the case that Gt = τwtLy,t because τΠ,tNt(Πt − It) = 0.
In the industrial era, changes in government spending are financed by corporate income tax,
and the endogenous corporate income tax is given by

τΠ,t =
γ − τ (1− θ)
Nt(Πt − It)/Yt

,

where we take the government spending ratio γ and the labor-income tax rate τ as exogenous.
The rate of return to entry becomes

ret =
1− τΠ,t

β

[
µ− 1− φ+ zt

(γ1−αl∗)1/αxt

]
+
ẋt
xt

+ zt +
1

α

l̇t
lt
.
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In both the pre-industrial era and the industrial era, the equilibrium individual labor
supply is

lt =

[
1 +

η

(1− θ)(1− τ)

ct
yt

]−1

.

In the pre-industrial era, the consumption-output ratio is

c

y
=

(
c

y

)
0

≡ (1− τ)(1− θ),

and the equilibrium individual labor supply is

l = l0 ≡
1

1 + η
.

When the economy enters the industrial era, both the consumption-output ratio ct/yt
and the equilibrium level of labor lt jump to their steady-state values:

c

y
=

(
c

y

)∗
≡ (1− θ)(1− τ) +

βθ

µ
(ρ− λ),

l = l∗ ≡ 1

1 + η
[
1 + βθ(ρ−λ)

µ(1−θ)(1−τ)

] ,
which are independent of τΠ,t. In the industrial era, the endogenous corporate income tax
can be expressed as (see the derivation in Appendix A)

τΠ,t =
µ[γ − (1− θ)τ ]

βθ(nt + ρ− λ) + µ[γ − (1− θ)τ ]
,

which is decreasing in nt and increasing in the government spending ratio γ for a given nt.
In the first phase of the industrial era, the growth rate of output is gt = σnt/α and the

variety growth rate nt can be expressed as

nt =
1

β

{
µ− 1− φ

(γ1−αl∗)1/αxt
− µ

θ
[γ − (1− θ)τ ]

}
+ λ− ρ,

which is increasing in firm size (γ1−αl∗)1/αxt as before and is positive if only if

xt >
φ

(γ1−αl∗)1/α{µ− 1− β(ρ− λ)− [γ − (1− θ)τ ]µ/θ} ≡ xN .

In Appendix A, we show that if the labor income tax rate τ is suffi ciently small, then the
industrial threshold xN is a U-shaped function in productive government spending γ, which
lowers the industrial threshold xN (when γ is small) by raising firm size via γ1−α but increases
the industrial threshold xN (when γ is large) by discouraging firm entry via corporate income
tax τΠ,t. Therefore, a small increase in productive government spending γ can reduce the
industrial threshold xN and trigger an immediate industrialization of the economy when xN
falls below x0.
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In the second phase of the industrial era, the growth rate of output becomes gt = σnt/α+
zt and converges to the steady state. On the balanced growth path, the steady-state variety
growth rate is given by n∗ = αλ/(α− σ), and the steady-state corporate income tax rate is
given by

τ ∗Π =
µ[γ − (1− θ)τ ]

βθ[ρ+ σλ/(α− σ)] + µ[γ − (1− θ)τ ]
,

which is increasing in the government spending ratio γ. Finally, the steady-state per capita
output growth rate is given by

g∗ =
α[βφ− (1− τ ∗Π)(µ− 1)] [ρ+ σλ/(α− σ)]

(1− τ ∗Π)(1− α)(µ− 1)− β [ρ+ σλ/(α− σ)]
− ρ

=
α{[βφ− (µ− 1)][ρ+ σλ/(α− σ)] + [γ − (1− θ)τ ]µφ/θ}
(1− α)(µ− 1)− β[ρ+ σλ/(α− σ)]− [γ − (1− θ)τ ]µ/θ

− ρ,

which is increasing in τ ∗Π and, hence, increasing in γ. Intuitively, corporate income tax raises
steady-state growth by discouraging firm entry and enlarging firm size in the long run.
We can now summarize the global dynamics under the corporate-income tax in Proposi-

tion 4, which focuses on industrial takeoff and long-run growth for simplicity.

Proposition 4 When government spending is financed by a corporate income tax τΠ,t, the
effects of productive government spending γ are as follows. In the pre-industrial era, an
increase in γ leads to an earlier (a delayed) industrial takeoff if γ is below (above) a threshold.
In the industrial era, an increase in γ raises the steady-state growth rate g∗.

Proof. See Appendix A.

6 Public capital

We now modify the baseline model to allow for public capital. Specifically, we make Gt in the
production function (5) a stock variable instead of a flow variable. We find again that raising
the government spending ratio hastens the industrial takeoff with inelastic labor supply and
has an ambiguous effect on the timing of the industrial takeoff with elastic labor supply,
while it has no effect on the steady-state growth rate regardless of whether labor supply is
elastic or perfectly inelastic. These qualitative results are the same as in the baseline model.
However, the inclusion of public capital changes fundamentally the transitional dynamics of
the model and produces new insights.

6.1 Equilibrium

Public capital accumulates according to the equation

Ġt = IG,t − δGGt,
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where IG,t is public investment financed through taxes and δG is the depreciation rate of
public capital. The characterization of the final-good sector and the intermediate-good sector
are the same as in the baseline model. The government balances its budget at each point in
time and finances its spending with the revenue from a labor income tax τt. Therefore, the
government’s budget constraint is IG,t = τtwtLy,t. Accordingly, we have

Ġt = IG,t − δGGt = τtwtLy,t − δGGt = γYt − δGGt, (47)

where the policy parameter γ ∈ (0, 1) is now the public capital investment ratio.
The reduced-form aggregate production function is

Yt =

(
θ

µ

)θ/(1−θ)(
Gt

Lt

)κ
Nσ
t Z

α
t ltLt, (48)

where {σ, κ} ∈ (0, 1). In this specification of the model, it is still the case that the consump-
tion/output ratio, ct/yt, jumps to its steady state, given by (25) in the pre-industrial era
and (28) in the industrial era. Accordingly, the employment ratio, lt, jumps to its steady
state, given by the value l0 in equation (26) in the pre-industrial era and by the value l∗ in
equation (29) in the industrial era. Therefore, log-differentiating (48) with respect to time
we obtain the growth rate of output per capita

gt ≡
ẏt
yt

= σnt + αzt + κ(gG,t − λ), (49)

where gG,t ≡ Ġt/Gt is the growth rate of public capital. Given our characterization of the
government’s policy, we have the relation

gG,t = γ
Yt
Gt

− δG = γ

(
θ

µ

)θ/(1−θ)(
Gt

Lt

)κ−1

Nσ
t Z

α
t lt − δG, (50)

in which, differently from the baseline model, the ratio Yt/Gt is endogenous. In this extension,
this ratio is the average product of public capital. To guarantee that the growth rate of public
capital is positive at the beginning of time, gG,0 > 0, we assume that the initial stock of public
capital is suffi ciently low, G0 < (γA0/δG)1/(1−κ), where we define A0 ≡ (θ/µ)θ/(1−θ) Nσ

0 Z
α
0 l0.

We now turn to the dynamics of the economy. The composite state variable driving
quality-adjusted firm size is

xt ≡
1

lt

Xt

Zt
=

(
θ

µ

) 1
1−θ

(
Gt
Lt

)κ
Zα−1
t Lt

N1−σ
t

. (51)

The rates of return to quality innovation and entry are:

rqt = α [(µ− 1)xtlt − φ] ; (52)

ret =
1

β

(
µ− 1− φ+ zt

xtlt

)
+
ẋt
xt

+ zt. (53)

In the pre-industrial era, firm size is not suffi ciently large there is no innovation of any
kind. Therefore, the growth rate of output per capita is gt = κ(gG,t − λ). Note what
this expression says: in the pre-industrial era the engine of output per capita growth is
public capital accumulation. This property expands vastly the paper’s perspective on public
spending.
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6.2 Pre-industrial-era dynamics

We now work out the details of the mechanism. We denote public capital per capita as
kt ≡ Gt/Lt and write the differential equation governing its dynamics in the pre-industrial
era as

k̇t = γA0k
κ
t − (δG + λ)kt.

This is a Bernoulli differential equation that can be transformed into a linear differential
equation with the change of variable bt = k1−κ

t to obtain ḃt = (1−κ)γA0− (1−κ)(δG +λ)bt.
Therefore, we obtain the solution

Gt

Lt
= kt =

[
γA0

δG + λ

(
1− e−(1−κ)(δG+λ)t

)
+G1−κ

0 e−(1−κ)(δG+λ)t

] 1
1−κ

.

This equation shows that an increase in γ shifts up the entire time path of public capital per
capita. Furthermore, in the pre-industrial era, firm size is

xtl0 =

(
θ

µ

) 1
1−θ
[
γA0

δG + λ
−
(

γA0

δG + λ
−G1−κ

0

)
e−(1−κ)(δG+λ)t

] κ
1−κ Zα−1

0

N1−σ
0

l0L0e
λt,

which shows that an increase in γ shifts up the entire time path of firm size.
When firm size grows suffi ciently large, horizontal innovation begins and the economy

enters the first stage of the industrial era. The growth rate of product variety is

nt =
1

β

(
µ− 1− φ

xtl∗

)
+ λ− ρ, (54)

which is positive if and only if

xt > xN ≡
φ

l∗ [µ− 1− β(ρ− λ)]
. (55)

Given the closed-form solution for the dynamics of public capital per capita, this threshold
yields

TN ≡ arg solve
t

{
xN
x0

=

[
γA0

(δG + λ)G1−κ
0

[
1− e−(1−κ)(δG+λ)t

]
+ e−(1−κ)(δG+λ)t

] κ
1−κ

eλt

}
.

This expression generalizes the notion of industrial takeoff time that we developed in the
baseline model of flow public spending.
To appreciate better the novel insight developed by this result, consider the case of zero

population growth (λ = 0). In the baseline model of flow public spending, this would cause
permanent stagnation since equation (32) says that TN →∞. Here, instead, the expression
for the industrial takeoff time simplifies to

TN =
1

(1− κ)δG
ln

 γA0
δG
−G1−κ

0

γA0
δG
−G1−κ

0

(
xN
x0

) 1−κ
κ

 ,
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this value is finite if
γA0

δG
> G1−κ

0

(
xN
x0

) 1−κ
κ

.

If this inequality does not hold, there is permanent stagnation because TN →∞. This special
case offers a useful benchmark for understanding the insight that this section’s extended
model generates.
First, the accumulation of public capital is the sole endogenous mechanism triggering the

Industrial Revolution (IR). Once the IR occurs, the accumulation of public capital interacts
with technological innovation because the latter generates growth in public revenue. In this
sense, the extended model provides one of the most sophisticated statement of the idea
that public capital accumulation is a catalyst for industrialization. Second, an increase in
the public spending ratio hastens industrialization with non-distortionary taxation because
TN is decreasing in γ, while it has an ambiguous effect on the timing of the IR because
with distortionary taxation xN is increasing in γ. Third, if the condition for permanent
stagnation holds, output per capita converges to a constant level. Thus, while the public
capital component of the model functions as a traditional capital-deepening mechanism,
which by itself cannot sustain long-run growth, it nevertheless is a catalyst for the activation
of the engine of long-run growth.

6.3 Industrial-era dynamics

In the first stage of the industrial era, the growth rate of output per capita is

gt = σnt + κ(gG,t − λ), (56)

where the growth rate of product variety is given by equation (54). When firm size grows
suffi ciently large, the economy enters the second stage of the industrial era in which horizontal
innovation and vertical innovation occur simultaneously. The growth rate of output per
capita is

gt = α [(µ− 1)xtl
∗ − φ]− ρ. (57)

The growth rates of product variety and product quality are:

nt ≡ n(xt, gG,t) =
ρ+ κ(gG,t − λ)− αβ(ρ− λ)xtl

∗

αβxtl∗ − σ
; (58)

zt ≡ z(xt, gG,t) =
[(µ− 1)xtl

∗ − φ]
(
α− σ

βxtl∗

)
− ρ+ σ (ρ− λ)− κ(gG,t − λ)

α− σ
βxtl∗

. (59)

Quality growth is positive if and only if

gG,t <
1

κ

{
[(µ− 1)xtl

∗ − φ]

(
α− σ

βxtl∗

)
− ρ+ σ (ρ− λ)

}
+ λ.

This inequality describes a boundary in (xt, gG,t) space.
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The equilibrium laws of motion of xt and gG,t in the first stage are:

ẋt =
(1− σ)φ

βl∗
−
{

1− σ
β

[µ− 1− β(ρ− λ)]− λ− κ(gG,t − λ)

}
xt; (60)

ġG,t = [σnt − (1− κ)(gG,t − λ)] (gG,t + δG). (61)

The equilibrium laws of motion of gG,t and xt in the second stage are:

ẋt =
a1 (xtl

∗)2 − a2(gG,t)xtl
∗ + a3(gG,t)

αβl∗ − σ/xt
. (62)

ġG,t = {α [(µ− 1)xtl
∗ − φ]− ρ− (gG,t − λ)} (gG,t + δG); (63)

In the first equation the composite coeffi cients are:

a1 ≡ αβ(µ− 1)(α− 1);

a2(gG,t) ≡ (α− 1)[(µ− 1)σ + αβφ]− β[(ρ− λ)(1− σ) + (1− κ)λ]− κβgG,t;
a3(gG,t) ≡ (α− 1)φσ − [(ρ− λ)(1− σ) + (1− κ)λ]− κgG,t.

This is our two-dimensional dynamical system for the extended model. It produces a steady
state that has the same properties as the baseline model.

6.4 Global dynamics

We can sketch the model’s global dynamics in the phase diagram in Figure 3 using two pairs
of loci. In the first stage, we have:

ġG,t ≥ 0 =⇒ gG,t ≤
σ [(µ− 1)xtl

∗ − φ]

β(1− κ)xtl∗
+
λ(1− κ)− σ(ρ− λ)

1− κ ;

ẋt ≥ 0 =⇒ gG,t ≥
1− σ
κβ

[µ− 1− β(ρ− λ)]− (1− κ)λ

κ
− (1− σ)φ

κβxtl∗
.

In the second stage, we have:

ġG,t ≥ 0 =⇒ gG,t ≤ α [(µ− 1)xtl
∗ − φ]− ρ+ λ;

ẋt ≥ 0 =⇒ gG,t ≥
b1 (xtl

∗)2 − b2xtl
∗ + b3

κ(1− βxtl∗)
.

In the second locus the composite parameters are:

b1 ≡ αβ(µ− 1)(α− 1);

b2 ≡ (α− 1)[(µ− 1)σ + αβφ]− β[(ρ− λ)(1− σ) + (1− κ)λ];

b3 ≡ (α− 1)φσ − [(ρ− λ)(1− σ) + (1− κ)λ].

The dynamics are a nice generalization of the baseline one-dimensional model.
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Figure 3: Public capital accumulation, phase diagram.

In steady state the growth rate of public capital, gG,t = γ (Yt/Gt)−δG, is constant because
the average product of public capital, Yt/Gt, is constant. This yields

g∗G = g∗Y = λ+ g∗,

where g∗ = σn∗ + αz∗ + κ(g∗G − λ). We can simplify this expression for the steady-state
growth rate of output to g∗ = (σn∗ + αz∗)/(1 − κ). Using the steady-state condition g∗G =
γ (Y/G)∗ − δG and g∗G = λ+ g∗ yields the steady-state average product of public capital(

Y

G

)∗
=
δG + λ+ g∗

γ
.

The steady-state growth rate of output per capita is

g∗ = α [(µ− 1)x∗l∗ − φ]− ρ. (64)

Using ẋt = 0 and g∗G = λ+ g∗, we solve for steady-state firm size

x∗l∗ =
a∗2 −

√
(a∗2)2 − 4a∗1a

∗
3

2a∗1
, (65)

where:
a∗1 = αβ(µ− 1)(α− 1);
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a∗2 = (α− 1)[(µ− 1)σ + αβφ]− β[ρ− σ(ρ− λ)]− κβg∗;
a∗3 = (α− 1)φσ − [ρ− σ(ρ− λ)]− κg∗.

This solution says that firm size is a function of the growth rate via the coeffi cients a∗2 and
a∗3. Since the growth rate is a function of firm size, (64) and (65) jointly determine the
steady-state values of firm size, x∗l∗, and the growth rate, g∗. These values are independent
of the public spending ratio due to the scale invariance property of the model.
The phase diagram in Figure 3 shows two boundaries. In blue is the IR boundary where

product variety growth, nt, becomes positive. In red is the boundary where quality growth,
zt, becomes positive. The diagram tells the following story. Initially, the accumulation of
public capital fuels the growth of the economy. This process is subject to decreasing returns
to scale (DRS) to public capital, Gt, and slows down as long as technology remains constant.
We mark in green two key events. The IR, where nt becomes positive, and the minimum of
the U-shaped trajectory that the economy follows. That minimum point marks the moment
when the ratio IG,t/Gt = γYt/Gt stops falling and starts growing due to the fact that
technological innovation raises output and thereby tax revenue so fast that it compensates
for the falling average product of public capital, Yt/Gt. The trajectory, then, tells a story
of the secular rise of IG,t due to the secular rise of tax revenues, which in turn is due to the
acceleration of the rate of technological change.

7 Conclusion

In this study, we developed a Schumpeterian growth model with productive government
spending and endogenous takeoff. We took the seminal study by Barro (1990) as our point
of departure and focused on the government’s provision of productive public services to the
private sector. We then took the analysis in several new directions. First, we investigated
the role of government spending in a scale-invariant Schumpeterian model of endogenous
innovation. Second, we investigated the role of public spending as the catalyst of the takeoff
of the economy. Third, we postulated a production structure that violates the condition
for endogenous growth stressed in Barro (1990), namely, that the economy’s reduced-form
production function must be linear in the accumulated factors. Fourth, we extended the
model to public capital, uncovering novel properties of the dynamics. Consequently, our
results expand significantly our understanding of the conditions under which general equilib-
rium models produce industrial takeoff and convergence to constant exponential growth in
steady state, in particular innovation-driven growth that starts at a specific date, accelerates
throughout the secular transition, and in steady state is scale invariant and subject to policy
action.
Our main results can be summarized as follows. When public spending is financed with

a distortionary labor income tax, there is a value of productive government spending that
yields the earliest industrial takeoff and also maximizes the transitional growth rate. This
theoretical prediction of a hump-shaped effect of productive government spending on eco-
nomic growth is consistent with the stylized facts reported in the literature that we revisited
here using cross-country panel data. Calibrating the model to the US, we found that rais-
ing productive government spending to its growth-maximizing value causes the industrial
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takeoff to occur earlier by about two decades and the long-run level of output to increase
by roughly 40%, confirming the importance of productive public spending for industrializa-
tion and innovation. From a policy perspective, our growth-theoretic framework provides
support for the importance of the United Nations Sustainable Development Goals, which
specifically mention building resilient infrastructure, promoting sustainable industrialization
and fostering innovation as necessary ingredients to success. Finally, it is worth noting that
we focus on productive government spending in this study, but one can also introduce to the
model an extra parameter that represents a wedge between overall government spending and
productive government spending to capture a notion of unproductive government spending.
We leave this extension to future research.
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Appendix A: Proofs

Dynamic optimization of the monopolistic firm. The current-value Hamiltonian for
monopolistic firm i is

Ht (i) = Πt (i)− It (i) + ζt (i) Żt (i) + ξt (i) [µ− Pt (i)] , (A1)

where ζt (i) is the co-state variable on Żt (i) and ξt (i) is the multiplier on Pt (i) ≤ µ. We
substitute (7), (8) and (9) into (A1) and derive

∂Ht (i)

∂Pt (i)
= 0⇒ ∂Πt (i)

∂Pt (i)
= ξt (i) , (A2)

∂Ht (i)

∂It (i)
= 0⇒ ζt (i) = 1, (A3)

∂Ht (i)

∂Zt (i)
= α

{
[Pt (i)− 1]

[
θ

Pt (i)

]1/(1−θ)

Zα−1
t (i)

(
Gt

Lt

)κ
Ly,t

N1−σ
t

− φ
(

Zt
Zt (i)

)1−α
}

(A4)

= rtζt (i)− ζ̇t (i) .

When Pt (i) < µ, ξt (i) = 0, which implies ∂Πt (i) /∂Pt (i) = 0 such that Pt (i) = 1/θ. When
the constraint is binding, i.e., Pt (i) = µ, ξt (i) > 0. Thus, we have proven (11). The
assumption µ < 1/θ yields Pt (i) = µ. Using (A3), (19), Pt (i) = µ and symmetry in (A4)
yields (20).

Monopolistic profit in the pre-industrial era. In the pre-industrial era, firm size is
not large enough for monopolistic firms with increasing-returns technology to earn positive
profit, i.e.,

(γκl)1/(1−κ)xt < φ/(µ− 1)⇔ Πt < 0,

where l is given in (26). As a result, competitive firms produce existing N0 intermediate
goods and make zero profit. When (γκl)1/(1−κ)xt ≥ φ/(µ− 1), we assume that agents do not
deploy increasing-returns technology until xt ≥ xN .

Dynamics of the consumption-output ratio in the industrial era. The value of assets
owned by each member of the household is

at = VtNt/Lt. (A5)

If nt > 0, then Vt = βXt in (13) holds. Substituting (13) and µXtNt = θYt into (A5) yields

at = βXtNt/Lt = (θ/µ) βYt/Lt = (θ/µ) βyt, (A6)

which implies that at/yt is constant. Substituting (A6), (3), (6) and (22) into (2) yields

ẏt
yt

=
ȧt
at

= rt − λ+
(1− τt)wtlt − ct

at
(A7)

=
ċt
ct

+ ρ− λ+
(1− θ − γ)µ

βθ
− µ

βθ

ct
yt
,
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Equation (A7) can be rearranged as

ċt
ct
− ẏt
yt

=
µ

βθ

ct
yt
− (1− θ − γ)µ

βθ
− ρ+ λ, (A8)

which implies that ct/yt jumps to its steady-state value in (28) whenever nt > 0. Substituting
(28) into (23) yields (29).

Convergence to the balanced growth path. Here, we discuss the differences of the two
cases: α + κ > 1 and α + κ < 1.
Case 2. Consider α + κ > 1, which yields a1 > 0. Then, the condition for x∗ > 0 is

simply that x∗ exists and is real, i.e., a2
2 > 4a1a3. This is an inequality restriction on the

parameters. We then add to this inequality the restrictions for g∗ > 0 and z∗ > 0 and the
suffi cient condition (40). This case exhibits the property that the steady-state entry rate,
n∗, is increasing in the growth rate of quality, z∗. In other words, quality innovation is so
effective that it creates room for variety growth faster than in the canonical case α+κ = 1. To
understand why the model generates constant growth under seemingly explosive conditions,
we revisit equation (19) that defines the composite state variable xt. That equation shows
that the model’s mechanics identifies the ratio

`t ≡ Lt/N
1− σ

1−κ
t

as the key measure of labor input per intermediate good. The interpretation is that this
ratio measures the flow of raw labor services effectively allocated to the typical intermediate
good after we account for the two forms of congestion at work in the model. In the steady
state, this measure of labor allocation has the following growth rate:

˙̀
t

`t
= λ−

(
1− σ

1− κ

)
n∗ = −

(
α

1− κ − 1

)
z∗ < 0.

The interpretation of this steady state, therefore, is that the economy exhibits constant
endogenous growth because the mass of firms grows suffi ciently faster than the population
so that there is continuous dilution of labor services across firms. This dilution offsets the
explosive pressure due to the property that production is convex in average knowledge, Z.
Case 3. Consider the case α + κ < 1, which yields a1 < 0. The condition for x∗ > 0

then is a2 <
√
a2

2 − 4a1a3, where a2
2 > 4a1a3 must hold for x∗ to exist and be real. When

a2 < 0, the condition that we seek is simply a2
2 > 4a1a3. When a2 ≥ 0, we obtain that x∗

is positive when a2
2 < a2

2 − 4a1a3, which reduces to 4a1a3 < 0. Since a1 < 0, this holds for
a3 > 0. But a3 > 0 and a1 < 0 imply that the inequality a2

2 > 4a1a3 always holds so that x∗

surely exists and is real. Therefore, the condition that we seek is simply a3 > 0 when a2 ≥ 0.
These are again inequality restrictions on the parameters. As in the previous case, we add
to these inequalities the restrictions for g∗ > 0 and z∗ > 0 and the suffi cient condition (40).
This case exhibits the property that n∗ is decreasing in z∗ because quality innovation is not
suffi ciently effective and the economy can sustain endogenous growth if and only if variety
growth is slower than in the canonical case α + κ = 1. As we saw in the previous case, this
property has implications for the dynamics of the ratio `t. In this case, in particular, we
have

˙̀
t

`t
= λ−

(
1− σ

1− κ

)
n∗ = −

(
α

1− κ − 1

)
z∗ > 0.
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The interpretation of this steady state, therefore, is that the economy exhibits constant
endogenous growth because the mass of firms grows suffi ciently slower than the population
so that there is continuous concentration of labor services across firms. This concentration
offsets the implosive pressure due to the property that production is concave in average
knowledge, Z.

Proof of Proposition 1. In the pre-industrial era, firm size is not large enough for horizon-
tal innovation and vertical innovation to be viable such that nt = zt = 0. As a result, labor
supply l is given by (26), government spending share is given by (22), and the state variable

xt = (θ/µ)
1−κ(1−θ)
(1−κ)(1−θ) Z

α
1−κ−1

0 Lt/N
1−σ/(1−κ)
0 increases at the exogenous population growth rate

λ. Therefore, the dynamics of xt in the pre-industrial era is given by

ẋt = λxt > 0. (A9)

In the first phase of the industrial era, firm size becomes large enough for horizontal
innovation (but not for vertical innovation) to be viable such that nt > 0 and zt = 0.
The variety growth rate nt is positive if and only if (31) holds. The dynamics of xt =

(θ/µ)
1−κ(1−θ)
(1−κ)(1−θ) Z

α
1−κ−1

0 Lt/N
1−σ/(1−κ)
t is

ẋt =

[
λ−

(
1− σ

1− κ

)
nt

]
xt =

1− σ − κ
β(1− κ)

{
φ

(γκl∗)1/(1−κ)
−
[
µ− 1− β

(
ρ+

σλ

1− σ − κ

)]
xt

}
,

(A10)
which uses (30) for nt.
In the second phase of the industrial era, firm size becomes large enough for both hori-

zontal and vertical innovation to be viable such that nt > 0 and zt > 0. The quality growth
rate zt is positive if and only if (37) holds. We use (34), (35) and zt = [(1−κ)/α]gt−(σ/α)nt

to derive nt and the dynamics of xt = (θ/µ)
1−κ(1−θ)
(1−κ)(1−θ) Z

α
1−κ−1

t Lt/N
1−σ/(1−κ)
t as

ẋt =
a1

[
(γκl∗)1/(1−κ)xt

]2 − a2(γκl∗)1/(1−κ)xt + a3

(1− κ) [αβ(γκl∗)1/(1−κ) − σ/xt]
, (A11)

where
a1 = αβ(µ− 1)(1− κ)(α + κ− 1),

a2 = (α+κ−1){[µ−1−β(ρ−λ)]σ+β(1−κ)(ρ+φα)}+α(1−κ−σ)[(µ−1)κ−β(ρ−λ)]−αβλ(1−κ),

a3 = (α + κ− 1)φσ + (1− κ− σ)[αφκ− (1− κ)ρ]− σλ(1− κ).

Using ẋt = 0 we can derive the steady-state firm size

(γκl∗)1/(1−κ)x∗ =
a2 ±

√
a2

2 − 4a1a3

2a1

,

which is independent of γ because a1, a2 and a3 are independent of γ.
Case 1. When α+ κ = 1, a1 = 0, a2 = α(1− κ− σ){κ(µ− 1)− β[ρ+ σλ/(1− κ− σ)]},

and a3 = α(1 − κ − σ){κφ − [ρ + σλ/(1 − κ − σ)]}. In this case, the dynamics of xt in the
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pre-industrial and first phase of industrial eras are the same as in (A9) and (A10), and in
the second phase of industrial era it becomes

ẋt =
1− κ− σ

(1− κ)β − σ/[(γκl∗)1/(1−κ)xt]

{[
κφ−

(
ρ+

σλ

1− κ− σ

)]
1

(γκl∗)1/(1−κ)

−
[
κ(µ− 1)− β

(
ρ+

σλ

1− κ− σ

)]
xt

}
.

The differential equation ẋt = 0 only has one stable real root x∗ > 0 under the parameter
conditions in (43) and (44), which ensure z∗ > 0.
Case 2. When α + κ > 1, a1 > 0. If ∆ = a2

2 − 4a1a3 > 0, then we can obtain the
following results for Φ[(γκl∗)1/(1−κ)x∗] = a1

[
(γκl∗)1/(1−κ)x∗

]2 − a2(γκl∗)1/(1−κ)x∗ + a3 = 0:
If a2 > 0, a3 > 0, 2 positive real roots: a2+

√
∆

2a1
(unstable), a2−

√
∆

2a1
(stable);

If a2 > 0, a3 ≤ 0, 1 positive real root: a2+
√

∆
2a1

(unstable);
If a2 ≤ 0, a3 ≥ 0, no positive real root;
If a2 ≤ 0, a3 < 0, 1 positive real roots: a2+

√
∆

2a1
(unstable).

If ∆ ≤ 0, then Φ[(γκl∗)1/(1−κ)x∗] = 0 does not have a positive stable real root. In summary,
when α + κ > 1, there exists a stable steady-state value x∗ > 0 only if ∆ > 0, a2 > 0 and
a3 > 0.
Case 3. When α+ κ < 1, a1 < 0. If ∆ > 0, then we can obtain the following results for

Φ(x∗) = 0:
If a2 ≥ 0, a3 > 0, 1 positive real root: a2−

√
∆

2a1
(stable);

If a2 ≥ 0, a3 ≤ 0, no positive real root;
If a2 < 0, a3 ≥ 0, 1 positive real root: a2−

√
∆

2a1
(stable);

If a2 < 0, a3 < 0, 2 positive real roots: a2+
√

∆
2a1

(unstable), a2−
√

∆
2a1

(stable).

If ∆ ≤ 0, then Φ[(γκl∗)1/(1−κ)x∗] = 0 does not have a positive stable real root. In summary,
when α + κ < 1, there exists a stable steady-state value x∗ > 0 only if ∆ > 0, a2 ≥ 0 and
a3 > 0, or ∆ > 0 and a2 < 0.
In summary, given x0 < xN < xZ and the parameter conditions discussed above, the

autonomous dynamics of xt is stable and governed by (A9), (A10) and (A11). Given an
initial value x0, the state variable xt increases according to (A9) until xt reaches the first
threshold xN . Then, xt increases according to (A10) until xt reaches the second threshold
xZ . Finally, xt increases according to (A11) until xt converges to its steady-state value x∗ in
(45).

Proof of Proposition 2. Taking derivative for lnxN with respect to γ yields

∂ lnxN
∂γ

= − κ

1− κ
1

γ
− 1

1− κ
∂l∗/∂γ

l∗
,

where
∂l∗

∂γ
= −(l∗)2 ηβθ(ρ− λ)

µ(1− θ − γ)2
.
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Substituting ∂l∗/∂γ into ∂ lnxN/∂γ yields

∂ lnxN
∂γ

=
ηβθ(ρ− λ)γ − κ(1− θ − γ)[(1 + η)(1− θ − γ)µ+ ηβθ(ρ− λ)]

γ(1− κ)(1− θ − γ)[(1 + η)(1− θ − γ)µ+ ηβθ(ρ− λ)]
,

The sign of ∂ lnxN/∂γ is determined by the numerator. It can be shown that the numerator
is increasing in γ, and we denote the numerator as Λ.

lim
γ→0

Λ = −κ(1− θ)[(1 + η)(1− θ)µ+ ηβθ(ρ− λ)] < 0;

lim
γ→1−θ

Λ = ηβθ(1− θ)(ρ− λ) > 0.

Therefore, there exists a threshold value γ̃ ∈ (0, 1−θ) such that ∂ lnxN/∂γ < 0 for γ ∈ (0, γ̃)
and ∂ lnxN/∂γ > 0 for γ ∈ (γ̃, 1). Therefore, for a relatively small (large) γ < γ̃ (γ > γ̃),
an increase in γ leads to a smaller (larger) xN , which causes an earlier (a delayed) takeoff.
From (30) and (34), for a given xt ∈ (xN , x

∗), an increase in γ increases (decreases) the
equilibrium growth rate when γ < γ̃ (γ > γ̃). From (46), γ does not affect the steady-state
growth rate due to the scale-invariant property of the model.

Dynamics of corporate income tax rate in the industrial era. The profit as a share
of output is given by

Nt (Πt − It)
Yt

=
θ

µ

[
µ− 1− φ+ zt

(γ1−αl∗)1/αxt

]
=
βθ(nt + ρ− λ)

µ(1− τΠ,t)
,

which uses the growth rate of variety given by

nt =
1− τΠ,t

β

[
µ− 1− φ+ zt

(γ1−αl∗)1/αxt

]
+ λ− ρ.

Substituting the profit share into the government budget constraint yields

τΠ,t =
µ[γ − τ (1− θ)](1− τΠ,t)

βθ(nt + ρ− λ)
.

Solving for τΠ,t yields the corporate income tax rate in Section 4.2.

Dynamics of xt under corporate income tax. In the pre-industrial era, the dynamics
of xt is the same as before:

ẋt = λxt > 0.

In the first phase of industrial era, the dynamics of xt becomes

ẋt =
α− σ
αβ

{
φ(1− τΠ,t)

(γ1−αl∗)1/α
−
[
(1− τΠ,t)(µ− 1)− β

(
ρ+

σλ

α− σ

)]
xt

}
.

In the second phase of industrial era, the dynamics of xt becomes

ẋt =
α− σ
αβ

{[
(1− α)φ−

(
ρ+

σλ

α− σ

)
− τ̇Π,t

1− τΠ,t

]
1− τΠ,t

(γ1−αl∗)1/α

−
[
(1− τΠ,t) (µ− 1) (1− α)− β

(
ρ+

σλ

α− σ

)]
xt

}
,
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where we have used (1− τΠ,t)σ/[(γ
1−αl∗)1/αxt] ∼= 0.

Proof of Proposition 3. Taking derivative for lnxN with respect to γ yields

∂ lnxN
∂γ

= −1− α
α

1

γ
+

µ/θ

µ− 1− β(ρ− λ)− [γ − (1− θ)τ ]µ/θ

=
(µ/θ)γ − (1− α)[µ− 1− β(ρ− λ) + (1− θ)τµ/θ]

αγ{µ− 1− β(ρ− λ)− [γ − (1− θ)τ ]µ/θ} ,

The sign of ∂ lnxN/∂γ is determined by the numerator, because the denominator must be
positive to ensure xN > 0. It is useful to note that the numerator is increasing in γ, and we
denote the numerator as Γ.

lim
γ→(1−θ)τ

Γ = ατµ(1− θ)/θ − (1− α)[µ− 1− β(ρ− λ)].

Then, ∂ lnxN/∂γ = 0 yields

γ̂ = (1− α){[µ− 1− β(ρ− λ)]θ/µ+ (1− θ)τ}.

When γ̂ > (1− θ)τ , limγ→(1−θ)τ Γ < 0 implies that

τ < min

{
(1− α)θ

αµ(1− θ) [µ− 1− β(ρ− λ)], 1

}
.

Therefore, if the labor income tax rate τ is small enough such that limγ→(1−θ)τ Γ < 0, then
there exists a threshold value γ̂ such that ∂ lnxN/∂γ < 0 for γ < γ̂ and ∂ lnxN/∂γ > 0 for
γ > γ̂. Therefore, for a relatively small (large) γ < γ̂ (γ > γ̂), an increase in γ leads to an
earlier (a delayed) takeoff.
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Appendix B: Data

Table B1: Summary statistics
obs mean std. dev. min max

Growth of real GDP 189 0.039 0.030 -0.037 0.169
Growth of real GDP per capita 189 0.034 0.029 -0.030 0.144
Growth of real GDP per worker 189 0.030 0.025 -0.021 0.106
Productive government spending 189 0.165 0.039 0.053 0.252

Log real GDP per capita 189 10.075 0.704 7.860 11.459
Log population 189 6.815 1.806 2.069 11.844
Log capital stock 189 13.934 1.933 8.361 17.963
Trade openness 189 0.908 0.746 0.135 5.080

Table B2: Productive government spending and growth: income levels
Low-income group High-income group

(1) (2) (3) (4) (5) (6)
GDP GDP pc GDP pw GDP GDP pc GDP pw

γit 1.577*** 1.282** 0.930** 0.396 0.600 0.923
(0.520) (0.504) (0.370) (1.101) (1.047) (1.865)

γ2
it -4.808*** -3.975** -2.422** -2.738 -3.153 -2.951

(1.713) (1.696) (1.201) (3.667) (3.412) (5.342)
yit−1 -0.072*** -0.077*** -0.037*** -0.189*** -0.202*** -0.159***

(0.025) (0.024) (0.006) (0.029) (0.022) (0.028)
Country FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 142 142 142 47 47 47
R-squared 0.712 0.706 0.686 0.894 0.874 0.770

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Cluster-robust standard errors are in parentheses. The

dependent variable in column (1) is the average annual growth rate of real GDP for the low-income group.

The dependent variable in column (2) is the average annual growth rate of real GDP per capita for the

low-income group. The dependent variable in column (3) is the average annual growth rate of real GDP per

worker for the low-income group. The dependent variable in column (4) is the average annual growth rate

of real GDP for the high-income group. The dependent variable in column (5) is the average annual growth

rate of real GDP per capita for the high-income group. The dependent variable in column (6) is the average

annual growth rate of real GDP per worker for the high-income group.
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Table B3: Productive government spending and growth: income levels (with controls)
Low-income group High-income group

(1) (2) (3) (4) (5) (6)
GDP GDP pc GDP pw GDP GDP pc GDP pw

γit 1.773*** 1.464*** 1.101*** 0.575 0.512 0.992
(0.524) (0.494) (0.352) (2.418) (1.793) (1.879)

γ2
it -5.412*** -4.548** -3.303*** -3.577 -3.414 -3.603

(1.823) (1.779) (1.130) (6.810) (4.840) (5.389)
yit−1 -0.097*** -0.102*** -0.076*** -0.207* -0.248** -0.226***

(0.019) (0.019) (0.017) (0.105) (0.088) (0.078)
Controls Yes Yes Yes Yes Yes Yes

Country FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 142 142 142 47 47 47
R-squared 0.788 0.785 0.778 0.908 0.910 0.857

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Cluster-robust standard errors are in parentheses. The

dependent variable in column (1) is the average annual growth rate of real GDP for the low-income group.

The dependent variable in column (2) is the average annual growth rate of real GDP per capita for the

low-income group. The dependent variable in column (3) is the average annual growth rate of real GDP per

worker for the low-income group. The dependent variable in column (4) is the average annual growth rate

of real GDP for the high-income group. The dependent variable in column (5) is the average annual growth

rate of real GDP per capita for the high-income group. The dependent variable in column (6) is the average

annual growth rate of real GDP per worker for the high-income group. The additional control variables are

the log value of population size, the log value of capital stock, and the degree of trade openness.

48



Appendix C: Phase diagrams

Figure C1 presents the equilibrium with only variety growth for α + κ = 1.

Figure C1: Variety growth only (α + κ = 1)

Figure C2 presents the equilibrium with only variety growth for α + κ > 1.

Figure C2: Variety growth only (α + κ > 1)
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Figure C3 presents the equilibrium with explosive growth for α + κ > 1.

Figure C3: Explosive growth (α + κ > 1)

Figure C4 presents the equilibrium with only variety growth for α + κ < 1.

Figure C4: Variety growth only (α + κ < 1)
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Figure C5 presents the equilibrium with multiple equilibria for α + κ < 1.

Figure C5: Multiple equilibria (α + κ < 1)
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