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Preface

Two decades ago the authors of this book undertook the study of the errors one
makes when numerically approximating the solutions of stochastic differential equa-
tions driven by Lévy processes. In particular we were interested in the normalized
asymptotic errors of approximations via an Euler scheme, and it turned out we
needed sophisticated laws of large numbers and central limit theorems that did not
yet exist. While developing such tools, it became apparent that they would be useful
in a wide range of applications.

One usually explains the difference between probability and statistics as being
that probability theory lays the basis for a family of models, and statistics uses data
to infer which member or members of that family best fit the data. Often this re-
duces to parameter estimation, and estimators are shown to be consistent via a Law
of Large Numbers (LLN), and the accuracy of an estimator is determined using a
Central Limit Theorem (CLT), when possible. The case of stochastic processes, and
even stochastic dynamical systems, is of course more difficult, since often one is no
longer estimating just a parameter, but rather one is estimating a stochastic process,
or—worse—trying to tell which family of models actually does fit the data. Exam-
ples include using data to determine whether or not a model governing a dynamical
system has continuous paths or has jumps, or trying to determine the dimension of
the driving Brownian forces in a system of stochastic differential equations. This
subject, broadly speaking, is a very old subject, especially as concerns asymptotic
studies when the time parameter tends to infinity. The novelty presented here in this
book is a systematic study of the case where the time interval is fixed and compact
(also known as the finite horizon case). Even in the finite horizon case however,
efforts predate the authors’ study of numerical methods for stochastic differential
equations, and go back 5 years earlier to attempts to find the volatility coefficient of
an It6 process, via a fine analysis of its quadratic variation, by the first author joint
with Valentine Genon-Catalot. This in turn builds on the earlier work of G. Dohnal,
which itself builds on earlier work; it is indeed an old yet still interesting subject.

There are different variations of LLNs and CLTs one might use to study such
questions, and over the last two decades substantial progress has been made in
finding such results, and also in applying them via data to delve further into the
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unknown, and to reveal structures governing complicated stochastic systems. The
most common examples used in recent times are those of financial models, but these
ideas can be used in models of biological, chemical, and electrical applications as
well. In this book we establish, in a systematic way, many of the recent results. The
ensuing theorems are often complicated both to state, and especially to prove, and
the technical level of the book is (inevitably, it seems) quite demanding. This is a
theory book, and we do not treat applications, although we do reference papers that
use these kinds of results for applications, and we do indicate at the end of most
chapters how this theory can be used for applications.

An introduction explaining our approach, and an outline of how we have orga-
nized the book, can be found in the Introductory Chapter 1. In addition, in Chap. 1
we present several sketches of frameworks for potential applications of our theory,
and indeed, these frameworks have inspired much of the development of the theory
we present in this book.

If one were to trace back how we came to be interested in this theory, the history
would have to center on the work and personality of Denis Talay and his “équipe”
at INRIA in Sophia-Antipolis, as well as that of Jean Mémin at the University of
Rennes. Both of these researchers influenced our taste in problems in enduring ways.
We would also like to thank our many collaborators in this area over the years, with
a special mention to Tom Kurtz, whose work with the second author started this
whole enterprise in earnest, and also to Yacine Ait-Sahalia, who has provided a
wealth of motivations through applications to economics. We also wish to thank
O.E. Barndorff-Nielsen, S. Delattre, J. Douglas, Jr., V. Genon-Catalot, S.E. Gra-
versen, T. Hayashi, Yingying Li, Jin Ma, S. Méléard, P. Mykland, M. Podolskij,
J. San Martin, N. Shephard, V. Todorov, S. Torres, M. Vetter, and N. Yoshida, as
well as A. Diop, for his careful reading of an earlier version of the manuscript.

The authors wish to thank Hadda and Diane for their forbearance and support
during the several years involved in the writing of this book.

The second author wishes to thank the Fulbright Foundation for its support for a
one semester visit to Paris, and the National Science Foundation, whose continual
grant support has made this trans-Atlantic collaboration possible.

Paris, France Jean Jacod
New York, USA Philip Protter
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Basic Notation

R = the set of real numbers, R = [0, c0)
Q = the set of rational numbers, Q1 =Q NR
N = the set {0, 1, ...} of natural integers, N* = {1,2, ...}
Z = the set of relative integers
R4 = the Euclidean d-dimensional space;
the components of x € R4 are (xl, A xd)
R4 = the Borel o-field of RY, R = R!
/\/lj{x 4 = the set of nonnegative symmetric d x d matrices
M;j 4 = the set of nonnegative symmetric invertible d x d matrices
[x| = the absolute value of x € R, ||x| = Euclidean norm of x € R?
d(x, B) = the distance between a point x and a subset B, in a metric space
y* = the transpose of the vector or matrix y
[x] = the integer part of x € R (biggest n € Z such that n < x)
avb =sup(a,b),aNb=inf(a,b),ifa,beR
xt =xVv0,x =(—x)VvO0,ifxeR
1a = the indicator function of the set A
A€ = the complement of the set A
&a = the Dirac measure sitting at point a
8t = the Kronecker symbol, equal to 1 if i = j and to 0 otherwise

Notation for convergences:

A% a.s. (almost sure) convergence for random variables
P . .. .
— convergence in probability for random variables
L . .
— convergence in law for random variables
L- . .
= stable convergence in law for random variables
= a.s. convergence for processes, for Skorokhod’s topology
P . . |
== convergence in probability for processes, for Skorokhod’s topology
u.c.p. . aye .
=2 convergence in probability for processes, for the local uniform topology
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Xiv Basic Notation

L

= convergence in law for processes, for Skorokhod’s topology
é‘i stable convergence in law for processes, for Skorokhod’s topology
Miscellaneous:

f(x)=o0(gx)) asx — xoif f(x)/g(x) > 0asx — xp

f(x) =0(g(x)) as x — xp if lim SUPy_, x, |f(x)/g(x)] <o0
cadlag = “right-continuous with left limits”

caglad = “left-continuous with right limits”

u, < v, means that both sequences u, /v, and v, /u, are bounded



Part I
Introduction and Preliminary Material

This introductory part contains two chapters. The first one is a detailed introduction:
the whole book is devoted to many variations around two basic theorems, under
various conditions and with various degrees of generality, and we explain how it
can be used by a reader interested in a specific result or a special topic. The first
chapter also contains (without proofs) a simplified version of the two basic theorems
in three very special cases, when the underlying process is a Brownian motion,
or a Brownian motion plus a drift, or when it is a Brownian motion plus a drift
and a Poisson process: this part could be skipped, but its aim is to give a flavor of
the subsequent material, without complicated assumptions or notation or technical
details.

The second chapter mainly is a record of known facts about semimartingales and
limit theorems. By “known” we mean that they can be found in a number of books.
Some of these facts are elementary, others are more sophisticated, but it would take
too much space and be outside the scope of this book to present the proofs. A few
properties in this chapter are new, at least in a book form, and their proofs are given
in the Appendix.



Chapter 1
Introduction

Discretization of stochastic processes indexed by the interval [0, 7] or by the half-
line [0, 0o) occurs very often. Historically it has been first used to deduce results on
continuous-time processes from similar and often simpler results for discrete-time
processes: for example Markov processes may be considered as limits of Markov
chains, which are much simpler to analyze; or, stable processes as limits of random
walks. This also applies to the theory of stochastic integration: the first constructions
of stochastic integrals, by N. Wiener and K. It6, were based on a Riemann-type
approximation, which is a kind of discretization in time. More recently but still
quite old, and a kind of archetype of what is done in this book, is the approximation
of the quadratic variation process of a semimartingale by the approximate quadratic
variation process: this result, due to P.A. Meyer [76] in its utmost generality, turns
out to be one of the most useful results for applications.

Discretization of processes has become an increasingly popular tool in practical
applications, for mainly (but not only) two reasons: one is the overwhelming exten-
sion of Monte-Carlo methods, which serve to compute numerically the expectations
of a wide range of random variables which are often very complicated functions
of a stochastic process: this is made available by the increasing power of comput-
ers. The second reason is related to statistics: although any stochastic process can
only be observed at finitely many times, with modern techniques the frequency of
observations increases steadily: in finance for example one observes and records
prices every second, or even more frequently; in biology one measures electrical or
chemical activity at an even higher frequency.

Let us be more specific, by describing a simple but fundamental example of some
of the problems at hand. Suppose that we have a one-dimensional diffusion process
X of the form

dX;, = a(X;)dt +o(X;)dW;, X0 = xp. (1.0.1)

Here the initial value xo € R is given, and W denotes a Brownian motion defined
on some probability space, about which we do not care in this introduction. The
drift and diffusion coefficients a and o are nice enough, so the above equation has
a unique solution.

J. Jacod, P. Protter, Discretization of Processes, 3
Stochastic Modelling and Applied Probability 67,
DOI 10.1007/978-3-642-24127-7_1, © Springer-Verlag Berlin Heidelberg 2012
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4 1 Introduction

Problem 1) We know a and o, and we are interested in the law of the variable X;.
This law is usually not explicitly known, so to compute it, that is to compute the
expected value E(f (X)) for various test functions f, one may use a Monte-Carlo
technique (other techniques based on PDEs are also available, especially in the one-
dimensional case, but do not work so well in high dimensions). To implement this
we simulate on a computer a number N of independent variables X (j); having the
law of X1, and an approximation of E(f (X)) is

1 & _
Zy = N;f(xu)l). (1.0.2)

Indeed, by the law of large numbers the sequence Zy converges almost surely to
E(f(X1)) as N — 00, and moreover the central limit theorem tells us that, when f
is for example bounded, the error made in replacing E(f (X)) by Zy is of order
1//N.

This presumes that one knows how to simulate X, which is about as scarce
as the cases when E(f(X1)) can be explicitly computed. (More accurately some
recent techniques due to A. Beskos, O. Papaspiliopoulos and G.O. Roberts, see [16]
and [17] for example, allow to simulate X exactly, but they require that o does
not vanish and, more important, that the dimension is 1; moreover, in contrast to
what follows, they cannot be extended to equations driven by processes other than
a Brownian motion.) Hence we have to rely on approximations, and the simplest
way for this is to use an Euler scheme. That is, for any integer n > 1 we recursively

define the approximation Xf’/n fori =1,...,n, by setting

1
X = xo, Xim=XG_1ym+ n a(Xl(qi—l)/n) +U(X?i—1)/n)(wi/” — Wi-1y/n)s

the increments of the Brownian motion being easily simulated. Other, more sophis-
ticated, schemes can be used, but they all rely upon the same basic ideas.

Then in (1.0.2) we substitute the X (j)1’s with N independent copies of the simu-
lated variables X, giving rise to an average Z%, which now converges to E( f (X))
for each given n. Therefore we need to assert how close E(f(X})) and E(f(X1))
are, and this more or less amounts to estimating the difference (X| — X’l’)z. Some
calculations show that this boils down to evaluating the difference

n

1
Zgn(ah @i — 1)/'l)<(Wi/n — Wi—ty/n)* — ;)

i=1

for suitable functions g, (w, t), where w — g,(w, t) is measurable with respect to
the o-field }",W of the past of W before time 7. That is, we have to determine the be-
havior of “functionals” of the increments of W of the form above: do they converge
when n — 0co0? And if so, what is the rate of convergence?

Problem 2) The setting is the same, that is we know a and o, but we want to find the
law of ¥ = fol h(Xy)ds for some known function h. Again, one can use a Monte-
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Carlo technique, coupled with a preliminary Euler method: we set

Zh t/n

where X" is the Euler approximation introduced above. We can then simulate N
independent versions Y" (1), ..., Y"(N) of the variable Y" above, and

N
NE (r"(j))

is our approximation of E(h(Y)). If X" is a good approximation of X, then certainly
Y" is a good approximation of % > h(Xi/n), provided h satisfies some suitable
smoothness assumptions. However we have an additional problem here, namely to
evaluate the difference

- Zh(x,/,,) —f h(Xy)ds.

The convergence to O of this difference is ensured by Riemann approximation, but
the rate at which it takes place is not clear, in view of the fact that the paths of X are
not smooth, albeit continuous. This is another discretization problem.

Problem 3) Suppose now that the functions a and o are known, but depend on an ad-
ditional parameter, say 6, so we have a = a(x, 0) and 0 = o (x, 0). We observe the
process X = X 9 which now depends on 6, over [0, 1], and we want to infer 6. How-
ever, in any realistic situation we cannot really observe the whole path ¢ r—> X (w)
for ¢ € [0, 1], and we simply have “discrete” observations, say at times O, S %
so we have n + 1 observations.

We are here in the classical setting of a parametric statistical problem. For any
given n there is no way exactly to infer 6, unless a and o have a very special form.
But we may hope for good asymptotic estimators as n — oco. All estimation meth-
ods, and there are many, are based on the behavior of functionals of the form

n

an(e,a), i— l)/n,X,'/n—X(,‘_l)/,,) (1.0.3)
i=l

for suitable functions f, (0, w, t, x), where again w — f,,(6, w, t, x) is ]-'ZW measur-
able. The consistency of the estimators is deduced from the convergence of func-
tionals as above, and rates of convergence are deduced from associated central limit
theorems for those functionals.

Problem 4) Here the functions a and o are unknown, and they may additionally
depend on (w, t), as for example o = o (w, t, x). We observe X at the same discrete
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times 0, %, e, % as above. We want to infer some knowledge about the coefficients
a and o. As is well known, we usually can say nothing about a in this setting, but

the convergence of the approximate quadratic variation mentioned before says that:

[nt] t
Z(Xi/n_X(i—l)/n)z — [ o (Xs)?ds
0

i=1

(convergence in probability, for each ¢; here, [nf] denotes the integer part of the
real nt). This allows us in principle to determine asymptotically the function
t+— o(w,t, X;(w)) on [0, 1], and under suitable assumptions we even have rates
of convergence. Here again, everything hinges upon functionals as in the left side
above. Note that here we have a statistical problem similar to Problem 3, except that
we do not want to infer a parameter 8 but a quantity which is fundamentally ran-
dom: this occurs for example in finance, for the estimation of the so-called stochastic
volatility.

Problem 5) A more basic problem is perhaps the following one, which deals directly
with discretized processes. Namely, let us call an n-discretized process of X the
process defined by X" = X(,)/n. Then of course X — X pointwise in o, locally
uniformly in time when X is continuous and for the Skorokhod topology when X is
right-continuous and with left limits. But, what is the rate of convergence?

The common feature of all the problems described above, as different as they may
appear, is the need to consider the asymptotic behavior of functionals like (1.0.3).
And, when the process X is discontinuous, many other problems about the jumps
can also be solved by using functionals of the same type.

1.1 Content and Organization of the Book

In the whole book we consider a basic underlying d-dimensional process X, al-
ways a semimartingale. This process is sampled at discrete times, most of the time
regularly spaced: that is, we have a mesh A, > 0 and we consider the increments

AP X = Xia, = Xi-na,
and two types of functionals, where f is a function on R?:

[t/An]
V(S XD = Z f(A7X) “non-normalized functional”

"Zlmn] (1.1.1)

V([ X)) = An Z F(ATX/\/An)  “normalized functional”.
i=1
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The aim of this book is to provide a comprehensive treatment of the mathematical
results about functionals of this form, when the mesh A, goes to 0. We will not
restrict ourselves to the simple case of (1.1.1), and will also consider more general
(but similar) types of functionals:

f may depend on k successive increments of X for k > 2.

e [ = f, may depend on n, and also on k, successive increments, with k, — oc.
f = f(w,t, x) may be a function on £2 x Ry x R?, so that f(A?X) is replaced
by f(w, (i — 1)A,, A} X) in the first formula (1.1.1), for example.

The sampling times are not necessarily equally spaced.

Basically, there are two different levels of results:

Level 1: We have (under appropriate assumptions, of course, and sometimes after
normalization) convergence of the functionals to a limiting process, say for example
V(f, X) — V(f, X). This convergence typically takes place in probability, either
for a fixed time ¢, or “functionally” for the local uniform (in time) topology, or for
the Skorokhod topology. We call this type of convergence a Law of Large Numbers,
or LLN.

Level 2: There is a “second order” type of results, which we qualify as Central Limit
Theorems, or CLT. Namely, for a proper normalizing factor u, — oo the sequence
u, (V*(f, X) — V(f, X)) for example converges to a limiting process. In this case,
the convergence (for a given time ¢, or functionally as above) is typically in law,
or more accurately “stably in law” (the definition of stable convergence in law is
recalled in detail in Chap. 2).

In connection with the previous examples, it should be emphasized that, even
though the mathematical results given below have some interest from a purely the-
oretical viewpoint, the main motivation is practical. This motivation is stressed by
the fact that the last section of most chapters contains a brief account of possible ap-
plications. These applications have indeed been the reason for which all this theory
has been developed.

As it is written, one can hardly consider this book as “applied”. Nevertheless,
we hope that the reader will get some feeling about the applications, through the
last sections mentioned above. In particular, the problem of estimating the volatility
is recurrent through the whole book, and appears in Chaps. 3, 5, 8, 9, 11, 13, 14
and 16.

Two last general comments are in order:

1. A special feature of this book is that it concentrates on the case where the un-
derlying process X has a non-trivial continuous martingale part X¢, which is
X = fot o0 (Xs)dWy in the case of (1.0.1). All results are of course still true in
the degenerate situation where the continuous martingale part vanishes identi-
cally, but most of them become “trivial”, in the sense that the limiting processes
are also vanishing. That is, in this degenerate situation one should employ other
normalization, and use different techniques for the proofs.
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2. We are concerned with the behavior of functionals like (1.1.1) as A,, — 0, but
not as the time ¢ goes to infinity. That is, we only consider the “finite horizon”
case. When r — oo the results for these functionals requires some ergodicity
assumptions on the process X: the results, as well as the techniques needed for
the proofs, are then fundamentally different.

Synopsis of the Book: Chapter 2 is devoted to recalling the basic necessary re-
sults about semimartingales and the various notions of convergence used later (Sko-
rokhod topology, stable convergence in law, and a few useful convergence criteria).
The rest of the book is divided into four main parts:

Part II: This part is about the “simple” functionals, as introduced in (1.1.1):

e Chapter 3 is devoted to the Laws of Large Numbers (first level).

e Chapter 4 contains the technical results needed for Central Limit Theorems. To
avoid fastidious repetitions, these technical results are general enough to provide
for the proofs of the CLTs for more general functionals than those of (1.1.1).

o Chapter 5 is about Central Limit Theorems (second level). For V™ (f, X) it re-
quires few assumptions on the function f but quite a lot about the jumps of X, if
any; for V" (f, X) it requires little of X, but (in, say, the one-dimensional case) it
basically needs either f(x) ~ x%or f(x)/|x|3 —0asx — 0.

e Chapter 6 gives another kind of Central Limit Theorems (in the extended sense
used in this book) for V" (f, X), when f(x) = x: this is a case left out in the
previous Chap. 5, but it is also important because V" (f, X); is then X ,(A") — Xo,
where X (4 is the “discretized process” X,(A") = X A,lt/ A0

Part III: This part concerns various extensions of the Law of Large Numbers:

e In Chap. 7 the test function f is random, that is, it depends on (w, ¢, x).

e In Chap. 8 the test function f = f;, may depend on n and on k (fixed) or k, (going
to infinity) successive increments.

e In Chap. 9 the test function f is truncated at a level u,, with u, going to
0 as A, does; that is, instead of f(A}X) we consider f(A?X)1{|A;'X|§u,,} or
fATX)1y ATX |y} for example. The function f can also depend on several
successive increments.

Part IV: In this part we study the Central Limit Theorems associated with the ex-
tended LLNSs of the previous part:

e Chapter 10 gives the CLTs associated with Chap. 7 (random test functions).

e Chapter 11 gives the CLTs associated with Chap. 8 when the test function depends
on k successive increments.

e Chapter 12 gives the CLTs associated with Chap. 8 when the test function depends
on k, successive increments, with k, — oo.

e Chapter 13 gives the CLTs associated with Chap. 9 (truncated test functions).
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Part V: The last part is devoted to three problems which do not fall within the scope
of the previous chapters, but are of interest for applications:

e In Chap. 14 we consider the situation where the discretization scheme is not reg-
ular. This is of fundamental importance for applications, but only very partial
results are provided here, and only when the process X is continuous.

e In Chap. 15 we study some degenerate situations where the rate of convergence
is not the standard 1/./A,, one.

e In Chap. 16 we consider a situation motivated again by practical applications:
we replace the process X by a “noisy” version, that is by Z; = X; + &; where
& 1s a noise, not necessarily white but subject to some specifications. Then we
examine how the functionals (based on the observations Z; 4, instead of X;,)
should be modified, in order to obtain limits which are basically the same as in
the non-noisy case, and in particular do not depend on the noise.

1.2 When X is a Brownian Motion

Before proceeding to the main stream of the book, we give in some detail and with
heuristic explanations, but without formal proofs, the simplest form of the results:
we suppose that the one-dimensional process X is either a Brownian motion, or a
Brownian motion with a drift, or a Brownian motion plus a drift plus a compound
Poisson process.

Although elementary, these examples essentially show most qualitative features
found later on, although of course the simple structure accounts for much simpler
statements. So the remainder of this chapter may be skipped without harm, and
its aim is to exhibit the class of results given in this book, and their variety, in an
especially simple situation.

We start with the Brownian case, that is

X =0W, where W is a Brownian motion and o > 0; we set c =o2.  (1.2.1)

We will also use, for any process Y, its “discretized” version at stage n:

A
Yl‘( ) = YAn[t/An]'

1.2.1 The Normalized Functionals V'"( f, X)

Recalling (1.1.1), the functionals V"' (f, X) are easier than V" (f, X) to analyze.
Indeed, the summands f (A X /+/Ay) are not only i.i.d. as i varies, but they also
have the same law as n varies. We let p. be the centered Gaussian law A (0, ¢) and
write p.(f) = f f(x)pc(dx) when the integral exists. Then, as soon as f is Borel
and integrable, resp. square integrable, with respect to pc, then f(A?X/\/A, ) has
expectation p.(f) and variance p.(f2) — pe(f)>.
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The ordinary Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
readily give us the following two convergence results:

VLX) — tpe(f)
(12.2)

= (V0= 10e) < V(O (%) = 1))

where N and i) stand for the convergence in probability and the convergence
in law, respectively. This example shows why we have put the normalizing factor
1/4/ A, inside the function f.

The first subtle point we encounter, even in this basic case, is that, contrary to
the usual LLN, we get convergence in probability but not almost surely in the first
part of (1.2.2). The reason is as follows: let ¢; be a sequence of i.i.d. variables with
the same law as f(X1). The LLN implies that Z,, = [t/tTn] Z,[.IZ/IA”] ;i converges a.s.
to tp.(f). Since V™ ( f, X); has the same law as Z,, we deduce the convergence in
probability in (1.2.2) because, for a deterministic limit, convergence in probability
and convergence in law are equivalent. However the variables V" ( f, X), are con-
nected one with the others in a way we do not really control when n varies, so we
cannot conclude that V" ( f, X); — to.(f) a.s.

(1.2.2) gives us the convergence for any time ¢, but we also have a “functional”
convergence:

1) First, recall that a sequence g, of nonnegative increasing functions on R con-
verging pointwise to a continuous function g also converges locally uniformly; then,
from the first part of (1.2.2) applied separately for the positive and negative parts f=
and f~ of f and using a “subsequence principle” for the convergence in probability,
we obtain

V(X =2 ipe(f) (1.2.3)
where Z} =& Z; means “convergence in probability, locally uniformly in time”:

. P .
that is, sup,_, | Z{ — Zs| — 0 for all # finite.

2) Next, if instead of the one-dimensional CLT we use the “functional CLT”, or
Donsker’s Theorem, we obtain

( Ji\_(V’Wf,X)t—zpc(f))) £ Jo(f) = p(P2B (124

t>0

where B is another standard Brownian motion, and =£> stands for the convergence
in law of processes (for the Skorokhod topology, see later for details on this topol-
ogy, even though in this special case we could also use the “local uniform topology”,
since the limit is continuous).

In (1.2.4) we see a new Brownian motion B appear. What is its connection with
the basic underlying Brownian motion W? To study that, one can try to prove the
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“joint convergence” of the processes on the left side of (1.2.4) together with W (or
equivalently X) itself.

This is an easy task: consider the 2-dimensional process Z" whose first com-
ponent is W and the second component is the left side of (1.2.4). The discretized
version of Z" is (Z"); (An) =./A, Z[I/ 4n] ¢/, where the ¢/ are 2-dimensional i.i.d.
variables as i varies, with the same distribution as (Wy, f(odW1) — p.(f)). Then
the 2-dimensional version of Donsker’s Theorem gives us that the pair of processes
with components W4 and \/%(AnV’" (f, X): — tpc(f)) converges in law to a
2-dimensional Brownian motion with variance-covariance matrix at time 1 given by

1 C
(pc<g> pc<f2§£g/)>c<f>2>’ whete g(x) =xf(x)/o.

‘We write this as

1
(W}“"’, 7= VX0 - rmf))) =5 (W.aW +a'W).

t>0

where a = p(g). @' = (pc(1%) = pe(£)? = pe()?)'"%, (1.2.5)

where W’ is a standard Brownian motion independent of W.

In (1.2.5) we could have used another symbol in place of W since what really
matters is the joint law of the pair (W, W’). However for the first component, not
only do we have convergence in law but pathwise convergence W (4») — W. This
explains why we use the notation W here, and in fact this results in a stronger form
of convergence for the second component as well. This mode of convergence, called
stable convergence in law, will be explained in detail in the next chapter.

Remark 1.2.1 We can even make f = f, depend on n, in such a way that f,, con-
verges to some limit f fast enough. This is straightforward, and useful in some
applications.

Remark 1.2.2 (1.2.5) is stated in a unified way, but there are really two—quite
different—types of results here, according to the parity properties of f:

a) If f is an even function then p.(f) # 0 in general, and a = 0. The limit in the
CLT is (W, a’W'), with two independent components.

b) If f is an odd function then p.(f) = 0 and a # 0 in general. The limit in the
CLT has two dependent components. A special case is f(x) = x: then a = o and
a’ =0, so the limit is (W, X) = (W, o W). This was to be anticipated, since in this
case V"' (f, X) = /A, X*)_ and the convergence in (1.2.5) takes place not only
in law, but even in probability.

In general, the structure of the limit is thus much simpler in case (a), and most
applications use this convergence for test functions f which are even.
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1.2.2 The Non-normalized Functionals V" ( f, X)

We now turn to the processes V" ( f, X). Their behavior results from the behavior
of the processes V"' (f, X), but already in this simple case they show some dis-
tinctive features that will be encountered in more general situations. Basically, all
increments A X become small as 7 increases, so the behavior of f near 0 is of the
utmost importance, and in fact it conditions the normalization we have to use for the
convergence.

To begin with, we consider power functions:

fr(x) = Ix[", Frx) = |x"sign(x),

where r > 0 and where sign(x) takes the value +1, 0 or —1, according to whether
x >0, x =0 or x < 0. Note that

Vn(fr, X) = Ar/2 1

V/n(frs X)

and the same for ?r. Moreover, if m,, denotes the p absolute moment of N(, 1),
thatis m, = p1(fp), and if h,(x) = xf, (x)/o and hy(x) = xfl(x)/o (recall o > 0),
we have

pc(fr) = mrary Ioc(frz) = m2r0'2r, ,Oc(hr) = 0’
pe(fr) =0, pe(f2) = moo®,  pe(hy) = mypr0”.
Hence we can rewrite (1.2.3) and (1.2.5) as follows, where W’ denotes a standard

Brownian motion independent of W (we single out the two cases f, and f,, which
correspond to cases (a) and (b) in Remark 1.2.2):

1 r/zV"(fr,X)r => tmyo’,
(1.2.6)
1, /
<W[(An)’ (Al /ZV"(fr, X); —tmyo )) N (W, o"\/my —mZW'),
VA, >0
Al- r/ZVn(fr,X) ‘g 0,
(1.2.7)

(W(A) A1/2 r/2

- L
V([ X)) => (W.0" (mrp1 W + /mar —m2 | W)).
Note that the second statement implies the first one in these two properties.

Next, we consider functions f which vanish on a neighborhood of 0, say over
some interval [—¢, ¢]. Since X is continuous, we have sup; ;4,114 X| — 0 point-
wise for all 7, and thus for each ¢ there is a (random) integer A; such that

n>A = V£.X); =0 Vs<t. (1.2.8)

Finally, we consider “general” functions f, say Borel and with polynomial
growth. If we combine (1.2.6) or (1.2.7) with (1.2.8), we see that the behavior of f
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far from O does not matter at all, whereas the behavior near 0 is crucial for V" ( f, X)
to converge (with or without normalization). So it is no wonder that we get the fol-
lowing result:

FO)~fr) as x>0 = APV X)) R o,

» (1.2.9)
FO~TF@x) as x>0 = A7Pvefx), =20

These results are trivial consequences of the previous ones when f coincides with
fr or f, on a neighborhood of 0, whereas if they are only equivalent one needs
an (easy) additional argument. As for the CLT, we need f to coincide with f; or
f, on a neighborhood of 0 (“close enough” would be sufficient, but how “close”
is difficult to express, and “equivalent” is not enough). So we have, for any ¢ > 0
(recall that f is of polynomial growth):

fx)=fix) if x| <e =

1 /

(An) 1-r/2v,n L r 2 /
W , —— \% X)) —tmyo = (W,o /my —m=zW'),

( ! A/ An ( (f )t 7 )>t>0 ( v " )

(1.2.10)
fo)=f if x|<e =

(W(A") ANy g X)) £, (W,a’(mr+1W+m W)

(1.2.11)

where again W’ is a standard Brownian motion independent of W.
These results do not exhaust all possibilities for the convergence of V"(f, X).
For example one can prove the following:

Al —r/2
x)=|x|"log|x|] = %4 Xg——tm ,
S @) = |x|" log x| To(1/4y) (f. X) ro

and a CLT is also available in this situation. Or, we could consider functions f which
behave like x” as x | | 0 and like (—x)" as x 11 0. However, we essentially restrict
our attention to functions behaving like f. or f, near the origin: for simplicity, and
because more general functions do not really occur in applications, and also because
the extension to processes X more general than the Brownian motion is not easy, or
not available at all, for other functions.

Example 1.2.3 Convergence of the approximate quadratic variation. The functional

[t/An] s
V(£ X = Y (A7X)
i=1
is called the “approximate quadratic variation”, and “realized quadratic variation”
or “realized volatility” in the econometrics literature. It is of course well known, and
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a consequence of (1.2.6), that it converges in probability, locally uniformly in time,
to the “true” quadratic variation which here is o->¢. Then (1.2.6) also gives the rate
of convergence, namely that J%(V"( . X)) — to?) converges in law to 204W’;

and we even have the joint convergence with X itself, and in the limit W’ and X (or
W) are independent.

1.3 When X is a Brownian Motion Plus Drift

Here we replace (1.2.1) by

X, = bt+oW,;, whereo >0andb #0.

1.3.1 The Normalized Functionals V' ( f, X)

We first assume that o > 0. The normalized increments A? X /+/A, are still i.i.d.
when i varies, but now their laws depend on n. However, A?X/«/A = Yl.” + b/ A,
with ¥/ being N (0,0?%) distributed. Then, clearly enough, f (A?X/s/Ay) and
f(Y]") are almost the same, at least when f is continuous, and it is no wonder
that (1.2.3) remains valid (with the same limit) here, that is

V' X) =2 tpe(f).

Moreover, it turns out that the continuity of f is not even necessary for this, being
Borel with some growth condition is again enough.

For the CLT, things are more complicated. When X = o W the CLT (1.2.4) boils
down to the ordinary (functional) CLT, or Donsker’s theorem, for the i.i.d. centered
variables /' = f(A? X/ AR — pe(f), but now while these variables are still i.i.d.
when i varies, they are no longer centered, and their laws depend on 7.

In fact £ is distributed as f (o0 U +b+/A, ) — pe(f), where U denotes an N (0, 1)
variable. Now, assume that f is C!, with a derivative f’ having at most polynomial
growth. Then f(cU + b/A,) — f(cU) is approximately equal to f'(c U)b/A,.
It follows that the variables ¢/ satisfy

E(¢") = v/ Au (bpc(f) +0(1))
E((57)) = pe(£?) = pe(f)? + (1)
E((¢")") =0,
A CLT for triangular arrays of i.i.d. variables (see the next chapter) gives us

(S "G =10e0)) L oels )+ o) = 00 B)

>0
(1.3.1)

ﬁ
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Comparing with (1.2.4), we see an additional bias coming in here. Exactly as in
(1.2.5), we also have a joint convergence (and stable convergence in law as well).
With the notation a, @’ and W’ of (1.2.5), the expression is

1
(W}A“, N (BV"™(f, X) —tpc(f))>t>0 £ (W, boe(f)t+aWi+a W), .
- (13.2)

Remark 1.3.1 We have the same dichotomy as in Remark 1.2.2. When f is an even
function, the limit in (1.3.2) is simply (W, a’W’), with @’ =/ pc(f2) — p(f)?, and
in particular there is no bias (observe that f” is then odd, so p.(f’) = 0). When f
is an odd function, we do have p.(f") # 0 in general, and the bias does appear. A
special case again is when f(x) =x, s0oa =0 and a’ =0 and p.(f’) =1, so the
limit is (W, X) again, as it should be from the property V" (f, X) = /A, X4,

Suppose now o = 0, thatis X; = bt. Then of course there is no more randomness,
and all results ought to be elementary, but they are different from the previous ones.
For example if f is differentiable at 0, we have

1
V' (f, X)r —tf(0)) = b f(O)1,
m( (f, X)e = 1£(0)) 10
locally uniformly in ¢. This can be considered as a special case of (1.3.1), with
po being the Dirac mass at 0. Note that the normalization 1/./A,, inside the test

function f is not really adapted to this situation, a more natural normalization would
be 1/4,.

1.3.2 The Non-normalized Functionals V" (f, X)

For the functionals V" (f, X) we deduce the results from the previous subsection,
exactly as for Brownian motion, at least when o > 0. We have (1.2.8) when f
vanishes on a neighborhood of 0, because this property holds for any continuous
process X. Then we have (1.2.9), and also (1.2.10) when r > 1 (use Remark 1.3.1,
the condition r > 1 ensures that f, is C!, except at 0 when r = 1). Only (1.2.11)
needs to be modified, as follows, and again with r > 1:

fo=7,0if xl<e = (W, 4272v(f, X))

L
= (Wy, rmy_1bt + 0" (myp1 Wy + /mo, — mf_H Wl’))tZO. (1.3.3)

The case of the approximate quadratic variation is exactly as in Example 1.2.3.
Finally when o = 0 we have V" (f, X); = f(bA,) A,[t/A,], and thus trivially

f differentiable at 0 = Ai(v"( £, X)i = f0)1) — b fO)1.
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1.4 When X is a Brownian Motion Plus Drift Plus a Compound
Poisson Process

In this section the structure of the process X is

X=Y+Z  Y,=bt+oW. Z =) ¥lg< (1.4.1)

n>1

where b € R, 0 > 0 and W is a Brownian motion, and Z is a compound Poisson
process: that is, the times 77 < T, < --- are the arrival times of a Poisson process
on R, say with parameter A > 0, and independent of W, and the ¥,’s are i.i.d.
variables with law F', say, and independent of everything else. For convenience, we
put To=0and N, =), . 17, <) (Which is the Poisson process mentioned above).
To avoid trivial complications, we assume A > 0 and F({0}) = 0.

Before proceeding, we state an important remark:

Remark 1.4.1 The Poisson process N, hence X as well, has a.s. infinitely many
jumps on the whole of R. However, in practice we are usually interested in the
behavior of our functionals on a given fixed finite interval [0, T]. Then the subset
27 of £2 on which N and X have no jump on this interval has a positive probability.
On 27 we have X; =Y, for all r < T, hence for example V" (f, X); = V"(f,Y);
for t < T as well. Then, in restriction to the set 27, (V" (f, X)1):ie[0,1] behaves
as (V'(f, Y)i)iefo,1], as described in the previous section: there is no problem for
(1.2.9) since the convergence in probability is well defined in restriction to the subset
7. For the convergence in law in (1.2.10) and (1.2.11) saying that it holds “in
restriction to £27” makes a priori no sense; however, as mentioned before, we do
have also the stronger stable convergence in law, for which it makes sense to speak
of the convergence in restriction to £27: this is our first example of the importance
of stable convergence, from a purely theoretical viewpoint.

The functionals V" ( f, X) are particularly ill-suited when X has jumps, because
the normalized increment A? X/ A, “explodes” as n — oo if we take i =i, such
that the interval ((i — 1)A,,iA,] contains a jump. More precisely, A?X//A, is
equivalent to ¥/+/A, if ¥ is the size of the jump occurring in this interval. So gen-
eral results for these functionals ask for very specific properties of f near infinity.
Therefore, below we restrict our attention to V" ( f, X).

1.4.1 The Law of Large Numbers

The key point now is that (1.2.8) fails. In the situation at hand, for any 7 there
are at most finitely many ¢’s with 7, < ¢, or equivalently N; < oo. The differ-
ence V'(f, X); — V'(f,Y); is constant in ¢ on each interval [i 4,, jA,) such that
(iA,, (j —1)A,] contains no jump. Moreover, let us denote by £2;' the subset of
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£2 on which T, — T, | > A, for all g such that T, <, and by i(n, g) the unique
(random) integer i such that (i — 1)A, < T, <iA,. Note that £2;' tends to £2 as
n — oo, for all . Then if we set

Nr(A”)

o= (W + Al oY) = F(A Y)YV = D&,
q=1

where ¥, is as in (1.4.1), we have
VA, X)s = V(. Y)s+ V' (f)s, Vs<t, ontheset 2" (1.4.2)

Observe that A;?m q)Y — 0 for all ¢, because Y is continuous. Then as soon as

f is continuous and vanishes at 0, we have ;; — f(¥,), hence {é” — f(¥,) as
well. Since N,(A”) < N; < oo and since P(AX; # 0) = 0 for any given ¢ (because
the Poisson process N has no fixed time of discontinuity), we deduce

N
V(=5 Y fWy) = Y f(AX,),
g=1

s<t

where AX; = Xy — X;_ denotes the size of the jump of X at time s. This conver-
gence is not local uniform in time. However, it holds for the Skorokhod topology
(see Chap. 2 for details), and we write

V(e 22 ) FAXy). (14.3)

s<t

When f vanishes on a neighborhood of 0 and is continuous, and if we combine
the above with (1.2.8) for Y, with (1.4.2) and with £2]' — §2, we see that (1.2.8)
ought to be replaced by

VLX) = Y f(AXY) (1.4.4)

s<t

(convergence in probability for the Skorokhod topology).

The general case is also a combination of (1.4.2) and (1.4.4) with (1.2.9) applied
to the process Y: it all depends on the behavior of the normalizing factor A,l,_r/ %in
front of V"*(f,Y), which ensures the convergence. If » > 2 the normalizing factor
blows up, so V" (f, Y) goes to 0; when r < 2 then V" (f, Y) blows up (at least in the
first case of (1.2.9)) and when r = 2 the functionals V" (f, Y) go to a limit, without
normalization. Therefore we end up with the following LLNs (we always suppose
f continuous, and is of polynomial growth in the last statement below; this means
that | f(x)| < K(1 4 |x|?) for some constants K and p):

f@=o(xP)asx >0 = V'(f,X)=> ) f(AX,)

s<t
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fO~xPasx >0 = V(LX) = ct+ Y f(AX)

<t

. (1.4.5)
V'"(f, X))y —> 400 ifre(0,2)andt >0

1—r/2

f)~|x|"asx >0 = e
APV XD 2R o

Once more, this does not cover all possible test functions f.

1.4.2 The Central Limit Theorem

We have different CLTs associated with the different LLNs in (1.4.5). The results
rely again upon the decomposition (1.4.2). In view of (1.4.2), and since we already
have the CLT for V"(f,Y), we basically need to establish a CLT for V"(f ), for
which the LLN takes the form (1.4.3). Due to some peculiarity of the Skorokhod
topology, (1.4.3) does not imply that the difference V' i =< F(AX) goes
to 0 for this topology. However we do have Skorokhod convergence to 0 of the
discretized processes, that is

Vi = V= Y. f(AX) 250,

s<Aylt/An]

and we are looking for a CLT for these processes vn f).
The key steps of the argument are as follows:

~ ~ (Mn)
Step 1) We rewrite V" (f); as V'(f); = Z(]{V’zl 17[’;, where

nt = f (g + A%, oY) — F(¥) — F(Al, )

Assuming that f is C! with f(0) = 0, and recalling A;’(n q)Y — 0, a Taylor expan-
sion gives

ng = (') = £1(©) A%, )Y (1+0(4, )Y))-

Since A” Y=0bA,4+0/4, Al’.’(n q)W, we deduce (this has to be justified, of

i(n,q)
course):
= (f' (%) — £(0) oA, W +0(/An). (1.4.6)

Step 2) The jump times T, and sizes ¥,, hence the random integers i(n, g), are
independent of W. Moreover one can check that the sequence (A;?( n,q)W)qzl
is asymptotically independent of the process X as n — oo, whereas in restric-
tion to the set §2/' the variables A" W for g = 1,..., N, are independent and

i(n.q)
N0, Ap).
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Therefore, if (®4)4>1 denotes a sequence of independent N'(0, 1) variables, in-
dependent of the process X, we deduce the following joint convergence in law, as
n— o0o:

1 ’ /
() ) = oo,

Step 3) The previous step and (1.4.6) give

N

1 £57 %4 74 / ’
(X, N "(f)) =£>(X,V(f)), where V(f)r=[;(f W) — 1)o@,

(1.4.7)
(we also have the stable convergence in law). This is the desired CLT for V",

Step 4) It remains to combine (1.4.7) with the result of the previous section, in the
light of the decomposition (1.4.2). In order to stay simple, although keeping the
variety of possible results, we only consider the absolute power functions f,(x) =
|x|". The results strongly depend on r, as did the LLNs (1.4.5) already, but here we
have more cases.

For getting a clear picture of what happens, it is useful to rewrite (1.4.7) in a
somewhat loose form (in particular the “equality” below is in law only), as follows,
at least when r > 1 so f; is C! and f10)=0:

V'(f,)i = AT + B! +0(y/A,) “inlaw”, where

Nt(A")

N,
Al = 3 FW). Bl =AY flW)od,.  (148)
qg=1 gqg=1

Analogously, we can rewrite (1.2.10) for Y as follows:

V([ Y) = A" + B" + O(Az/zfl/z) “in law”, where

r/2—1 r/2—1/2
A" = AT mpo"t, B' = Ay o’ /my —mZ W,.

Note that A7 > B!’ (meaning B}'/ A" L 0asn— 00), and A" 3> B;". Then we
can single out seven (!) different cases. For simplicity we do not write the joint con-

vergence with the process X itself, but this joint convergence nevertheless always
holds.

1) If r > 3: We have B}’ 3> A", hence

N N,
l /
m(V"(fr,X)?— ; fr(wq)) = S o,

g=1
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2) If r = 3: Both terms B}" and A" are of the same order of magnitude, hence

N(An
(V”(f3,X)t 3 £ )) =5 myo r+ng(t1f>a¢

q=1 g=1

1
NV An

3)If2 <r <3: We have A7 3> A" > B!'. Then we do not have a proper CLT here,
but the following two properties:

N(@n
1 . u.c.p.
7721 <V”(f,,X);’ - Z fr(%)) =L m,o"t,
AL =
| N
VI X = 30 W) = A o t) = Zf(ll/)acb
JA_< 5 <

4) If r =2: Both terms A} and A", resp. B}' and B/, are of the same order of
magnitude, and one can show that

N
1 n n
m(v (. X0 =0+ Y (¥, )2) = V202 W/ +2Zw o d,

g=1 q=1

(recallmy =1 and myq = 3 and f2' (x) = 2x). Here W' is a Brownian motion indepen-
dent of X, and also of the sequence (®,). Note that, if we replace ¢ by A,[t/A,]in
the left side above, which does not affect the convergence, this left side is the differ-
ence between the approximate quadratic variation and the discretized true quadratic
variation.

5 If 1 <r <2: Wehave A" > A? >> B/ >> B}'. Then as in Case 3 we have two
results:

1 AL
S AV X0 —meaT) = > hw,
q=1
| Nt(An)
2— L
W(V”(f,,X)?—A;/ ot — f,(qx,,)) = 0" \[my —m2 W],
n q:l

6) If r = 1: The function fj is not differentiable at 0, but one can show that v" (f1)
has a decomposition (1.4.8) with the same A} and with a B} satisfying A} > B}
Now, A and B;" have the same order of magnitude, so we get

N;
(VAr V(1 X0 —miot) =3 W]+ [o]y/1 - m? W

g=1

1
N An
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7) If 0 <r < I: Again the function f, is not differentiable at 0, but obviously
V' () stays bounded in probability. Then we have:

1
JA_(A}, Py X —meo" 1) =5 0"\ Jma —m2 W],
n

The jumps have disappeared from the picture in this case, which is as in (1.2.10).

From this brief description, we are able to conclude a moral that pervades the
theory: including processes with jumps complicate matters more than one might
naively suspect.



Chapter 2
Some Prerequisites

This second preliminary chapter is very different from the first one. Its aim is to
establish notation to be used throughout the book, and to recall some properties of
semimartingales and a few limit theorems which are basic to our study. Most of these
results are available in book form already, and the proofs are omitted: we refer to the
books of Jacod and Shiryaev [57] for most results, and of Protter [83] or Ikeda and
Watanabe [50] for some specific results on semimartingales and stochastic calculus.
A few results are new in book form, and those are mostly proved in the Appendix.

2.1 Semimartingales

The basic process whose “discretization” is studied in this book is a d-dimensional
semimartingale, say X. This means a process indexed by nonnegative times ¢, with
d components X!, ..., X4, and such that each component X = (Xi),zo is a semi-
martingale.

We need to be a bit more specific: we start with a probability space (£2, F, P)
endowed with a filtration (F;);>0, that is an increasing (meaning F, C F; if s <t)
and right-continuous (meaning F; = Ng~;F;) family of sub-o-fields F; of F. We
say that (£2, F, (F;)r>0, P) is a filtered probability space. We do not make the usual
assumption that the filtration is “complete”, since this property does not play any
role in the sequel.

A real-valued process Y on this filtered probability space is called a semimartin-
gale if

(i) it is adapted (to the underlying filtration, i.e., each Y; is F; measurable);

(ii) it has cadlag (the acronym for “right-continuous with left limits”, in French)
paths;

(ii1) there is a sequence (7},) of stopping times increasing to oo such that for any
n the stopped process Y (n) = Y;A7, is the sum of a martingale plus a process
whose paths have bounded variation over each finite interval (such a process is
called “process of finite variation”).

J. Jacod, P. Protter, Discretization of Processes, 23
Stochastic Modelling and Applied Probability 67,
DOI 10.1007/978-3-642-24127-7_2, © Springer-Verlag Berlin Heidelberg 2012
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Property (iii) is the crucial one, and it may be expressed equivalently by saying that
Y is the sum of a local martingale plus a process of finite variation. A d-dimensional
process is a semimartingale if its components are real-valued semimartingales.

Among all processes, semimartingales play a very special role. For example they
are the most general processes with respect to which a (stochastic) integration the-
ory, having the usual “nice” properties like a Lebesgue convergence theorem, can be
constructed. This fact may even be used as the definition of the semimartingales, see
e.g. Protter [83]. In mathematical finance they also play a special role, since one of
the most basic results (the so-called “fundamental asset pricing theorem”) says that
if no arbitrage is allowed, then the price process should at least be a semimartingale.

We are not going to describe the properties of semimartingales at large, as this
constitutes a whole theory by itself, and one may for example consult Dellacherie
& Meyer [25] for a comprehensive study. Rather, we will focus our attention on the
properties which are most useful for our purposes.

Before proceeding, we recall two useful notions:

e a localizing sequence of stopping times is a sequence of stopping times which
increases to +00,

e an R?-valued process H is locally bounded if SUPye.0<1<T; () 1 Hi ()] < 00
for some localizing sequence (7;,) of stopping times (||.|| denotes the Euclidean
norm on R%).

Note that in the second definition above we take sup,_, 7 [|H;| instead of the
most customary supg, <7, | H;[|: when H is right-continuoﬁs this makes no differ-
ence on the set {7}, >_OT, and when H is the integrand of a (stochastic or ordinary)
integral the value Hy plays no role at all. The reason for this slightly weaker defini-
tion is the following: saying that supy, <7, || H;|l is bounded automatically implies
that the initial variable Hy is boundea, ‘and in most cases we do not want such a
restriction.

2.1.1 First Decompositions and the Basic Properties
of a Semimartingale

Let X be a real semimartingale on a filtered space (2, F, (F):>0, P).

1) We have a first decomposition of X, which is

where Ag = X(j = My =0 and A is an adapted process whose paths are of finite
variation, and X€ is a continuous local martingale, and M is a local martingale
which is orthogonal to all continuous local martingales, meaning that the product
M N is a local martingale for any continuous local martingale N. One says that M
is “purely discontinuous”, although this does not refer to sample path behavior: for
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example Y; — ¢t where Y is a standard Poisson process is a purely discontinuous
martingale in this sense.

The decomposition (2.1.1) is by no way unique. However, any other decomposi-
tion X; = Xo + A} + X/° + M/ of the same type is such that X' = X¢ outside a null
set. We usually identify two processes whose paths are a.s. the same, so we say that
X¢ is the continuous local martingale part of X.

2) Next, we define “stochastic integrals” with respect to X. This is first done for
integrands H which are “simple”, that is of the form H; =), - Un1(z,,.7,,,11(?)
(where 14 denotes the indicator function of any set A), for a sequence (7;,) of times
increasing to +oco and random variables Uy,. The integral process is then defined as

t
fo HedXy = 3 Un Xontyoy — Xonty): (2.12)

m>1

This is the “naive” integral, taken w-wise, of a piecewise constant function ¢ >
H;(w) with respect to the “measure” having the distribution function t — X;(w).

Of course, there is no such measure in general. Nevertheless, the above elemen-
tary integral can be extended to the set of all predictable and bounded (or, locally
bounded,) processes. For this, we first recall that the predictable o-field P is the
o-field on £2 x Ry which is generated by all processes ¥ which are adapted and
continuous (or only left-continuous, the o-field is the same). A predictable process
is a process which, considered as a map from £2 x R into R, is P measurable.
Note that a simple process H as above is predictable as soon as the Tj,’s are stop-
ping times and the U,,’s are Fr, measurable.

The extendability of (2.1.2) means that, for any predictable and locally bounded
process H, one can define (in a unique way, up to null sets) a process called the
“stochastic integral process” and denoted as

t
Zy = / HSdXSa
0

in such a way that it coincides with (2.1.2) when H is simple and predictable, and
that we further have a “dominated convergence theorem” which is stated as Proposi-
tion 2.2.7 in Sect. 2.2 (in which all limit theorems are gathered). The above notation
implicitly means the integral is taken over the interval (0, ¢], with ¢ included in, and
0 excluded from, the domain of integration.

When ¢ varies, this defines a process Z = (Z;) which itself is a semimartingale,
as we see below: indeed, if we consider any decomposition like (2.1.1), and since all
three processes A, X¢ and M are semimartingales, we can integrate H with respect
to each of these, and we have

t t t t
/ H; dXs = / H; dAx +/ H; ng"‘/ H; dMs~ (213)
0 0 0 0

This provides a decomposition of the type (2.1.1) for Z, and in particular Z¢ =
fo HydX¢.
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One may in fact define stochastic integrals for a class of integrands H larger than
the set of predictable locally bounded processes, and a precise description of those
H which are “integrable” with respect to a given semimartingale X is available,
although not immediately obvious. We do not need this here, except when X is a
Brownian motion: in this case the set of integrable processes is the set of all progres-
sively measurable processes H (meaning that for any 7 the map (w, s) — H;(w) on
2 x (0,1] is F; ® B([0, t]) measurable), such that

t
/ H?ds < oo as.forallz e Ry.
0

For example any adapted cadlag process H is integrable with respect to the Brow-
nian motion, and its integral coincides with the integral of the left-continuous pro-
cess H_.

3) Now we look at the “jumps” of a cadlag process ¥, say R?-valued. We set

Y, = limgyq, Y5 (with the convention Yo_ = Yp),
AY, = Y, —Y,_, DY) = {(w.1): AY;(w) #0}.

The jump process (AY;) is R4-valued, and for each w the set D(Y)(w) =
{t: (w,t) € D(Y)} of all times at which Y jumps is at most countable, although
typically it may be a dense subset of R;. However, even in this case, the set
{t : |AY:|| > ¢} is locally finite for any € > 0, because of the cadlag property.

If X is a semimartingale and Z; = fot H d X is the stochastic integral of a pre-
dictable process H, then we can find a version of the integral process Z satisfying
identically:

AZ; = H; AX;. (2.1.4)

4) At this point we can introduce the quadratic variation of X. First if Y is a
continuous local martingale with Yy = 0, there is a unique increasing adapted and
continuous process, null at 0, and denoted by (Y, Y), such that Y2 — (Y, Y) is alocal
martingale (this is the Doob-Meyer decomposition of the local submartingale Y2).
Next, for X a one-dimensional semimartingale, we set

X, X], = (XC,XC)t+Z(AXS)2. (2.1.5)

s<t

The sum above makes sense, since it is a sum of positive numbers on the countable
set D(X)(w) N[0, ¢t]. What is not immediately obvious is that it is a.s. finite, but this
fact is one of the main properties of semimartingales. Hence the process [X, X] is
increasing and cadlag, and also adapted (another not immediately obvious property),
and it is called the quadratic variation process of X, or sometimes the “square
bracket”. Note that [X, X] = (X, X) when X is a continuous local martingale. Also
note that, for any semimartingale, [X¢, X¢] = (X¢, X¢) is the “continuous part” of
the increasing process [X, X] (not to be confused with its “continuous martingale
part”, which is identically 0).
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When Y and Y’ are two continuous local martingales, null at 0, we analogously
have a unique process (Y, Y’) which is continuous, adapted, null at 0 and of locally
finite variation, and such that YY’ — (Y, Y’} is a local martingale. We have (Y, Y’) =
(Y',Y). When X and X' are two real-valued semimartingales we then set

[X,X'], = (x¢, x°), +ZAXS AX.

st

Here again the sum above is a.s. absolutely convergent, by the finiteness in (2.1.5)
for X and X’ and the Cauchy-Schwarz inequality. The process [X, X'] = [X’, X] is
adapted and locally of finite variation, but not necessarily increasing any more, and
is called the quadratic covariation process of X and X'. We also have for any real
a and any other semimartingale X"

[X +aX' X"] = [X,X"]+a[X". X"]. (2.1.6)

Another useful property, which immediately follows from this, is the polarization
identity:

[X.X'] = %([x+x/,x+x/] -[x-X"x-X)). (2.1.7)

To put an end to this topic, let us mention a fundamental property of the quadratic
variation. Take any sequence of subdivisions of R} with meshes going to 0: we can
even consider random subdivisions, that is for each n we have a sequence (7 (n, ) :
i > 0) of stopping times, which strictly increases to 400, and with T'(n, 0) = 0, and
such that sup(T'(n,i + 1) At — T(n,i) At: i >0) goes to 0 in probability for all
t > 0 as n — oo. Then we have the following convergence in probability, for all
t >0, and as n — o0:

P
Z(Xt/\T(n,i) = XinTi-0) (X vy = Xiarion) — [X.X'],. (2.1.8)

i>1

This is a very simple consequence of the forthcoming It6’s formula and the dom-
inated convergence theorem for stochastic integrals, and in view of its importance
for this book we will prove it later.

5) Let now A be an increasing adapted cadlag process, null at 0, and which
is locally integrable: the latter means that E(A7,) < oo for all n, for a localizing
sequence (7,,) of stopping times. Then A is a local submartingale and by the Doob-
Meyer decomposition again there is an almost surely unique, increasing cadlag pre-
dictable process A" with Ajj =0, such that A — A’ is a local martingale. The same
holds when A is adapted, cadlag and of locally integrable variation (meaning: it is
the difference of two increasing locally integrable processes), except that A’ is no
longer increasing but of finite (and even locally integrable) variation.

In these two cases, A’ is called the compensator, or “predictable compensator”,
of A. When A is of locally finite variation adapted and continuous with Ag = 0, then
it is necessarily of locally integrable variation, and its compensator is A" = A.



28 2 Some Prerequisites

6) The above notion applies in particular to the quadratic variation process of a
semimartingale X. Suppose that [ X, X] is locally integrable. In this case, we denote
by (X, X), and call “angle bracket” or “predictable quadratic variation process”, the
compensator of [ X, X]. This notation does not conflict with the notation (X, X) pre-
viously defined as the quadratic variation when X is a continuous local martingale:
indeed, in this case the quadratic variation is continuous increasing adapted, hence
predictable and locally integrable, hence its own compensator.

More generally if X and X’ are two semimartingales with both [X, X] and
[X’, X'] locally integrable, then [X, X'] is of locally integrable variation, and
(X, X’) denotes its compensator.

Note that the local integrability of [ X, X] may fail, in which case the predictable
quadratic variation is not defined.

7) Now we consider a d-dimensional semimartingale X = (X*) i<d-. First, we still
have (many) decompositions like (2.1.1), which should be read component by com-
ponent: that is, we have A = (A");<4 and X¢ = (X");<g and M = (M");<4. Next,
we can integrate locally bounded predictable processes H which are d-dimensional,
say H = (H');<4, and the stochastic integral process is (with H* denoting the trans-

pose):
t d .
= / HdX, = Z/ HldX!,
0 = Jo

where on the right side we have a collection of “one-dimensional” integrals defined
as before. We still have a formula as in (2.1.3), which gives a decomposition of the
type (2.1.1) for Z, and (2.1.4) holds as well. And, if H is “simple”, we again have
(2.1.2) with the summands Uy (X;a7,,,, — X(AT,)-

Turning to the quadratic variation, we now have a collection [X, X] = ([ X', X/]:
1 <i, j <d) of adapted cadlag processes of locally finite variation. By (2.1.6) ap-
plied twice it is easy to check that [X, X] takes its values in the set M;X 4 of all
nonnegative symmetric d x d matrices, and it is non-decreasing for the strong order
of this set (the last qualifier means that [X, X];4+; — [X, X]; belongs to M:{X 4 for
all s, >0).

If further all increasing processes [X/, X/] are locally integrable, we have the
“angle bracket” (X, X) = ((Xj, Xk) 11 < j, k <d), which again takes its values in
the set M:[X 4» and is non-decreasing for the strong order of this set.

8) We end this subsection with a statement of Itd6’s formula. If X is a d-
dimensional semimartingale and if f is a C? function on RY (C? = twice contin-
uously differentiable), then the process f(X) is also a semimartingale. Moreover,
with 9; f and afj f denoting the first and second partial derivatives of f, we have

f(xt>—f(xo>+2/ b f (X ) dX + 5 Z/ 2 F(X, ) d(X, X7),
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d
+ Z(f(xs_ +AX) — (X =Y Bif(Xs—)AX§>- (2.1.9)

s<t i=1

The integrals above are meaningful because 9; f (X_) and 8i2j f(X_) are predictable
and locally bounded, and it turns out that the last sum is absolutely convergent
for all 7, even though, separately, the sums ) . _, (f(X;— + AX,) — f(X,-)) and
3o, 3 f(Xs—)AXE may diverge.

Important Warning: We have often seen the qualifier “up to a null set” appear in
the text above. And indeed, the brackets [ X, X], and (X, X) when it exists, and the
stochastic integrals, and the predictable compensators, are all defined uniquely, up
to a P null set. Therefore it is convenient—and without harm—to identify two pro-
cesses X and X’ which have the same paths outside a P null set: this identification
will be made, usually without further mention, in the whole book.

2.1.2 Second Decomposition and Characteristics
of a Semimartingale

Here again the filtered probability space (£2, F, (F;);>0, P) and the semimartingale
X are fixed.

1) First, we associate with X the following d-dimensional process

X, =X, —Xo—Ji. where J; = > AX;1{jax,|>1)-

s<t

The sum defining J; is for all w and ¢ a finite sum, and the process J is adapted
and cadlag and obviously of finite variation. Hence it is a semimartingale, and so is
X'. Moreover |AX’|| <1 by construction. Then X' is, or rather each of its d com-
ponents are, “special” semimartingales. This implies that among all decompositions
(2.1.1) for X', there is one and only one (recall the above warning: the uniqueness
is up to null sets) such that the process A is predictable, in addition to being of finite
variation. We write this decomposition as

X; = Xo+ B+ X{ + M,,

where By = My = 0 and B is predictable and (component by component) of locally
finite variation, and M is (component by component again) a purely discontinuous
local martingale, and X€ is the same as in (2.1.1) (recall that X does not depend on
the decomposition). This yields

X, = Xo—}-B,—i—XIC—i—M,-I—ZAXS Lijjax,)>13- (2.1.10)

s<t
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It is important to mention that this decomposition is unique (up to null sets). Note
that B is not necessarily continuous, but its jump process satisfies |AB| < 1, and
thus |[AM| < 2.

2) Next, we associate with X a random measure p (or, X if we want to empha-
size the dependency on X), called the jump measure of X, by the formula

w(w;dt,dx) = Z E(s, AX, (o)) (dt, dx).
(@,5)eD(X)

Here ¢, denotes the Dirac measure charging a € Ry x R?, so for each w, ju(w; .) is
an integer-valued measure on R x R?, which charges neither the set {0} x R?, nor
the set Ry x {0}, and such that p({¢t} x R9) equals 1 if t € D(X) and O otherwise.
For any Borel subset A of R¢ we have

Laxp = (0,11 x A) = ZIA(AXS). (2.1.11)

s<t

The process 14 * 1 is non-decreasing and adapted, although it may take the value
400 at some time ¢ > 0, or even at all times ¢ > 0. However when A lies at a positive
distance from O the process 14 x u is cadlag, N-valued and with jumps of size 1,
hence locally integrable; then it admits a predictable compensator which we denote
by 14 * v, and which is a predictable increasing process, null at 0, and also locally
integrable.

Moreover A — 14 x ;s is o-additive, and it follows that A — 14 x v; is almost
surely o-additive. So it is no wonder that there exists a genuine positive random
measure v(w; dt, dx) on Ry x R such that

1axv(w); = v(w; (0,1] x A) (2.1.12)

for all A as above (the compensator being defined up to a null set, one should rather
say: there is a measure v such that the formula (2.1.12) defines a version 1 4 xv of the
compensator of 14 » ©). Not surprisingly, the measure v is called the (predictable)
compensator of [L.

We extend the notation (2.1.11) or (2.1.12) to more general integrands. If § =
8(w, t,x) is a real function on 2 x Ry x RY, we write

Sxpy = / d(w, s, x)u(w; ds, dx),
d

[0.1]xR (2.1.13)

Sxv = / S(w, s, x)v(w; ds,dx),
[0,1]x R4

as soon as these integrals make sense. In particular if the first one makes sense, we
have

Sxp = Y 8(s. AXy). (2.1.14)

s<t
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3) At this point, we can define the characteristics, also known as “predictable
characteristics” or “local characteristics”, of the semimartingale X. These charac-
teristics consist of the triplet (B, C, v), where

e B=(B'), <i<q 1s the predictable process of locally finite variation
with By =0, occurring in (2.1.10),
e C=(C)i<ij<q, where C = (X' X/c),

e v is the compensator of the jump measure 1, as defined above.

It is useful to express the quadratic variation process [X, X], and also the angle
bracket (X, X) when it exists, in terms of the previous quantities. First we have
always

(X', X7] = CY + (x"x7) % .

Here the last process is § » u (notation (2.1.14)) for the function §(w, t, x) = xixd,
where (xi)lfiid denote the components of x € RY).

Second, it can be shown that the angle bracket exists if and only if (x)? % v, < 0o
a.s. for all 7 and i, or equivalently if (x')? » 11 is locally integrable for all i. In this
case we have

(x',x7), = ¢ + (x'x))xv, =Y ABLAB]. (2.1.15)

s<t

4) The integrals in (2.1.13) are Lebesgue integrals with respect to two positive
measures, for any fixed w. Now, the signed measure p — v is a “martingale measure,”
in the sense that for any Borel subset A of R¥ at a positive distance of 0 the process
lax(u—v)=14»u— 14 *vis alocal martingale. So we also have a notion of
stochastic integral with respect to i — v, which proves quite useful.

We will say that a function § on §2 x R4 x R4 is predictable if it is P measurable,
where P = P ® R, where P is the predictable o -field on £2 x R and R¢ the Borel
o-field of R?. Clearly 8(w, t, x) = 14(x) is predictable in this sense when A € R.

Let us take a predictable function § as above. If

(82 A18]) %1, < 00 ¥ >0, (2.1.16)

we can define a process denoted by

t
// (s, x)(u—v)(ds,dx), or Sx(u—v),
0 JRd

and called the stochastic integral of 6 with respect to u — v: this is the unique (up
to null sets) purely discontinuous local martingale whose jumps are given by

A((S* (n— v))t = /8(t,x)(,u — v)({t},dx) =6(t, AX;) —fS(t,x)v({t},dx),
(2.1.17)
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and moreover it coincides with the difference § * 4 — § * v when both processes
8 * 1 and § x v are well-defined and finite-valued. (Here again one could define the
stochastic integral é % (u — v) for predictable integrands § satisfying a condition
slightly weaker than (2.1.16), but more complicated to state; the condition (2.1.16)
will however be enough for our purposes.)

5) With this notion of stochastic integral, we arrive at the final decomposition of
a semimartingale. Namely, we have

X=Xo+B+X+ Lyxep<y) * (= v) + (xLegs1)) * p. (2.1.18)

This is called the Lévy-Ito decomposition of the semimartingale, by analogy with
the formula bearing the same name for Lévy processes, see the next subsection. It
is in fact another way of writing the decomposition (2.1.10), with the same B and
X¢, and the last two terms in each of the two decompositions are the same. So M in
(2.1.10) is equal to the stochastic integral (x 1{jx<1})* (1 —v), which should be read
component by component and is § * (i — v) with the function §(w, ¢, x) = x1{x<1}-
Note that this function § is predictable, and it satisfies (2.1.16) because the third
characteristic v of X always satisfies

(IxI? A1) xv, < 00 Vi>0. (2.1.19)

The latter property comes from the fact that UxIPA D % = int IAX )12 A Lis
finite-valued and with bounded jumps, hence locally integrable.

6) Finally we give a version of It6’s formula based on the characteristics. This
version is a straightforward consequence of the classical formula (2.1.9) and of the
previous properties of random measures and the decomposition (2.1.18). If f is a
C? function,

d. pt g
> f oF f(Xs-)dCy
. 0

i,j=1

d t . 1
Fo = o+ Y [ as o+
i=1

d
+ ((f(X +x) = f(X2) — ZaiﬂX)x") 1{|x||sl}> * Vi

i=1
d ' '
+ Z./o i f(Xs—)dXE + ((f(X-+x) — f(X2)) <)) * (1w — v);
i=1

+ (f(X=4x) = FXO) La>1)) * e (2.1.20)

This formula looks complicated, but it turns out to be quite useful. We use a short
hand notation here, for example (f(X_ + x) — f(X_))1{jx>1) stands for the pre-
dictable function §(w, t,x) = (f(X;—(®) + x) — f(Xi—(@)))1{jx)>1;. The right
side gives a decomposition of the semimartingale f(X) which is somewhat similar
to (2.1.18): apart from the initial value f(Xo), the sum of the first three terms is
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a predictable process of locally finite variation, the fourth term is the continuous
martingale part f(X)¢, the fifth one is a purely discontinuous local martingale with
locally bounded jumps, and the last one is a finite sum of “big” jumps of f(X).

2.1.3 A Fundamental Example: Lévy Processes

An adapted d-dimensional process X on (§2, F, (F;)s>0, IP) is said to have (F;)-
independent increments, if for all s, t > 0, the increment X, — X is independent
of the o-field F;. We have the following general result: if X is a d-dimensional
semimartingale, it is a process with (F;)-independent increments if and only if its
characteristics (B, C, v) have a deterministic version, that is B is a d-dimensional
cadlag function with locally finite variation, C is a continuous function with values
in the set M:{X 4 and increasing in this set, and v is a (non-random) positive measure
on R, x RY.

It turns out that there exist processes with independent increments, even cadlag
ones, which are not semimartingales. For example a deterministic process X; =
f(t) is always a process with independent increments, whereas it is a semimartin-
gale if and only if the function f is cadlag and of locally finite variation.

This, however, cannot happen if we assume in addition that the process has sta-
tionary increments. We say that X is an (F;)-Lévy process if it is cadlag adapted
with Xo = 0 and if the increments X,;; — X, are independent of F; and with a law
depending on s of course, but not on r. When (F;) is the filtration generated by X,
we simply say Lévy process. We then have the following fundamental result:

e Any (F;)-Lévy process X is a semimartingale on (§2, F, (F;)s>0, P),

e A d-dimensional semimartingale X is an (F;)-Lévy process if and
only if Xo = 0 and its characteristics have the form
B;(w) = bt, Ci(w) = ct, v(w;dt,dx) =dt ® F(dx).
(2.1.21)
Here we have:

b:(bi)ifd eR, c:(cij)i,jfd E/\/lji'xd, F is a positive

2.1.22
measure on RY with F({0}) =0and [(||x[*> A 1) F(dx) < oo. ( )

The term (b, ¢, F) is called the characteristic triplet of X; b is the “drift”, c is the
covariance of the “Gaussian part”, and F is the “Lévy measure”. Conversely, with
any triplet (b, c, F) satisfying (2.1.22) one associates a Lévy process X, and the
triplet (b, ¢, F') completely characterizes the law of the process X (hence the name
“characteristics”) via the independence and stationarity of the increments, and the
Lévy-Khintchine formula which gives the characteristic function of the variable X;.
With vector notation, the Lévy-Khintchine formula reads as follows, for all u € RY:

- 1 ju*
E(e™ X’) =exp t<u*b —5 u*cu+ f(elu il i”*X1{IXI<1})F(dx)>'



34 2 Some Prerequisites

Now, assuming that X is an (F;)-Lévy process with the above triplet, we can
look at the specific form taken by the decomposition (2.1.18). We have Xo =0 and
B; = bt, as said before. The continuous local martingale X has quadratic variation
(X€, XY = ct, and by one of Lévy’s theorems this implies that X¢ is in fact a
Gaussian martingale; more specifically, if o denotes a square-root of c, that is a
d x d matrix such that co* = ¢, we can write X¢ = oW where W is a standard
d-dimensional Brownian motion (to be more accurate one should say that, if k is
the rank of ¢, we can choose o such that its d — k last columns vanish, so that only
the first k components of W really matter; in particular when ¢ = 0 then X =0 and
no Brownian motion at all comes into the picture).

As for the jump measure pu = pX, it turns out to be a Poisson random mea-
sure on Ry x R?, with (deterministic) intensity measure v. This means that for any
finite family (A;) of Borel subsets of R x R which are pairwise disjoint, the vari-
ables ©(A;) are independent, with E(i(A;)) = v(A;). Moreover ((A;) = 0o a.s.
if v(A;) = oo, and otherwise ((A;) is a Poisson random variable with parameter
V(A;).

The Lévy-1t6 decomposition (2.1.18) of X takes the form

X = bt+o W+ (xljx<) * (. —v) + (xLeg>1)) * i (2.1.23)

The four terms in the right side are independent, and each one is again an (F;)-Lévy
process. The last term is also a compound Poisson process.

Lévy processes have a lot of other nice properties. Some will be mentioned later
in this book, and the reader can consult the books of Bertoin [15] or Sato [87] for
much more complete accounts.

Semimartingales do not necessarily behave like Lévy processes, however a spe-
cial class of semimartingales does: this class is introduced and studied in the next
subsection. It is the most often encountered class of semimartingales in applica-
tions: for example the solutions of stochastic differential equations often belong to
this class.

We end this subsection with some facts about Poisson random measures which
are not necessarily the jump measure of a Lévy process. Let (E, £) be a Polish space
(= a metric, complete and separable space) endowed with its Borel o -field. In this
book we will call an (F;)-Poisson random measure on R, x E a random measure
p =yp(w;dt,dx) on Ry x E, which is a sum of Dirac masses, no two such masses
lying on the same “vertical” line {t} x E, and such that for some o -finite measure A
on (E, ) and all A € £ with L(A) < co we have

e 1o *p, =p([0,7] x A) is an (F;)-Lévy process

(2.1.24)
eE(laxp,) = tA(A).
Note that when A(A) = oo then 14 *p, =00 as. for all # > 0, and otherwise 14 % p
is an ordinary Poisson process with parameter A(A).
The measure A is called the Lévy measure of p, by analogy with the case of Lévy
processes: indeed, the jump measure p of an (F;)-Lévy process is of this type, with
E =R and the same measure A = F in (2.1.21) and (2.1.24).
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With p as above, we set g(A) =[E(p(A)) forany A € Ry ® & (this is the intensity
measure). Then ¢ is also the “compensator” of p in the sense that the process 14 *g, =
9([0, t] x A) is the (predictable) compensator of the process 14 xp for all A € £ such
that A(A) < oo.

At this point, one may introduce stochastic integrals 6 (p — 7) asin (2.1.17) for all

predictable functions § on £2 x Ry x & (with P=PRE here) which satisfy (2.1.16)
for g instead of v. Everything in this respect works as in the previous subsection, with

w = X substituted with P

2.1.4 It6 Semimartingales

1) In this subsection we will be slightly more formal and go into more details than
before, since what follows is not as standard as what precedes. We start with a
definition:

Definition 2.1.1 A d-dimensional semimartingale X is an It6 semimartingale if its
characteristics (B, C, v) are absolutely continuous with respect to Lebesgue mea-
sure, that is

t t
B, = /bsds, C, = / esds,  v(dt,dx) = dt F,(dx), (2.1.25)
0 0

where b = (b;) is an R9-valued process, ¢ = (¢;) is an ij 4-valued process, and
F, = F,(w, dx) is for each (w, t) a measure on R?.

These by, ¢; and F; necessarily have some additional measurability properties, so
that (2.1.25) makes sense. It is always possible to choose versions of them such that
b; and c; are predictable processes, as well as F;(A) for all A € R4, Further, since
(2.1.19) holds, we can also choose a version of F' which satisfies identically

/(I|x||2 A1) Fi(,dx) < oo.

However, the predictability of b, ¢ and F is not necessary, the minimal assumption
being that they are progressively measurable (for F that means that the process
F;(A) is progressively measurable for all A € R¢): this property, which will always
be assumed in the sequel when we speak of Itd semimartingales, is enough to ensure
the predictability of (B, C, v), as given by (2.1.25).

Obviously, an (F;)-Lévy process with characteristic triplet (b, ¢, F) is an Itd
semimartingale, with b;(w) = b and ¢;(w) = c and F;(w,.) = F.

2) Our next aim is to give a representation of all d-dimensional Itd semimartin-
gales in terms of a d-dimensional (F;)-Brownian motion W (that is an (F;)-Lévy
process which is a Brownian motion) and of an (F;)-Poisson random measure p.
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For this we have to be careful, because the space (§2, F, (F;)r>0, P) may be too
small to support a Brownian motion or a Poisson random measure. In the extreme
case, X; =t is a semimartingale on the space (§2, F, (F;):>0, [P) when §2 contains a
single point w, with the probability P({w}) = 1, and evidently there is no Brownian
motion on this space. This example is perhaps too trivial, but we may also have the
following situation: suppose that X; = W(,_1y+ where W is a Brownian motion; then
X is a semimartingale, relative to the filtration (F;) which it generates. Obviously
F: is the trivial o-algebra when ¢ < 1, so again there is no (F;)-Brownian motion
on this space.

Hence to solve our problem we need to enlarge the space (§2, F, (F;)s>0, P).
This question will arise quite often in this book, so here we give some details about
the procedure.

The space (£2, F, (F1)i=0, P) is fixed and given. We consider another measurable
space (£2’, F') and a transition probability Q(w, de’) from (£2, F) into (2, F').
Then we define the products

Q=0x2, F=FQF, Plo,do) = Pdo) Q,do).
o (2.1.26)
The probability space (5, F,P) is called an extension of (§2, F,P). Any variable
or process which is defined on either §2 or §2’ can, as usual, be considered as defined
on £2: for example X;(w, ') = X;(w) if X; is defined on £2. In the same way, a set
A C 2 is identified WNith the set ,:4 x 2/ C SNZ, and we can thus identify F; with
F ®{0,2'},s0 (2, F, (Fi)r>0, P) is a filtered space.
The filtration (F;) on the extended space is not enough, because it does not incor-
porate any information about the second factor £2'. To bridge this gap we consider
another filtration (F;);>0 on (5, F), with the inclusion property

F Cc F vt>o0.

The filtered space ([~2, F , (]t:,),zo, ﬁ) is called a filtered extension of the filtered
space (82, F, (F)r=0, P). -
In many, but not all, cases the filtration (F;) has the product form

Fi= Nt Fs @ F, (2.1.27)

where (F)) is a filtration on (£2’, F’). In many, but not all, cases again the transition
probability Q has the simple form Q(w, dw’) = P’(dw’) for some probability on
(£2', 7). In the latter case we say that the extension is a product extension, and if
further (2.1.27) holds we say that we have a product filtered extension: this is simply
the product of two filtered spaces.

A filtered extension is called very good if it satisfies

W f 1A(a), a)/) Q(a), da)/) is 7, measurable for all A € F,, all ¢ > 0.

(2.1.28)
Under (2.1.27), this is equivalent to saying that w — Q(w, A’) is F; measurable for
all A" € F/, all r > 0. A very good filtered extension is very good because it has the
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following nice properties:

e any martingale, local martingale, submartingale, supermartingale
on (£2, F, (Fi)r=0,P) isalsoa martlngale local martmgale
submartingale, supermartingale on (2. F, (]-});>o,IP’) (2.1.29)

e asemimartingale on (£2, F, (F;)s>0, IP) is a semimartingale on
(82, F, (F)t>0, P), with the same characteristics

(in fact, (2.1.28) is equivalent to the fact that any bounded martingale on (£2, F,
(F1)i>0, P) is a martingale on (.Q F, (]-',),>o, ]P’)) For example a | Brownian mo-
tion on (£2, F, (F;)t>0, P) is also a Brownian motion on (.Q .7-" (fz)z>0, ]P’) if the
extension is very good, and the same holds for Poisson measures.

Note that many extensions are not very good: let for example Q(w,.) be the
Dirac mass €y/(), on the space (£2', ') = (R, R) endowed with the filtration F, =
F' for all £, and where U is an R-valued variable on (§2, F) which is not measurable
with respect to the P completion of Fj, say. Then Q(w, A") = 14/(U(w)) is not
F1 measurable in general, whereas A’ € }'{, and the extension (with the product
filtration (2.1.27)) is not very good.

3) Now we are ready to give our representation theorem. The difficult part comes
from the jumps of our semimartingale, and it is fundamentally a representation the-
orem for integer-valued random measures in terms of a Poisson random measure, a
result essentially due to Grigelionis [39]. The form given below is Theorem (14.68)
of [52]. In this theorem, d’ is an arbitrary integer with d’ > d, and E is an ar-
bitrary Polish space with a o-finite and infinite measure A having no atom, and
g(dt, dx) =dt @ A(dx).

Theorem 2.1.2 Let X be a d-dimensional It6 semimartingale on the space
(82, F, (F)i=0,P), with characterlstlcs (B C,v) glven by (2.1.25). There is a
very good filtered extension, say (2, F, (]-}),>0, ]P’) on which are defined a d’'-
dimensional Brownian motion W and a Poisson random measure p on R x E with
Lévy measure M\, such that

t t
X; :X0+/ bsds+/ O‘sdVVS+(5l{”5‘|51})*(}’—9)[+(81{||5||>1})*pt, (2.1.30)
0 0

and where o; is an R @ RY -valued predictable (or simply progressively measur-
able) process on (82, F, (Ft)i>0, P), and 8 is a predictable Rd-valuedfunction on
2 xRy x E.

Moreover, outside a null set, we have o0} = ¢;, and F;(w, .) is the image of the
measure A restricted to the set {x : §(w, t, x) # 0} by the map x — §(w, t, x).

Conversely, any process of the form (2.1.30) (with possibly b, o and § defined
on the extension instead of on (2, F, (F1)i=0,P)) is an Itd semimartingale on
(2, F, (F)i=0.P), and also on (2, F, (Fi)i=0. P) if it is further adapted to (Fy).
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Once more, (2.1.30) should be read component by component, and the ith com-
ponent of fot o5 dWs is the integral of oti' = (0,’ : 1 < j < d’) with respect to the
d’-dimensional process W.

There is a lot of freedom for choosing the extension, of course, but also the space
E, and the function §, and even the dimension d’ and the process o (the requirement
being that 0,0, = ¢;): we can always take an arbitrary d’ > d, or more generally
not smaller than the maximal rank of the matrices ¢;(w). A natural choice for E
consists in taking E = R?, but this is not compulsory and we may take in all cases
E =R with A being the Lebesgue measure. For example if we have several Itd
semimartingales, and even countably many of them, we can use the same measure p
for representing all of them at once. Any decomposition as in (2.1.30) will be called
a Grigelionis decomposition of X .

Remark 2.1.3 Even when the measure A has atoms, or is finite, (2.1.30) gives an Itd
semimartingale. Moreover, in the same spirit as for the choice of the dimension d’
above, when A = sup, ;) F,,(R?) is finite, we can find a Grigelionis representa-
tion for any choice of the measure A without atom and total mass A(E) > A.

Note that the fact that an extension of the space is needed is a rather common
fact in stochastic calculus. For example the celebrated Dubins theorem according
to which any continuous local martingale M null at O is a time-changed Brownian
motion also necessitates an extension of the space to be true, unless (M, M)s, = 00
a.s. Here we have a similar phenomenon: when for example X is continuous and the
rank of ¢; is everywhere d, the extension is not needed, but it is otherwise.

Example 2.1.4 Lévy processes: Let X be an (F;)-Lévy process with triplet
(b,c,F),and take E=RY and A= F (even though this measure may have atoms
and/or may be finite, or even null). Then (2.1.30) holds with §(w,?,x) = x and
p = i, and it is then nothing else than the Lévy-It6 decomposition (2.1.23). More
generally, for an Itd6 semimartingale the decompositions (2.1.18) and (2.1.30) agree,
term by term.

As a matter of fact, the representation (2.1.30) may serve as a definition for an
Itd semimartingale, if we do not mind about extending the space. This is in line
with the processes that are solutions of stochastic differential equations driven by a
Brownian motion and a Poisson measure: the “strong” solutions have the represen-
tation (2.1.30), whereas the “weak” solutions are Itd semimartingales in the sense
of Definition 2.1.1.

In any case, and since in the questions studied below it is innocuous to enlarge
the underlying probability space, throughout the remainder of this book all Itd semi-
martingales will be of the form (2.1.30), and we assume that both W and the Pois-
son measure p are defined on (§2, F, (F;);>0, P). By analogy with the stochastic
differential equation case, the terms b, o and § will be called the coefficients of X,
respectively the drift, the diffusion, and the jump coefficients.
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Finally, as soon the process

t t
/ ds / x]1* Fy(dx) = / ds / |5Gs, 2| *2(d2)
0 0

is finite-valued for all 7, the angle bracket of X exists, and it is given by

.. ? o . ! . .
(x'.x7), =c/ +/ ds/x’xf Fy(dx)=C/’/ +/ ds/(é’(s,z)8’(s,z))A(dz)
0 0
(2.1.31)
(compare with (2.1.15)).

2.1.5 Some Estimates for It6 Semimartingales

This subsection is devoted to various estimates for Itd semimartingales. Most of
them are rather standard, but scarcely appear in book form, and a few of them are
new. So although only the results are presented in this chapter, the proofs are fully
given in the Appendix.

Before starting, we recall the Burkholder-Davis-Gundy inequalities. They play a
key role here, and can be found for example in Protter [83]: for each real p > 1 there
are two constants 0 < ¢, < Cp, < 0o such that, for any local martingale M starting
at Mo = 0 and any two stopping times S < T', we have

cp B((IM, M7 — M, M15)""* | Fs)

<E( _sup |M—Ms|"| Fs)
teRy:S<t<T

IA

C,E((IM, Ml — M, M1s)"" | Fs) (2.132)

(most often, these inequalities are stated in expectation only, and with S = 0; the
meaning of [M, M]r on the set {T = oo} is [M, M]r = lim;_,» [M, M];, an in-
creasing limit which may be infinite; when p > 1 these inequalities are simply
Burkholder-Gundy inequalities.)

The results below are stated, and will be used, in the d-dimensional setting. But,
as seen from the proofs, they are fundamentally one-dimensional estimates. They
are moment estimates, typically of the form E(|Z;|P) < z;, where Z; is the vari-
able of interest (a stochastic integral, or some specific semimartingale) and z; is an
appropriate bound. However, a semimartingale, even of the form (2.1.30), has no
moments in general; so it may very well happen in the forthcoming inequalities that
both members are infinite; however, if the right member z; is finite, then so is the
left member E(|Z;|?).

Below, constants appear everywhere. They are usually written as K, and change
from line to line, or even within a line. If they depend on a parameter of interest,
say p, they are written as K, (for example in estimates for the p moment, they
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usually depend on p and it may be useful to keep track of this). On the other hand,
constants occurring in estimates for a given X may also depend on its character-
istics, or at least on some bounds for the characteristics, and we are usually not
interested in keeping track of this and so they are just written as K, unless explicitly
stated.

The It6 semimartingale X has the Grigelionis decomposition (2.1.30), and below
we give estimates about, successively, the four terms (besides the initial value Xg)
occurring in this decomposition. We start with estimates which require no specific
assumptions, and we consider a finite-valued stopping time 7 and some s > 0. The
constants often depend on p, but neither on 7 nor on s.

1) The drift term. The first estimate is simple (it is Holder’s inequality) and given
for completeness. Note that it is “w-wise”, and valid for p > 1:

T+u 4 T+s I 1 T+s
f bdr| < / Wbulldu) =< s —/ 1bulP duc ).
T T s Jr

(2.1.33)
The way the last term above is written may look strange: it has the advantage of
singling out the term s?” which is typically the order of magnitude of the whole
expression, times a term which is typically of “order 1” (here, the average of | b, |?
over [T, T + s)).
Note that this term of “typical order 1” may in some cases be infinite: the inequal-
ity becomes trivial but totally useless. The same comment applies to all forthcoming
inequalities.

sup
O0<u<s

2) Continuous martingales. Here we consider the continuous martingale part
fot oy dWs, where W is a d’-dimensional Brownian motion and o; is R? ® R4 -
valued. Applying the Burkholder-Davis-Gundy inequality for each component, we
deduce that for all p > 1 we have

T+u P 1 T+ r/2
E( sup f o dW, | | Fr)<K,s"*E[ |- / lowll*du | | Fr ).
O<u<s || JT s Jr

(2.1.34)
Note that the constant K, here depends on C), in (2.1.32), and also (implicitly) on
the dimensions d and d’.

3) Purely discontinuous martingales. The next estimates are less classical. We state
them as lemmas, to be proved in the Appendix. We consider the integral of a d-
dimensional predictable function § on £2 x R, x E, without any reference to the
semimartingale X.

To keep in line with the above way of singling out a “main term” which is a
power of s and a factor which is “typically of order 17, we introduce a series of
notation associated with a given function §. Below, p € [0, o0) and a € (0, oo]:
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R 1 t+s . R
§(p,a)s = —/ d“/ [8,2)|” rdz),  8(p)=35(p,o0)
s Ji {18@u,2)lI<a}
~ - 1 t+s
8 (p)rs =8(p, 1)+—/ du/ [6(u,2)| A(d2) (2.1.35)
s Ji {18, 2)1>1}
~ - 1 t+s
5 (pis =8(p. 1) + ;/ a((e: [, 2] > 1)) du.
t

Lemma 2.1.5 Suppose that fot ds [ 118(s, 2)|1*A(dz) < oo for all t. Then the process
Y =8 (p —9) is a locally square integrable martingale, and for all finite stopping
times T and s > 0 and p € [1, 2] we have

E( sup Yrsu = Yrl” | Fr) = Kps E(8(p)r.s | Fr) (2.1.36)

0<u<s

and also for p > 2:

E( sup ¥ = Yrll” | Fr) < Kp(E(8(p)rs | Fr) +sP2E(5Q)F7 1 Fr)).
O0<u<s
(2.1.37)

These two inequalities agree when p = 2. The variables 3( p)T.s may be infinite,
and are neither increasing nor decreasing as p increases, in general. However, as
soon as § is bounded, our assumption implies that ;S\( P)T.s 1s finite for all p > 2,
whereas it may be infinite for p < 2, and typically is so, for all p small. Hence it
is often the case that the right side of (2.1.37) (where p > 2) is finite, whereas the
right side of (2.1.36) (where p < 2) is infinite, contrary to what one would perhaps
think at first glance.

There is a fundamental difference between the estimates given so far, as s — 0. In
(2.1.33) the right side is basically of order s?, in (2.1.34) it is sP/2 and in (2.1.36)
and (2.1.37) it is s, irrespective of the value of p > 1. This phenomenon already
occurs when Y; = N, — ¢, where N is a standard Poisson process: in this case, for
each integer p > 1 we have E(|Y;|”) ~ aps as s — 0, for some constant «, > 0.

The inequality (2.1.36), when the right side is finite for some p < 2, implies that

(Yris —Y1)/v5 —> 0 (2.1.38)

as s — 0. As said before the right side of (2.1.36) is often infinite, but nevertheless
(2.1.38) holds when Y = §  (p — 9) under quite general circumstances. We provide a
useful lemma to this effect: (2.1.38) follows from (2.1.39) below by taking g = 1/2
and r =2.

Lemma 2.1.6 Let r € [1,2]. There exists a constant K > 0 depending on r,d,
such that for all g € [0,1/r] and s € [0, 1], all finite stopping times T, and all
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d-dimensional processes Y =8 x (p — 9), we have

Y -Y r
]E(sup<—” Tﬂ;q T”/\l) |.7:T>

u<s

o~ q(r

< Ks" T E(8(nsY),, +5 T T (s | Fr), (2.1.39)

where :3\(1’, a) and ;3\’(1’) are associated with § by (2.1.35).

4) Purely discontinuous processes of finite variation. Here we consider the case of
8 % p, where again 8 is predictable. The results (and the proofs as well) parallel those
for &  (p — g), with different powers.

Lemma 2.1.7 a) Iffot A({z :8(r,2) # 0} dr < oo for all t, the process Y =8 % p
has almost surely finitely many jumps on any finite interval.

b) Suppose that fot ds [ 18(s, 2)[IA(dz) < oo for all t. Then the process Y =68 % p
is of locally integrable variation, and for all finite stopping times T and s > 0 and
p € (0, 1] we have

E( sup [ Y7 1w — Yr|I? |]-‘T) < K,sE(8(p)rs | Fr). (2.1.40)

O0<u<s
and also for p > 1

E&ﬂmHﬁwu—hﬂﬂf%)SKAﬂ%amﬂﬂfﬂ+ﬂﬂﬂaU?Afﬂ)
<u<s
(2.1.41)

Next, we have a result similar to Lemmas 2.1.6:
Lemma 2.1.8 Let r € (0, 1]. There exists a constant K > 0 depending on r,d,

such that for all g € [0,1/r] and s € [0, 1], all finite stopping times T, and all
d-dimensional processes Y =8 * p, we have

1¥rew—Yrl 5 Y
E — /\ 1 F
(i‘é‘3< N\

<Ks" U E(8(r,s%),  +s28 ()15 | Fr), (2.1.42)
where g(r, a) and 3 (r) are associated with § by (2.1.35).

5) Ito semimartingales. The previous estimates will be used under various hypothe-
ses and with various choices of the powers under consideration. However, the most
useful results are about Itd6 semimartingales X of the form (2.1.30). Then if 7' is a
finite stopping time, and s > 0, and p > 2, we have
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B((sup I X740 — X717 | Fr)

u<s

T+s p
<KE f 6y || du
T
T+s p/2 T+s
+ / low I du +/ du/HS(m)H”Md@
T T
T+s r/2
+ / du / 8. )| *2(d2)
T {z:ll8(u,2)I<1}

T+s p
+</ du/ HS(u,z)HA(dz)) |]-'T). (2.1.43)
T (e8> 1)

In the “bounded” case, we get for p > 2 again
br@) | <8, |or@)| <, |80, 1,0 <T (@) =

]E(sup X714 — XTII” |.7:T) < K(spﬁp+sp/2ap+s/F(z)pA(dz)

u<s

r/2 P
+Sp/2(/ F(Z)zl{r(z)fl})»(dz)) +Sp</ F(Z)l{r(z)>1})n(d2)> >
(2.1.44)

These are applications of the “non-normalized” estimates (2.1.33), (2.1.34),
(2.1.37) and (2.1.41). In the “bounded” case we also have a simple statement for
the normalized estimates (2.1.39) and (2.1.42). These normalized estimates are use-
ful typically for a power p < 2. In view of their usefulness, we state these estimates
in a corollary, proved in the Appendix.

Corollary 2.1.9 Let the d-dimensional predictable function § be such that ||§(w, t,
2| < I'(2) for some measurable function I' on E, and let p > 0, r € (0, 2] and
q€1[0,1/r).

a) Ifr € (1,2] and f(F(z)’ A T (2)) M(dz) < 00, the process Y =8 * (p — 9)
satisfies

Yiin— Y P KsPU=a0/r g(s) i p<r
E<sup<w/\1) |]-"T> < 1 o6 Mp=r )45
uss 54 Ks'=9" ¢(s) ifp>r

for all s € (0, 1] and all finite stopping times T, where K and ¢ depend onr, p, q,
I' and A, and ¢ (s) — 0 as s — O when q > 0, and sup ¢ < oo when q =0.
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b) If r € (0, 1] and f(F(z)r Vv I'(z)) AM(dz) < 00, the process Y =8 * (p — 9)
satisfies

Y7 — Y P —1
1E<sup<—” T — 17| /\1) |}'T> < Ks"g(s) ifp>1,g<Z
u=<s

sq p—r
(2.1.46)

for all s € (0, 1] and all finite stopping times T, with K and ¢ as in (a).
o) Ifr e (0,1] and f(]"(z)r A1) A(dz) < 00, the process Y = § * p satisfies

Yrau — Y p KspP(=an)/r if p <
E<Sup<u T T||/\l) |fT) - { s OR3P

u<s s9 T | Ks'Tg(s) if p>r

for all s € (0, 1] and all finite stopping times T, with K and ¢ as in (a).

2.1.6 Estimates for Bigger Filtrations

The estimates of the previous subsection hold when T is a stopping time for a fil-
tration (F7) with respect to which W and p are a Brownian motion and a Poisson
random measure. In practice the filtration (F;) is usually given a priori, but it turns
out that those estimates are also valid for (suitable) bigger filtrations. This will be
sometimes a useful tool.

More specifically, we start with (F;), W and p as above. Consider a (non-random)
measurable subset A of E. We denote by 4 the o -field generated by the restriction
of the measure p to R x A, that is the o-field generated by all the random variables
p(B), where B ranges through all measurable subsets of R x A. We also denote
by HW the o-field generated by the process W, that is HW = o (W; : t > 0). Then
we set

(G{*) = the smallest filtration containing (7;) and with HA C g(;‘

( tA'W) = the smallest filtration containing (F;) and with H4 U HW CQS‘ W,
(2.1.48)

Proposition 2.1.10 In the above setting, we have:

a) The process W is a Brownian motion relative to the filtration (ng)’ and
(2.1.34) holds if o is (F;)-optional and T is a stopping time relative to the filtration
(QtA) and the conditional expectations are taken relative to Q?.

b) The restriction y" of p to the set Ry x A€ is a Poisson random measure with
respect to the filtration (g,A ’W), and its Lévy measure )\’ is the restriction of A to A°.
Moreover if § is (F;)-predictable and satisfies §(w,t,z) =0 for all (w,t, z) with
z€ A, Lemmas 2.1.5,2.1.6,2.1.7 and 2.1.8 hold if T is a stopping time relative to
the filtration (g,A ’W) and the conditional expectations are taken relative to gﬁ W
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2.1.7 The Lenglart Domination Property

We end this section with a property that is quite useful for limit theorems. It is
about the comparison between two cadlag adapted processes Y and A, where A is
increasing with A9 = 0. We say that Y is Lenglart-dominated by A if E(|Y7]) <
E(Ar) for all finite stopping times 7', both expectations being possibly infinite.

The following result has been proved by Lenglart in [70], and a proof can be
found in Lemma 1.3.30 of [57]. Suppose that Y is Lenglart-dominated by A. Then
for any (possibly infinite) stopping time 7" and all ¢, n > 0 we have

]P’(sup|Y5| >¢

s<T

(2.1.49)

) 14+ P(Ar =n) if Ais predictable
<
Ly +E(sups—7 AAy)) +P(Ar = 1) otherwise.

This result is typically applied when Y is also an increasing process, and either A is
the predictable compensator of Y (the first inequality is used), or Y is the predictable
compensator of A (the second inequality is used).

2.2 Limit Theorems

The aims of this section are twofold: first we define stable convergence in law. Sec-
ond, we recall a few limit theorems for partial sums of triangular arrays of random
variables.

Before getting started, and in view of a comparison with stable convergence in
law, we recall the notion of convergence in law. Let (Z,,) be a sequence of E-valued
random variables, where E is some topological space endowed with its Borel o -field
&, and each Z,, is defined on some probability space (£2,,, F,,, IP,,); these spaces may
differ as n varies. We say that Z,, converges in law if there is a probability measure
won (E, E) such that

E(f(Zw) — /f(X)M(dX) 2.2.)

for all functions f on E that are bounded and continuous. It is customary to “realize”
the limit as a random variable Z with law w, on some space (§2, F, P) (for example
on (2, F,P) = (E, £, u) with the canonical variable Z(x) = x), and then (2.2.1)
reads as

E(f(Zy) — E(f(2)) (222

for all f as before, and we usually write Z,, i> Z.

The above definition only requires E to be a topological space, but as soon as
one wants to prove results one needs additional properties, at least that E is a metric
space, and very often that E is a Polish space. In the latter case, it is a known fact
that the convergence (2.2.2) for all functions f which are bounded and Lipschitz is
enough to imply the convergence in law, see e.g. Parthasarathy [78].
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2.2.1 Stable Convergence in Law

The notion of stable convergence in law has been introduced by Rényi [84], for the
very same ‘“‘statistical” reason as we need it here and which we shortly explain just
below. We refer to [4] for a very simple exposition and to [57] for more details, and
also to the book [43] of Hall and Heyde for some different insights on the subject.
However the same notion or very similar ones appear in different guises in control
theory, in the theory of fuzzy random variables and randomized times, and also for
solving stochastic differential equations in the weak sense.

In an asymptotic statistical context, stable convergence in law appears in the fol-
lowing situation: we wish to estimate some parameter with a sequence of statistics,
say Z,, or use such a sequence to derive some testing procedure. Quite often the
variables Z, converge in law to a limit Z which has, say, a mixed centered normal
distribution: that is, Z = XU where U is an N'(0, 1) variable and X is a positive
variable independent of U. This poses no problem other than computational when
the law of X' is known. However, in many instances the law of X' is unknown, but
we can find a sequence of statistics X, such that the pair (Z,, X,,) converges in law
to (Z, X'). So, although the law of the pair (Z, X') is unknown, the variable Z,,/ X,
converges in law to A/(0, 1) and we can base estimation or testing procedures on
these new statistics Z,/X,. This is where stable convergence in law comes into
play.

The formal definition is a bit involved. It applies to a sequence of random vari-
ables Z,, all defined on the same probability space (§2, F,P), and taking their
values in the same state space (E, &), assumed to be a Polish space. We say that
Z, stably converges in law if there is a probability measure 1 on the product
(2 x E, F®E), such that

E(Yf(Z,,)) — /Y(a))f(x)n(dw,dx) (2.2.3)

for all bounded continuous functions f on E and all bounded random variables ¥ on
(£2, F). Taking f =1 and Y = 14 above yields in particular that n(A x E) =P(A)
forall A e F.

This is an “abstract” definition, similar to (2.2.1). Now, exactly as we prefer to
write the convergence in law as in (2.2.2), it is convenient to “realize” the limit Z for
the stable convergence in law as well. Since, in contrast with mere convergence in
law, all Z,, here are necessarily on the same space (§2, , IP), it is natural to realize
Z on an arbitrary extension (.Q ]—" IP) of (£2, F,P), as defined by (2.1.26). Letting
Z be an E-valued random variable defined on this extension, (2.2.3) is equivalent to
saying (with E denoting the expectation w.r.t. ]P)

E(Yf(Zy) — E(Yf(2)) (2.2.4)

for all f and Y as above, as soon as ﬁ(A N{Z € B}) =n(A x B) forall A € F and
B € £. We then say that Z,, converges stably to Z, and this convergence is denoted

by Z, E—S> Z. Note that, exactly as for (2.2.3), the stable convergence in law holds
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as soon as we have (2.2.4) for all Y as above and all functions f which are bounded
and Lipschitz.

We can always do this in the following simple way: take Q=2 xEand F=
F ® € and endow (.(~2, F ) with the probability 1, and put Z(w, x) = x. However,
exactly as in the case of the convergence in law where usually (2.2.2) is stated with
an “arbitrary” Z with law u, here we prefer to write (2.2.4) with an arbitrary Z,
defined on an arbitrary extension of the original space.

Clearly, when 7 is given, the property @(A N{Z € B}) =n(A x B) forall A e F
and B € £ simply amounts to specifying the law of Z, conditionally on the o-

field F, that is under the measures Q(w, .) of (2.1.26). Therefore, saying Z, ﬂ) Z
amounts to saying that we have stable convergence in law towards a variable Z,
defined on any extension (5, F,P) of (£2, F,P), and with a specified conditional
law, knowing F.

Stable convergence in law obviously implies convergence in law. But it implies
much more, and in particular the following crucial result: if ¥,, and Y are variables
defined on (£2, F, P) and with values in the same Polish space F, then

2z v 5y = .z 2 2. (2.2.5)

Let us mention the following useful extensions of (2.2.2) and (2.2.4):

°Z, i> Z = E(f(Z,) — E(f(Z)) forall f bounded, Borel,
and p-a.s. continuous,

«7, 53 7 = E(F(.Z)) — E(F(,Z)) forall F bounded,

F ® E-measurable on 2 x E and x — F(w, x) is
continuous at each point (w, x) € A for some set
AeF®E with P({(w, ) : (0, Z(w, @) € A}) = 1.
(2.2.6)
Among all criteria for stable convergence in law, the following one is quite use-
ful. The o-field generated by all Z,, is separable, that is generated by a countable
algebra, say G. Then if, for any finite family (A, : 1 < p < g) in G, the sequence
(Z,, (lAp)lfqu) of E x RY-valued variables converges in law as n — oo, then
necessarily Z, converges stably in law. Also, if Z is defined on the same space as
all Z,,’s, we have

Zn 57— 7, 5z 2.2.7)
(the implication from left to right is obvious, the converse is much more involved
but will not be used in this book).

Finally, let us mention a slightly different setting in which stable convergence
can occur. Let Z, be a sequence of E-valued variables, each one being defined on
some extension (£2,,, Fn, Pp) of the same space (82, F,P). These extensions may
be different when n varies. Then we say that Z, converges stably in law to Z, also
defined on still another extension (§, F,P) of (2, F,P), if for all Y and f as in
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(2.2.4) we have
E.(Yf(Zy) — E(Yf(2)). (2.2.8)

VE stg wr_ite Zy £—S> Z for this notion, which is the same as the previous one when
(82,, Fn, Py) = (82, F,P) for all n. However, one has to be careful when applying
the properties of stable convergence in law in this extended setting. For example

(2.2.5) still holds, but only with the following interpretation of ¥, N Y: each vari-
able Y, is defined on (£2,, F,,P,) and takes its values in some Polish space F
with a distance d; the variable Y is also F-valued, and defined on (£2, F,P); and

Y, ;P) Y means that for all £ > 0 we have @n(d(Yn, Y)>e)—>0asn—>oo.Ina
similar way, (2.2.7) holds with the same interpretation of the convergence in proba-
bility.

A special case of this setting is as follows: we have a probability space (§2, G, P)
and a sub-o-field F of G, and (2, F,Py) = (82, G, P) for all n. Then, in this

situation, Z, —> Z amounts to the “ordinary” stable convergence in law when F =

G,and to Z, i> Z (“ordinary” convergence in law) when F = {2, } is the trivial
o-field, and to something “in between” when F is a non-trivial proper sub-o-field

of G.

2.2.2 Convergence for Processes

In this book we study sequences of random variables, but also of processes, aiming
to prove the convergence in probability, or in law, or stably in law.

If we consider a sequence Z" = (Z}');>¢ of R9-valued stochastic processes, we
first have the so-called “finite-dimensional convergence”: this means the conver-
gence of (Z,”1 e, Z;}() for any choice of the integer k and of the times #1, ..., #.
When the convergence is in probability, the convergence for any single fixed ¢ ob-
viously implies finite-dimensional convergence, but this is no longer true when the
convergence is in law, or stably in law.

There is another, more restricted, kind of convergence for processes, called
“functional” convergence. That means that we consider each process Z" as tak-
ing its values in some functional space (= a space of functions from R into R%),
and we endow this functional space with a topology which makes it a Polish space.

The simplest functional space having this structure is the space C¢ = C(R, RY)
of all continuous functions from Ry into RY, endowed with the local uniform
topology corresponding for example to the distance d(x,y) = > ,.;27"(1 A
sup, ., llx(s) — y(s)||). The Borel o-field for this topology is o (x(s) : s > 0).

However, although many of our limiting processes will be continuous, it is (al-
most) never the case of the pre-limiting processes which typically are partial sums
of the form Zl['ﬂ ;“i” for suitable random variables ;‘i” and [nt] denotes the integer
part of nt. Such a process has discontinuous, although cadlag, paths.
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This is why we need to consider, in an essential way, the space D¢ = D(R., RY)
of all cadlag functions from R into R¥. This space is called the Skorokhod space,
and it may be endowed with the Skorokhod topology, introduced by Skorokhod in
[89] under the name “J1-topology”. Under this topology D is a Polish space, and
again the Borel o-field is o (x(s) : s > 0). We are not going to define this topology
here, and the reader is referred to the books of Billingsley [18] or Ethier and Kurtz
[31] or Jacod and Shiryaev [57]. The convergence of a sequence (x,) towards x, for

this topology, will be denoted by x;, Sk X.
Let us just point out a small number of important properties which will be used
in the sequel. The main drawback of the Skorokhod topology is that it is not com-

. . . Sk
patible with the natural linear structure of the space: we may have x, — x and

Sk . . .
Yp —> y without x, + y, converging to x 4+ y. We do have, however (with x(r—)
denoting the left limit of x at time #):

Sk Sk . . Sk
Xp — X, Yp—> Yy, ¢t y(t)iscontinuous = x, +y, — x+y, (2.2.9)

Xn i) x, x(@)=x(@-), = X, (1) = x(1), (2.2.10)

Xn —% x, > x(7) is continuous = sup | x,(s)—x(s)| = 0 ¥T. (2.2.11)
s€[0,T]

For the last property that we want to recall, we need to introduce a sequence of
subdivisions: for each n, we have a sequence (¢ (n, i) : i > 0) which increases strictly
to 400 and has 7 (n, 0) = 0. With x € D¢ we associate the “discretized” function x "
as follows:

xM@) = x(t(n, ) if t(ni) <t <t(n,i+1). (2.2.12)

This defines a new function x™ € D, Then for any sequence y, of functions,
we have (this is Proposition V1.6.37 of Jacod and Shiryaev [57] applied with non-
random functions):

lim sup(t At(n,i) —t AL(ni— 1)) =0 ¥ >0, y, o>y = y» 5y

n—odo i>1

- (2.2.13)
Now we consider a sequence of cadlag R?-valued processes (X”) and another
cadlag R?-valued process X. They can be considered as random variables taking
their values in the space D, and then we have the notion of convergence of X”
towards X in law, or stably in law, or in probability (in the first case X is defined on
an arbitrary probability space, in the second case it is defined on an extension, and
in the third case it is defined on the same space as are all the X"’s). When the un-
derlying topology on ID? under which the convergence takes place is the Skorokhod

topology, we write these three convergences, respectively, as follows

"L x, xn = x  xn L x (2.2.14)
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. . . . L
For convenience of notation, we sometimes write the above as X/ = X; or
L- P . L
X! =3 X, or X! = X;: these should not be confused with X' —> X, or
L-s P . . .
X7 = x ¢ or X} — X;, which mean the convergence, in law or stably in law or
in probability, of the variables X' towards X, for some fixed 7.

Since we are establishing notation, and with X" and X being cadlag processes,
we continue with the following conventions:

a.s. .
e U, — U for random variables means almost sure convergence

o X" &5 X (or X! =5 X,) means almost sure

convergence for the Skorokhod topology
e X" — X means finite-dimensional convergence in law
e X" — X means finite-dimensional stable convergence in law

o X" 2 X (or X £2 X,) means sup,_, | X" — X, | —> 0 forall 1.
(2.2.15)

2.2.3 Criteria for Convergence of Processes

In this subsection we gather a few criteria which help to prove that a sequence of
processes converges in probability, or in law, or stably in law. These criteria will
often be used below.

To begin with, there is a simple result for real-valued processes with increasing
paths:

if X" and X have increasing paths and X is continuous, then

X7 LN X; Vte D, with D adense subsetof Ry = X" =2 x.
(2.2.16)

Second, there is a well known trick, called the subsequences principle. It con-
cerns a sequence (Z,) of E-valued random variables with £ a Polish space, and
thus also applies to processes viewed as variables taking values in the functional
spaces C¢ or D?. This “principle” goes as follows:

P L L- . .
we have Z, — Z,resp. Z, — Z, resp. Z, =3 Zifand only if,
from any subsequence ny — oo we can extract a sub-subsequence ny,

such that an, i) Z, resp. an] i) Z, resp. an, E) Z. (2.2.17)

For the convergence in probability or in law, this simply comes from the fact that
those are convergence for a metric. For the stable convergence in law, it comes from
the fact that for any given Y and f as in (2.2.4) the “subsequences principle” holds
for the convergence of the real numbers E(Y f(Z,)).
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In connection with this, we state two well known and useful results. The second
one is called the Skorokhod representation theorem. The setting is as before.

Zy i) Z = there is a sequence ny — oo with Z,, %z (2.2.18)

Zy £, Z = there exist variables Z), and Z' defined on the
same probability space, having the same laws (2.2.19)

as Z, and Z respectively, and with Z/, 25 7

In many instances we have a sequence (X") of d-dimensional processes, whose
convergence towards X we seek, and for which a natural decomposition arises for
any integer m > 1

X" = X(m)" + X'(m)" (2.2.20)

and for which the convergence of X (m)" (as n — 00) to a limit X (:n) can be easily
proved. Then, showing that X’ (m)" goes to 0 as m — oo, “uniformly in n”, and that
X (m) converges to X, allows one to prove the desired result. Depending on which
kind of convergence we are looking for, the precise statements are as follows.

Proposition 2.2.1 Let X" and X be defined on the same probability space. For

X" % X it is enough that there are decompositions (2.2.20) and also X = X (m) +
X'(m), with the following properties:

Vm>1, X(m)" — X(m), asn— oo (2.2.21)

X(m) =2 X, asm— oo, (2.2.22)

Vn,t >0, lim limsup P(sup HX’(m);’ ” > n) = 0. (2.2.23)
m—o0  p_so0 s<t

Proposition 2.2.2 For X" :£> X it is enough that there are decompositions (2.2.20)
satisfying (2.2.23) and

Vm>1, Xm)" = X(m), asn— oo (2.2.24)

for some limiting processes X (m), which in turn satisfy
L
X(m) = X, asm — o0.

Remark 2.2.3 In the previous proposition, the processes X” may be defined on
different spaces (£2,,, Fy, P,), the decompositions (2.2.20) taking place on those
spaces, of course. If this is the case, in (2.2.23) one should have P, instead of P.
To avoid even more cumbersome notation, we still write IP instead of IP,,. The same
comment applies also to the next results.
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The similar statement about stable convergence needs more care. The most com-
mon situation is when all processes X" are defined on the same probability space
(82, F,P) and have the decompositions (2.2.20), and the limit X is defined on an
extension (.Q ]-' P) However, (2.2.21) or (2.2.24) are replaced by the stable con-
vergence in law. This means that for each m we have a (possibly different) extension
(ﬁm, fm, P,,), on which the limit process X (m) is defined.

With our “extended” notion of stable convergence, as given in (2.2.8), each X"
is defined on some extension (£2,,, Fp., ]P’,,) of the same space (§2, F,P), and X"
has the decomposmon (2.2.20) on (£2,,, Fn, P,). And again, for each m we have an
extension (.Qm, ]—'m, m) of (£2, F,P), on which the limit process X (m) is defined.

Proposition 2.2.4 In the above two settings, for X" £=‘> X it is enough that there
are decompositions (2.2.20) satisfying (2.2.23), and

Vm=1, Xm)" £5 X(m), asn— oo

for some limiting processes X (m), which in turn satisfy
L-3
X(m) = X, asm — oQ.

These three results are proved in the Appendix, as well as the forthcoming propo-
sitions which are all well known, but used constantly.

Proposition 2.2.5 Let (M") be a sequence of local martingales on the space

(82, F, (F)i=0, P), with Mj = 0. Then M" =80 as soon as one of the following
two conditions holds:

(i) each M"™ admits an angle bracket and (M", M), l) Oforallt >0,

(ii) we have |AM]'| < K for a constant K, and [M", M"]; i) 0 forallt > 0.

In the next result, p is the jump measure of a cadlag d-dimensional process (in
which case E =R below), or a Poisson random measure on R, x E for E a Polish

space, and in both cases v is the compensator of .

Proposition 2.2.6 Let (5,) be a sequence of predictable functions on 2 x Ry x E,
each &, satisfying (2.1.16). Then

(G2 AlSal)* v —> 0 V>0 = S,x(u—v) =B 0. (2225

The “dominated convergence theorem for stochastic integrals” mentioned earlier
is:

Proposition 2.2.7 Let X be a semimartingale and (H") a sequence of predictable
processes satisfying |H"| < H' for some predictable and locally bounded process
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H'. Then if outside a null set we have H]' — H, for all t, where H is another
predictable process, we have

t t
/HS”dXS =L / HydX;.
0 0

Finally, we also have the convergence of “Riemann sums” for stochastic inte-
grals, under some regularity of the integrand process. Below, X and H may be r
and d x r-dimensional, respectively, so that the integral process is d-dimensional.

Proposition 2.2.8 Let X be a semimartingale and H be a caglad adapted process.
For each n let (T (n,i) :i > 0) be a sequence of stopping times, which strictly in-
creases to +oo, with T (n, 0) =0, and such that sup(T (n,i + 1) At —T(n,i) At:
i > 0) goes to 0 in probability for all t as n — o0o. Then

t
P
Z Hrpi—ty(X1@n,iy — XT(n,i-1)) = / Hyd X, (2.2.26)
0

i>1, T(n,i)<t

(convergence for the Skorokhod topology). If further X is continuous the same holds
also when H is adapted cadlag, and we even have the local uniform convergence in
probability.

2.2.4 Triangular Arrays: Asymptotic Negligibility

In this subsection we give a few limit theorems for sums of triangular arrays: the
results are stated in a somewhat abstract setting, but the connection with discretized
processes is explained in Remark 2.2.3 below, and they will be of constant use in
this book.

A d-dimensional triangular array is a double sequence (¢ : n,i > 1) of d-
dimensional variables ¢/' = ({i"’J )1<j<d. Associated with the n'h row (¢iz=1, we
have a stopping rule, that is a process N,, satisfying:

t+— N,(t) is N-valued, cadlag increasing, with jumps equal to 1
and N, (0) =0 and lim;_, o N, (¢) = o0. (2.2.27)

We are interested in the behavior of the partial sums

Ny (1)

sp =Y ¢ (2.2.28)
i=1

which are cadlag processes, with finite variation.
To accommodate the applications we have in mind, we have to be careful about
the structure of those triangular arrays and associated stopping rules. Each row
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(&/")i=1 and its associated stopping rule N, (¢) are defined on some probability space
($2,,G", Py), which is endowed with a discrete-time filtration (G!');en, and the ba-
sic assumptions are as follows:

en>1,i>1 = §i” is g;? measurable

. . . (2.2.29)
en>1,1>0 = N,()isa(G')-stopping time.
We also consider the continuous-time filtration ?:l = Q;’\,n @ and we set
T(n,i) = inf(t: Ny(t) = i). (2.2.30)

The following (easy) properties are proved in §11.3b gf [57]: wehave T (n,0) =0,
and for i > 1 the variable T (n,i) is a predictable (]-'f )-stopping time such that

?T(,”) =G and 71}(,“-), =G |. Then we can rewrite S" as

S¢ =D ¢ rei=n

i>1

and obviously S” is (ffl)—adapted. If further each ¢" is integrable this process S”
admits a predictable compensator (relative to (.7':[)) which, since each T (n,i) is
predictable and 7]}0“-)7 =g |, takes the form

St = DB 1G) L= (2.2.31)

i>1

(we use the notation [E for the expectation with respect to P,, when no confusion may
arise, otherwise we write [E,). The form (2.2.31) is indeed the key ingredient for
proving the limit theorems for triangular arrays, and for this the condition (2.2.29)
is crucial.

Remark 2.2.9 Most of the time in this book, triangular arrays occur as follows. On
an underlying (continuous-time) filtered space (2, F, (F1):>0, P), and for each n,
there is a strictly increasing sequence (7 (n, i) : i > 0) of finite (J;)-stopping times
with limit +o00 and T (n, 0) = 0. The stopping rule is

Nu(t) = sup(i: T(n.i)<t) = > lrmi=i)- (2.2.32)

i>1

which satisfies (2.2.27): note that (2.2.32) and (2.2.30) are indeed equivalent. Fi-
nally, we have a double sequence (') such that each ¢ is Fr(, ;) measurable:
for example, ¢ may be a function of the increment Yr(,,;y — Y7(1,i—1), for some
underlying adapted cadlag process Y.

To fit this into the previous setting, we take (£2,, G", P,) = (§2, F,P). There is
a problem, though, for defining the discrete-time filtration (G') in such a way that
(2.2.29) holds. Two situations may arise:
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1 All T(n,i) are deterministic, or more generally they are “strongly predictable”
stopping times, that is stopping times such that 7 (n, i 4 1) is F7(,,;) measurable.
Then (2.2.28) holds with GI' = Fr(,,i), and the o -field f;’ = g;t]n (z) is the o -field
satisfying

Fin T, )<t <Tm, i+ 1)} = Fropn{Tm,i) <t <Tn,i+1))}

for all i > 0. In particular 7';7 C F; and ?T(n,i) =Fr@, forall i.
2 The T (n,i)’s are arbitrary stopping times. Then (2.2.28) does not usually hold
with G = Fru,iy. Itholds with G = Fr(,i) Vo (T (n,i + 1)), and

F 0T i) <t <Tm,i+1)}
= Fraip Vo (Tm i+ D)N{Tn,i)<t<Tni+D},

but the inclusion 7‘: C F; is no longer valid.

This is one of the reasons why discretization along stopping times is significantly
more difficult to study than discretization along deterministic times.

In the rest of this subsection we give criteria for a triangular array to be asymp-
totically negligible, or AN in short, in the sense that

Nll(t)

Yoo =20, viso. (2.2.33)
i=1

P . L
In other words, sup;, | Zf‘gf” ¢i'| —> 0, or equivalently sup,_, | va:”fs) g —

0. This makes sense even when each row (/" : i > 1) and the associated stopping
rule N, are defined on some probability spaces (£2,, G", P,) depending on n. The
AN property is about the array (¢;) together with the stopping rules N, (), although
we just write that the array is AN: usually N, (¢) is clear from the context.

The AN property is a property for each component, so the following criteria are
all stated for one-dimensional arrays. The first property below is a trivial conse-
quence of (2.2.16), whereas the last implication is obvious:

Na (1)
Yl =50 vi=0 o (|¢]) sAN = (¢) is AN.
i=1

1

The following lemmas are proved in the Appendix, and we always assume (2.2.29).
Lemma 2.2.10 The array (g') is AN as soon as the array (E(1¢'| | G!'_|)) is AN.
Lemma 2.2.11 Let (') be a triangular array such that each g is square-

integrable. Then the array (§' —E(¢" | G })) is AN under each of the following
three conditions:
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() The array (E(1¢!1? | G ,)) is AN.

(b) The sequence of variables (ZN n () I['E(|§l."|2 1{‘4’_’1|>1} | G =1 is bounded in
probability for each t > 0, and the array (|¢/ |2) is AN.

(c) We have |;]'| < K for a constant K, and the array (|g] 1) is AN.

In particular if ({]') is a “martingale difference” array, that is E(" | G ) =0 for
all i,n > 1, then either one of the above conditions implies that it is AN.

As a simple consequence of this lemma, we get:

Lemma 2.2.12 Let A be an R%-valued (deterministic) function and &) a d-
dimensional array. If

N (1)

SR IGL,) =B oA (2.2.34)
i=1

and if the array ({i”) satisfies any one of (a), (b), (¢) of the previous lemma, we

have ZN”(I) n 228 A, The same holds when A is a process, provided all spaces
(£2,,G",Pp) are the same.

Another (trivial, but extremely convenient) consequence is that the array (¢/") is
AN as soon as at least one of the following two properties is satisfied:

Na(0)
E(Z |;l."|> - 0 Vit
i=1

N (1)
E(Z |§,»”|2> — 0 Vr and E(¢|G',) =0 Vin.
i=1

(2.2.35)

2.2.5 Convergence in Law of Triangular Arrays

Here we study the convergence in law. We do not give the most general results
available, and only state a special case of the results of §VIIL.3c of [57]. Here again
we assume (2.2.29).

Theorem 2.2.13 Assume (2.2.34) for some (deterministic) continuous R?-valued
Sfunction of locally finite variation A, and also the following two conditions, for all
Jj. k=1, ...d for the first one and for some p > 2 for the second one:

N (1)

> (B 1G) — B 161 )E(E 161))) — ¢/t w0,
i=l1

(2.2.36)
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No(2) .
SCE(Jg " 168,) — 0 V=0, (2.2.37)
i=l1

where C = (C/%) is a (deterministic) continuous M;‘X 4-valued function (it is then
necessarily increasing for the strong order in M:{X 4)» then we have

N
Yoo L Aty (2.2.38)

i=1

where Y is a continuous centered Gaussian RY-valued process with independent
; . ' ik
increments having E(Y] Y}) = C/*.

The above conditions, of course, completely characterize the law of the process
Y. Equivalently we could say that Y is a Gaussian martingale (relative to the filtra-
tion it generates), starting from 0, and with quadratic variation process C.

Note that if (2.2.37) holds for some ¢, it also holds for all ¢’ < ¢, but this is not
true of (2.2.36), which should hold for each ¢ (in fact, it would be enough that it

holds for all ¢ in a dense subset of R ): if (2.2.36) and (2.2.37) and Zfi‘lm E" |

gf_l) i) A; hold for a single time ¢, we cannot conclude (2.2.38), and even the

L . . . .
convergence vaz"l(’) ¢" —> A; + Y, for this particular ¢ fails in general. There is

an exception, however, when the variables ¢/ are independent by rows and N/ is
non-random. Indeed, as seen for example in Theorem VII-2-36 of [57], we have:

Theorem 2.2.14 Assume that for each n the variables (¢ :i > 1) are independent,
and let 1,, be integers, possibly infinite. Assume also that, for all j, k=1, ...d and
for some p > 2,

Iy ) '
B () L A
i=1

Iy . ' -
S (B ) —E(E@E) = ok,

i=1
I
nipP P
> E([¢]") — o,
i=1

where C/* and Al are (deterministic) numbers. Then the variables Zf": | &t con-

verge in law to a Gaussian vector with mean A = (A7) and covariance matrix
C = (C7%).

Finally we turn to stable convergence in law. The reader will have observed that
the conditions (2.2.34) and (2.2.36) are very restrictive, because the limits are non-
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random. Such a situation rarely occurs, whereas quite often these conditions are
satisfied with A and C random. Then we need an extra condition, under which it
turns out that the convergence holds not only in law, but even stably in law.

As before, for each n we have the sequence (¢;");>1, the stopping rules N, ()
and the associated stopping times 7 (n, i), all defined on some space (£2,,, G", P,,)
with the discrete-time and the continuous-time filtrations (G!') and (]_:f). But here
we need some more structure on these objects. Namely, we assume that we have a
filtered space (£2, F, (F;):>0, P) such that, for each n,

(20, 6", (7?), P,) is a very good filtered extension of (2, F, (7;),P). (2.2.39)

Quite often, but not always, we will have (£2,, G", (7];), P, =2, F, (F),P).

We also single out, among all martingales on (£2, F, (F;):>0, P), a g-dimensional
Brownian motion W, and a subset N of bounded martingales, all orthogonal (in the
martingale sense) to W and such that the set {Ns, : N € N} is total for L' conver-
gence in the set of the terminal variables of all bounded martingales orthogonal to
W (when g =0, we have W =0).

Theorem 2.2.15 We suppose that (2.2.29) and (2.2.39) hold. Assume that (2.2.34)
holds for some R%-valued process A, and (2.2.36) for some continuous adapted
process C = (C/*) with values in ijd’ both A and C being defined on
(82, F, (F)i=0, P). Assume also (2.2.37) for some p > 2, and

Na (1)
y P

> E(G (Mruiy — Mrai1) |Gl_) — 0 ¥t>0 (2.2.40)

i=l1

whenever M is one of the components of W or is in a set N as described before.
Then we have

Ny (1)

Yoo £ Ay,

i=1
where Y is a continuous process defined on a very good filtered extension
(.Q .7-" (.7:,),>0,P) of (82, F, (Ft)i=0,P) and which, conditionally on the o -field
F, is a centered Gaussian R?-valued process with independent increments satisfy-
ing B(y/ vk | Fy=c/*.

Proof When (£2,,,G", (?;), P,) = (82, F, (F;), P), this is a particular case of The-
orem IX.7.28 of [57], except that this theorem is stated when T (n, i) = i/n, but the
extension to the present situation is totally straightforward.

When (£2,,, G", (7];), P,) # (82, F, (F;), P), the result does not formally follow
from the above-quoted theorem. However, this theorem is based on Theorem 1X.7.3
of [57]: the proof of this latter theorem can be reproduced word for word: indeed, the
only two differences are in the last display of p. 587, where the first equality holds
here because of (2.2.39), and in Step 5 of the proof where X}' should be excluded
from the definition of H. O
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In view of the comments made before (2.2.5), the conditions stated above com-
pletely specify the conditional law of Y, knowing F, so the stable convergence
in law is well defined. Processes like Y above will be studied more thoroughly in
Chap. 4, but we mention right away some of their nice properties: Y is a continu-
ous local martingale on (2, F, (]:;)f>o, IP’) whose quadratic variation process is C.
Moreover it is orthogonal to any martingale on the space (£2, F, (F;);>0, P), but of
course it is no longer a (unconditionally) Gaussian process in general.

Bibliographical Notes

An historical sketch of the development of the theory of semimartingales and
stochastic integration with respect to semimartingales and random measures is out-
side the scope of these short bibliographical notes, although one cannot avoid to
mention at least the two pioneering names of K. It6 and P. Lévy, and also P.A. Meyer
who, with many collaborators, established the final state of the theory. An interested
reader should consult Dellacherie and Meyer [25], or Jarrow and Protter [65] for an
historical account.

The characteristics of a semimartingale are implicit in the work of K. It6, and
have formally been introduced by Grigelionis [40] in the case of what is called an
It6 semimartingale in this book, and by Jacod and Mémin [51] in general. What we
call the “Grigelionis form” of an It6 semimartingale is basically due to Grigelio-
nis [39] of course, see also El Karoui and Lepeltier [30], and the form given here is
in Jacod [52]. Section 2.1.5 about estimates for semimartingales contains some new
material, but related estimates or special cases are quite common in the literature,
in which they have been proved when need arose, and repeatedly, by many authors.
The Burkholder-Davis-Gundy inequalities were proved by Burkholder and Gundy
in [20] for the case p > 1, and in [21] when p = 1. The Lenglart inequalities were
proved in [70].

Likewise, all results of Sect. 2.2 are taken from [57], which contains a relatively
detailed account on the (long) history of the subject. Let us just emphasize the facts
that stable convergence in law has been introduced by Rényi [84] and largely de-
veloped by Aldous and Eagleson [4] and Hall and Heyde [43]. The Skorokhod con-
vergence was introduced by Skorokhod in [89] and subsequently developed and
expounded in book form by Skorokhod himself [90], Billingsley [18] or Ethier and
Kurtz [31].



Part 11
The Basic Results

We now reach the main core of this book, that is the behavior of processes, or “func-
tionals”, which have the form (1.1.1) for a test function f and a process X, under
assumptions on f and X, and also on the discretization scheme, which will be cho-
sen to be as weak as possible.

The first chapter of this part is devoted to the convergence in probability of our
functionals, that is, the “Laws of Large Numbers”.

In the second chapter we introduce some tools for the “Central Limit Theorems”,
or distributional results, associated with the convergences obtained in the first chap-
ter, and the central limit theorems themselves are presented in the third chapter.

The fourth chapter of this part concerns the case where the test function is
f(x) =x, a case not covered (at least for the CLT) by the previous results. This is
important because the associated functional is then simply the “discretized” process,
and the type of CLT obtained in this situation is quite different from the previous
ones.



Chapter 3
Laws of Large Numbers: The Basic Results

In this chapter we prove the “Law of Large Numbers”, LLN in short, for the two
types of functionals introduced in (1.1.1). By this, we mean their convergence in
probability. One should perhaps call these results “weak’ laws of large numbers, but
in our setting there is never a result like the “strong” law of large numbers, featuring
almost sure convergence. Two important points should be mentioned: unlike in the
usual LLN setting, the limit is usually not deterministic, but random; and, whenever
possible, we consider functional convergence (as processes).

The first type of LLNs concerns raw sums, without normalization, and the results
essentially do not depend on the discretization schemes, as soon as the discretization
mesh goes to 0. The second type is about normalized sums of functions of normal-
ized increments, and it requires the underlying process to be an Itd6 semimartingale
and also the discretization scheme to be regular (irregular schemes in this context
will be studied in Chap. 14, and are much more difficult to analyze).

We start with two preliminary sections: the first one is about “general” discretiza-
tion schemes, to set up notation and a few simple properties. The second one studies
semimartingales which have p-summable jumps, meaning that )" _, [|AX[? is
almost surely finite for all ¢: this is always true for p > 2, but it may fail when
O<p<2

3.1 Discretization Schemes

1) A discretization grid is a strictly increasing sequence of times, starting at 0 and
with limit 400, and which in practice represents the times at which an underlying
process is sampled. In most cases these times are non-random, and quite often regu-
larly spaced. In some instances it is natural to assume that they are random, perhaps
independent of the underlying process, or perhaps not.

For a given discretization grid, very little can be said. Things become interesting
when we consider a discretization scheme, that is a sequence of discretization grids
indexed by n, and such that the meshes of the grids go to 0 as n — oo. This notion
has already appeared at some places in the previous chapter, for example in (2.1.8)
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and (2.2.26), and we formalize it as follows. Below, when we speak of a “random”
discretization scheme, we assume that the filtered space (£2, F, (F;):>0, P) is given.

Definition 3.1.1 a) A random discretization scheme is a sequence 7 = (T)n>1
defined as follows: each 7, consists of a strictly increasing sequence (7 (n,i) : i >
0) of finite stopping times, with 7' (n,0) =0 and T (n,i) — oo as i — oo, and also

Vi>0,  sup (T i)At—T(ni—1)At) —> 0. G.1.1)

i>1

b) A discretization scheme is as above, with all T (n, i) deterministic, and to
emphasize this fact we usually write T (n, i) = (n, i) with lower case letters.

¢) The scheme is called regular if t(n,i) =iA, for a sequence A, of positive
numbers going to 0 as n — oo.

The condition (3.1.1) expresses the fact that the mesh goes to 0. With any (ran-
dom) discretization scheme we associate the quantities (where ¢t > 0 and i > 1):

An,i)=T(n,i)—Tn,i —1), N,@)= L @,i)<s)»
; ! t (3.1.2)
T,(t) =T (n, Ny (1)), I(n,i)=(T(n,i—1),T(n,i]

In the regular case A(n,i) = A, and N,(t) = [¢/A,]. Random schemes T (n, i)
and the associated notation N, (¢) have been already encountered in Sect. 2.2.4 of
Chap. 2.

Regular schemes are the most common in practice, but it is also important to
consider non-regular ones to deal with “missing data” and, more important, with
cases where a process is observed at irregularly spaced times, as is often the case in
finance.

Note that in many applications the time horizon T is fixed and observations occur
before or at time 7. In this context, for each n we have finitely many 7 (n, i) only,
all smaller than 7. However one can always add fictitious extra observation times
after T so that we are in the framework described here.

2) We consider a d-dimensional process X = (X;);>0 defined on the space
(82, F, (F)i=0, P), with components Xifori=1,...,d. Suppose that a random
discretization scheme 7 = (7},) is given, with 7,, = (T'(n, i) : i > 0). We will use
the following notation:

A'X = Xr,iy— XT0ni-1)-

Note that this notation is relative to the discretization scheme 7, although this does
not show explicitly. We will study various sums of functions of the above incre-
ments, with or without normalization. The most basic one, called non-normalized
functional, is as follows. We have an arbitrary function f on R? (it may be real-
valued, or R?-valued, in which case the following should be read component by
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component):

Nu (1)
VI X0 = V(Tas £ X0 = ) fATX). (3.13)
i=1
The second notation emphasizes the dependency on the discretization grid 7,,.
By construction the process V" ( f, X) is piecewise constant, and in some appli-
cations it may be useful to consider an “interpolated” version, which we define as
follows:

Vi (F. X0 = V(£ X1+ Xy = X1,00) = D f Kintniy = XinT(nio1))-
i>1
(3.14)
We have V). .(f, X)r@w,i) = V*'(f, X)1@,i), but unlike V"(f, X) the process
V.(f, X) varies on each interval I (n, i) along the path of X transformed by f.

3) We have already encountered the functionals V" (f, X) in two special cases.
The first case is when f (x) = x, the identity map on R for which we have

Vn(fy X)t = XT,,(t) —X07 V,'Z;(f: X)z = Xt —Xo.

Then, up to the initial value X, the process V" (f, X) is the discretized version of
the process X. The discretization y™ () = y(¢(n, i)) of a given cadlag function y
along a (non-random) discretization scheme (¢ (n, i) : i > 0) always converges to y
in the Skorokhod sense as the mesh of the scheme goes to 0 in the sense of (3.1.1):
this is a special case of (2.2.13). We thus deduce by the subsequence principle that

VI(f,X) = X —Xo, for f(x)=x (3.1.5)

(recall that this is convergence in probability, for the Skorokhod topology). When
the convergence (3.1.1) holds for all w instead of in probability, for example when

the T(n,i) = t(n,i) are non-random, we get of course V" (f, X)(w) ﬁ) X(w) —
Xo(w) for each w.

Another particular case is when f(x) = x/x* (the product of two components of
xeR4 ). Then, provided X is a semimartingale, we can rewrite (2.1.8) as follows:

]P) .
Vi (f X — [X7, X1,

This is wrong in general for V" ( f, X);, unless ¢ is not a fixed time of discontinuity
of X, thatis P(AX, = 0) = 1. This fact is a reason to consider the interpolated func-
tionals, although in practical applications we only know, or can use, the variables
X7n,i), the other X;’s being unavailable. More generally, if f(x) = x/xk, later we

will see that V" (f, X) =R xJ, xk] (convergence in probability, locally uniformly

nt
in time) and V" (f, X) —= [X/, X*], the latter implying V" (f, X), —s [X/, X¥],
only when P(AX; =0) = 1.
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4) Another case is of special interest. Suppose that d = 1. Then with f(x) = |x|
we have

Na (1)
VA(f, X)), = Z |AX|

i=1

Vil f, X)) = Z | XiAT (i) — XenT@mi—D)s

i>1

which are two versions of the “approximate total variation” at time ¢ and stage n
(or, for the grid 7,,) of X. In general these variables explode as n — co. However, if
X is of finite variation (meaning, with paths of finite variation over finite intervals),
and if Var(X), denotes the total variation of the path s — X over (0, ¢], then both
V*(f, X); and V] (f, X); are smaller than Var(X), (note that Var(X) = Var(X —
Xo) here). We have more, namely the following result, whose proof is given in the
Appendix (although it is, except for the Skorokhod convergence, an old result, see

e.g. Grosswald [42]):

Proposition 3.1.2 Suppose that the one-dimensional process X is of finite variation,
and let f(x) = |x|. Then for any random discretization scheme we have:

V(f, X) = Var(X)
V(£ X)r = Var(X)g,) = 0 (3.1.6)
VE(f, X) =2 var(X).

This result is stated for convergence in probability, because (3.1.1) holds in prob-
ability. But this is really a “pathwise” result, that is the convergence holds for any w
for which the left side of (3.1.1) goes to 0. The property (3.1.6) emphasizes the dif-
ferences between V" (f, X) and V) (f, X). We do not have V" (f, X) =2 Var(X)
in general, unless X is continuous: indeed if X jumps at time S then Var(X) has the
jump |AX| at time S, and V" (f, X) has a jump of approximate size |AXg| at time
T,(8)=inf(T(n,i):i >1,T(n,i) > S), and T,,(S) converges to S but in general is
not equal to S.

3.2 Semimartingales with p-Summable Jumps

In this section X is a d-dimensional semimartingale on (§2, F, (F;);>0, P), and we
denote by u its jump measure and by (B, C, v) its characteristics. The processes

S(p. X) = Y_NAX P = [xI1” % (3.2.1)

s<t

will play a central role. Here, p > 0, and we use the convention 0° = 0: hence
X0, X)r = < l{ax,20 is simply the number of jumps of X before time 7.
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Each process X (X, p) is well-defined, with values in [0, oc]. It is adapted, null at
0, has left limits everywhere and is right-continuous on [0, T) U (T, c0), where T =
inf(t : ¥ (p, X); = 00). Then we associate with X the following subset of [0, 00):

Z(X) = {p=0: the process Z(p, X) is a.s. finite-valued}. (3.2.2)
We will also say that X has p-summable jumps if p € T(X).

Lemma 3.2.1 a) We have 2 € Z(X) always, and Z(X) is an interval of the form
(po, 00) or [po, 00), for some pg € [0, 2].

b) A real p <2 belongs to Z(X) if and only if the process (|| x||P A1) xv is a.s.
finite-valued.

In particular when X is a Lévy process, with Lévy measure F, then V (p, X); <
oo a.s. for all ¢ if and only if f(||x I” A1) F (dx) < oo (once more, this is always true
when p > 2), and otherwise it can be shown (see the Appendix) that V (p, X); = oo
a.s. for all ¢+ > O: this is an old result of Blumenthal and Getoor in [19], and the
infimum pg of the set Z(X) in the Lévy case is called the Blumenthal-Getoor index
of the process. When X is a stable process, the Blumenthal-Getoor index is the
stability index.

Coming back to semimartingales, when 1 € Z(X) the jumps are summable (on
finite time intervals, of course) and the process (||x|| A 1) x v is a.s. finite-valued.
Then we may rewrite the Lévy-Itd6 decomposition (2.1.18) as

X=Xo+B +X +x%u, where B'=B— (xl{jx<1}) *v. (3.2.3)

Proof a) The property 2 € Z(X) follows from (2.1.5). If p > g we have ||x]||? <
lxl19 + llxI” 1(jx)>1}> hence

X(p, X)) = E(CI,X)[+Z||Axsllp1{\|AX5||>l}-

s<t

The last sum above is a finite sum, so ¢ € Z(X) implies p € Z(X). This proves (a).

b) Let p < 2. Exactly as above, we see that X (p, X); < oo if and only if A; :=
(1P Tyxy<1y) * e < 00. Set also A" = (||lx||P 1{jx<1}) * v. The processes A and
A’ are increasing with bounded jumps, so they are finite-valued if and only if they
are locally integrable. Since for any stopping time 7' we have E(A7) = E(A’), the
claim follows. g

We end this section with an extension of It6’s formula to a wider class of test
functions f, when we have p € Z(X) for some p <2 and X¢ =0.

The usual It&’s formula (2.1.9) requires f tobe C 2 and indeed the second deriva-
tives Bl.zj f appear in the right side. The C? property can be somewhat relaxed, and
replaced by the fact that f is convex (or the difference of two convex functions),
and there is still an 1t6’s formula, but it involves the local times of X and is then
called It6-Tanaka Formula or It6-Meyer Formula.
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However, when X¢ = 0, or equivalently when the second characteristic C is iden-
tically O, then the second derivatives do not show up any more, and one may expect a
similar formula with less smoothness on f, provided of course the last term involv-
ing the jumps converges. This is what we will do now: when X¢ = 0 we extend Itd’s
formula for functions f that are C” for p <2, as soonas p € Z(X): when p > 0 is
not an integer, saying that a function is C” means that it is [ p] times differentiable,
and its [ p]th partial derivatives are Holder with index p — [p] on every compact set.
In particular when 0 < p < 1, C? is the same as “locally Holder with index p”.

Theorem 3.2.2 Assume that X¢ = 0 and that p € Z(X). Then
a)If 1 <p<2andif f isa C? function (in the sense above), the process f(X)
is a semimartingale satisfying

d ' .
X)) = f(Xo) +Z/O 8 f (X;)dX!
i=1

d
- Z(f(Xs_ +AXg) — f(Xs) =) az-f<xs_)AX;l). (3.2:4)

s<t i=1

b) If 0 < p < 1 and if further the process B’ of (3.2.3) vanishes, then for any
function f which is locally Holder with index p when p > 0, and which is measur-
able when p =0, the process f(X) is a semimartingale satisfying

FX) = f(Xo)+ Y (f(Xy— + AXy) = f(X0)). (3.2.5)

s<t

Before proceeding to the proof, we give some comments. If f is C?, the sth
summand in either one of these two formulas is of order of magnitude ||AX||?, or
more precisely there is a locally bounded process (H;) such that the sth summand
is smaller than H||AX||? as soon as || AX;|| <1 (see the proof below). So if p €
Z(X), the hypothesis that f is C? is exactly what we need for the series in (3.2.4)
and in (3.2.5) to be absolutely convergent.

This extended It6’s formula is not the same as the It6-Tanaka formula for convex
functions. Note that (3.2.5) when p = 0 is trivial, and added here for completeness
(under the assumptions of (b) we simply have X; = Xo + ) ., AX,, and when
0 € Z(S) this sum is a finite sum). -

In (b) with p =1, the function f needs to be locally Lipschitz, a weaker as-
sumption than in (a) with p = 1, but the process X is more restricted. Both formulas
(3.2.4) and (3.2.5) are the same when p = 1 and the assumptions of (a) and (b) are
all satisfied.

Proof (a) We assume that 1 < p < 2 and that f is CP. We associate with f the
function g (x,y) = f(x+y)— f(x) —Zle d; f(x)y'. For each integer ¢ > 1 there
is a constant I'; such that |9; f (x)| < I'; and (by the Holder property of index p — 1
for the derivatives) |9; f(x 4+ y) — 9; fi(x)] < 1"q||y||f”_1 whenever || x|, [[y] <gq.
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There is a continuous increasing function & on R, satisfying (g — 1) > I'};d for
all ¢ > 1, and we deduce that for all x, y € RY:

9: )| < h(lx]), Iyl <1 = |egrG, | < A(IxN)IyI?.  (3.2.6)

Now, the summand in the last sum of (3.2.4), at any time s such that [|[AX;|| <1, is
smaller than A (]| Xs—|)||AX]||P. Since p € Z(X), this implies that the last term in
(3.2.4) is an absolutely convergent sum.

Denote by f, the convolution of f with a C* nonnegative function ¢, on R¢,
with supportin {x : ||x|| <1/n} and fqb,, (x)dx = 1. We deduce from (3.2.6) that

o= 1, 0 fn — 0if, 8f — 8f
|0; fu ()] < h(llxIl + 1), Iyl <1 = |gn@»| < a(lxl+ 1)IyllP.
(3.2.7)
Each f, is C®°, so the usual It6’s formula and X¢ = 0 yield

d o1 . t
0= 00 =Y [afixoraxi+ [ [ ey,
i=1

(3.2.8)
By (3.2.7) the left side of (3.2.8) converges to f(X;) — f(Xp), and the domi-

nated convergence theorem for stochastic integrals yields fot 0i fn(Xs—)dX § LN

fot oi f (XS_)dXé. Furthermore, since X (p, X); < oo for all ¢, the convergence
g, — & and the last estimate in (3.2.7) yield, together with the (ordinary)
dominated convergence theorem, that [ [pa &7, (Xs—, ¥) 11(ds, dy) — [ [pa 81 %
(Xs5—, y) u(ds,dy). Then we deduce (3.2.4) from (3.2.8), and the semimartingale
property of f(X) follows from (3.2.4).

(b) Since the case p =0 is trivial, we assume that 0 < p <1 and that f is locally
Holder with index p, and also that p € Z(X) and X, = Xo + ) ., AX,. Asin (a),
there is a continuous increasing function # on R, such that | f(x + y) — f(x)| <
R(|lxIDy|P~Lif |y]| < 1, so the right side of (3.2.5) is an absolutely convergent sum.
Both sides of (3.2.5) are processes which are sums of their jumps, they have the same
jumps, and the same initial value, so they are equal. Finally, the semimartingale
property is again obvious. g

3.3 Law of Large Numbers Without Normalization

3.3.1 The Results

Here again X is a d-dimensional semimartingale on (£2, F, (F;);>0, P), with jump
measure p and characteristics (B, C, v). We are also given a random discretization
scheme T = (7,) with T,, = (T (n,i) : i > 0). Apart from being subject to (3.1.1),
this scheme is totally arbitrary.
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Our aim is to prove that V" ( f, X) converges in probability, for the Skorokhod
topology. When f = (f?) i>¢ 18 g-dimensional the Skorokhod-convergence of each
V*(f*', X) does not imply the Skorokhod-convergence of V" ( f, X), so below we
state the multidimensional result.

We obviously need some conditions on f. Typically, most increments A X are
(very) small, so the behavior of f near the origin plays a crucial role. On the other
hand, at least when X has jumps, some Af’X are big, hence the behavior of f outside
the origin cannot be totally ignored: this explains the continuity assumption made
below.

The results are rather diverse, and far from covering all possible behaviors of f
near 0, especially in the multidimensional case d > 2, but they at least completely
describe what happens for the functions f(x) = |x|? for all p > 0 when d = 1. For
a better understanding of (C) below, remember that when 1 € Z(X) and X¢ =0, we
have

X, = X0+B;+ZAXS (3.3.1)
s<t

where B’ is the “genuine” drift, which is a continuous process of locally finite vari-
ation.

Theorem 3.3.1 Let X be a d-dimensional semimartingale and T = (T,) be any
random discretization scheme. Let also f be a continuous function from R? into RY.
A) Under either one of the following four conditions on f and X:

(A-a) f(x)=o(|x]|?) asx — 0,

(A-b) X® =O0andthereisa p € Z(X)N(1,2] suchthat f(x) =O(||x||?) as x — 0,

(Ac) X=0and 1 € Z(X) and f(x) =o(||x]|) as x — O,

(A-d) X¢=0andthereisa p € Z(X)NIO, 1] such that f(x) =O(||x||”) as x — O,
and further B’ =0 in (3.3.1),

we have the following Skorokhod convergence in probability:

VI X) = V(f,X) == f*pu. (3.3.2)

B If f(x)= Z?,j:l aijxixj+o(||x||2) as x — 0, for some a;j € RY, then

d
VLX) = V(AX) = Y aiCU+ fxp. (3.3.3)
ij=1

C) Assume 1 € Z(X) and X =0. If f(x) = Zleai|xi|+o(||x||) as x — 0, for

some a; € RY, then

d
VI X) = V(£ X) = Y o;Var(B") + f . (3.3.4)

i=1
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D) In all these cases, we also have
VR (f. X) =B V(£ X). (3.3.5)

E) Suppose that f(x) = ||x||? on a neighborhood of the origin. Then there exists a
time t > 0 such that the sequence of variables V" (f, X); is not bounded in proba-
bility, as soon as one of the following (non-exclusive) conditions is satisfied:

(E-a) p <2 and X is not identically 0,
(E-b) p ¢Z(X),
(E-¢) p <1€Z(X) and B’ is not identically 0.

When further X is a Lévy process, we even have V" (f, X); £, 400 forallt >0
under either one of (E-a), (E-b) or (E-c) above.

The limit V (f, X) in this theorem is defined unambiguously: when f satisfies
two different assumptions at once, the process V (f, X) is the same in the two con-
vergence statements.

In (B) the condition on f is equivalent to saying that it is twice differentiable at
0, with f(0) =0 and 9; f(0) = 0. In (C-a) the condition on f is equivalent to saying
that it is once differentiable at 0, with f(0) = 0. Note that (E) shows—for a very
special type of test functions f—that the hypotheses on the process X in (A,B,C)
are necessary as well as sufficient to have convergence. For a general f, however,
no necessary conditions are available.

Remark 3.3.2 The key result is (3.3.5), which by virtue of (2.2.13) and the subse-
quences principle immediately implies (3.3.2)—(3.3.4). It also implies the following:

for a given finite (random) time 7', we have V" (f, X)r ;P> V(f, X)T in two non-
exclusive cases:

(i) we have P(AX71 #0) =0;
(ii) for each n large enough the time 7 belongs to the discretization scheme, in the
sense that U;>1{T (n,i) = T} = §2 almost surely.

Otherwise, V' (f, X)r ﬂ) V (f, X)r may fail, even when T = ¢ is not random: for
example if X; = 1{;,00) () is non-random and 7' (n,i) =i/n and f(x) = |x|?, then
V™(f, X)s =0 does not converge to V (f, X); = 1 if 5 is irrational.

Remark 3.3.3 When d =1 and f(x) = [x|? for p > 1, the convergence

VI f, X); i, V (f, X); when ¢ belongs to the (non-random) discretization scheme
goes back to Lépingle [71], and the case p = 2 is simply the convergence (2.1.8).
Indeed, Lépingle proved the almost sure convergence in this setting, when p > 2
and also when p > 1 and X = 0, provided of course (3.1.1) holds almost surely. If
the latter hypothesis holds, we have in fact the almost sure convergence in all cases
of (A) and (C) (but not in (B)).
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In the setting of the previous remark, Lépingle also shows that (3.3.2) holds not
only when X¢ =0 and p € Z(X) but also, without these “global” assumptions, in
restriction to the set on which X§ =0 forall s <t and ¥ (p, X); < 0o. This property
is of importance for applications, so we state a result in this direction. We improve
on (A-b,d) only, but (A-c) and (C) could be improved accordingly:

Corollary 3.3.4 In the setting of Theorem 3.3.1, let T be a finite stopping time with
P(AX7 #0) =0 and f be a continuous function on R? with f(x) = O(||x||?)
as x — 0, for some p € [0,2). Then the stopped processes V"' (f, X)iaT converge
in probability, for the Skorokhod topology, to the stopped process V (f, X)iar, in
restriction to the set

o — {Cr=0}N{Z(p, X)r < o0} if p>1
T e =0n{E(p. X)r <o) N(B,=0 Vs <T} if p<l.

There is also an improvement of the theorem in another direction, namely when
one (partially) drops out the continuity of the test function. This is quite useful,
because in some applications one needs to use a test function f of the form f =
gla, where A is a Borel subset of R¢ and g satisfies the conditions of the theorem.

Theorem 3.3.5 Statements (A, B, C, D) of Theorem 3.3.1 hold if we replace the
continuity of the test function f by the fact that it is Borel and that either one of the
following two equivalent conditions holds, with D y denoting the set of all x € R? ar
which f is not continuous:

(i) PAt>0: AX; e Dy) =0;
(i) 1p, * veo = 0 almost surely.

Accordingly, the statement of Corollary 3.3.4 holds when f is not continuous, in
restriction to the set 27 N {lp, *x vy =0}

Remark 3.3.6 When ¢ =d and f(x) = x we have (3.1.5). As a matter of fact,
if we set g(x) = x and take f as in the above theorem, we could prove that the
pairs (V*(f, X), V"(g, X)) converge in probability to (V(f, X), X — X¢) for the
Skorokhod topology on D9%9, and the proof would be essentially the same. As
a consequence, if A is any g X d matrix, we deduce that V'(f + Ag, X) %
V(f)+ A(X — Xp), and this allows one to get limits for functions satisfying weaker
hypotheses. For example we may deduce from (C) that if 1 € Z(X) and X“ =0 and
fx)= Zf:l aix'4o(||lx]|) as x — 0 for some «; € RY, then

d
VA X) = VI£X) = Y B+ fxp.

i=1

The same comments apply for the interpolated functionals V/ ( f, X). These exten-
sions, which do not seem to be particularly useful in practice, are left to the reader.
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3.3.2 The Proofs

Proving Theorems 3.3.1 and 3.3.5 requires first to show the convergence in a variety
of special cases, which will be studied in several lemmas. Before proceeding, we
observe that it is no restriction to suppose that our discretization scheme satisfies

Vi >0, sup (T(n,i)At—T(n,i—1)At) > 0 (3.3.6)

i>1

for all w € £2, instead of a mere convergence in probability as in (3.1.1). Indeed, the
left side of (3.1.1) is non-decreasing in ¢, and using (2.2.18), we see that from any
subsequence of integers one may extract a further subsequence along which (3.1.1)
holds, simultaneously for all 7, pointwise in w outside a null set. Then, upon using
the subsequences principle (2.2.17) and upon discarding a null set, it is enough to
prove the results when (3.3.6) holds identically.

Omitting the mention of X, we write

W'(f) = Vi, (f, X) = V(f, X). (3.3.7)

The key step of the proof consists in showing that, under the appropriate conditions
on f, we have

W (f) =X o. (3.3.8)

This is (D), which implies (A), (B), (C), as said before. The proof of (E) will be
given at the end. As for the proof of (3.3.8), it is carried out under two different sets
of assumptions on the test function f, and then the two cases are pasted together:

Case 1: The function f vanishes on a neighborhood of 0 and satisfies
outside a IP null set, f is continuous at each point AX; (w). 3.3.9)

Case 2: The function f is of the class C?, as described before Theorem 3.2.2, for
some p > 0; furthermore f(x) =0 if ||x|| > 1, and f has an appropriate behavior
at 0, depending on the properties of X.

Lemma 3.3.7 In Case 1 above, W"(f); — 0 locally uniformly in t, and for each w.

Proof Let S1, 5>, ... be the successive jump times of X corresponding to jumps
with norm bigger than ¢/2, where ¢ > 0 is such that f(x) =0 when ||x] <e. We
have S; — coas g — 0o. Set X' = X — (xI{jx|>¢/2)) * 4. By construction [|AX'|| <
&/2, hence for any T > 0 we have

lmswp  swp[Xj@) - Xi@] = 3.
0

0—-0 0<t<s<T, s—t<
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for all w. In view of (3.3.6) it follows that for all 7 > 0 and w € £2 there is an integer
M7 (w) with the following properties: if n > M, for all i < N,(T) + 1, we have

o cither the interval I (n, i) contains no S, (recall (3.1.2)), and

sel(n,i) = [Xs—Xrmi-nll=e¢
) ) (3.3.10)
e or I (n,i) contains exactly one S, and we write i =i(n, g), and

s€lni) = [Xs—Xrmi-1)—AXs, lis,<sjll <e.

Therefore, with Q, denoting the number of g such that S, <, and since f(x) =0
when ||x|| <&, whenn > My and ¢t < T we have

or
W' () = Z(f(Xt/\T(n,i(n,q)) — XT(nitng)-1) — f(AXs,)).
g=1

Now, on the set {Sq < t} we have XlAT(n,i(n,q)) — XT(n,i(n,q)—l) — AXSq,
because X is cadlag. Since f satisfies (3.3.9) and Q7 is finite, we deduce
SUp;<r [W*(HIl — 0. 0

For Case (2) above, we single out the three possible situations: we may have
no restriction on X (so p =2 and X€ is arbitrary), or we may have p € (1,2] and
p €Z(X) and X =0, or we may have p € [0,1] and p € Z(X) and X¢ =0 and
B =0.

Lemma 3.3.8 Let f be a C? function from R into RY with f(0) =0 and 9; f (0) =
0 foralli,and also f(x) =01if|x| > 1. Then (3.3.8) holds.

Proof Our assumptions imply that f* satisfies (B) of Theorem 3.3.1 with o;; =
%Bizjf(O). Therefore in the definition (3.3.7) of W"(f) we have V(f, X) =
%Zi/’:l ijf(O)Ci/ + f % u, where f x u is well defined because || f(x)| <
K(lx[* A D).

For each n we introduce the following adapted left-continuous process Y":

YI =0,  Y' =X, —Xrgiy ifT(i-1) <t<T@.i).
We associate with f three functions: RY x R? — RY by setting

k(y,x) = fO+x)— f()— fx)

d
gy x) = fy+x) — f() — fx)— (Z a,-f(y)x") L=y

i=1

d
h(y,x) = fy+x) = fO) = f@) =D dif(yx'.

i=1
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The following estimates are easy:
lkv. )| < K(Ixl A1), g, = K(lIxlI* A1). (3.3.11)

Recall that V) (f, X); is the sum of all f(X;a7(n,i) — XT(n,i—1)) fori < N, () +
1. Since f is Cﬁl we can evaluate each of these summands by applying 1t6’s for-
mula for the process X7 (,i—1)+s — XT@,i—1)- By subtracting V (f, X)iaT@n,i) —
V(f, X)tAT@n,i—1) to the ith summand, we obtain

d t )
W' (f)i=)_ /0 9; f(Y))dXy
j=1

+= Z/ 0% f(Y!) = 0% f(0)dCI* + h(Y" x) % ;. (3.3.12)

jk]

By (3.3.11) the process g(Y", x) = u has locally integrable variation, with compen-
sator g(Y", x) » v. Then if we use the Lévy-1t6 decomposition (2.1.18) for X, we
deduce that W"(f) = A" + M", where

d t )
— . n J
-3 [ awan

+ 3 Zf (021 (Y1) — 8% £(0) dCI* + g(Y" x) % v,

]k 1
d ¢ ‘
Mt":Zfo 8; f (Y1) dX{ +k(Y", x) % (1t — v);.
j=1

Now we observe that, outside a null set, we have Y' — 0 for all s (we use (3.3.6)
once more here). In view of the assumptions on f we deduce that outside a null set
again we have 9; f(¥{') — 0 and 8 S — 8 +f(0) — 0and g(Y, x) — 0 and

k(Y!, x) — Oforall s and x, whereas (3.3.11) holds and 9; f and 82 +f are bounded.
Then the Lebesgue dominated convergence theorem (for ordmary and stochastic

integrals) and (2.2.25) yield W"(f) =20, O
Lemma 3.3.9 Assume that p € [1,21NZ(X) and X = 0. Let f be a C? function
from R4 jnto RY with f(©)=0and 9; f(0) =0 forall i, and also f(x) =0 when
x| > 1. Then (3.3.8) holds.

Proof We use the notation of the previous proof. Instead of (3.3.11) we have
[k 0| = K(Ixl A1), e < K(IxlI” A1). (3.3.13)

The process f » u is well defined because || f(x)|| < K(||x]|” A 1) in this case.
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The extension (3.2.4) of Itd’s formula yields, instead of (3.3.12),
d . '
W = 3 [0 () dxd (" x)
j=1

By (3.3.13) the process g(¥Y™, x) x i is of locally integrable variation, with compen-
sator g(Y", x) xv. Then as in the previous proof we deduce that W"(f) = A" + M",
where

d ' )
A;’:Zfo 3 f(Y!)dB] +g(Y", x)*v,, M =k(Y", x)*(u—v);. (3.3.14)
j=1

We end the proof exactly as in the previous lemma. Namely, Y{' — O for all s,
hence 9; f(Y') — 0. Moreover g(Y{', x) — 0 and k(Y¥]', x) — 0, hence in view of
(3.3.13) and of (Jlx||” Al)xv; < 0o (see Lemma 3.2.1) we have ||g(Y", x)||*xv; — O

and k(Y", x)% % v, — a.s. Then (3.3.14) and (2.2.25) again yield W" (f) =% 0. O

Lemma 3.3.10 Assume that 1 € Z(X) and X¢ = 0. Let f(x) = Z?:] ozj|xj| for
some aj € RY. Then (3.3.8) holds.

Proof The assumptions imply that each component X/ is of finite variation,
see (3.3.1), so if h(y) = |y|, Proposition 3.1.2 yields W"(h, X7) := V"*(h, X’) —
Var(X/) % 0. Since f(x) = Y. ajh(x)), we have W'(f) = Y9_ a; x
W"(h, X/), and the result follows. O

Lemma 3.3.11 Assume that p € [0, 11N Z(X) and X =0 and B' = 0. Let f be
a function from RY into R? with f(0) =0 and f(x) =0 if |x|| > 1, and which is
Holder with index p. Then (3.3.8) holds.

Proof Again we use the notation of the previous proofs. The function g is no longer
defined, but k is, and f and k satisfy

[rof = k(x1? A1), k| < K(IxIP A1) (3.3.15)

Then U = f * u is well defined. The extension (3.2.5) of It6’s formula shows that
WH(f)=k(", x)» . Here again, outside a null set we have k(Y, x) — 0 for all

s and x, so (3.3.15) yields k(Y", x) » u =2 0, and we have the result. O

Proof of Theorem 3.3.5 1) The equivalence of two properties (i) and (ii) in the state-
ment of the theorem is easy to prove: indeed (i), which is the same as (3.3.9),
amounts to saying that ]E(lDf * loo) = 0. Now, Dy is a Borel subset of R4,
hence 1 D; *V is the predictable compensator of 1 Dy * L, and thus E(1 Dy * Hoo) =
E(lp, * voo).

2) As said before, we can assume (3.3.6) and we will prove (3.3.8), which is (D)
and implies (A), (B) and (C).
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Let us introduce another notation, to be used throughout this proof and also
throughout the whole book:

Y oisa C* function: R4+ — [0, 1], with 1[1’00)()6) <Y< 1[1/2,00),
Ye(x) = ¥(lxll/e), Ve = 1= e

We set g,,(x) = ||x]|”, and for each ¢ € (0, 1] we introduce the two functions

(3.3.16)

F YL (x) for (A)
fe=f—fi folx) = Zgjzlaijxixjwé(x) for (B)
Z;j:] ailx’| for (C).

Since W"(f) = W"(fe) + W"(f.), in order to obtain (3.3.8) it is enough (as a
particular case of Proposition 2.2.1) to prove the following two properties:

e>0 = W'(f) =20 (asn— o)

t,n>0 = lim limsup P(sup [W"(fDs| > n) =0. (3:3.17)
e—0 n s<t
3) Here we prove (3.3.17) in case (A). The function f; satisfies (3.3.9) and van-
ishes on a neighborhood of 0, so the first part of (3.3.17) follows from Lemma 3.3.7.
In case (A-a), resp. (A-c), we have || f/|| < 6(e)h, where 8(¢) — 0 as ¢ — 0, and
h = g2y/{, resp. h = g1} Coming back to the definition of W” ( f/) we see that this
implies

[W"(£)] < 0e)Vin,(h. X) + 0 * .

The function /& and the process X satisfy the assumptions of Lemma 3.3.8 in
Case (A-a), whereas in Case (A-c) we have the estimate V) (h, X) < Var(X), hence
in both cases the sequence of variables sup,_, V;7.(h, X); is bounded in probability,
whereas h x (u; < oo because 2 € Z(X), resp. 1 € Z(X). Then the second part of
(3.3.17) becomes obvious.

In Case (A-b) we have 1 < p <2 and X =0 and the function &}, = g,/ is of
class C? with support in {x : ||x|| <&}, and A} (0) = 9;h,(0) = 0. Then W" (h); =
V"(he)r — hl, % o1, (1)- We also have || f/|| < K&, and thus

W2 ()] = KV (1 X) + KR = KW ()| +2K0,
Lemma 3.3.9 yields W" (k) =£ 0, whereas A/, x i, — 0 as ¢ — 0 by the dominated
convergence theorem, because p € Z(X). Then the previous estimate gives us the
second part of (3.3.17) in this case.

Case (A-d) is treated in the same way, except that 0 < p < 1, so now
V(h,) =h, x u, and X° =0 and B’ = 0. We then apply Lemma 3.3.11 instead

of Lemma 3.3.9, to deduce the second part of (3.3.17).

4) Next we prove (3.3.8) in case (B). In view of the definition of f., we see
that f.(x) = o(||x||2). Then we deduce the first part of (3.3.17) from case (A-a).
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Moreover, Lemma 3.3.8 yields, in view of the definition of G, that W (f/) =20
for each ¢ > 0, so the second part of (3.3.17) a fortiori holds.

5) Finally we prove (3.3.8) in case (C). We have f.(x) = o(]|x]|), hence the first
part of (3.3.17) follows from case (A-c). Moreover, f, does not depend on ¢ and
Lemma 3.3.10 gives the second part of (3.3.17). g

Proof of Theorem 3.3.1 Since Theorem 3.3.5 has already been proved, it remains to
show (E). Therefore we suppose that f = g, on a neighborhood of the origin, say
on {x : ||x]| <2n} for some n € (0, 1]. By (A-a), and since f —gpw,; satisfies (3.3.9)
and vanishes on a neighborhood of 0, the sequence of variables (V" (f —gp w,;, X))
is bounded in probability for any ¢ > 0. Hence it suffices to prove the result when
f=gp xp;,. We single out three cases which, although phrased differently, cover the
three cases in the theorem.

Case (1): we assume here that p < 2 and that X¢ does not vanish identically, s0
there is a t > 0 such that P(AX; # 0) =0 and P(D, > 0), where D; = Zle C/h.
Set he = go}. Observe that f > eP~2h, if € € (0, n], hence by (B) we have

VAL X = eP72V" (he, X); N eP 2Dy + he % j1g) > eP72Dy.

This implies that, for all A > 0, liminf, P(V"(f, X); > A) > P(D; > Ag?~P),
which goes to P(D; > 0) > 0 when ¢ — 0. Hence the sequence (V" (f, X);) is
not bounded in probability.

When X is a Lévy process, then X¢ # 0 implies that P(D; > 0) =1 forall r > 0,

hence liminf, P(V"(f, X); > A) = 1 for all A, which means that V"(f, X), —
+o00.

Case (2): we assume here X =0 and p ¢ Z(X) and either 1 < p <2, or 0 <
p<1land 1€Z and B =0. There is t > 0 such that P(AX; # 0) = 0 and
P(X¥(p, X);—s = 00) for some s € (0,r). We have fi, < f, hence by (A-a) we
get

VA XY = V(e XD — () * i,

and (f ) * s increases to 400 as € decreases to 0 by the monotone convergence
theorem if X' (p, X);—s = oo. For all A > 0 we thus have liminf, P(V"(f, X); >
A) > P(X(p, X);—s = 00) > 0. Therefore the sequence (V" (f, X),) is not bounded
in probability.

When further X is a Lévy process, in addition to the other assumptions, we have
P(X(p, X);—s =00) = 1 forall r > s and we conclude as above that V" ( f, X); i)
+00.

Case (3): we assume here X =0and 1 € Z(X) and B’ #0,and 0 < p < 1. There is
at > 0 such that P(AX, # 0) =0 and P(B] #0). Set h(x) = % Z?:l |x/ |l (x).
Observe that f > sp_lh’g if ¢ € (0,7n], hence by (C-b) we have with D =
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15~ Var(B'):
d Zj:l ar(B'/):
_ P _ _
VX0 z PV, X), — P TN (D hex ) = P 72Dy.

Since D; > 0if B, # 0, we conclude that the sequence (V" (fp, X),) is not bounded
in probability, and also that it converges in probability to +0o when P(B; # 0) = 1
(for example in the Lévy case), exactly as for case (1). O

Proof of Corollary 3.3.4 Let
T, = inf(t: C; #0) Ainf(t : Z(p, X); > q),

and denote by X(q); = X;a7, the process X stopped at time 7. First, X(g) is a
semimartingale with p € Z(X(g)) and X(g){ = O for all ¢. Therefore under our

standing assumptions on f, Theorem 3.3.1 yields V" (f, X (¢)) ¥P> V(f,X(q)) as
n — oo for each fixed q. Moreover P(AX (q)7 # 0) = 0 by hypothesis, so the con-
tinuity of the stopping mapping for the Skorokhod topology when the stopping time

is a time of continuity for the limit yields that V" (f, X (¢)):aT £P> V(f, X(@)inT
as n — oQ.

It remains to observe that V(f, X); = V'(f, X(g))s and V(f, X)s =
V(f, X(q))s for all s < T,, whereas 27 N {T, < T} | ¥ as g — oo, and the re-
sult readily follows. U

3.4 Law of Large Numbers with Normalization

3.4.1 Preliminary Comments

We turn now to a second—very different—type of LLN. In Theorem 3.3.1, the be-
havior of f near 0 is the determining factor, and even the only one when X is contin-
uous, for obtaining a limit. In what follows, we consider another type of functionals,
whose behavior depends on the entire test function f. More specifically, instead of
the functionals V" (f, X) of (3.1.3), we consider functionals of the “normalized”
increments:

Na ()

> F(A X Jun. i) (3.4.1)

i=1
perhaps with an “outside” normalization as well. Here, f is an arbitrary function
on R, and u(n,i) > 0 is a “suitable” normalizing factor chosen in such a way
that “most” of the variables AY X /u(n, i) are neither going to 0 nor exploding. This
cannot be achieved in general, unless u(n, i) strongly depends on the structure of
the process X itself over the interval I (n, i).

For example, let X be a one-dimensional continuous Gaussian martingale with
angle bracket C = (X, X) (a deterministic continuous increasing function). With
a (non-random) scheme 7 = (¢t(n,i) : i > 0),>1, the variables A?X/u(n,i) are
N(0,1) if we take u(n,i) = ,/A!C, whereas |A?X|/u(n, i) goes to 0, resp. 0o
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if u(n,i)/,/ A C goes to 0o, resp. 0. When the scheme is random, we do not know
how to choose a priori a normalization ensuring that | A? X|/u(n, i) and its inverse
are tight. Even worse: with the function f =1 (so u(n, ) no longer enters the pic-
ture), (3.4.1) is equal to N,(?), and in general there is no normalizing factor v,
such that v, N, (¢) converges for all t to a finite and non-vanishing limit, even for a
non-random scheme.

These considerations lead us to consider regular discretization schemes below,
that is 7(n,i) =i A, for a sequence A, — 0 (see however Chap. 14 for some spe-
cial cases of irregular schemes). In this case N,(t) = [t/A,]. With the view of ob-
taining results holding at least for Brownian motion (see Chap. 1), we introduce the
following functionals, with both an “inside” and an “outside” normalization:

[t/ An]
VXY = VA £.X) = Ay Y F(ATX/VAy) (3.4.2)

i=1

(we use the first notation most of the time, and V'(A,; f, X) when we want to
emphasize the dependency on A,.) The normalizing factor /A, is designed for
the Brownian term, but it works for all It6 semimartingales having a non-vanishing
continuous martingale part.

In the particular case f(x) = ||x||?, or more generally when f is positively homo-
geneous of degree p > 0, meaning that f(Ax) = A” f(x) for all x € R? and A > 0,
the functionals V'(A,; f, X) and V (T,; f, X), which will be written as V(A,; f, X)
when 7}, is a regular grid with stepsize A, are essentially the same object: namely,
we have

f positively homogeneous of degree p
= V(A £,X) =28, V(A £, X). (34.3)
Exactly as for V" (f, X), there is an interpolated version of V" (f, X):

Xintian) = Xini-Da,
Vi X0 = 4, 30 g (Feeen = Rnenan ),
n

i>1

However this has little interest, and although the forthcoming results holds for
V" (f, X) under exactly the same assumptions as for V"”*(f, X), we will not pur-
sue this case here.

3.4.2 The Results

Before stating the results, we need some additional notation, recall that ./\/ljX 418
the set of all d x d symmetric nonnegative matrices:

if € M:{X 4 then p, denotes the centered Gaussian law } (3.4.4)

with covariance matrix a, and p,(f) = f f(x)pa(dx).
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In contrast with Theorem 3.3.1, we state the next result for a one-dimensional test
function. This automatically implies the same result when f is g-dimensional, be-
cause when all components of a sequence of multidimensional processes converge
in the u.c.p. sense, the same is true of the multidimensional processes themselves.

Below, X is an Itd semimartingale. Its characteristics have the form (2.1.25), that
is

t t
B, = / bgds, C, = / csds, v(dt,dx) = dt Fy(dx). 34.5)
0 0

In particular the process c; plays a crucial role below. The notation ||c;| denotes the
. . . . 2
Euclidean norm of the d x d matrix c;, considered as a vector in R,

Theorem 3.4.1 Assume that X is a d-dimensional It6 semimartingale and that the
discretization scheme is regular with stepsize A,. Let f be a continuous function,
which satisfies one of the following three conditions:

@ f(x) = o(llx]I*) as x| — oo,

(d) f(x) =O(|x||?) as ||x|| = oo, and X is continuous,

©) f(x)=0(x||?) as ||x|| = oo for some p > 2, and X is continuous and
satisfies

t t
/ b5 127/ CtP) ds < oo, / lesP/?ds < oo. (3.4.6)
0 0
Then
t
VLX) SRV X), = /0 pe, (f)ds. (3.47)

Conversely, if for some p > 2 the processes V' (g,, X) converge in probability
locally uniformly in time to a continuous process, where gp(x) = ||x||?, then X is
continuous.

Condition (3.4.6) for p = 2 holds for any Itd semimartingale (cf. (2.1.25)), so
(b) is exactly (c) with p =2. Observe also that 2p/(2 4 p) < 2 always.

The last claim is not a complete converse for the cases (b) and (c). However, if
V'(gp, X) is finite-valued for some p > 2, then obviously the second part of (3.4.6)
holds. Moreover, the next example shows that for any p > 2 and ¢ > 0 there is an
It6 semimartingale such that V" (g, X) == V'(gp, X), and the first part of (3.4.6)
holds for p but not for p + ¢. So the exponent 22+—pp is in some sense “‘optimal”,
although we do not know whether the first part of (3.4.6) is actually necessary for

having V" (g,, X) =% V'(gp. X).

Example 3.4.2 This example is a very simple “Itd6 semimartingale”, namely an ab-
solutely continuous increasing function (no randomness here). Sod = 1,and X = B
is the function

B, = t%, hence b, = at®"!,
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for some « € (0, %). Here V'(f, X) = 0 for any function f. We take p > 2. We have

[t/An] [t/An]
V™(gp. B) = Ay PP D (A1B)T = 4, P <1+ 3 u) (3.4.8)

i=1 i=1

where u; = iP“((14+1/i)* — 1)?. One easily checks that the partial sums of the se-
ries Y u; behave as follows, as n — 00, and for a suitable constant A = A(p, «) > 0:

n — A if p(l—a)>1

Zui ~ Alogn if pl—a)=1

i=1 ~ An'==P if p(1—a) < 1.
2

Substituting this in (3.4.8) gives V"' (g,,, B); — 0 if and only if p < T5a-
1

On the other hand, we have fé |bs|?ds < oo for all ¢ if and only if ¢ < 1.

o
Then, if p < ﬁ (3.4.6) holds for p, but not for p + ¢, where ¢ = % is as

. . -2
small as one wishes when « is close to pT.

The result for V" (f, X) can be transformed into a result for V"(f, X), even
when f is not homogeneous, in some cases. These cases cover some of the situations
in Theorem 3.3.1 where the convergence does not take place.

Corollary 3.4.3 Assume that the discretization scheme is regular with stepsize A,,.
Let f be a Borel function which satisfies f(x) ~ h(x) as x — 0, where h is a
positively homogeneous continuous function of degree p € (0,2) on RY. Then

t
APy X)), =R / pe, (h) ds, (3.4.9)
0

and the same holds for the interpolated functionals V}, (f, X).

We see once more that for V" ( f, X), only the behavior of f near 0 matters, since
the limit depends on /4 only.

Finally, the continuity assumption in Theorem 3.4.1 can be relaxed, in the same
spirit as Theorem 3.3.5 extends Theorem 3.3.1:

Corollary 3.4.4 All statements of Theorem 3.4.1 remain valid if we replace the

continuity of the test function f by the fact that it is Borel and locally bounded and,
with Dy denoting the set of all x € RY where f is not continuous,

E( / OO,OCS(Df)ds> — 0. (3.4.10)
0

When the matrix cg(w) is P(dw) ® ds almost everywhere invertible, (3.4.10)
amounts to saying that the Lebesgue measure (on R?) of the set D is null, because
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in this case the measures p., have positive densities. Otherwise, this property is
more complicated to interpret, except when d = 1: in this case, (3.4.10) means that
f is Lebesgue-almost everywhere continuous, and further it is continuous at 0 when
[P(fooo lic,=0yds > 0) > 0.

3.4.3 The Proofs

When X = o W with o a constant matrix, the variable V"' (f, X); is A, times the
sum of [t/ A,]i.i.d. random variables with a law not depending on n and expectation
Poo+(f): so the result amounts to the LLN for i.i.d. variables. In the general case,
the proof takes the following steps:

1) It is enough to show the result when X satisfies some strengthened assump-
tions, mainly boundedness of its characteristics, in a suitable sense; this is called the
“localization step”.

2) The jumps do not matter (the “elimination of jumps step”), under appropriate
assumptions on f: in the present case, the assumption (a).

3) If X is continuous with the additional boundedness assumptions of Step 1,
then it is “locally” sufficiently close to being a Brownian motion, so that the afore-
mentioned trivial LLN in the “pure Brownian” case holds in a “local” sense.

This is the scheme of the present proof, and of many forthcoming proofs as well,
when the processes of interest are of the type V™ (f, X) or extensions of these, and
including the proofs of the central limit theorems: usually Step 1 is easy and it is the
same or almost the same for most theorems; Step 2 is often more complicated, and
the difficulty of Step 3 greatly varies with the problem at hand.

Before proceeding, and with ¢ € (0, 1] and p > 2, we associate with any It6
semimartingale X with characteristics given by (3.4.5) the following processes:

y@©X =y =/ IxlI*> Fr(dx), y/X=vy= f(uxn2 A1) Fy(dx),
{lixll<e}
(3.4.11)
t
Ap)X =Ap) = / (165 1177/ %FP) 4 Yies 172 + 7)) dis. (3.4.12)
0

Then A(2) is always finite-valued, and in the continuous case A(p) is finite-valued
if and only (3.4.6) holds. Below, we set p =2 in Cases (a) and (b) of the theorem.
Recall also that we can write a Grigelionis decomposition for X:

t t
X, = X0+/ bsds+/ 0y AW, + (B (g3 * (=1 + (1 (151 1) %, B413)
0 0

(see Sect. 2.1.4 for details about the Brownian motion W and the Poisson measure
p with compensator ¢(d?, dz) = dt @ A(dz), which may require an extension of the
underlying space, still denoted by (§2, F, (F;);>0, P)). Note that we can take d' = d
and choose a square-root o; of ¢; which is symmetric nonnegative to obtain a process
satisfying ||oy||? < K ||c; || for a constant K .
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Lemma 3.4.5 (Localization) Let f be a function on R? and p > 2 be such that

the convergence V" ( f, X) = V' (f, X) holds for all It6 semimartingales X which
satisfies

<oo incase (1)

sup A(p)X (w) < oo, (sup) |AX ()] {:O in case (2) (3.4.14)
w w,t °

Then V'™ (f, X) == V'(f, X) for all It semimartingales X satisfying A(p)X <0
for all finite t, and which further are continuous in case (2).

Proof Let X be given by (3.4.13) and satisfy A(p)lX < oo for all finite ¢, and be
further continuous in case (2). Then T,,, = inf(z : A(p),X + |AX,|| > m) for m € N*
defines a sequence of stopping times increasing to +o00. Consider the semimartin-
gale

ATy, tATy
X(m)tho+/ bsds+/ o, dW;
0 0

+ @1gsi<n) * (p = Diat,, + Gla<si<my) *p, 7, -
Then X; = X (m), for all t < T,,, hence

IP’(sup|V’"(f, X)s = V'(f, X)s| >17)

s<t
< P(T,, <1) +P(sg> vV (f, Xom), = V'(f, X(m))s|>n).

Moreover X (m) satisfies (3.4.14), since A(p)3" < A(p)§ <m and [ AX (m)|| <
m, and X (m) is continuous when X is continuous. Hence P(sup;, | V™ (f, X(m))s —
V'(f, X(m))s| > n) = 0 as n — oo for all m by hypothesis. Since P(T;, <) — 0

as m — 0o, we deduce

P(sup [V (£, X0 = V/(£. X)s| > 1) = 0,

s<t

and the result is proved. d

From now on, we suppose that X satisfies (3.4.14) for the relevant p (recall p =2
in cases (a,b)). We can then take a version of § satisfying ||§]| < K for some constant
K, and we can rewrite (3.4.13) as

t t
X=X +X", whereX{:Xo—i—/ b:,/ds—l—/axdWs, X" =8%(p—9),
0 0

(3.4.15)
where b} = b, + f{\lé(t,z)|\>1} 8(t, z) M(dz). Note that the processes of (3.4.11) are

)/(8),:/ I8¢, 2| @), y,’:f(||5(t,z)||2A1))\(dz).
{II8(¢,2) <€}
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Lemma 3.4.6 (Elimination of Jumps) Assume (3.4.14) for p =2 and let f be con-
tinuous with f(x) = o(||x||?) as ||x|| — oc. The property V" (f, X') =2 V'(f, X')
implies V'"(f, X) =2 V'( f, X).

Proof By hypothesis we have for ) <e < 1 < A:
Ixl<24 = [f@)]<®(A)
Ixl <24, Iyl <e = [fG&+y)—f@)|<P)e)
Ixl>A = |[f@|<e"Alx|?

where @(A) < oo, and @/, () > 0 as ¢ — 0, and ®”(A) — 0 as A — oo. These
properties easily yield that for all x, y € RY,

20 (A 2l
% +20" (A) (I + Iy11%).
(3.4.16)

Now we provide some estimates. First, from (2.1.33) and (2.1.34), plus the facts
that [|b)|| < ||b¢|| + K/ and that A(2)o, < K, we get

|[fx+y) = f@)| < Phe)+

E(|a7X'|*) < E(ATAQ) + (ATA)Y) < KE(ATAQ).  (34.17)

Next, with the notation (2.1.35) and since [|§|| < K, we have

K t+s 1 t+s

<7 Yy / Yy

) (z)t,x =< 8(2)t,s =< ?/ Yu du, 8(2, S)I,s = ;/ V(g)u du.
t t

Then (2.1.36) with p =2 and (2.1.39) with r =2 and ¢ = 1/2 yield

B(|arx' ) < KE(a7A@)
(3.4.18)

E((MA]>2> < £IE A1/4 AﬂA(2)+/iAn V(A1/4) ds
VA, T A, " G(i—1)8, " s .

Therefore if we take x = A?X'/\/A, and y = AT X" //A, in (3.4.16), we deduce
from the estimates (3.4.17) and (3.4.18) that

E(|f(ATX/\/An) — F(ATX' [/ AL)))
®"(A)  D(A)
An &2 A,3/4

Kd(A i4n
K2 Dy / y (A%, ds ).
&% Ap (i—1)A,

s@Q,(eHK( )E(A?A@))
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Applying A(2) < K once more, plus the property V (f, X) = V(f, X'), we deduce

an(t) = E(S‘i‘? V(X5 = V(£ X04])

1/4

t
< K(qbg(s)t +d"(A)+ q)(A;zA” + d)e(f) E(/ y (A%, ds)).
0

The variables y(A,l,/ 4)s are smaller than y] and go to 0 as n — oo, hence by
the dominated convergence theorem limsup, a,(t) < d'(t,s, A) = K (CDI’L‘ (&)t +
®”(A)). This is true forall ¢ € (0, 1) and A > 1, and since lims_, o limsup,_,, a’(z,
e, A) =0, the result follows. O

So far, we have achieved Steps 1 and 2. For Step 3 we begin with two lemmas.

Lemma 3.4.7 If X is continuous and A(2) is bounded, if o is bounded and contin-
uous, and if f is bounded and uniformly continuous, then V'"(f, X) == V'( f, X).

Proof 1) Consider the processes

[t/An]

ur = A, Z F(B'), where B!' = oi—1ya, A} W/ A,
i=1

[t/An]

U[/n = An Z IOC(,'_UA" (f)

i=1

On the one hand p., (f) = ]E( f(o:U)), where the expectation is taken for the
d’-dimensional variable U, which is N(0, 1;/). Hence the function 7 — pc, (f) is
bounded continuous, and by Riemann integration we have

t
U =% /0 pe,(f)ds.

On the other hand U — U/" = ZE’Z/IA”](Q" — E" | Fi-14,)), where ' =
A, f(B) is Fia, measurable (because B! is independent of F(;_1)a,, with law
Pei_1ya,)» and [§'| < KA,, so the array (|§i”|2) is asymptotically negligible.
Then (2.2.29) holds with G!' = F;s, and N,(t) = [t/A,], and by case (c) of

Lemma 2.2.11 we have U" — U™ =% 0. Hence we deduce
t
ur =% f pe, (f) ds. (3.4.19)
0

2) In view of (3.4.19), it remains to prove that

[1/An]
]E(An > |x5’|> — 0, where x/' = f(A7X/VA) = f(B). (3:4.20)
i=1
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To this end, we note that our assumption on f yields a constant K and a positive
function 6 satisfying 6(¢) — 0 as ¢ — 0, such that

[fx+y)— )| <0() +Kyl*/ (3.421)

for all ¢ > 0 and x, y € RY. This, applied with x = B and y = AT X/ A, — B!,
yields

K
E(x/]) < )+ 5 E(ayxe /a0 - p1]).
Now, if }! = SUP; <[1/A,] A A(2), we deduce from (2.1.34) that, for i <[1/A,],

K iA,
E(|A7X/v/ A — B! ||2) < A—E<n;' ATA(2) +/( los — oa,is/anl*ds |
n

i—D)A,
(3.4.22)
Therefore, since A(2)so < K,

[t/An] K t
E(An Z |X;l|) 5[9(5)+8—2E(nf‘+/0 IIGS—aAn[S/An]Hst). (3.4.23)
i=1

In the right side above, the second term goes to 0 by the dominated convergence
theorem, because o is continuous and bounded, and n} goes to 0 and is smaller than

K. Then if & € (0, 1] we have limsup, E(A, 1/ x7)) < 16(¢) and (3.4.20)
follows from 0(e) — 0 as ¢ — 0. O

Lemma 3.4.8 If X is continuous and A(2)~ is bounded, and if f is bounded and
uniformly continuous, then V' (£, X) == V'( f, X).

Proof By a classical density argument, and in view of A(2)s, < K, one can find a
sequence o (m) of adapted bounded and continuous processes satisfying

E(/Oo o (m)s —UsllzdS> — 0 (3.4.24)
0

as m — oo. With each m we associate the semimartingale

t

t
X(m), = Xo—i-/ bsds+/ o (m)s dWs.
0 0

The previous lemma yields that V™ (f, X (m)) = V'(f, X (m)) as n — oo, for

each m. Therefore to obtain V™ ( f, X) == V'(f, X), and by Proposition 2.2.1, it
suffices to prove the following two properties, where c¢(m) = o (m)o (m)*:

)

/0 | Pem), (f)dr — /O A pe, (f)dr o, (3.4.25)

sup
s<t
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lim limsup E(sup V™ (f, X)s — V™ ( f,X(m))S\) 0, Vi>0. (3.4.26)

m—0o0  p 500 s<t

By the subsequence principle, in order to prove (3.4.25) for a given ¢, it is no
restriction to assume as a consequence of (3.4.24) that o (m); — o, almost every-
where for the measure P(dw) ® ds, on £2 x [0, t]. Since a — p,(f) is continuous
we obtain (3.4.25).

Next, with x (m)} = f(A?X/\/A_,,) — f(A?X(m)/\/A_,,), (3.4.26) will follow
from

[t/An]
lim limsup ]E(An > |X(m);?|) =0, Vt>0.
i=1

m— 00 n—00

To see this, we use X; — X(m);, = fot (05 — o(m)s)dWs and apply (2.1.34) and
(3.4.21) with y =0 and x = A X/4/ A, to get

[1/4n] % ; ,
IE(A,, > |X(m);l|> < t9(8)+;]E</(; o5 — o m)|| ds).

i=1

Then the result readily follows from (3.4.24) and the property 8(¢) — O as e — 0. [
Proof of Theorem 3.4.1 1) By the localization lemma we may assume that X satis-
fies (3.4.14) for the relevant p. Then (3.4.7) under (b) is a particular case of (3.4.7)
under (c), whereas under (a) it follows from Lemma 3.4.6 if we know it under (b).

So it is enough to consider the case (c).
For A > 1 we use the notation ¥4 and ¥/, of (3.3.16), that is

¥ is a C* function: Ry — [0, 1], with 111,000 (x) ¥ (x) < 1[1/2,00),
Ya) = y(lxl/A), Yy = 1—Va.

Recalling g, (x) = ||x||”, we have for a constant independent of A > 1:
[fYal = Kgp. (3.4.27)

The function fv/, is bounded and uniformly continuous, so V" (fv, X); =
fot pe, (f¥)y)ds by Lemma 3.4.8. Thus by Proposition 2.2.1 it is enough to prove
the following two properties:

t
/ pe.(fYa)ds =50  as A— oo, (3.4.28)
0
¥n>0,1>0,  lim limsup P(sup V" (fa. Xs| > n) = 0. (3429
A—o0 pooo s<t

The first property (3.4.28) is an obvious consequence of (3.4.27) and fiyr4 — 0
as A — oo and |p.(gp)| < K ||c||P/?. As for (3.4.29), since X = Xo + B + X and



3.4 Law of Large Numbers with Normalization 89

|fyal = Kgpya and (gp¥a)(x +y) < Kp(gp¥24)(x) + Kpgp(y), it suffices to
prove the two properties

Vn>0,t>0, lim P(V"(gp,B)>n) =0 (3.4.30)
n— o0
Vn>0,1t>0, lim limsup P(V/”(gpl//A, Xc)t > n) = 0. (3.4.31)

A—00 po0

2) We start with (3.4.30). We set )} = supiS[I/A”](A;’A(p)), which goes to 0 as
n — oo. Using Holder’s inequality for the second inequality below, we have
V"(gp, B) < Ay "

IAG Ap)
/ by ds
el RUNCERIVIY

tAG An) o +p/2 n
<3 / 165 27/ dis < A, ()"
i>1 IN((I=1)A4y)

p

This goes to 0, and (3.4.30) is proved.

3) Now we prove (3.4.31). We set o (m) = o 1{jo|j<m) and ¥ (m), = [y o (m), d W,

and ¥/(m) = X — Y (m). Using again (g,¥4)(x +y) < 55 (gp¥24) (%) + £,(»))
for some constant & > 0 (depending on p), we obtain

P(V"(gpwa. X), > n) <P(V"(gp¥24. Y (m)), > an)
+P(V"(gp. Y'(m)), > an). (3.4.32)

On the one hand (2.1.34) and the property (g,¥24)(x) < 4|x |P*1/A yield

E(V"(gp¥aj. Y(m)),)
])+1>

1/2—p/2
4A,
i>1

K Al2-rl2 (AGAy) ) p/2+1/2 Kimp+l
<o — e(( o m)s I dis LR
A 5 =1 A0) A

and thus

NI Ay)
/ o(m)s dWs
IN((I=1)Ap)

lim limsup P(V’" (gpl/fA/g, Y(m))t > om) = 0. (3.4.33)

A—>0 posoo

On the other hand, (2.1.34) and Holder’s inequality give us the following string
of inequalities:
p)

E(V"(gp, Y'(m)),)

< KAl-P2 ZE(

i>1

(NG Ay)
/ (Us - U(m)s)de
IN(I=1)Ap)
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o2 IAGA,) R p/2
<KA, E — A d
2 ((/m«i—lm,,) o = o] s) )

i>1

IN(iAn)
SKZ (/ ‘ ”crs—cr(m)Sdes>
t

AE=DA,)

'
< KE(/ ”os —o(m)y des>.
0

Since oy — o (m)y = o51{jo,|>m}» the last expression above goes to 0 as m — oo
because A(2)so < K. Hence

lim sup P(V"(g,.Y'(m)), > an) = 0.
n

m— 00

Combining this with (3.4.32) and (3.4.33) readily gives (3.4.31).

4) Finally, we prove the last claim of the theorem. Let p > 2 and suppose that

ym (gp, X) ‘é‘i Y, where Y is a continuous process. When p =2, we know that
(3.4.6) holds, and V" (g2, X) = V" (g2, X) (recall (3.4.2)) converges in probability
to the process V (g2, X) of (3.3.3). Therefore V (g2, X) =Y is continuous, which
implies that the process X itself is continuous.

Now assume p > 2. Suppose that X has a jump at some (random) time 7.
If i(n,T) is the unique (random) integer such that 7' belongs to the interval
I(n,i(n,T)), when T < oo, we have Al(n T)X — AXyp. Therefore on the set

{T < oo} the process V" (gp, X) has a jump at time T;,,7) which is equivalent, as
_ P . ..
n— 0o, to A:, p/2||AXT||”, whereas T;(,, 7y —> T. Since p > 2 this implies that

P . _
V"(gp, X); —> +oo on the set {T < oo} and we obtain a contradiction. Therefore
X should be continuous. O

Proof of Corollary 3.4.3 Since h is continuous and positively homogeneous of de-
gree p € (0, 2), the same is true of |k|, and we have || < K g,. Thus (3.4.3) and (a)
of the previous theorem give us

1
APy (LX), = VI, X, SR / pe, (h) ds
0 (3.4.34)

t
APV (), X), = V(hL, X), LB /0 pe, (Ihl) ds

For each ¢ > 0, the function (] f| 4 |k|)¥, vanishes on a neighborhood of 0 (recall
the notation (3.3.16) for v,), so (3.3.2) yields that V" ((| f| + |k])¥., X) converges
in probability in the Skorokhod sense. Since p < 2 it follows that

A}l—[’/zvn((|f| + |h|)ws’X) g 0. (3.4.35)
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Now, the assumption f ~ h near O implies the existence of a nonnegative func-
tion k on R, such that k(¢) > Oas e — 0 and | f — k| <k(e)|h]| + (| f| + | V..
Therefore

APV X) = APV (0, X))
—p/2 1-p/2
< k(@) Ay "V (101, X) + APV ((1£1 4 1) Ve, X).
Then (3.4.9) follows from (3.4.34) and (3.4.35). The same argument holds for the
processes V;.(f, X) as well. O

Proof of Corollary 3.4.4 Let f be a Borel locally bounded function on R?, satisfy-
ing (3.4.10), and also the conditions (a), (b) or (c) of the theorem, according to the
case. There is a positive function f” which is continuous, and | f| < f’ identically,
and which satisfies (a), (b) or (c) as well.

Up to using the decomposition f = fT — f~ and (2.2.16), plus the fact that
V'(f, X) is continuous in time, it is in fact enough to prove that for any fixed ¢,

t
V™ (f, X)) i f pe, (f)ds. (3.4.36)
0

Below we fix ¢ > 0. The formula n,,(A) = V" (f'14, X), for all A € R? defines
a (random) positive finite measure m, = m,(w, dx) on R4, and accordingly m(A) =
fot Pe, (f'14) ds defines a random measure m. For any continuous bounded function

g the product f’g satisfies (a), (b) or (c). Then Theorem 3.4.1 yields m;(g) i)
m(g) for any such g. Moreover, (3.4.10) yields that for all w outside a P null set N
the bounded function f/f’ is m(w, dx) almost surely continuous.

Now, we know that there exists a countable family G of continuous bounded
functions on R? which is convergence determining, that is if 1, (g) — n(g) for all
g € G, where 1, and 7 are (positive) finite measures on R<, then 1, — n weakly.
Because G is countable, from any sequence ny — 00 one can extract a subsequence
ng,, — oo such that, for all @ outside a P null set N " containing the set N described
above, we have my,, (0, g) = m(w, g) for all g € G. It follows that, still when
o ¢ N, we have m,, (w,.) — m(w,.) weakly. Therefore, since the function f/f’
is bounded and m(w,.) almost everywhere continuous when w ¢ N’, we deduce
mng,, (f/f") — m(f/f’) outside N’, that is almost surely.

Observe that the left and right sides of (3.4.36) are respectively equal to m,, ( f/f")
and m(f/f"). Hence, so far, we have proved that from any subsequence n; we can
extract a further subsequence ny, along which the convergence (3.4.36) is almost
sure. By the subsequences principle (2.2.17), we deduce (3.4.36). g

3.5 Applications

In this last section we introduce two of the fundamental problems which motivate
this entire book. We explain how the results of this chapter contribute to their solu-
tion, and also why they are insufficient for a complete solution: the same examples,
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together with a few others, will be pursued in a systematic way at the end of most
forthcoming chapters.

3.5.1 Estimation of the Volatility

Our first example is of particular interest in mathematical finance. In this field, the
price or the log-price of an asset is typically a semimartingale, and indeed an It
semimartingale, under virtually all models that have been used to date. That is, we
have

t N
X,=X0+/ bsds—f—/ Udes+(81{||8||§1})*(}’_7)t+(81{\|5|\>1})*}’t, 3.5.1)
0 0

when we write its Grigelionis form. In this equation X represents the logarithm of
a price, the quantity o; is called the volatility (or spot volatility) of the price, and it
turns out to be of primary importance for many purposes in finance.

Actually, it should be clear from (3.5.1) that if we replace o; by —o; for all ¢ in
some (random, progressively measurable) set, the model is not changed, so really it
is |oy| that is important. In most models one imposes the condition o; > 0 which,
as we have just seen, is not a restriction. More generally, in the multivariate case
where X is a vector of (log)-prices, the important quantity is the diffusion matrix
¢ =007

Quite often the volatility is a random process, as above, but even when it is non-
random it varies quite significantly with time, typically with seasonal variations
within each day (for instance it is usually quite smaller at lunch time than at the
beginning or at the end of the day). So perhaps an even more useful quantity to
evaluate is the “average volatility” for some given period, typically a day. In the
multidimensional case, one wants to evaluate the average of ¢;.

Evidently the average of (TSZ over, say, the interval [0, 7], is not the same as the
squared average of |oy|, and after all the gth-root of the average of |o;|? is also, for
any g > 0, a kind of average of |oy| over [0, t]. However the power ¢ = 2 has, here
as in many other places, very special and nice properties, and it is the only power for
which there is a straightforward multivariate extension because in this case ¢ = o o*
is uniquely determined. This explains why most of the interest has been focused
on the evaluation of the averaged squared-volatility, or equivalently the so-called
(somewhat misleadingly) integrated volatility:

t t
[ asz ds, or / cgsds in the multivariate case.
0 0

So, as said before, we will study this problem throughout the book. At this stage,
we can say only one thing, namely

[1/An] t .
X is continuous = Z AXT Anxk = / cl* s, (3.5.2)
0

i=1
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which comes from Theorem 3.3.1, and even from the long known result (2.1.8). This
is far from fully solving the problem, for two reasons: one is that it requires X to
be continuous, otherwise the result is wrong, and to overcome this difficulty we will
need to “truncate” the increments, see Chap. 9. The second reason is that, even when
(3.5.2) holds, it is useful in practice only if we know whether the approximation is
accurate. Mathematically speaking this means that we need a “rate of convergence”
in (3.5.2): this is the object of the Central Limit Theorem which we start developing
in the next chapter.

Finally, other integrated powers fé los|P ds for p > 0 may also sometimes be of
interest, for instance this quantity with p = 4 arises naturally in the CLT for (3.5.2).
Then the normalized LLN proved above gives us the following result, say in the
one-dimensional case. We introduce the notation

[1/4,]
DX.p, M) = Y |A7x|” (3.5.3)

i=1

which is V"(f, X);, or equivalently AZ/2V"*( £, X) for the function f(x) = |x|P.
We will see later the reason for this new notation, which emphasizes the time step
A,. Then when X is continuous and p > 2 and (3.4.6) holds, and also for all Itd
semimartingales when p < 2, we have

t
AP DX, py Ay R, / 1017 ds, (3.5.4)
0

where m, =E(|U|?) is the p absolute moment of an A/ (0, 1) random variable U.

3.5.2 Detection of Jumps

The second example is about the problem of deciding whether a discretely observed
process is continuous or not. More specifically, the one-dimensional process X is
observed at all times i A, (with i € N) within a fixed time interval [0, ¢], and we
want to decide whether the partially observed path is continuous or not.

This seems an impossible question to answer, since any discrete set of observa-
tions is compatible (in many different ways, obviously) with a continuous path, and
also with a discontinuous path. However, when X is an Itd semimartingale, there
is a procedure which allows one to solve this question in a consistent way, as A,
becomes small.

By “procedure” we mean the following: at stage n, the set of all possible (rele-
vant) observations is RV +1 Recall that N, (7) + 1 is the number of integers i such
that i A, lies in the interval [0, ¢]. Then a procedure is the assessment, for each n,
of a subset A,, of the set RV M+1 such that if the observations fall in A,, we decide
that the observed path is continuous, and if they fall outside A, we decide that the
observed path is discontinuous. The procedure is called consistent, and one should
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indeed say “weakly consistent”, if the probability of taking the right decision goes
to 1 as n — oo.
Mathematically speaking we divide the sample space §2 into a 2-sets partition:

.Q,(C) ={w: s > X,(o) is continuous on [0, ]}

.Qt(d) = {w . s > X;(w) is not continuous on [0, t]}.

It may be that .Q,(C) = §2, when the specific model for X does not allow jumps,

that is 6 =0 in (3.5.1). It may be also that .ch) = {, for example when the “purely
discontinuous” part of X (the last two terms in (3.5.1)) is a Lévy process with infinite
Lévy measure: in these two cases we have a classical statistical testing problem to
solve. But it may also be that neither .Q,(C) nor .Ql(d) are empty, when for example
the purely discontinuous part of X is a Poisson or a compound Poisson process. In
this case the statistical problem is not quite classical: we do not have to test whether
some parameter of the model takes a specific value or lies in a specific domain.
Instead we have to test whether the (random) outcome w lies in some specific subset
of the sample space §2.

In the face of such a problem, the statistician has to come up with a procedure
A, as described above: if C,, is the subset of £2 on which (X; a,)o<i<n, () € An, the
statistician decides for “continuous” if w € C, and for “discontinuous” otherwise.
One may see Cj, as the critical (rejection) region for testing the null hypothesis that
X is discontinuous. The procedure A,, or C,, is consistent if

P(29)>0 = P(C,|12Y) - 1

3.5.5
P(2{") >0 = P((C)12") - 1 (32

(here (Cp,)€ is the complement of C,, in §2, and P(. | A) is the ordinary conditional
probability).

The two LLNs proved in this chapter provide a simple solution to this problem.
To see that, we take some real p > 2 and some integer k > 2 and, recalling (3.5.3),
we set
D (X ’ P ’ kAn)t

Sp = .
D(X, p, An):

(3.5.6)

Theorem 3.5.1 Let p > 2 and let k > 2 be an integer, and t > 0 and S, given
by (3.5.6).
a) If X is a semimartingale and if P(AX; # 0) =0, then

P
S, —> 1 in restriction to the set .Ql(d). 3.5.7

b) If X is an It6 semimartingale and the process f{\a(s ol<1) 8(s, 2)2 1(dz) is lo-
cally bounded, and by and cs satisfy (3.4.6), and if further fot csds > 0a.s., then

P
S, —> kP21 in restriction to the set .Q,(C). (3.5.8)
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Before providing the proof, we show how this result solves our problem, at least
partially. Define the critical region C, by

Cn = {Su<x}, where x € (1,kP/>71). (3.5.9)

(3.5.8) gives us P(C, N £2{) — 0 and P((C,) N 2/ — 0, from which (3.5.5)
follows. That is, we have thus constructed a consistent procedure for our problem.

This is a purely asymptotic result, in which the choice of the cut-off x is arbi-
trary in (l,kp/ 2’1). But it should be clear that if, for example, we choose x very
close to 1, the second convergence in (3.5.5) may be very slow, and in practice for
finite samples P((Cp,)“ | .Qt(d)) may be close to 0 instead of 1. Therefore we need
to improve on the procedure by choosing an x appropriate to the size A,, or to the
number N, (¢) + 1 of observations. Typically the choice x = x,, will depend on n,
and is based (as usual in asymptotic statistics) on a rate of convergence in (3.5.8).
This is why we need some kind of CLT, in both cases (3.5.7) and (3.5.8).

Another comment: if we relax the assumption fé ¢y ds > 0, the convergence in

(3.5.8) holds on the set 2\ N 2V, where

t
2V = {w: /csds>0}. (3.5.10)
0

And, of course, in virtually all models the set .Q,(C) N (.QIW)C is empty (on this set,
the path of X is a “pure drift” over the whole interval [0, ¢]).

Proof of Theorem 3.5.1 a) (3.3.2) applied with f(x) = |x|?, plus the property
P(AX, # 0) =0, gives us that both D(p, A,); and D(p, kA,); converge in proba-
bility to the same limit ngr |AX;|P, which is positive on the set .Q,(d). This yields
the convergence (3.5.7).

b) Suppose that X is continuous. By (3.5.6), the variables A,lfp/zD(p, Ay): and
A,l,_p/zD(p, kAy,); converge in probability to D; = m, fé los|ds and to kP/2~1D,

. . . P
respectively. Since D; > 0 a.s. by hypothesis, we deduce S, — k?/?~1,
For proving the same convergence in restriction to .Q,(C) when X is not contin-
uous, we need some preparation, somewhat similar to the proof of Corollary 3.3.4.
We set

ug =r({z:8(s,2) #0}), Vg =/ 8(s, 2)> M(d2),
{18(s,2) <1}
$ 8(s,2)A(d if
Tq=inf<S3/ urdrzq) ws = {fwmfl} () =
0 400 otherwise.
We have

Tq
Esi=0 % pg,) = EQgsi=0 x9; ) = E(/O usds) < 4q. (3.5.11)



96 3 Laws of Large Numbers: The Basic Results

hence 1(;5/>0) *py, < 00aS. and X has almost surely finitely many jumps on [0, 7} ].

The Cauchy-Schwarz inequality yields |ws| < ./usvs, hence fOMT" wf ds < oo be-
cause by hypothesis the process v is locally bounded. Therefore if we stop both
members of (3.5.1) at time T, we get

Xint, = X(@int, + Y AX,,

S<tATy

t

(by — wy)ds ~|—/ o, dWs.
0

ATy,

where X(q),=X0~|—/
0

The process X (¢) is a continuous Itd semimartingale which satisfies (3.4.2) (for this

we apply (3.4.2) for b and ¢, and also fOMT[’ w?ds < oo and 22+—pp < 2), and with the

same process ¢ as X. Therefore what precedes yields, as n — oo:

Su(q) = 2E@-p kA Py ppm (3.5.12)
! D(X(q), p: An)t ' .

On the set .Qt(c) N{T, >t} we see that X; = X(q), for all s <1, hence also
S = S, (g). Thus, in view of (3.5.12), it remains to prove that .Q,(C) CUg=1{Ty >t}
almost surely. To see this, we set S = inf(s : AX; 7% 0) and we observe that .Q,(C) C
{S >t} (note that we may have S =t on .Q,(C), if there is a sequence of jump times
decreasing strictly to ¢). The same argument as for (3.5.11) gives E( fos ugds) =

E(1 % us) <1 (here u is the jump measure of X). Therefore fOS Uugds < o0 a.s.,
implying that {S >t} C U;>1{T; > t} almost surely. This completes the proof. [
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Chapter 4
Central Limit Theorems: Technical Tools

Usually, Laws of Large Numbers are adorned with an associated Central Limit The-
orem, which describes the “rate of convergence” at which they take place, and also
the limiting variable or process that are obtained after normalization. The two LLNs
of Chap. 3 are no exceptions: we have a rate, that is a sequence v,, of positive num-
bers going to infinity, such that the processes v, (V" (f, X) — V(f, X)) in the setting
of Theorem 3.3.1, or v, (V™ (f, X) — V'(f, X)) in the setting of Theorem 3.4.1,
converge to a limiting process which is not degenerate, which means that it is finite-
valued but not identically 0.

For the first case, the LLN was obtained without any restriction on the random
discretization scheme, and the semimartingale X was arbitrary, whereas in the sec-
ond case we needed regular schemes and X to be an Itd6 semimartingale. For the
CLT, a regular scheme and that X is an It6 semimartingale is needed in both cases.
Then, not surprisingly, the rate of convergence will be v, = 1/./A, always.

Central Limit Theorems have lengthy proofs. This is why we start with a pre-
liminary chapter which sets up the basic notions and tools that we will need. The
CLTs themselves will be stated and proved in the next chapter. This means that a
reader can skip the present chapter, except perhaps the first section which describes
the limiting processes, and can come back to it when a specific technical result is
needed.

4.1 Processes with F-Conditionally Independent Increments

We have seen in Theorem 2.2.15 a situation where a triangular array of random
variables is defined on some space (£2, F, (F;):>0, P), and the associated rows of
partial sums converge stably in law to a limit A + Y, where A is defined on §2
and Y is defined on a very good filtered extension of (£2, F, (F;);>0,P) and is,
conditionally on F, a continuous Gaussian martingale with a quadratic variation C
being F measurable.

In this section, we give a “concrete” construction of Y, at least when the process
C is absolutely continuous with respect to Lebesgue measure. We also extend this
construction to some cases where Y is discontinuous.
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DOI 10.1007/978-3-642-24127-7_4, © Springer-Verlag Berlin Heidelberg 2012


http://dx.doi.org/10.1007/978-3-642-24127-7_4

98 4 Central Limit Theorems: Technical Tools

4.1.1 The Continuous Case

We consider the following problem: let Chbea process on (.Q F, (F)i=0,P), of the
form Ct fo Cy ds, where € takes its values in the set M} gxq Of all ¢ x g symmet-
ric nonnegative matrices and is progressively measurable (or predictable). We want
to construct a g-dimensional process Y, defined on a very good filtered extension
(ﬁ, F, (F)i=0,P) of the original space, which conditionally on F is a centered
Gaussian process with independent increments and (conditional) covariance

ro
JE(Y’Y’ | F) = Cl = /a”ds. 4.1.1)
0

Recall that this is equivalent to saying that, conditionally on JF, the process Y is a
continuous martingale with “deterministic” quadratic variation-covariation process
C, and since C is continuous and Y is conditionally Gaussian, it is also necessarily
a.s. continuous. This problem is studied in Sect. I1.7 of [57] but, in view of its
importance in the present book, we repeat the construction in detail here.

For solving this problem, we consider an auxiliary filtered probability space
(R, F, (F)i=0,P), and we consider the product filtered extension K, F,
(F1)1>0, P), as defined by (2.1.26) with Q(w, do) = P'(dw’) and (2.1.27). This is
a “very good extension”, and we start with a general result, of independent interest.

Proposition 4.1.1 In the above setting, assume further that F|_ = Vs F, is a sep-
arable o-field for each t > 0. Let Z = Z;(w, ®') be a martingale on the extended
space, which is orthogonal to all bounded martingales on (82, F, (F)i>0,P).
Then for P almost all w the process (w',t) — Z;(w,®") is a martingale on

(9/7 f/s (‘F[/)lz()v IP)/)

Proof Any M in the set M), of all bounded martingales on (2, F, (F1);>0, P) is
also a martingale on (.Q ]-" (]—",),>0, P) because the extension is very good. Our
assumption on Z means that the product M Z is again a martingale on the extended
space for all M € M,,.

We want to prove that for all @ outside a [P null set, we have

/ Zi(0.0') Ly (o) P (do) = f Zy(0.0) Ly (@) P(do))  (@4.12)

forall0 <s <t and A’ € F]. Since Z is right-continuous, it is enough to prove this
when s, ¢ are rational and A € F,_. Since further F,_ is separable, it is enough to
prove it when A’ ranges through a countable algebra generating F,_. At this stage,
we can permute “for P almost all @” and “for all 5,7, A" ”; that is we need to prove
that, for any given s, 7, A’ as above we have (4.1.2) for P almost all w. Since both
sides of (4.1.2) are F; measurable, when considered as functions of w, we are then
left to show that for all s <t and A’ € F and A € F;, we have

E(Z 1axa) = E(Zs 1axa). (4.1.3)
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Consider the bounded martingale M, = P(A | ) on (£2, F, (F1)i=0,P). We
have

E(Zi 1axa) =E(Z My 14) = B(Zy Mg 14) =B(Zy M, 14) = E(Zg 14x47)

where the second and third equalities come from A € Fy and, respectively, the facts
that ZM and M are martingales on (§2, F, (F;)r>0, P). Hence (4.1.3) holds. O

Next, we assume that (£2/, 7', (F);>0, ") supports a g-dimensional (F})-
Brownian motion W’: we use a “prime” here because it is defined on £2’, and should
not be confused with the Brownian motion W on (§2, F, (F;);>0, P) which enters
the Grigelionis decomposition of the basic semimartingale X in which we are inter-
ested. Finally, the process ¢ admits a progressively measurable square-root &, that
is a ¢ x g matrix-valued process having ¢ = 6'¢*, and with the additional property
that ||5||> < K ||¢]| for some constant K (one may take for example a symmetric
square-root).

Proposition 4.1.2 In the above setting, the process
t ) 9 o .
Y, :/ o5 dW,  with components Y} = Z/ 5 dwy’ (4.1.4)
0 0
j=l1

is well defined on the extension, and defines a process which, conditionally on F,
is a centered continuous Gaussian process with independent increments satisfy-
ing (4.1.1).

Proof The progressive measurability of & and ||5||> < K||7]| ensures that the
stochastic integral (4.1.4) is well defined, and defines a continuous g-dimensional
local martingale Y on the extended space, with angle bracket C. This holds regard-
less of the filtration (F;) on the second factor £2’, as soon as it makes the process W’
an (F/)-Brownian motion, so it is no restriction here to assume that (F;) is indeed
the filtration generated by W', hence in particular each F,_ is a separable o -field.

We set T, = inf(z : fot Is || ds > n), which is a sequence of (F;)-stopping times
increasing to infinity. Each stopped process Z(n, i), = Yti 7, 18 @ martingale (and not
only a local martingale), as well as each process Z'(n, i, j); = Z(n,i);Z(n, j); —
'CV‘ZUAT”. Moreover since W’ is obviously orthogonal to each element of M}, because
we have taken a product extension, and since Z(n, i) and Z'(n, i, j) are stochastic
integrals with respect to W’ (use It6’s formula to check this for Z’(n, i, j)), those
processes Z(n,i) and Z'(n, i, j) are orthogonal to all elements of M.

At this stage, the previous proposition yields that for P almost all w, the processes
Z(n,i)(w,.) and Z'(n, i, j)(w,.) are continuous martingales on (2, F', (F});>0,
IP"). Using the fact that the stopping times 7;, are functions of @ only, we de-
duce that Y/ (w,.) and Y (», .)Y/(»,.) — C'(w) are continuous martingales on
82/, F', (F))i=0,P). Since C(w) does not depend on «/, it follows that (for P
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almost all @ again) the process Y (w, .) is a centered Gaussian process with inde-
pendent increments on (2, F', (F));=0, P'), satisfying [ (YY) (w, )P (do') =
C)’ (w), and the result is proved. O

4.1.2 The Discontinuous Case

So far, we have constructed continuous processes which, F-conditionally, have in-
dependent increments. Here we will again construct processes with F-conditionally
independent increments, but they will be “purely discontinuous”, with the unusual
feature that they will jump only at “fixed times of discontinuity”. Even though this
does not cover the most general case of discontinuous processes which conditionally
on F have independent increments, it will be enough for our purposes.

The situation is as follows: we have a probability measure n on R” for some
integer r > 1, and an optional process V on the space (£2, F, (F;):>0, P), taking its
values in the set of all g x r matrices, and such that the sets D(V, w) = {t : V;(w) #
0} are at most countable for all w € £2 and do not contain 0. Our aim is to construct
a g-dimensional process Y on an extension of the initial probability space, such that
conditionally on F (that is, loosely speaking, for each w € £2) the process Y (w, .)
can be written as

Y(w,.); = sz(w)us (4.1.5)

s<t

(with matrix notation), where the Uj’s are i.i.d. with law 7. In a more mathematical
way, this amounts to constructing a process ¥ which conditionally on F has inde-
pendent increments and a characteristic functions for the increments (where u € R?
and u#* denotes the transpose, so u*v is the scalar product when u, v € R?) given by

E(e Y10 | F) = I f V@ (g, (4.1.6)
ve(t,t+s]ND(V,w)

Typically, this will be used with V; = f(AX,), for a matrix-valued function on R¢
vanishing at 0 and for X a d-dimensional semimartingale.

(4.1.5) is not really meaningful, but (4.1.6) makes sense, under appropriate con-
ditions ensuring that the possibly infinite product on the right side converges. Below
we give two different sets of conditions for this, and we reformulate (4.1.5) so that
it becomes meaningful.

The construction is based on the existence of weakly exhausting sequences
for the set D(V,.): by this we mean a sequence (7,),>1 of stopping times on
(82, F, (F)1>0,P), such that for all w outside a null set, we have D(V,w) C
{T,(w) :n>1, T(w) < oo} and also T, (w) # T, (w) whenever n # m and T, (w) <
00. When further D(V, w) = {T,,(w) : n > 1, T,(w) < oo} we have an exhausting se-
quence. The existence of exhausting, and a fortiori of weakly exhausting, sequences
is a well known fact of the “general theory of processes”, see e.g. Dellacherie [24],
and as a rule there are many different exhausting sequences for a given set D(V).
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In view of this, we consider an auxiliary probability space (£2’, 7/, P’), endowed
with a seqllelye~(U,,),,21 of i.i.d. r-dimensional variables with law n. We take the
product (£2, F, P) of (82, F,P) and (£2', F', '), and we interpret (4.1.5) as

Yy = Y ViU, 4.1.7)

n: T, <t

(we still need conditions for this “series” to converge in a suitable sense). The natural
filtration to consider on the extended space is the following one:

(.7’::,) is the smallest filtration containing (F;)
and such that U, is F7, measurable for all n.

We thus get a filtered extension (5, F , (j—v}),zo, @), and it is immediate to verify
that it is very good.

Proposition 4.1.3 Assume that the variables U,, have a finite first moment 1 € R".
As soon as

DOIVsll < 00 as. V>0, (4.1.8)
s<t

for any weakly exhausting sequence (T,,) for D(V,.) the series ) _,. 7,<¢ V1, Un in
(4.1.7) is a.s. absolutely convergent for all t > 0, and this formula defines a cadlag
adapted process with finite variation on the extended space, which conditionally on
F has independent increments, and satisfies

EY | F) = m ) Vs (4.1.9)
s<t
and also (4.1.6). In 