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Preface

Two decades ago the authors of this book undertook the study of the errors one
makes when numerically approximating the solutions of stochastic differential equa-
tions driven by Lévy processes. In particular we were interested in the normalized
asymptotic errors of approximations via an Euler scheme, and it turned out we
needed sophisticated laws of large numbers and central limit theorems that did not
yet exist. While developing such tools, it became apparent that they would be useful
in a wide range of applications.

One usually explains the difference between probability and statistics as being
that probability theory lays the basis for a family of models, and statistics uses data
to infer which member or members of that family best fit the data. Often this re-
duces to parameter estimation, and estimators are shown to be consistent via a Law
of Large Numbers (LLN), and the accuracy of an estimator is determined using a
Central Limit Theorem (CLT), when possible. The case of stochastic processes, and
even stochastic dynamical systems, is of course more difficult, since often one is no
longer estimating just a parameter, but rather one is estimating a stochastic process,
or—worse—trying to tell which family of models actually does fit the data. Exam-
ples include using data to determine whether or not a model governing a dynamical
system has continuous paths or has jumps, or trying to determine the dimension of
the driving Brownian forces in a system of stochastic differential equations. This
subject, broadly speaking, is a very old subject, especially as concerns asymptotic
studies when the time parameter tends to infinity. The novelty presented here in this
book is a systematic study of the case where the time interval is fixed and compact
(also known as the finite horizon case). Even in the finite horizon case however,
efforts predate the authors’ study of numerical methods for stochastic differential
equations, and go back 5 years earlier to attempts to find the volatility coefficient of
an Itô process, via a fine analysis of its quadratic variation, by the first author joint
with Valentine Genon-Catalot. This in turn builds on the earlier work of G. Dohnal,
which itself builds on earlier work; it is indeed an old yet still interesting subject.

There are different variations of LLNs and CLTs one might use to study such
questions, and over the last two decades substantial progress has been made in
finding such results, and also in applying them via data to delve further into the
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unknown, and to reveal structures governing complicated stochastic systems. The
most common examples used in recent times are those of financial models, but these
ideas can be used in models of biological, chemical, and electrical applications as
well. In this book we establish, in a systematic way, many of the recent results. The
ensuing theorems are often complicated both to state, and especially to prove, and
the technical level of the book is (inevitably, it seems) quite demanding. This is a
theory book, and we do not treat applications, although we do reference papers that
use these kinds of results for applications, and we do indicate at the end of most
chapters how this theory can be used for applications.

An introduction explaining our approach, and an outline of how we have orga-
nized the book, can be found in the Introductory Chapter 1. In addition, in Chap. 1
we present several sketches of frameworks for potential applications of our theory,
and indeed, these frameworks have inspired much of the development of the theory
we present in this book.

If one were to trace back how we came to be interested in this theory, the history
would have to center on the work and personality of Denis Talay and his “équipe”
at INRIA in Sophia-Antipolis, as well as that of Jean Mémin at the University of
Rennes. Both of these researchers influenced our taste in problems in enduring ways.
We would also like to thank our many collaborators in this area over the years, with
a special mention to Tom Kurtz, whose work with the second author started this
whole enterprise in earnest, and also to Yacine Aït-Sahalia, who has provided a
wealth of motivations through applications to economics. We also wish to thank
O.E. Barndorff-Nielsen, S. Delattre, J. Douglas, Jr., V. Genon-Catalot, S.E. Gra-
versen, T. Hayashi, Yingying Li, Jin Ma, S. Méléard, P. Mykland, M. Podolskij,
J. San Martin, N. Shephard, V. Todorov, S. Torres, M. Vetter, and N. Yoshida, as
well as A. Diop, for his careful reading of an earlier version of the manuscript.

The authors wish to thank Hadda and Diane for their forbearance and support
during the several years involved in the writing of this book.

The second author wishes to thank the Fulbright Foundation for its support for a
one semester visit to Paris, and the National Science Foundation, whose continual
grant support has made this trans-Atlantic collaboration possible.

Jean Jacod
Philip Protter

Paris, France
New York, USA
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Basic Notation

R = the set of real numbers, R+ = [0,∞)
Q = the set of rational numbers, Q+ =Q∩R+
N = the set {0,1, . . . } of natural integers, N∗ = {1,2, . . . }
Z = the set of relative integers
R
d = the Euclidean d-dimensional space;

the components of x ∈R
d are (x1, . . . , xd)

Rd = the Borel σ -field of Rd , R=R1

M+
d×d = the set of nonnegative symmetric d × d matrices

M++
d×d = the set of nonnegative symmetric invertible d × d matrices

|x| = the absolute value of x ∈R, ‖x‖ = Euclidean norm of x ∈R
d

d(x,B) = the distance between a point x and a subset B , in a metric space
y∗ = the transpose of the vector or matrix y
[x] = the integer part of x ∈R (biggest n ∈ Z such that n≤ x)
a ∨ b = sup(a, b), a ∧ b= inf(a, b), if a, b ∈R

x+ = x ∨ 0, x− = (−x)∨ 0, if x ∈R

1A = the indicator function of the set A
Ac = the complement of the set A
εa = the Dirac measure sitting at point a
δij = the Kronecker symbol, equal to 1 if i = j and to 0 otherwise

Notation for convergences:
a.s.−→ a.s. (almost sure) convergence for random variables
P−→ convergence in probability for random variables
L−→ convergence in law for random variables
L-s−→ stable convergence in law for random variables
a.s.=⇒ a.s. convergence for processes, for Skorokhod’s topology
P=⇒ convergence in probability for processes, for Skorokhod’s topology

u.c.p.=⇒ convergence in probability for processes, for the local uniform topology

xiii



xiv Basic Notation

L=⇒ convergence in law for processes, for Skorokhod’s topology
L-s=⇒ stable convergence in law for processes, for Skorokhod’s topology

Miscellaneous:
f (x)= o(g(x)) as x→ x0 if f (x)/g(x)→ 0 as x→ x0
f (x)=O(g(x)) as x→ x0 if lim supx→x0

|f (x)/g(x)|<∞
càdlàg = “right-continuous with left limits”
càglàd = “left-continuous with right limits”
un 
 vn means that both sequences un/vn and vn/un are bounded



Part I
Introduction and Preliminary Material

This introductory part contains two chapters. The first one is a detailed introduction:
the whole book is devoted to many variations around two basic theorems, under
various conditions and with various degrees of generality, and we explain how it
can be used by a reader interested in a specific result or a special topic. The first
chapter also contains (without proofs) a simplified version of the two basic theorems
in three very special cases, when the underlying process is a Brownian motion,
or a Brownian motion plus a drift, or when it is a Brownian motion plus a drift
and a Poisson process: this part could be skipped, but its aim is to give a flavor of
the subsequent material, without complicated assumptions or notation or technical
details.

The second chapter mainly is a record of known facts about semimartingales and
limit theorems. By “known” we mean that they can be found in a number of books.
Some of these facts are elementary, others are more sophisticated, but it would take
too much space and be outside the scope of this book to present the proofs. A few
properties in this chapter are new, at least in a book form, and their proofs are given
in the Appendix.



Chapter 1
Introduction

Discretization of stochastic processes indexed by the interval [0, T ] or by the half-
line [0,∞) occurs very often. Historically it has been first used to deduce results on
continuous-time processes from similar and often simpler results for discrete-time
processes: for example Markov processes may be considered as limits of Markov
chains, which are much simpler to analyze; or, stable processes as limits of random
walks. This also applies to the theory of stochastic integration: the first constructions
of stochastic integrals, by N. Wiener and K. Itô, were based on a Riemann-type
approximation, which is a kind of discretization in time. More recently but still
quite old, and a kind of archetype of what is done in this book, is the approximation
of the quadratic variation process of a semimartingale by the approximate quadratic
variation process: this result, due to P.A. Meyer [76] in its utmost generality, turns
out to be one of the most useful results for applications.

Discretization of processes has become an increasingly popular tool in practical
applications, for mainly (but not only) two reasons: one is the overwhelming exten-
sion of Monte-Carlo methods, which serve to compute numerically the expectations
of a wide range of random variables which are often very complicated functions
of a stochastic process: this is made available by the increasing power of comput-
ers. The second reason is related to statistics: although any stochastic process can
only be observed at finitely many times, with modern techniques the frequency of
observations increases steadily: in finance for example one observes and records
prices every second, or even more frequently; in biology one measures electrical or
chemical activity at an even higher frequency.

Let us be more specific, by describing a simple but fundamental example of some
of the problems at hand. Suppose that we have a one-dimensional diffusion process
X of the form

dXt = a(Xt ) dt + σ(Xt ) dWt , X0 = x0. (1.0.1)

Here the initial value x0 ∈ R is given, and W denotes a Brownian motion defined
on some probability space, about which we do not care in this introduction. The
drift and diffusion coefficients a and σ are nice enough, so the above equation has
a unique solution.

J. Jacod, P. Protter, Discretization of Processes,
Stochastic Modelling and Applied Probability 67,
DOI 10.1007/978-3-642-24127-7_1, © Springer-Verlag Berlin Heidelberg 2012
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Problem 1) We know a and σ , and we are interested in the law of the variable X1.
This law is usually not explicitly known, so to compute it, that is to compute the
expected value E(f (X1)) for various test functions f , one may use a Monte-Carlo
technique (other techniques based on PDEs are also available, especially in the one-
dimensional case, but do not work so well in high dimensions). To implement this
we simulate on a computer a number N of independent variables X(j)1 having the
law of X1, and an approximation of E(f (X1)) is

ZN = 1

N

N∑

j=1

f
(
X(j)1

)
. (1.0.2)

Indeed, by the law of large numbers the sequence ZN converges almost surely to
E(f (X1)) as N→∞, and moreover the central limit theorem tells us that, when f
is for example bounded, the error made in replacing E(f (X1)) by ZN is of order
1/
√
N .

This presumes that one knows how to simulate X1, which is about as scarce
as the cases when E(f (X1)) can be explicitly computed. (More accurately some
recent techniques due to A. Beskos, O. Papaspiliopoulos and G.O. Roberts, see [16]
and [17] for example, allow to simulate X1 exactly, but they require that σ does
not vanish and, more important, that the dimension is 1; moreover, in contrast to
what follows, they cannot be extended to equations driven by processes other than
a Brownian motion.) Hence we have to rely on approximations, and the simplest
way for this is to use an Euler scheme. That is, for any integer n≥ 1 we recursively
define the approximation Xni/n for i = 1, . . . , n, by setting

Xn0 = x0, Xni/n =Xn(i−1)/n +
1

n
a
(
Xn(i−1)/n

)+ σ (Xn(i−1)/n

)
(Wi/n −W(i−1)/n),

the increments of the Brownian motion being easily simulated. Other, more sophis-
ticated, schemes can be used, but they all rely upon the same basic ideas.

Then in (1.0.2) we substitute theX(j)1’s withN independent copies of the simu-
lated variables Xn1 , giving rise to an average ZnN which now converges to E(f (Xn1 ))

for each given n. Therefore we need to assert how close E(f (Xn1 )) and E(f (X1))

are, and this more or less amounts to estimating the difference (X1 −Xn1 )2. Some
calculations show that this boils down to evaluating the difference

n∑

i=1

gn
(
ω, (i − 1)/n

)(
(Wi/n −W(i−1)/n)

2 − 1

n

)

for suitable functions gn(ω, t), where ω �→ gn(ω, t) is measurable with respect to
the σ -field FWt of the past ofW before time t . That is, we have to determine the be-
havior of “functionals” of the increments ofW of the form above: do they converge
when n→∞? And if so, what is the rate of convergence?

Problem 2) The setting is the same, that is we know a and σ , but we want to find the
law of Y = ∫ 1

0 h(Xs) ds for some known function h. Again, one can use a Monte-
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Carlo technique, coupled with a preliminary Euler method: we set

Yn = 1

n

n∑

i=1

h
(
Xni/n
)
,

where Xn is the Euler approximation introduced above. We can then simulate N
independent versions Yn(1), . . . , Y n(N) of the variable Yn above, and

1

N

N∑

j=1

h
(
Yn(j)
)

is our approximation of E(h(Y )). IfXn is a good approximation ofX, then certainly
Yn is a good approximation of 1

n

∑n
i=1 h(Xi/n), provided h satisfies some suitable

smoothness assumptions. However we have an additional problem here, namely to
evaluate the difference

1

n

n∑

i=1

h(Xi/n)−
∫ 1

0
h(Xs) ds.

The convergence to 0 of this difference is ensured by Riemann approximation, but
the rate at which it takes place is not clear, in view of the fact that the paths of X are
not smooth, albeit continuous. This is another discretization problem.

Problem 3) Suppose now that the functions a and σ are known, but depend on an ad-
ditional parameter, say θ , so we have a = a(x, θ) and σ = σ(x, θ). We observe the
processX =Xθ , which now depends on θ , over [0,1], and we want to infer θ . How-
ever, in any realistic situation we cannot really observe the whole path t �→ Xt(ω)

for t ∈ [0,1], and we simply have “discrete” observations, say at times 0, 1
n
, . . . , n

n
,

so we have n+ 1 observations.
We are here in the classical setting of a parametric statistical problem. For any

given n there is no way exactly to infer θ , unless a and σ have a very special form.
But we may hope for good asymptotic estimators as n→∞. All estimation meth-
ods, and there are many, are based on the behavior of functionals of the form

n∑

i=1

fn
(
θ,ω, (i − 1)/n,Xi/n −X(i−1)/n

)
(1.0.3)

for suitable functions fn(θ,ω, t, x), where again ω �→ fn(θ,ω, t, x) is FWt measur-
able. The consistency of the estimators is deduced from the convergence of func-
tionals as above, and rates of convergence are deduced from associated central limit
theorems for those functionals.

Problem 4) Here the functions a and σ are unknown, and they may additionally
depend on (ω, t), as for example σ = σ(ω, t, x). We observe X at the same discrete
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times 0, 1
n
, . . . , n

n
as above. We want to infer some knowledge about the coefficients

a and σ . As is well known, we usually can say nothing about a in this setting, but
the convergence of the approximate quadratic variation mentioned before says that:

[nt]∑

i=1

(Xi/n −X(i−1)/n)
2 →

∫ t

0
σ(Xs)

2 ds

(convergence in probability, for each t ; here, [nt] denotes the integer part of the
real nt). This allows us in principle to determine asymptotically the function
t �→ σ(ω, t,Xt (ω)) on [0,1], and under suitable assumptions we even have rates
of convergence. Here again, everything hinges upon functionals as in the left side
above. Note that here we have a statistical problem similar to Problem 3, except that
we do not want to infer a parameter θ but a quantity which is fundamentally ran-
dom: this occurs for example in finance, for the estimation of the so-called stochastic
volatility.

Problem 5) A more basic problem is perhaps the following one, which deals directly
with discretized processes. Namely, let us call an n-discretized process of X the
process defined byX(n)t =X[nt]/n. Then of courseX(n)→X pointwise in ω, locally
uniformly in time when X is continuous and for the Skorokhod topology when X is
right-continuous and with left limits. But, what is the rate of convergence?

The common feature of all the problems described above, as different as they may
appear, is the need to consider the asymptotic behavior of functionals like (1.0.3).
And, when the process X is discontinuous, many other problems about the jumps
can also be solved by using functionals of the same type.

1.1 Content and Organization of the Book

In the whole book we consider a basic underlying d-dimensional process X, al-
ways a semimartingale. This process is sampled at discrete times, most of the time
regularly spaced: that is, we have a mesh Δn > 0 and we consider the increments

Δni X = XiΔn −X(i−1)Δn

and two types of functionals, where f is a function on R
d :

V n(f,X)t =
[t/Δn]∑

i=1

f
(
Δni X
)

“non-normalized functional”

V ′n(f,X)t =Δn
[t/Δn]∑

i=1

f
(
Δni X/

√
Δn
)

“normalized functional”.

(1.1.1)
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The aim of this book is to provide a comprehensive treatment of the mathematical
results about functionals of this form, when the mesh Δn goes to 0. We will not
restrict ourselves to the simple case of (1.1.1), and will also consider more general
(but similar) types of functionals:

• f may depend on k successive increments of X for k ≥ 2.
• f = fn may depend on n, and also on kn successive increments, with kn→∞.
• f = f (ω, t, x) may be a function on Ω ×R+ ×R

d , so that f (Δni X) is replaced
by f (ω, (i − 1)Δn,Δni X) in the first formula (1.1.1), for example.

• The sampling times are not necessarily equally spaced.

Basically, there are two different levels of results:

Level 1: We have (under appropriate assumptions, of course, and sometimes after
normalization) convergence of the functionals to a limiting process, say for example
V n(f,X)→ V (f,X). This convergence typically takes place in probability, either
for a fixed time t , or “functionally” for the local uniform (in time) topology, or for
the Skorokhod topology. We call this type of convergence a Law of Large Numbers,
or LLN.

Level 2: There is a “second order” type of results, which we qualify as Central Limit
Theorems, or CLT. Namely, for a proper normalizing factor un→∞ the sequence
un(V

n(f,X)− V (f,X)) for example converges to a limiting process. In this case,
the convergence (for a given time t , or functionally as above) is typically in law,
or more accurately “stably in law” (the definition of stable convergence in law is
recalled in detail in Chap. 2).

In connection with the previous examples, it should be emphasized that, even
though the mathematical results given below have some interest from a purely the-
oretical viewpoint, the main motivation is practical. This motivation is stressed by
the fact that the last section of most chapters contains a brief account of possible ap-
plications. These applications have indeed been the reason for which all this theory
has been developed.

As it is written, one can hardly consider this book as “applied”. Nevertheless,
we hope that the reader will get some feeling about the applications, through the
last sections mentioned above. In particular, the problem of estimating the volatility
is recurrent through the whole book, and appears in Chaps. 3, 5, 8, 9, 11, 13, 14
and 16.

Two last general comments are in order:

1. A special feature of this book is that it concentrates on the case where the un-
derlying process X has a non-trivial continuous martingale part Xc, which is
Xct =

∫ t
0 σ(Xs) dWs in the case of (1.0.1). All results are of course still true in

the degenerate situation where the continuous martingale part vanishes identi-
cally, but most of them become “trivial”, in the sense that the limiting processes
are also vanishing. That is, in this degenerate situation one should employ other
normalization, and use different techniques for the proofs.
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2. We are concerned with the behavior of functionals like (1.1.1) as Δn→ 0, but
not as the time t goes to infinity. That is, we only consider the “finite horizon”
case. When t →∞ the results for these functionals requires some ergodicity
assumptions on the process X: the results, as well as the techniques needed for
the proofs, are then fundamentally different.

Synopsis of the Book: Chapter 2 is devoted to recalling the basic necessary re-
sults about semimartingales and the various notions of convergence used later (Sko-
rokhod topology, stable convergence in law, and a few useful convergence criteria).
The rest of the book is divided into four main parts:

Part II: This part is about the “simple” functionals, as introduced in (1.1.1):

• Chapter 3 is devoted to the Laws of Large Numbers (first level).
• Chapter 4 contains the technical results needed for Central Limit Theorems. To

avoid fastidious repetitions, these technical results are general enough to provide
for the proofs of the CLTs for more general functionals than those of (1.1.1).

• Chapter 5 is about Central Limit Theorems (second level). For V ′n(f,X) it re-
quires few assumptions on the function f but quite a lot about the jumps of X, if
any; for V n(f,X) it requires little of X, but (in, say, the one-dimensional case) it
basically needs either f (x)∼ x2 or f (x)/|x|3 → 0 as x→ 0.

• Chapter 6 gives another kind of Central Limit Theorems (in the extended sense
used in this book) for V n(f,X), when f (x) = x: this is a case left out in the
previous Chap. 5, but it is also important because V n(f,X)t is then X(Δn)t −X0,
where X(Δn) is the “discretized process” X(Δn)t =XΔn[t/Δn].

Part III: This part concerns various extensions of the Law of Large Numbers:

• In Chap. 7 the test function f is random, that is, it depends on (ω, t, x).
• In Chap. 8 the test function f = fn may depend on n and on k (fixed) or kn (going

to infinity) successive increments.
• In Chap. 9 the test function f is truncated at a level un, with un going to

0 as Δn does; that is, instead of f (Δni X) we consider f (Δni X)1{|Δni X|≤un} or
f (Δni X)1{|Δni X|>un}, for example. The function f can also depend on several
successive increments.

Part IV: In this part we study the Central Limit Theorems associated with the ex-
tended LLNs of the previous part:

• Chapter 10 gives the CLTs associated with Chap. 7 (random test functions).
• Chapter 11 gives the CLTs associated with Chap. 8 when the test function depends

on k successive increments.
• Chapter 12 gives the CLTs associated with Chap. 8 when the test function depends

on kn successive increments, with kn→∞.
• Chapter 13 gives the CLTs associated with Chap. 9 (truncated test functions).
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Part V: The last part is devoted to three problems which do not fall within the scope
of the previous chapters, but are of interest for applications:

• In Chap. 14 we consider the situation where the discretization scheme is not reg-
ular. This is of fundamental importance for applications, but only very partial
results are provided here, and only when the process X is continuous.

• In Chap. 15 we study some degenerate situations where the rate of convergence
is not the standard 1/

√
Δn one.

• In Chap. 16 we consider a situation motivated again by practical applications:
we replace the process X by a “noisy” version, that is by Zt = Xt + εt where
εt is a noise, not necessarily white but subject to some specifications. Then we
examine how the functionals (based on the observations ZiΔn instead of XiΔn )
should be modified, in order to obtain limits which are basically the same as in
the non-noisy case, and in particular do not depend on the noise.

1.2 When X is a Brownian Motion

Before proceeding to the main stream of the book, we give in some detail and with
heuristic explanations, but without formal proofs, the simplest form of the results:
we suppose that the one-dimensional process X is either a Brownian motion, or a
Brownian motion with a drift, or a Brownian motion plus a drift plus a compound
Poisson process.

Although elementary, these examples essentially show most qualitative features
found later on, although of course the simple structure accounts for much simpler
statements. So the remainder of this chapter may be skipped without harm, and
its aim is to exhibit the class of results given in this book, and their variety, in an
especially simple situation.

We start with the Brownian case, that is

X = σW, where W is a Brownian motion and σ > 0; we set c= σ 2. (1.2.1)

We will also use, for any process Y , its “discretized” version at stage n:

Y
(Δn)
t = YΔn[t/Δn].

1.2.1 The Normalized Functionals V ′n(f,X)

Recalling (1.1.1), the functionals V ′n(f,X) are easier than V n(f,X) to analyze.
Indeed, the summands f (Δni X/

√
Δn ) are not only i.i.d. as i varies, but they also

have the same law as n varies. We let ρc be the centered Gaussian law N (0, c) and
write ρc(f )=

∫
f (x)ρc(dx) when the integral exists. Then, as soon as f is Borel

and integrable, resp. square integrable, with respect to ρc, then f (Δni X/
√
Δn ) has

expectation ρc(f ) and variance ρc(f 2)− ρc(f )2.
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The ordinary Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
readily give us the following two convergence results:

V ′n(f,X)t
P−→ tρc(f )

(1.2.2)
1√
Δn

(
V ′n(f,X)t − tρc(f )

) L−→ N
(
0, t
(
ρc
(
f 2)− ρc(f )2

))
,

where
P−→ and

L−→ stand for the convergence in probability and the convergence
in law, respectively. This example shows why we have put the normalizing factor
1/
√
Δn inside the function f .

The first subtle point we encounter, even in this basic case, is that, contrary to
the usual LLN, we get convergence in probability but not almost surely in the first
part of (1.2.2). The reason is as follows: let ζi be a sequence of i.i.d. variables with
the same law as f (X1). The LLN implies that Zn = t

[t/Δn]
∑[t/Δn]
i=1 ζi converges a.s.

to tρc(f ). Since V ′n(f,X)t has the same law as Zn we deduce the convergence in
probability in (1.2.2) because, for a deterministic limit, convergence in probability
and convergence in law are equivalent. However the variables V ′n(f,X)t are con-
nected one with the others in a way we do not really control when n varies, so we
cannot conclude that V ′n(f,X)t→ tρc(f ) a.s.

(1.2.2) gives us the convergence for any time t , but we also have a “functional”
convergence:

1) First, recall that a sequence gn of nonnegative increasing functions on R+ con-
verging pointwise to a continuous function g also converges locally uniformly; then,
from the first part of (1.2.2) applied separately for the positive and negative parts f+
and f− of f and using a “subsequence principle” for the convergence in probability,
we obtain

V ′n(f,X)t
u.c.p.=⇒ tρc(f ) (1.2.3)

where Znt
u.c.p.=⇒ Zt means “convergence in probability, locally uniformly in time”:

that is, sups≤t |Zns −Zs | P−→ 0 for all t finite.

2) Next, if instead of the one-dimensional CLT we use the “functional CLT”, or
Donsker’s Theorem, we obtain

(
1√
Δn

(
V ′n(f,X)t − tρc(f )

))

t≥0

L=⇒
√
ρc
(
f 2
)− ρc(f )2 B (1.2.4)

where B is another standard Brownian motion, and
L=⇒ stands for the convergence

in law of processes (for the Skorokhod topology, see later for details on this topol-
ogy, even though in this special case we could also use the “local uniform topology”,
since the limit is continuous).

In (1.2.4) we see a new Brownian motion B appear. What is its connection with
the basic underlying Brownian motion W ? To study that, one can try to prove the



1.2 When X is a Brownian Motion 11

“joint convergence” of the processes on the left side of (1.2.4) together with W (or
equivalently X) itself.

This is an easy task: consider the 2-dimensional process Zn whose first com-
ponent is W and the second component is the left side of (1.2.4). The discretized
version of Zn is (Zn)(Δn)t =√Δn ∑[t/Δn]i=1 ζ ni , where the ζ ni are 2-dimensional i.i.d.
variables as i varies, with the same distribution as (W1, f (σW1) − ρc(f )). Then
the 2-dimensional version of Donsker’s Theorem gives us that the pair of processes
with components W(Δn) and 1√

Δn
(ΔnV

′n(f,X)t − tρc(f )) converges in law to a
2-dimensional Brownian motion with variance-covariance matrix at time 1 given by

(
1 ρc(g)

ρc(g) ρc(f
2)− ρc(f )2

)
, where g(x)= xf (x)/σ.

We write this as

(
W
(Δn)
t ,

1√
Δn

(
V ′n(f,X)t − tρc(f )

))

t≥0

L=⇒ (W,aW + a′W ′),

where a = ρc(g), a′ =
(
ρc
(
f 2)− ρc(f )2 − ρc(g)2

)1/2
, (1.2.5)

where W ′ is a standard Brownian motion independent of W .
In (1.2.5) we could have used another symbol in place of W since what really

matters is the joint law of the pair (W,W ′). However for the first component, not
only do we have convergence in law but pathwise convergence W(Δn)→W . This
explains why we use the notation W here, and in fact this results in a stronger form
of convergence for the second component as well. This mode of convergence, called
stable convergence in law, will be explained in detail in the next chapter.

Remark 1.2.1 We can even make f = fn depend on n, in such a way that fn con-
verges to some limit f fast enough. This is straightforward, and useful in some
applications.

Remark 1.2.2 (1.2.5) is stated in a unified way, but there are really two—quite
different—types of results here, according to the parity properties of f :

a) If f is an even function then ρc(f ) �= 0 in general, and a = 0. The limit in the
CLT is (W,a′W ′), with two independent components.

b) If f is an odd function then ρc(f )= 0 and a �= 0 in general. The limit in the
CLT has two dependent components. A special case is f (x) = x: then a = σ and
a′ = 0, so the limit is (W,X)= (W,σW). This was to be anticipated, since in this
case V ′n(f,X) =√ΔnX(Δn), and the convergence in (1.2.5) takes place not only
in law, but even in probability.

In general, the structure of the limit is thus much simpler in case (a), and most
applications use this convergence for test functions f which are even.
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1.2.2 The Non-normalized Functionals V n(f,X)

We now turn to the processes V n(f,X). Their behavior results from the behavior
of the processes V ′n(f,X), but already in this simple case they show some dis-
tinctive features that will be encountered in more general situations. Basically, all
increments Δni X become small as n increases, so the behavior of f near 0 is of the
utmost importance, and in fact it conditions the normalization we have to use for the
convergence.

To begin with, we consider power functions:

fr(x) = |x|r , f r (x) = |x|rsign(x),

where r > 0 and where sign(x) takes the value +1, 0 or −1, according to whether
x > 0, x = 0 or x < 0. Note that

V n(fr ,X) = Δ
r/2−1
n V ′n(fr ,X)

and the same for f r . Moreover, if mp denotes the p absolute moment of N (0,1),
that ismp = ρ1(fp), and if hr(x)= xfr(x)/σ and hr(x)= xf ′r (x)/σ (recall σ > 0),
we have

ρc(fr) = mrσ
r, ρc

(
f 2
r

) = m2rσ
2r , ρc(hr) = 0,

ρc(f r) = 0, ρc
(
f 2
r

) = m2rσ
2r , ρc(hr) = mr+1σ

r .

Hence we can rewrite (1.2.3) and (1.2.5) as follows, where W ′ denotes a standard
Brownian motion independent of W (we single out the two cases fr and f r , which
correspond to cases (a) and (b) in Remark 1.2.2):

Δ
1−r/2
n V n(fr ,X)t

u.c.p.=⇒ tmrσ
r ,

(1.2.6)(
W
(Δn)
t ,

1√
Δn

(
Δ

1−r/2
n V n(fr ,X)t − tmrσ r

))

t≥0

L=⇒ (W,σ r
√
m2r −m2

r W
′),

Δ
1−r/2
n V n(f r ,X)

u.c.p.=⇒ 0,
(1.2.7)

(
W(Δn),Δ

1/2−r/2
n V n(f r ,X)

) L=⇒ (W,σ r(mr+1W +
√
m2r −m2

r+1W
′)).

Note that the second statement implies the first one in these two properties.
Next, we consider functions f which vanish on a neighborhood of 0, say over

some interval [−ε, ε]. SinceX is continuous, we have supi≤[t/Δn] |Δni X|→ 0 point-
wise for all t , and thus for each t there is a (random) integer At such that

n≥At ⇒ V n(f,X)s = 0 ∀s ≤ t. (1.2.8)

Finally, we consider “general” functions f , say Borel and with polynomial
growth. If we combine (1.2.6) or (1.2.7) with (1.2.8), we see that the behavior of f
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far from 0 does not matter at all, whereas the behavior near 0 is crucial for V n(f,X)
to converge (with or without normalization). So it is no wonder that we get the fol-
lowing result:

f (x)∼ fr(x) as x→ 0 ⇒ Δ
1−r/2
n V n(f,X)t

u.c.p.=⇒ tmrσ
r ,

f (x)∼ f r(x) as x→ 0 ⇒ Δ
1−r/2
n V n(f,X)t

u.c.p.=⇒ 0.
(1.2.9)

These results are trivial consequences of the previous ones when f coincides with
fr or f r on a neighborhood of 0, whereas if they are only equivalent one needs
an (easy) additional argument. As for the CLT, we need f to coincide with fr or
f r on a neighborhood of 0 (“close enough” would be sufficient, but how “close”
is difficult to express, and “equivalent” is not enough). So we have, for any ε > 0
(recall that f is of polynomial growth):

f (x)= fr(x) if |x| ≤ ε ⇒
(
W
(Δn)
t ,

1√
Δn

(
Δ

1−r/2
n V n(f,X)t − tmrσ r

))

t≥0

L=⇒ (W,σ r
√
m2r −m2

r W
′),

(1.2.10)

f (x)= f r(x) if |x| ≤ ε ⇒
(
W(Δn),Δ

1/2−r/2
n V n(f,X)

) L=⇒ (W,σ r(mr+1W +
√
m2r −m2

r+1 W
′))

(1.2.11)

where again W ′ is a standard Brownian motion independent of W .
These results do not exhaust all possibilities for the convergence of V n(f,X).

For example one can prove the following:

f (x)= |x|r log |x| ⇒ Δ
1−r/2
n

log(1/Δn)
V n(f,X)

u.c.p.=⇒ −1

2
tmrσ

r ,

and a CLT is also available in this situation. Or, we could consider functions f which
behave like xr as x ↓↓ 0 and like (−x)r ′ as x ↑↑ 0. However, we essentially restrict
our attention to functions behaving like fr or f r near the origin: for simplicity, and
because more general functions do not really occur in applications, and also because
the extension to processes X more general than the Brownian motion is not easy, or
not available at all, for other functions.

Example 1.2.3 Convergence of the approximate quadratic variation. The functional

V n(f2,X)t =
[t/Δn]∑

i=1

(
Δni X
)2

is called the “approximate quadratic variation”, and “realized quadratic variation”
or “realized volatility” in the econometrics literature. It is of course well known, and
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a consequence of (1.2.6), that it converges in probability, locally uniformly in time,
to the “true” quadratic variation which here is σ 2t . Then (1.2.6) also gives the rate
of convergence, namely that 1√

Δn
(V n(f2,X)t − tσ 2) converges in law to 2σ 4W ′;

and we even have the joint convergence with X itself, and in the limitW ′ and X (or
W ) are independent.

1.3 When X is a Brownian Motion Plus Drift

Here we replace (1.2.1) by

Xt = bt + σWt, where σ ≥ 0 and b �= 0.

1.3.1 The Normalized Functionals V ′n(f,X)

We first assume that σ > 0. The normalized increments Δni X/
√
Δn are still i.i.d.

when i varies, but now their laws depend on n. However,Δni X/
√
Δn = Yni +b

√
Δn

with Yni being N (0, σ 2) distributed. Then, clearly enough, f (Δni X/
√
Δn ) and

f (Y ni ) are almost the same, at least when f is continuous, and it is no wonder
that (1.2.3) remains valid (with the same limit) here, that is

V ′n(f,X)t
u.c.p.=⇒ tρc(f ).

Moreover, it turns out that the continuity of f is not even necessary for this, being
Borel with some growth condition is again enough.

For the CLT, things are more complicated. When X = σW the CLT (1.2.4) boils
down to the ordinary (functional) CLT, or Donsker’s theorem, for the i.i.d. centered
variables ζ ni = f (Δni X/

√
Δn )− ρc(f ), but now while these variables are still i.i.d.

when i varies, they are no longer centered, and their laws depend on n.
In fact ζ ni is distributed as f (σU+b√Δn )−ρc(f ), whereU denotes an N (0,1)

variable. Now, assume that f is C1, with a derivative f ′ having at most polynomial
growth. Then f (σU + b√Δn )− f (σU) is approximately equal to f ′(σU)b

√
Δn.

It follows that the variables ζ ni satisfy

E
(
ζ ni
)=√Δn

(
bρc
(
f ′
)+ o(1)

)

E
((
ζ ni
)2)= ρc

(
f 2)− ρc(f )2 + o(1)

E
((
ζ ni
)4)=O(1).

A CLT for triangular arrays of i.i.d. variables (see the next chapter) gives us
(

1√
Δn

(
V ′n(f,X)t − tρc(f )

))

t≥0

L=⇒ (b ρc
(
f ′
)
t +
√
ρc
(
f 2
)− ρc(f )2Bt

)
t≥0.

(1.3.1)
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Comparing with (1.2.4), we see an additional bias coming in here. Exactly as in
(1.2.5), we also have a joint convergence (and stable convergence in law as well).
With the notation a, a′ and W ′ of (1.2.5), the expression is
(
W
(Δn)
t ,

1√
Δn

(
bV ′n(f,X)t− tρc(f )

))

t≥0

L=⇒ (Wt,b ρc
(
f ′
)
t+aWt+a′W ′

t

)
t≥0.

(1.3.2)

Remark 1.3.1 We have the same dichotomy as in Remark 1.2.2. When f is an even
function, the limit in (1.3.2) is simply (W,a′W ′), with a′ =√ρc(f 2)− ρc(f )2, and
in particular there is no bias (observe that f ′ is then odd, so ρc(f ′)= 0). When f
is an odd function, we do have ρc(f ′) �= 0 in general, and the bias does appear. A
special case again is when f (x) = x, so a = σ and a′ = 0 and ρc(f ′) = 1, so the
limit is (W,X) again, as it should be from the property V ′n(f,X)=√ΔnX(Δn).

Suppose now σ = 0, that isXt = bt . Then of course there is no more randomness,
and all results ought to be elementary, but they are different from the previous ones.
For example if f is differentiable at 0, we have

1√
Δn

(
V ′n(f,X)t − tf (0)

) → b f ′(0) t,

locally uniformly in t . This can be considered as a special case of (1.3.1), with
ρ0 being the Dirac mass at 0. Note that the normalization 1/

√
Δn inside the test

function f is not really adapted to this situation, a more natural normalization would
be 1/Δn.

1.3.2 The Non-normalized Functionals V n(f,X)

For the functionals V n(f,X) we deduce the results from the previous subsection,
exactly as for Brownian motion, at least when σ > 0. We have (1.2.8) when f
vanishes on a neighborhood of 0, because this property holds for any continuous
process X. Then we have (1.2.9), and also (1.2.10) when r ≥ 1 (use Remark 1.3.1,
the condition r ≥ 1 ensures that fr is C1, except at 0 when r = 1). Only (1.2.11)
needs to be modified, as follows, and again with r ≥ 1:

f (x)= f r(x) if |x| ≤ ε ⇒ (
W(Δn),Δ

1/2−r/2
n V n(f,X)

)

L=⇒ (Wt, r mr−1bt + σ r
(
mr+1Wt +

√
m2r −m2

r+1 W
′
t

))
t≥0. (1.3.3)

The case of the approximate quadratic variation is exactly as in Example 1.2.3.
Finally when σ = 0 we have V n(f,X)t = f (bΔn)Δn[t/Δn], and thus trivially

f differentiable at 0 ⇒ 1

Δn

(
V n(f,X)t − f (0) t

) → b f ′(0) t.
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1.4 When X is a Brownian Motion Plus Drift Plus a Compound
Poisson Process

In this section the structure of the process X is

X = Y +Z, Yt = bt + σWt, Zt =
∑

n≥1

Ψn1{Tn≤t}, (1.4.1)

where b ∈ R, σ ≥ 0 and W is a Brownian motion, and Z is a compound Poisson
process: that is, the times T1 < T2 < · · · are the arrival times of a Poisson process
on R+, say with parameter λ > 0, and independent of W , and the Ψn’s are i.i.d.
variables with law F , say, and independent of everything else. For convenience, we
put T0 = 0 and Nt =∑n≥1 1{Tn≤t} (which is the Poisson process mentioned above).
To avoid trivial complications, we assume λ > 0 and F({0})= 0.

Before proceeding, we state an important remark:

Remark 1.4.1 The Poisson process N , hence X as well, has a.s. infinitely many
jumps on the whole of R+. However, in practice we are usually interested in the
behavior of our functionals on a given fixed finite interval [0, T ]. Then the subset
ΩT ofΩ on whichN andX have no jump on this interval has a positive probability.
On ΩT we have Xt = Yt for all t ≤ T , hence for example V n(f,X)t = V n(f,Y )t
for t ≤ T as well. Then, in restriction to the set ΩT , (V n(f,X)t )t∈[0,T ] behaves
as (V n(f,Y )t )t∈[0,T ], as described in the previous section: there is no problem for
(1.2.9) since the convergence in probability is well defined in restriction to the subset
ΩT . For the convergence in law in (1.2.10) and (1.2.11) saying that it holds “in
restriction to ΩT ” makes a priori no sense; however, as mentioned before, we do
have also the stronger stable convergence in law, for which it makes sense to speak
of the convergence in restriction to ΩT : this is our first example of the importance
of stable convergence, from a purely theoretical viewpoint.

The functionals V ′n(f,X) are particularly ill-suited when X has jumps, because
the normalized increment Δni X/

√
Δn “explodes” as n→∞ if we take i = in such

that the interval ((i − 1)Δn, iΔn] contains a jump. More precisely, Δni X/
√
Δn is

equivalent to Ψ/
√
Δn if Ψ is the size of the jump occurring in this interval. So gen-

eral results for these functionals ask for very specific properties of f near infinity.
Therefore, below we restrict our attention to V n(f,X).

1.4.1 The Law of Large Numbers

The key point now is that (1.2.8) fails. In the situation at hand, for any t there
are at most finitely many q’s with Tq ≤ t , or equivalently Nt <∞. The differ-
ence V n(f,X)t − V n(f,Y )t is constant in t on each interval [iΔn, jΔn) such that
(iΔn, (j − 1)Δn] contains no jump. Moreover, let us denote by Ωnt the subset of
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Ω on which Tq − Tq−1 ≥Δn for all q such that Tq ≤ t , and by i(n, q) the unique
(random) integer i such that (i − 1)Δn < Tq ≤ iΔn. Note that Ωnt tends to Ω as
n→∞, for all t . Then if we set

ζ nq = f
(
Ψq +Δni(n,q)Y

)− f (Δni(n,q)Y
)
, V

n
(f )t =

N
(Δn)
t∑

q=1

ζ nq ,

where Ψq is as in (1.4.1), we have

V n(f,X)s = V n(f,Y )s + V n(f )s, ∀s ≤ t, on the set Ωnt . (1.4.2)

Observe that Δn
i(n,q)

Y → 0 for all q , because Y is continuous. Then as soon as
f is continuous and vanishes at 0, we have ζ nq → f (Ψq), hence ζ ′nq → f (Ψq) as

well. Since N(Δn)t ≤ Nt <∞ and since P(ΔXt �= 0) = 0 for any given t (because
the Poisson process N has no fixed time of discontinuity), we deduce

V
n
(f )t

a.s.−→
Nt∑

q=1

f (Ψq) =
∑

s≤t
f (ΔXs),

where ΔXs = Xs −Xs− denotes the size of the jump of X at time s. This conver-
gence is not local uniform in time. However, it holds for the Skorokhod topology
(see Chap. 2 for details), and we write

V
n
(f )t

a.s.=⇒
∑

s≤t
f (ΔXs). (1.4.3)

When f vanishes on a neighborhood of 0 and is continuous, and if we combine
the above with (1.2.8) for Y , with (1.4.2) and with Ωnt → Ω , we see that (1.2.8)
ought to be replaced by

V n(f,X)t
P=⇒
∑

s≤t
f (ΔXs) (1.4.4)

(convergence in probability for the Skorokhod topology).
The general case is also a combination of (1.4.2) and (1.4.4) with (1.2.9) applied

to the process Y : it all depends on the behavior of the normalizing factor Δ1−r/2
n in

front of V n(f,Y ), which ensures the convergence. If r > 2 the normalizing factor
blows up, so V n(f,Y ) goes to 0; when r < 2 then V n(f,Y ) blows up (at least in the
first case of (1.2.9)) and when r = 2 the functionals V n(f,Y ) go to a limit, without
normalization. Therefore we end up with the following LLNs (we always suppose
f continuous, and is of polynomial growth in the last statement below; this means
that |f (x)| ≤K(1+ |x|p) for some constants K and p):

f (x)= o
(|x|2) as x→ 0 ⇒ V n(f,X)t

P=⇒
∑

s≤t
f (ΔXs)
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f (x)∼ x2 as x→ 0 ⇒ V n(f,X)t
P=⇒ ct +

∑

s≤t
f (ΔXs)

(1.4.5)

f (x)∼ |x|r as x→ 0 ⇒
⎧
⎨

⎩
V n(f,X)t

P−→+∞ if r ∈ (0,2) and t > 0

Δ
1−r/2
n V n(f,X)t

u.c.p.=⇒ tmrσ
r .

Once more, this does not cover all possible test functions f .

1.4.2 The Central Limit Theorem

We have different CLTs associated with the different LLNs in (1.4.5). The results
rely again upon the decomposition (1.4.2). In view of (1.4.2), and since we already
have the CLT for V n(f,Y ), we basically need to establish a CLT for V

n
(f ), for

which the LLN takes the form (1.4.3). Due to some peculiarity of the Skorokhod
topology, (1.4.3) does not imply that the difference V

n
(f )t −∑s≤t f (ΔXs) goes

to 0 for this topology. However we do have Skorokhod convergence to 0 of the
discretized processes, that is

V̂ n(f )t := V
n
(f )t −

∑

s≤Δn[t/Δn]
f (ΔXs)

a.s.=⇒ 0,

and we are looking for a CLT for these processes V̂ n(f ).
The key steps of the argument are as follows:

Step 1) We rewrite V̂ n(f )t as V̂ n(f )t =∑N
(Δn)
t

q=1 ηnq , where

ηnq = f
(
Ψq +Δni(n,q)Y

)− f (Ψq)− f
(
Δni(n,q)Y

)
.

Assuming that f is C1 with f (0)= 0, and recalling Δn
i(n,q)

Y → 0, a Taylor expan-
sion gives

ηnq =
(
f ′(Ψq)− f ′(0)

)
Δni(n,q)Y

(
1+ o
(
Δni(n,q)Y

))
.

Since Δni(n,q)Y = bΔn + σ
√
Δn Δ

n
i(n,q)W , we deduce (this has to be justified, of

course):

ηnq =
(
f ′(Ψq)− f ′(0)

)
σΔni(n,q)W + o(

√
Δn ). (1.4.6)

Step 2) The jump times Tq and sizes Ψq , hence the random integers i(n, q), are
independent of W . Moreover one can check that the sequence (Δn

i(n,q)
W)q≥1

is asymptotically independent of the process X as n→∞, whereas in restric-
tion to the set Ωnt the variables Δni(n,q)W for q = 1, . . . ,Nt are independent and
N (0,Δn).
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Therefore, if (Φq)q≥1 denotes a sequence of independent N (0,1) variables, in-
dependent of the process X, we deduce the following joint convergence in law, as
n→∞:

(
X,

(
1√
Δn

ηnq

)

q≥1

)
L−→ (X, ((f ′(Ψq)− f ′(0)

)
σ Φq
)
q≥1

)
.

Step 3) The previous step and (1.4.6) give

(
X,

1√
Δn

V̂ n(f )

)
L=⇒ (X, V̂ (f )), where V̂ (f )t =

Nt∑

q=1

(
f ′(Ψq)− f ′(0)

)
σ Φq

(1.4.7)
(we also have the stable convergence in law). This is the desired CLT for V̂ n.

Step 4) It remains to combine (1.4.7) with the result of the previous section, in the
light of the decomposition (1.4.2). In order to stay simple, although keeping the
variety of possible results, we only consider the absolute power functions fr(x)=
|x|r . The results strongly depend on r , as did the LLNs (1.4.5) already, but here we
have more cases.

For getting a clear picture of what happens, it is useful to rewrite (1.4.7) in a
somewhat loose form (in particular the “equality” below is in law only), as follows,
at least when r > 1 so fr is C1 and f ′r (0)= 0:

V
n
(fr)t = Ant +Bnt + o(

√
Δn ) “in law”, where

Ant =
N
(Δn)
t∑

q=1

fr(Ψq), Bnt =
√
Δn

Nt∑

q=1

f ′r (Ψq)σ Φq. (1.4.8)

Analogously, we can rewrite (1.2.10) for Y as follows:

V n(fr , Y )t = A′nt +B ′nt + o
(
Δ
r/2−1/2
n

)
“in law”, where

A′nt = Δ
r/2−1
n mrσ

r t, B ′nt = Δ
r/2−1/2
n σ r

√
m2r −m2

r W
′
t .

Note that Ant � Bnt (meaning Bnt /A
n
t

P−→ 0 as n→∞), and A′nt � B ′nt . Then we
can single out seven (!) different cases. For simplicity we do not write the joint con-
vergence with the process X itself, but this joint convergence nevertheless always
holds.

1) If r > 3: We have Bnt �A′nt , hence

1√
Δn

(
V n(fr ,X)

n
t −

N
(Δn)
t∑

q=1

fr(Ψq)

)
L=⇒

Nt∑

q=1

f ′r (Ψq)σ Φq.
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2) If r = 3: Both terms Bnt and A′nt are of the same order of magnitude, hence

1√
Δn

(
V n(f3,X)

n
t −

N
(Δn)
t∑

q=1

f3(Ψq)

)
L=⇒ m3σ

3 t +
Nt∑

q=1

f ′3(Ψq)σ Φq.

3) If 2< r < 3: We have Ant �A′nt � Bnt . Then we do not have a proper CLT here,
but the following two properties:

1

Δ
r/2−1
n

(
V n(fr ,X)

n
t −

N
(Δn)
t∑

q=1

fr(Ψq)

)
u.c.p.=⇒ mrσ

r t,

1√
Δn

(
V n(fr ,X)

n
t −

N
(Δn)
t∑

q=1

fr(Ψq)−Δr/2−1
n mrσ

r t

)
L=⇒

Nt∑

q=1

f ′r (Ψq)σ Φq.

4) If r = 2: Both terms Ant and A′nt , resp. Bnt and B ′nt , are of the same order of
magnitude, and one can show that

1√
Δn

(
V n(f2,X)

n
t − σ 2t +

N
(Δn)
t∑

q=1

(Ψq)
2

)
L=⇒ √

2σ 2W ′
t + 2

Nt∑

q=1

Ψq σ Φq

(recallm2 = 1 andm4 = 3 and f ′2(x)= 2x). HereW ′ is a Brownian motion indepen-
dent of X, and also of the sequence (Φq). Note that, if we replace t by Δn[t/Δn] in
the left side above, which does not affect the convergence, this left side is the differ-
ence between the approximate quadratic variation and the discretized true quadratic
variation.

5) If 1< r < 2: We have A′nt � Ant � B ′nt � Bnt . Then as in Case 3 we have two
results:

1

Δ
1−r/2
n

(
Δ

1−r/2
n V n(fr ,X)

n
t −mrσ r t

) P=⇒
Nt∑

q=1

fr(Ψq),

1

Δ
r/2−1/2
n

(
V n(fr ,X)

n
t −Δr/2−1

n mrσ
r t −

N
(Δn)
t∑

q=1

fr(Ψq)

)
L=⇒ σ r
√
m2r −m2

r W
′
t .

6) If r = 1: The function f1 is not differentiable at 0, but one can show that V
n
(f1)

has a decomposition (1.4.8) with the same Ant and with a Bnt satisfying Ant � Bnt .
Now, Ant and B ′nt have the same order of magnitude, so we get

1√
Δn

(√
Δn V

n(f1,X)
n
t −m1σ t

) L=⇒
Nt∑

q=1

|Ψq | + |σ |
√

1−m2
1 W

′
t .
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7) If 0 < r < 1: Again the function fr is not differentiable at 0, but obviously
V
n
(fr)t stays bounded in probability. Then we have:

1√
Δn

(
Δ

1−r/2
n V n(fr ,X)

n
t −mrσ r t

) L=⇒ σ r
√
m2r −m2

r W
′
t .

The jumps have disappeared from the picture in this case, which is as in (1.2.10).

From this brief description, we are able to conclude a moral that pervades the
theory: including processes with jumps complicate matters more than one might
naively suspect.



Chapter 2
Some Prerequisites

This second preliminary chapter is very different from the first one. Its aim is to
establish notation to be used throughout the book, and to recall some properties of
semimartingales and a few limit theorems which are basic to our study. Most of these
results are available in book form already, and the proofs are omitted: we refer to the
books of Jacod and Shiryaev [57] for most results, and of Protter [83] or Ikeda and
Watanabe [50] for some specific results on semimartingales and stochastic calculus.
A few results are new in book form, and those are mostly proved in the Appendix.

2.1 Semimartingales

The basic process whose “discretization” is studied in this book is a d-dimensional
semimartingale, say X. This means a process indexed by nonnegative times t , with
d components X1, . . . ,Xd , and such that each component Xi = (Xit )t≥0 is a semi-
martingale.

We need to be a bit more specific: we start with a probability space (Ω,F ,P)
endowed with a filtration (Ft )t≥0, that is an increasing (meaning Fs ⊂Ft if s ≤ t)
and right-continuous (meaning Ft = ∩s>tFs ) family of sub-σ -fields Ft of F . We
say that (Ω,F , (Ft )t≥0,P) is a filtered probability space. We do not make the usual
assumption that the filtration is “complete”, since this property does not play any
role in the sequel.

A real-valued process Y on this filtered probability space is called a semimartin-
gale if

(i) it is adapted (to the underlying filtration, i.e., each Yt is Ft measurable);
(ii) it has càdlàg (the acronym for “right-continuous with left limits”, in French)

paths;
(iii) there is a sequence (Tn) of stopping times increasing to ∞ such that for any

n the stopped process Y(n)= Yt∧Tn is the sum of a martingale plus a process
whose paths have bounded variation over each finite interval (such a process is
called “process of finite variation”).

J. Jacod, P. Protter, Discretization of Processes,
Stochastic Modelling and Applied Probability 67,
DOI 10.1007/978-3-642-24127-7_2, © Springer-Verlag Berlin Heidelberg 2012
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Property (iii) is the crucial one, and it may be expressed equivalently by saying that
Y is the sum of a local martingale plus a process of finite variation. A d-dimensional
process is a semimartingale if its components are real-valued semimartingales.

Among all processes, semimartingales play a very special role. For example they
are the most general processes with respect to which a (stochastic) integration the-
ory, having the usual “nice” properties like a Lebesgue convergence theorem, can be
constructed. This fact may even be used as the definition of the semimartingales, see
e.g. Protter [83]. In mathematical finance they also play a special role, since one of
the most basic results (the so-called “fundamental asset pricing theorem”) says that
if no arbitrage is allowed, then the price process should at least be a semimartingale.

We are not going to describe the properties of semimartingales at large, as this
constitutes a whole theory by itself, and one may for example consult Dellacherie
& Meyer [25] for a comprehensive study. Rather, we will focus our attention on the
properties which are most useful for our purposes.

Before proceeding, we recall two useful notions:

• a localizing sequence of stopping times is a sequence of stopping times which
increases to +∞,

• an R
d -valued process H is locally bounded if supω∈Ω,0<t≤Tn(ω) ‖Ht(ω)‖ <∞

for some localizing sequence (Tn) of stopping times (‖.‖ denotes the Euclidean
norm on R

d ).

Note that in the second definition above we take sup0<t≤Tn ‖Ht‖ instead of the
most customary sup0≤t≤Tn ‖Ht‖: when H is right-continuous this makes no differ-
ence on the set {Tn > 0}, and when H is the integrand of a (stochastic or ordinary)
integral the value H0 plays no role at all. The reason for this slightly weaker defini-
tion is the following: saying that sup0≤t≤Tn ‖Ht‖ is bounded automatically implies
that the initial variable H0 is bounded, and in most cases we do not want such a
restriction.

2.1.1 First Decompositions and the Basic Properties
of a Semimartingale

Let X be a real semimartingale on a filtered space (Ω,F , (Ft )t≥0,P).

1) We have a first decomposition of X, which is

Xt = X0 +At +Xct +Mt (2.1.1)

where A0 = Xc0 =M0 = 0 and A is an adapted process whose paths are of finite
variation, and Xc is a continuous local martingale, and M is a local martingale
which is orthogonal to all continuous local martingales, meaning that the product
MN is a local martingale for any continuous local martingale N . One says that M
is “purely discontinuous”, although this does not refer to sample path behavior: for
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example Yt − t where Y is a standard Poisson process is a purely discontinuous
martingale in this sense.

The decomposition (2.1.1) is by no way unique. However, any other decomposi-
tion Xt =X0+A′t +X′ct +M ′

t of the same type is such that X′c =Xc outside a null
set. We usually identify two processes whose paths are a.s. the same, so we say that
Xc is the continuous local martingale part of X.

2) Next, we define “stochastic integrals” with respect to X. This is first done for
integrands H which are “simple”, that is of the form Ht =∑m≥1Um1(Tm,Tm+1](t)
(where 1A denotes the indicator function of any set A), for a sequence (Tm) of times
increasing to +∞ and random variables Um. The integral process is then defined as

∫ t

0
Hs dXs =

∑

m≥1

Um (Xt∧Tm+1 −Xt∧Tm). (2.1.2)

This is the “naive” integral, taken ω-wise, of a piecewise constant function t �→
Ht(ω) with respect to the “measure” having the distribution function t �→Xt(ω).

Of course, there is no such measure in general. Nevertheless, the above elemen-
tary integral can be extended to the set of all predictable and bounded (or, locally
bounded,) processes. For this, we first recall that the predictable σ -field P is the
σ -field on Ω × R+ which is generated by all processes Y which are adapted and
continuous (or only left-continuous, the σ -field is the same). A predictable process
is a process which, considered as a map from Ω × R+ into R, is P measurable.
Note that a simple process H as above is predictable as soon as the Tm’s are stop-
ping times and the Um’s are FTm measurable.

The extendability of (2.1.2) means that, for any predictable and locally bounded
process H , one can define (in a unique way, up to null sets) a process called the
“stochastic integral process” and denoted as

Zt =
∫ t

0
Hs dXs,

in such a way that it coincides with (2.1.2) when H is simple and predictable, and
that we further have a “dominated convergence theorem” which is stated as Proposi-
tion 2.2.7 in Sect. 2.2 (in which all limit theorems are gathered). The above notation
implicitly means the integral is taken over the interval (0, t], with t included in, and
0 excluded from, the domain of integration.

When t varies, this defines a process Z = (Zt ) which itself is a semimartingale,
as we see below: indeed, if we consider any decomposition like (2.1.1), and since all
three processes A, Xc and M are semimartingales, we can integrate H with respect
to each of these, and we have

∫ t

0
Hs dXs =

∫ t

0
Hs dAs +

∫ t

0
Hs dX

c
s +
∫ t

0
Hs dMs. (2.1.3)

This provides a decomposition of the type (2.1.1) for Z, and in particular Zc =∫ t
0 Hs dX

c
s .
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One may in fact define stochastic integrals for a class of integrandsH larger than
the set of predictable locally bounded processes, and a precise description of those
H which are “integrable” with respect to a given semimartingale X is available,
although not immediately obvious. We do not need this here, except when X is a
Brownian motion: in this case the set of integrable processes is the set of all progres-
sively measurable processes H (meaning that for any t the map (ω, s) �→Hs(ω) on
Ω × (0, t] is Ft ⊗B([0, t]) measurable), such that

∫ t

0
H 2
s ds < ∞ a.s. for all t ∈R+.

For example any adapted càdlàg process H is integrable with respect to the Brow-
nian motion, and its integral coincides with the integral of the left-continuous pro-
cess H−.

3) Now we look at the “jumps” of a càdlàg process Y , say R
d -valued. We set

Yt− = lims↑↑t Ys (with the convention Y0− = Y0),

ΔYt = Yt − Yt−, D(Y ) = {(ω, t) : ΔYt(ω) �= 0
}
.

The jump process (ΔYt ) is R
d -valued, and for each ω the set D(Y)(ω) =

{t : (ω, t) ∈ D(Y)} of all times at which Y jumps is at most countable, although
typically it may be a dense subset of R+. However, even in this case, the set
{t : ‖ΔYt‖> ε} is locally finite for any ε > 0, because of the càdlàg property.

If X is a semimartingale and Zt =
∫ t

0 Hs dXs is the stochastic integral of a pre-
dictable process H , then we can find a version of the integral process Z satisfying
identically:

ΔZt = Ht ΔXt . (2.1.4)

4) At this point we can introduce the quadratic variation of X. First if Y is a
continuous local martingale with Y0 = 0, there is a unique increasing adapted and
continuous process, null at 0, and denoted by 〈Y,Y 〉, such that Y 2−〈Y,Y 〉 is a local
martingale (this is the Doob-Meyer decomposition of the local submartingale Y 2).
Next, for X a one-dimensional semimartingale, we set

[X,X]t =
〈
Xc,Xc

〉
t
+
∑

s≤t
(ΔXs)

2. (2.1.5)

The sum above makes sense, since it is a sum of positive numbers on the countable
setD(X)(ω)∩[0, t]. What is not immediately obvious is that it is a.s. finite, but this
fact is one of the main properties of semimartingales. Hence the process [X,X] is
increasing and càdlàg, and also adapted (another not immediately obvious property),
and it is called the quadratic variation process of X, or sometimes the “square
bracket”. Note that [X,X] = 〈X,X〉 when X is a continuous local martingale. Also
note that, for any semimartingale, [Xc,Xc] = 〈Xc,Xc〉 is the “continuous part” of
the increasing process [X,X] (not to be confused with its “continuous martingale
part”, which is identically 0).
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When Y and Y ′ are two continuous local martingales, null at 0, we analogously
have a unique process 〈Y,Y ′〉 which is continuous, adapted, null at 0 and of locally
finite variation, and such that YY ′ − 〈Y,Y ′〉 is a local martingale. We have 〈Y,Y ′〉 =
〈Y ′, Y 〉. When X and X′ are two real-valued semimartingales we then set

[
X,X′
]
t
= 〈Xc,X′c〉

t
+
∑

s≤t
ΔXs ΔX

′
s .

Here again the sum above is a.s. absolutely convergent, by the finiteness in (2.1.5)
for X and X′ and the Cauchy-Schwarz inequality. The process [X,X′] = [X′,X] is
adapted and locally of finite variation, but not necessarily increasing any more, and
is called the quadratic covariation process of X and X′. We also have for any real
a and any other semimartingale X′′:

[
X+ aX′,X′′] = [X,X′′]+ a[X′,X′′]. (2.1.6)

Another useful property, which immediately follows from this, is the polarization
identity:

[
X,X′
] = 1

4

([
X+X′,X+X′]− [X−X′,X−X′]). (2.1.7)

To put an end to this topic, let us mention a fundamental property of the quadratic
variation. Take any sequence of subdivisions of R+ with meshes going to 0: we can
even consider random subdivisions, that is for each n we have a sequence (T (n, i) :
i ≥ 0) of stopping times, which strictly increases to +∞, and with T (n,0)= 0, and
such that sup(T (n, i + 1) ∧ t − T (n, i) ∧ t : i ≥ 0) goes to 0 in probability for all
t > 0 as n→∞. Then we have the following convergence in probability, for all
t ≥ 0, and as n→∞:

∑

i≥1

(Xt∧T (n,i) −Xt∧T (n,i−1))
(
X′t∧T (n,i) −X′t∧T (n,i−1)

) P−→ [X,X′]
t
. (2.1.8)

This is a very simple consequence of the forthcoming Itô’s formula and the dom-
inated convergence theorem for stochastic integrals, and in view of its importance
for this book we will prove it later.

5) Let now A be an increasing adapted càdlàg process, null at 0, and which
is locally integrable: the latter means that E(ATn) <∞ for all n, for a localizing
sequence (Tn) of stopping times. Then A is a local submartingale and by the Doob-
Meyer decomposition again there is an almost surely unique, increasing càdlàg pre-
dictable process A′ with A′0 = 0, such that A−A′ is a local martingale. The same
holds when A is adapted, càdlàg and of locally integrable variation (meaning: it is
the difference of two increasing locally integrable processes), except that A′ is no
longer increasing but of finite (and even locally integrable) variation.

In these two cases, A′ is called the compensator, or “predictable compensator”,
of A. When A is of locally finite variation adapted and continuous withA0 = 0, then
it is necessarily of locally integrable variation, and its compensator is A′ =A.
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6) The above notion applies in particular to the quadratic variation process of a
semimartingale X. Suppose that [X,X] is locally integrable. In this case, we denote
by 〈X,X〉, and call “angle bracket” or “predictable quadratic variation process”, the
compensator of [X,X]. This notation does not conflict with the notation 〈X,X〉 pre-
viously defined as the quadratic variation when X is a continuous local martingale:
indeed, in this case the quadratic variation is continuous increasing adapted, hence
predictable and locally integrable, hence its own compensator.

More generally if X and X′ are two semimartingales with both [X,X] and
[X′,X′] locally integrable, then [X,X′] is of locally integrable variation, and
〈X,X′〉 denotes its compensator.

Note that the local integrability of [X,X] may fail, in which case the predictable
quadratic variation is not defined.

7) Now we consider a d-dimensional semimartingaleX = (Xi)i≤d . First, we still
have (many) decompositions like (2.1.1), which should be read component by com-
ponent: that is, we have A= (Ai)i≤d and Xc = (Xi,c)i≤d and M = (Mi)i≤d . Next,
we can integrate locally bounded predictable processesH which are d-dimensional,
sayH = (H i)i≤d , and the stochastic integral process is (withH� denoting the trans-
pose):

Zt =
∫ t

0
H�s dXs :=

d∑

i=1

∫ t

0
His dX

i
s,

where on the right side we have a collection of “one-dimensional” integrals defined
as before. We still have a formula as in (2.1.3), which gives a decomposition of the
type (2.1.1) for Z, and (2.1.4) holds as well. And, if H is “simple”, we again have
(2.1.2) with the summands U�m (Xt∧Tm+1 −Xt∧Tm).

Turning to the quadratic variation, we now have a collection [X,X] = ([Xi,Xj ] :
1 ≤ i, j ≤ d) of adapted càdlàg processes of locally finite variation. By (2.1.6) ap-
plied twice it is easy to check that [X,X] takes its values in the set M+

d×d of all
nonnegative symmetric d × d matrices, and it is non-decreasing for the strong order
of this set (the last qualifier means that [X,X]t+s − [X,X]t belongs to M+

d×d for
all s, t ≥ 0).

If further all increasing processes [Xj ,Xj ] are locally integrable, we have the
“angle bracket” 〈X,X〉 = (〈Xj ,Xk〉 : 1≤ j, k ≤ d), which again takes its values in
the set M+

d×d , and is non-decreasing for the strong order of this set.

8) We end this subsection with a statement of Itô’s formula. If X is a d-
dimensional semimartingale and if f is a C2 function on R

d (C2 = twice contin-
uously differentiable), then the process f (X) is also a semimartingale. Moreover,
with ∂if and ∂2

ij f denoting the first and second partial derivatives of f , we have

f (Xt ) = f (X0)+
d∑

i=1

∫ t

0
∂if (Xs−) dXis +

1

2

d∑

i,j=1

∫ t

0
∂2
ij f (Xs−) d

〈
Xic,Xjc

〉
s
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+
∑

s≤t

(
f (Xs− +ΔXs)− f (Xs−)−

d∑

i=1

∂if (Xs−)ΔXis

)
. (2.1.9)

The integrals above are meaningful because ∂if (X−) and ∂2
ij f (X−) are predictable

and locally bounded, and it turns out that the last sum is absolutely convergent
for all t , even though, separately, the sums

∑
s≤t (f (Xs− +ΔXs)− f (Xs−)) and∑

s≤t ∂if (Xs−)ΔXis may diverge.

Important Warning: We have often seen the qualifier “up to a null set” appear in
the text above. And indeed, the brackets [X,X], and 〈X,X〉 when it exists, and the
stochastic integrals, and the predictable compensators, are all defined uniquely, up
to a P null set. Therefore it is convenient—and without harm—to identify two pro-
cesses X and X′ which have the same paths outside a P null set: this identification
will be made, usually without further mention, in the whole book.

2.1.2 Second Decomposition and Characteristics
of a Semimartingale

Here again the filtered probability space (Ω,F , (Ft )t≥0,P) and the semimartingale
X are fixed.

1) First, we associate with X the following d-dimensional process

X′t = Xt −X0 − Jt , where Jt =
∑

s≤t
ΔXs 1{‖ΔXs‖>1}.

The sum defining Jt is for all ω and t a finite sum, and the process J is adapted
and càdlàg and obviously of finite variation. Hence it is a semimartingale, and so is
X′. Moreover ‖ΔX′‖ ≤ 1 by construction. Then X′ is, or rather each of its d com-
ponents are, “special” semimartingales. This implies that among all decompositions
(2.1.1) for X′, there is one and only one (recall the above warning: the uniqueness
is up to null sets) such that the process A is predictable, in addition to being of finite
variation. We write this decomposition as

X′t = X0 +Bt +Xct +Mt,
where B0 =M0 = 0 and B is predictable and (component by component) of locally
finite variation, and M is (component by component again) a purely discontinuous
local martingale, and Xc is the same as in (2.1.1) (recall that Xc does not depend on
the decomposition). This yields

Xt = X0 +Bt +Xct +Mt +
∑

s≤t
ΔXs 1{‖ΔXs‖>1}. (2.1.10)
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It is important to mention that this decomposition is unique (up to null sets). Note
that B is not necessarily continuous, but its jump process satisfies ‖ΔB‖ ≤ 1, and
thus ‖ΔM‖ ≤ 2.

2) Next, we associate with X a random measure μ (or, μX if we want to empha-
size the dependency on X), called the jump measure of X, by the formula

μ(ω;dt, dx) =
∑

(ω,s)∈D(X)
ε(s,ΔXs(ω))(dt, dx).

Here εa denotes the Dirac measure charging a ∈R+ ×R
d , so for each ω, μ(ω; .) is

an integer-valued measure on R+ ×R
d , which charges neither the set {0}×R

d , nor
the set R+ × {0}, and such that μ({t} ×R

d) equals 1 if t ∈D(X) and 0 otherwise.
For any Borel subset A of Rd we have

1A � μt := μ
(
(0, t] ×A) =

∑

s≤t
1A(ΔXs). (2.1.11)

The process 1A � μ is non-decreasing and adapted, although it may take the value
+∞ at some time t > 0, or even at all times t > 0. However whenA lies at a positive
distance from 0 the process 1A � μ is càdlàg, N-valued and with jumps of size 1,
hence locally integrable; then it admits a predictable compensator which we denote
by 1A � ν, and which is a predictable increasing process, null at 0, and also locally
integrable.

Moreover A �→ 1A � μt is σ -additive, and it follows that A �→ 1A � νt is almost
surely σ -additive. So it is no wonder that there exists a genuine positive random
measure ν(ω;dt, dx) on R+ ×R

d such that

1A � ν(ω)t = ν(ω; (0, t] ×A) (2.1.12)

for all A as above (the compensator being defined up to a null set, one should rather
say: there is a measure ν such that the formula (2.1.12) defines a version 1A�ν of the
compensator of 1A � μ). Not surprisingly, the measure ν is called the (predictable)
compensator of μ.

We extend the notation (2.1.11) or (2.1.12) to more general integrands. If δ =
δ(ω, t, x) is a real function on Ω ×R+ ×R

d , we write

δ � μt =
∫

[0,t]×Rd
δ(ω, s, x)μ(ω;ds, dx),

δ � νt =
∫

[0,t]×Rd
δ(ω, s, x)ν(ω;ds, dx),

(2.1.13)

as soon as these integrals make sense. In particular if the first one makes sense, we
have

δ � μt =
∑

s≤t
δ(s,ΔXs). (2.1.14)
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3) At this point, we can define the characteristics, also known as “predictable
characteristics” or “local characteristics”, of the semimartingale X. These charac-
teristics consist of the triplet (B,C, ν), where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

• B = (Bi)1≤i≤d is the predictable process of locally finite variation
with B0 = 0, occurring in (2.1.10),

• C = (Cij )1≤i,j≤d , where Cij = 〈Xi,c,Xj,c〉,
• ν is the compensator of the jump measure μ, as defined above.

It is useful to express the quadratic variation process [X,X], and also the angle
bracket 〈X,X〉 when it exists, in terms of the previous quantities. First we have
always

[
Xi,Xj

] = Cij + (xixj ) � μ.
Here the last process is δ � μ (notation (2.1.14)) for the function δ(ω, t, x)= xixj ,
where (xi)1≤i≤d denote the components of x ∈R

d ).
Second, it can be shown that the angle bracket exists if and only if (xi)2 �νt <∞

a.s. for all t and i, or equivalently if (xi)2 � μ is locally integrable for all i. In this
case we have

〈
Xi,Xj

〉
t
= C

ij
t +
(
xixj
)
� νt −

∑

s≤t
ΔBisΔB

j
s . (2.1.15)

4) The integrals in (2.1.13) are Lebesgue integrals with respect to two positive
measures, for any fixed ω. Now, the signed measureμ−ν is a “martingale measure,”
in the sense that for any Borel subset A of Rd at a positive distance of 0 the process
1A � (μ− ν) = 1A � μ− 1A � ν is a local martingale. So we also have a notion of
stochastic integral with respect to μ− ν, which proves quite useful.

We will say that a function δ onΩ×R+×R
d is predictable if it is P̃ measurable,

where P̃ =P⊗Rd , where P is the predictable σ -field onΩ×R+ and Rd the Borel
σ -field of Rd . Clearly δ(ω, t, x)= 1A(x) is predictable in this sense when A ∈Rd .

Let us take a predictable function δ as above. If

(
δ2 ∧ |δ|) � νt < ∞ ∀t > 0, (2.1.16)

we can define a process denoted by

∫ t

0

∫

Rd

δ(s, x)(μ− ν)(ds, dx), or δ � (μ− ν)t ,

and called the stochastic integral of δ with respect to μ− ν: this is the unique (up
to null sets) purely discontinuous local martingale whose jumps are given by

Δ
(
δ � (μ− ν))

t
=
∫
δ(t, x)(μ− ν)({t}, dx)= δ(t,ΔXt)−

∫
δ(t, x)ν

({t}, dx),
(2.1.17)
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and moreover it coincides with the difference δ � μ − δ � ν when both processes
δ � μ and δ � ν are well-defined and finite-valued. (Here again one could define the
stochastic integral δ ∗ (μ − ν) for predictable integrands δ satisfying a condition
slightly weaker than (2.1.16), but more complicated to state; the condition (2.1.16)
will however be enough for our purposes.)

5) With this notion of stochastic integral, we arrive at the final decomposition of
a semimartingale. Namely, we have

X =X0 +B +Xc + (x1{‖x‖≤1}) � (μ− ν)+ (x1{‖x‖>1}) � μ. (2.1.18)

This is called the Lévy-Itô decomposition of the semimartingale, by analogy with
the formula bearing the same name for Lévy processes, see the next subsection. It
is in fact another way of writing the decomposition (2.1.10), with the same B and
Xc, and the last two terms in each of the two decompositions are the same. SoM in
(2.1.10) is equal to the stochastic integral (x1{‖x‖≤1})�(μ−ν), which should be read
component by component and is δ∗(μ−ν)with the function δ(ω, t, x)= x1{‖x‖≤1}.
Note that this function δ is predictable, and it satisfies (2.1.16) because the third
characteristic ν of X always satisfies

(‖x‖2 ∧ 1
)
� νt < ∞ ∀ t > 0. (2.1.19)

The latter property comes from the fact that (‖x‖2 ∧ 1) � μt =∑s≤t ‖ΔXs‖2 ∧ 1 is
finite-valued and with bounded jumps, hence locally integrable.

6) Finally we give a version of Itô’s formula based on the characteristics. This
version is a straightforward consequence of the classical formula (2.1.9) and of the
previous properties of random measures and the decomposition (2.1.18). If f is a
C2 function,

f (Xt ) = f (X0)+
d∑

i=1

∫ t

0
∂if (Xs−) dBis +

1

2

d∑

i,j=1

∫ t

0
∂2
ij f (Xs−) dC

ij
s

+
((
f (X− + x)− f (X−)−

d∑

i=1

∂if (X−)xi
)

1{‖x‖≤1}

)
� νt

+
d∑

i=1

∫ t

0
∂if (Xs−) dXics +

((
f (X− + x)− f (X−)

)
1{‖x‖≤1}

)
� (μ− ν)t

+ ((f (X− + x)− f (X−)
)
1{‖x‖>1}

)
� μt . (2.1.20)

This formula looks complicated, but it turns out to be quite useful. We use a short
hand notation here, for example (f (X− + x)− f (X−))1{‖x‖>1} stands for the pre-
dictable function δ(ω, t, x) = (f (Xt−(ω) + x) − f (Xt−(ω)))1{‖x‖>1}. The right
side gives a decomposition of the semimartingale f (X) which is somewhat similar
to (2.1.18): apart from the initial value f (X0), the sum of the first three terms is
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a predictable process of locally finite variation, the fourth term is the continuous
martingale part f (X)c, the fifth one is a purely discontinuous local martingale with
locally bounded jumps, and the last one is a finite sum of “big” jumps of f (X).

2.1.3 A Fundamental Example: Lévy Processes

An adapted d-dimensional process X on (Ω,F , (Ft )t≥0,P) is said to have (Ft )-
independent increments, if for all s, t ≥ 0, the increment Xt+s −Xs is independent
of the σ -field Ft . We have the following general result: if X is a d-dimensional
semimartingale, it is a process with (Ft )-independent increments if and only if its
characteristics (B,C, ν) have a deterministic version, that is B is a d-dimensional
càdlàg function with locally finite variation, C is a continuous function with values
in the set M+

d×d and increasing in this set, and ν is a (non-random) positive measure
on R+ ×R

d .
It turns out that there exist processes with independent increments, even càdlàg

ones, which are not semimartingales. For example a deterministic process Xt =
f (t) is always a process with independent increments, whereas it is a semimartin-
gale if and only if the function f is càdlàg and of locally finite variation.

This, however, cannot happen if we assume in addition that the process has sta-
tionary increments. We say that X is an (Ft )-Lévy process if it is càdlàg adapted
with X0 = 0 and if the increments Xt+s −Xt are independent of Ft and with a law
depending on s of course, but not on t . When (Ft ) is the filtration generated by X,
we simply say Lévy process. We then have the following fundamental result:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

• Any (Ft )-Lévy process X is a semimartingale on (Ω,F , (Ft )t≥0,P),

• A d-dimensional semimartingale X is an (Ft )-Lévy process if and
only if X0 = 0 and its characteristics have the form

Bt(ω)= bt, Ct (ω)= ct, ν(ω;dt, dx)= dt ⊗ F(dx).
(2.1.21)

Here we have:

b= (bi)i≤d ∈R
d, c= (cij )i,j≤d ∈M+

d×d, F is a positive

measure on R
d with F({0})= 0 and

∫
(‖x‖2 ∧ 1)F (dx) <∞. (2.1.22)

The term (b, c,F ) is called the characteristic triplet ofX; b is the “drift”, c is the
covariance of the “Gaussian part”, and F is the “Lévy measure”. Conversely, with
any triplet (b, c,F ) satisfying (2.1.22) one associates a Lévy process X, and the
triplet (b, c,F ) completely characterizes the law of the process X (hence the name
“characteristics”) via the independence and stationarity of the increments, and the
Lévy-Khintchine formula which gives the characteristic function of the variable Xt .
With vector notation, the Lévy-Khintchine formula reads as follows, for all u ∈R

d :

E
(
eiu

�Xt
)= exp t

(
u�b− 1

2
u� c u+

∫ (
eiu

�x − 1− iu�x1{‖x‖≤1}
)
F(dx)

)
.
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Now, assuming that X is an (Ft )-Lévy process with the above triplet, we can
look at the specific form taken by the decomposition (2.1.18). We have X0 = 0 and
Bt = bt , as said before. The continuous local martingale Xc has quadratic variation
〈Xc,Xc〉t = ct , and by one of Lévy’s theorems this implies that Xc is in fact a
Gaussian martingale; more specifically, if σ denotes a square-root of c, that is a
d × d matrix such that σσ� = c, we can write Xc = σW where W is a standard
d-dimensional Brownian motion (to be more accurate one should say that, if k is
the rank of c, we can choose σ such that its d − k last columns vanish, so that only
the first k components ofW really matter; in particular when c= 0 then Xc = 0 and
no Brownian motion at all comes into the picture).

As for the jump measure μ = μX , it turns out to be a Poisson random mea-
sure on R+ ×R

d , with (deterministic) intensity measure ν. This means that for any
finite family (Ai) of Borel subsets of R+×R

d which are pairwise disjoint, the vari-
ables μ(Ai) are independent, with E(μ(Ai)) = ν(Ai). Moreover μ(Ai) =∞ a.s.
if ν(Ai) =∞, and otherwise μ(Ai) is a Poisson random variable with parameter
ν(Ai).

The Lévy-Itô decomposition (2.1.18) of X takes the form

Xt = bt + σWt + (x1{‖x‖≤1}) � (μ− ν)+ (x1{‖x‖>1}) � μ. (2.1.23)

The four terms in the right side are independent, and each one is again an (Ft )-Lévy
process. The last term is also a compound Poisson process.

Lévy processes have a lot of other nice properties. Some will be mentioned later
in this book, and the reader can consult the books of Bertoin [15] or Sato [87] for
much more complete accounts.

Semimartingales do not necessarily behave like Lévy processes, however a spe-
cial class of semimartingales does: this class is introduced and studied in the next
subsection. It is the most often encountered class of semimartingales in applica-
tions: for example the solutions of stochastic differential equations often belong to
this class.

We end this subsection with some facts about Poisson random measures which
are not necessarily the jump measure of a Lévy process. Let (E,E) be a Polish space
(= a metric, complete and separable space) endowed with its Borel σ -field. In this
book we will call an (Ft )-Poisson random measure on R+ ×E a random measure
p= p(ω;dt, dx) on R+ ×E, which is a sum of Dirac masses, no two such masses
lying on the same “vertical” line {t}×E, and such that for some σ -finite measure λ
on (E,E) and all A ∈ E with λ(A) <∞ we have

• 1A � pt = p
([0, t] ×A) is an (Ft )-Lévy process

• E(1A � pt ) = tλ(A).
(2.1.24)

Note that when λ(A)=∞ then 1A � pt =∞ a.s. for all t > 0, and otherwise 1A � p
is an ordinary Poisson process with parameter λ(A).

The measure λ is called the Lévy measure of p, by analogy with the case of Lévy
processes: indeed, the jump measure μ of an (Ft )-Lévy process is of this type, with
E =R

d and the same measure λ= F in (2.1.21) and (2.1.24).
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With p as above, we set q(A)= E(p(A)) for any A ∈R+⊗E (this is the intensity
measure). Then q is also the “compensator” of p in the sense that the process 1A�qt =
q([0, t]×A) is the (predictable) compensator of the process 1A � p for all A ∈ E such
that λ(A) <∞.

At this point, one may introduce stochastic integrals δ�(p−q) as in (2.1.17) for all

predictable functions δ onΩ×R+×E (with P̃ =P⊗E here) which satisfy (2.1.16)
for q instead of ν. Everything in this respect works as in the previous subsection, with

μ= μX substituted with p.

2.1.4 Itô Semimartingales

1) In this subsection we will be slightly more formal and go into more details than
before, since what follows is not as standard as what precedes. We start with a
definition:

Definition 2.1.1 A d-dimensional semimartingale X is an Itô semimartingale if its
characteristics (B,C, ν) are absolutely continuous with respect to Lebesgue mea-
sure, that is

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
cs ds, ν(dt, dx) = dt Ft (dx), (2.1.25)

where b = (bt ) is an R
d -valued process, c = (ct ) is an M+

d×d -valued process, and
Ft = Ft (ω,dx) is for each (ω, t) a measure on R

d .

These bt , ct and Ft necessarily have some additional measurability properties, so
that (2.1.25) makes sense. It is always possible to choose versions of them such that
bt and ct are predictable processes, as well as Ft(A) for all A ∈Rd . Further, since
(2.1.19) holds, we can also choose a version of F which satisfies identically

∫ (‖x‖2 ∧ 1
)
Ft(ω,dx) < ∞.

However, the predictability of b, c and F is not necessary, the minimal assumption
being that they are progressively measurable (for F that means that the process
Ft(A) is progressively measurable for all A ∈Rd ): this property, which will always
be assumed in the sequel when we speak of Itô semimartingales, is enough to ensure
the predictability of (B,C, ν), as given by (2.1.25).

Obviously, an (Ft )-Lévy process with characteristic triplet (b, c,F ) is an Itô
semimartingale, with bt (ω)= b and ct (ω)= c and Ft(ω, .)= F .

2) Our next aim is to give a representation of all d-dimensional Itô semimartin-
gales in terms of a d-dimensional (Ft )-Brownian motion W (that is an (Ft )-Lévy
process which is a Brownian motion) and of an (Ft )-Poisson random measure p.
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For this we have to be careful, because the space (Ω,F , (Ft )t≥0,P) may be too
small to support a Brownian motion or a Poisson random measure. In the extreme
case,Xt = t is a semimartingale on the space (Ω,F , (Ft )t≥0,P)whenΩ contains a
single point ω, with the probability P({ω})= 1, and evidently there is no Brownian
motion on this space. This example is perhaps too trivial, but we may also have the
following situation: suppose thatXt =W(t−1)+ whereW is a Brownian motion; then
X is a semimartingale, relative to the filtration (Ft ) which it generates. Obviously
Ft is the trivial σ -algebra when t < 1, so again there is no (Ft )-Brownian motion
on this space.

Hence to solve our problem we need to enlarge the space (Ω,F , (Ft )t≥0,P).
This question will arise quite often in this book, so here we give some details about
the procedure.

The space (Ω,F , (Ft )t≥0,P) is fixed and given. We consider another measurable
space (Ω ′,F ′) and a transition probability Q(ω, dω′) from (Ω,F) into (Ω ′,F ′).
Then we define the products

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃
(
dω,dω′

) = P(dω) Q
(
ω,dω′

)
.

(2.1.26)
The probability space (Ω̃, F̃ , P̃) is called an extension of (Ω,F ,P). Any variable
or process which is defined on eitherΩ orΩ ′ can, as usual, be considered as defined
on Ω̃ : for example Xt(ω,ω′)=Xt(ω) if Xt is defined on Ω . In the same way, a set
A ⊂ Ω is identified with the set A ×Ω ′ ⊂ Ω̃ , and we can thus identify Ft with
Ft ⊗ {∅,Ω ′}, so (Ω̃, F̃ , (Ft )t≥0, P̃) is a filtered space.

The filtration (Ft ) on the extended space is not enough, because it does not incor-
porate any information about the second factor Ω ′. To bridge this gap we consider
another filtration (F̃t )t≥0 on (Ω̃, F̃), with the inclusion property

Ft ⊂ F̃t ∀t ≥ 0.

The filtered space (Ω̃, F̃ , (F̃t )t≥0, P̃) is called a filtered extension of the filtered
space (Ω,F , (Ft )t≥0,P).

In many, but not all, cases the filtration (F̃t ) has the product form

F̃t = ∩s>t Fs ⊗F ′s (2.1.27)

where (F ′t ) is a filtration on (Ω ′,F ′). In many, but not all, cases again the transition
probability Q has the simple form Q(ω, dω′) = P

′(dω′) for some probability on
(Ω ′,F ′). In the latter case we say that the extension is a product extension, and if
further (2.1.27) holds we say that we have a product filtered extension: this is simply
the product of two filtered spaces.

A filtered extension is called very good if it satisfies

ω �→
∫

1A
(
ω,ω′
)
Q
(
ω,dω′

)
is Ft measurable for all A ∈ F̃t , all t ≥ 0.

(2.1.28)
Under (2.1.27), this is equivalent to saying that ω �→Q(ω,A′) is Ft measurable for
all A′ ∈F ′t , all t ≥ 0. A very good filtered extension is very good because it has the
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following nice properties:

• any martingale, local martingale, submartingale, supermartingale
on (Ω,F , (Ft )t≥0,P) is also a martingale, local martingale,
submartingale, supermartingale on (Ω̃, F̃ , (F̃t )t≥0, P̃),

• a semimartingale on (Ω,F , (Ft )t≥0,P) is a semimartingale on
(Ω̃, F̃ , (F̃t )t≥0, P̃), with the same characteristics

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.1.29)

(in fact, (2.1.28) is equivalent to the fact that any bounded martingale on (Ω,F ,
(Ft )t≥0,P) is a martingale on (Ω̃, F̃ , (F̃t )t≥0, P̃)). For example a Brownian mo-
tion on (Ω,F , (Ft )t≥0,P) is also a Brownian motion on (Ω̃, F̃ , (F̃t )t≥0, P̃) if the
extension is very good, and the same holds for Poisson measures.

Note that many extensions are not very good: let for example Q(ω, .) be the
Dirac mass εU(ω), on the space (Ω ′,F ′)= (R,R) endowed with the filtration F ′t =
F ′ for all t , and whereU is an R-valued variable on (Ω,F)which is not measurable
with respect to the P completion of F1, say. Then Q(ω,A′) = 1A′(U(ω)) is not
F1 measurable in general, whereas A′ ∈ F ′1, and the extension (with the product
filtration (2.1.27)) is not very good.

3) Now we are ready to give our representation theorem. The difficult part comes
from the jumps of our semimartingale, and it is fundamentally a representation the-
orem for integer-valued random measures in terms of a Poisson random measure, a
result essentially due to Grigelionis [39]. The form given below is Theorem (14.68)
of [52]. In this theorem, d ′ is an arbitrary integer with d ′ ≥ d , and E is an ar-
bitrary Polish space with a σ -finite and infinite measure λ having no atom, and
q(dt, dx)= dt ⊗ λ(dx).

Theorem 2.1.2 Let X be a d-dimensional Itô semimartingale on the space
(Ω,F , (Ft )t≥0,P), with characteristics (B,C, ν) given by (2.1.25). There is a
very good filtered extension, say (Ω̃, F̃ , (F̃t )t≥0, P̃), on which are defined a d ′-
dimensional Brownian motionW and a Poisson random measure p on R+ ×E with
Lévy measure λ, such that

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt , (2.1.30)

and where σt is an R
d ⊗ R

d ′ -valued predictable (or simply progressively measur-
able) process on (Ω,F , (Ft )t≥0,P), and δ is a predictable R

d -valued function on
Ω ×R+ ×E.

Moreover, outside a null set, we have σtσ �t = ct , and Ft (ω, .) is the image of the
measure λ restricted to the set {x : δ(ω, t, x) �= 0} by the map x �→ δ(ω, t, x).

Conversely, any process of the form (2.1.30) (with possibly b, σ and δ defined
on the extension instead of on (Ω,F , (Ft )t≥0,P)) is an Itô semimartingale on
(Ω̃, F̃ , (F̃t )t≥0, P̃), and also on (Ω,F , (Ft )t≥0,P) if it is further adapted to (Ft ).
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Once more, (2.1.30) should be read component by component, and the ith com-
ponent of

∫ t
0 σs dWs is the integral of σ i.t = (σ ijt : 1 ≤ j ≤ d ′) with respect to the

d ′-dimensional process W .
There is a lot of freedom for choosing the extension, of course, but also the space

E, and the function δ, and even the dimension d ′ and the process σ (the requirement
being that σtσ �t = ct ): we can always take an arbitrary d ′ ≥ d , or more generally
not smaller than the maximal rank of the matrices ct (ω). A natural choice for E
consists in taking E = R

d , but this is not compulsory and we may take in all cases
E = R with λ being the Lebesgue measure. For example if we have several Itô
semimartingales, and even countably many of them, we can use the same measure p
for representing all of them at once. Any decomposition as in (2.1.30) will be called
a Grigelionis decomposition of X.

Remark 2.1.3 Even when the measure λ has atoms, or is finite, (2.1.30) gives an Itô
semimartingale. Moreover, in the same spirit as for the choice of the dimension d ′
above, when A = sup(ω,t) Fω,t (R

d) is finite, we can find a Grigelionis representa-
tion for any choice of the measure λ without atom and total mass λ(E)≥A.

Note that the fact that an extension of the space is needed is a rather common
fact in stochastic calculus. For example the celebrated Dubins theorem according
to which any continuous local martingale M null at 0 is a time-changed Brownian
motion also necessitates an extension of the space to be true, unless 〈M,M〉∞ =∞
a.s. Here we have a similar phenomenon: when for example X is continuous and the
rank of ct is everywhere d , the extension is not needed, but it is otherwise.

Example 2.1.4 Lévy processes: Let X be an (Ft )-Lévy process with triplet
(b, c,F ), and take E = R

d and λ= F (even though this measure may have atoms
and/or may be finite, or even null). Then (2.1.30) holds with δ(ω, t, x) = x and
p = μ, and it is then nothing else than the Lévy-Itô decomposition (2.1.23). More
generally, for an Itô semimartingale the decompositions (2.1.18) and (2.1.30) agree,
term by term.

As a matter of fact, the representation (2.1.30) may serve as a definition for an
Itô semimartingale, if we do not mind about extending the space. This is in line
with the processes that are solutions of stochastic differential equations driven by a
Brownian motion and a Poisson measure: the “strong” solutions have the represen-
tation (2.1.30), whereas the “weak” solutions are Itô semimartingales in the sense
of Definition 2.1.1.

In any case, and since in the questions studied below it is innocuous to enlarge
the underlying probability space, throughout the remainder of this book all Itô semi-
martingales will be of the form (2.1.30), and we assume that both W and the Pois-
son measure p are defined on (Ω,F , (Ft )t≥0,P). By analogy with the stochastic
differential equation case, the terms b, σ and δ will be called the coefficients of X,
respectively the drift, the diffusion, and the jump coefficients.
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Finally, as soon the process

∫ t

0
ds

∫
‖x‖2Fs(dx) =

∫ t

0
ds

∫ ∥∥δ(s, z)
∥∥2λ(dz)

is finite-valued for all t , the angle bracket of X exists, and it is given by

〈
Xi,Xj

〉
t
= Cijt +

∫ t

0
ds

∫
xixj Fs(dx)= Cijt +

∫ t

0
ds

∫ (
δi(s, z)δj (s, z)

)
λ(dz)

(2.1.31)
(compare with (2.1.15)).

2.1.5 Some Estimates for Itô Semimartingales

This subsection is devoted to various estimates for Itô semimartingales. Most of
them are rather standard, but scarcely appear in book form, and a few of them are
new. So although only the results are presented in this chapter, the proofs are fully
given in the Appendix.

Before starting, we recall the Burkholder-Davis-Gundy inequalities. They play a
key role here, and can be found for example in Protter [83]: for each real p ≥ 1 there
are two constants 0< cp < Cp <∞ such that, for any local martingale M starting
at M0 = 0 and any two stopping times S ≤ T , we have

cp E
(([M,M]T − [M,M]S

)p/2 |FS
)

≤ E

(
sup

t∈R+:S<t≤T
|Mt −MS |p |FS

)

≤ Cp E
(([M,M]T − [M,M]S

)p/2 |FS
)

(2.1.32)

(most often, these inequalities are stated in expectation only, and with S = 0; the
meaning of [M,M]T on the set {T =∞} is [M,M]T = limt→∞ [M,M]t , an in-
creasing limit which may be infinite; when p > 1 these inequalities are simply
Burkholder-Gundy inequalities.)

The results below are stated, and will be used, in the d-dimensional setting. But,
as seen from the proofs, they are fundamentally one-dimensional estimates. They
are moment estimates, typically of the form E(|Zt |p) ≤ zt , where Zt is the vari-
able of interest (a stochastic integral, or some specific semimartingale) and zt is an
appropriate bound. However, a semimartingale, even of the form (2.1.30), has no
moments in general; so it may very well happen in the forthcoming inequalities that
both members are infinite; however, if the right member zt is finite, then so is the
left member E(|Zt |p).

Below, constants appear everywhere. They are usually written as K , and change
from line to line, or even within a line. If they depend on a parameter of interest,
say p, they are written as Kp (for example in estimates for the p moment, they
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usually depend on p and it may be useful to keep track of this). On the other hand,
constants occurring in estimates for a given X may also depend on its character-
istics, or at least on some bounds for the characteristics, and we are usually not
interested in keeping track of this and so they are just written as K , unless explicitly
stated.

The Itô semimartingale X has the Grigelionis decomposition (2.1.30), and below
we give estimates about, successively, the four terms (besides the initial value X0)
occurring in this decomposition. We start with estimates which require no specific
assumptions, and we consider a finite-valued stopping time T and some s > 0. The
constants often depend on p, but neither on T nor on s.

1) The drift term. The first estimate is simple (it is Hölder’s inequality) and given
for completeness. Note that it is “ω-wise”, and valid for p ≥ 1:

sup
0≤u≤s

∥∥∥∥∥

∫ T+u

T

br dr

∥∥∥∥∥

p

≤
(∫ T+s

T

‖bu‖du
)p

≤ sp

(
1

s

∫ T+s

T

‖bu‖p du
)
.

(2.1.33)

The way the last term above is written may look strange: it has the advantage of
singling out the term sp which is typically the order of magnitude of the whole
expression, times a term which is typically of “order 1” (here, the average of ‖bu‖p
over [T ,T + s]).

Note that this term of “typical order 1” may in some cases be infinite: the inequal-
ity becomes trivial but totally useless. The same comment applies to all forthcoming
inequalities.

2) Continuous martingales. Here we consider the continuous martingale part∫ t
0 σs dWs , where W is a d ′-dimensional Brownian motion and σt is R

d ⊗ R
d ′ -

valued. Applying the Burkholder-Davis-Gundy inequality for each component, we
deduce that for all p ≥ 1 we have

E

(
sup

0≤u≤s

∥∥∥∥∥

∫ T+u

T

σrdWr

∥∥∥∥∥

p

|FT
)
≤Kp sp/2 E

((
1

s

∫ T+s

T

‖σu‖2du

)p/2
|FT
)
.

(2.1.34)

Note that the constant Kp here depends on Cp in (2.1.32), and also (implicitly) on
the dimensions d and d ′.

3) Purely discontinuous martingales. The next estimates are less classical. We state
them as lemmas, to be proved in the Appendix. We consider the integral of a d-
dimensional predictable function δ on Ω × R+ × E, without any reference to the
semimartingale X.

To keep in line with the above way of singling out a “main term” which is a
power of s and a factor which is “typically of order 1”, we introduce a series of
notation associated with a given function δ. Below, p ∈ [0,∞) and a ∈ (0,∞]:
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δ̂(p, a)t,s = 1

s

∫ t+s

t

du

∫

{‖δ(u,z)‖≤a}
∥∥δ(u, z)

∥∥p λ(dz), δ̂(p)= δ̂(p,∞)

δ̂′(p)t,s = δ̂(p,1)+ 1

s

∫ t+s

t

du

∫

{‖δ(u,z)‖>1}
∥∥δ(u, z)

∥∥λ(dz) (2.1.35)

δ̂′′(p)t,s = δ̂(p,1)+ 1

s

∫ t+s

t

λ
({
z : ∥∥δ(u, z)∥∥> 1

})
du.

Lemma 2.1.5 Suppose that
∫ t

0 ds
∫ ‖δ(s, z)‖2λ(dz) <∞ for all t . Then the process

Y = δ � (p− q) is a locally square integrable martingale, and for all finite stopping
times T and s > 0 and p ∈ [1,2] we have

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤Kp s E

(
δ̂(p)T ,s |FT

)
(2.1.36)

and also for p ≥ 2:

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤Kp
(
sE
(
δ̂(p)T ,s |FT

)+ sp/2E( δ̂(2)p/2T ,s |FT
))
.

(2.1.37)

These two inequalities agree when p = 2. The variables δ̂(p)T ,s may be infinite,
and are neither increasing nor decreasing as p increases, in general. However, as
soon as δ is bounded, our assumption implies that δ̂(p)T ,s is finite for all p ≥ 2,
whereas it may be infinite for p < 2, and typically is so, for all p small. Hence it
is often the case that the right side of (2.1.37) (where p ≥ 2) is finite, whereas the
right side of (2.1.36) (where p ≤ 2) is infinite, contrary to what one would perhaps
think at first glance.

There is a fundamental difference between the estimates given so far, as s→ 0. In
(2.1.33) the right side is basically of order sp , in (2.1.34) it is sp/2, and in (2.1.36)
and (2.1.37) it is s, irrespective of the value of p ≥ 1. This phenomenon already
occurs when Yt = Nt − t , where N is a standard Poisson process: in this case, for
each integer p ≥ 1 we have E(|Ys |p)∼ αps as s→ 0, for some constant αp > 0.

The inequality (2.1.36), when the right side is finite for some p < 2, implies that

(YT+s − YT )/√s P−→ 0 (2.1.38)

as s→ 0. As said before the right side of (2.1.36) is often infinite, but nevertheless
(2.1.38) holds when Y = δ ∗ (p− q) under quite general circumstances. We provide a
useful lemma to this effect: (2.1.38) follows from (2.1.39) below by taking q = 1/2
and r = 2.

Lemma 2.1.6 Let r ∈ [1,2]. There exists a constant K > 0 depending on r, d ,
such that for all q ∈ [0,1/r] and s ∈ [0,1], all finite stopping times T , and all
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d-dimensional processes Y = δ � (p− q), we have

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)r
|FT
)

≤ Ks1−qr
E
(
δ̂
(
r, s

q
2
)
T ,s
+ s q(r−1)

2 δ̂′(r)T ,s |FT
)
, (2.1.39)

where δ̂(r, a) and δ̂′(r) are associated with δ by (2.1.35).

4) Purely discontinuous processes of finite variation. Here we consider the case of
δ � p, where again δ is predictable. The results (and the proofs as well) parallel those
for δ � (p− q), with different powers.

Lemma 2.1.7 a) If
∫ t

0 λ({z : δ(r, z) �= 0}) dr <∞ for all t , the process Y = δ � p
has almost surely finitely many jumps on any finite interval.

b) Suppose that
∫ t

0 ds
∫ ‖δ(s, z)‖λ(dz) <∞ for all t . Then the process Y = δ � p

is of locally integrable variation, and for all finite stopping times T and s > 0 and
p ∈ (0,1] we have

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤ Kp s E

(
δ̂(p)T ,s |FT

)
, (2.1.40)

and also for p ≥ 1

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤Kp
(
sE
(
δ̂(p)T ,s |FT

)+ spE( δ̂(1)pT ,s |FT
))
.

(2.1.41)

Next, we have a result similar to Lemmas 2.1.6:

Lemma 2.1.8 Let r ∈ (0,1]. There exists a constant K > 0 depending on r, d ,
such that for all q ∈ [0,1/r] and s ∈ [0,1], all finite stopping times T , and all
d-dimensional processes Y = δ � p, we have

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)r
|FT
)

≤Ks1−qr
E
(
δ̂
(
r, s

q
2
)
T ,s
+ s rq2 δ̂′′(r)T ,s |FT

)
, (2.1.42)

where δ̂(r, a) and δ̂′′(r) are associated with δ by (2.1.35).

5) Itô semimartingales. The previous estimates will be used under various hypothe-
ses and with various choices of the powers under consideration. However, the most
useful results are about Itô semimartingales X of the form (2.1.30). Then if T is a
finite stopping time, and s > 0, and p ≥ 2, we have
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E

(
sup
u≤s
‖XT+u −XT ‖p |FT

)

≤KE

((∫ T+s

T

‖bu‖du
)p

+
(∫ T+s

T

‖σu‖2 du

)p/2
+
∫ T+s

T

du

∫ ∥∥δ(r, z)
∥∥pλ(dz)

+
(∫ T+s

T

du

∫

{z:‖δ(u,z)‖≤1}
∥∥δ(u, z)

∥∥2λ(dz)
)p/2

+
(∫ T+s

T

du

∫

{z:‖δ(u,z)‖>1}
∥∥δ(u, z)

∥∥λ(dz)
)p
|FT
)
. (2.1.43)

In the “bounded” case, we get for p ≥ 2 again

∥∥bt (ω)
∥∥≤ β, ∥∥σt (ω)

∥∥≤ α, ∥∥δ(ω, t, z)∥∥≤ Γ (z) =⇒

E

(
sup
u≤s
‖XT+u −XT ‖p |FT

)
≤ K

(
spβp + sp/2αp + s

∫
Γ (z)pλ(dz)

+ sp/2
(∫

Γ (z)21{Γ (z)≤1} λ(dz)
)p/2

+ sp
(∫

Γ (z)1{Γ (z)>1} λ(dz)
)p)

.

(2.1.44)

These are applications of the “non-normalized” estimates (2.1.33), (2.1.34),
(2.1.37) and (2.1.41). In the “bounded” case we also have a simple statement for
the normalized estimates (2.1.39) and (2.1.42). These normalized estimates are use-
ful typically for a power p ≤ 2. In view of their usefulness, we state these estimates
in a corollary, proved in the Appendix.

Corollary 2.1.9 Let the d-dimensional predictable function δ be such that ‖δ(ω, t,
z)‖ ≤ Γ (z) for some measurable function Γ on E, and let p > 0, r ∈ (0,2] and
q ∈ [0,1/r).

a) If r ∈ (1,2] and
∫
(Γ (z)r ∧ Γ (z))λ(dz) <∞, the process Y = δ ∗ (p − q)

satisfies

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)p
|FT
)
≤
{
Ksp(1−qr)/r φ(s) if p ≤ r
Ks1−qr φ(s) if p ≥ r (2.1.45)

for all s ∈ (0,1] and all finite stopping times T , where K and φ depend on r,p, q ,
Γ and λ, and φ(s)→ 0 as s→ 0 when q > 0, and supφ <∞ when q = 0.
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b) If r ∈ (0,1] and
∫
(Γ (z)r ∨ Γ (z))λ(dz) <∞, the process Y = δ ∗ (p − q)

satisfies

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)p
|FT
)
≤ Ks1−qr φ(s) if p > 1, q <

p− 1

p− r
(2.1.46)

for all s ∈ (0,1] and all finite stopping times T , with K and φ as in (a).
c) If r ∈ (0,1] and

∫
(Γ (z)r ∧ 1) λ(dz) <∞, the process Y = δ ∗ p satisfies

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)p
|FT
)
≤
{
Ksp(1−qr)/r φ(s) if p ≤ r
Ks1−qr φ(s) if p ≥ r (2.1.47)

for all s ∈ (0,1] and all finite stopping times T , with K and φ as in (a).

2.1.6 Estimates for Bigger Filtrations

The estimates of the previous subsection hold when T is a stopping time for a fil-
tration (Ft ) with respect to which W and p are a Brownian motion and a Poisson
random measure. In practice the filtration (Ft ) is usually given a priori, but it turns
out that those estimates are also valid for (suitable) bigger filtrations. This will be
sometimes a useful tool.

More specifically, we start with (Ft ),W and p as above. Consider a (non-random)
measurable subset A of E. We denote by HA the σ -field generated by the restriction
of the measure p to R+×A, that is the σ -field generated by all the random variables
p(B), where B ranges through all measurable subsets of R+ × A. We also denote
by HW the σ -field generated by the process W , that is HW = σ(Wt : t ≥ 0). Then
we set
(
GAt
)= the smallest filtration containing (Ft ) and with HA ⊂ GA0(

GA,Wt

)= the smallest filtration containing (Ft ) and with HA ∪HW⊂GA,W0 .

(2.1.48)

Proposition 2.1.10 In the above setting, we have:
a) The process W is a Brownian motion relative to the filtration (GAt ), and

(2.1.34) holds if σ is (Ft )-optional and T is a stopping time relative to the filtration
(GAt ) and the conditional expectations are taken relative to GAT .

b) The restriction p′ of p to the set R+ ×Ac is a Poisson random measure with

respect to the filtration (GA,Wt ), and its Lévy measure λ′ is the restriction of λ to Ac .
Moreover if δ is (Ft )-predictable and satisfies δ(ω, t, z) = 0 for all (ω, t, z) with
z ∈ A, Lemmas 2.1.5, 2.1.6, 2.1.7 and 2.1.8 hold if T is a stopping time relative to
the filtration (GA,Wt ) and the conditional expectations are taken relative to GA,WT .
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2.1.7 The Lenglart Domination Property

We end this section with a property that is quite useful for limit theorems. It is
about the comparison between two càdlàg adapted processes Y and A, where A is
increasing with A0 = 0. We say that Y is Lenglart-dominated by A if E(|YT |) ≤
E(AT ) for all finite stopping times T , both expectations being possibly infinite.

The following result has been proved by Lenglart in [70], and a proof can be
found in Lemma I.3.30 of [57]. Suppose that Y is Lenglart-dominated by A. Then
for any (possibly infinite) stopping time T and all ε, η > 0 we have

P

(
sup
s≤T

|Ys | ≥ ε
)
≤
{ η
ε
+ P(AT ≥ η) if A is predictable

1
ε
(η+E(sups≤T ΔAs))+ P(AT ≥ η) otherwise.

(2.1.49)

This result is typically applied when Y is also an increasing process, and either A is
the predictable compensator of Y (the first inequality is used), or Y is the predictable
compensator of A (the second inequality is used).

2.2 Limit Theorems

The aims of this section are twofold: first we define stable convergence in law. Sec-
ond, we recall a few limit theorems for partial sums of triangular arrays of random
variables.

Before getting started, and in view of a comparison with stable convergence in
law, we recall the notion of convergence in law. Let (Zn) be a sequence of E-valued
random variables, whereE is some topological space endowed with its Borel σ -field
E , and each Zn is defined on some probability space (Ωn,Fn,Pn); these spaces may
differ as n varies. We say that Zn converges in law if there is a probability measure
μ on (E,E) such that

E
(
f (Zn)

) →
∫
f (x)μ(dx) (2.2.1)

for all functions f onE that are bounded and continuous. It is customary to “realize”
the limit as a random variable Z with law μ, on some space (Ω,F ,P) (for example
on (Ω,F ,P) = (E,E,μ) with the canonical variable Z(x) = x), and then (2.2.1)
reads as

E
(
f (Zn)

) → E
(
f (Z)
)

(2.2.2)

for all f as before, and we usually write Zn
L−→ Z.

The above definition only requires E to be a topological space, but as soon as
one wants to prove results one needs additional properties, at least that E is a metric
space, and very often that E is a Polish space. In the latter case, it is a known fact
that the convergence (2.2.2) for all functions f which are bounded and Lipschitz is
enough to imply the convergence in law, see e.g. Parthasarathy [78].
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2.2.1 Stable Convergence in Law

The notion of stable convergence in law has been introduced by Rényi [84], for the
very same “statistical” reason as we need it here and which we shortly explain just
below. We refer to [4] for a very simple exposition and to [57] for more details, and
also to the book [43] of Hall and Heyde for some different insights on the subject.
However the same notion or very similar ones appear in different guises in control
theory, in the theory of fuzzy random variables and randomized times, and also for
solving stochastic differential equations in the weak sense.

In an asymptotic statistical context, stable convergence in law appears in the fol-
lowing situation: we wish to estimate some parameter with a sequence of statistics,
say Zn, or use such a sequence to derive some testing procedure. Quite often the
variables Zn converge in law to a limit Z which has, say, a mixed centered normal
distribution: that is, Z = ΣU where U is an N (0,1) variable and Σ is a positive
variable independent of U . This poses no problem other than computational when
the law of Σ is known. However, in many instances the law of Σ is unknown, but
we can find a sequence of statistics Σn such that the pair (Zn,Σn) converges in law
to (Z,Σ). So, although the law of the pair (Z,Σ) is unknown, the variable Zn/Σn
converges in law to N (0,1) and we can base estimation or testing procedures on
these new statistics Zn/Σn. This is where stable convergence in law comes into
play.

The formal definition is a bit involved. It applies to a sequence of random vari-
ables Zn, all defined on the same probability space (Ω,F ,P), and taking their
values in the same state space (E,E), assumed to be a Polish space. We say that
Zn stably converges in law if there is a probability measure η on the product
(Ω ×E,F ⊗ E), such that

E
(
Yf (Zn)

) →
∫
Y(ω)f (x)η(dω,dx) (2.2.3)

for all bounded continuous functions f onE and all bounded random variables Y on
(Ω,F). Taking f = 1 and Y = 1A above yields in particular that η(A×E)= P(A)

for all A ∈F .
This is an “abstract” definition, similar to (2.2.1). Now, exactly as we prefer to

write the convergence in law as in (2.2.2), it is convenient to “realize” the limit Z for
the stable convergence in law as well. Since, in contrast with mere convergence in
law, all Zn here are necessarily on the same space (Ω,F ,P), it is natural to realize
Z on an arbitrary extension (Ω̃, F̃ , P̃) of (Ω,F ,P), as defined by (2.1.26). Letting
Z be an E-valued random variable defined on this extension, (2.2.3) is equivalent to
saying (with Ẽ denoting the expectation w.r.t. P̃)

E
(
Yf (Zn)

) → Ẽ
(
Yf (Z)

)
(2.2.4)

for all f and Y as above, as soon as P̃(A∩ {Z ∈ B})= η(A×B) for all A ∈F and
B ∈ E . We then say that Zn converges stably to Z, and this convergence is denoted

by Zn
L-s−→ Z. Note that, exactly as for (2.2.3), the stable convergence in law holds
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as soon as we have (2.2.4) for all Y as above and all functions f which are bounded
and Lipschitz.

We can always do this in the following simple way: take Ω̃ =Ω ×E and F̃ =
F ⊗ E and endow (Ω̃, F̃) with the probability η, and put Z(ω,x) = x. However,
exactly as in the case of the convergence in law where usually (2.2.2) is stated with
an “arbitrary” Z with law μ, here we prefer to write (2.2.4) with an arbitrary Z,
defined on an arbitrary extension of the original space.

Clearly, when η is given, the property P̃(A∩ {Z ∈ B})= η(A×B) for all A ∈F
and B ∈ E simply amounts to specifying the law of Z, conditionally on the σ -

field F , that is under the measures Q(ω, .) of (2.1.26). Therefore, saying Zn
L-s−→ Z

amounts to saying that we have stable convergence in law towards a variable Z,
defined on any extension (Ω̃, F̃ , P̃) of (Ω,F ,P), and with a specified conditional
law, knowing F .

Stable convergence in law obviously implies convergence in law. But it implies
much more, and in particular the following crucial result: if Yn and Y are variables
defined on (Ω,F ,P) and with values in the same Polish space F , then

Zn
L-s−→ Z, Yn

P−→ Y ⇒ (Yn,Zn)
L-s−→ (Y,Z). (2.2.5)

Let us mention the following useful extensions of (2.2.2) and (2.2.4):

• Zn L−→ Z ⇒ E(f (Zn)) → E(f (Z)) for all f bounded, Borel,
and μ-a.s. continuous,

• Zn L-s−→ Z ⇒ E(F (.,Zn)) → Ẽ(F (.,Z)) for all F bounded,
F ⊗ E-measurable on Ω ×E and x �→ F(ω,x) is
continuous at each point (ω, x) ∈A for some set
A ∈F ⊗ E with P̃({(ω,ω′) : (ω,Z(ω,ω′) ∈A})= 1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2.6)
Among all criteria for stable convergence in law, the following one is quite use-

ful. The σ -field generated by all Zn is separable, that is generated by a countable
algebra, say G. Then if, for any finite family (Ap : 1 ≤ p ≤ q) in G, the sequence
(Zn, (1Ap)1≤p≤q) of E × R

q -valued variables converges in law as n→∞, then
necessarily Zn converges stably in law. Also, if Z is defined on the same space as
all Zn’s, we have

Zn
P−→ Z ⇐⇒ Zn

L-s−→ Z (2.2.7)

(the implication from left to right is obvious, the converse is much more involved
but will not be used in this book).

Finally, let us mention a slightly different setting in which stable convergence
can occur. Let Zn be a sequence of E-valued variables, each one being defined on
some extension (Ωn,Fn,Pn) of the same space (Ω,F ,P). These extensions may
be different when n varies. Then we say that Zn converges stably in law to Z, also
defined on still another extension (Ω̃, F̃, P̃) of (Ω,F ,P), if for all Y and f as in
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(2.2.4) we have

En

(
Yf (Zn)

) → Ẽ
(
Yf (Z)

)
. (2.2.8)

We still write Zn
L-s−→ Z for this notion, which is the same as the previous one when

(Ωn,Fn,Pn)= (Ω,F ,P) for all n. However, one has to be careful when applying
the properties of stable convergence in law in this extended setting. For example

(2.2.5) still holds, but only with the following interpretation of Yn
P−→ Y : each vari-

able Yn is defined on (Ωn,Fn,Pn) and takes its values in some Polish space F
with a distance d ; the variable Y is also F -valued, and defined on (Ω,F ,P); and

Yn
P−→ Y means that for all ε > 0 we have Pn(d(Yn,Y ) > ε)→ 0 as n→∞. In a

similar way, (2.2.7) holds with the same interpretation of the convergence in proba-
bility.

A special case of this setting is as follows: we have a probability space (Ω,G,P)
and a sub-σ -field F of G, and (Ωn,Fn,Pn) = (Ω,G,P) for all n. Then, in this

situation, Zn
L-s−→ Z amounts to the “ordinary” stable convergence in law when F =

G, and to Zn
L−→ Z (“ordinary” convergence in law) when F = {Ω,∅} is the trivial

σ -field, and to something “in between” when F is a non-trivial proper sub-σ -field
of G.

2.2.2 Convergence for Processes

In this book we study sequences of random variables, but also of processes, aiming
to prove the convergence in probability, or in law, or stably in law.

If we consider a sequence Zn = (Znt )t≥0 of Rd -valued stochastic processes, we
first have the so-called “finite-dimensional convergence”: this means the conver-
gence of (Znt1 , . . . ,Z

n
tk
) for any choice of the integer k and of the times t1, . . . , tk .

When the convergence is in probability, the convergence for any single fixed t ob-
viously implies finite-dimensional convergence, but this is no longer true when the
convergence is in law, or stably in law.

There is another, more restricted, kind of convergence for processes, called
“functional” convergence. That means that we consider each process Zn as tak-
ing its values in some functional space (= a space of functions from R+ into R

d ),
and we endow this functional space with a topology which makes it a Polish space.

The simplest functional space having this structure is the space Cd =C(R+,Rd)
of all continuous functions from R+ into R

d , endowed with the local uniform
topology corresponding for example to the distance d(x, y) = ∑n≥1 2−n(1 ∧
sups≤n ‖x(s)− y(s)‖). The Borel σ -field for this topology is σ(x(s) : s ≥ 0).

However, although many of our limiting processes will be continuous, it is (al-
most) never the case of the pre-limiting processes which typically are partial sums
of the form

∑[nt]
i=1 ζ

n
i for suitable random variables ζ ni and [nt] denotes the integer

part of nt . Such a process has discontinuous, although càdlàg, paths.
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This is why we need to consider, in an essential way, the space D
d =D(R+,Rd)

of all càdlàg functions from R+ into R
d . This space is called the Skorokhod space,

and it may be endowed with the Skorokhod topology, introduced by Skorokhod in
[89] under the name “J1-topology”. Under this topology D

d is a Polish space, and
again the Borel σ -field is σ(x(s) : s ≥ 0). We are not going to define this topology
here, and the reader is referred to the books of Billingsley [18] or Ethier and Kurtz
[31] or Jacod and Shiryaev [57]. The convergence of a sequence (xn) towards x, for

this topology, will be denoted by xn
Sk−→ x.

Let us just point out a small number of important properties which will be used
in the sequel. The main drawback of the Skorokhod topology is that it is not com-

patible with the natural linear structure of the space: we may have xn
Sk−→ x and

yn
Sk−→ y without xn + yn converging to x + y. We do have, however (with x(t−)

denoting the left limit of x at time t):

xn
Sk−→ x, yn

Sk−→ y, t �→ y(t) is continuous ⇒ xn + yn Sk−→ x + y, (2.2.9)

xn
Sk−→ x, x(t)= x(t−), ⇒ xn(t)→ x(t), (2.2.10)

xn
Sk−→ x, t �→ x(t) is continuous ⇒ sup

s∈[0,T ]

∥∥xn(s)−x(s)
∥∥→ 0 ∀T . (2.2.11)

For the last property that we want to recall, we need to introduce a sequence of
subdivisions: for each n, we have a sequence (t (n, i) : i ≥ 0)which increases strictly
to+∞ and has t (n,0)= 0. With x ∈D

d we associate the “discretized” function x(n)

as follows:

x(n)(t) = x
(
t (n, i)

)
if t (n, i)≤ t < t (n, i + 1). (2.2.12)

This defines a new function x(n) ∈ D
d . Then for any sequence yn of functions,

we have (this is Proposition VI.6.37 of Jacod and Shiryaev [57] applied with non-
random functions):

lim
n→∞ sup

i≥1

(
t ∧ t (n, i)− t ∧ t (n, i − 1)

)= 0 ∀t > 0, yn
Sk−→ y ⇒ y(n)n

Sk−→ y.

(2.2.13)
Now we consider a sequence of càdlàg R

d -valued processes (Xn) and another
càdlàg R

d -valued process X. They can be considered as random variables taking
their values in the space D

d , and then we have the notion of convergence of Xn

towards X in law, or stably in law, or in probability (in the first case X is defined on
an arbitrary probability space, in the second case it is defined on an extension, and
in the third case it is defined on the same space as are all the Xn’s). When the un-
derlying topology on D

d under which the convergence takes place is the Skorokhod
topology, we write these three convergences, respectively, as follows

Xn
L=⇒ X, Xn

L-s=⇒ X, Xn
P=⇒ X. (2.2.14)
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For convenience of notation, we sometimes write the above as Xnt
L=⇒ Xt or

Xnt
L-s=⇒ Xt or Xnt

P=⇒ Xt : these should not be confused with Xnt
L−→ Xt or

Xnt
L-s−→Xt or Xnt

P−→Xt , which mean the convergence, in law or stably in law or
in probability, of the variables Xnt towards Xt for some fixed t .

Since we are establishing notation, and with Xn and X being càdlàg processes,
we continue with the following conventions:

• Un a.s.−→ U for random variables means almost sure convergence
• Xn a.s.=⇒ X (or Xnt

a.s.=⇒Xt ) means almost sure
convergence for the Skorokhod topology

• Xn Lf−→ X means finite-dimensional convergence in law

• Xn Lf -s−→ X means finite-dimensional stable convergence in law

• Xn u.c.p.=⇒ X (or Xnt
u.c.p.=⇒ Xt ) means sups≤t ‖Xns −Xs‖ P−→ 0 for all t .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2.15)

2.2.3 Criteria for Convergence of Processes

In this subsection we gather a few criteria which help to prove that a sequence of
processes converges in probability, or in law, or stably in law. These criteria will
often be used below.

To begin with, there is a simple result for real-valued processes with increasing
paths:

if Xn and X have increasing paths and X is continuous, then

Xnt
P−→ Xt ∀t ∈D, with D a dense subset of R+ ⇒ Xn

u.c.p.=⇒ X.

(2.2.16)

Second, there is a well known trick, called the subsequences principle. It con-
cerns a sequence (Zn) of E-valued random variables with E a Polish space, and
thus also applies to processes viewed as variables taking values in the functional
spaces Cd or Dd . This “principle” goes as follows:

we have Zn
P−→ Z, resp. Zn

L−→ Z, resp. Zn
L-s−→Z if and only if,

from any subsequence nk→∞ we can extract a sub-subsequence nkl
such that Znkl

P−→Z, resp. Znkl
L−→ Z, resp. Znkl

L-s−→Z. (2.2.17)

For the convergence in probability or in law, this simply comes from the fact that
those are convergence for a metric. For the stable convergence in law, it comes from
the fact that for any given Y and f as in (2.2.4) the “subsequences principle” holds
for the convergence of the real numbers E(Y f (Zn)).
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In connection with this, we state two well known and useful results. The second
one is called the Skorokhod representation theorem. The setting is as before.

Zn
P−→ Z ⇒ there is a sequence nk→∞ with Znk

a.s.−→ Z (2.2.18)

Zn
L−→ Z ⇒ there exist variables Z′n and Z′ defined on the

same probability space, having the same laws

as Zn and Z respectively, and with Z′n
a.s.−→ Z′.

⎫
⎪⎬

⎪⎭
(2.2.19)

In many instances we have a sequence (Xn) of d-dimensional processes, whose
convergence towards X we seek, and for which a natural decomposition arises for
any integer m≥ 1

Xn = X(m)n +X′(m)n (2.2.20)

and for which the convergence of X(m)n (as n→∞) to a limit X(m) can be easily
proved. Then, showing that X′(m)n goes to 0 asm→∞, “uniformly in n”, and that
X(m) converges to X, allows one to prove the desired result. Depending on which
kind of convergence we are looking for, the precise statements are as follows.

Proposition 2.2.1 Let Xn and X be defined on the same probability space. For

Xn
P=⇒X it is enough that there are decompositions (2.2.20) and alsoX =X(m)+

X′(m), with the following properties:

∀m≥ 1, X(m)n
P=⇒ X(m), as n→∞ (2.2.21)

X(m)
u.c.p.=⇒ X, as m→∞, (2.2.22)

∀η, t > 0, lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∥∥X′(m)ns

∥∥> η
)
= 0. (2.2.23)

Proposition 2.2.2 ForXn
L=⇒X it is enough that there are decompositions (2.2.20)

satisfying (2.2.23) and

∀m≥ 1, X(m)n
L=⇒ X(m), as n→∞ (2.2.24)

for some limiting processes X(m), which in turn satisfy

X(m)
L=⇒ X, as m→∞.

Remark 2.2.3 In the previous proposition, the processes Xn may be defined on
different spaces (Ωn,Fn,Pn), the decompositions (2.2.20) taking place on those
spaces, of course. If this is the case, in (2.2.23) one should have Pn instead of P.
To avoid even more cumbersome notation, we still write P instead of Pn. The same
comment applies also to the next results.
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The similar statement about stable convergence needs more care. The most com-
mon situation is when all processes Xn are defined on the same probability space
(Ω,F ,P) and have the decompositions (2.2.20), and the limit X is defined on an
extension (Ω̃, F̃ , P̃). However, (2.2.21) or (2.2.24) are replaced by the stable con-
vergence in law. This means that for eachm we have a (possibly different) extension
(Ω̃m, F̃m, P̃m), on which the limit process X(m) is defined.

With our “extended” notion of stable convergence, as given in (2.2.8), each Xn

is defined on some extension (Ωn,Fn,Pn) of the same space (Ω,F ,P), and Xn

has the decomposition (2.2.20) on (Ωn,Fn,Pn). And again, for each m we have an
extension (Ω̃m, F̃m, P̃m) of (Ω,F ,P), on which the limit process X(m) is defined.

Proposition 2.2.4 In the above two settings, for Xn
L-s=⇒ X it is enough that there

are decompositions (2.2.20) satisfying (2.2.23), and

∀m≥ 1, X(m)n
L-s=⇒ X(m), as n→∞

for some limiting processes X(m), which in turn satisfy

X(m)
L-s=⇒ X, as m→∞.

These three results are proved in the Appendix, as well as the forthcoming propo-
sitions which are all well known, but used constantly.

Proposition 2.2.5 Let (Mn) be a sequence of local martingales on the space

(Ω,F , (Ft )t≥0,P), with Mn
0 = 0. Then Mn u.c.p.=⇒ 0 as soon as one of the following

two conditions holds:
(i) each Mn admits an angle bracket and 〈Mn,Mn〉t P−→ 0 for all t > 0,

(ii) we have |ΔMn
s | ≤K for a constant K , and [Mn,Mn]t P−→ 0 for all t > 0.

In the next result, μ is the jump measure of a càdlàg d-dimensional process (in
which case E =R

d below), or a Poisson random measure on R+×E for E a Polish
space, and in both cases ν is the compensator of μ.

Proposition 2.2.6 Let (δn) be a sequence of predictable functions onΩ ×R+ ×E,
each δn satisfying (2.1.16). Then

(
(δn)

2 ∧ |δn|
)
� νt

P−→ 0 ∀t > 0 ⇒ δn � (μ− ν) u.c.p.=⇒ 0. (2.2.25)

The “dominated convergence theorem for stochastic integrals” mentioned earlier
is:

Proposition 2.2.7 Let X be a semimartingale and (Hn) a sequence of predictable
processes satisfying |Hn| ≤ H ′ for some predictable and locally bounded process
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H ′. Then if outside a null set we have Hnt → Ht for all t , where H is another
predictable process, we have

∫ t

0
Hns dXs

u.c.p.=⇒
∫ t

0
Hs dXs.

Finally, we also have the convergence of “Riemann sums” for stochastic inte-
grals, under some regularity of the integrand process. Below, X and H may be r
and d × r-dimensional, respectively, so that the integral process is d-dimensional.

Proposition 2.2.8 Let X be a semimartingale and H be a càglàd adapted process.
For each n let (T (n, i) : i ≥ 0) be a sequence of stopping times, which strictly in-
creases to +∞, with T (n,0)= 0, and such that sup(T (n, i + 1)∧ t − T (n, i)∧ t :
i ≥ 0) goes to 0 in probability for all t as n→∞. Then

∑

i≥1, T (n,i)≤t
HT (n,i−1)(XT (n,i) −XT (n,i−1))

P=⇒
∫ t

0
Hs dXs (2.2.26)

(convergence for the Skorokhod topology). If furtherX is continuous the same holds
also when H is adapted càdlàg, and we even have the local uniform convergence in
probability.

2.2.4 Triangular Arrays: Asymptotic Negligibility

In this subsection we give a few limit theorems for sums of triangular arrays: the
results are stated in a somewhat abstract setting, but the connection with discretized
processes is explained in Remark 2.2.3 below, and they will be of constant use in
this book.

A d-dimensional triangular array is a double sequence (ζ ni : n, i ≥ 1) of d-

dimensional variables ζ ni = (ζ n,ji )1≤j≤d . Associated with the nth row (ζ ni )i≥1, we
have a stopping rule, that is a process Nn satisfying:

t �→Nn(t) is N-valued, càdlàg increasing, with jumps equal to 1

and Nn(0)= 0 and limt→∞ Nn(t)=∞. (2.2.27)

We are interested in the behavior of the partial sums

Snt =
Nn(t)∑

i=1

ζ ni , (2.2.28)

which are càdlàg processes, with finite variation.
To accommodate the applications we have in mind, we have to be careful about

the structure of those triangular arrays and associated stopping rules. Each row
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(ζ ni )i≥1 and its associated stopping ruleNn(t) are defined on some probability space
(Ωn,Gn,Pn), which is endowed with a discrete-time filtration (Gni )i∈N, and the ba-
sic assumptions are as follows:

• n≥ 1, i ≥ 1 ⇒ ζ ni is Gni measurable

• n≥ 1, t ≥ 0 ⇒ Nn(t) is a
(
Gni
)
-stopping time.

(2.2.29)

We also consider the continuous-time filtration Fnt = GnNn(t), and we set

T (n, i) = inf
(
t : Nn(t)≥ i

)
. (2.2.30)

The following (easy) properties are proved in §II.3b of [57]: we have T (n,0)= 0,
and for i ≥ 1 the variable T (n, i) is a predictable (Fnt )-stopping time such that
FnT (n,i) = Gni and FnT (n,i)− = Gni−1. Then we can rewrite Sn as

Snt =
∑

i≥1

ζ ni 1{T (n,i)≤t}

and obviously Sn is (Fnt )-adapted. If further each ζ ni is integrable this process Sn

admits a predictable compensator (relative to (Fnt )) which, since each T (n, i) is
predictable and FnT (n,i)− = Gni−1, takes the form

S′nt =
∑

i≥1

E
(
ζ ni | Gni−1

)
1{T (n,i)≤t} (2.2.31)

(we use the notation E for the expectation with respect to Pn when no confusion may
arise, otherwise we write En). The form (2.2.31) is indeed the key ingredient for
proving the limit theorems for triangular arrays, and for this the condition (2.2.29)
is crucial.

Remark 2.2.9 Most of the time in this book, triangular arrays occur as follows. On
an underlying (continuous-time) filtered space (Ω,F , (Ft )t≥0,P), and for each n,
there is a strictly increasing sequence (T (n, i) : i ≥ 0) of finite (Ft )-stopping times
with limit +∞ and T (n,0)= 0. The stopping rule is

Nn(t) = sup
(
i : T (n, i)≤ t) =

∑

i≥1

1{T (n,i)≤t}, (2.2.32)

which satisfies (2.2.27): note that (2.2.32) and (2.2.30) are indeed equivalent. Fi-
nally, we have a double sequence (ζ ni ) such that each ζ ni is FT (n,i) measurable:
for example, ζ ni may be a function of the increment YT (n,i) − YT (n,i−1), for some
underlying adapted càdlàg process Y .

To fit this into the previous setting, we take (Ωn,Gn,Pn)= (Ω,F ,P). There is
a problem, though, for defining the discrete-time filtration (Gni ) in such a way that
(2.2.29) holds. Two situations may arise:
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1 All T (n, i) are deterministic, or more generally they are “strongly predictable”
stopping times, that is stopping times such that T (n, i+ 1) is FT (n,i) measurable.
Then (2.2.28) holds with Gni =FT (n,i), and the σ -field Fnt = GnNn(t) is the σ -field
satisfying

Fnt ∩
{
T (n, i)≤ t < T (n, i + 1)

} = FT (n,i) ∩
{
T (n, i)≤ t < T (n, i + 1)

}

for all i ≥ 0. In particular Fnt ⊂Ft and FnT (n,i) =FT (n,i) for all i.
2 The T (n, i)’s are arbitrary stopping times. Then (2.2.28) does not usually hold

with Gni =FT (n,i). It holds with Gni =FT (n,i) ∨ σ(T (n, i + 1)), and

Fnt ∩
{
T (n, i)≤ t < T (n, i + 1)

}

= FT (n,i) ∨ σ
(
T (n, i + 1)

)∩ {T (n, i)≤ t < T (n, i + 1)
}
,

but the inclusion Fnt ⊂Ft is no longer valid.

This is one of the reasons why discretization along stopping times is significantly
more difficult to study than discretization along deterministic times.

In the rest of this subsection we give criteria for a triangular array to be asymp-
totically negligible, or AN in short, in the sense that

Nn(t)∑

i=1

ζ ni
u.c.p.=⇒ 0, ∀t > 0. (2.2.33)

In other words, sups≤t |
∑Nn(s)
i=1 ζ ni |

P−→ 0, or equivalently sups≤t |
∑Nn(s)
i=1 ζ ni |

L−→
0. This makes sense even when each row (ζ ni : i ≥ 1) and the associated stopping
rule Nn are defined on some probability spaces (Ωn,Gn,Pn) depending on n. The
AN property is about the array (ζ ni ) together with the stopping rulesNn(t), although
we just write that the array is AN: usually Nn(t) is clear from the context.

The AN property is a property for each component, so the following criteria are
all stated for one-dimensional arrays. The first property below is a trivial conse-
quence of (2.2.16), whereas the last implication is obvious:

Nn(t)∑

i=1

∣∣ζ ni
∣∣ P−→ 0 ∀t > 0 ⇔ (∣∣ζ ni

∣∣) is AN ⇒ (
ζ ni
)

is AN.

The following lemmas are proved in the Appendix, and we always assume (2.2.29).

Lemma 2.2.10 The array (ζ ni ) is AN as soon as the array (E(|ζ ni | | Gni−1)) is AN.

Lemma 2.2.11 Let (ζ ni ) be a triangular array such that each ζ ni is square-
integrable. Then the array (ζ ni − E(ζ ni | Gni−1)) is AN under each of the following
three conditions:
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(a) The array (E(|ζ ni |2 | Gni−1)) is AN.

(b) The sequence of variables (
∑Nn(t)
i=1 E(|ζ ni |2 1{|ζ ni |>1} | Gni−1))n≥1 is bounded in

probability for each t > 0, and the array (|ζ ni |2) is AN.
(c) We have |ζ ni | ≤K for a constant K , and the array (|ζ ni |2) is AN.

In particular if (ζ ni ) is a “martingale difference” array, that is E(ζ ni | Gni−1)= 0 for
all i, n≥ 1, then either one of the above conditions implies that it is AN.

As a simple consequence of this lemma, we get:

Lemma 2.2.12 Let A be an R
d -valued (deterministic) function and (ζ ni ) a d-

dimensional array. If

Nn(t)∑

i=1

E
(
ζ ni | Gni−1

) u.c.p.=⇒ At (2.2.34)

and if the array (ζ ni ) satisfies any one of (a), (b), (c) of the previous lemma, we

have
∑Nn(t)
i=1 ζ ni

u.c.p.=⇒ At . The same holds when A is a process, provided all spaces
(Ωn,Gn,Pn) are the same.

Another (trivial, but extremely convenient) consequence is that the array (ζ ni ) is
AN as soon as at least one of the following two properties is satisfied:

E

(
Nn(t)∑

i=1

∣∣ζ ni
∣∣
)
→ 0 ∀ t

E

(
Nn(t)∑

i=1

∣∣ζ ni
∣∣2
)
→ 0 ∀ t and E

(
ζ ni | Gni−1

) = 0 ∀ i, n.
(2.2.35)

2.2.5 Convergence in Law of Triangular Arrays

Here we study the convergence in law. We do not give the most general results
available, and only state a special case of the results of §VIII.3c of [57]. Here again
we assume (2.2.29).

Theorem 2.2.13 Assume (2.2.34) for some (deterministic) continuous R
d -valued

function of locally finite variation A, and also the following two conditions, for all
j, k = 1, . . . d for the first one and for some p > 2 for the second one:

Nn(t)∑

i=1

(
E
(
ζ
n,j
i ζ

n,k
i | Gni−1

)−E
(
ζ
n,j
i | Gni−1

)
E
(
ζ
n,k
i | Gni−1

)) P−→ C
jk
t ∀t > 0,

(2.2.36)
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Nn(t)∑

i=1

E
(∥∥ζ ni
∥∥p | Gni−1

) P−→ 0 ∀t > 0, (2.2.37)

where C = (Cjk) is a (deterministic) continuous M+
d×d -valued function (it is then

necessarily increasing for the strong order in M+
d×d ), then we have

Nn(t)∑

i=1

ζ ni
L=⇒ A+ Y, (2.2.38)

where Y is a continuous centered Gaussian R
d -valued process with independent

increments having E(Y
j
t Y

k
t )= Cjkt .

The above conditions, of course, completely characterize the law of the process
Y . Equivalently we could say that Y is a Gaussian martingale (relative to the filtra-
tion it generates), starting from 0, and with quadratic variation process C.

Note that if (2.2.37) holds for some t , it also holds for all t ′ ≤ t , but this is not
true of (2.2.36), which should hold for each t (in fact, it would be enough that it
holds for all t in a dense subset of R+): if (2.2.36) and (2.2.37) and

∑Nn(t)
i=1 E(ζ ni |

Gni−1)
P−→ At hold for a single time t , we cannot conclude (2.2.38), and even the

convergence
∑Nn(t)
i=1 ζ ni

L−→ At + Yt for this particular t fails in general. There is
an exception, however, when the variables ζ ni are independent by rows and Nnt is
non-random. Indeed, as seen for example in Theorem VII-2-36 of [57], we have:

Theorem 2.2.14 Assume that for each n the variables (ζ ni : i ≥ 1) are independent,
and let ln be integers, possibly infinite. Assume also that, for all j, k = 1, . . . d and
for some p > 2,

ln∑

i=1

E
(
ζ
n,j
i

) P−→ Aj ,

ln∑

i=1

(
E
(
ζ
n,j
i ζ

n,k
i

)−E
(
ζ
n,j
i

)
E
(
ζ
n,k
i

)) P−→ Cjk,

ln∑

i=1

E
(∥∥ζ ni
∥∥p) P−→ 0,

where Cjk and Aj are (deterministic) numbers. Then the variables
∑ln
i=1 ζ

n
i con-

verge in law to a Gaussian vector with mean A = (Aj ) and covariance matrix
C = (Cjk).

Finally we turn to stable convergence in law. The reader will have observed that
the conditions (2.2.34) and (2.2.36) are very restrictive, because the limits are non-
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random. Such a situation rarely occurs, whereas quite often these conditions are
satisfied with A and C random. Then we need an extra condition, under which it
turns out that the convergence holds not only in law, but even stably in law.

As before, for each n we have the sequence (ζ ni )i≥1, the stopping rules Nn(t)
and the associated stopping times T (n, i), all defined on some space (Ωn,Gn,Pn)
with the discrete-time and the continuous-time filtrations (Gni ) and (Fnt ). But here
we need some more structure on these objects. Namely, we assume that we have a
filtered space (Ω,F , (Ft )t≥0,P) such that, for each n,

(
Ωn,Gn,

(
Fnt
)
,Pn
)

is a very good filtered extension of
(
Ω,F , (Ft ),P

)
. (2.2.39)

Quite often, but not always, we will have (Ωn,Gn, (F
n

t ),Pn)= (Ω,F , (Ft ),P).
We also single out, among all martingales on (Ω,F , (Ft )t≥0,P), a q-dimensional

Brownian motionW , and a subset N of bounded martingales, all orthogonal (in the
martingale sense) to W and such that the set {N∞ : N ∈N } is total for L1 conver-
gence in the set of the terminal variables of all bounded martingales orthogonal to
W (when q = 0, we have W = 0).

Theorem 2.2.15 We suppose that (2.2.29) and (2.2.39) hold. Assume that (2.2.34)
holds for some R

d -valued process A, and (2.2.36) for some continuous adapted
process C = (Cjk) with values in M+

d×d , both A and C being defined on
(Ω,F , (Ft )t≥0,P). Assume also (2.2.37) for some p > 2, and

Nn(t)∑

i=1

E
(
ζ ni (MT (n,i) −MT (n,i−1)) | Gni−1

) P−→ 0 ∀t > 0 (2.2.40)

whenever M is one of the components of W or is in a set N as described before.
Then we have

Nn(t)∑

i=1

ζ ni
L-s=⇒ A+ Y,

where Y is a continuous process defined on a very good filtered extension
(Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P) and which, conditionally on the σ -field
F , is a centered Gaussian R

d -valued process with independent increments satisfy-
ing Ẽ(Y

j
t Y

k
t |F)= Cjkt .

Proof When (Ωn,Gn, (F
n

t ),Pn)= (Ω,F , (Ft ),P), this is a particular case of The-
orem IX.7.28 of [57], except that this theorem is stated when T (n, i)= i/n, but the
extension to the present situation is totally straightforward.

When (Ωn,Gn, (F
n

t ),Pn) �= (Ω,F , (Ft ),P), the result does not formally follow
from the above-quoted theorem. However, this theorem is based on Theorem IX.7.3
of [57]: the proof of this latter theorem can be reproduced word for word: indeed, the
only two differences are in the last display of p. 587, where the first equality holds
here because of (2.2.39), and in Step 5 of the proof where Xnt should be excluded
from the definition of H. �
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In view of the comments made before (2.2.5), the conditions stated above com-
pletely specify the conditional law of Y , knowing F , so the stable convergence
in law is well defined. Processes like Y above will be studied more thoroughly in
Chap. 4, but we mention right away some of their nice properties: Y is a continu-
ous local martingale on (Ω̃, F̃, (F̃t )t≥0, P̃), whose quadratic variation process is C.
Moreover it is orthogonal to any martingale on the space (Ω,F , (Ft )t≥0,P), but of
course it is no longer a (unconditionally) Gaussian process in general.
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have formally been introduced by Grigelionis [40] in the case of what is called an
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in [20] for the case p > 1, and in [21] when p = 1. The Lenglart inequalities were
proved in [70].

Likewise, all results of Sect. 2.2 are taken from [57], which contains a relatively
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Part II
The Basic Results

We now reach the main core of this book, that is the behavior of processes, or “func-
tionals”, which have the form (1.1.1) for a test function f and a process X, under
assumptions on f and X, and also on the discretization scheme, which will be cho-
sen to be as weak as possible.

The first chapter of this part is devoted to the convergence in probability of our
functionals, that is, the “Laws of Large Numbers”.

In the second chapter we introduce some tools for the “Central Limit Theorems”,
or distributional results, associated with the convergences obtained in the first chap-
ter, and the central limit theorems themselves are presented in the third chapter.

The fourth chapter of this part concerns the case where the test function is
f (x)= x, a case not covered (at least for the CLT) by the previous results. This is
important because the associated functional is then simply the “discretized” process,
and the type of CLT obtained in this situation is quite different from the previous
ones.



Chapter 3
Laws of Large Numbers: The Basic Results

In this chapter we prove the “Law of Large Numbers”, LLN in short, for the two
types of functionals introduced in (1.1.1). By this, we mean their convergence in
probability. One should perhaps call these results “weak” laws of large numbers, but
in our setting there is never a result like the “strong” law of large numbers, featuring
almost sure convergence. Two important points should be mentioned: unlike in the
usual LLN setting, the limit is usually not deterministic, but random; and, whenever
possible, we consider functional convergence (as processes).

The first type of LLNs concerns raw sums, without normalization, and the results
essentially do not depend on the discretization schemes, as soon as the discretization
mesh goes to 0. The second type is about normalized sums of functions of normal-
ized increments, and it requires the underlying process to be an Itô semimartingale
and also the discretization scheme to be regular (irregular schemes in this context
will be studied in Chap. 14, and are much more difficult to analyze).

We start with two preliminary sections: the first one is about “general” discretiza-
tion schemes, to set up notation and a few simple properties. The second one studies
semimartingales which have p-summable jumps, meaning that

∑
s≤t ‖ΔXs‖p is

almost surely finite for all t : this is always true for p ≥ 2, but it may fail when
0≤ p < 2.

3.1 Discretization Schemes

1) A discretization grid is a strictly increasing sequence of times, starting at 0 and
with limit +∞, and which in practice represents the times at which an underlying
process is sampled. In most cases these times are non-random, and quite often regu-
larly spaced. In some instances it is natural to assume that they are random, perhaps
independent of the underlying process, or perhaps not.

For a given discretization grid, very little can be said. Things become interesting
when we consider a discretization scheme, that is a sequence of discretization grids
indexed by n, and such that the meshes of the grids go to 0 as n→∞. This notion
has already appeared at some places in the previous chapter, for example in (2.1.8)
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and (2.2.26), and we formalize it as follows. Below, when we speak of a “random”
discretization scheme, we assume that the filtered space (Ω,F , (Ft )t≥0,P) is given.

Definition 3.1.1 a) A random discretization scheme is a sequence T = (Tn)n≥1
defined as follows: each Tn consists of a strictly increasing sequence (T (n, i) : i ≥
0) of finite stopping times, with T (n,0)= 0 and T (n, i)→∞ as i→∞, and also

∀t > 0, sup
i≥1

(
T (n, i)∧ t − T (n, i − 1)∧ t) P−→ 0. (3.1.1)

b) A discretization scheme is as above, with all T (n, i) deterministic, and to
emphasize this fact we usually write T (n, i)= t (n, i) with lower case letters.

c) The scheme is called regular if t (n, i) = iΔn for a sequence Δn of positive
numbers going to 0 as n→∞.

The condition (3.1.1) expresses the fact that the mesh goes to 0. With any (ran-
dom) discretization scheme we associate the quantities (where t ≥ 0 and i ≥ 1):

Δ(n, i)= T (n, i)− T (n, i − 1), Nn(t)=
∑

i≥1

1{T (n,i)≤t},

Tn(t)= T
(
n,Nn(t)

)
, I (n, i)= (T (n, i − 1), T (n, i)

]
.

(3.1.2)

In the regular case Δ(n, i) = Δn and Nn(t) = [t/Δn]. Random schemes T (n, i)
and the associated notation Nn(t) have been already encountered in Sect. 2.2.4 of
Chap. 2.

Regular schemes are the most common in practice, but it is also important to
consider non-regular ones to deal with “missing data” and, more important, with
cases where a process is observed at irregularly spaced times, as is often the case in
finance.

Note that in many applications the time horizon T is fixed and observations occur
before or at time T . In this context, for each n we have finitely many T (n, i) only,
all smaller than T . However one can always add fictitious extra observation times
after T so that we are in the framework described here.

2) We consider a d-dimensional process X = (Xt )t≥0 defined on the space
(Ω,F , (Ft )t≥0,P), with components Xi for i = 1, . . . , d . Suppose that a random
discretization scheme T = (Tn) is given, with Tn = (T (n, i) : i ≥ 0). We will use
the following notation:

Δni X = XT (n,i) −XT (n,i−1).

Note that this notation is relative to the discretization scheme T , although this does
not show explicitly. We will study various sums of functions of the above incre-
ments, with or without normalization. The most basic one, called non-normalized
functional, is as follows. We have an arbitrary function f on R

d (it may be real-
valued, or R

q -valued, in which case the following should be read component by
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component):

V n(f,X)t = V (Tn;f,X)t =
Nn(t)∑

i=1

f (Δni X). (3.1.3)

The second notation emphasizes the dependency on the discretization grid Tn.
By construction the process V n(f,X) is piecewise constant, and in some appli-

cations it may be useful to consider an “interpolated” version, which we define as
follows:

V nint(f,X)t = V n(f,X)t + f (Xt −XTn(t))=
∑

i≥1

f (Xt∧T (n,i) −Xt∧T (n,i−1)).

(3.1.4)
We have V nint(f,X)T (n,i) = V n(f,X)T (n,i), but unlike V n(f,X) the process
V nint(f,X) varies on each interval I (n, i) along the path of X transformed by f .

3) We have already encountered the functionals V n(f,X) in two special cases.
The first case is when f (x)= x, the identity map on R

d for which we have

V n(f,X)t = XTn(t) −X0, V nint(f,X)t = Xt −X0.

Then, up to the initial value X0, the process V n(f,X) is the discretized version of
the process X. The discretization y(n)(t) = y(t (n, i)) of a given càdlàg function y
along a (non-random) discretization scheme (t (n, i) : i ≥ 0) always converges to y
in the Skorokhod sense as the mesh of the scheme goes to 0 in the sense of (3.1.1):
this is a special case of (2.2.13). We thus deduce by the subsequence principle that

V n(f,X)
P=⇒ X−X0, for f (x)= x (3.1.5)

(recall that this is convergence in probability, for the Skorokhod topology). When
the convergence (3.1.1) holds for all ω instead of in probability, for example when

the T (n, i)= t (n, i) are non-random, we get of course V n(f,X)(ω)
Sk−→ X(ω)−

X0(ω) for each ω.
Another particular case is when f (x)= xjxk (the product of two components of

x ∈R
d ). Then, provided X is a semimartingale, we can rewrite (2.1.8) as follows:

V nint(f,X)t
P−→ [Xj ,Xk]

t
.

This is wrong in general for V n(f,X)t , unless t is not a fixed time of discontinuity
of X, that is P(ΔXt = 0)= 1. This fact is a reason to consider the interpolated func-
tionals, although in practical applications we only know, or can use, the variables
XT (n,i), the other Xt ’s being unavailable. More generally, if f (x)= xjxk , later we

will see that V nint(f,X)
u.c.p.=⇒ [Xj ,Xk] (convergence in probability, locally uniformly

in time) and V n(f,X)
P=⇒ [Xj ,Xk], the latter implying V n(f,X)t

P−→ [Xj ,Xk]t
only when P(ΔXt = 0)= 1.
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4) Another case is of special interest. Suppose that d = 1. Then with f (x)= |x|
we have

V n(f,X)t =
Nn(t)∑

i=1

∣∣Δni X
∣∣

V nint(f,X)t =
∑

i≥1

|Xt∧T (n,i) −Xt∧T (n,i−1)|,

which are two versions of the “approximate total variation” at time t and stage n
(or, for the grid Tn) of X. In general these variables explode as n→∞. However, if
X is of finite variation (meaning, with paths of finite variation over finite intervals),
and if Var(X)t denotes the total variation of the path s �→Xs over (0, t], then both
V n(f,X)t and V nint(f,X)t are smaller than Var(X)t (note that Var(X) = Var(X −
X0) here). We have more, namely the following result, whose proof is given in the
Appendix (although it is, except for the Skorokhod convergence, an old result, see
e.g. Grosswald [42]):

Proposition 3.1.2 Suppose that the one-dimensional processX is of finite variation,
and let f (x)= |x|. Then for any random discretization scheme we have:

V n(f,X)
P=⇒ Var(X)

V n(f,X)t −Var(X)Tn(t)
u.c.p.=⇒ 0

V nint(f,X)
u.c.p.=⇒ Var(X).

(3.1.6)

This result is stated for convergence in probability, because (3.1.1) holds in prob-
ability. But this is really a “pathwise” result, that is the convergence holds for any ω
for which the left side of (3.1.1) goes to 0. The property (3.1.6) emphasizes the dif-

ferences between V n(f,X) and V nint(f,X). We do not have V n(f,X)
u.c.p.=⇒ Var(X)

in general, unless X is continuous: indeed if X jumps at time S then Var(X) has the
jump |ΔXS | at time S, and V n(f,X) has a jump of approximate size |ΔXS | at time
Tn(S)= inf(T (n, i) : i ≥ 1, T (n, i)≥ S), and Tn(S) converges to S but in general is
not equal to S.

3.2 Semimartingales with p-Summable Jumps

In this section X is a d-dimensional semimartingale on (Ω,F , (Ft )t≥0,P), and we
denote by μ its jump measure and by (B,C, ν) its characteristics. The processes

Σ(p,X)t =
∑

s≤t
‖ΔXs‖p = ‖x‖p � μt (3.2.1)

will play a central role. Here, p ≥ 0, and we use the convention 00 = 0: hence
Σ(0,X)t =∑s≤t 1{ΔXs �=0} is simply the number of jumps of X before time t .
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Each processΣ(X,p) is well-defined, with values in [0,∞]. It is adapted, null at
0, has left limits everywhere and is right-continuous on [0, T )∪ (T ,∞), where T =
inf(t :Σ(p,X)t =∞). Then we associate with X the following subset of [0,∞):

I(X) = {p ≥ 0 : the process Σ(p,X) is a.s. finite-valued
}
. (3.2.2)

We will also say that X has p-summable jumps if p ∈ I(X).

Lemma 3.2.1 a) We have 2 ∈ I(X) always, and I(X) is an interval of the form
(p0,∞) or [p0,∞), for some p0 ∈ [0,2].

b) A real p < 2 belongs to I(X) if and only if the process (‖x‖p ∧ 1) � ν is a.s.
finite-valued.

In particular when X is a Lévy process, with Lévy measure F , then V (p,X)t <
∞ a.s. for all t if and only if

∫
(‖x‖p∧1)F (dx) <∞ (once more, this is always true

when p ≥ 2), and otherwise it can be shown (see the Appendix) that V (p,X)t =∞
a.s. for all t > 0: this is an old result of Blumenthal and Getoor in [19], and the
infimum p0 of the set I(X) in the Lévy case is called the Blumenthal-Getoor index
of the process. When X is a stable process, the Blumenthal-Getoor index is the
stability index.

Coming back to semimartingales, when 1 ∈ I(X) the jumps are summable (on
finite time intervals, of course) and the process (‖x‖ ∧ 1) � ν is a.s. finite-valued.
Then we may rewrite the Lévy-Itô decomposition (2.1.18) as

X =X0 +B ′ +Xc + x � μ, where B ′ = B − (x1{‖x‖≤1}) � ν. (3.2.3)

Proof a) The property 2 ∈ I(X) follows from (2.1.5). If p ≥ q we have ‖x‖p ≤
‖x‖q + ‖x‖p1{‖x‖>1}, hence

Σ(p,X)t ≤ Σ(q,X)t +
∑

s≤t
‖ΔXs‖p1{‖ΔXs‖>1}.

The last sum above is a finite sum, so q ∈ I(X) implies p ∈ I(X). This proves (a).
b) Let p < 2. Exactly as above, we see that Σ(p,X)t <∞ if and only if At :=

(‖x‖p1{‖x‖≤1}) � μt <∞. Set also A′ = (‖x‖p1{‖x‖≤1}) � ν. The processes A and
A′ are increasing with bounded jumps, so they are finite-valued if and only if they
are locally integrable. Since for any stopping time T we have E(AT )= E(A′T ), the
claim follows. �

We end this section with an extension of Itô’s formula to a wider class of test
functions f , when we have p ∈ I(X) for some p < 2 and Xc = 0.

The usual Itô’s formula (2.1.9) requires f to be C2, and indeed the second deriva-
tives ∂2

ij f appear in the right side. The C2 property can be somewhat relaxed, and
replaced by the fact that f is convex (or the difference of two convex functions),
and there is still an Itô’s formula, but it involves the local times of X and is then
called Itô-Tanaka Formula or Itô-Meyer Formula.
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However, whenXc = 0, or equivalently when the second characteristic C is iden-
tically 0, then the second derivatives do not show up any more, and one may expect a
similar formula with less smoothness on f , provided of course the last term involv-
ing the jumps converges. This is what we will do now: when Xc = 0 we extend Itô’s
formula for functions f that are Cp for p < 2, as soon as p ∈ I(X): when p > 0 is
not an integer, saying that a function is Cp means that it is [p] times differentiable,
and its [p]th partial derivatives are Hölder with index p−[p] on every compact set.
In particular when 0<p < 1, Cp is the same as “locally Hölder with index p”.

Theorem 3.2.2 Assume that Xc = 0 and that p ∈ I(X). Then
a) If 1≤ p < 2 and if f is a Cp function (in the sense above), the process f (X)

is a semimartingale satisfying

f (Xt ) = f (X0)+
d∑

i=1

∫ t

0
∂if (Xs−) dXis

+
∑

s≤t

(
f (Xs− +ΔXs)− f (Xs−)−

d∑

i=1

∂if (Xs−)ΔXis

)
. (3.2.4)

b) If 0 ≤ p ≤ 1 and if further the process B ′ of (3.2.3) vanishes, then for any
function f which is locally Hölder with index p when p > 0, and which is measur-
able when p = 0, the process f (X) is a semimartingale satisfying

f (Xt ) = f (X0)+
∑

s≤t

(
f (Xs− +ΔXs)− f (Xs−)

)
. (3.2.5)

Before proceeding to the proof, we give some comments. If f is Cp , the sth
summand in either one of these two formulas is of order of magnitude ‖ΔXs‖p , or
more precisely there is a locally bounded process (Ht ) such that the sth summand
is smaller than Hs‖ΔXs‖p as soon as ‖ΔXs‖ ≤ 1 (see the proof below). So if p ∈
I(X), the hypothesis that f is Cp is exactly what we need for the series in (3.2.4)
and in (3.2.5) to be absolutely convergent.

This extended Itô’s formula is not the same as the Itô-Tanaka formula for convex
functions. Note that (3.2.5) when p = 0 is trivial, and added here for completeness
(under the assumptions of (b) we simply have Xt = X0 +∑s≤t ΔXs , and when
0 ∈ I(S) this sum is a finite sum).

In (b) with p = 1, the function f needs to be locally Lipschitz, a weaker as-
sumption than in (a) with p = 1, but the process X is more restricted. Both formulas
(3.2.4) and (3.2.5) are the same when p = 1 and the assumptions of (a) and (b) are
all satisfied.

Proof (a) We assume that 1 ≤ p < 2 and that f is Cp . We associate with f the
function gf (x, y)= f (x+y)−f (x)−∑d

i=1 ∂if (x)y
i . For each integer q ≥ 1 there

is a constant Γq such that |∂if (x)| ≤ Γq and (by the Hölder property of index p− 1
for the derivatives) |∂if (x + y) − ∂if i(x)| ≤ Γq‖y‖p−1 whenever ‖x‖,‖y‖ ≤ q .
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There is a continuous increasing function h on R+ satisfying h(q − 1) ≥ Γqd for
all q ≥ 1, and we deduce that for all x, y ∈R

d :
∣∣∂if (x)

∣∣ ≤ h
(‖x‖), ‖y‖ ≤ 1 ⇒ ∣∣gf (x, y)

∣∣ ≤ h
(‖x‖)‖y‖p. (3.2.6)

Now, the summand in the last sum of (3.2.4), at any time s such that ‖ΔXs‖ ≤ 1, is
smaller than h(‖Xs−‖)‖ΔXs‖p . Since p ∈ I(X), this implies that the last term in
(3.2.4) is an absolutely convergent sum.

Denote by fn the convolution of f with a C∞ nonnegative function φn on R
d ,

with support in {x : ‖x‖ ≤ 1/n} and
∫
φn(x) dx = 1. We deduce from (3.2.6) that

fn → f, ∂ifn → ∂if, gfn → gf∣∣∂ifn(x)
∣∣ ≤ h

(‖x‖ + 1
)
, ‖y‖ ≤ 1 ⇒ ∣∣gfn(x, y)

∣∣ ≤ h
(‖x‖ + 1

)‖y‖p.
(3.2.7)

Each fn is C∞, so the usual Itô’s formula and Xc = 0 yield

fn(Xt )− fn(X0)=
d∑

i=1

∫ t

0
∂ifn(Xs−) dXis +

∫ t

0

∫

Rd

gfn(Xs−, y)μ(ds, dy).

(3.2.8)
By (3.2.7) the left side of (3.2.8) converges to f (Xt ) − f (X0), and the domi-

nated convergence theorem for stochastic integrals yields
∫ t

0 ∂ifn(Xs−) dX
i
s

P−→∫ t
0 ∂if (Xs−) dX

i
s . Furthermore, since Σ(p,X)t < ∞ for all t , the convergence

gfn → gf and the last estimate in (3.2.7) yield, together with the (ordinary)
dominated convergence theorem, that

∫ t
0

∫
Rd
gfn(Xs−, y)μ(ds, dy)→

∫ t
0

∫
Rd
gf ×

(Xs−, y)μ(ds, dy). Then we deduce (3.2.4) from (3.2.8), and the semimartingale
property of f (X) follows from (3.2.4).

(b) Since the case p = 0 is trivial, we assume that 0<p ≤ 1 and that f is locally
Hölder with index p, and also that p ∈ I(X) and Xt =X0 +∑s≤t ΔXs . As in (a),
there is a continuous increasing function h on R+ such that |f (x + y)− f (x)| ≤
h(‖x‖)|y|p−1 if ‖y‖ ≤ 1, so the right side of (3.2.5) is an absolutely convergent sum.
Both sides of (3.2.5) are processes which are sums of their jumps, they have the same
jumps, and the same initial value, so they are equal. Finally, the semimartingale
property is again obvious. �

3.3 Law of Large Numbers Without Normalization

3.3.1 The Results

Here again X is a d-dimensional semimartingale on (Ω,F , (Ft )t≥0,P), with jump
measure μ and characteristics (B,C, ν). We are also given a random discretization
scheme T = (Tn) with Tn = (T (n, i) : i ≥ 0). Apart from being subject to (3.1.1),
this scheme is totally arbitrary.
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Our aim is to prove that V n(f,X) converges in probability, for the Skorokhod
topology. When f = (f i)i≥q is q-dimensional the Skorokhod-convergence of each
V n(f i,X) does not imply the Skorokhod-convergence of V n(f,X), so below we
state the multidimensional result.

We obviously need some conditions on f . Typically, most increments Δni X are
(very) small, so the behavior of f near the origin plays a crucial role. On the other
hand, at least whenX has jumps, someΔni X are big, hence the behavior of f outside
the origin cannot be totally ignored: this explains the continuity assumption made
below.

The results are rather diverse, and far from covering all possible behaviors of f
near 0, especially in the multidimensional case d ≥ 2, but they at least completely
describe what happens for the functions f (x)= |x|p for all p > 0 when d = 1. For
a better understanding of (C) below, remember that when 1 ∈ I(X) and Xc = 0, we
have

Xt = X0 +B ′t +
∑

s≤t
ΔXs (3.3.1)

where B ′ is the “genuine” drift, which is a continuous process of locally finite vari-
ation.

Theorem 3.3.1 Let X be a d-dimensional semimartingale and T = (Tn) be any
random discretization scheme. Let also f be a continuous function from R

d into R
q .

A) Under either one of the following four conditions on f and X:

(A-a) f (x)= o(‖x‖2) as x→ 0,
(A-b) Xc = 0 and there is a p ∈ I(X)∩ (1,2] such that f (x)= O(‖x‖p) as x→ 0,
(A-c) Xc = 0 and 1 ∈ I(X) and f (x)= o(‖x‖) as x→ 0,
(A-d) Xc = 0 and there is a p ∈ I(X)∩[0,1] such that f (x)= O(‖x‖p) as x→ 0,

and further B ′ = 0 in (3.3.1),

we have the following Skorokhod convergence in probability:

V n(f,X)
P=⇒ V (f,X) := f � μ. (3.3.2)

B) If f (x)=∑d
i,j=1 αij x

ixj+o(‖x‖2) as x→ 0, for some αij ∈R
q , then

V n(f,X)
P=⇒ V (f,X) :=

d∑

i,j=1

αijC
ij + f � μ. (3.3.3)

C) Assume 1 ∈ I(X) and Xc = 0. If f (x) =∑d
i=1 αi |xi |+o(‖x‖) as x→ 0, for

some αi ∈R
q , then

V n(f,X)
P=⇒ V (f,X) :=

d∑

i=1

αiVar
(
B ′i
)+ f � μ. (3.3.4)
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D) In all these cases, we also have

V nint(f,X)
u.c.p.=⇒ V (f,X). (3.3.5)

E) Suppose that f (x)= ‖x‖p on a neighborhood of the origin. Then there exists a
time t > 0 such that the sequence of variables V n(f,X)t is not bounded in proba-
bility, as soon as one of the following (non-exclusive) conditions is satisfied:

(E-a) p < 2 and Xc is not identically 0,
(E-b) p /∈ I(X),
(E-c) p < 1 ∈ I(X) and B ′ is not identically 0.

When further X is a Lévy process, we even have V n(f,X)t
P−→+∞ for all t > 0

under either one of (E-a), (E-b) or (E-c) above.

The limit V (f,X) in this theorem is defined unambiguously: when f satisfies
two different assumptions at once, the process V (f,X) is the same in the two con-
vergence statements.

In (B) the condition on f is equivalent to saying that it is twice differentiable at
0, with f (0)= 0 and ∂if (0)= 0. In (C-a) the condition on f is equivalent to saying
that it is once differentiable at 0, with f (0) = 0. Note that (E) shows—for a very
special type of test functions f—that the hypotheses on the process X in (A,B,C)
are necessary as well as sufficient to have convergence. For a general f , however,
no necessary conditions are available.

Remark 3.3.2 The key result is (3.3.5), which by virtue of (2.2.13) and the subse-
quences principle immediately implies (3.3.2)–(3.3.4). It also implies the following:

for a given finite (random) time T , we have V n(f,X)T
P−→ V (f,X)T in two non-

exclusive cases:

(i) we have P(ΔXT �= 0)= 0;
(ii) for each n large enough the time T belongs to the discretization scheme, in the

sense that ∪i≥1{T (n, i)= T } =Ω almost surely.

Otherwise, V n(f,X)T
P−→ V (f,X)T may fail, even when T = t is not random: for

example if Xt = 1[s,∞)(t) is non-random and T (n, i)= i/n and f (x)= |x|p , then
V n(f,X)s = 0 does not converge to V (f,X)s = 1 if s is irrational.

Remark 3.3.3 When d = 1 and f (x) = |x|p for p > 1, the convergence

V n(f,X)t
P−→ V (f,X)t when t belongs to the (non-random) discretization scheme

goes back to Lépingle [71], and the case p = 2 is simply the convergence (2.1.8).
Indeed, Lépingle proved the almost sure convergence in this setting, when p > 2
and also when p > 1 and Xc = 0, provided of course (3.1.1) holds almost surely. If
the latter hypothesis holds, we have in fact the almost sure convergence in all cases
of (A) and (C) (but not in (B)).
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In the setting of the previous remark, Lépingle also shows that (3.3.2) holds not
only when Xc = 0 and p ∈ I(X) but also, without these “global” assumptions, in
restriction to the set on whichXcs = 0 for all s ≤ t andΣ(p,X)t <∞. This property
is of importance for applications, so we state a result in this direction. We improve
on (A-b,d) only, but (A-c) and (C) could be improved accordingly:

Corollary 3.3.4 In the setting of Theorem 3.3.1, let T be a finite stopping time with
P(ΔXT �= 0) = 0 and f be a continuous function on R

d with f (x) = O(‖x‖p)
as x→ 0, for some p ∈ [0,2). Then the stopped processes V n(f,X)t∧T converge
in probability, for the Skorokhod topology, to the stopped process V (f,X)t∧T , in
restriction to the set

ΩT =
{
{CT = 0} ∩ {Σ(p,X)T <∞} if p > 1

{CT = 0} ∩ {Σ(p,X)T <∞}∩ {B ′s = 0 ∀s ≤ T } if p ≤ 1.

There is also an improvement of the theorem in another direction, namely when
one (partially) drops out the continuity of the test function. This is quite useful,
because in some applications one needs to use a test function f of the form f =
g1A, where A is a Borel subset of Rd and g satisfies the conditions of the theorem.

Theorem 3.3.5 Statements (A, B, C, D) of Theorem 3.3.1 hold if we replace the
continuity of the test function f by the fact that it is Borel and that either one of the
following two equivalent conditions holds, withDf denoting the set of all x ∈R

d at
which f is not continuous:

(i) P(∃t > 0 : ΔXt ∈Df )= 0;
(ii) 1Df ∗ ν∞ = 0 almost surely.

Accordingly, the statement of Corollary 3.3.4 holds when f is not continuous, in
restriction to the set ΩT ∩ {1Df ∗ νT = 0}.

Remark 3.3.6 When q = d and f (x) = x we have (3.1.5). As a matter of fact,
if we set g(x) = x and take f as in the above theorem, we could prove that the
pairs (V n(f,X),V n(g,X)) converge in probability to (V (f,X),X − X0) for the
Skorokhod topology on D

q+d , and the proof would be essentially the same. As

a consequence, if A is any q × d matrix, we deduce that V n(f + Ag,X) P=⇒
V (f )+A(X−X0), and this allows one to get limits for functions satisfying weaker
hypotheses. For example we may deduce from (C) that if 1 ∈ I(X) and Xc = 0 and
f (x)=∑d

i=1 αix
i+o(‖x‖) as x→ 0 for some αi ∈R

q , then

V n(f,X)
P=⇒ V (f,X) :=

d∑

i=1

αiB
′i + f � μ.

The same comments apply for the interpolated functionals V nint(f,X). These exten-
sions, which do not seem to be particularly useful in practice, are left to the reader.
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3.3.2 The Proofs

Proving Theorems 3.3.1 and 3.3.5 requires first to show the convergence in a variety
of special cases, which will be studied in several lemmas. Before proceeding, we
observe that it is no restriction to suppose that our discretization scheme satisfies

∀t > 0, sup
i≥1

(
T (n, i)∧ t − T (n, i − 1)∧ t) → 0 (3.3.6)

for all ω ∈Ω , instead of a mere convergence in probability as in (3.1.1). Indeed, the
left side of (3.1.1) is non-decreasing in t , and using (2.2.18), we see that from any
subsequence of integers one may extract a further subsequence along which (3.1.1)
holds, simultaneously for all t , pointwise in ω outside a null set. Then, upon using
the subsequences principle (2.2.17) and upon discarding a null set, it is enough to
prove the results when (3.3.6) holds identically.

Omitting the mention of X, we write

Wn(f ) = V nint(f,X)− V (f,X). (3.3.7)

The key step of the proof consists in showing that, under the appropriate conditions
on f , we have

Wn(f )
u.c.p.=⇒ 0. (3.3.8)

This is (D), which implies (A), (B), (C), as said before. The proof of (E) will be
given at the end. As for the proof of (3.3.8), it is carried out under two different sets
of assumptions on the test function f , and then the two cases are pasted together:

Case 1: The function f vanishes on a neighborhood of 0 and satisfies

outside a P null set, f is continuous at each point ΔXt(ω). (3.3.9)

Case 2: The function f is of the class Cp , as described before Theorem 3.2.2, for
some p > 0; furthermore f (x) = 0 if ‖x‖> 1, and f has an appropriate behavior
at 0, depending on the properties of X.

Lemma 3.3.7 In Case 1 above,Wn(f )t→ 0 locally uniformly in t , and for each ω.

Proof Let S1, S2, . . . be the successive jump times of X corresponding to jumps
with norm bigger than ε/2, where ε > 0 is such that f (x) = 0 when ‖x‖ ≤ ε. We
have Sq→∞ as q→∞. SetX′ =X−(x1{‖x‖>ε/2})�μ. By construction ‖ΔX′‖ ≤
ε/2, hence for any T > 0 we have

lim sup
θ→0

sup
0≤t<s≤T , s−t≤θ

∥∥X′t (ω)−X′s(ω)
∥∥ ≤ ε

2
.
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for all ω. In view of (3.3.6) it follows that for all T > 0 and ω ∈Ω there is an integer
MT (ω) with the following properties: if n≥MT , for all i ≤Nn(T )+ 1, we have

• either the interval I (n, i) contains no Sq (recall (3.1.2)), and

s ∈ I (n, i) ⇒ ‖Xs −XT (n,i−1)‖ ≤ ε
• or I (n, i) contains exactly one Sq , and we write i = i(n, q), and

s ∈ I (n, i) ⇒ ‖Xs −XT (n,i−1) −ΔXSq 1{Sq≤s}‖ ≤ ε.

(3.3.10)

Therefore, with Qt denoting the number of q such that Sq ≤ t , and since f (x)= 0
when ‖x‖ ≤ ε, when n≥MT and t ≤ T we have

Wn(f )t =
QT∑

q=1

(
f (Xt∧T (n,i(n,q)) −XT (n,i(n,q)−1))− f (ΔXSq )

)
.

Now, on the set {Sq ≤ t} we have Xt∧T (n,i(n,q)) − XT (n,i(n,q)−1) → ΔXSq ,
because X is càdlàg. Since f satisfies (3.3.9) and QT is finite, we deduce
supt≤T ‖Wn(f )‖→ 0. �

For Case (2) above, we single out the three possible situations: we may have
no restriction on X (so p = 2 and Xc is arbitrary), or we may have p ∈ (1,2] and
p ∈ I(X) and Xc = 0, or we may have p ∈ [0,1] and p ∈ I(X) and Xc = 0 and
B ′ = 0.

Lemma 3.3.8 Let f be a C2 function from R
d into R

q with f (0)= 0 and ∂if (0)=
0 for all i, and also f (x)= 0 if ‖x‖ ≥ 1. Then (3.3.8) holds.

Proof Our assumptions imply that f satisfies (B) of Theorem 3.3.1 with αij =
1
2 ∂

2
ij f (0). Therefore in the definition (3.3.7) of Wn(f ) we have V (f,X) =

1
2

∑d
i,j=1 ∂

2
ij f (0)C

ij + f ∗ μ, where f ∗ μ is well defined because ‖f (x)‖ ≤
K(‖x‖2 ∧ 1).

For each n we introduce the following adapted left-continuous process Yn:

Yn0 = 0, Y nt = Xt− −XT (n,i−1) if T (n, i − 1) < t ≤ T (n, i).
We associate with f three functions: Rd ×R

d→R
q by setting

k(y, x) = f (y + x)− f (y)− f (x)

g(y, x) = f (y + x)− f (y)− f (x)−
(

d∑

i=1

∂if (y)x
i

)
1{‖x‖≤1}

h(y, x) = f (y + x)− f (y)− f (x)−
d∑

i=1

∂if (y)x
i .
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The following estimates are easy:
∥∥k(y, x)

∥∥ ≤ K
(‖x‖ ∧ 1

)
,

∥∥g(y, x)
∥∥ ≤ K

(‖x‖2 ∧ 1
)
. (3.3.11)

Recall that V nint(f,X)t is the sum of all f (Xt∧T (n,i)−XT (n,i−1)) for i ≤Nn(t)+
1. Since f is C2 we can evaluate each of these summands by applying Itô’s for-
mula for the process XT (n,i−1)+s − XT (n,i−1). By subtracting V (f,X)t∧T (n,i) −
V (f,X)t∧T (n,i−1) to the ith summand, we obtain

Wn(f )t =
d∑

j=1

∫ t

0
∂jf
(
Yns
)
dX

j
s

+ 1

2

d∑

j,k=1

∫ t

0

(
∂2
jkf
(
Yns
)− ∂2

jkf (0)
)
dC

jk
s + h

(
Yn, x
)
� μt . (3.3.12)

By (3.3.11) the process g(Y n, x) � μ has locally integrable variation, with compen-
sator g(Y n, x) � ν. Then if we use the Lévy-Itô decomposition (2.1.18) for X, we
deduce that Wn(f )=An +Mn, where

Ant =
d∑

j=1

∫ t

0
∂jf
(
Yns
)
dB

j
s

+ 1

2

d∑

j,k=1

∫ t

0

(
∂2
jkf
(
Yns
)− ∂2

jkf (0)
)
dC

jk
s + g

(
Yn, x
)
� νt ,

Mn
t =

d∑

j=1

∫ t

0
∂jf
(
Yns
)
dX

jc
s + k

(
Yn, x
)
� (μ− ν)t .

Now we observe that, outside a null set, we have Yns → 0 for all s (we use (3.3.6)
once more here). In view of the assumptions on f , we deduce that outside a null set
again we have ∂jf (Y ns )→ 0 and ∂2

jkf (Y
n
s )− ∂2

jkf (0)→ 0 and g(Y ns , x)→ 0 and

k(Y ns , x)→ 0 for all s and x, whereas (3.3.11) holds and ∂jf and ∂2
jkf are bounded.

Then the Lebesgue dominated convergence theorem (for ordinary and stochastic

integrals) and (2.2.25) yield Wn(f )
u.c.p.=⇒ 0. �

Lemma 3.3.9 Assume that p ∈ [1,2] ∩ I(X) and Xc = 0. Let f be a Cp function
from R

d into R
q with f (0)= 0 and ∂if (0)= 0 for all i, and also f (x)= 0 when

‖x‖ ≥ 1. Then (3.3.8) holds.

Proof We use the notation of the previous proof. Instead of (3.3.11) we have
∥∥k(y, x)

∥∥ ≤ K
(‖x‖ ∧ 1

)
,

∥∥g(y, x)
∥∥ ≤ K

(‖x‖p ∧ 1
)
. (3.3.13)

The process f � μ is well defined because ‖f (x)‖ ≤K(‖x‖p ∧ 1) in this case.
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The extension (3.2.4) of Itô’s formula yields, instead of (3.3.12),

Wn(f )t =
d∑

j=1

∫ t

0
∂jf
(
Yns
)
dX

j
s + h
(
Yn, x
)
� μt .

By (3.3.13) the process g(Y n, x) �μ is of locally integrable variation, with compen-
sator g(Y n, x)�ν. Then as in the previous proof we deduce thatWn(f )=An+Mn,
where

Ant =
d∑

j=1

∫ t

0
∂jf
(
Yns
)
dB

j
s +g
(
Yn, x
)
� νt , Mn

t = k
(
Yn, x
)
� (μ− ν)t . (3.3.14)

We end the proof exactly as in the previous lemma. Namely, Yns → 0 for all s,
hence ∂jf (Y ns )→ 0. Moreover g(Y ns , x)→ 0 and k(Y ns , x)→ 0, hence in view of
(3.3.13) and of (‖x‖p∧1)�νt <∞ (see Lemma 3.2.1) we have ‖g(Y n, x)‖�νt→ 0

and k(Y n, x)2 � νt→ a.s. Then (3.3.14) and (2.2.25) again yield Wn(f )
u.c.p.=⇒ 0. �

Lemma 3.3.10 Assume that 1 ∈ I(X) and Xc = 0. Let f (x) =∑d
j=1 αj |xj | for

some αj ∈R
q . Then (3.3.8) holds.

Proof The assumptions imply that each component Xj is of finite variation,
see (3.3.1), so if h(y) = |y|, Proposition 3.1.2 yields Wn(h,Xj ) := V n(h,Xj ) −
Var(Xj )

u.c.p.=⇒ 0. Since f (x) = ∑d
j=1 αjh(xj ), we have Wn(f ) = ∑d

j=1 αj ×
Wn(h,Xj ), and the result follows. �

Lemma 3.3.11 Assume that p ∈ [0,1] ∩ I(X) and Xc = 0 and B ′ = 0. Let f be
a function from R

d into R
q with f (0) = 0 and f (x) = 0 if ‖x‖ ≥ 1, and which is

Hölder with index p. Then (3.3.8) holds.

Proof Again we use the notation of the previous proofs. The function g is no longer
defined, but k is, and f and k satisfy

∥∥f (x)
∥∥ ≤ K

(‖x‖p ∧ 1
)
,

∥∥k(x, y)
∥∥ ≤ K

(‖x‖p ∧ 1
)
. (3.3.15)

Then U = f � μ is well defined. The extension (3.2.5) of Itô’s formula shows that
Wn(f )= k(Y n, x) � μ. Here again, outside a null set we have k(Y ns , x)→ 0 for all

s and x, so (3.3.15) yields k(Y n, x) � μ
u.c.p.=⇒ 0, and we have the result. �

Proof of Theorem 3.3.5 1) The equivalence of two properties (i) and (ii) in the state-
ment of the theorem is easy to prove: indeed (i), which is the same as (3.3.9),
amounts to saying that E(1Df ∗ μ∞) = 0. Now, Df is a Borel subset of R

d ,
hence 1Dj ∗ ν is the predictable compensator of 1Df ∗μ, and thus E(1Df ∗μ∞)=
E(1Df ∗ ν∞).

2) As said before, we can assume (3.3.6) and we will prove (3.3.8), which is (D)
and implies (A), (B) and (C).
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Let us introduce another notation, to be used throughout this proof and also
throughout the whole book:

ψ is a C∞ function: R+ → [0,1], with 1[1,∞)(x)≤ψ(x)≤ 1[1/2,∞),
ψε(x) = ψ

(‖x‖/ε), ψ ′ε = 1−ψε. (3.3.16)

We set gp(x)= ‖x‖p , and for each ε ∈ (0,1] we introduce the two functions

fε = f − f ′ε, f ′ε(x) =

⎧
⎪⎨

⎪⎩

f (x)ψ ′ε(x) for (A)
∑d
i,j=1 αij x

ixjψ ′ε(x) for (B)
∑d
i=1 αi |xi | for (C).

Since Wn(f ) =Wn(fε)+Wn(f ′ε), in order to obtain (3.3.8) it is enough (as a
particular case of Proposition 2.2.1) to prove the following two properties:

ε > 0 ⇒ Wn(fε)
u.c.p.=⇒ 0 (as n→∞)

t, η > 0 ⇒ lim
ε→0

lim sup
n

P

(
sup
s≤t
∥∥Wn(f ′ε)s

∥∥> η
)
= 0.

(3.3.17)

3) Here we prove (3.3.17) in case (A). The function fε satisfies (3.3.9) and van-
ishes on a neighborhood of 0, so the first part of (3.3.17) follows from Lemma 3.3.7.
In case (A-a), resp. (A-c), we have ‖f ′ε‖ ≤ θ(ε)h, where θ(ε)→ 0 as ε→ 0, and
h= g2ψ

′
1, resp. h= g1ψ

′
1. Coming back to the definition ofWn(f ′ε) we see that this

implies
∥∥Wn
(
f ′ε
)∥∥ ≤ θ(ε)V nint(h,X)+ θ(ε)h � μ.

The function h and the process X satisfy the assumptions of Lemma 3.3.8 in
Case (A-a), whereas in Case (A-c) we have the estimate V nint(h,X)≤Var(X), hence
in both cases the sequence of variables sups≤t V nint(h,X)s is bounded in probability,
whereas h � μt <∞ because 2 ∈ I(X), resp. 1 ∈ I(X). Then the second part of
(3.3.17) becomes obvious.

In Case (A-b) we have 1< p ≤ 2 and Xc = 0 and the function h′ε = gpψ ′ε is of
class Cp with support in {x : ‖x‖ ≤ ε}, and h′ε(0)= ∂ih′ε(0)= 0. Then Wn(h′ε)t =
V n(hε)t − h′ε � μTn(t). We also have ‖f ′ε‖ ≤Kh′ε , and thus

∥∥Wn
(
f ′ε
)∥∥ ≤ KV nint

(
h′ε,X
)+Kh′ε � μ ≤ K

∣∣Wn
(
h′ε
)∣∣+ 2Kh′ε � μ.

Lemma 3.3.9 yieldsWn(h′ε)
u.c.p.=⇒ 0, whereas h′ε �μt→ 0 as ε→ 0 by the dominated

convergence theorem, because p ∈ I(X). Then the previous estimate gives us the
second part of (3.3.17) in this case.

Case (A-d) is treated in the same way, except that 0 ≤ p ≤ 1, so now
V (h′ε) = h′ε � μ, and Xc = 0 and B ′ = 0. We then apply Lemma 3.3.11 instead
of Lemma 3.3.9, to deduce the second part of (3.3.17).

4) Next we prove (3.3.8) in case (B). In view of the definition of fε , we see
that fε(x) = o(‖x‖2). Then we deduce the first part of (3.3.17) from case (A-a).



78 3 Laws of Large Numbers: The Basic Results

Moreover, Lemma 3.3.8 yields, in view of the definition of Gε , that Wn(f ′ε)
u.c.p.=⇒ 0

for each ε > 0, so the second part of (3.3.17) a fortiori holds.

5) Finally we prove (3.3.8) in case (C). We have fε(x)= o(‖x‖), hence the first
part of (3.3.17) follows from case (A-c). Moreover, f ′ε does not depend on ε and
Lemma 3.3.10 gives the second part of (3.3.17). �

Proof of Theorem 3.3.1 Since Theorem 3.3.5 has already been proved, it remains to
show (E). Therefore we suppose that f = gp on a neighborhood of the origin, say
on {x : ‖x‖ ≤ 2η} for some η ∈ (0,1]. By (A-a), and since f −gpψ ′η satisfies (3.3.9)
and vanishes on a neighborhood of 0, the sequence of variables (V n(f −gpψ ′η,X)t )
is bounded in probability for any t ≥ 0. Hence it suffices to prove the result when
f = gpψ ′η. We single out three cases which, although phrased differently, cover the
three cases in the theorem.

Case (1): we assume here that p < 2 and that Xc does not vanish identically, so
there is a t > 0 such that P(ΔXt �= 0) = 0 and P(Dt > 0), where Dt =∑d

i=1C
ii
t .

Set hε = g2ψ
′
ε . Observe that f ≥ εp−2hε if ε ∈ (0, η], hence by (B) we have

V n(f,X)t ≥ εp−2V n(hε,X)t
P−→ εp−2(Dt + hε � μt ) ≥ εp−2Dt .

This implies that, for all A > 0, lim infn P(V n(f,X)t > A) ≥ P(Dt > Aε
2−p),

which goes to P(Dt > 0) > 0 when ε→ 0. Hence the sequence (V n(f,X)t ) is
not bounded in probability.

When X is a Lévy process, then Xc �= 0 implies that P(Dt > 0)= 1 for all t > 0,

hence lim infn P(V n(f,X)t > A) = 1 for all A, which means that V n(f,X)t
P−→

+∞.

Case (2): we assume here Xc = 0 and p /∈ I(X) and either 1 ≤ p < 2, or 0 ≤
p < 1 and 1 ∈ I and B ′ = 0. There is t > 0 such that P(ΔXt �= 0) = 0 and
P(Σ(p,X)t−s =∞) for some s ∈ (0, t). We have fψε ≤ f , hence by (A-a) we
get

V n(f,X)t ≥ V n(fψε,X)t
P−→ (fψε) � μt ,

and (fψε) � μt increases to +∞ as ε decreases to 0 by the monotone convergence
theorem if Σ(p,X)t−s =∞. For all A > 0 we thus have lim infn P(V n(f,X)t >
A)≥ P(Σ(p,X)t−s =∞) > 0. Therefore the sequence (V n(f,X)t ) is not bounded
in probability.

When further X is a Lévy process, in addition to the other assumptions, we have

P(Σ(p,X)t−s =∞)= 1 for all t > s and we conclude as above that V n(f,X)t
P−→

+∞.

Case (3): we assume here Xc = 0 and 1 ∈ I(X) and B ′ �= 0, and 0≤ p < 1. There is
a t > 0 such that P(ΔXt �= 0)= 0 and P(B ′t �= 0). Set h′ε(x)= 1

d

∑d
j=1 |xj |ψ ′ε(x).

Observe that f ≥ εp−1h′ε if ε ∈ (0, η], hence by (C-b) we have with D =
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1
d

∑d
j=1 Var(B ′j ):

V n(f,X)t ≥ εp−1V n
(
h′ε,X
)
t

P−→ εp−1(Dt + hε � μt ) ≥ εp−2Dt .

SinceDt > 0 if B ′t �= 0, we conclude that the sequence (V n(fp,X)t ) is not bounded
in probability, and also that it converges in probability to +∞ when P(B ′t �= 0)= 1
(for example in the Lévy case), exactly as for case (1). �

Proof of Corollary 3.3.4 Let

Tq = inf(t : Ct �= 0)∧ inf
(
t :Σ(p,X)t ≥ q

)
,

and denote by X(q)t = Xt∧Tq the process X stopped at time Tq . First, X(q) is a
semimartingale with p ∈ I(X(q)) and X(q)ct = 0 for all t . Therefore under our

standing assumptions on f , Theorem 3.3.1 yields V n(f,X(q))
P=⇒ V (f,X(q)) as

n→∞ for each fixed q . Moreover P(ΔX(q)T �= 0)= 0 by hypothesis, so the con-
tinuity of the stopping mapping for the Skorokhod topology when the stopping time

is a time of continuity for the limit yields that V n(f,X(q))t∧T
P=⇒ V (f,X(q))t∧T

as n→∞.
It remains to observe that V n(f,X)s = V n(f,X(q))s and V (f,X)s =

V (f,X(q))s for all s ≤ Tq , whereas ΩT ∩ {Tq ≤ T } ↓ ∅ as q →∞, and the re-
sult readily follows. �

3.4 Law of Large Numbers with Normalization

3.4.1 Preliminary Comments

We turn now to a second—very different—type of LLN. In Theorem 3.3.1, the be-
havior of f near 0 is the determining factor, and even the only one whenX is contin-
uous, for obtaining a limit. In what follows, we consider another type of functionals,
whose behavior depends on the entire test function f . More specifically, instead of
the functionals V n(f,X) of (3.1.3), we consider functionals of the “normalized”
increments:

Nn(t)∑

i=1

f
(
Δni X/u(n, i)

)
(3.4.1)

perhaps with an “outside” normalization as well. Here, f is an arbitrary function
on R

d , and u(n, i) > 0 is a “suitable” normalizing factor chosen in such a way
that “most” of the variables Δni X/u(n, i) are neither going to 0 nor exploding. This
cannot be achieved in general, unless u(n, i) strongly depends on the structure of
the process X itself over the interval I (n, i).

For example, let X be a one-dimensional continuous Gaussian martingale with
angle bracket C = 〈X,X〉 (a deterministic continuous increasing function). With
a (non-random) scheme T = (t (n, i) : i ≥ 0)n≥1, the variables Δni X/u(n, i) are
N (0,1) if we take u(n, i) = √Δni C, whereas |Δni X|/u(n, i) goes to 0, resp. ∞



80 3 Laws of Large Numbers: The Basic Results

if u(n, i)/
√
Δni C goes to ∞, resp. 0. When the scheme is random, we do not know

how to choose a priori a normalization ensuring that |Δni X|/u(n, i) and its inverse
are tight. Even worse: with the function f ≡ 1 (so u(n, i) no longer enters the pic-
ture), (3.4.1) is equal to Nn(t), and in general there is no normalizing factor vn
such that vnNn(t) converges for all t to a finite and non-vanishing limit, even for a
non-random scheme.

These considerations lead us to consider regular discretization schemes below,
that is t (n, i)= iΔn for a sequence Δn→ 0 (see however Chap. 14 for some spe-
cial cases of irregular schemes). In this case Nn(t)= [t/Δn]. With the view of ob-
taining results holding at least for Brownian motion (see Chap. 1), we introduce the
following functionals, with both an “inside” and an “outside” normalization:

V ′n(f,X)t = V ′(Δn;f,X)t = Δn

[t/Δn]∑

i=1

f
(
Δni X/

√
Δn
)

(3.4.2)

(we use the first notation most of the time, and V ′(Δn;f,X) when we want to
emphasize the dependency on Δn.) The normalizing factor

√
Δn is designed for

the Brownian term, but it works for all Itô semimartingales having a non-vanishing
continuous martingale part.

In the particular case f (x)= ‖x‖p , or more generally when f is positively homo-
geneous of degree p > 0, meaning that f (λx)= λpf (x) for all x ∈ R

d and λ ≥ 0,
the functionals V ′(Δn;f,X) and V (Tn;f,X), which will be written as V (Δn;f,X)
when Tn is a regular grid with stepsize Δn, are essentially the same object: namely,
we have

f positively homogeneous of degree p

⇒ V ′(Δn;f,X)=Δ1−p/2
n V (Δn;f,X). (3.4.3)

Exactly as for V n(f,X), there is an interpolated version of V ′n(f,X):

V ′nint(f,X)t = Δn
∑

i≥1

f

(
Xt∧(iΔn) −Xt∧((i−1)Δn)√

Δn

)
.

However this has little interest, and although the forthcoming results holds for
V ′nint(f,X) under exactly the same assumptions as for V ′n(f,X), we will not pur-
sue this case here.

3.4.2 The Results

Before stating the results, we need some additional notation, recall that M+
d×d is

the set of all d × d symmetric nonnegative matrices:

if ∈M+
d×d , then ρa denotes the centered Gaussian law

with covariance matrix a, and ρa(f )=
∫
f (x)ρa(dx).

}
(3.4.4)
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In contrast with Theorem 3.3.1, we state the next result for a one-dimensional test
function. This automatically implies the same result when f is q-dimensional, be-
cause when all components of a sequence of multidimensional processes converge
in the u.c.p. sense, the same is true of the multidimensional processes themselves.

Below, X is an Itô semimartingale. Its characteristics have the form (2.1.25), that
is

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
cs ds, ν(dt, dx) = dt Ft (dx). (3.4.5)

In particular the process ct plays a crucial role below. The notation ‖ct‖ denotes the
Euclidean norm of the d × d matrix ct , considered as a vector in R

d2
.

Theorem 3.4.1 Assume that X is a d-dimensional Itô semimartingale and that the
discretization scheme is regular with stepsize Δn. Let f be a continuous function,
which satisfies one of the following three conditions:

(a) f (x)= o(‖x‖2) as ‖x‖→∞,
(b) f (x)= O(‖x‖2) as ‖x‖→∞, and X is continuous,
(c) f (x) = O(‖x‖p) as ‖x‖ →∞ for some p > 2, and X is continuous and

satisfies
∫ t

0
‖bs‖2p/(2+p) ds < ∞,

∫ t

0
‖cs‖p/2 ds < ∞. (3.4.6)

Then

V ′n(f,X) u.c.p.=⇒ V ′(f,X)t =
∫ t

0
ρcs (f ) ds. (3.4.7)

Conversely, if for some p ≥ 2 the processes V ′n(gp,X) converge in probability
locally uniformly in time to a continuous process, where gp(x) = ‖x‖p , then X is
continuous.

Condition (3.4.6) for p = 2 holds for any Itô semimartingale (cf. (2.1.25)), so
(b) is exactly (c) with p = 2. Observe also that 2p/(2+ p) < 2 always.

The last claim is not a complete converse for the cases (b) and (c). However, if
V ′(gp,X) is finite-valued for some p ≥ 2, then obviously the second part of (3.4.6)
holds. Moreover, the next example shows that for any p > 2 and ε > 0 there is an

Itô semimartingale such that V ′n(gp,X)
u.c.p.=⇒ V ′(gp,X), and the first part of (3.4.6)

holds for p but not for p + ε. So the exponent 2p
2+p is in some sense “optimal”,

although we do not know whether the first part of (3.4.6) is actually necessary for

having V ′n(gp,X)
u.c.p.=⇒ V ′(gp,X).

Example 3.4.2 This example is a very simple “Itô semimartingale”, namely an ab-
solutely continuous increasing function (no randomness here). So d = 1, andX = B
is the function

Bt = tα, hence bt = αtα−1,
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for some α ∈ (0, 1
2 ). Here V ′(f,X)= 0 for any function f . We take p > 2. We have

V ′n(gp,B)t = Δ
1−p/2
n

[t/Δn]∑

i=1

(
Δni B
)p = Δ

1−p/2+pα
n

(
1+

[t/Δn]∑

i=1

ui

)
, (3.4.8)

where ui = ipα((1+ 1/i)α − 1)p . One easily checks that the partial sums of the se-
ries
∑
ui behave as follows, as n→∞, and for a suitable constantA=A(p,α)>0:

n∑

i=1

ui

⎧
⎨

⎩

→ A if p(1− α) > 1
∼ A logn if p(1− α)= 1
∼ An1−(1−α)p if p(1− α) < 1.

Substituting this in (3.4.8) gives V ′n(gp,B)t→ 0 if and only if p < 2
1−2α .

On the other hand, we have
∫ t

0 |bs |qds <∞ for all t if and only if q < 1
1−α .

Then, if p < 2
1−2α , (3.4.6) holds for p, but not for p+ ε, where ε = 2−p(1−2α)

1−2α is as

small as one wishes when α is close to p−2
4 .

The result for V ′n(f,X) can be transformed into a result for V n(f,X), even
when f is not homogeneous, in some cases. These cases cover some of the situations
in Theorem 3.3.1 where the convergence does not take place.

Corollary 3.4.3 Assume that the discretization scheme is regular with stepsize Δn.
Let f be a Borel function which satisfies f (x) ∼ h(x) as x → 0, where h is a
positively homogeneous continuous function of degree p ∈ (0,2) on R

d . Then

Δ
1−p/2
n V n(f,X)t

u.c.p.=⇒
∫ t

0
ρcs (h) ds, (3.4.9)

and the same holds for the interpolated functionals V nint(f,X).

We see once more that for V n(f,X), only the behavior of f near 0 matters, since
the limit depends on h only.

Finally, the continuity assumption in Theorem 3.4.1 can be relaxed, in the same
spirit as Theorem 3.3.5 extends Theorem 3.3.1:

Corollary 3.4.4 All statements of Theorem 3.4.1 remain valid if we replace the
continuity of the test function f by the fact that it is Borel and locally bounded and,
with Df denoting the set of all x ∈R

d where f is not continuous,

E

(∫ ∞

0
ρcs (Df )ds

)
= 0. (3.4.10)

When the matrix cs(ω) is P(dω) ⊗ ds almost everywhere invertible, (3.4.10)
amounts to saying that the Lebesgue measure (on R

d ) of the set Df is null, because
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in this case the measures ρcs have positive densities. Otherwise, this property is
more complicated to interpret, except when d = 1: in this case, (3.4.10) means that
f is Lebesgue-almost everywhere continuous, and further it is continuous at 0 when
P(
∫∞

0 1{cs=0} ds > 0) > 0.

3.4.3 The Proofs

When X = σW with σ a constant matrix, the variable V ′n(f,X)t is Δn times the
sum of [t/Δn] i.i.d. random variables with a law not depending on n and expectation
ρσσ ∗(f ): so the result amounts to the LLN for i.i.d. variables. In the general case,
the proof takes the following steps:

1) It is enough to show the result when X satisfies some strengthened assump-
tions, mainly boundedness of its characteristics, in a suitable sense; this is called the
“localization step”.

2) The jumps do not matter (the “elimination of jumps step”), under appropriate
assumptions on f : in the present case, the assumption (a).

3) If X is continuous with the additional boundedness assumptions of Step 1,
then it is “locally” sufficiently close to being a Brownian motion, so that the afore-
mentioned trivial LLN in the “pure Brownian” case holds in a “local” sense.

This is the scheme of the present proof, and of many forthcoming proofs as well,
when the processes of interest are of the type V ′n(f,X) or extensions of these, and
including the proofs of the central limit theorems: usually Step 1 is easy and it is the
same or almost the same for most theorems; Step 2 is often more complicated, and
the difficulty of Step 3 greatly varies with the problem at hand.

Before proceeding, and with ε ∈ (0,1] and p ≥ 2, we associate with any Itô
semimartingale X with characteristics given by (3.4.5) the following processes:

γ (ε)Xt = γ (ε)t =
∫

{‖x‖≤ε}
‖x‖2Ft(dx), γ ′Xt = γ ′t =

∫ (‖x‖2 ∧ 1
)
Ft (dx),

(3.4.11)

A(p)Xt =A(p)t =
∫ t

0

(‖bs‖2p/(2+p) + ‖cs‖p/2 + γ ′s
)
ds. (3.4.12)

Then A(2) is always finite-valued, and in the continuous case A(p) is finite-valued
if and only (3.4.6) holds. Below, we set p = 2 in Cases (a) and (b) of the theorem.
Recall also that we can write a Grigelionis decomposition for X:

Xt = X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt (3.4.13)

(see Sect. 2.1.4 for details about the Brownian motion W and the Poisson measure
p with compensator q(dt, dz)= dt ⊗ λ(dz), which may require an extension of the
underlying space, still denoted by (Ω,F , (Ft )t≥0,P)). Note that we can take d ′ = d
and choose a square-root σt of ct which is symmetric nonnegative to obtain a process
satisfying ‖σt‖2 ≤K‖ct‖ for a constant K .
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Lemma 3.4.5 (Localization) Let f be a function on R
d and p ≥ 2 be such that

the convergence V ′n(f,X) u.c.p.=⇒ V ′(f,X) holds for all Itô semimartingales X which
satisfies

sup
ω
A(p)X∞(ω) < ∞, sup

(ω,t)

∥∥ΔXt(ω)
∥∥
{
<∞ in case (1)
= 0 in case (2).

(3.4.14)

Then V ′n(f,X) u.c.p.=⇒ V ′(f,X) for all Itô semimartingales X satisfying A(p)Xt <∞
for all finite t , and which further are continuous in case (2).

Proof Let X be given by (3.4.13) and satisfy A(p)Xt <∞ for all finite t , and be
further continuous in case (2). Then Tm = inf(t :A(p)Xt +‖ΔXt‖>m) for m ∈N

∗
defines a sequence of stopping times increasing to +∞. Consider the semimartin-
gale

X(m)t = X0 +
∫ t∧Tm

0
bs ds +

∫ t∧Tm

0
σs dWs

+ (δ1{‖δ‖≤1}) � (p− q)t∧Tm + (δ1{1<‖δ‖≤m}) � pt∧Tm.
Then Xt =X(m)t for all t < Tm, hence

P

(
sup
s≤t
∣∣V ′n(f,X)s − V ′(f,X)s

∣∣>η
)

≤ P(Tm ≤ t)+ P

(
sup
s≤t
∣∣V ′n
(
f,X(m)

)
s
− V ′(f,X(m))

s

∣∣>η
)
.

Moreover X(m) satisfies (3.4.14), since A(p)X(m)∞ ≤A(p)XTm ≤m and ‖ΔX(m)‖ ≤
m, andX(m) is continuous whenX is continuous. Hence P(sups≤t |V ′n(f,X(m))s−
V ′(f,X(m))s |> η)→ 0 as n→∞ for all m by hypothesis. Since P(Tm ≤ t)→ 0
as m→∞, we deduce

P

(
sup
s≤t
∣∣V ′n(f,X)s − V ′(f,X)s

∣∣> η
)
→ 0,

and the result is proved. �

From now on, we suppose thatX satisfies (3.4.14) for the relevant p (recall p = 2
in cases (a,b)). We can then take a version of δ satisfying ‖δ‖ ≤K for some constant
K , and we can rewrite (3.4.13) as

X =X′ +X′′, where X′t =X0 +
∫ t

0
b′′s ds +

∫ t

0
σs dWs, X′′ = δ � (p− q),

(3.4.15)
where b′′t = bt +

∫
{‖δ(t,z)‖>1} δ(t, z)λ(dz). Note that the processes of (3.4.11) are

γ (ε)t =
∫

{‖δ(t,z)‖≤ε}
∥∥δ(t, z)

∥∥2 λ(dz), γ ′t =
∫ (∥∥δ(t, z)

∥∥2 ∧ 1
)
λ(dz).
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Lemma 3.4.6 (Elimination of Jumps) Assume (3.4.14) for p = 2 and let f be con-

tinuous with f (x)= o(‖x‖2) as ‖x‖→∞. The property V ′n(f,X′) u.c.p.=⇒ V ′(f,X′)
implies V ′n(f,X) u.c.p.=⇒ V ′(f,X).

Proof By hypothesis we have for 0< ε < 1<A:

‖x‖ ≤ 2A ⇒ ∣∣f (x)
∣∣≤Φ(A)

‖x‖ ≤ 2A, ‖y‖ ≤ ε ⇒ ∣∣f (x + y)− f (x)∣∣≤Φ ′A(ε)
‖x‖>A ⇒ ∣∣f (x)

∣∣≤Φ ′′(A)‖x‖2

where Φ(A) <∞, and Φ ′A(ε)→ 0 as ε→ 0, and Φ ′′(A)→ 0 as A→∞. These
properties easily yield that for all x, y ∈R

d ,

∣∣f (x + y)− f (x)∣∣ ≤ Φ ′A(ε)+
2Φ(A)(‖y‖2 ∧ 1)

ε2
+ 2Φ ′′(A)

(‖x‖2 + ‖y‖2).
(3.4.16)

Now we provide some estimates. First, from (2.1.33) and (2.1.34), plus the facts
that ‖b′′t ‖ ≤ ‖bt‖ +Kγ ′t and that A(2)∞ ≤K , we get

E
(∥∥Δni X

′∥∥2) ≤ E
(
Δni A(2)+

(
Δni A(2)

)2) ≤ KE
(
Δni A(2)

)
. (3.4.17)

Next, with the notation (2.1.35) and since ‖δ‖ ≤K , we have

δ̂′(2)t,s ≤ δ̂(2)t,s ≤ K
s

∫ t+s

t

γ ′u du, δ̂(2, ε)t,s = 1

s

∫ t+s

t

γ (ε)u du.

Then (2.1.36) with p = 2 and (2.1.39) with r = 2 and q = 1/2 yield

E
(∥∥Δni X

′′∥∥2) ≤ KE
(
Δni A(2)

)

(3.4.18)

E

((‖Δni X′′‖√
Δn

∧
1

)2)
≤ K

Δn
E

(
Δ

1/4
n Δni A(2)+

∫ iΔn

(i−1)δn
γ
(
Δ

1/4
n

)
s
ds

)
.

Therefore if we take x =Δni X′/
√
Δn and y =Δni X′′/

√
Δn in (3.4.16), we deduce

from the estimates (3.4.17) and (3.4.18) that

E
(∣∣f (Δni X/

√
Δn )− f

(
Δni X

′/
√
Δn
)∣∣)

≤Φ ′A(ε)+K
(
Φ ′′(A)
Δn

+ Φ(A)

ε2Δ
3/4
n

)
E
(
Δni A(2)

)

+ KΦ(A)
ε2Δn

E

(∫ iΔn

(i−1)Δn
γ
(
Δ

1/4
n

)
s
ds

)
.
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ApplyingA(2)∞ ≤K once more, plus the property V (f,X)= V (f,X′), we deduce

an(t) := E

(
sup
s≤t
∣∣V ′n(f,X)s − V ′n(f,X)s

∣∣
)

≤ K
(
Φ ′A(ε)t +Φ ′′(A)+

Φ(A)Δ
1/4
n

ε2
+ Φ(A)

ε2
E

(∫ t

0
γ
(
Δ

1/4
n

)
s
ds

))
.

The variables γ (Δ1/4
n )s are smaller than γ ′s and go to 0 as n→∞, hence by

the dominated convergence theorem lim supn an(t) ≤ a′(t, ε,A) = K(Φ ′A(ε)t +
Φ ′′(A)). This is true for all ε ∈ (0,1) andA> 1, and since limA→∞ lim supε→0 a

′(t,
ε,A)= 0, the result follows. �

So far, we have achieved Steps 1 and 2. For Step 3 we begin with two lemmas.

Lemma 3.4.7 IfX is continuous andA(2)∞ is bounded, if σ is bounded and contin-

uous, and if f is bounded and uniformly continuous, then V ′n(f,X) u.c.p.=⇒ V ′(f,X).

Proof 1) Consider the processes

Unt = Δn

[t/Δn]∑

i=1

f
(
βni
)
, where βni = σ(i−1)ΔnΔ

n
i W/
√
Δn

U ′nt = Δn

[t/Δn]∑

i=1

ρc(i−1)Δn
(f ).

On the one hand ρct (f ) = Ẽ(f (σtU)), where the expectation is taken for the
d ′-dimensional variable U , which is N (0, Id ′). Hence the function t �→ ρct (f ) is
bounded continuous, and by Riemann integration we have

U ′nt
u.c.p.=⇒
∫ t

0
ρcs (f ) ds.

On the other hand Unt − U ′nt = ∑[t/Δn]i=1 (ζ ni − E(ζ ni | F(i−1)Δn)), where ζ ni =
Δnf (β

n
i ) is FiΔn measurable (because βni is independent of F(i−1)Δn , with law

ρc(i−1)Δn
), and |ζ ni | ≤ KΔn, so the array (|ζ ni |2) is asymptotically negligible.

Then (2.2.29) holds with Gni = FiΔn and Nn(t) = [t/Δn], and by case (c) of

Lemma 2.2.11 we have Un −U ′n u.c.p.=⇒ 0. Hence we deduce

Unt
u.c.p.=⇒
∫ t

0
ρcs (f ) ds. (3.4.19)

2) In view of (3.4.19), it remains to prove that

E

(
Δn

[t/Δn]∑

i=1

∣∣χni
∣∣
)
→ 0, where χni = f

(
Δni X/

√
Δn
)− f (βni

)
. (3.4.20)
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To this end, we note that our assumption on f yields a constant K and a positive
function θ satisfying θ(ε)→ 0 as ε→ 0, such that

∣∣f (x + y)− f (x)∣∣≤ θ(ε)+K‖y‖2/ε2 (3.4.21)

for all ε > 0 and x, y ∈ R
d . This, applied with x = βni and y = Δni X/

√
Δn − βni ,

yields

E
(∣∣χni
∣∣) ≤ θ(ε)+ K

ε2
E
(∥∥Δni X

c/
√
Δn − βni

∥∥2).

Now, if ηnt = supi≤[t/Δn]Δ
n
i A(2), we deduce from (2.1.34) that, for i ≤ [t/Δn],

E
(∥∥Δni X/

√
Δn − βni

∥∥2)≤ K

Δn
E

(
ηnt Δ

n
i A(2)+

∫ iΔn

(i−1)Δn
‖σs − σΔn[s/Δn]‖2 ds

)
.

(3.4.22)
Therefore, since A(2)∞ ≤K ,

E

(
Δn

[t/Δn]∑

i=1

∣∣χni
∣∣
)
≤ tθ(ε)+ K

ε2
E

(
ηnt +
∫ t

0
‖σs − σΔn[s/Δn]‖2 ds

)
. (3.4.23)

In the right side above, the second term goes to 0 by the dominated convergence
theorem, because σ is continuous and bounded, and ηnt goes to 0 and is smaller than

K . Then if ε ∈ (0,1] we have lim supn E(Δn
∑[t/Δn]
i=1 |χni |) ≤ tθ(ε) and (3.4.20)

follows from θ(ε)→ 0 as ε→ 0. �

Lemma 3.4.8 If X is continuous and A(2)∞ is bounded, and if f is bounded and

uniformly continuous, then V ′n(f,X) u.c.p.=⇒ V ′(f,X).

Proof By a classical density argument, and in view of A(2)∞ ≤K , one can find a
sequence σ(m) of adapted bounded and continuous processes satisfying

E

(∫ ∞

0

∥∥σ(m)s − σs
∥∥2 ds
)
→ 0 (3.4.24)

as m→∞. With each m we associate the semimartingale

X(m)t = X0 +
∫ t

0
bs ds +

∫ t

0
σ(m)s dWs.

The previous lemma yields that V ′n(f,X(m)) u.c.p.=⇒ V ′(f,X(m)) as n→∞, for

each m. Therefore to obtain V ′n(f,X) u.c.p.=⇒ V ′(f,X), and by Proposition 2.2.1, it
suffices to prove the following two properties, where c(m)= σ(m)σ(m)�:

sup
s≤t

∣∣∣∣
∫ s

0
ρc(m)r (f ) dr −

∫ s

0
ρcr (f ) dr

∣∣∣∣
P−→ 0, (3.4.25)
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lim
m→∞ lim sup

n→∞
E

(
sup
s≤t
∣∣V ′n(f,X)s − V ′n

(
f,X(m)

)
s

∣∣
)
→ 0, ∀t > 0. (3.4.26)

By the subsequence principle, in order to prove (3.4.25) for a given t , it is no
restriction to assume as a consequence of (3.4.24) that σ(m)s → σs almost every-
where for the measure P(dω)⊗ ds, on Ω × [0, t]. Since a �→ ρa(f ) is continuous
we obtain (3.4.25).

Next, with χ(m)ni = f (Δni X/
√
Δn )− f (Δni X(m)/

√
Δn ), (3.4.26) will follow

from

lim
m→∞ lim sup

n→∞
E

(
Δn

[t/Δn]∑

i=1

∣∣χ(m)ni
∣∣
)
= 0, ∀t > 0.

To see this, we use Xt − X(m)t =
∫ t

0 (σs − σ(m)s) dWs and apply (2.1.34) and
(3.4.21) with y = 0 and x =Δni X/

√
Δn to get

E

(
Δn

[t/Δn]∑

i=1

∣∣χ(m)ni
∣∣
)
≤ tθ(ε)+ K

ε2
E

(∫ t

0

∥∥σs − σ(m)s
∥∥2 ds
)
.

Then the result readily follows from (3.4.24) and the property θ(ε)→ 0 as ε→ 0. �

Proof of Theorem 3.4.1 1) By the localization lemma we may assume that X satis-
fies (3.4.14) for the relevant p. Then (3.4.7) under (b) is a particular case of (3.4.7)
under (c), whereas under (a) it follows from Lemma 3.4.6 if we know it under (b).
So it is enough to consider the case (c).

For A> 1 we use the notation ψA and ψ ′A of (3.3.16), that is

ψ is a C∞ function: R+ → [0,1], with 1[1,∞)(x)≤ψ(x)≤ 1[1/2,∞),

ψA(x) = ψ
(‖x‖/A), ψ ′A = 1−ψA.

Recalling gp(x)= ‖x‖p , we have for a constant independent of A> 1:

|fψA| ≤ Kgp. (3.4.27)

The function fψ ′A is bounded and uniformly continuous, so V ′n(fψ ′A,X)t
u.c.p.=⇒∫ t

0 ρcs (fψ
′
A)ds by Lemma 3.4.8. Thus by Proposition 2.2.1 it is enough to prove

the following two properties:

∫ t

0
ρcs (fψA)ds

u.c.p.=⇒ 0 as A→∞, (3.4.28)

∀η > 0, t > 0, lim
A→∞ lim sup

n→∞
P

(
sup
s≤t
∣∣V ′n(fψA,X)s

∣∣> η
)
= 0. (3.4.29)

The first property (3.4.28) is an obvious consequence of (3.4.27) and fψA→ 0
as A→∞ and |ρc(gp)| ≤K‖c‖p/2. As for (3.4.29), since X =X0 + B +Xc and
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|fψA| ≤ KgpψA and (gpψA)(x + y) ≤ Kp(gpψ2A)(x) +Kpgp(y), it suffices to
prove the two properties

∀η > 0, t > 0, lim
n→∞ P

(
V ′n(gp,B)t > η

) = 0 (3.4.30)

∀η > 0, t > 0, lim
A→∞ lim sup

n→∞
P
(
V ′n
(
gpψA,X

c
)
t
> η
) = 0. (3.4.31)

2) We start with (3.4.30). We set ηnt = supi≤[t/Δn](Δ
n
i A(p)), which goes to 0 as

n→∞. Using Hölder’s inequality for the second inequality below, we have

V ′n(gp,B)t ≤ Δ1−p/2
n

∑

i≥1

∥∥∥∥∥

∫ t∧(iΔn)

t∧((i−1)Δn)
bs ds

∥∥∥∥∥

p

≤
∑

i≥1

(∫ t∧(iΔn)

t∧((i−1)Δn)
‖bs‖2p/(2+p) ds

)1+p/2
≤ A(p)t

(
ηnt
)p/2

.

This goes to 0, and (3.4.30) is proved.

3) Now we prove (3.4.31). We set σ(m)= σ1{‖σ‖≤m} and Y(m)t =
∫ t

0 σ(m)s dWs

and Y ′(m)=Xc − Y(m). Using again (gpψA)(x + y)≤ 1
2α ((gpψ2A)(x)+ gp(y))

for some constant α > 0 (depending on p), we obtain

P
(
V ′n
(
gpψA,X

c
)
t
> η
) ≤ P
(
V ′n
(
gpψ2A,Y (m)

)
t
> αη
)

+ P
(
V ′n
(
gp,Y

′(m)
)
t
> αη
)
. (3.4.32)

On the one hand (2.1.34) and the property (gpψ2A)(x)≤ 4‖x‖p+1/A yield

E
(
V ′n
(
gpψA/2, Y (m)

)
t

)

≤ 4Δ1/2−p/2
n

A

∑

i≥1

E

(∥∥∥∥∥

∫ t∧(iΔn)

t∧((i−1)Δn)
σ (m)s dWs

∥∥∥∥∥

p+1)

≤ KΔ
1/2−p/2
n

A

∑

i≥1

E

((∫ t∧(iΔn)

t∧((i−1)Δn)
‖σ(m)s‖2 ds

)p/2+1/2)
≤ Ktm

p+1

A
,

and thus

lim
A→∞ lim sup

n→∞
P
(
V ′n
(
gpψA/2, Y (m)

)
t
> αη
) = 0. (3.4.33)

On the other hand, (2.1.34) and Hölder’s inequality give us the following string
of inequalities:

E
(
V ′n
(
gp,Y

′(m)
)
t

)

≤KΔ1−p/2
n

∑

i≥1

E

(∥∥∥∥∥

∫ t∧(iΔn)

t∧((i−1)Δn)

(
σs − σ(m)s

)
dWs

∥∥∥∥∥

p)
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≤KΔ1−p/2
n

∑

i≥1

E

((∫ t∧(iΔn)

t∧((i−1)Δn)

∥∥σs − σ(m)s
∥∥2 ds
)p/2)

≤K
∑

i≥1

E

(∫ t∧(iΔn)

t∧((i−1)Δn)

∥∥σs − σ(m)s
∥∥p ds
)

≤KE

(∫ t

0

∥∥σs − σ(m)s
∥∥p ds
)
.

Since σs − σ(m)s = σs1{‖σs‖>m}, the last expression above goes to 0 as m→∞
because A(2)∞ ≤K . Hence

lim
m→∞ sup

n
P
(
V ′n
(
gp,Y

′(m)
)
t
> αη
) = 0.

Combining this with (3.4.32) and (3.4.33) readily gives (3.4.31).

4) Finally, we prove the last claim of the theorem. Let p ≥ 2 and suppose that

V ′n(gp,X)
u.c.p.=⇒ Y , where Y is a continuous process. When p = 2, we know that

(3.4.6) holds, and V ′n(g2,X)= V n(g2,X) (recall (3.4.2)) converges in probability
to the process V (g2,X) of (3.3.3). Therefore V (g2,X) = Y is continuous, which
implies that the process X itself is continuous.

Now assume p > 2. Suppose that X has a jump at some (random) time T .
If i(n,T ) is the unique (random) integer such that T belongs to the interval
I (n, i(n,T )), when T < ∞, we have Δni(n,T )X → ΔXT . Therefore on the set
{T <∞} the process V ′n(gp,X) has a jump at time Ti(n,T ) which is equivalent, as

n→∞, to Δ1−p/2
n ‖ΔXT ‖p , whereas Ti(n,T )

P−→ T . Since p > 2 this implies that

V ′n(gp,X)t
P−→+∞ on the set {T <∞} and we obtain a contradiction. Therefore

X should be continuous. �

Proof of Corollary 3.4.3 Since h is continuous and positively homogeneous of de-
gree p ∈ (0,2), the same is true of |h|, and we have |h| ≤Kgp . Thus (3.4.3) and (a)
of the previous theorem give us

Δ
1−p/2
n V n(h,X)t = V ′n(h,X)t

u.c.p.=⇒
∫ t

0
ρcs (h) ds

Δ
1−p/2
n V n

(|h|,X)
t
= V ′n

(|h|,X)
t

u.c.p.=⇒
∫ t

0
ρcs
(|h|)ds.

(3.4.34)

For each ε > 0, the function (|f | + |h|)ψε vanishes on a neighborhood of 0 (recall
the notation (3.3.16) for ψε), so (3.3.2) yields that V n((|f | + |h|)ψε,X) converges
in probability in the Skorokhod sense. Since p < 2 it follows that

Δ
1−p/2
n V n

((|f | + |h|)ψε,X
) u.c.p.=⇒ 0. (3.4.35)
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Now, the assumption f ∼ h near 0 implies the existence of a nonnegative func-
tion k on R+ such that k(ε)→ 0 as ε→ 0 and |f − h| ≤ k(ε)|h| + (|f | + |h|)ψε .
Therefore

∣∣Δ1−p/2
n V n(f,X)−Δ1−p/2

n V n(h,X)
∣∣

≤ k(ε)Δ
1−p/2
n V n

(|h|,X)+Δ1−p/2
n V n

((|f | + |h|)ψε,X
)
.

Then (3.4.9) follows from (3.4.34) and (3.4.35). The same argument holds for the
processes V nint(f,X) as well. �

Proof of Corollary 3.4.4 Let f be a Borel locally bounded function on R
d , satisfy-

ing (3.4.10), and also the conditions (a), (b) or (c) of the theorem, according to the
case. There is a positive function f ′ which is continuous, and |f | ≤ f ′ identically,
and which satisfies (a), (b) or (c) as well.

Up to using the decomposition f = f+ − f− and (2.2.16), plus the fact that
V ′(f,X) is continuous in time, it is in fact enough to prove that for any fixed t ,

V ′n(f,X)t
P−→
∫ t

0
ρcs (f ) ds. (3.4.36)

Below we fix t ≥ 0. The formula mn(A)= V ′n(f ′1A,X)t for all A ∈Rd defines
a (random) positive finite measuremn =mn(ω,dx) on R

d , and accordinglym(A)=∫ t
0 ρcs (f

′1A)ds defines a random measurem. For any continuous bounded function

g the product f ′g satisfies (a), (b) or (c). Then Theorem 3.4.1 yields mn(g)
P−→

m(g) for any such g. Moreover, (3.4.10) yields that for all ω outside a P null set N
the bounded function f/f ′ is m(ω,dx) almost surely continuous.

Now, we know that there exists a countable family G of continuous bounded
functions on R

d which is convergence determining, that is if ηn(g)→ η(g) for all
g ∈ G, where ηn and η are (positive) finite measures on R

d , then ηn→ η weakly.
Because G is countable, from any sequence nk→∞ one can extract a subsequence
nkm→∞ such that, for all ω outside a P null set N ′ containing the set N described
above, we have mnkm (ω,g)→ m(ω,g) for all g ∈ G. It follows that, still when
ω /∈ N , we have mnkm (ω, .)→ m(ω, .) weakly. Therefore, since the function f/f ′
is bounded and m(ω, .) almost everywhere continuous when ω /∈ N ′, we deduce
mnkm(f/f

′)→m(f/f ′) outside N ′, that is almost surely.
Observe that the left and right sides of (3.4.36) are respectively equal tomn(f/f ′)

and m(f/f ′). Hence, so far, we have proved that from any subsequence nk we can
extract a further subsequence nkm along which the convergence (3.4.36) is almost
sure. By the subsequences principle (2.2.17), we deduce (3.4.36). �

3.5 Applications

In this last section we introduce two of the fundamental problems which motivate
this entire book. We explain how the results of this chapter contribute to their solu-
tion, and also why they are insufficient for a complete solution: the same examples,
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together with a few others, will be pursued in a systematic way at the end of most
forthcoming chapters.

3.5.1 Estimation of the Volatility

Our first example is of particular interest in mathematical finance. In this field, the
price or the log-price of an asset is typically a semimartingale, and indeed an Itô
semimartingale, under virtually all models that have been used to date. That is, we
have

Xt =X0+
∫ t

0
bs ds+

∫ s

0
σs dWs+ (δ1{‖δ‖≤1})�(p− q)t + (δ1{‖δ‖>1})�pt , (3.5.1)

when we write its Grigelionis form. In this equation X represents the logarithm of
a price, the quantity σt is called the volatility (or spot volatility) of the price, and it
turns out to be of primary importance for many purposes in finance.

Actually, it should be clear from (3.5.1) that if we replace σt by −σt for all t in
some (random, progressively measurable) set, the model is not changed, so really it
is |σt | that is important. In most models one imposes the condition σt ≥ 0 which,
as we have just seen, is not a restriction. More generally, in the multivariate case
where X is a vector of (log)-prices, the important quantity is the diffusion matrix
ct = σtσ ∗t .

Quite often the volatility is a random process, as above, but even when it is non-
random it varies quite significantly with time, typically with seasonal variations
within each day (for instance it is usually quite smaller at lunch time than at the
beginning or at the end of the day). So perhaps an even more useful quantity to
evaluate is the “average volatility” for some given period, typically a day. In the
multidimensional case, one wants to evaluate the average of ct .

Evidently the average of σ 2
s over, say, the interval [0, t], is not the same as the

squared average of |σs |, and after all the qth-root of the average of |σs |q is also, for
any q > 0, a kind of average of |σs | over [0, t]. However the power q = 2 has, here
as in many other places, very special and nice properties, and it is the only power for
which there is a straightforward multivariate extension because in this case c= σσ ∗
is uniquely determined. This explains why most of the interest has been focused
on the evaluation of the averaged squared-volatility, or equivalently the so-called
(somewhat misleadingly) integrated volatility:

∫ t

0
σ 2
s ds, or

∫ t

0
cs ds in the multivariate case.

So, as said before, we will study this problem throughout the book. At this stage,
we can say only one thing, namely

X is continuous ⇒
[t/Δn]∑

i=1

Δni X
j Δni X

k u.c.p.=⇒
∫ t

0
c
jk
s ds, (3.5.2)
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which comes from Theorem 3.3.1, and even from the long known result (2.1.8). This
is far from fully solving the problem, for two reasons: one is that it requires X to
be continuous, otherwise the result is wrong, and to overcome this difficulty we will
need to “truncate” the increments, see Chap. 9. The second reason is that, even when
(3.5.2) holds, it is useful in practice only if we know whether the approximation is
accurate. Mathematically speaking this means that we need a “rate of convergence”
in (3.5.2): this is the object of the Central Limit Theorem which we start developing
in the next chapter.

Finally, other integrated powers
∫ t

0 |σs |p ds for p > 0 may also sometimes be of
interest, for instance this quantity with p = 4 arises naturally in the CLT for (3.5.2).
Then the normalized LLN proved above gives us the following result, say in the
one-dimensional case. We introduce the notation

D(X,p,Δn)t =
[t/Δn]∑

i=1

∣∣Δni X
∣∣p (3.5.3)

which is V n(f,X)t , or equivalently Δp/2n V ′n(f,X) for the function f (x) = |x|p .
We will see later the reason for this new notation, which emphasizes the time step
Δn. Then when X is continuous and p ≥ 2 and (3.4.6) holds, and also for all Itô
semimartingales when p < 2, we have

Δ
1−p/2
n D(X,p,Δn)t

u.c.p.=⇒ mp

∫ t

0
|σs |p ds, (3.5.4)

where mp = E(|U |p) is the p absolute moment of an N (0,1) random variable U .

3.5.2 Detection of Jumps

The second example is about the problem of deciding whether a discretely observed
process is continuous or not. More specifically, the one-dimensional process X is
observed at all times iΔn (with i ∈ N) within a fixed time interval [0, t], and we
want to decide whether the partially observed path is continuous or not.

This seems an impossible question to answer, since any discrete set of observa-
tions is compatible (in many different ways, obviously) with a continuous path, and
also with a discontinuous path. However, when X is an Itô semimartingale, there
is a procedure which allows one to solve this question in a consistent way, as Δn
becomes small.

By “procedure” we mean the following: at stage n, the set of all possible (rele-
vant) observations is RNn(t)+1. Recall thatNn(t)+1 is the number of integers i such
that iΔn lies in the interval [0, t]. Then a procedure is the assessment, for each n,
of a subset An of the set RNn(t)+1, such that if the observations fall in An we decide
that the observed path is continuous, and if they fall outside An we decide that the
observed path is discontinuous. The procedure is called consistent, and one should
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indeed say “weakly consistent”, if the probability of taking the right decision goes
to 1 as n→∞.

Mathematically speaking we divide the sample space Ω into a 2-sets partition:

Ω
(c)
t = {ω : s �→Xs(ω) is continuous on [0, t]}

Ω
(d)
t = {ω : s �→Xs(ω) is not continuous on [0, t]}.

It may be that Ω(c)t = Ω , when the specific model for X does not allow jumps,
that is δ ≡ 0 in (3.5.1). It may be also that Ω(c)t = ∅, for example when the “purely
discontinuous” part ofX (the last two terms in (3.5.1)) is a Lévy process with infinite
Lévy measure: in these two cases we have a classical statistical testing problem to
solve. But it may also be that neither Ω(c)t nor Ω(d)t are empty, when for example
the purely discontinuous part of X is a Poisson or a compound Poisson process. In
this case the statistical problem is not quite classical: we do not have to test whether
some parameter of the model takes a specific value or lies in a specific domain.
Instead we have to test whether the (random) outcome ω lies in some specific subset
of the sample space Ω .

In the face of such a problem, the statistician has to come up with a procedure
An as described above: if Cn is the subset ofΩ on which (XiΔn)0≤i≤Nn(t) ∈An, the
statistician decides for “continuous” if ω ∈ Cn and for “discontinuous” otherwise.
One may see Cn as the critical (rejection) region for testing the null hypothesis that
X is discontinuous. The procedure An, or Cn, is consistent if

P
(
Ω
(c)
t

)
> 0 ⇒ P

(
Cn |Ω(c)t

) → 1

P
(
Ω
(d)
t

)
> 0 ⇒ P

(
(Cn)

c |Ω(d)t
) → 1

(3.5.5)

(here (Cn)c is the complement of Cn in Ω , and P(. | A) is the ordinary conditional
probability).

The two LLNs proved in this chapter provide a simple solution to this problem.
To see that, we take some real p > 2 and some integer k ≥ 2 and, recalling (3.5.3),
we set

Sn = D(X,p, kΔn)t

D(X,p,Δn)t
. (3.5.6)

Theorem 3.5.1 Let p > 2 and let k ≥ 2 be an integer, and t > 0 and Sn given
by (3.5.6).

a) If X is a semimartingale and if P(ΔXt �= 0)= 0, then

Sn
P−→ 1 in restriction to the set Ω(d)t . (3.5.7)

b) If X is an Itô semimartingale and the process
∫
{|δ(s,z)|≤1} δ(s, z)

2 λ(dz) is lo-

cally bounded, and bs and cs satisfy (3.4.6), and if further
∫ t

0 cs ds > 0 a.s., then

Sn
P−→ kp/2−1 in restriction to the set Ω(c)t . (3.5.8)
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Before providing the proof, we show how this result solves our problem, at least
partially. Define the critical region Cn by

Cn = {Sn < x}, where x ∈ (1, kp/2−1). (3.5.9)

(3.5.8) gives us P(Cn ∩Ω(c)t )→ 0 and P((Cn)
c ∩Ω(d)t )→ 0, from which (3.5.5)

follows. That is, we have thus constructed a consistent procedure for our problem.
This is a purely asymptotic result, in which the choice of the cut-off x is arbi-

trary in (1, kp/2−1). But it should be clear that if, for example, we choose x very
close to 1, the second convergence in (3.5.5) may be very slow, and in practice for
finite samples P((Cn)

c |Ω(d)t ) may be close to 0 instead of 1. Therefore we need
to improve on the procedure by choosing an x appropriate to the size Δn, or to the
number Nn(t)+ 1 of observations. Typically the choice x = xn will depend on n,
and is based (as usual in asymptotic statistics) on a rate of convergence in (3.5.8).
This is why we need some kind of CLT, in both cases (3.5.7) and (3.5.8).

Another comment: if we relax the assumption
∫ t

0 cs ds > 0, the convergence in

(3.5.8) holds on the set Ω(c)t ∩ΩWt , where

ΩWt =
{
ω :
∫ t

0
cs ds > 0

}
. (3.5.10)

And, of course, in virtually all models the set Ω(c)t ∩ (ΩWt )c is empty (on this set,
the path of X is a “pure drift” over the whole interval [0, t]).

Proof of Theorem 3.5.1 a) (3.3.2) applied with f (x) = |x|p , plus the property
P(ΔXt �= 0)= 0, gives us that both D(p,Δn)t and D(p,kΔn)t converge in proba-
bility to the same limit

∑
s≤t |ΔXs |p , which is positive on the set Ω(d)t . This yields

the convergence (3.5.7).
b) Suppose that X is continuous. By (3.5.6), the variables Δ1−p/2

n D(p,Δn)t and
Δ

1−p/2
n D(p, kΔn)t converge in probability to Dt =mp

∫ t
0 |σs |ds and to kp/2−1Dt

respectively. Since Dt > 0 a.s. by hypothesis, we deduce Sn
P−→ kp/2−1.

For proving the same convergence in restriction to Ω(c)t when X is not contin-
uous, we need some preparation, somewhat similar to the proof of Corollary 3.3.4.
We set

us = λ
({
z : δ(s, z) �= 0

})
, vs =

∫

{|δ(s,z)|≤1}
δ(s, z)2 λ(dz),

Tq = inf

(
s :
∫ s

0
ur dr ≥ q

)
, ws =

{∫
{|δ(s,z)|≤1} δ(s, z)λ(dz) if us <∞
+∞ otherwise.

We have

E(1{|δ|>0} ∗ pTq ) = E(1{|δ|>0} ∗ qTq ) = E

(∫ Tq

0
us ds

)
≤ q, (3.5.11)
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hence 1{|δ|>0} ∗pTq <∞ a.s. andX has almost surely finitely many jumps on [0, Tq ].
The Cauchy-Schwarz inequality yields |ws | ≤ √usvs , hence

∫ t∧Tq
0 w2

s ds <∞ be-
cause by hypothesis the process vs is locally bounded. Therefore if we stop both
members of (3.5.1) at time Tq , we get

Xt∧Tq =X(q)t∧Tq +
∑

s≤t∧Tq
ΔXs,

where X(q)t =X0 +
∫ t∧Tq

0
(bs −ws)ds +

∫ t

0
σs dWs.

The processX(q) is a continuous Itô semimartingale which satisfies (3.4.2) (for this

we apply (3.4.2) for b and c, and also
∫ t∧Tq

0 w2
s ds <∞ and 2p

2+p < 2), and with the
same process c as X. Therefore what precedes yields, as n→∞:

Sn(q) = D(X(q),p, kΔn)t

D(X(q),p,Δn)t

P−→ kp/2−1. (3.5.12)

On the set Ω(c)t ∩ {Tq ≥ t} we see that Xs = X(q)s for all s ≤ t , hence also

Sn = Sn(q). Thus, in view of (3.5.12), it remains to prove thatΩ(c)t ⊂∪q≥1{Tq ≥ t}
almost surely. To see this, we set S = inf(s : ΔXs �= 0) and we observe that Ω(c)t ⊂
{S ≥ t} (note that we may have S = t on Ω(c)t , if there is a sequence of jump times
decreasing strictly to t). The same argument as for (3.5.11) gives E(

∫ S
0 us ds) =

E(1 ∗ μS) ≤ 1 (here μ is the jump measure of X). Therefore
∫ S

0 us ds <∞ a.s.,
implying that {S ≥ t} ⊂ ∪q≥1{Tq ≥ t} almost surely. This completes the proof. �

Bibliographical Notes

The generalized Itô’s formula of Theorem 3.2.2 is taken from Jacod, Jakubowski
and Mémin [56]. The basic Law of Large Numbers (Theorem 3.3.1) has a relatively
long history: it has been proved by Greenwood and Fristedt [38] for Lévy processes,
for some classes of test functions f , and with an almost sure convergence in some
cases. The same result for semimartingales, when the test function is a power and
absolute power function, is due to Lépingle [71], including again the almost sure
convergence in some cases. This result builds on the convergence of the approximate
quadratic variation, which is a result as old as martingales and stochastic calculus in
special cases, and due to Meyer [76] for arbitrary semimartingales. The second basic
Law of Large Numbers (Theorem 3.4.1) can be found in many places, under various
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Chapter 4
Central Limit Theorems: Technical Tools

Usually, Laws of Large Numbers are adorned with an associated Central Limit The-
orem, which describes the “rate of convergence” at which they take place, and also
the limiting variable or process that are obtained after normalization. The two LLNs
of Chap. 3 are no exceptions: we have a rate, that is a sequence vn of positive num-
bers going to infinity, such that the processes vn(V n(f,X)−V (f,X)) in the setting
of Theorem 3.3.1, or vn(V ′n(f,X) − V ′(f,X)) in the setting of Theorem 3.4.1,
converge to a limiting process which is not degenerate, which means that it is finite-
valued but not identically 0.

For the first case, the LLN was obtained without any restriction on the random
discretization scheme, and the semimartingale X was arbitrary, whereas in the sec-
ond case we needed regular schemes and X to be an Itô semimartingale. For the
CLT, a regular scheme and that X is an Itô semimartingale is needed in both cases.
Then, not surprisingly, the rate of convergence will be vn = 1/

√
Δn always.

Central Limit Theorems have lengthy proofs. This is why we start with a pre-
liminary chapter which sets up the basic notions and tools that we will need. The
CLTs themselves will be stated and proved in the next chapter. This means that a
reader can skip the present chapter, except perhaps the first section which describes
the limiting processes, and can come back to it when a specific technical result is
needed.

4.1 Processes with F -Conditionally Independent Increments

We have seen in Theorem 2.2.15 a situation where a triangular array of random
variables is defined on some space (Ω,F , (Ft )t≥0,P), and the associated rows of
partial sums converge stably in law to a limit A + Y , where A is defined on Ω
and Y is defined on a very good filtered extension of (Ω,F , (Ft )t≥0,P) and is,
conditionally on F , a continuous Gaussian martingale with a quadratic variation C
being F measurable.

In this section, we give a “concrete” construction of Y , at least when the process
C is absolutely continuous with respect to Lebesgue measure. We also extend this
construction to some cases where Y is discontinuous.
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4.1.1 The Continuous Case

We consider the following problem: let C̃ be a process on (Ω,F , (Ft )t≥0,P), of the
form C̃t =

∫ t
0 c̃s ds, where c̃ takes its values in the set M+

q×q of all q × q symmet-
ric nonnegative matrices and is progressively measurable (or predictable). We want
to construct a q-dimensional process Y , defined on a very good filtered extension
(Ω̃, F̃ , (F̃t )t≥0, P̃) of the original space, which conditionally on F is a centered
Gaussian process with independent increments and (conditional) covariance

Ẽ
(
Y it Y

j
t |F
) = C̃

ij
t =

∫ t

0
c̃
ij
s ds. (4.1.1)

Recall that this is equivalent to saying that, conditionally on F , the process Y is a
continuous martingale with “deterministic” quadratic variation-covariation process
C̃, and since C̃ is continuous and Y is conditionally Gaussian, it is also necessarily
a.s. continuous. This problem is studied in Sect. II.7 of [57] but, in view of its
importance in the present book, we repeat the construction in detail here.

For solving this problem, we consider an auxiliary filtered probability space
(Ω ′,F ′, (F ′t )t≥0,P

′), and we consider the product filtered extension (Ω̃, F̃ ,
(F̃t )t≥0, P̃), as defined by (2.1.26) with Q(ω, dω′)= P

′(dω′) and (2.1.27). This is
a “very good extension”, and we start with a general result, of independent interest.

Proposition 4.1.1 In the above setting, assume further that F ′t− = ∨s<tF ′s is a sep-
arable σ -field for each t > 0. Let Z = Zt(ω,ω′) be a martingale on the extended
space, which is orthogonal to all bounded martingales on (Ω,F , (Ft )t≥0,P).
Then for P almost all ω the process (ω′, t) �→ Zt(ω,ω

′) is a martingale on
(Ω ′,F ′, (F ′t )t≥0,P

′).

Proof Any M in the set Mb of all bounded martingales on (Ω,F , (Ft )t≥0,P) is
also a martingale on (Ω̃, F̃ , (F̃t )t≥0, P̃) because the extension is very good. Our
assumption on Z means that the product MZ is again a martingale on the extended
space for all M ∈Mb .

We want to prove that for all ω outside a P null set, we have
∫
Zt
(
ω,ω′
)
1A′
(
ω′
)
P
′(dω′
) =
∫
Zs
(
ω,ω′
)
1A′
(
ω′
)
P
′(dω′
)

(4.1.2)

for all 0≤ s ≤ t and A′ ∈F ′s . Since Z is right-continuous, it is enough to prove this
when s, t are rational and A ∈ F ′s−. Since further F ′s− is separable, it is enough to
prove it when A′ ranges through a countable algebra generating F ′s−. At this stage,
we can permute “for P almost all ω” and “for all s, t,A′ ”; that is we need to prove
that, for any given s, t,A′ as above we have (4.1.2) for P almost all ω. Since both
sides of (4.1.2) are Ft measurable, when considered as functions of ω, we are then
left to show that for all s ≤ t and A′ ∈F ′s and A ∈Ft , we have

Ẽ(Zt 1A×A′) = Ẽ(Zs 1A×A′). (4.1.3)
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Consider the bounded martingale Mr = P(A | Fr ) on (Ω,F , (Ft )t≥0,P). We
have

Ẽ(Zt 1A×A′)= Ẽ(Zt Mt 1A′)= Ẽ(Zs Ms 1A′)= Ẽ(Zs Mt 1A′)= Ẽ(Zs 1A×A′)

where the second and third equalities come from A′ ∈ F̃s and, respectively, the facts
that ZM and M are martingales on (Ω̃, F̃, (F̃t )t≥0, P̃). Hence (4.1.3) holds. �

Next, we assume that (Ω ′,F ′, (F ′t )t≥0,P
′) supports a q-dimensional (F ′t )-

Brownian motionW ′: we use a “prime” here because it is defined onΩ ′, and should
not be confused with the Brownian motion W on (Ω,F , (Ft )t≥0,P) which enters
the Grigelionis decomposition of the basic semimartingale X in which we are inter-
ested. Finally, the process c̃ admits a progressively measurable square-root σ̃ , that
is a q × q matrix-valued process having c̃ = σ̃ σ̃ �, and with the additional property
that ‖σ̃‖2 ≤ K ‖̃c‖ for some constant K (one may take for example a symmetric
square-root).

Proposition 4.1.2 In the above setting, the process

Yt =
∫ t

0
σ̃s dW

′
s with components Y it =

q∑

j=1

∫ t

0
σ̃
ij
s dW

′j
s , (4.1.4)

is well defined on the extension, and defines a process which, conditionally on F ,
is a centered continuous Gaussian process with independent increments satisfy-
ing (4.1.1).

Proof The progressive measurability of σ̃ and ‖σ̃‖2 ≤ K ‖̃c‖ ensures that the
stochastic integral (4.1.4) is well defined, and defines a continuous q-dimensional
local martingale Y on the extended space, with angle bracket C̃. This holds regard-
less of the filtration (F ′t ) on the second factorΩ ′, as soon as it makes the processW ′
an (F ′t )-Brownian motion, so it is no restriction here to assume that (F ′t ) is indeed
the filtration generated by W ′, hence in particular each F ′t− is a separable σ -field.

We set Tn = inf(t : ∫ t0 ‖̃cs‖ds ≥ n), which is a sequence of (Ft )-stopping times
increasing to infinity. Each stopped processZ(n, i)t = Y it∧Tn is a martingale (and not
only a local martingale), as well as each process Z′(n, i, j)t = Z(n, i)tZ(n, j)t −
C̃
ij
t∧Tn . Moreover since W ′ is obviously orthogonal to each element of Mb because

we have taken a product extension, and since Z(n, i) and Z′(n, i, j) are stochastic
integrals with respect to W ′ (use Itô’s formula to check this for Z′(n, i, j)), those
processes Z(n, i) and Z′(n, i, j) are orthogonal to all elements of Mb.

At this stage, the previous proposition yields that for P almost all ω, the processes
Z(n, i)(ω, .) and Z′(n, i, j)(ω, .) are continuous martingales on (Ω ′,F ′, (F ′t )t≥0,

P
′). Using the fact that the stopping times Tn are functions of ω only, we de-

duce that Y i(ω, .) and Y i(ω, .)Y j (ω, .) − C̃ij (ω) are continuous martingales on
(Ω ′,F ′, (F ′t )t≥0,P

′). Since C̃(ω) does not depend on ω′, it follows that (for P
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almost all ω again) the process Y(ω, .) is a centered Gaussian process with inde-
pendent increments on (Ω ′,F ′, (F ′t )t≥0,P

′), satisfying
∫
(Y it Y

j
t )(ω,ω

′)P′(dω′) =
C̃
ij
t (ω), and the result is proved. �

4.1.2 The Discontinuous Case

So far, we have constructed continuous processes which, F -conditionally, have in-
dependent increments. Here we will again construct processes with F -conditionally
independent increments, but they will be “purely discontinuous”, with the unusual
feature that they will jump only at “fixed times of discontinuity”. Even though this
does not cover the most general case of discontinuous processes which conditionally
on F have independent increments, it will be enough for our purposes.

The situation is as follows: we have a probability measure η on R
r for some

integer r ≥ 1, and an optional process V on the space (Ω,F , (Ft )t≥0,P), taking its
values in the set of all q × r matrices, and such that the sets D(V,ω)= {t : Vt(ω) �=
0} are at most countable for all ω ∈Ω and do not contain 0. Our aim is to construct
a q-dimensional process Y on an extension of the initial probability space, such that
conditionally on F (that is, loosely speaking, for each ω ∈Ω) the process Y(ω, .)
can be written as

Y(ω, .)t =
∑

s≤t
Vs(ω)Us (4.1.5)

(with matrix notation), where the Us ’s are i.i.d. with law η. In a more mathematical
way, this amounts to constructing a process Y which conditionally on F has inde-
pendent increments and a characteristic functions for the increments (where u ∈R

q

and u∗ denotes the transpose, so u∗v is the scalar product when u,v ∈R
q ) given by

Ẽ
(
eiu

� (Yt+s−Yt ) |F) =
∏

v∈(t,t+s]∩D(V,ω)

∫
eiu

�Vv(ω)xη(dx). (4.1.6)

Typically, this will be used with Vt = f (ΔXt), for a matrix-valued function on R
d

vanishing at 0 and for X a d-dimensional semimartingale.
(4.1.5) is not really meaningful, but (4.1.6) makes sense, under appropriate con-

ditions ensuring that the possibly infinite product on the right side converges. Below
we give two different sets of conditions for this, and we reformulate (4.1.5) so that
it becomes meaningful.

The construction is based on the existence of weakly exhausting sequences
for the set D(V, .): by this we mean a sequence (Tn)n≥1 of stopping times on
(Ω,F , (Ft )t≥0,P), such that for all ω outside a null set, we have D(V,ω) ⊂
{Tn(ω) : n≥ 1, Tn(ω) <∞} and also Tn(ω) �= Tm(ω) whenever n �=m and Tn(ω) <
∞. When furtherD(V,ω)= {Tn(ω) : n≥ 1, Tn(ω) <∞}we have an exhausting se-
quence. The existence of exhausting, and a fortiori of weakly exhausting, sequences
is a well known fact of the “general theory of processes”, see e.g. Dellacherie [24],
and as a rule there are many different exhausting sequences for a given set D(V ).
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In view of this, we consider an auxiliary probability space (Ω ′,F ′,P′), endowed
with a sequence (Un)n≥1 of i.i.d. r-dimensional variables with law η. We take the
product (Ω̃, F̃ , P̃) of (Ω,F ,P) and (Ω ′,F ′,P′), and we interpret (4.1.5) as

Yt =
∑

n: Tn≤t
VTnUn (4.1.7)

(we still need conditions for this “series” to converge in a suitable sense). The natural
filtration to consider on the extended space is the following one:

(F̃t ) is the smallest filtration containing (Ft )
and such that Un is F̃Tn measurable for all n.

We thus get a filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃), and it is immediate to verify
that it is very good.

Proposition 4.1.3 Assume that the variables Un have a finite first moment μ1 ∈R
r .

As soon as
∑

s≤t
‖Vs‖ ≤ ∞ a.s. ∀t > 0, (4.1.8)

for any weakly exhausting sequence (Tn) for D(V, .) the series
∑
n: Tn≤t VTnUn in

(4.1.7) is a.s. absolutely convergent for all t > 0, and this formula defines a càdlàg
adapted process with finite variation on the extended space, which conditionally on
F has independent increments, and satisfies

Ẽ(Yt |F) = μ1

∑

s≤t
Vs (4.1.9)

and also (4.1.6). In particular the F -conditional law of Y does not depend on the
weakly exhausting sequence (Tn).

Proof The formula Y ′t =
∑
n: Tn≤t ‖VTn‖‖Un‖ defines a [0,∞]-valued increasing

process on the extension, and obviously

E
(
Y ′t |F

) = μ′1
∑

n: Tn≤t
‖VTn‖,

where μ′1 is the expected value of ‖Un‖. Then (4.1.8) implies that the above is a.s.
finite, hence Y ′t <∞ a.s. This implies the first claim, and (4.1.9) is obvious, as is
the independent increments property of Y conditionally on F . By construction the
left side of (4.1.6) equals

∏

n: t<Tn(ω)≤t+s

∫
eiu

�VTn (ω)xη(dx),

hence (4.1.6) holds. Finally the last claim follows. �
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Proposition 4.1.4 Assume that the variables Un are centered and have a finite
variance-covariance matrix μ2 = (μij2 )1≤i,j≤r . As soon as

∑

s≤t
‖Vs‖2 < ∞ a.s. ∀t > 0, (4.1.10)

for any weakly exhausting sequence (Tn) for D(V, .) the series
∑
n: Tn≤t VTnUn in

(4.1.7) converges in probability for all t > 0, and this formula defines an adapted
process on the extended space, which is a.s. càdlàg and is F -conditionally centered
with independent increments and finite second moments (hence a square-integrable
martingale) and satisfies

Ẽ
(
Y it Y

j
t |F
) =
∑

s≤t

r∑

k,l=1

V iks μ
kl
2 V

jl
s , (4.1.11)

and also (4.1.6). In particular the F -conditional law of Y does not depend on the
weakly exhausting sequence (Tn). Moreover:

a) If the random vectors Un are Gaussian, the process Y is F -conditionally Gaus-
sian.

b) If the process
∑
s≤t ‖Vs‖2 is locally integrable, then Y is a locally square-

integrable martingale on the extended space.

Proof 1) We denote by N the P null set outside of which
∑
s≤t ‖Vs‖2 <∞ for all t .

For all m≥ 1 and t ≥ 0 we set Im(t)= {n : 1≤ n≤m,Tn ≤ t} and

Z(m)t =
∑

n∈Im(t)
VTnUn,

which obviously is well defined and F̃t measurable. We write Zω(m)t (ω′) for
Z(m)t (ω,ω

′), and we put cijs =∑r
k,l=1 V

ik
s μ

kl
2 V

jl
s . The following properties are

elementary:

under P′ the process Zω(m) is centered with independent
increments and is a square-integrable martingale,

E
′(Zω(m)it Zω(m)

j
t

)=∑n∈Im(t)(ω) c
ij
Tn
(ω),

E
′(eiu�(Zω(m)t+s−Z(m)t )

)=∏n∈Im(t+s)(ω)\Im(t)(ω)
∫
eiu

�VTn (ω)xη(dx).

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(4.1.12)

2) By classical results on sums of independent centered random variables, for any
fixed ω such that

∑
s≤t ‖Vs(ω)‖2 <∞, the sequence Zω(m)t converges in L

2(P′),
as m→∞. This being true for all ω /∈N , for any ε > 0 we have

P̃
(∥∥Z(m)t −Z

(
m′
)
t

∥∥> ε
)=
∫

P(dω) P′
(∥∥Zω(m)t −Zω

(
m′
)
t

∥∥> ε
) → 0
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as m,m′ →∞. Hence the sequence Z(m)t is a Cauchy sequence for convergence
in probability on (Ω̃, F̃ , P̃) and thus it converges in probability to a limit Zt which
is F̃t measurable. Moreover, for each t ≥ 0 and ω /∈N ,

Zω(m)t → Zt(ω, .) in L
2
(
Ω ′,F ′,P′

)
,∫

Zit
(
ω,ω′
)
Z
j
t

(
ω,ω′
)
P
′(dω′
) =
∑

s≤t
c
ij
s (ω)

(4.1.13)

(use (4.1.12) for the last equality). Then we define the (F̃t )-adapted process Y by

Yt = lim sup
(s↓↓t,s∈Q)

Zs. (4.1.14)

3) (4.1.14) looks like the construction of a càdlàg version of a martingale,
which should not come as a surprise. Indeed, by the first part of (4.1.13), the
process (Zt (ω, .))t≥0 is a (not necessarily càdlàg) square-integrable martingale on
(Ω ′,F ′,P′), relative to the filtration it generates (because under P′ the variables Un
are centered and independent), and also a process with independent increments. By
the regularization scheme for martingales we get that the process (Yt (ω, .))t≥0 is a
modification of (Zt (ω, .))t≥0 under the measure P

′, with P
′ a.s. càdlàg paths. Then

we readily deduce the following properties:

• The process Y is P̃ a.s. càdlàg.
• We have (4.1.13) with Y in place of Z.

It follows that conditionally on F the process Y is centered with independent in-
crements, and a square-integrable martingale, and satisfies (4.1.6) and (4.1.11): all
these are consequences of (4.1.12) and (4.1.13) applied with Y .

4) It remains to prove (a) and (b). When η is a Gaussian measure, the processes
Zω(m) are Gaussian under P′, so (a) again follows from (4.1.13) applied with Y .

Finally, for (b) we assume the existence of a localizing sequence (Sp) of (Ft )-
stopping times, such that ap := E(

∑
s≤Sp ‖Vs‖2) <∞ for all p. Now, (4.1.13) im-

plies thatZ(m)t∧Sp converges in P̃-probability to Yt∧Sp , and Ẽ(‖Z(m)t∧Sp‖2)≤ ap ,
so in fact the convergence holds in L

1(̃P) as well. Then it is enough to prove that
each stopped process Z(m)t∧Sp is a martingale. Since Z(m)=∑m

n=1N(n), where
N(n) = VTnUn1{Tn≤t}, it is even enough to prove that each N(n)t∧Sp is a martin-
gale.

For this we take 0 ≤ t < s and we observe that F̃t is contained in the σ -field
generated by the sets of the form A∩B ∩C, where A ∈Ft and B ∈ σ(Up : p �= n)
and C ∈ σ(Un) is such that C ∩ {Tn > t} is either empty or equal to {Tn > t}. Hence
is it enough to prove that z := E(1A∩B∩C(N(n)s∧Sp − N(n)t∧Sp )) vanishes. This
is obvious when C ∩ {Tn > t} = ∅, and otherwise C ∩ {Tn > t} = {Tn > t} and we
have

z = E(1A∩{t∧Sp<Tn≤s∧Sp} VTn)
∫
Un
(
ω′
)
1B
(
ω′
)
P
′(dω′
) = 0

because Un is centered and independent of B under P′. This ends the proof. �
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4.1.3 The Mixed Case

In Propositions 4.1.2, 4.1.3 and 4.1.4, the F -conditional law of Y is completely
characterized by the independent increments property, plus the conditional charac-
teristic function of the increments, given by (4.1.6) in the latter cases, and in the first
case by

Ẽ
(
eiu

�(Yt+s−Yt ) |F) = e−
1
2 u

�(C̃t+s−C̃t )u.

In several applications one needs to “mix” the two kinds of processes: first, we
want a q-dimensional process Y on a very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃)

of the space, with

• Y has independent increments, conditionally on F
• Y0 = 0 and the paths of Y are a.s. càdlàg
• the F-conditional characteristic function of the increment Yt+s − Yt is

Ẽ
(
eiu

�(Yt+s−Yt ) |F)= e− 1
2 u

�(C̃t+s−C̃t )u∏
v∈(t,t+s]∩D(V,ω)

∫
eiu

�Vv(ω)xη(dx).

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.1.15)
Here, C̃, V and η are as in the previous two subsections.

Solving this problem simply amounts to pasting together the previous construc-
tions. We consider an auxiliary probability space (Ω ′,F ′,P′) endowed with a q-
dimensional Brownian motionW ′, and with a sequence (Un) of i.i.d. variables with
law η, and independent of the process W ′. Then we define (Ω̃, F̃ , (F̃t )t≥0, P̃) as
follows:

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ), to which
W ′ is adapted, and such that Un is F̃Tn measurable for all n.

⎫
⎬

⎭ (4.1.16)

Again, (Ω̃, F̃ , (F̃t )t≥0, P̃) is a very good filtered extension of (Ω,F , (Ft )t≥0,P),
and W ′ is an (F̃t )-Brownian motion. A mix of the proofs of Propositions 4.1.2 and
4.1.4 gives the following (the—easy—details are left to the reader):

Proposition 4.1.5 In the previous setting, let (Tn) be any weakly exhausting se-
quence (Tn) for D(V, .), and assume that C̃ has the form (4.1.1) with c̃t = σ̃t σ̃ ∗t ,
that V satisfies (4.1.10), and that η is centered with variance-covariance matrix μ2.
In the formula

Yt =
∫ t

0
σ̃s dW

′
s +

∞∑

n=1

VTnUn 1{Tn≤t},

the series converges in probability for all t , and this formula defines an adapted
process on the extended space, which is a.s. càdlàg and is F -conditionally centered
with independent increments and finite second moments (hence a square-integrable
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martingale) and satisfies

Ẽ
(
Y it Y

j
t |F
) = C̃

ij
t +
∑

s≤t

r∑

k,l=1

V iks μ
kl
2 V

jl
s ,

and also (4.1.15). In particular the F -conditional law of Y does not depend on the
weakly exhausting sequence (Tn). Moreover:

a) If the random vectors Un are Gaussian, the process Y is F -conditionally Gaus-
sian.

b) If the process
∑
s≤t ‖Vs‖2 is locally integrable, then Y is a locally square-

integrable martingale on the extended space.

4.2 Stable Convergence Result in the Continuous Case

In this section, we have a d ′-dimensional Brownian motion W on the filtered prob-
ability space (Ω,F , (Ft )t≥0,P). The main problem which we want to solve is the
following: let σ be a càdlàg adapted d × d ′-dimensional process, and c= σσ ∗. For
all i, n≥ 1, and in the setting of a regular discretization scheme with time step Δn,
we define the following d-dimensional variables:

βni =
1√
Δn

σ(i−1)ΔnΔ
n
i W. (4.2.1)

For any Borel function g from R
d into R

q with at most polynomial growth, and
recalling that, if a ∈M+

d×d , then ρa denotes the law N (0, a) on R
d , we introduce

the processes

U
n
(g)t =

√
Δn

[t/Δn]∑

i=1

(
g
(
βni
)− ρc(i−1)Δn

(g)
)
. (4.2.2)

Our aim to describe the limiting behavior of the processes U
n
(g).

It turns out that the techniques for solving this problem work in a much more
general context, and sometimes we need to consider more complex processes than
U
n
(g) above. This is why we extend the setting to a situation which may seem a

priori disturbingly general, but will prove useful later. The ingredients are as fol-
lows:

1. a sequence un > 0 of numbers which goes to 0;
2. an adapted càdlàg q × q ′ matrix-valued process θ and an adapted càdlàg R

w-
valued process Y on (Ω,F , (Ft )t≥0,P);

3. a function Φ from ΩW into R
q ′ (where (ΩW ,FW, (FWt ),PW) denotes the

canonical d ′-dimensional Wiener space and E
W is the associated expectation).

We suppose that Φ satisfies

Φ is FW1 measurable, and E
W
(‖Φ‖p)<∞ for all p > 0. (4.2.3)
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In (4.2.1) and (4.2.2) we then replace the increments Δni W by the processes

w(n, i)s = 1√
un
(W(i−1+s)un −W(i−1)un). (4.2.4)

These are Brownian motions, and will be considered as ΩW -valued random vari-
ables.

We need some notation. Let α be a q × q ′ matrix and F = F(x, y) and G =
G(x,y) be two real Borel functions on R

w ×R
q with at most polynomial growth.

The function Φ is as in (4.2.3), the canonical process on ΩW is denoted by W , and
its transpose (a row vector) is W ∗. Then we set

γΦα (x,F )= E
W
(
F(x,αΦ)

)
, γ̂ Φα (x,F )= E

W
(
F(x,αΦ)W ∗

1

)
,

γ Φα (x,F,G)= E
W
((
F(x,αΦ)− γ̂ Φα (x,F )W1

)(
G(x,αΦ)− γ̂ Φα (x,G)W1

))

− γΦα (x,F )γ Φα (x,G).

⎫
⎪⎬

⎪⎭
(4.2.5)

Note that F(x,αΦ) − γ̂ Φα (x,F )W1 is the orthogonal projection of the variable
F(x,αΦ), in the space L

2(ΩW ,PW), on the subspace orthogonal to all variables
W
j

1 , and its mean value is γΦα (x,F ), so γΦα (F,G) is a covariance. In particular, if
(Gj )1≤j≤q is a family of Borel functions, we have:

the matrix
(
γΦα
(
x,Gj ,Gk

))
1≤j,k≤r is symmetric nonnegative.

Observe that α �→ γΦα (x,F ), α �→ γ̂ Φα (x,F ) and α �→ γΦα (x,F,G) are measurable,
and even continuous when F and G are continuous in y, whereas x �→ γΦα (x,F ),
x �→ γ̂ Φα (x,F ) and x �→ γΦα (x,F,G) are continuous in x when F and G are con-
tinuous in x.

Our functionals of interest are

U
n
(G)t =√un

[t/un]∑

i=1

(
G
(
Y(i−1)un, θ(i−1)unΦ

(
w(n, i)

))− γΦθ(i−1)un
(Y(i−1)un ,G)

)
.

(4.2.6)
The similitude of notation with (4.2.2) is not by chance: if q = d and q ′ = d ′ and
Φ(y)= y(1) and θt = σt and G(x,y)= g(y) and un =Δn, then U

n
(g)=Un(G).

We recall that a (possibly multi-dimensional) function f on R
q for some integer

q is of polynomial growth if ‖f (x)‖ ≤K(1+‖x‖p) for some positive constants K
and p.

Theorem 4.2.1 Let Φ satisfy (4.2.3) and G= (Gj )1≤j≤r be continuous with poly-
nomial growth, and suppose that θ and Y are adapted and càdlàg. Then the pro-
cesses U

n
(G) of (4.2.6) converge stably in law to an r-dimensional continuous pro-

cess U(G)= (U(G)j )1≤j≤r which can be written as

U(G)
j
t =

d ′∑

k=1

∫ t

0
γ̂ Φθs

(
Ys,G

j
)k
dWk

s +U ′(G)jt , (4.2.7)
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where U
′
(G) is a continuous process on a very good extension (Ω̃, F̃ , (F̃t ), P̃) of

(Ω,F , (Ft ),P), and which conditionally on F is a centered Gaussian process with
independent increments satisfying

Ẽ
(
U
′
(G)

j
t U

′
(G)k |F) =

∫ t

0
γΦθs

(
Ys,G

j ,Gk
)
ds. (4.2.8)

The process U
′
(G) above can be “realized” as explained in Proposition 4.1.2.

Proof By a localization argument similar (and indeed quite simpler) to what is done
in Lemma 3.4.5, we may assume that θ is bounded. In view of (4.2.5), and with the
notation

η
n,j
i = Gj

(
Y(i−1)un , θ(i−1)unΦ

(
w(n, i)

))−
d ′∑

k=1

γ̂ Φθ(i−1)un

(
Y(i−1)un ,G

j
)k
w(n, i)k1,

(recall w(n, i)1 = 1√
un
(Wiun − W(i−1)un)), we can write U(G)nt =

∑[t/un]
i=1 (ζ ni +

ζ ′ni ), where

ζ
n,j
i =

d∑

k=1

γ̂ Φθ(i−1)un

(
Y(i−1)un,G

j
)k (
Wk
iun
−Wk

(i−1)un

)
,

ζ
′n,j
i = √

un
(
η
n,j
i − γΦθ(i−1)un

(
Y(i−1)un,G

j
))
,

Observe that
∑[t/Δn]
i=1 ζ

n,j
i is a Riemann sum, for the sum over k of the stochastic

integrals occurring in the right side of (4.2.7), whereas the “integrand” processes
γ̂ Φθt (Yt ,G

j )k are càdlàg. Then as a consequence of the Riemann approximation for
stochastic integrals (Proposition 2.2.8), we deduce that

[t/un]∑

i=1

ζ
n,j
i

u.c.p.=⇒
d ′∑

k=1

∫ t

0
γ̂ Φθs

(
Ys,G

j
)k
dWk

s .

So, in view of the fact that (Zn,Yn)
L-s−→ (Z,Y ) when Zn

L-s−→Z and Yn
P−→ Y , see

(2.2.5), it remains to prove that

[t/un]∑

i=1

ζ ′ni
L-s=⇒ U

′
(G)t . (4.2.9)

We will deduce (4.2.9) from Theorem 2.2.15 applied to ζ ′ni , with Nn(t)= [t/un]
and T (n, i)= iun and (Ωn,Gn, (F

n

t ),Pn)= (Ω,F , (Ft ),P) and Gni =Fiun , so we
trivially have (2.2.29) and (2.2.39). The heart of the proof is that, conditionally
on F(i−1)un , the process w(n, i) is a d ′-dimensional Brownian motion. In view of
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the definition of ηn,ji and of (4.2.3) and (4.2.5), plus the boundedness of θ and
the polynomial growth of all gj ’s, we obtain E(ζ ′ni | F(i−1)un) = 0 and E(‖ζ ′ni ‖4 |
F(i−1)un)≤ Γtu2

n if iun ≤ t for some locally bounded process Γ , and also

E
(
ζ
′n,j
i ζ

′n,k
i |F(i−1)un

) = un γ
Φ
θ(i−1)un

(
Y(i−1)un ,G

j ,Gk
)
.

Then (2.2.34) holds with A = 0, and (2.2.37) holds. Since t �→ γΦθt (Yt ,G
j ,Gk) is

càdlàg, we also deduce (2.2.36) with Cjkt being the right side of (4.2.8). It thus
remains to prove (2.2.40), which will of course follow from

E
(
ζ
′n,j
i (Miun −M(i−1)un) |F(i−1)un

) = 0 (4.2.10)

whenM =Wm for m= 1, . . . , d ′, and whenM is a bounded martingale orthogonal
to W .

The left side of (4.2.10) is
√
unE(η

n,j
i (Miun −M(i−1)un) |F(i−1)un), becauseM

is a martingale. When M = Wm, this equals E
W(Gj (x,αΦ)Wm

1 ) − γ̂ Φα (x,Gj )m
evaluated at α = θ(i−1)un and x = Y(i−1)un , and thus (4.2.10) holds.

Assume now that M is a bounded martingale, orthogonal to W . The variable
ζ ′ni is integrable and depends only on θ(i−1)un , Y(i−1)un and w(n, i), hence by the
martingale representation theorem for the Brownian motion (see e.g. [57]) it can be
written as ζ ′ni = Y + Y ′, where Y is F(i−1)un measurable and Y ′ is the value at iun
of a martingale which vanishes at time (i− 1)un and is a stochastic integral with re-
spect toW . SinceM andW are orthogonal, we deduce that E(Y ′(Miun−M(i−1)un) |
F(i−1)un) = 0, whereas E(Y (Miun −M(i−1)un) | F(i−1)un) = 0 is obvious because
of the martingale property of M . This completes the proof of (4.2.10). �

4.3 A Stable Convergence Result in the Discontinuous Case

In this section we suppose that the space (Ω,F , (Ft )t≥0,P) is endowed with the
d ′-dimensional Brownian motion W as before, and also with a Poisson random
measure p on R+ × E, where (E,E) is a Polish space. Its intensity measure, or
predictable compensator, is q(dt, dz)= dt ⊗ λ(dz) for some σ -finite measure λ on
E, see (2.1.24).

The set D(ω)= {t : p(ω; {t}×E)= 1} is countable, and we choose an “exhaust-
ing sequence” (Sp) of stopping times for this set, in the sense of Sect. 4.1.2, in a
special way. Namely, let A0 = ∅ and (Am)m≥1 be a sequence of Borel subsets of
E, increasing to E, and such that λ(Am) <∞ for all m. The sequence (Sp) is then
constructed as follows:

(Sp)p≥1 is a reordering of the double sequence
(S(m, j) :m,j ≥ 1), where S(m,1), S(m,2), . . . are the
successive jump times of the Poisson process 1{Am\Am−1} ∗ p.

⎫
⎬

⎭ (4.3.1)

Next, we pick two sequences un > 0 and vn > 0 of numbers going to 0. We associate
with un the processes w(n, i) by (4.2.4), and we set for n,p ≥ 1:
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w(n,p)s = 1√
vn

(
W(i−1+s)vn −W(i−1)vn

)

κ(n,p)= Sp
vn
− i

}
on the set

{
ivn < Sp ≤ (i + 1)vn

}
.

(4.3.2)
With this notation, each w(n,p) is a Brownian motion, as is each w(n, i), and
κ(n,p) is a (0,1]-valued variable.

Our aim is toward a joint limit theorem for the variables or processes of (4.3.2),
together with the processes U

n
(G) associated by (4.2.6) with an r-dimensional con-

tinuous function G= (Gj ) having polynomial growth on R
w ×R

q , and with a q ′-
dimensional function Φ satisfying (4.2.3), and a càdlàg adapted R

q ⊗ R
q ′ -valued

process θ and a càdlàg adapted R
w-valued process Y .

For describing the limit, we consider an auxiliary space (Ω ′,F ′,P′) on which are
defined an r-dimensional Brownian motion W ′, a sequence (κp)p≥1 of variables
uniformly distributed over (0,1], and a sequence (W ′′(p) = (W ′′(p)t )t≥0)p≥1 of
d ′-dimensional Brownian motions, all these being mutually independent. The very
good filtered extended space (Ω̃, F̃, (F̃t )t≥0, P̃) is defined by (4.1.16), where Tn
and Un are substituted with Sn and (κn,W ′′(n)). The process U(G), which by The-
orem 4.2.1 is the limit of U

n
(G), can be realized on the extension by setting (with

matrix notation)

U(G)t =
∫ t

0
γ̂ Φθs (Ys,G)dWs +U

′
(G)t , U

′
(G)t =

∫ t

0
Hs dW

′
s, (4.3.3)

where H is an adapted càdlàg r × r matrix-valued process whose square HtH�t
equals the matrix with entries γΦθt (Yt ,G

j ,Gk). Note that U(G) is independent of
the sequence (κp,W ′′(p)).

Theorem 4.3.1 With the previous notation and assumptions, we have

(
U
n
(G),
(
w(n,p), κ(n,p)

)
p≥1

) L-s−→ (U(G), (W ′′(p), κp
)
p≥1

)
,

for the product topology on the space D
r × (Dd ′ ×R)N

�
.

Proof Step 1) As mentioned after (2.2.4), it suffices for the stable convergence
in law to prove this convergence for test functions f which are bounded and Lip-
schitz. We can even further restrict the set of test functions to be any convergence-
determining set of functions (for the weak convergence). By virtue of the properties
of the product topology and of the Skorokhod topology, it is then enough to prove
the following convergence:

E

(
Z F
(
U
n
(G)
) l∏

p=1

Fp
(
w(n,p)

)
fp
(
κ(n,p)

)
)

→ Ẽ

(
Z F
(
U(G)
) l∏

p=1

Fp
(
W ′′(n)

)
fp(κp)

)
,
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where Z is any bounded F measurable variable, and l ∈ N
∗, and the fp’s are

bounded C∞ functions on R, and F and the Fp’s are bounded Lipschitz func-
tions on D

q and D
d ′ respectively, and further Fp(x)= Fp(y) for any two x, y ∈D

d ′

such that x(t)= y(t) for all t ≤ T , for some T ≥ 1, and the same for F on D
q .

We will reduce this problem to simpler ones, along several steps, and the first
reduction is elementary. We use the simplifying notation Vn =∏lp=1Fp(w(n,p))×
fp(κ(n,p)). Then, since under P̃ the variables or processes W ′, W ′′(p), κp are all
independent, and independent of F , what precedes amounts to

E
(
Z F
(
U
n
(G)
)
Vn
)→ Ẽ

(
Z F
(
U(G)
)) l∏

p=1

E
′(Fp
(
W ′′(p)

))
E
′(fp(κp)

)
.

(4.3.4)
Step 2) The next reduction consists in showing that it is enough to prove (4.3.4)

when Z is measurable with respect to a suitable sub-σ -field H of F which is sepa-
rable, that is, generated by a countable algebra. We take for H the σ -field generated
by the processes W , θ , Y and the measure p. Observing that U

′n
(G)t and Vn are H

measurable, and U
′
(G)t is H⊗F ′ measurable, we can substitute Z with E(Z |H)

in both members of (4.3.4), so it is indeed enough to prove (4.3.4) when Z is H
measurable.

In fact, we can even replace the filtration (Ft ) by the smaller filtration (H∩Ft ),
without changing any of the properties of (W, p), nor those of the extended space.
So, below, we can and will assume that (Ft ) is a filtration of the separable σ -field F .

Step 3) Let us introduce some notation. The integer l and the constant T are fixed.
We denote by S the l-dimensional vector S = (S1, . . . , Sl). For any j ≥ 1 we intro-
duce the random set Bj = ∪lp=1[(Sp − 1/j)+, Sp + 1/j ], and the (random) family
I(n, j) of all integers i ≥ 1 such that ((i − 1)un, iun] ∩Bj �= ∅. We also denote by
(Gt ) the smallest filtration containing (Ft ) and such that S is G0 measurable.

The processes 1{Am\Am−1} ∗ p in (4.3.1) are independent Poisson processes, also
independent of W . Therefore on the one hand the l-dimensional vector S admits a
density h on R

l , which is C∞ in the interior of its support. On the other hand the
process W is a (Gt )-Brownian motion (because it is independent of the variable S)
and {s ∈ Bj } ∈ G0 for all s, hence we can define the following two processes:

W(j)t =
∫ t

0
1Bj (s) dWs, W(j)t =

∫ t

0
1Bcj (s) dWs = Wt −W(j)t .

With the notation (4.3.3), we also define on the extended space:

U
(j)

t =
∫ t

0
γ̂ Φθs (Ys,G)1Bcj dWs +

∫ t

0
Hs 1Bcj (s) dW

′
s

(compare with (4.3.3)). We end the set of notation by putting

ζ ni =
√
un
(
G
(
Y(i−1)un, θ(i−1))unΦ

(
w(n, i)

))− γΦθ(i−1))un
(Y(i−1)un ,G)

)
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ζ
′n,(j)
i = ζ ni 1{i∈I(n,j)}

U
n,(j)

t =
[t/un]∑

i=1

ζ ni 1{i /∈I(n,j)}, U
′n,(j)
t =

[t/un]∑

i=1

ζ
′n,(j)
i =Un(G)t −Un,(j)t .

Step 4) Since Bj decreases to the finite set {S1, . . . , Sl}, we have

U
(j) u.c.p.=⇒ U(G) as j→∞. (4.3.5)

On the other hand, we have {i ∈ I(n, j)} ∈ G0, hence E(ζ
′n,(j)
i | G(i−1)un) = 0 and

the process U
′n,(j)

is a partial sum of martingale increments. Furthermore, since G
is of polynomial growth, E(‖ζ ′n,(j)i ‖2 | G(i−1)un) ≤ Htun 1{i∈I(n,j)} when iun ≤ t
for a locally bounded processH : there is a localizing sequence of stopping timesRm
such that Ht ≤m if t ≤m. Then by Doob’s inequality and the fact that the cardinal
of I(n, j) is at most l(1+ [2/jun]), and that the set I(n, j) is G0-measurable, we
get

E

(
sup
s≤Rm

∥∥U ′n,(j)s

∥∥2
)
≤ KE

([Rm/un]∑

i=1

∥∥ζ ′n,(j)i

∥∥2
)
≤ Klm

j
.

Hence, since y �→ F(y) is Lipschitz and bounded and depends on the restriction of

y to [0, T ] only, whereas U
n
(G)=Un,(j) +U ′n,(j), we deduce that

E
(∣∣F
(
U
n,(j))− F (Un(G))∣∣) ≤ KP(Rm < T )+K

√
lm/j

for all m≥ 1. Now P(Rm < T )→ 0 as m→∞, so

lim
j→∞ sup

n
E
(∣∣F
(
U
n,(j))− F (Un(G))∣∣) = 0.

Thus, by using also (4.3.5) we see that, instead of (4.3.4), it is enough to prove that
for each j , we have

E
(
Z F
(
U
n,(j))

Vn
)→ Ẽ

(
Z F
(
U
(j))) l∏

p=1

E
′(Fp
(
W ′′(p)

))
E
′(fp(κp)

)
. (4.3.6)

Step 5) In the sequel we fix j . Introduce the σ -fields HW(j) generated by the
variables W(j)s for s ≥ 0, and the filtration (G(j)t ) which is the smallest filtration
containing (Gt ) and such that HW(j) ⊂ G(j)0. Since F is separable, there is a regu-
lar version Qω(.) of the probability P on (Ω,F), conditional on G(j)0, and we set
Q̃ω =Qω ⊗ P

′.
Under Qω, the processes w(n, i) restricted to the time interval [0,1], and for

i /∈ I(n, j)(ω) (recall that I(n, j) is G0 measurable), are constructed via (4.2.4) on

the basis of a (G(j)t )-Brownian motion. Hence U
n,(j)

is exactly like U
n
(G), except

that we discard the summands for which i ∈ I (n, j), because the set I (n, j) is a.s.
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deterministic under Qω . Then we can reproduce the proof of Theorem 4.2.1, with
P and P̃ and (Ft ) substituted with Qω and Q̃ω and (G(j)t ), and with the process

in (4.2.7) being substituted with U
(j)

(since Bcj is a finite union of intervals). We

deduce that U
n,(j)

converges stably in law under the measure Qω towards U
(j)

,
hence

EQω

(
Z F
(
U
n,(j))) → E

Q̃ω

(
Z F
(
U
(j)))

. (4.3.7)

Now, as soon as vnT < 1/2j , that is for all n large enough, we have (i − 1)vn >
Sp − 1/j and (i − 1+ T )vn < Sp + 1/j if ivn < Sp ≤ (i + 1)vn. Thus the variable
Vn is G(j)0 measurable and

E
(
Z F
(
U
n,(j))

Vn
)−E
(
Vn EQ̃.

(
Z F
(
U
(j))))

= E
(
Vn
(
EQ.

(
Z F
(
U
n,(j)))−E

Q̃.

(
Z F
(
U
(j))))) → 0,

where the last convergence comes from (4.3.7) (all variables and functions are uni-

formly bounded, here). Moreover, Z′ = E
Q̃.
(Z F (U

(j)
)) is G(j)0 measurable and

Ẽ(Z F(U
(j)
)) = E(Z′). Thus (4.3.6) amounts to having, for any bounded G(j)0

measurable variable Z′,

E
(
Z′ Vn
) → E

(
Z′
) l∏

p=1

E
′(Fp
(
W ′′(p)

))
E
′(fp(κp)

)
. (4.3.8)

Step 6) In this step we show that it is enough to prove (4.3.8) when Z′ is G0

measurable. Since G(j)0 = G0∨HW(j), the set A of all products Z′ = Z′′L(W(j)),
where Z′′ is bounded G0 measurable and L is a bounded Lipschitz function on
D
d ′ , is total in the set L1(Ω,G(j)0,P). Hence it suffices to prove (4.3.8) when
Z′ = Z′′L(W(j)) ∈A.

Let Fn be the union of all intervals (ivn, (i+T )vn] which contain at least one Sp
for p ≤ l, and set Wn(j)t =

∫ t
0 1Fcn (s) dW(j)s . Since vn→ 0 we have Wn(j)

u.c.p.=⇒
W(j) as n→∞, hence L(Wn(j))

P−→ L(W(j)), and thus since Z′′, L and Vn are
bounded,

E
(
Z′′L
(
Wn(j)

)
Vn
)−E
(
Z′′L
(
W(j)
)
Vn
) → 0

E
(
L
(
Wn(j)

)) → E
(
L
(
W(j)
))
.

(4.3.9)

Therefore we can substitute the left side of (4.3.8) with E(Z′′L(Wn(j))Vn), which
equals E(Z′′ Vn)E(L(Wn(j))) because (Vn,Z′′) and Wn(j) are independent. The
second part of (4.3.9) shows that indeed we can even substitute the left side of (4.3.8)
with the product E(Z′′ Vn)E(L(W(j))).

Since E(Z′)= E(Z′′)E(L(W(j))) because Z′′ andW(j) are independent, it now
suffices to prove (4.3.8) with Z′′ instead of Z′, or equivalently to prove (4.3.8) when
Z′ is G0 measurable.
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Step 7) Let Ωnl be the G0 measurable set on which vnT is smaller than all dif-
ferences |Sp − Sq | for 0 ≤ p < q ≤ l (with S0 = 0). Conditionally on G0, and in
restriction to Ωnl , the stopped processes w(n,p)t∧T are independent Brownian mo-
tion stopped at time T , hence

E
(
Z′1Ωnl Vn

)= E

(
Z′1Ωnl

l∏

p=1

fp
(
κ(n,p)

)
)

l∏

p=1

E
′(Fp
(
W ′′(p)

))
.

Since P(Ωnl )→ 1, we are thus left to prove

E

(
Z′

l∏

p=1

fp
(
κ(n,p)

)
)
→ E
(
Z′
) l∏

p=1

E
′(fp(κp)

)

when Z′ is G0 measurable. We can even go further: recalling that G0 is generated by
F0 and the random vector S, which is independent of F0, and since all κ(n,p) are
functions of S, it is even enough to prove that for any bounded measurable function
f on R

l ,

E

(
f (S)

l∏

p=1

fp
(
κ(n,p)

)
)
→ E
(
f (S)
) l∏

p=1

E
′(fp(κp)

)
. (4.3.10)

Yet another density argument (as in the beginning of Step 6) yields that it even
enough to check (4.3.10) with f Lipschitz with compact support and satisfying
f (s1, . . . , sl)= 0 on the set ∪1≤p<q≤l ({|sp − sq | ≤ ε} ∪ {sp ≤ ε}).

Step 8) Finally we prove (4.3.10), which when l = 1 is very close to an old result
of Kosulajeff [67] and Tuckey [92]. We use the notation I ′(n, i)= (ivn, (i + 1)vn]
and recall that h is the density of S. For any family I = (i1, . . . , il), as soon as
vn < ε we have

γn(I) = E

(
f (S)

l∏

p=1

fp
(
κ(n,p)

)
1I ′(n,ip)(Sp)

)

= E

(
f (S)

l∏

p=1

fp

(
Sp

un
− ip
)

1I ′(n,ip)(Sp)

)

=
∫
∏l
p=1 I

′(n,ip)
(f h)(s1, . . . , sr )

l∏

p=1

fp
(
(sp − ipvn)/vn

)
ds1 . . . dsr

= vln (f h)(i1vn, . . . , ilvn)
l∏

p=1

∫ 1

0
fp(s) ds + γ ′n(I)

by a change of variable, and where γ ′n(I) vanishes if at least one of the ip is bigger
than A/vn for some A, and |γ ′n(I)| ≤Kvl+1

n always (due to the Lipschitz property
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of the product f h). It remains to observe that the left side of (4.3.10) is
∑

I γn(I),
where the sum is extended over all possible families I of indices. By what precedes,
this sum converges to the Lebesgue integral of f h on R

l , times
∏l
p=1 E

′(fp(κp)),
and this product is the right side of (4.3.10). �

4.4 An Application to Itô Semimartingales

In the rest of this chapter, we have an underlying processX which is a d-dimensional
Itô semimartingale on (Ω,F , (Ft )t≥0,P). Its characteristics have the form (2.1.25)
and the jump measure of X is called μ, but we mainly use a Grigelionis representa-
tion (2.1.30) for it, possibly defined on an extended space which is still denoted as
(Ω,F , (Ft )t≥0,P):

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+ (δ1{‖δ‖≤1})� (p− q)t + (δ1{‖δ‖>1})�pt , (4.4.1)

where W is a Brownian motion and p is a Poisson measure with compensator
q(dt, dz) = dt ⊗ λ(dz). As we know, it is always possible to take the dimension
of W to be d . However in many applications the semimartingale of interest is di-
rectly given in the form (4.4.1), withW and p given, and there is no reason to assume
that the dimensions of X andW are the same. We thus denote by d ′ the (a priori ar-
bitrary) dimension ofW . Then of course σ is d× d ′-dimensional, whereas c= σσ�
is necessarily d × d-dimensional. Note that W and p are exactly as in the previous
section.

In this section, we develop two technical tools, in constant use in the sequel. One
concerns a localization procedure which has already been used in a simple situation
(Lemma 3.4.5), but below we extend it to a wider setting. The other one concerns a
consequence of Theorem 4.3.1 which will be one of our main tools later.

4.4.1 The Localization Procedure

The localization procedure is a commonly used technique in stochastic calculus.
For example, let M be a continuous local martingale starting at M0 = 0 and sup-
pose that one wants to prove that the difference N =M2 − [M,M] is a local mar-
tingale (a well known result, of course). Typically, the proof goes as follows. We
start by proving the property for all bounded M , that is when supt |Mt | ≤ K for
some constant K . Then, assuming this, the result for an arbitrary continuous local
martingale is proved via the localization procedure: letting Tq = inf(t : |Mt |> p),
the stopped process M(q)t =Mt∧Tq is a bounded martingale, so N(q)=M(q)2 −
[M(q),M(q)] is a local martingale (and even a martingale, indeed). Next, observ-
ing that [M(q),M(q)]t = [M,M]t∧Tq , we see thatN(q)t =Nt∧Tq . Thus, since each
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N(q) is a martingale and since the sequence Tq of stopping times increases to∞, we
deduce from the definition of local martingales that N is indeed a local martingale.

The same procedure can be put to use in much more complex situations.
In this book, we use it extensively in the following setting. We have a space
(Ω,F , (Ft )t≥0,P) on which we consider the class S of all semimartingales X
satisfying some specific assumption, say (ABC). With any X in S we asso-
ciate a sequence of q-dimensional càdlàg processes Un(X) on (Ω,F , (Ft )t≥0,P),
and another q-dimensional càdlàg process U(X) which may be defined on
(Ω,F , (Ft )t≥0,P), or on an extension (Ω̃, F̃, (F̃t )t≥0, P̃) of it; this extension may
depend on X itself.

The processes Un(X) and U(X) are subject to the following conditions, where
X and X′ are any two semimartingales in the class S , and S is any (Ft )-stopping
time:

Xt =X′t a.s. ∀t < S ⇒
• t < S ⇒ Un(X)t =Un(X′)t a.s.
• the F-conditional laws of (U(X)t )t<S and (U(X′)t )t<S are a.s. equal.

(4.4.2)
When U(X) is defined on (Ω,F , (Ft )t≥0,P) itself, the second condition above
amounts to U(X)t = U(X′)t a.s. for all t , on {t < S}: this is the case below, when
we speak about convergence in probability.

The properties of interest for us are either one of the following properties:

• The processes Un(X) converge in probability to U(X)
• The variables Un(X)t converge in probability to U(X)t
• The processes Un(X) converge stably in law to U(X)
• The variables Un(X)t converge stably in law to U(X)t .

(4.4.3)

Definition 4.4.1 In the previous setting, and if (SABC) is an assumption stronger
than (ABC), we say that the localization procedure “from (SABC) to (ABC)” ap-
plies when we have the following: if one of the properties (4.4.3) holds for all semi-
martingales satisfying (SABC), it also holds for semimartingales satisfying (ABC).

The terminology “localization procedure” may not be clear from the previous
definition; however it is substantiated by the facts that, on the one hand the prop-
erties (4.4.2) mean that the functionals Un(X) are “local” in some sense, and on
the other hand the assumption (ABC) to which we apply the procedure is typically
a “localized version” of the assumption (SABC), in the same sense as the class of
local martingales, for example, is the localized version of the class of martingales.

Now we turn to some concrete forms of the assumption (ABC). In this subsection
we only consider three assumptions, among many others in this book. These three
assumptions exhibit all the difficulties involved by the localization procedure, and
the extension to the other assumptions which we will encountered is obvious.

The first assumption is the most basic one:

Assumption 4.4.2 (or (H)) X is an Itô semimartingale of the form (4.4.1), and we
have:
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(i) The process b is locally bounded.
(ii) The process σ is càdlàg.

(iii) There is a localizing sequence (τn) of stopping times and, for each n, a de-
terministic nonnegative function Γn on E satisfying

∫
Γn(z)

2 λ(dz) <∞ and
such that ‖δ(ω, t, z)‖ ∧ 1≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω).

The second assumption is basically (H) plus the fact that the process σ occurring
in (5.0.1) is itself an Itô semimartingale, hence the pair (X,σ ) as well. We could then
write various Grigelionis representations of this pair, globally driven by a Brownian
motion and a Poisson random measure.

However, it is more convenient to express our needed regularity assumptions
in terms of the following decomposition of σ , which is a kind of “projection” of
the process σ on the Brownian motion W which drives (together with the Poisson
measure p) the process X in (5.0.1). Namely, as soon as it is an Itô semimartingale,
σ can be written as

σt = σ0 +
∫ t

0 b̃s ds +
∫ t

0 σ̃s dWs +Mt +
∑
s≤t Δσs 1{‖Δσs‖>1},

•M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal toW ,
and its predictable quadratic covariation process
has the form 〈M,M〉t =

∫ t
0 as ds

• the compensator of
∑
s≤t 1{‖Δσs‖>1} is

∫ t
0 ãs ds.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.4.4)

This is in matrix form: b̃ and M are d × d ′-dimensional, and σ̃ is d × d ′ × d ′-
dimensional (for example the (ij)th component of the stochastic integral with re-
spect toW is

∑d ′
k=1

∫ t
0 σ̃

ijk
s dWk

s ), and a is d ′4-dimensional and ã is one-dimensional
nonnegative.

Assumption 4.4.3 (or (K)) We have (H) and the process σ is also an Itô semi-
martingale. Furthermore, with the notation of (4.4.4), we have:

(i) the processes b̃, a and ã are locally bounded and progressively measurable;
(ii) the processes σ̃ and b are càdlàg or càglàd (and adapted, of course).

Note that the distinction as to whether b and σ̃ are càdlàg or are càglàd is irrele-
vant here, because these processes are determined up to a Lebesgue-null set in time
anyway.

(K) implies that the process c= σσ� is also an Itô semimartingale. On the other
hand, assuming that c is an Itô semimartingale is not quite enough to obtain a
“square-root” σ which is also an Itô semimartingale, unless both processes ct and
ct− are everywhere invertible. This invertibility property is sometimes important, so
we state:

Assumption 4.4.4 (or (K’)) We have (K) and both processes ct and ct− take their
values in the set M++

d×d of all symmetric positive definite d × d matrices.
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Remark 4.4.5 (H) will be in force for most of the CLTs proved in this book, and it
is rather mild, in the setting of Itô semimartingales.

For example

Xt = X0 +
∫ t

0
Hs dZs,

where Z is a multidimensional Lévy process and H is a predictable and locally
bounded process (we use here matrix notation), defines an Itô semimartingale X
which automatically satisfies (H). Note that if Z has no Gaussian part then σ ≡ 0.
Otherwise, the Gaussian part of Z has the form αW for some multidimensional
Brownian motion and a (non-random) matrix α, and a version of σ is σt = Htα,
which is càglàd and not càdlàg. However, σ ′t =Ht+α is a càdlàg version of σ , in the
sense that σ ′t = σt for all t outside a countable set and thus

∫ t
0 σ

′
sσ
′∗
s ds =

∫ t
0 σsσ

∗
s ds.

Assumption (K) is stronger than (H), but nevertheless very often satisfied. It is
the case, for example, when X is the solution (weak or strong, when it exists) of a
stochastic differential equation of the form

Xt = X0 +
∫ t

0
f (s,Xs−) dZs,

with Z again a Lévy process, and f a C1,2 function on R+ ×R
d .

As the reader will have noticed already, estimates of various kinds play an im-
portant role in our topic, and will do so even more in the sequel. Now, as seen in
Sect. 2.1.5 for example, “good” estimates are only available under suitable bound-
edness assumptions on (b, σ, δ), when X has the form (4.4.1). These boundedness
hypotheses are not satisfied under (H), (K) or (K’), so we strengthen those assump-
tions as follows.

Assumption 4.4.6 (or (SH)) We have (H), and there are a constant A and a non-
negative function Γ on E, such that

∥∥bt (ω)
∥∥≤A, ∥∥σt (ω)

∥∥≤A, ∥∥Xt(ω)
∥∥≤A∥∥δ(ω, t, z)

∥∥≤ Γ (z), Γ (z)≤A, ∫ Γ (z)2λ(dz)≤A. (4.4.5)

Assumption 4.4.7 (or (SK)) We have (K), and there are a constant A and a non-
negative function Γ on E, such that (4.4.5) holds, and also

∥∥b̃t (ω)
∥∥≤A, ∥∥σ̃t (ω)

∥∥≤A, ∥∥at (ω)
∥∥≤A, ‖at (ω)‖ ≤A. (4.4.6)

Assumption 4.4.8 (or (SK’)) We have (SK), and the process ct has an inverse which
is (uniformly) bounded.

The localization lemma is then the following one:
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Lemma 4.4.9 (Localization) The localization procedure applies, from (SH) to (H),
and from (SK) to (K), and from (SK’) to (K’).

Proof 1) We take (ABC) to be equal to (H) or (K) or (K’), and the corresponding
strengthened assumption (SABC) is (SH) or (SK) or (SK’), accordingly. We suppose
that one of the properties in (4.4.3) holds under (SABC) and we want to show that
it also holds under (ABC). So we take Un(X) and U(X) which satisfy (4.4.2).

Since by (2.2.7) stable convergence in law and convergence in probability are
the same when the limit is defined on the original space, the last two properties
in (4.4.3) are the same as the first two ones when U(X) is defined on (Ω,F ,P).
Also, observing that for any fixed t the processes U ′n(X)s = Un(X)t 1{s≥t} and

U ′(X)s = U(X)t 1{s≥t} satisfy (4.4.2), and U ′n(X) L-s=⇒ U ′(X) (functional stable

convergence in law) if and only if U ′n(X)t
L-s−→U ′(X)t (convergence of variables),

it is enough below to consider the first property in (4.4.3).

2) We let X be any semimartingale satisfying (ABC). Suppose for a moment the
existence of a localizing sequence Sp of stopping times, such that

• t < Sp ⇒ X(p)t = Xt a.s.
• each X(p) satisfies (SABC).

(4.4.7)

We want to prove that Un(X)
L-s=⇒ U(X), which means that for any bounded

measurable variable Z on (Ω,F ,P) and any bounded continuous function F on
D
q =D(R+,Rq) for the Skorokhod topology, we have

E
(
ZF
(
Un(X)

)) → Ẽ
(
ZF
(
U(X)
))
. (4.4.8)

We reformulate (4.4.8) as follows: let QX be a regular version of the F -conditional
distribution of the process U(X). This is a transition probability QX(ω,dx) from
(Ω,F) into (Dq,Dq), where Dq is the Borel σ -field of D

q . Then if QX(F) de-
notes the expectation of F with respect to QX(ω, .), we have Ẽ(Z F(U(X))) =
E(ZQX(F)). In other words, (4.4.8) is exactly

E
(
ZF
(
Un(X)

)) → E
(
ZQX(F)

)
. (4.4.9)

Since the Skorokhod topology is “local” in time, it is enough to prove (4.4.9)
when F satisfies F(x)= F(y) whenever x(s)= y(s) for all s ≤ t , with t arbitrarily
large but finite, and we suppose further on that this is the case. Since Sp→∞ and
since Z and F are bounded, it is then enough to prove that for any p ≥ 1 we have

E
(
ZF
(
Un(X)

)
1{t<Sp}

) → E
(
ZQX(F)1{t<Sp}

)
. (4.4.10)

Now, taking into account the special structure of F , the first part of (4.4.2) yields that
on the set {t < Sp}we have F(Un(X))= F(Un(X(p)) a.s., whereas the second part
yields that on the same set we have QX(F) =QX(p)(F ). Hence (4.4.10) amounts
to

E
(
ZF
(
Un
(
X(p)
))

1{t<Sp}
) → E

(
ZQX(p)(F )1{t<Sp}

)
. (4.4.11)
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It remains to apply the hypothesis, which says that for each p ≥ 1 we have

Un(X(p))
L-s=⇒ U(X(p)) as n→∞. This gives (4.4.11), hence at this stage it re-

mains to prove the existence of the processes X(p) satisfying (4.4.7).

3) We start with the case (ABC) = (H), so here X satisfies (H). The process
b is locally bounded and without loss of generality we may take b0 = 0, so there
is a localizing sequence Tp such that ‖bt‖ ≤ p if 0 ≤ t ≤ Tp . Next, the stopping
times Rp = inf(t : ‖Xt‖ + ‖σt‖ ≥ p) increase to +∞ as well. Then, letting τn be
the stopping times occurring in (H)-(iii), we set Sp = Tp ∧Rp ∧ τp and we choose
a d × d ′ non-random matrix with ‖α‖< 1. Then we set

b
(p)
t = bt∧Sp , σ

(p)
t = σt∧Sp 1{‖σt∧Sp ‖≤p}

δ(p)(t, z) = δ(t ∧ Sp, z) 1{‖δ(t∧Sp,z)‖≤2p}.
(4.4.12)

This defines three terms (b(p), σ (p), δ(p)) analogous to (b, σ, δ). By construction
‖b(p)‖ ≤ p and ‖σ (p)‖ ≤ p and σ (p) is càdlàg, and also ‖δ(p)(ω, t, z)‖ ≤ Γ (p)(z),
where Γ (p) = p(Γp ∧ 1). Hence the process X(p) given by

X(p)t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if Sp = 0

X0 +
∫ t

0 b
(p)
s ds + ∫ s0 σ (p)s dWs

+ (δ(p)1{‖δ(p)‖≤1}) � (p− q)t
+ (δ(p)1{‖δ(p)‖>1}) � pt if Sp > 0

(4.4.13)

satisfies (SH) (note that ‖X(p)t‖ ≤ 3p), and it remains to prove the first part of
(4.4.7).

We denote by Y(p, i)t for i = 1,2,3,4 the four last terms in the right side of
(4.4.13), and in the same way the Y(i)t ’s denote the four last terms in the right side
of (4.4.1). Then (4.4.7) will follow from the properties

t < Sp ⇒ Y(p, i)t = Y(i)t a.s. (4.4.14)

for i = 1,2,3,4. That (4.4.14) holds for i = 1 is obvious, and for i = 2 it follows
from the fact that σ (p)t = σt when t < Sp . For i = 3,4 we first recall the following
representation for the Poisson random measure p: this is a random measure on R+×
E, and with Δ being an additional point outside E, we can find an E ∪ {Δ}-valued
optional process θt such that

p(dt, dz) =
∑

s:θs (ω)∈E
ε(s,θs (ω))(dt, dz)

where εa denotes the Dirac mass sitting at a. We also extend δ and δ(p) by
setting δ(ω, t,Δ) = δ(p)(ω, t,Δ) = 0. Then, outside a P null set N , we have
ΔXs = δ(s, θs) and ΔX(p)s = δ(p)(s, θs) for all s. If s < Sp we also have s < Rp
and thus ΔXs ≤ 2p, therefore outside N , and in view of (4.4.12), we must have
δ(s, θs)= δ(p)(s, θs) for all s < Sp . Then (4.4.14) for i = 4 readily follows. Further-
more outside N , we also have δ(s, θs)= δ(p)(s, θs) for all s ≤ Sp as soon as either
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‖δ(s, θs)‖ or ‖δ(p)(s, θs)‖ belongs to (0,1]. Therefore the two purely discontinu-
ous local martingales Y(3) and Y(p,3) have the same jumps on the interval (0, Sp],
hence they must be a.s. equal on this interval (because the difference Y(3)−Y(p,3),
stopped at time Sp , is a purely discontinuous local martingale which is also a.s. con-
tinuous, hence it vanishes). This proves (4.4.14) for i = 3.

4) Now we consider the case (ABC) = (K), so here X satisfies (K). We can
always use the left continuous version of the process σ̃ , which is locally bounded,
as well as b̃, a and ã, which can also be all taken equal to 0 at time t = 0. Hence we
first have a localizing sequence Tp such that

0< t ≤ Tp ⇒ ‖bt‖ ≤ p, t ≤ Tp ⇒ ‖b̃t‖ + ‖σ̃t‖ + ‖at‖ + ãt ≤ p
(we cannot assume here b0 = 0, in the case it is càdlàg). The stopping times Rp are
as in the previous step, as is Sp = Tp ∧Rp ∧ τp and we choose a d×d ′ non-random

matrix with ‖α‖ ≤ 1. Then we define δ(p) as in (4.4.12) and set b(p)t = bt∧Sp 1{Sp>0}
and

σ
(p)
t =

⎧
⎪⎨

⎪⎩

α if Sp = 0

σ
(p)

0 + ∫ t∧Sp0 b̃s ds +
∫ t∧Sp

0 σ̃s dWs +Mt∧Sp
+∑s≤t, s<Sp Δσs 1{‖Δσs‖>1} if Sp > 0.

(4.4.15)

By construction ‖σ (p)‖ ≤ p + 1 (recall that ‖ΔM‖ ≤ 1). Moreover σ (p) is again
of the form (4.4.4), with the associated processes ‖b̃(p)‖, ‖σ̃ (p)‖, ‖a(p)‖ and ã(p)

bounded by p (this is simple, except for ã(p): for this case we consider the two
processes Yt =∑s≤t∧Sp 1{‖Δσ‖>1} and Y ′t =

∑
s≤t, s<Sp 1{‖Δσ(p)‖>1}, with respec-

tive compensators Ỹ and Ỹ ′; observing that Yt − Y ′t = 1{‖ΔσSp ‖>1} 1{t≥Sp} is non-

decreasing, the same is true of Ỹ − Ỹ ′; therefore Ỹ ′t =
∫
ã
(p)
s ds for some ã(p) satis-

fying 0≤ ã(p)t ≤ ãt∧Sp ≤ p).

Then, the process X(p) defined by (4.4.4) satisfies (SK) and, since σ (p)t = σt
when t < Sp , we obtain the first part of (4.4.7) exactly as in Step 3.

5) Finally we let (ABC) = (K’), so X satisfies (K’). The processes ct and ct− are
everywhere invertible, so γt = sups≤t ‖c−1

s ‖ is finite-valued (if γt =∞ for some t ,
there is a sequence sn converging to a limit s ≤ t , either increasingly or decreasingly,
and with ‖c−1

sn
‖→∞; this implies ‖c−1

s ‖ =∞ in the first case, and ‖c−1
s−‖ =∞ in

the second case, thus bringing a contradiction).
We repeat the construction of Step 4, with the following changes. We keep the

same Tp and Rp and set T ′p = inf(t : γt ≥ p), which increases to ∞, and we now
take Sp = Tp ∧ Rp ∧ T ′p ∧ τp . We choose α such that a = αα∗ is invertible, and

set ρ = ‖a−1‖. We also choose another non-random d × d ′ matrix α′p such that for
any matrix α′′ with ‖α′′‖ ≤ p+ 1, then A= (α + α′p)(α + α′p)∗ is invertible with a

(Euclidean) norm of the inverse satisfying ‖A−1‖ ≤ 1: an easy computation shows
that it is possible for some α′ satisfying ‖α′‖ ≤ ρ′ = (p + 1)(d ′ + 1). Then at this
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stage, we replace the second part of (4.4.15) by

σ
(p)
t = σ (p)0 +

∫ t∧Sp

0
b̃s ds +

∫ t∧Sp

0
σ̃s dWs

+Mt∧Sp +
∑

s≤t, s<Sp
Δσs 1{‖Δσs‖>1} + α′ 1{t≥Sp}.

Hence σ (p)t = σt for all t < Sp , and ‖σ (p)t ‖ ≤ p+1+ρ′ and also, due to our choices

of α and α′, such that c(p)t = σ (p)t σ
(p)∗
t is invertible, with ‖c(p)−1

t ‖ ≤ p+ 1+ ρ. So
the process X(p) defined by (4.4.13) satisfies (SK’), and the proof of the first part
of (4.4.7) is as in the two previous steps. �

4.4.2 A Stable Convergence for Itô Semimartingales

We will now show how Theorem 4.3.1 can be applied to the semimartingale X
satisfying the strengthened Assumption (SH), that is Assumption 4.4.6. In partic-
ular the function Γ on E satisfies (4.4.5). Then we may define the sequence (Sp)
of stopping times by (4.3.1), upon taking Am = {z : Γ (z) > 1/m}. This sequence
weakly exhausts the jump of X, in the sense of Sect. 4.1.2. We consider a regular
discretization scheme with time step Δn, and the d-dimensional variables

S−(n,p)= (i − 1)Δn, S+(n,p) = iΔn

R−(n,p)= 1√
Δn

(
XSp− −X(i−1)Δn

)

R+(n,p)= 1√
Δn

(
XiΔn −XSp

)

⎫
⎪⎬

⎪⎭
if (i − 1)Δn < Sp ≤ iΔn. (4.4.16)

We want to describe the limiting behavior of these variables, together with pro-
cesses U

n
(G) as in (4.2.6). Those processes are associated with a sequence un > 0

going to 0, and a function Φ satisfying (4.2.3) and an adapted càdlàg R
q ⊗ R

q ′ -
valued process θ , and an adapted càdlàg R

w-valued process Y , and an r-dimensional
continuous function G= (Gj ) on R

w ×R
q with polynomial growth.

For describing the limit, and as in Sect. 4.3, we consider an auxiliary space
(Ω ′,F ′,P′) endowed with an r-dimensional Brownian motion W ′, a sequence
(κp)p≥1 of variables uniformly distributed over (0,1], and two sequences (Ψp−)p≥1

and (Ψp+)p≥1 of d ′-dimensional centered Gaussian variables with covariance the
identity matrix, all mutually independent. The very good filtered extension is de-
fined by (4.1.16), where Tn and Un are substituted with Sn and (κn,Ψn−,Ψn+). The
limiting processU(G) of the sequenceU

n
(G) is defined on the extension by (4.3.3).

Finally the limits of the variables R±(n,p) will also be defined on the extension, as
the following d-dimensional variables:

Rp− = √
κp σTp−Ψp−, Rp+ =

√
1− κp σTp Ψp+. (4.4.17)
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Proposition 4.4.10 If X satisfies (SH), and with the previous notation and assump-
tions, we have

(
U
n
(G),
(
R−(n,p),R+(n,p)

)
p≥1

) L-s−→ (U(G), (Rp−,Rp+)p≥1
)

(4.4.18)

for the product topology on the space D
r × (R2)N

∗
.

Proof 1) We have the extended space (Ω̃, F̃ , (F̃t )t≥0, P̃) as defined above, and an-
other extended space (Ω̃ ′, F̃ ′, (F̃ ′t )t≥0, P̃

′) which supports the limit described in
Theorem 4.3.1: this limit is denoted as (U(G)′, (W ′′(p)′, κ ′p)p≥1). On the second
extension, we set

Ψ ′p− =
1√
κ ′p

(
W ′′(p)′1+κ ′p −W

′′(p)′1
)
, Ψ ′p+ =

1√
1−κ ′p

(
W ′′(p)′2−W ′′(p)′1+κ ′p

)

R′p− =
√
κ ′p σTp−Ψ ′p−, R′p+ =

√
1−κ ′p σTp Ψ ′p+.

SinceW ′′(p)′ is a Brownian motion independent of κ ′p , one easily checks that the
three variables Ψ ′p−,Ψ ′p+, κ ′p are independent, the first two being N (0, Id ′). Hence

the F -conditional law of the family (U(G)′, (κ ′p,Ψ ′p−,Ψ ′p+)) on the second exten-

sion is the same as the F -conditional law of the family (U(G), (κp,Ψp−,Ψp+))
on the first extension. Thus, the F -conditional laws of the two families (U(g)′,
(R′p−,R′p+)) and (U(G), (Rp−,Rp+)) are also the same, and it is enough to prove

(4.4.18) with (U(G)′, (R′p−,R′p+)) in the right side.

2) Now, we put

α−(n,p)= 1√
Δn
(WSp −WS−(n,p)), α+(n,p)= 1√

Δn
(WS+(n,p) −WSp).

With the notation (4.3.2), and with vn =Δn, we have

α−(n,p)=w(n,p)κ(n,p)+1 −w(n,p)1, α−(n,p)=w(n,p)2 −w(n,p)κ(n,p)+1.

Since the map (t,w) �→ w(t) from R+ × D
d ′ is continuous at any (t,w) such that

w(t)=w(t−), and recalling the definition of Ψ ′p±, we deduce from Theorem 4.3.1
that

(
U
n
(G),
(
α−(n,p),α−(n,p)

)
p≥1

) L-s−→ (U(G)′, (
√
κ ′p Ψ ′p−,

√
1− κ ′p Ψ ′p+

)
p≥1

)
.

By virtue of the definition of R±(n,p) and R′p±, and from the fact that σ is càdlàg,
it remains to prove that for any p ≥ 1 we have

R−(n,p)−σS−(n,p)α−(n,p) P−→ 0, R+(n,p)−σSpα+(n,p) P−→ 0. (4.4.19)
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3) For proving (4.4.19) we need some notation. First, recallingAm = {z : Γ (z) >
1/m}, we set

b(m)t = bt −
∫
Am∩{z:‖δ(t,z)‖≤1} δ(t, z)λ(dz),

X(m)t = X0 +
∫ t

0 b(m)s ds +
∫ t

0 σs dWs + (δ 1Acm) � (p− q)t ,

X′(m) = X−X(m) = (δ 1Am) � p.

⎫
⎪⎬

⎪⎭
(4.4.20)

Next, with I (n, i)= ((i − 1)Δn, iΔn], we write

Ωn(T ,m)= the set of all ω such that each interval [0, T ] ∩ I (n, i)
contains at most one jump of X′(m)(ω), and that
‖X(m)(ω)t+s −X(m)(ω)t‖ ≤ 2/m for all t ∈ [0, T ], s ∈ [0,Δn].

(4.4.21)

By construction, X(m) is a càdlàg process with jumps smaller than 1/m, whereas
X′(m) has finitely many jumps on [0, T ]. Therefore, for all T > 0 and m ≥ 1 we
have

P
(
Ωn(T ,m)

) → 1 as n→∞. (4.4.22)

By (4.3.1) we have Sp = S(m, j) for somem,j ≥ 1. Then on the setΩn(T ,m)∩
{Sp < T } we have R−(n,p) = (X(m)Sp − X(m)S−(n,p))/

√
Δn and R+(n,p) =

(X(m)S+(n,p) − X(m)Sp )/
√
Δn. Hence in view of (4.4.22), the property (4.4.19)

follows from

wnp :=
∣∣∣∣

1√
Δn

(
X(m)Sp −X(m)S−(n,p)

)− σS−(n,p)α−(n,p)
∣∣∣∣

+
∣∣∣∣

1√
Δn

(
X(m)S+(n,p) −X(m)Sp

)− σSpα+(n,p)
∣∣∣∣

P−→ 0. (4.4.23)

Let (Gt ) be the filtration (GAmt ) associated with the set Am by (2.1.48). Note
that S+(n,p) and S−(n,p) and Sp are stopping times with respect to (Gt ), so by
Proposition 2.1.10 we can apply (2.1.33) and (2.1.34) and (2.1.39) (with r = 2 and
q = 1/2), twice to the three integral processes in the definition of X(m) with the
stopping times S−(n,p) and Sp , to deduce from the definition of wnp that

E
((
wnp
)2 ∧ 1
) ≤ K√Δn +K

∫

{Γ (z)≤Δ1/4
n }
Γ (z)2λ(dz)

+KE

(
sup

0<u≤Δn

(‖σSp−u − σSp−‖2 + ‖σSp+u − σSp‖2)).

All three terms on the right above go to 0 as n→∞ (use the dominated con-
vergence theorem for the last one, in which σ is càdlàg and bounded). Then we
have (4.4.23). �



Chapter 5
Central Limit Theorems: The Basic Results

After having established some key tools in the previous chapter, we are now ready
for the Central Limit Theorems associated with the Laws of Large Numbers of
Chap. 3. We begin with the CLT for the non-normalized functionals and continue
with the CLT for the normalized ones. The first CLT is significantly more compli-
cated to state than the second one, but the proof is somewhat simpler. We end the
chapter with a CLT for the “approximate” quadratic variation, that is for the basic
convergence exhibited in (2.1.8).

For all these results we needX to be a d-dimensional Itô semimartingale, defined
on a filtered probability space (Ω,F , (Ft )t≥0,P). Its characteristics have the form
(2.1.25) and the jump measure of X is called μ. We will also use a Grigelionis
representation (2.1.30) for it, possibly defined on an extended space, still denoted
as (Ω,F , (Ft )t≥0,P). That is,

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+ (δ1{‖δ‖≤1})� (p− q)t + (δ1{‖δ‖>1})�pt , (5.0.1)

whereW is a d ′-dimensional Brownian motion and p is a Poisson measure on R+×
E. Here, (E,E) is some Polish space, and the intensity measure, or compensator, of
p is of the form q(dt, dz)= dt ⊗ λ(dz), where λ is a σ -finite measure on E. Then σ
is d × d ′-dimensional, whereas c= σσ� is d × d-dimensional.

We also need, in a fundamental way, that the discretization scheme is a regular
scheme, whose time step we denote by Δn.

5.1 The Central Limit Theorem for Functionals Without
Normalization

We consider here the non-normalized functionals

V n(f,X)t =
[t/Δn]∑

i=1

f
(
Δni X
)
.
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The CLT will be available when f (x)= o(‖x‖3) as x→ 0, plus some mild smooth-
ness conditions: this corresponds to a special case of (A-a) of Theorem 3.3.1, when

V n(f,X)
P=⇒ f ∗μ. In Sect. 5.4 below we will also obtain a CLT corresponding to

case (B). For the other cases of this theorem no CLT is available in general: this was
already shown in the introductory chapter 1 for the example of a Brownian motion
plus a compound Poisson process and f (x) = |x|p: there is no CLT in this case
when p < 2 or 2<p < 3, and a CLT with a bias term when p = 3.

5.1.1 The Central Limit Theorem, Without Normalization

We need Assumption (H), introduced as Assumption 4.4.2 in the previous chapter,
and which we briefly recall below for the reader’s convenience:

Assumption (H) X is an Itô semimartingale of the form (5.0.1), where the process
b is locally bounded, the process σ is càdlàg, and ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all
(ω, t, z) with t ≤ τn(ω), where (τn) is a localizing sequence (τn) of stopping times
and each Γn is a nonnegative function on E satisfying

∫
Γn(z)

2λ(dz) <∞.

We also describe the ingredients coming into the limiting process, which is in
fact as described in (4.1.7). We have an auxiliary space (Ω ′,F ′,P′) endowed with
a triple sequence (Ψn−,Ψn+, κn)n≥1 of variables, all independent, and with the fol-
lowing laws:

Ψn± are d ′-dimensional, N (0, Id ′), κn is uniform on [0,1]. (5.1.1)

We also consider an arbitrary weakly exhausting sequence (Tn)n≥1 of stopping times
for the jumps of X, which means that Tn �= Tm is n �=m and Tn <∞, and that for
any (ω, s) with ΔXs(ω) �= 0 there is some n with Tn = s. The very good filtered
extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P) is defined by (4.1.16), that is:

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ) and such that
(Ψn−,Ψn+, κn) is F̃Tn measurable for all n

⎫
⎪⎬

⎪⎭
(5.1.2)

(an additional Brownian motion W ′ is not necessary here). We also introduce the
following d-dimensional random variables, see (4.4.17), with σ being the process
occurring in (5.0.1):

Rn =Rn− +Rn+, where Rn− =√κn σTn−Ψn−, Rn+ =
√

1− κn σTnΨn+.
(5.1.3)

The following proposition describes some properties of the limiting process, and
some intuition about why it takes this form will be given after the statement of the
CLT.
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Proposition 5.1.1 Assume (H). Let f be a C1 function from R
d into R

q , with
∂if (x)= O(‖x‖) as x→ 0, where ∂if for i = 1, . . . , d denotes the q-dimensional
partial derivatives of f . The formula

V (f,X)t =
∞∑

n=1

(
d∑

i=1

∂if (ΔXTn)R
i
n

)
1{Tn≤t} (5.1.4)

defines a q-dimensional process V (f,X) on (Ω̃, F̃ , (F̃t )t≥0, P̃) which is a.s.
càdlàg, adapted, and conditionally on F has centered and independent increments
and satisfies

Ẽ
(
V (f,X)it V (f,X)

j
t |F
)= 1

2

∑

s≤t

d∑

k,l=1

(
∂kf

i ∂lf
j
)
(ΔXs)

(
ckls− + ckls

)
, (5.1.5)

and its F -conditional law does not depend on the choice of the weakly exhausting
sequence Tn. If further the processes X and σ have no common jumps, the process
V (f,X) is F -conditionally Gaussian.

Proof As in Proposition 4.1.4, writing that (5.1.4) “defines” a process means that
for all t the series converge in probability.

For the first claim, the only thing we have to do is to show that (5.1.5) is nothing
else than (4.1.7) for a suitable process Vt and suitable random variables Un. We
take r = 2d ′ and Uin =√κn Φin− if 1≤ i ≤ d ′ and Uin =

√
1− κn Φd ′+in+ if d ′ + 1≤

i ≤ r . The Un’s are i.i.d. centered with covariance μij2 = 1
2 when i = j and μij2 = 0

otherwise. Next, we take

V
ij
s =

{∑d
k=1 ∂kf

i(ΔXs)σ
kj
s− if 1≤ j ≤ d ′

∑d
k=1 ∂kf

i(ΔXs)σ
k,j−d ′
s if d ′ + 1≤ j ≤ r.

The hypothesis on f implies ‖Vs‖ ≤K‖ΔXs‖(‖σs−‖+‖σs‖) as soon as ‖ΔXs‖ ≤
1. Since sups≤t ‖σs‖<∞ for all t by (H), and

∑
s≤t ‖ΔXs‖2 <∞, we clearly have

that
∑
s≤t ‖Vs‖2 <∞ for all t , which is the condition (4.1.10) of Proposition 4.1.4.

Since (5.1.4) is of the form
∑
n:Tn≤t VTnUTn , the result is proved, upon observing

that because c= σσ�, (5.1.5) amounts to (4.1.11).
We now prove the final claim, assuming that X and σ have no common jump.

This means that σTn = σTn− on the set {ΔXTn �= 0}, for all n. In this case Rn =
σTnU

′
n on the same set, where U ′n =√κn Ψn−+

√
1− κn Ψn+ has obviously the law

N (0, Id ′). Moreover if V ′s = (V ijs )1≤i≤q,1≤j≤d ′ we also have VTnUn = V ′TnU ′n, and

of course
∑
s≤t ‖V ′s‖2 <∞. Then the claim follows from (a) of Proposition 4.1.4. �

We are now ready to state the main result:

Theorem 5.1.2 (CLT without Normalization) Assume (H), and let f be a C2 func-
tion from R

d into R
q , with f (0)= 0 and ∂if (0)= 0 and ∂2

ij f (x)= o(‖x‖) for all
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i, j = 1, . . . , d as x→ 0. Then the processes

V
n
(f,X)t = 1√

Δn

(
V n(f,X)t − f � μΔn[t/Δn]

)
(5.1.6)

converge stably in law to V (f,X), as defined by (5.1.4), and for each fixed t we also
have

1√
Δn

(
V n(f,X)t − f � μt

) L-s−→ V (f,X)t . (5.1.7)

(stable convergence in law of q-dimensional variables). Moreover, if X(n)t =
XΔn[t/Δn] is the discretized version of the process X we also have the stable conver-

gence in law (X(n),V
n
(f,X))

L-s=⇒ (X,V (f,X)) for the Skorokhod topology.

When f (x) = ‖x‖p , our assumption on f is satisfied if and only if p > 3. The

really new result here is V
n
(f,X)

L-s=⇒ V (f,X), whereas we already know that

X(n)
Sk−→ X pathwise. The joint convergence of (X(n),V

n
(f,X)) is usually not a

trivial consequence of the convergence ofX(n) and V
n
(f,X) separately, but here we

get it almost for free, and it turns out to be necessary for an important application,
the convergence of Euler schemes for stochastic differential equations.

Remark 5.1.3 (Important comment) It would be nice to have the stable convergence
in law of the processes Yn = 1√

Δn
(V n(f,X)− f �μ) to V (f,X), but this is unfor-

tunately not true. Suppose for example that X =W + N , where W is a Brownian
motion and N a standard Poisson process (so d = 1), and let S the first jump time of
N and S−n =Δn[S/Δn] and S+n = S−n +Δn. We have S−n < S < S+n almost surely,
so if f (x)= x4, say, Yn has a jump of size −1/

√
Δn at time S. This rules out the

convergence in law of Yn, and we even have supt≤S |Y ′nt | →∞. By the same to-
ken, the process Y ′n = 1√

Δn
(V nint (f,X)− f � μ) using the interpolated functional

satisfies Y ′n
S+n
− Y ′nS = ((1+WS+n −WS−n )4 − (1+WS −WS−n )4)/

√
Δn (for n large

enough, so the second jump time of N is bigger than S+n ), which does not go to 0,
whereas S+n − S→ 0: again, this rules out the convergence in law of Y ′n.

On the other hand, if t is fixed, the difference f �μt−f �μΔn[t/Δn] involves only
the jumps between Δn[t/Δn] and t , and those are “very small” with a large prob-
ability, in such a way that this difference divided by

√
Δn becomes asymptotically

negligible; so we have the convergence in law of Ynt , as random variables.

Remark 5.1.4 (The intuition behind the limiting process) The process V (f,X)
comes as a sum over all jump times of X, but the idea underlying the form of each
summand is quite simple. To see it, we suppose that q = d = d ′ = 1 and that there is
a single jump forX, say at time T1 = T , and we setX′t =Xt−ΔXT 1{T≤t}. For each
n we have a (random) integer in such that the interval I (n, in)= ((in− 1)Δn, inΔn]
contains T . We see that V

n
(f,X)t is the sum of the variables f (Δni X

′)/
√
Δn for
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all i ≤ [t/Δn], plus the variable

Zn = 1√
Δn

(
f
(
ΔXT +ΔninX′

)− f (ΔninX′
)− f (ΔXT )

)

if t ≥ inΔn. Since X′ is a continuous Itô semimartingale, each Δni X
′ is “of or-

der”
√
Δn and thus f (Δni X

′)/
√
Δn is of order o(Δn) because f (x) = o(|x|3)

as x → 0. The sum of the [t/Δn] summands of this type is thus negligible (this
needs a proof, of course, and this is why we make a rather strong assumption
on the behavior of f near 0). Thus V

n
(f,X)t is close to Zn, which by a Tay-

lor’s expansion is approximately ∂f (ΔXT )ΔninX
′/
√
Δn. It remains to observe that

ΔninX
′/
√
Δn is approximately (σT−(WT −X(in−1)Δn)+ σT (WinΔn −WT ))/

√
Δn.

Moreover κ(n)= (T − (in−1)Δn)/Δn and Ψ (n)− = (WT −X(in−1)Δn)/
√
Δn κ(n)

and Ψ (n)+ = (WinΔn −WT )/
√
Δn(1− κ(n)) are asymptotically independent, con-

verging in law to κ1 and Ψ1− and Ψ1+ (even stably in law, as proved in Theo-
rem 4.3.1). In other words, when t > T the variable V

n
(f,X)t is approximately

∂f (ΔXT )R1, which in our simple case is V (f,X)t .

5.1.2 Proof of the Central Limit Theorem, Without Normalization

The proof of this theorem requires several steps, which basically straighten out the
intuitive argument explained in Remark 5.1.4. We start with a useful observation: the
processes V n(f,X) and V (f,X) satisfy the condition (4.4.2), so we deduce from
the localization Lemma 4.4.9 that it is enough to prove the result when X satisfies
(SH), that is Assumption 4.4.6, recalled below:

Assumption (SH) We have (H), and there are a constant A and a nonnegative func-
tion Γ on E, such that

∥∥bt (ω)
∥∥≤A, ∥∥σt (ω)

∥∥≤A, ∥∥Xt(ω)
∥∥≤A

∥∥δ(ω, t, z)
∥∥≤ Γ (z)≤A,

∫
Γ (z)2λ(dz)≤A. (5.1.8)

Step 1) We set Y
n
(f,X)= (X(n),V n(f,X)), and we use the notation of the previ-

ous Chapter: first, (4.3.1) with Am = {z : Γ (z) > 1/m}, that is, (S(m, j) : j ≥ 1)
are the successive jump times of the Poisson process 1Am\Am−1 ∗μ and (Sp)p≥1 is a
reordering of the double sequence (S(m, j)), and we let Pm denote the set of all in-
dices p such that Sp = S(m′, j) for some j ≥ 1 and some m′ ≤m; second, (4.4.16),
(4.4.20) and (4.4.21), which are

S−(n,p)= (i − 1)Δn, S+(n,p) = iΔn

R−(n,p)= 1√
Δn
(XSp− −X(i−1)Δn)

R+(n,p)= 1√
Δn
(XiΔn −XSp)

⎫
⎪⎬

⎪⎭
if (i − 1)Δn < Sp ≤ iΔn. (5.1.9)
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b(m)t = bt −
∫
Am∩{z:‖δ(t,z)‖≤1} δ(t, z)λ(dz)

X(m)t = X0 +
∫ t

0 b(m)s ds +
∫ t

0 σs dWs + (δ 1Acm) � (p− q)t

X′(m) = X−X(m) = (δ 1Am) � p

⎫
⎪⎪⎬

⎪⎪⎭
(5.1.10)

Ωn(T ,m)= the set of all ω such that each interval [0, T ] ∩ I (n, i)
contains at most one jump of X′(m)(ω), and that∥∥X(m)(ω)t+s −X(m)(ω)t

∥∥≤ 2/m for all t ∈ [0, T ], s ∈ [0,Δn].
(5.1.11)

We also set

R(n,p)=R−(n,p)+R+(n,p) = 1√
Δn

(XS+(n,p) −XS−(n,p) −ΔXSp)

ζ np =
1√
Δn

(
f
(
ΔXSp +

√
ΔnR(n,p)

)− f (ΔXSp)− f
(√
ΔnR(n,p)

))

ζ
n

p =
(
ΔXSp, ζ

n
p

)

Yn(m)t =
∑

p∈Pm:Sp≤Δn[t/Δn]
ζ np , Y

n
(m)t =

∑

p∈Pm:Sp≤Δn[t/Δn]
ζ
n

p.

(5.1.12)
The d first components of Y

n
(m)t are exactly X′(m)(n)t , whereas

V
n
(f,X)t = V n

(
f,X(m)

)
t
+ Yn(m)t ∀t ≤ T , on the set Ωn(T ,m). (5.1.13)

Step 2) With p fixed, the sequence R(n,p) is bounded in probability (use Proposi-
tion 4.4.10). Since f is C2 and f (x)= o(‖x‖3) as x→ 0, the definition of ζ np and a

Taylor expansion of f aroundΔXSp yield that ζ np−
∑d
i=1 ∂if (ΔXSp)R(n,p)

i P−→
0 as n→∞. Therefore, another application of Proposition 4.4.10 yields

(
ζ
n

p

)
p≥1

L-s−→ (ζ p)p≥1, where ζp =
(
ΔXSp,

d∑

i=1

∂if (ΔXSp)R
i
p

)
, (5.1.14)

and where the variables Rp = (Rip)1≤i≤d are as in (5.1.3). Since the set {Sp : p ∈
Pm} ∩ [0, t] is finite for all t , it follows that Y

n
(m)

L-s=⇒ Y (m), where Y (m)t =∑
p∈Pm:Sp≤t ζ p . Note that the first d components of Y(m) equal X′(m), whereas

the last q ones are the process V (f,X′(m)) which is defined in (5.1.4), with X′(m)
instead of X. In other words, we have proved

(
X′(m)(n), Y n(m)

) L-s=⇒ (X′(m),V (f,X′(m))).

On the other hand, we know that X(m)(n)
Sk−→X(m) (pathwise), whereas X(m)

has no jump at the same time as (X′(m),V (f,X′(m))). Therefore a well known
property of the Skorokhod topology allows us to deduce from the above that

(
X(n), Y n(m)

) L-s=⇒ (X,V (f,X′(m))). (5.1.15)
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Step 3) Now we vary m. With our definition of V (f,X′(m)), these processes are
all defined on the same extension. Since V (f,X) − V (f,X′(m)) = V (f,X(m))
is a square-integrable martingale, conditionally on F , we deduce from (5.1.5) and
Doob’s inequality that

Ẽ

(
sup
s≤t
∥∥V (f,X)s − V

(
f,X′(m)

)
s

∥∥2
)

= E

(
Ẽ

(
sup
s≤t
∥∥V
(
f,X(m)

)
s

∥∥2 |F
))

≤ KE

(
∑

s≤t

d∑

i=1

‖∂if ‖2(ΔX(m)s
)(‖cs−‖+ ‖cs‖

)
)
.

Since ct is bounded and the ∂if ’s are bounded on {x : ‖x‖ ≤ 1}, the variable in the
last expectation above is smaller than K

∑
s≤t ‖ΔXs‖21{‖ΔXs‖≤1/m}. Moreover

E

(
∑

s≤t

∥∥ΔX(m)s
∥∥2
)
= E((‖x‖21{‖x‖≤1/m}

)
� νt
)

≤ t
∫

{z:Γ (z)≤1/m}
Γ (z)2λ(dz),

which goes to 0 as m→∞. Therefore

V
(
f,X′(m)

) u.c.p.=⇒ V (f,X). (5.1.16)

Now, by Proposition 2.2.4, and in view of (5.1.13), (5.1.15) and (5.1.16),

and since limn P(Ωn(t,m)) = 1 by (4.4.22), for proving (X(n),V
n
(f,X))

L-s=⇒
(X,V (f,X)) it remains to show that, for all η > 0, we have

lim
m→∞ lim sup

n→∞
P

(
Ωn(t,m)∩

{
sup
s≤t
∥∥V n
(
f,X(m)

)
s

∥∥> η
})
= 0. (5.1.17)

Step 4) Here we prove (5.1.17), and it is enough to do this when f is one-
dimensional. We set

k(x, y)= f (x + y)− f (x)− f (y), g(x, y)= k(x, y)−
d∑

i=1

∂if (x)y
i .

(5.1.18)
Recall (4.4.20) and that f is C2. Applying Itô’s formula to the process X(m)t −
X(m)(i−1)Δn and the function f , we get for t > (i − 1)Δn:

f
(
X(m)t −X(m)(i−1)Δn

)−
∑

(i−1)Δn<s≤t
f
(
ΔX(m)s

)

=A(n,m, i)t +M(n,m, i)t , (5.1.19)
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where M(n,m, i) is a square-integrable martingale with predictable bracket
A′(n,m, i), and

A(n,m, i)t =
∫ t

(i−1)Δn
a(n,m, i)u du, A′(n,m, i)t =

∫ t

(i−1)Δn
a′(n,m, i)u du,

(5.1.20)
and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a(n,m, i)t =∑d
j=1 ∂jf

(
X(m)t −X(m)(i−1)Δn

)
b(m)

j
t

+ 1
2

∑d
j,l=1 ∂

2
j lf
(
X(m)t −X(m)(i−1)Δn

)
c
jl
t

+ ∫
Am
g
(
X(m)t −X(m)(i−1)Δn, δ(t, z)

)
λ(dz)

a′(n,m, i)t =∑d
j,l=1(∂jf ∂lf )

(
X(m)t −X(m)(i−1)Δn

)
c
jl
t

+ ∫
Am
k
(
X(m)t −X(m)(i−1)Δn, δ(t, z)

)2
λ(dz).

Now we set T (n,m, i)= inf(s > (i − 1)Δn : ‖X(m)s −X(m)(i−1)Δn‖> 2/m).
On the set Ωn(t,m) we have by construction T (n,m, i) > iΔn for all i ≤ [t/Δn].
Therefore in view of (5.1.19), and on this set, the variable |V n(f,X(m))t | is smaller
than:

1√
Δn

[t/Δn]∑

i=1

∣∣A(n,m, i)(iΔn)∧T (n,m,i)
∣∣+ 1√

Δn

∣∣∣∣∣

[t/Δn]∑

i=1

M(n,m, i)(iΔn)∧T (n,m,i)

∣∣∣∣∣.

Henceforth in order to get (5.1.17), it is enough to prove the following:

lim
m→∞ lim sup

n

1√
Δn

E

([t/Δn]∑

i=1

∣∣A(n,m, i)(iΔn)∧T (n,m,i)
∣∣
)
= 0,

lim
m→∞ lim sup

n

1

Δn
E

([t/Δn]∑

i=1

A′(n,m, i)(iΔn)∧T (n,m,i)

)
= 0.

(5.1.21)

Recall that f (0)= 0 and ∂if (0)= 0 and ∂2
ij f (x)= o(‖x‖) as x→ 0, so

‖x‖ ≤ 3

m
⇒ ∣∣f (x)∣∣≤ αm ‖x‖3,

∣∣∂if (x)
∣∣≤ αm ‖x‖2,

∣∣∂2
ij f (x)

∣∣≤ αm ‖x‖

for some αm going to 0 as m→∞. By singling out the two cases ‖y‖ ≤ ‖x‖ and
‖x‖< ‖y‖ and by Taylor’s formula, one deduces

‖x‖ ≤ 3

m
, ‖y‖ ≤ 1

m
⇒ ∣∣k(x, y)∣∣≤Kαm‖x‖‖y‖,

∣∣g(x, y)
∣∣≤Kαm‖x‖‖y‖2.

(5.1.22)

We have ‖X(m)s∧T (n,m,i) −X(m)(i−1)Δn‖ ≤ 3/m for s ≥ iΔn, because the jumps
of X(m) are smaller than 1/m. Moreover the definition of b(m) in (4.4.20) allows
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us to deduce, by the Markov inequality and ‖δ(t, z)‖ ≤ Γ (z), that ‖b(m)t‖ ≤Km.
Then in view of (SH) and (5.1.22) we obtain for (i − 1)Δn ≤ t ≤ T (n,m, i) (then
‖X(m)t −X(m)(i−1)Δn‖ ≤ 3/m):

∣∣a(n,m, i)t
∣∣≤Kαm

(∥∥X(m)t−X(m)(i−1)Δn

∥∥+m∥∥X(m)t−X(m)(i−1)Δn

∥∥2)

a′(n,m, i)t ≤Kα2
m

∥∥X(m)t −X(m)(i−1)Δn

∥∥2.
(5.1.23)

Now, applying (2.1.44) to X(m) when p = 2, plus the Cauchy-Schwarz inequality
when p = 1, and using again ‖b(m)‖ ≤ Km, we deduce that for p = 1,2 and s ∈
[0,1],

E
(∥∥X(m)t+s −X(m)t

∥∥p) ≤ K
(
s(p/2)∧1 +mpsp). (5.1.24)

This gives that the two “lim sup” in (5.1.21) are smaller than Ktαm and Ktα2
m re-

spectively. Hence (5.1.21) holds, and the last claim of the theorem (which obviously
implies the first one) is proved.

Step 5) It remains to prove the second claim, that is (5.1.7). Since t is not a fixed
time of discontinuity of the process V (f,X), we deduce from the first claim that

V
n
(f,X)t

L-s−→ V (f,X)t for any given t . Therefore, (5.1.7) will follow if we can
prove that

Un := 1√
Δn

|f � μΔn[t/Δn] − f � μt | P−→ 0. (5.1.25)

Let Ωn be the set on which there is no jump of X bigger than 1 between the times
t−Δn and t . We haveΩn ↑Ω as n→∞, so it is enough to prove that E(Un1Ωn)→
0. The properties of f yield that |f (x)| ≤K‖x‖2, as soon as ‖x‖ ≤ 1, hence Un ≤
K√
Δn

∑
t−Δn<s≤t ‖ΔXs‖2 on the set Ωn. Therefore

E(Un1Ωn) ≤
K√
Δn

E

(
∑

t−Δn<s≤t
‖ΔXs‖2

)

= K√
Δn

E

(∫ t

t−Δn
ds

∫ ∥∥δ(s, z)
∥∥2λ(dz)

)
,

which is smaller than KA
√
Δn by (SH), and the result follows.

5.2 The Central Limit Theorem for Normalized Functionals:
Centering with Conditional Expectations

Now we turn to the processes V ′n(f,X)t =Δn∑[t/Δn]i=1 f (Δni X/
√
Δn ), for which

the LLN has been given in Theorem 3.4.1 under appropriate assumptions. The as-
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sociated CLT should be a limit theorem for the processes

V
′n
(f,X)t = 1√

Δn

(
V ′n(f,X)t −

∫ t

0
ρcs (f ) ds

)
. (5.2.1)

Theorem 4.2.1 gives a CLT for the processes U
n
(f ), defined by (4.2.2) and

which look similar to the V
′n
(f,X)’s. However, these processes differ in two main

ways: the first – obvious – one is that U
n
(f ) involves the summands f (βni ) =

f (σ(i−1)ΔnΔ
n
i W/

√
Δn ) instead of f (Δni X/

√
Δn ). The second difference is more

subtle: the centering in U
n
(f ) is not the integral

∫ t
0 ρcs (f ) ds, but the sum of the

terms Δn ρc(i−1)Δn
(f ), a Riemann sum for the previous integral, and at the same

time it makes each summand a martingale difference, a property which was key for
obtaining the CLT.

Henceforth there are two kinds of CLTs for V ′n(f,X). A first kind concerns
the case where the centering is the conditional expectation of f (Δni X/

√
Δn ), and

this type of CLT requires minimal assumptions on b and σ . The other kind is
the CLT for V

′n
(f,X) itself, and it requires stronger assumptions to ensure that

E(f (Δni X/
√
n) | F(i−1)Δn) is close enough to ρc(i−1)Δn

(f ), and also that the Rie-
mann sums hinted at above converge to the integral at a rate faster than 1/

√
Δn.

Although the second kind of CLT is more natural in some sense, and much more
useful for applications, it needs more assumptions and is more difficult to prove: so
we begin with the first kind of CLT, to which this section is devoted.

5.2.1 Statement of the Results

Below, X is again a d-dimensional Itô semimartingale, which we write in its Grige-
lionis form (5.0.1). We also use its Lévy measure Ft and the process c= σσ�.

In order to “center” each increment f (Δni X/
√
Δn ) by its conditional expec-

tation, we need it to be integrable. This is the case in some situations, when f
is bounded of course, or when it has polynomial growth and the coefficients in
(5.0.1) are bounded, but in general this is not the case. Hence we need to truncate
those increments before taking their conditional expectations. For this, and since
the test function f = (f j )1≤j≤q may be multi-dimensional, we define a component
by component truncation based on the functions ψ ′A(x) = ψ ′(x/A) of (3.3.16), in
which ψ ′ is a C∞ function on R+ with 1[0,1/2](x)≤ψ ′(x)≤ 1[0,1](x):

fn(x)
j = f (x)j ψ ′1/√Δn

(
f (x)j

)
. (5.2.2)

Then fn is bounded continuous, whatever the continuous function f , and fn(x)j =
f (x)j when |f (x)j | ≤ 1/

√
Δn. We consider the following two processes:
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Yn(f,X)t =
√
Δn

[t/Δn]∑

i=1

(
f
(
Δni X/

√
Δn
)−E
(
f
(
Δni X/

√
Δn
) |F(i−1)Δn

))

Y ′n(f,X)t=
√
Δn

[t/Δn]∑

i=1

(
f
(
Δni X/

√
Δn
)−E
(
fn
(
Δni X/

√
Δn
)|F(i−1)Δn

))
.

(5.2.3)
The first process is well defined when the f (Δni X/

√
Δn )’s are integrable, the sec-

ond one is always well defined.
Next, in order to describe the limit we need some notation. If α is a d×d ′ matrix

and a = αα∗ and f,g are Borel function on R
d with polynomial growth and U is

an N (0, Id ′) distributed variable, we set

γ̂α(f ) = E
(
f (αU)U�

)
(a d ′-dimensional row vector)

γ α(f, g) = E
((
f (αU)− γ̂α(f )U

)(
g(αU)− γ̂α(g)U

))− ρa(f )ρa(g).
(5.2.4)

When f and g are globally even, i.e. f (x) = f (−x) and g(x) = g(−x) for all x,
the following is obvious:

γ̂α(f ) = γ̂α(g) = 0, γ α(f, g) = ρa(fg)− ρa(f )ρa(g). (5.2.5)

For a q-dimensional function (f j )1≤j≤q , the matrix (γ α(f
j , f k))1≤j,k≤q is sym-

metric nonnegative, and α �→ γ̂α(f ) and α �→ γ α(f, g) are measurable, and even
continuous when f and g are continuous.

Remark 5.2.1 These are notation used in (4.2.5) when G(x,y)= g(y) and the pro-
cess Y does not enter the picture and Φ in (4.2.3) is Φ(y) = y(1), so the integers
q and q ′ in (4.2.5) are here q = d and q ′ = d ′. Then we have γΦα (f )= ρa(f ) and
γ̂ Φα (f )= γ̂α(f ) and γΦα (f,g)= γ α(f, g).

We can now state the result. It is remarkable that the assumptions in the following
are exactly the same as in the LLN (Theorem 3.4.1), except for the rate at which f
can grow at infinity, whose exponent is exactly divided by 2.

Theorem 5.2.2 Let X be a d-dimensional Itô semimartingale. Let f be a continu-
ous q-dimensional function which satisfies one of the following three conditions:

(a) ‖f (x)‖ = o(‖x‖) as ‖x‖→∞,
(b) ‖f (x)‖ = O(‖x‖) as ‖x‖→∞, and X is continuous,
(c) ‖f (x)‖ = O(‖x‖p) as ‖x‖→∞ for some p > 1, and X is continuous and

satisfies
∫ t

0
‖bs‖2p/(p+1) ds < ∞,

∫ t

0
‖cs‖p ds < ∞. (5.2.6)
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Then:
(i) The sequence of q-dimensional processes Y ′n(f,X) converges stably in law

to a q-dimensional process of the form Y(f,X)=U(f,X)+U ′(f,X), where

U(f,X)
j
t =

r∑

k=1

∫ t

0
γ̂σs
(
f j
)k
dWk

s (5.2.7)

and U
′
(f,X), defined on a very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of the

space (Ω,F , (Ft )t≥0,P), is continuous and conditionally on F is a centered Gaus-
sian process with independent increments satisfying

Ẽ
(
U
′
(f,X)

j
t U

′
(f,X)kt |F

) =
∫ t

0
γ σs

(
f j , f k

)
ds. (5.2.8)

When further the function f is globally even, we have U(f,X) = 0, and
γ σs (f

j , f k)= ρcs (f jf k)− ρcs (f j )ρcs (f k).
(ii) The sequence Yn(f,X) also converges stably in law to Y (f,X) when the

function f is bounded, or in case (a) when

t <∞ ⇒ E

(∫ t

0

(
‖bs‖ + ‖cs‖ +

∫ (‖x‖2 ∧ ‖x‖)Ft(dx)
)
ds

)
< ∞,

(5.2.9)
or in cases (b) and (c) when b and c are bounded.

(iii) Conversely, and with the notation gp(x) = ‖x‖p , if either for some p > 1
the sequence of processes Y ′n(gp,X) is tight, or the sequence Y ′n(g1,X) converges
in law to a continuous process and the three processes b and σ and

∫
(‖x‖2 ∧

‖x‖)Ft (dx) are bounded, then necessarily the process X is continuous.

The conditions on f and X in (ii) ensure the integrability of all the variables
f (Δni X/

√
Δn ), hence the conditional expectations in the definition of Yn(f,X) do

exist. Again, (iii) is not a genuine converse to (i), but it indicates that when X is
discontinuous one cannot substantially weaken the growth assumption on the test
function f if one wants the convergence of Y ′n(f,X) towards Y(f,X).

Remark 5.2.3 The second property in (5.2.6) is exactly the condition needed for
the process Y (f,X) to be well defined. Indeed, by (5.2.4) we have ‖γ̂α(f j )‖ ≤
K(1+‖α‖p) and |γ α(f j , f k)| ≤K(1+‖α‖2p) if f is as in the theorem. Therefore
this second property implies that the stochastic integral (5.2.7) makes sense and the
integral (5.2.8) is finite.

Conversely, considering the one-dimensional case d = d ′ = q = 1 for example
and the (even) function f (x)= |x|p , we see that the right side of (5.2.8) is exactly
(m2p −m2

p)
∫ t

0 c
p
s ds, so the second property (5.2.6) is necessary for the theorem to

hold for this f .
As to the first property (5.2.6), which is the same as the first part of (3.4.6), with

2p instead of p, and exactly as for Theorem 3.4.1, we do not know whether it is
necessary.
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Remark 5.2.4 The truncation in (5.2.2) could be made differently, for example
one could truncate globally as fn(x)= f (x)ψ ′1/√Δn (‖f (x)‖). The results and the
proofs would be similar.

5.2.2 The Proof

Below, p is taken to be p = 1 in cases (a) and (b), and it is the number occurring in
the statement of case (c) otherwise. Recall that X is continuous, except in case (a).
As in (3.4.12), for any r ≥ 2 we use the notation:

A(r)Xt = A(r)t =
∫ t

0

(
‖bs‖2r/(r+2)) + ‖cs‖r/2 +

∫ (‖x‖2 ∧ 1
)
Fs(dx)

)
ds.

Here, A(2) is always finite-valued, and A(2p) is finite if and only if (5.2.6) holds.
The proof of (i) and (ii) basically follows the same route as for Theorem 3.4.1.

However the three steps of that proof are not so well identified here: for example, the
localization procedure is not as straightforward as in Lemma 3.4.5, mainly because
the localization does not “commute” with the conditional expectations. Nevertheless
we heavily use the following additional conditions, similar to (3.4.14):

sup
ω

(
A(2p)

)
∞ < ∞, sup

(ω,t)

‖ΔXt(ω)‖ < ∞. (5.2.10)

So we postpone the localization procedure, and start proving the results under
(5.2.10), and when f is bounded: in this case fn = f for n large enough, so
Y ′n(f,X)= Yn(f,X).

Before getting started, we recall some notation and properties of the previous two
chapters. First, under (5.2.10) we have the decomposition X =X′ +X′′, where

X′t =X0 +
∫ t

0
b′′s ds +

∫ t

0
σs dWs, X′′ = δ � (p− q),

and b′′t = bt +
∫
{‖δ(t,z)‖>1} δ(t, z)λ(dz). With ηnt = supi≤[t/Δn Δ

n
i A(2), the esti-

mates (3.4.17), (3.4.18) and (3.4.22) read as

E
(∥∥Δni X′

∥∥2) ≤ E
(
Δni A(2)+

(
Δni A(2)

)2)

E
(∥∥Δni X′/

√
Δn − βni

∥∥2)

≤ K
Δn

E
(
ηnt Δ

n
i A(2)+

∫ iΔn
(i−1)Δn

‖σs − σΔn[s/Δn]‖2 ds
)

E

(( ‖Δni X′′‖√
Δn

∧
1
)2)

≤ K
Δn

E
(
Δ

1/4
n Δni A(2)+

∫ iΔn
(i−1)δn

ds
∫
{‖x‖≤Δ1/4

n } ‖x‖2Fs(dx)
)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2.11)
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Next, we set

βni =
1√
Δn

σ(i−1)ΔnΔ
n
i W, U

n
(f )t =

√
Δn

[t/Δn]∑

i=1

(
f
(
βni
)− ρc(i−1)Δn

(f )
)
.

(5.2.12)

Lemma 5.2.5 If (5.2.10) holds for p = 1 and σ is bounded continuous and f is

bounded and uniformly continuous, we have Yn(f,X)
L-s=⇒ Y(f,X).

Proof With G as in Remark 5.2.1, the processes U
n
(f ) et Y (f,X) are exactly

U
n
(G) and U(G), as defined by (4.2.6) and (4.2.5), provided we take θ = σ and

un = Δn. Thus in view of Theorem 4.2.1, it suffices to prove that Yn(f,X) −
U
n
(f )

u.c.p.=⇒ 0. We have Yn(f,X)t − Un(f )t =∑[t/Δn]i=1 (ζ ni − E(ζ ni | F(i−1)Δn)),
where

ζ ni =
√
Δn
(
f
(
Δni X/

√
Δn
)− f (βni

))
.

Hence by virtue of Lemma 2.2.11, case (a), it is enough to show that

ant = E

([t/Δn]∑

i=1

∥∥ζ ni
∥∥2
)
→ 0. (5.2.13)

Our assumptions on f yield a constant K and a positive function θ satisfying
θ(ε)→ 0 as ε→ 0, such that for all ε > 0 and x, y, z ∈R

d we have:

∥∥f (x + y + z)− f (x)∥∥2 ≤ θ(ε)+K1{|y+z‖>ε} ≤ θ(ε)+ K(‖y‖
2 ∧ 1)

ε2
+ K‖z‖

2

ε2
.

(5.2.14)

We apply this with x = βni and z=Δni X′/
√
Δn− βni and y =Δni X′′/

√
Δn and use

the estimates (5.2.11). We deduce that, similar with (3.4.23), and since A(2)∞ ≤K :

ant ≤ tθ(ε)+
K

ε2
E

(
ηnt +Δ1/4

n +
∫ t

0

(
‖σs − σΔn[s/Δn]‖2

+
∫

{‖x‖≤Δ1/4
n }
‖x‖2Fs(dx)

)
ds

)
.

The expectation above goes to 0 by, because all three sequences of variables ηnt ,∫ t
0 ‖σs−σΔn[s/Δn]‖2 ds and

∫ t
0 ds
∫
{‖x‖≤Δ1/4

n } ‖x‖2Fs(dx) go to 0 as n→∞ and are
uniformly bounded (use again A(2)∞ ≤K and also ‖σt‖ ≤K , and the dominated
convergence theorem). Since θ(ε)→ as ε→ 0, (5.2.13) follows. �

Lemma 5.2.6 If (5.2.10) holds for p = 1 and f is bounded uniformly continuous,

we have Yn(f,X)
L-s=⇒ Y(f,X).
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Proof 1) As in Lemma 3.4.8, there is a sequence σ(m) of adapted bounded con-
tinuous processes such that am = E(

∫∞
0 ‖σ(m)s − σs‖2 ds)→ 0. We associate the

semimartingales

X(m)t = X0 +
∫ t

0
b′′s ds +

∫ t

0
σ(m)s dWs + δ � (p− q)t .

The previous lemma yields Yn(f,X(m))
L-s=⇒ Y (f,X(m)) as n→∞, for each m.

Hence, by Proposition 2.2.4, it suffices to prove the following two properties, for all
t > 0, η > 0 for the first one:

lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∥∥Yn(f,X)s − Yn

(
f,X(m)

)
s

∥∥> η
)
= 0, (5.2.15)

Y
(
f,X(m)

) L-s=⇒ Y (f,X) as m→∞. (5.2.16)

(Recall (2.2.8) for the definition of the stable convergence for processes which are
defined on extensions of the original space.)

2) We set ζ(m)ni =
√
Δn(f (Δ

n
i X/

√
Δn )− f (Δni X(m)/

√
Δn )), so

Yn(f,X)t − Yn
(
f,X(m)

)
t
=

[t/Δn]∑

i=1

(
ζ(m)ni −E

(
ζ(m)ni |F(i−1)Δn

))
. (5.2.17)

Therefore by Doob’s inequality,

a(m)nt = E

(
sup
s≤t
∥∥Yn(f,X)s − Yn

(
f,X(m)

)
s

∥∥2
)
≤ K

[t/Δn]∑

i=1

E
(∥∥ζ(m)ni

∥∥2).

Exactly as in the previous lemma, upon using (5.2.14) with x = Δni X/
√
Δn and

z=Δni (X(m)−X)/
√
Δn and y = 0, we obtain

a(m)nt ≤ Ktθ(ε)+ K
ε2

E

(∫ t

0

∥∥σs − σ(m)s
∥∥2 ds
)
≤ Ktθ(ε)+ Kam

ε2
.

Then supn a(m)
n
t → 0 as m→∞ because am→ 0 and θ(ε)→ 0 as ε→ 0, and

(5.2.15) follows.

3) It remains to prove (5.2.16). First, α �→ γ̂α(f ) is continuous and bounded by
the same bound as f , so E(

∫ t
0 ‖γ̂σ (m)s (f )− γ̂σs (f )‖2 ds)→ 0 by am→ 0 and the

dominated convergence theorem. Hence U(f,X(m))
u.c.p.=⇒ U(f,X), and by (2.2.5)

it is enough to show that

U
′(
f,X(m)

) L-s=⇒ U
′
(f,X). (5.2.18)
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Recall that the processes U
′
(f,X(m)) and U

′
(f,X) are possibly defined on differ-

ent extensions of our original space, but conditionally on F they are centered Gaus-
sian with independent increments and covariances given by (5.2.8), with σ(m)s in
place of σs for the former. For (5.2.18) it is clearly enough to show that the F -
conditional laws of the processes U

′
(f,X(m)) weakly converge, in P-probability,

to the F -conditional law of the process U
′
(f,X), and for this it is even enough to

prove the convergence in probability of the covariances, conditional on F , by a well
known property of continuous Gaussian processes with independent increments.

Now, α �→ γ α(f
j , f k) is continuous and bounded. Therefore, the same argument

as above shows that the right side of (5.2.8) for σ(m)s converges in probability, and
even in L

1(P), to the same with σs , and (5.2.18) follows. �

The next lemma is what replaces the localization Lemma 3.4.5.

Lemma 5.2.7 We have Yn(f,X)
L-s=⇒ Y (f,X) if f is bounded and uniformly con-

tinuous.

Proof We no longer assume (5.2.10). However, the stopping times Tm = inf(t :
A(2)t ≥ m or ‖ΔXs‖ > m) increase to infinity, and the processes X(m) defined
by

X(m)t = X0 +
∫ t∧Tm

0
bs ds +

∫ t∧Tm

0
σs dWs

+ (δ1{‖δ‖≤1}) � (p− q)t∧Tm + (δ1{1<‖δ‖≤m}) � pt∧Tm
(warning: these are not the same as in the proof of the previous lemma) satisfy

(5.2.10). Thus Yn(f,X(m))
L-s=⇒ Y (f,X(m)) for each fixed m, and exactly as in the

previous proof it then suffices to prove (5.2.15) and (5.2.16).
For (5.2.16) the argument is easy: in view of the special structure of X(m), one

may realize the limit Y (f,X(m)) on the same extension as Y (f,X), simply by
stopping, that is Y (f,X(m))t = Y(f,X)t∧Tm , and then (5.2.16) is obvious because
Tm→∞.

For (5.2.15) things are a bit more complicated. We use the same notation ζ(m)ni
as in the previous proof, and observe that ‖ζ(m)ni ‖ ≤K

√
Δn because f is bounded,

and also ζ(m)ni = 0 if Tm > iΔn. Therefore on the set {Tm > t}we have for all s ≤ t :

∥∥Yn
(
f,X(m)

)
s
− Yn(f,X)s

∥∥ =
∥∥∥∥∥

[s/Δn]∑

i=1

E
(
ζ(m)ni 1{Tm≤iΔn} |F(i−1)Δn

)
∥∥∥∥∥

≤ K√Δn
[t/Δn]∑

i=1

P(Tm ≤ iΔn) |F(i−1)Δn)
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Therefore, we deduce that for all η > 0,

P

(
sup
s≤t
∥∥Yn(f,X)s − Yn

(
f,X(m)

)
s

∥∥> η
)

≤ P(Tm ≤ t)+ K
√
Δn

η

[t/Δn]∑

i=1

E
(
P(Tm ≤ iΔn) |F(i−1)Δn

)
1{Tm>t})

≤ P(Tm ≤ t)+ K
√
Δn

η

[t/Δn]∑

i=1

E
(
P
(
(i − 1)Δn < Tm ≤ iΔn

) |F(i−1)Δn

)

≤ P(Tm ≤ t)+ K
√
Δn

η
.

Since Tm→∞ as m→∞, (5.2.15) follows. �

Lemma 5.2.8 Under the assumptions of Theorem 5.2.2, and recalling the functions

fn of (5.2.2), we have Yn(fn,X)
L-s=⇒ Y (f,X).

Proof For each m the function fm is bounded and uniformly continuous, so

the previous lemma yields Yn(fm,X)
L-s=⇒ Y(fm,X) as n→∞. With Y(m)nt =

sups≤t ‖Yn(fm,X)s − Yn(fn,X)s‖, it is thus enough to show, as in Lemma 5.2.6,
the following two properties:

η, t > 0 ⇒ lim
m→∞ lim sup

n→∞
P
(
Y(m)nt > η

) = 0, (5.2.19)

Y (fm,X)
L-s=⇒ Y (f,X) as m→∞. (5.2.20)

1) Let us first prove (5.2.19). Observe that Yn(fm,X)t − Yn(fn,X)t is equal
to the right side of (5.2.17), if we take ζ(m)ni =

√
Δn (fm − fn)(Δni X/

√
Δn).

Hence Doob’s inequality yields that, for any stopping time T , and with the nota-
tion D(m)nt =

∑[t/Δn]
i=1 ‖ζ(m)ni ‖2,

E
((
Y(m)nT

)2) ≤ K E
(
D(m)nT

)
.

In other words, the process (Z(m)n)2 is Lenglart-dominated (see Sect. 2.1.7) by
the increasing adapted process D(m)n, and the second part of (2.1.49) yields for all
η, ε, t > 0:

P
(
Y(m)nt > η

) ≤ 1

η2

(
ε+E

(
sup
s≤t
ΔD(m)ns

))
+ P
(
D(m)nt ≥ ε

)
. (5.2.21)

Now we deduce from (5.2.2) that ‖fm − fn‖2 ≤ hm for all n > m, where hm
is some continuous function on R

d , satisfying hm(x)≤K‖x‖2p1{‖x‖>am} for some
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sequence am going to ∞. Then clearly, with the notation (3.4.2), we have

D(m)n ≤ V ′n(hm,X).

The assumptions of Theorem 3.4.1 are satisfied by X and hm, with 2p in place of

p, so V ′n(hm,X)
u.c.p.=⇒ H(m)t =

∫ t
0 ρcs (hm)ds. Moreover hm→ 0 pointwise to 0

as m→∞ and hm(x) ≤ K‖x‖2p , so by the dominated convergence theorem (use

also (5.2.6) here) we have H(m)
u.c.p.=⇒ 0 as m→∞. Then for any θ, ε > 0 there are

integers m0 and n0(m)≥m such that

m≥m0, n≥ n0(m) ⇒ P
(
D(m)nt ≥ ε

) ≤ θ.

Taking (5.2.2) into consideration, we see that ‖fn(x)‖ ≤K/√Δn for all x ∈R
d ,

hence ‖ζ(m)ni ‖ ≤K , and the jumps of D(m)n are bounded by a constant K . Hence
E(sups≤t ΔD(m)ns )≤ ε+KP(D(m)nt ≥ ε). Plugging these in (5.2.21) yields

m≥m0, n≥ n0(m) ⇒ P
(
Y(m)nt > η

) ≤ 2ε+Kθ
η2

+ θ,

and since ε and θ are arbitrary, (5.2.19) follows.

2) Next we prove (5.2.20). We have fm→ f pointwise, and ‖fm(x)‖ ≤K(1+
‖x‖p). Then γ̂σs (fm)→ γ̂σs (f ) and γ σs (f

j
m,f

k
m)→ γ σs (f

j , f k) pointwise, to-

gether with the estimates ‖γ̂σs (fm)‖ ≤K(1+‖cs‖p/2) and ‖γ σs (f jm,f k)‖ ≤K(1+‖cs‖p). Hence the dominated convergence theorem and the second part of (5.2.6)
yield
∫ t

0

∥∥γ̂σs (fm)− γ̂σs (f )
∥∥2 ds → 0,

∫ t

0
γ σs

(
f
j
m,f

k
m

)
ds →

∫ t

0
γ σs

(
f j , f k

)
ds.

The first property above implies that U
′′
(fm,X)

u.c.p.=⇒ U
′′
(f,X), and at this point we

conclude (5.2.20) exactly as in Step 3 of the proof of Lemma 5.2.6. �

Proof of Theorem 5.2.2 (i) The last claims concerning even functions follow from

(5.2.5). In order to prove Y ′n(f,X) L-s=⇒ Y (f,X), by Lemma 5.2.8 it is enough to

show that Y ′n(f,X)− Yn(fn,X) u.c.p.=⇒ 0. To check this, we set

ζ ni =
√
Δn
(
f
(
Δni X/

√
Δn
)− fn

(
Δni X/

√
Δn
))
,

and we observe that Y ′n(f,X)t −Yn(fn,X)t =∑[t/Δn]i=1 ζ ni . Recalling the definition
(5.2.2) of fn, we see that by virtue of the growth assumption on f the difference
f (x) − fn(x) vanishes when ‖x‖ < 1/KΔ1/2p

n for some constant K and, if it is
not 0, its modulus is smaller than ‖f (x)‖, which itself is bigger than 1/2

√
Δn.

Therefore for A> 0 we have, for n large enough:

∥∥f (x)− fn(x)
∥∥ ≤ K

√
Δn
∥∥f (x)

∥∥2ψA(x).
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Then

sup
s≤t
∥∥Y ′n(f,X)s − Yn(fn,X)s

∥∥ ≤ K V ′n
(‖f ‖2ψA,X

)
. (5.2.22)

Once more, the assumptions of Theorem 3.4.1 are met by X and the func-

tion ‖f ‖2ψ ′A, with again 2p instead of p. Then V ′n(‖f ‖2ψA,X)t
u.c.p.=⇒ H(A)t =∫ t

0 ρcs (‖f ‖ψA)ds, whereas H(A)
u.c.p.=⇒ 0 as A→∞ because ‖f ‖2ψA converges

pointwise to ‖f ‖ and is smaller than K‖x‖2p . Combining this with (5.2.22) and

letting first n→∞ and then A→∞, we conclude Y ′n(f,X)− Yn(fn,X) u.c.p.=⇒ 0.

(ii) As said before, only the unbounded case for f needs to be proved, and prov-

ing Yn(f,X)− Y ′n(f,X) u.c.p.=⇒ 0 is enough. We have

Y ′n(f,X)t − Yn(f,X)t =
[t/Δn]∑

i=1

E
(
ζ ni |F(i−1)Δn

)
. (5.2.23)

As in (i) above, the assumption on f yields, for some sequence εn→ 0 and con-
stant K :

∥∥f (x)− fn(x)
∥∥ ≤
{
εn‖x‖1{‖x‖>1/K

√
Δn} in case (a)

K‖x‖p1{‖x‖>1/KΔ1/2p
n } in cases (b), (c)

Then we use the inequality ‖x + y‖p1{‖x+y||>a} ≤ K(‖x‖p1{‖x||>a/2} +
‖y‖p1{‖y||>a/2}), and we decompose X − X0 into the sum of the four terms B ,
Xc, Z = (δ1{‖δ‖≤1}) � (p− q) and Z′ = (δ1{‖δ‖>1}) � p, to get

∥∥ζ ni
∥∥ ≤
{
εnK(‖Δni B‖ + ‖Δni Xc‖2 + ‖Δni Z‖2 + ‖Δni Z′‖) in case (a)

KΔ
1+1/2p
n ‖Δni X/

√
Δn‖p+1 in cases (b), (c).

In case (a) we deduce from (2.1.33) and (2.1.40) with p = 1 on the one hand, from
(2.1.34) and (2.1.36) with p = 2 on the other hand, that

[t/Δn]∑

i=1

E
(∥∥ζ ni
∥∥)≤ εnKE

(∫ t

0

(
‖bs‖+‖cs‖+

∫ (∥∥δ(s, z)
∥∥2∧∥∥δ(s, z)∥∥)λ(dz)

)
ds

)

and the expectation on the right is exactly the one in (5.2.9). In view of (5.2.23), the

condition (5.2.9) obviously implies that Yn(f,X)− Y ′n(f,X) u.c.p.=⇒ 0.
In cases (b) and (c), (2.1.44) gives E(‖ζ ni ‖)≤KΔ1+1/2p

n , and the result follows
as above.

(iii) By construction (gp)n ≤K/√Δn, and when further p = 1 and the processes
b and c and

∫
(‖x‖2 ∧ ‖x‖)Ft (dx) are bounded we can apply (2.1.33), (2.1.34),

(2.1.36) and (2.1.40) to get E((g1)n(Δ
n
i X/

√
Δn ) |F(i−1)Δn)≤K .
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Suppose now that X has a jump at T , of absolute size Z = ‖ΔXT ‖ > 0 on the
set {T <∞}. The jump of Y ′n(f,X) at time Δn[T/Δn] is equal to

Zn =
√
Δn
(
gp
(
Δni X/

√
Δn
)−E
(
gp
(
Δni X/

√
Δn
) |F(i−1)Δn

))
, (5.2.24)

taken at i = [T/Δn]. We then deduce from the previous estimates that Zn is approx-
imately equal to Zp/Δp/2n (in all cases the conditional expectation in (5.2.24) is al-
ways asymptotically negligible in front of the first term). It follows that when p > 1
the sequence of processes Y ′n(gp,X) cannot be tight, and that when p = 1 and
when it is tight, any of its limiting processes has a jump. This finishes the proof. �

5.3 The Central Limit Theorem for the Processes V
′n

(f,X)

Now we turn to the processes V
′n
(f,X) of (5.2.1). We have

V
′n
(f,X) = Yn(f,X)+An(f,X), where

An(f,X)t = 1√
Δn

(
Δn

[t/Δn]∑

i=1

E
(
f
(
Δni X/

√
Δn
) |F(i−1)Δn

)−
∫ t

0
ρcs (f ) ds

)

(5.3.1)

as soon as the process Yn(f,X) is well defined, and the previous section provides a
CLT for Yn(f,X). Hence at this point, finding the asymptotic behavior of V

′n
(f,X)

essentially amounts to determining the asymptotic behavior of An(f,X).
To this end, and because those processes have an exploding factor 1/

√
Δn in

front, we need some assumptions on the coefficients b and especially σ , signifi-
cantly stronger than the weak ones under which Theorem 5.2.2 holds. We also need
stronger assumptions on the test function f , leading to a trade-off between the as-
sumptions on (b, σ ) and those on f . In order to get some insight as to why rather
strong assumptions on σ are necessary, we give an elementary example.

Example 5.3.1 We suppose that X is continuous, one-dimensional, with bt = 0
and σt deterministic, and bounded as well as 1/σt . We take f (x) = |x|p . In this
case Δni X/

√
Δn is independent of F(i−1)Δn and centered normal with variance

1
Δn

∫ iΔn
(i−1)Δn

cs ds. The process An(f,X) is non-random and takes the simple form

An(f,X)t = mp√Δn∑[t/Δn]i=1 ani + a′n(t), where mp is the p absolute moment of
the law N (0,1), and

ani =
(

1

Δn

∫ iΔn

(i−1)Δn
cs ds

)p/2
− 1

Δn

∫ iΔn

(i−1)Δn
c
p/2
s ds,

and a′n(t) is a “boundary term” corresponding to the integral of ρcs (f ) between
Δn[t/Δn] and t , and which is O(

√
Δn ). If ct (or equivalently σt = √ct ) is, say,
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Hölder with index α ∈ [0,1], the typical magnitude of each ani isΔαn , so we conclude
An(f,X)t → 0 if α > 1/2, whereas An(f,X) does not go to 0 if α = 1/2 and even
explodes if α < 1/2.

A special case, though, is p = 2, because we then have ani = 0. This explains
why, when considering f (x)= x2, which amounts to looking at the convergence of
the “approximate quadratic variation” towards the quadratic variation, the assump-
tions on σ which we need are much less stringent, as we will see in Sect. 5.4.

This example is somewhat artificial, since when σt is deterministic it is often
natural to assume that it is also differentiable, or at least Lipschitz. When X is a
continuous Markov process σ is typically of the form σt = g(Xt ): in this case, even
if g is a C∞ function, the process σ inherits the path properties of X itself, and thus
it is typically Hölder in time with any index α < 1/2, but not Hölder with index
1/2, not to speak of the case where X, hence σ , have jumps. It is also customary to
consider situations where σ is a itself the solution of another stochastic differential
equation, as in the case of “stochastic volatility”.

5.3.1 Assumptions and Results

The process X has the form (5.0.1), and another—fundamental—structural assump-
tion is that the process σ occurring in (5.0.1) is itself an Itô semimartingale, hence
the pair (X,σ ) as well. We will use the assumption (K), already introduced as As-
sumption 4.4.3, and which we recall:

Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}, (5.3.2)

where

• M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and an angle bracket
of the form 〈M,M〉t =

∫ t
0 as ds

• the compensator of
∑
s≤t 1{‖Δσs‖>1} has the form

∫ t
0 ãs ds.

Moreover, the processes b̃, a and ã are locally bounded, and the processes σ̃ and b
are càdlàg or càglàd.

The next assumption involves a number r ∈ [0,1].

Assumption 5.3.2 (or (K-r)) We have (K), except that b is not required to be càdlàg
or càglàd, and

(i) There is a localizing sequence (τn) of stopping times and, for each n, a deter-
ministic nonnegative function Γn on E satisfying

∫
Γn(z)

rλ(dz) <∞ (with the
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convention 00 = 0) and such that ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with
t ≤ τn(ω);

(ii) The process

b′t = bt −
∫

{‖δ(t,z)‖≤1}
δ(t, z)λ(dz) (5.3.3)

(which is well defined under (i) with r ≤ 1) is càdlàg or càglàd.

WhenX is continuous then (K-r) is the same as (K) for all r . Here again, whether
b′ is càdlàg or càglàd does not matter. However, b′ is typically càglàd rather than
càdlàg, because of the predictability requirement on δ. The condition r ≤ 1, neces-
sary for the process b′ to be well defined, implies that the processX has r-summable
jumps, that is

∑
s≤t ‖ΔXs‖r <∞ a.s. for all t , see Lemma 3.2.1. Observe also that

(K-r) for some r ∈ [0,1] implies (K-r ′) for all r ′ ∈ [r,1].

Remark 5.3.3 When the processX is the solution of the stochastic differential equa-
tion

Xt = X0 +
∫ t

0
f (s,Xs−) dZs,

where Z is a multidimensional Lévy process and f is a C1,2 function on R+ ×R
d ,

we have seen that (K) holds in Remark 4.4.5. If further Z has r-summable jumps
with r ≤ 1, then Assumption (K-r) is also satisfied. In particular, if X itself is a
Lévy process with r-summable jumps, it satisfies (K-r).

In some circumstances, we also need the following assumptions, the first one
having been already introduced as Assumption 4.4.4:

Assumption (K’) We have (K) and both processes ct and ct− take their values in
the set M++

d×d of all symmetric positive definite d × d matrices.

Assumption 5.3.4 (or (K’-r)) We have (K-r) and both processes ct and ct− take
their values in M++

d×d .

We are now ready to state the main results of this section. They are given in two
theorems, which only differ by their assumptions: the first one has quite simple as-
sumptions, and it describes the most useful case. The second one is also sometimes
useful, but unfortunately is rather cumbersome to state.

Each theorem contains two parts: the most useful and simple one concerns test
functions f that are globally even, the other one is about “general” functions f .
Exactly as in Theorem 5.2.2 these statements differ by the description of the limiting
process, which is simple in the globally even case and complicated otherwise. In
order to describe the limit in the non-even case, we need the notation γ̂α(f ) and
γ α(f, g) of (5.2.4) and to introduce a further one. For any Borel function g with
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polynomial growth and any d × d ′ matrix α we define a d ′ × d ′ matrix with entries

γ̂ ′α(g)jk = E

(
g(αW1)

∫ 1

0
W
j
s dW

k
s

)
. (5.3.4)

Below f is q-dimensional and ∇f denotes the gradient, that is the q× d matrix-
valued function (∂if j ). The reader will observe that the process b′t of (5.3.3) explic-
itly occurs in the limit below, so the summability

∑
s≤t ‖ΔXs‖<∞ seems to be a

necessary condition for the validity of the following claim.

Theorem 5.3.5 (CLT with Normalization – I) Let X be a d-dimensional Itô semi-
martingale and f be a C1 function from R

d into R
q , with polynomial growth as

well as ∇f . Assume either one of the following three properties:

(α) (K) holds and X is continuous,
(β) (K-1) holds and f and ∇f are bounded,
(γ ) For some r, r ′ ∈ [0,1), we have (K-r) and ‖f (x)‖ ≤K(1+ ‖x‖r ′).

(i) When the function f is globally even, the sequence of q-dimensional processes
V
′n
(f,X) in (5.2.1) converges stably in law to a continuous process V

′
(f,X) =

U
′
(f,X) which is defined on a very good filtered extension (Ω̃, F̃, (F̃t )t≥0, P̃) of

(Ω,F , (Ft )t≥0,P), and conditionally on F is a centered Gaussian process with
independent increments satisfying

Ẽ
(
U
′
(f,X)

j
t U

′
(f,X)kt |F

)=
∫ t

0

(
ρcs
(
f jf k
)− ρcs

(
f j
)
ρcs
(
f k
))
ds. (5.3.5)

(ii) Otherwise, the sequence V
′n
(f,X) converges stably in law to a process of

the form

V
′
(f,X) = U

′
(f,X)+A(f,X)+A′(f,X)+U(f,X), (5.3.6)

where U
′
(f,X) is as above, except that (5.3.5) is replaced by

Ẽ
(
U
′
(f,X)

j
t U

′
(f,X)kt |F

) =
∫ t

0
γ σs

(
f j , f k

)
ds (5.3.7)

and where, with σ̃t and b′t as given in (5.3.2) and (5.3.3),

A(f,X)it =
∑d
j=1

∫ t
0 b
′j
s ρcs (∂jf

i) ds

A
′
(f,X)it =

∑d
j=1
∑d ′
m,k=1

∫ t
0 σ̃

jkm
s γ̂ ′σs (∂j f

i)mk ds

U(f,X)it =
∑d ′
k=1

∫ t
0 γ̂σs (f

i)k dWk
s .

⎫
⎪⎬

⎪⎭
(5.3.8)

When f is even, the three processes in (5.3.8) vanish since ρct (∂kf
i) =

γ̂ ′σt (∂kf
i)= γ̂σt (f i)= 0, and also γ σs (f

j , f k)= ρcs (f jf k)− ρcs (f j )ρcs (f k), so

(i) is a special case of (ii). The two processes U(f,X) and U
′
(f,X) are those ap-

pearing in Theorem 5.2.2. The process A(f,X)+ A′(f,X) is a drift term adapted
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to the filtration (Ft ), and U(f,X) is an (Ft )-martingale which, conditionally on
F , may also be interpreted as a “drift term”: namely, the limit V

′
(f,X) is, con-

ditionally on F , a Gaussian process with independent increments and mean value
A(f,X)t +A′(f,X)t +U(f,X)t and variance given by (5.3.7).

The main drawback of this result is this: it holds for the power function f (x)=
|xj |w only when w > 1 and X is continuous. Relaxing these restrictions is the pri-
mary aim of the next theorem, whose statement is unfortunately somewhat cumber-
some. For this statement, we recall that an affine hyperplane of Rd is a set of the
form {x ∈R

d : x∗y = a} for some a ∈R and some unitary vector y in R
d .

Theorem 5.3.6 (CLT with Normalization – II) Let X be a d-dimensional Itô semi-
martingale. Let f be a function from R

d into R
q , with polynomial growth, and C1

outside a subset B of Rd which is a finite union of affine hyperplanes. With d(x,B)
denoting the distance between x ∈R

d and B , assume also that for some w ∈ (0,1]
and p ≥ 0 we have

x ∈ Bc ⇒ ∥∥∇f (x)∥∥≤K(1+ ‖x‖p)
(

1+ 1

d(x,B)1−w

)
, (5.3.9)

x ∈ Bc, ‖y‖ ≤ 1
∧ d(x,B)

2

⇒ ∥∥∇f (x + y)−∇f (x)∥∥≤K‖y‖(1+ ‖x‖p + ‖y‖p)
(

1+ 1

d(x,B)2−w

)
.

(5.3.10)

Finally, assume either (K’) and X to be continuous, or that for some 0< r ≤ r ′ < 1
and some p ≥ 0 we have (K’-r) and

∥∥f (x + y)− f (x)∥∥ ≤ K
(
1+ ‖x‖p) (‖y‖r + ‖y‖r ′). (5.3.11)

Then the sequence of q-dimensional processes V
′n
(f,X) converges stably in law

to the q-dimensional process V
′
(f,X), as described in Theorem 5.3.5, in both cases

(i) and (ii).

Although f is not everywhere differentiable, the variables ρcs (∂kf
i) and

γ̂ ′σs (∂kf
i) are well defined, hence the limiting processes as well: this is because ∇f

exists outside the set B , which has vanishing Lebesgue measure, hence ρcs (B)= 0.

Remark 5.3.7 The condition (5.3.11) should be compared with the condition
‖f (x)‖ ≤ K(1 + ‖x‖r ′), called (A) in this remark, and which is used instead of
(5.3.11) in Theorem 5.3.5 when X is discontinuous. Recall that in both conditions
r ′ should be smaller than 1.

In one direction, (5.3.11) implies (A) with the same r ′ (but of course a different
constant K). In the other direction, if f is C1 on R

d and ‖∇f (x)‖ ≤K(1+ ‖x‖q)
for some q ≥ 0, then (A) implies (5.3.11) with r = r ′ and p = q ∨ r ′. The latter
implication, however, is no longer true when f is C1 outside a non-empty set B , but
not on R

d itself.
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Example 5.3.8 The conditions on f , in connection with the assumptions on X, are
especially designed to accommodate the functions

f (x) =
d∏

j=1

∣∣xj
∣∣wj , wj ≥ 0, v =w1 + · · · +wd > 0,

with the convention 00 = 1, and we set u to be the minimum of all wi which do not
vanish. This function is C1 if u > 1, in which case Theorem 5.3.5 does not apply
when X jumps.

Suppose that u ≤ 1, so f is C1 outside the set B which is the union of the hy-
perplanes {x ∈R

d : xi = 0} for all i such that 0<wi ≤ 1. Then (5.3.9) and (5.3.10)
are satisfied with w = u and p = v − u: so the result holds for these functions, if X
is continuous and satisfies (K’).

When X jumps, we further need (5.3.11) for some 0< r ≤ r ′ < 1: this is the case
if and only if v < 1 and then (5.3.11) holds with p = r ′ = v and r = u. Then the
theorem applies under (K’-r).

Remark 5.3.9 As seen in the previous example, when X has jumps the assumptions
on f are quite restrictive, and subsequently we will consider other normalized func-
tionals (“truncated”, or depending on several successive increments), with the aim
of weakening these assumptions, and with some success.

However, there is also a very strong assumption on the jumps of X, somewhat
hidden in (K-1): the jumps are summable. This assumption can never be relaxed
in CLTs for normalized functionals, even for the extensions hinted at above: see
for example the recent work of Vetter [93] for functionals depending on several
increments, or Mancini [75] for truncated functionals.

We now proceed to the proof of these two theorems, through several steps.

5.3.2 Localization and Elimination of Jumps

As for the proof of Theorem 5.0.1, we begin by stating some strengthened assump-
tions, partially introduced in the previous chapter already:

Assumption (SK) We have (K), and there is a constant A such that
∥∥bt (ω)

∥∥+ ∥∥b̃t (ω)
∥∥+ ∥∥σt (ω)

∥∥+ ∥∥σ̃t (ω)
∥∥+ ∥∥Xt(ω)

∥∥+ ãt (ω)+
∥∥at (ω)

∥∥≤A.
(5.3.12)

Assumption 5.3.10 (or (SK-r)) We have (K-r), and there are a constant A and a
function Γ on E, such that (5.3.12) holds, and also

∥∥δ(ω, t, z)
∥∥≤ Γ (z), Γ (z) ≤ A,

∫
Γ (z)rλ(dz) ≤ A.
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Assumption (SK’) We have (SK) and c−1
t is bounded.

Assumption 5.3.11 (or (SK’-r)) We have (SK-r) and c−1
t is bounded.

Then by the localization Lemma 4.4.9 and a trivial extension of it when (ABC)=
(K-r) or (ABC) = (K’-r), we have the following:

Lemma 5.3.12 (Localization) It is enough to prove Theorems 5.3.5 and 5.3.6 when
(K), (K-1), (K’) and (K’-r) are replaced by (SK), (SK-1), (SK’) and (SK’-r), re-
spectively.

From now on, we assume at least (SK-1). Recalling (5.3.3), we have

X =X0 +X′ +X′′, where X′t =
∫ t

0
b′s ds +

∫ t

0
σs dWs, X

′′ = δ ∗ p (5.3.13)

and b′t is bounded. The following lemma shows that it is enough to prove the
results for the process X′, because in the case (β) of Theorem 5.3.5 we have
‖f (x + y)− f (x)‖ ≤K(‖y‖ ∧ 1), whereas in case (γ ) we have (5.3.11), as men-
tioned in Remark 5.3.7.

Lemma 5.3.13 Assume either (SK-1) and ‖f (x + y) − f (x)‖ ≤ K(‖y‖ ∧ 1), or

(SK-r) and (5.3.11) with 0< r ≤ r ′ < 1. Then 1√
Δn
(V ′n(f,X)−V ′n(f,X′)) u.c.p.=⇒ 0.

Proof Observe that 1√
Δn
(V ′n(f,X)t − V ′n(f,X′)t )=∑[t/Δn]i=1 ζ ni , where

ζ ni =
√
Δn E
(
f
(
Δni X/

√
Δn
)− f (Δni X′/

√
Δn
) |F(i−1)Δn

)
.

Therefore it is enough to prove that for all t > 0 we have
∑[t/Δn]
i=1 E(‖ζ ni ‖)→ 0.

In the first case, (SK-1) allows us to apply (2.1.47) with p = r = 1 and q = 1/2
to obtain

E
(∥∥ζ ni
∥∥) ≤ K

√
Δn E
((∥∥Δni X

′′∥∥/
√
Δn
)∧ 1
) ≤ KΔn θn

for some sequence θn of numbers going to 0, and this in turn implies∑[t/Δn]
i=1 E(‖ζ ni ‖)→ 0.
In the second case, with the notation ηni = ‖Δni X′‖/

√
Δn, (5.3.11) yields

E
(∥∥ζ ni
∥∥)≤KΔ

1−r
2
n E
((

1+ (ηni
)p)∥∥Δni X

′′∥∥r)+KΔ
1−r′

2
n E
((

1+ (ηni
)p)∥∥Δni X

′′∥∥r ′)

(SK-r) together with (2.1.33), (2.1.34) and Lemma 2.1.7 imply E((ηni )
q)≤Kq for

all q > 0 and E(‖Δni X′′‖q) ≤ KqΔn for all q ∈ [r,1]. Then, since r ≤ r ′ < 1,
Hölder’s inequality with the exponent 4

3+r for ‖Δni X′′‖r and 4
3+r ′ for ‖Δni X′′‖r

′
re-

spectively yields E(‖ζ ni ‖)≤K(Δ
1+ 1−r

4
n +Δ1+ 1−r′

4
n ), and again

∑[t/Δn]
i=1 E(‖ζ ni ‖)→

0 follows. �
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We end this subsection by stating some consequences of (SK-1). Since σt is
bounded, the process Nt =∑s≤t Δσs 1{‖Δσs‖>1} admits a compensator of the form

N ′t =
∫ t

0 ã
′
s ds with ã′t bounded, and M ′ =M +N −N ′ is again a local martingale

orthogonal to W and with predictable bracket
∫ t

0 a
′
s ds with a′s bounded. So (5.3.2)

takes the form

σt = σ0 +
∫ t

0
b̃′s ds +

∫ t

0
σ̃s dWs +M ′

t , (5.3.14)

where b̃′t = b̃t + ã′t is bounded. We also have a Grigelionis representation of the
following form for the Itô martingale M ′:

M ′
t =
∫ t

0
σ ′s dW ′

s + δ′ �
(
p′ − q′
)
t
, (5.3.15)

relative to some Poisson random measure p′ on R+ × E′ (which could indeed be
taken equal to p, although this is not necessary) and its deterministic compensator
q′(dt, dz)= dt⊗λ′(dz), and with respect to a d×d ′-dimensional Brownian motion
W ′, which can be taken orthogonal to W because M ′ is so. Moreover since a′t is
bounded, it is clearly possible to choose σ ′t and δ′ above in such a way that

∥∥σ ′t (ω)
∥∥ ≤ K,

∥∥δ′(ω, t, z)
∥∥ ≤ K,

∫

E′

∥∥δ′(ω, t, z)
∥∥2 λ′(dz) ≤ K.

(5.3.16)
Observe that putting (5.3.14) and (5.3.15) together, we get the following Grige-

lionis representation for σt :

σt = σ0 +
∫ t

0
b̃′s ds +

∫ t

0
σ̃s dWs +

∫ t

0
σ ′s dW ′

s + δ′ �
(
p′ − q′
)
t
. (5.3.17)

5.3.3 Proof of the Central Limit Theorem for V ′n(f,X)

A – Outline of the proof As already mentioned, (i) is a special case of (ii) in
Theorem 5.3.5. As seen in Remark 5.3.7, the assumptions on f in Lemma 5.3.13
are satisfied under the hypothesis (β) or (γ ) of Theorem 5.3.5. Hence this lemma
and the localization Lemma 5.3.12 yield that we only need to prove the CLT for the
processes V ′n(f,X′), and under the strengthened assumptions.

In other words, we may and will assume in the sequel that X =X′ is continuous.
We prove both theorems together, in this continuous case and under the strengthened
assumptions. For this we will set B = ∅ and d(x,∅)=∞ for all x when f is C1 on
R
d , so the next notation always makes sense:

φB(x) = 1+ 1

d(x,B)
. (5.3.18)
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Next, if A> 1 we set

MA = the set of all d × d ′ matrices α with ‖α‖ ≤A
M′

A =
{
α ∈MA : αα∗ is invertible, with

∥∥(αα∗)−1
∥∥≤A}. (5.3.19)

Then we have to study the following two cases, where A> 1 is some constant, and
which correspond to Theorems 5.3.5 and 5.3.6, respectively:

(a) B = ∅, (SK), f is C1, ∇f has polynomial growth, σt ∈MA

(b) B �= ∅, (SK’), f has polynomial growth with (5.3.9)
and 5.3.10), σt ∈M′

A.

(5.3.20)

We can now rewrite our assumptions on f . With w = 1 in case (a) and w ∈ (0,1]
as in (5.3.9) and (5.3.10) in case (b), the function f is C1 outside of B and satisfies

x /∈ B ⇒ ∥∥∇f (x)∥∥ ≤ K
(
1+ ‖x‖p)φB(x)1−w, (5.3.21)

which reduces to K(1+ ‖x‖p) in case (a). Moreover, recalling that f is C1 in case
(a), we have

∥∥∇f j (x + y)−∇f j (x)∥∥≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ′C(ε)+ K
C
(‖x‖p+1 + ‖y‖p+1)+ KCp‖y‖

ε

in case (a)

K(1+ ‖x‖p + ‖y‖p)φB(x)2−w‖y‖
in case (b) and if x /∈ B,‖y‖ ≤ d(x,B)

2
(5.3.22)

for some p and for all C ≥ 1 and ε ∈ (0,1], and where φ′C(ε)→ 0 as ε→ 0 for
all C.

Recalling the notation (5.3.1), we can now outline the scheme of the proof:

1. In the decomposition (5.3.1) we use Theorem 5.2.1-(ii), whose assumption (c)

is satisfied here, because (5.2.6) holds for all p, to get Yn(f,X)
L-s=⇒ Y (f,X)=

U(f,X)+U ′(f,X).
2. Taking advantage of the property ρc(i−1)Δn

(f ) = E(f (βni ) | F(i−1)Δn) (recall
βni = σ(i−1)ΔnΔ

n
i W/

√
Δn), we write An(f,X)=An(1)+An(2), where

An(1)t =
√
Δn

[t/Δn]∑

i=1

E
(
f
(
Δni X/

√
Δn
)− f (βni ) |F(i−1)Δn

)

An(2)t = 1√
Δn

( [t/Δn]∑

i=1

Δn ρci−1)Δn
(f )−

∫ t

0
ρcs (f ) ds

)
.

(5.3.23)

3. At this stage, it remains to prove the following two properties:

An(2)
u.c.p.=⇒ 0 (5.3.24)

An(1)
u.c.p.=⇒ A(f,X)+A′(f,X). (5.3.25)
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B – Proof of (5.3.24) Among the two properties (5.3.24) and (5.3.25) which re-
main to be proved, the hard one is the latter, so we begin with (5.3.24), which is
simple enough and goes through two steps:

Step 1) Upon arguing component by component, we can assume that f is one-
dimensional. Set

ψ(α) = ραα�(f ) = E
(
f (αU)

)
, (5.3.26)

where U is an N (0, Id ′) random vector.
In case (a) we deduce from Lebesgue’s theorem that the function ψ is C1

b on
the set MA of (5.3.19). In case (b) this is no longer necessarily true, however if
α ∈M′

A, we have

ψ(α) = 1

(2π)d/2det
(
αα�
)1/2

∫
f (x) exp

(
−1

2
x�(αα�)−1x

)
dx.

We deduce that ψ is C∞b on the set M′
A (actually, we only need f to be Borel

with polynomial growth here). Thus in both cases (a) and (b) we have (here ∇ψ is
R
d×d ′ -valued):

∣∣ψ(σt )
∣∣+ ∥∥∇ψ(σt )

∥∥ ≤ K∣∣ψ(σt )−ψ(σs)
∣∣ ≤ K‖σt − σs‖∣∣ψ(σt )−ψ(σs)−∇ψ(σs)(σt − σs)

∣∣ ≤ Ψ
(‖σt − σs‖

) ‖σt − σs‖
(5.3.27)

for some constant K and some increasing function Ψ on R+, continuous and null
at 0.

A Taylor expansion gives An(2)t =−ηnt −
∑[t/Δn]
i=1 (ηni + η′ni ), where

ηnt =
1√
Δn

∫ t

[t/Δn]Δn
ψ(σs) ds

ηni =
1√
Δn

∇ψ(σ(i−1)Δn)

∫

I (n,i)

(σu − σ(i−1)Δn) du

η′ni =
1√
Δn

∫

I (n,i)

(
ψ(σu)−ψ(σ(i−1)Δn)−∇ψ(σ(i−1)Δn)(σu − σ(i−1)Δn)

)
du.

Step 2) (5.3.16) implies
∫ ‖δ′(t, z)‖lλ′(dz) ≤ Kl for any l ≥ 2. Then in view of

(5.3.17) we deduce from (2.1.33), (2.1.34) and (2.1.37) that for u ∈ I (n, i) and
l ≥ 2:

E
(‖σu − σ(i−1)Δn‖l |F(i−1)Δn

) ≤ Kl Δn. (5.3.28)
Moreover

E(σu − σ(i−1)Δn |F(i−1)Δn) = E

(∫ u

(i−1)Δn
b̃′v dv |F(i−1)Δn

)
,
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whose norm is smaller than KΔn. Then, taking (5.3.27) into consideration, we get

∣∣E
(
ηni |F(i−1)Δn

)∣∣≤KΔ3/2
n , E

(∣∣ηni
∣∣2 |F(i−1)Δn

)≤KΔ2
n

(use (5.3.28) and the Cauchy-Schwarz inequality for the second estimate). From
this and Doob’s inequality for the discrete time martingale

∑
i≤j (ηni − E(ηni |

F(i−1)Δn)), we deduce

E

(
sup
s≤t

∣∣∣∣∣

[s/Δn]∑

i=1

ηni

∣∣∣∣∣

)
≤ K(t +√t )√Δn.

Next, (5.3.27) yields for any ε ∈ (0,1):
∣∣η′ni
∣∣≤ Ψ (ε)√

Δn

∫

I (n,i)

‖σu − σ(i−1)Δn‖ du+
1

ε
√
Δn

∫

I (n,i)

‖σu − σ(i−1)Δn‖2 du.

Then (5.3.28) and the Cauchy-Schwarz inequality yield E(|η′ni |) ≤ KΨ (ε)Δn +
KΔ

3/2
n

ε
. Since moreover |ηnt | ≤K

√
Δn, we deduce from all that precedes that

E

(
sup
s≤t
∣∣An(2)s

∣∣
)
≤ K(t +√t )

(
Ψ (ε)+

√
Δn

ε

)
. (5.3.29)

So lim supnE(sups≤t |An(2)s |) ≤ K(t +
√
t )Ψ (ε), and limε→0Ψ (ε) = 0 gives

(5.3.24).

C – Proof of (5.3.25) For this last claim, we have many more steps to go. It suffices
to prove the claim for each component, hence we suppose that q = 1, and in case
(a) f is C1, and in case (b) f is C1 outside the non-empty set B .

Step 1) (Preliminaries and notation.) Set

θni =
Δni X√
Δn

− βni =
1√
Δn

∫

I (n,i)

bs ds + 1√
Δn

∫

I (n,i)

(σs − σ(i−1)Δn) dWs.

(5.3.30)
We will constantly use the following estimates on βni and θni , which follow from
(SK) (the one about βni is obvious from the definition of βni and the scaling property
of the Brownian motion; for θni we use (5.3.28) and we apply (2.1.33) and (2.1.34)
plus Hölder’s inequality when l < 2, recall X is continuous):

l > 0 ⇒ E
(∥∥βni
∥∥l) ≤ Kl, E

(∥∥θni
∥∥l) ≤ KlΔ

(l/2)∧1
n . (5.3.31)

Next, we can and will always assume that Δn ≤ 1 for all n. In view of (5.3.14),
we have the decomposition θni = 1√

Δn

∑4
j=1 ζ(j)

n
i , where (with matrix notation)

ζ(1)ni = Δn b(i−1)Δn

ζ(2)ni =
∫

I (n,i)

(
σ̃(i−1)Δn(Ws −W(i−1)Δn)

)
dWs



5.3 The Central Limit Theorem for the Processes V
′n
(f,X) 155

ζ(3)ni =
∫

I (n,i)

(
M ′
s −M ′

(i−1)Δn

)
dWs

ζ(4)ni =
∫

I (n,i)

(bs − b(i−1)Δn) ds +
∫

I (n,i)

(∫ s

(i−1)Δn
b̃′udu
)
dWs

+
∫

I (n,i)

(∫ s

(i−1)Δn
(̃σu − σ̃(i−1)Δn) dWu

)
dWs.

We also set

Ani =
{∥∥θni
∥∥> d
(
βni ,B
)
/2
}
.

We can express the difference f (βni + θni )− f (βni ), using a Taylor expansion if we
are on the set (Ani )

c , to get

f
(
βni + θni

)−f (βni
) = ∇f (βni

)
θni +
(
f
(
βni + θni

)− f (βni
))

1Ani

−∇f (βni
)
θni 1Ani +

(∇f (βni +uni θni
)−∇f (βni

))
θni 1(Ani )c

(5.3.32)

where uni is some (random) number between 0 and 1: note that ∇f (βni + uni θni ) is
well defined on (Ani )

c because then βni + uni θni belongs to Bc . As to ∇f (βni ), it is
well defined in case (a), and a.s. well defined in case (b) because in this case B has
Lebesgue measure 0 and βni has a density by (SK’). Observe also that Ani = ∅ in
case (a).

Then, taking (5.3.23) and (5.3.32) into consideration, we have

An(1) =
∑7

j=1
Dn(j), (5.3.33)

where

Dn(j)t =
[t/Δn]∑

i=1

δ(j)ni , δ(j)ni = E
(
δ′(j)ni |F(i−1)Δn

)
, and

δ′(j)ni =
d∑

k=1

∂kf
(
βni
)
ζ(j)

n,k
i for j = 1,2,3,4

δ′(5)ni =
√
Δn

d∑

k=1

∂kf
(
βni
)
θ
n,k
i 1Ani (5.3.34)

δ′(6)ni =
√
Δn

d∑

k=1

(
∂kf
(
βni + uni θni

)− ∂kf
(
βni
))
θ
n,k
i 1(Ani )c

δ′(7)ni =
√
Δn
(
f
(
βni + θni

)− f (βni
))

1Ani .



156 5 Central Limit Theorems: The Basic Results

Finally, we need an additional notation:

αni =Δ3/2
n +E

(∫

I (n,i)

(‖bs − b(i−1)Δn‖2 + ‖σ̃s − σ̃(i−1)Δn‖2)ds
)
. (5.3.35)

Step 2) (Estimates on ζ(j)ni .) A repeated use of (2.1.34) gives for all l ≥ 2:

E
(∥∥ζ(1)ni

∥∥l)+E
(∥∥ζ(2)ni

∥∥l)≤KlΔln, E
(∥∥ζ(4)ni

∥∥l)≤Kl Δl−1
n αni . (5.3.36)

As seen before, E(‖M ′
t+s −M ′

t‖l) ≤ Kl s for any l ≥ 1, and it follows from the
Burkholder-Davis-Gundy inequality (2.1.32) that

E
(∥∥ζ(3)ni

∥∥l) ≤ KΔ
l/2+(1∧(l/2))
n . (5.3.37)

Next, recalling the function φB(x)= 1+ 1/d(x,B) of (5.3.18), we introduce the
following variables:

γ ni =
{

1 if w = 1
φB(β

n
i ) if w < 1.

(5.3.38)

Lemma 5.3.14 For any t ∈ [0,1) we have

E
((
γ ni
)t |F(i−1)Δn

) ≤ Kt . (5.3.39)

Proof In case (a) we have γ ni = 1, hence the result. In case (b), B = ∪Ll=1Bl where
Bl = {x ∈ R

d : x∗yl = zl} for some zl ∈ R and yl ∈ R
d
1 := {x ∈ R

d : ‖x‖ = 1}.
Since d(x,B)=min1≤l≤L d(x,Bl)we have γ ni ≤ 1+∑L

l=1 1/d(βni ,Bl). Moreover
d(x,Bl) = |x∗yl − zl |, and conditionally on F(i−1)Δn the variable βni has the law
ρc(i−1)Δn

. Thus it is enough to show the following property (too strong for what we

need here, but it is for free), where M(A)
d×d = {a ∈M++

d×d : ‖a−1‖ ≤A}:

t ∈ (0,1), A > 0 ⇒ sup
z∈R, y∈Rd1 , a∈M(A)

d×d

∫
1

|x∗y − z|t ρa(dx) <∞.

With U standard normal, the integral above is E(|√y∗ay U − z|−t ), always smaller
than (y∗ay)−t/2 E(|U |−t ), and the result readily follows. �

Lemma 5.3.15 Let Φni be arbitrary variables, satisfying for all n, i:

s > 0 ⇒ E
(∣∣Φni
∣∣s) ≤ Ks. (5.3.40)

Then for all s > 0 and m ∈ [0,1), we have:

j = 1,2,3, l < 2 ⇒ E
(∣∣Φni
∣∣s ∥∥ζ(j)ni

∥∥l (γ ni
)m) ≤ Ks,l,m Δ

l
n. (5.3.41)
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u ∈
(

0, (1−m)∧ l
2

)
⇒

E
(∣∣Φni
∣∣s ∥∥ζ(4)ni

∥∥l (γ ni
)m)≤Ks,l,m,u Δl−un

(
αni
)u ≤Ks,l,m,uΔln. (5.3.42)

Proof 1) The last inequality in (5.3.42) follows from αni ≤KΔn. Suppose that we
know that

p < 2, r ∈ [0,1), j = 1,2,3 ⇒ E
(∥∥ζ(j)ni

∥∥p (γ ni
)r)≤Kp,r Δpn

p ≥ 1, r ∈ [0,1), v ∈
(

0, (1− r)∧ p
2

)
⇒ (5.3.43)

E
(∥∥ζ(4)ni

∥∥p (γ ni
)r)≤Kp,r,v Δp−vn

(
αni
)v
.

By Hölder’s inequality and (5.3.40), we have for all j and all γ > 1:

E
(∣∣Φni
∣∣s ∥∥ζ(j)ni

∥∥l (γ ni
)m) ≤ Ks,γ

(
E
(∥∥ζ(j)ni

∥∥lγ (γ ni
)mγ ))1/γ

.

This, together with the first part of (5.3.43) applied with p = lγ and r = mγ ,
yields (5.3.41) if we choose γ ∈ (1, (1/m) ∧ (2/l). Together with the second part
of (5.3.43) with again p = lγ and r =mγ and v = uγ , this also gives (5.3.43) upon
choosing γ ∈ (1,1/(u+m)). Therefore, we are left to prove (5.3.43).

2) Hölder’s inequality and a combination of (5.3.36) and (5.3.39) give (5.3.43)
for j = 1,2,4. However, this does not work for j = 3, because (5.3.37) only holds
for the exponent 2, and we need a more sophisticated argument.

We denote by (F ′t ) the filtration (depending on (n, i), although this is not shown
in the notation) such that F ′t = Ft if t < (i − 1)Δn and F ′t = Ft

∨
σ(Ws : s ≥ 0)

otherwise. Recall the Grigelionis representation (5.3.15) forM ′. The three termsW ,
W ′ and p′ are independent, and by the integration by parts formula we see that

ζ(3)ni = Δni M ′Δni W −
∫

I (n,i)

σ ′s(Ws −W(i−1)Δn) dW
′
s

−
∫

I (n,i)

∫

E′
δ′(s, z)(Ws −W(i−1)Δn)

(
p′ − q′
)
(ds, dz). (5.3.44)

The last two terms above, as well as the two terms on the right of (5.3.15), are
stochastic integrals with respect to the original filtration (Ft ), and also with respect
to the augmented filtration (F ′t ) because, due to the independence ofW ′ and p′ from
W , those are an (F ′t )-Brownian motion and an (F ′t )-Poisson measure, respectively.
It follows that all three terms on the right of (5.3.44) are (F ′t )-martingale incre-
ments. Therefore, if W̃n

i = sups∈I (n,i) ‖Ws −W(i−1)Δn‖, we deduce from (2.1.34)
and (2.1.37) plus Hölder’s inequality, and from (5.3.16), that

l ≤ 2 ⇒ E
(∥∥ζ(3)ni

∥∥l |F ′(i−1)Δn

) ≤ Kl Δ
l/2
n

(
W̃n
i

)l
. (5.3.45)
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Since γ ni is F ′(i−1)Δn
measurable, we deduce

E
(∥∥ζ(3)ni

∥∥l (γ ni
)m)≤Kl Δl/2n E

((
γ ni
)m (

W̃n
i

)l)
.

Finally we have E((W̃ n
i )
p) ≤ KpΔp/2n for all p > 0, so another application of

Hölder’s inequality and (5.3.39) gives (5.3.43) for j = 3. �

Step 3) The aim of this step is to prove the following lemma.

Lemma 5.3.16 We have Dn(j)
u.c.p.=⇒ 0 for j = 4,5,6,7.

Proof 1) We begin with a consequence of Hölder’s inequality and (5.3.35): if v ∈
(0,1],

Δ1−v
n

[t/Δn]∑

i=1

(
αni
)v ≤ t1−v

([t/Δn]∑

i=1

αni

)v

≤ KtΔvn +Kt1−v
(
E

(∫ t

0

(‖bs − bΔn[s/Δn]‖2 + ‖σ̃s − σ̃Δn[s/Δn]‖2)ds
))v

.

Then, since b′ and σ̃ are bounded and càdlàg or càglàd, we deduce from Lebesgue’s
Theorem that

0< v ≤ 1 ⇒ Δ1−v
n

[t/Δn]∑

i=1

(
αni
)v → 0. (5.3.46)

In view of (5.3.34), and since E(|δ(j)ni |)≤ E(|δ′(j)ni |), it is enough to prove that
for any t > 0 and j = 4,5,6,7 we have

[t/Δn]∑

i=1

E
(∣∣δ′(j)ni

∣∣) → 0. (5.3.47)

2) Consider j = 4. We deduce from (5.3.21) that

∣∣δ′(4)ni
∣∣ ≤ KΦni

∥∥ζ(4)
∥∥ (γ ni
)1−w

, where Φni = 1+ ∥∥βni
∥∥p, (5.3.48)

and where γ ni is given by (5.3.38). By (5.3.31), Φni satisfies (5.3.40). Then (5.3.42)
with l = 1 and m= 1−w yields

[t/Δn]∑

i=1

E
(∣∣δ′(4)ni

∣∣) ≤ KΔ1−u
n

[t/Δn]∑

i=1

(
αni
)u
,

where u ∈ (0,1). Then (5.3.47) for j = 4 follows from (5.3.46).
3) Next we prove the result for j = 5,6,7 in case (a). When j = 5,7 there is

nothing to prove, since then Ani = ∅ and thus δ′(j)ni = 0. For j = 6 we use the first
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part of (5.3.22) and recall that the random variable uni in the definition of δ′(6)ni is
[0,1]-valued, to deduce

∣∣δ′(6)ni
∣∣≤√Δn

(
φ′C(ε)
∥∥θni
∥∥+ K

C

(∥∥βni
∥∥p+1 + ∥∥θni

∥∥p+1)∥∥θni
∥∥+ KC

p

ε

∥∥θni
∥∥2
)
.

Then we deduce from (5.3.31) and an application of Hölder’s inequality that

E
(∣∣δ′(6)ni

∣∣) ≤ KΔnφ
′
C(ε)+

K

C
Δn + KC

p

ε
Δ

3/2
n . (5.3.49)

Thus the lim sup of the left side of (5.3.47) for j = 6 is smaller than Ktφ′C(ε)+
Kt/C, which can be made arbitrarily small by choosing first C large and then ε
small. Then we have the result.

4) Now we turn to j = 5,6,7 in case (b). By (5.3.21) and (5.3.22), and recalling
that uni ∈ [0,1], we have

∣∣δ′(j)ni
∣∣≤

⎧
⎪⎪⎨

⎪⎪⎩

K
√
Δn
(
1+ ∥∥βni

∥∥p + ∥∥θni
∥∥p) ∥∥θni

∥∥ φB
(
βni

)1−w 1Ani if j = 5

K
√
Δn
(
1+ ∥∥βni

∥∥p + ∥∥θni
∥∥p) ∥∥θni

∥∥2 φB
(
βni

)2−w
1(Ani )c if j = 6

K
√
Δn
(
1+ ∥∥βni

∥∥p + ∥∥θni
∥∥p) ∥∥θni

∥∥1Ani if j = 7.

On the set Ani we have ‖θni ‖φB(βni ) ≥ 1/2, whereas on the complement (Ani )
c we

have ‖θni ‖φB(βni ) ≤ ‖θni ‖ + 1/2. Since w
2 < 1− w

2 and φB ≥ 1, we see that in all
three cases,

∣∣δ′(j)ni
∣∣≤K√Δn

(
1+ ∥∥βni

∥∥p+1 + ∥∥θni
∥∥p+1) ∥∥θni

∥∥1+w/2 φB
(
βni
)1−w/2

. (5.3.50)

Note that 1 + ‖βni ‖p+1 + ‖θni ‖p+1 satisfies (5.3.40) by (5.3.31), and
√
Δn θ

n
i =∑4

j=1 ζ(j)
n
i and φB(βni ) = γ ni here. Then (5.3.41) and (5.3.42) applied with m =

1−w/2 and l = 1+w/2 yield E(|δ′(j)ni |) ≤KΔ1+w/4
n . Thus (5.3.47) holds, and

the proof is complete. �

Step 4) In view of Lemma 5.3.16 and of (5.3.33), the property (5.3.25) will follow
from the next three lemmas. Note that, because of Lemma 5.3.13, this will end the
proof of both Theorems 5.3.5 and 5.3.6.

Lemma 5.3.17 We have Dn(3)
u.c.p.=⇒ 0.

Proof As seen in the proof of Lemma 5.3.15, see (5.3.44), ζ(3)ni is a martingale
increment over the interval ((i − 1)Δn, iΔn], relative to the augmented filtration
(F ′t ) (which depends on (n, i)), whereas βni is F ′(i−1)Δn

measurable. Henceforth by
successive conditioning we have E(∇f (βni ) ζ(j)ni |F(i−1)Δn)= 0, and thus Dn(3)
is identically 0. �

Lemma 5.3.18 We have Dn(1)
u.c.p.=⇒ A(f,X).
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Proof Since

E
(
∂jf
(
βni
)l
ζ(1)n,ji |F(i−1)Δn

)=Δn bj(i−1)Δn
ρc(i−1)Δn

(
∂jf

l
)
, (5.3.51)

and all s �→ ρcs (∂j f
l) are càdlàg the result follows from Riemann integration. �

Lemma 5.3.19 We have Dn(2)
u.c.p.=⇒ A

′
(f,X).

Proof By the scaling property of the Brownian motion and (5.3.4), we have

E
(
∂jf
(
βni
)l
ζ(2)n,ji |F(i−1)Δn

)=Δn
r∑

k,m=1

σ̃
jkm

(i−1)Δn
γ̂ ′σ(i−1)Δn

(
∂jf

l
)mk
. (5.3.52)

Moreover all s �→ γ̂ ′σs (∂j f
l) are càdlàg, so again Riemann integration yields the

result. �

5.4 The Central Limit Theorem for Quadratic Variation

So far, and for a power function f (x)= |x|p in the one-dimensional case, say, we
have two Central Limit Theorems for the processes V n(f,X):

• Theorem 5.1.2, which holds for p > 3 and requires the normalizing factor Δ−1/2
n

and for which the limit Z(f,X) essentially depends on the jumps of X, and in
particular vanishes if there is no jump.

• Theorem 5.3.5, which applies for such an f when X is continuous only, and
which is also a CLT for the process V n(f,X)=Δp/2−1

n V ′n(f,X), with the nor-
malizing factor Δ1/2−p/2

n in front of V n(f,X).

These two normalizing factors coincide when p = 2, although in this case neither
one of the two theorems applies when X jumps. Nevertheless, we have a CLT for
this case, even in the discontinuous case. Although there is a result available for all
test functions which are “close enough to quadratic” near the origin, we give the
result for the quadratic variation only, that is for the test function f on R

d with
components f ij (x)= xixj .

We start again with a d-dimensional semimartingale. Recall that [X,X] is the
M+

d×d -valued process whose components are the quadratic covariation processes
[Xj ,Xk]. The “approximate” quadratic variation associated with the stepsize Δn is

[X,X]n = ([Xj ,Xk]n)1≤j,k≤d , where
[
Xj ,Xk

]n
t
=
[t/Δn]∑

i=1

Δni X
jΔni X

k.

We know that [X,X]n P=⇒ [X,X], see e.g. (B) of Theorem 3.3.1, and with no as-
sumption whatsoever on the semimartingale X. The associated CLT needs the fol-
lowing assumption, which is significantly weaker than (H) when X is continuous.
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Assumption 5.4.1 (or (Q)) X is an Itô semimartingale of the form (4.4.1), with:

(i) If X is continuous, then
∫ t

0 (‖bs‖2 + ‖cs‖2) ds <∞ for all t > 0.
(ii) If X has jumps, then it satisfies (H), that is Assumption 4.4.2.

The CLT is about the convergence of the normalized and discretized processes

Z
n

t =
1√
Δn

([X,X]nt − [X,X]Δn[t/Δn]
)
. (5.4.1)

As said before, one has [X,X]n = V n(f,X) = V ′n(f,X), for the d2-dimensional
globally even test function f with components f ij (x) = xixj . It is thus not a sur-
prise that the limiting process of Z

n
is

Z = V (f,X)+ V ′(f,X) (5.4.2)

for this particular test function, where V (f,X) given by (5.1.4) accounts for the
jump part, and V

′
(f,X) (as defined in Theorem 5.2.2) accounts for the continuous

part.
However, we need these two limiting processes to be defined together on the

same extension. For this we do as in Proposition 4.1.5. We choose a progressively
measurable “square-root” σ̂s of the M+

d2×d2 -valued process ĉs with entries ĉ ij,kls =
ciks c

jl
s , so the matrix with entries 1√

2
(̂σ
ij,kl
s + σ̂ j i,kls ) is a square-root of the matrix

with entries ĉ ij,kls + ĉ il,jks (due to the symmetry of the matrix cs ). We also choose
a weakly exhausting sequence (Tn) for the jumps of X, see before (5.1.2), with
Tn =∞ for all n when X is continuous.

Next, let (Ω ′,F ′,P′) be an auxiliary space supporting a triple sequence
(Ψn−,Ψn+, κn) of variables, all independent and satisfying (5.1.1), and a d2-
dimensional Brownian motion W ′ independent of the above sequence. The very
good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) is defined by (5.1.2), except that we ad-
ditionally require W ′ to be (F̃t )-adapted. Then when X has jumps, so σt is càdlàg,
we define Rn by (5.1.3), and in all cases the limiting process will have the compo-
nents:

Z
ij

t =
1√
2

d∑

k,l=1

∫ t

0

(
σ̂
ij,kl
s + σ̂ j i,kls

)
dW ′kl

s +
∞∑

p=1

(
ΔX

j
Tp
Rip +ΔXiTpRjp

)
1{Tp≤t}.

(5.4.3)
When X is continuous the last sum above is absent, and otherwise it makes sense

by Proposition 5.1.1, and it is indeed V (f ij ,X), with f ij as above. The stochastic
integral in (5.4.3) is the (ij)th component of V

′
(f,X), as characterized in Theo-

rem 5.2.2, because γ σs (f
ij , f kl) = ĉ ij,kls + ĉ j i,kls by an elementary computation

on Gaussian vectors. Therefore we have (5.4.2), where conditionally on F the two
processes V (f,X) and V

′
(f,X) are independent, centered, with independent incre-
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ments, and moreover

E
(
Z
ij

t Z
kl

t |F
) = 1

2

∑

s≤t

(
ΔXisΔX

k
s

(
c
jl
s− + cjls

)+ΔXisΔXls
(
c
jk
s− + cjks

)

+ΔXjs ΔXks
(
cils− + cils

)+ΔXjs ΔXls
(
ciks− + ciks

))

+
∫ t

0

(
ciks c

jl
s + cils cjks

)
ds (5.4.4)

(use (5.1.5) and (5.2.8); again, when X is continuous, σs− does not necessarily exist
under (Q), but only the last integral above appears in the formula). The CLT is as
follows.

Theorem 5.4.2 LetX be an Itô semimartingale satisfying Assumption (Q). Then the
d × d-dimensional processes Z

n
defined in (5.4.1) converge stably in law to a pro-

cess Z = (Zij )1≤i,j≤d , defined on a very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃)

of (Ω,F , (Ft )t≥0,P) and which, conditionally on F , is centered with independent
increments and finite second moments given by (5.4.4). This process Z can be real-
ized as (5.4.3), and it is F -conditionally Gaussian if further the processes X and σ
have no common jumps.

Moreover, the same is true of the processes 1√
Δn
([X,X]n − [X,X]) when X is

continuous, and otherwise for each t we have the following stable convergence of
variables

1√
Δn

([X,X]nt − [X,X]t
) L-s−→ Zt . (5.4.5)

Remark 5.4.3 Exactly as in Remark 5.1.3, and for the same reason, when X jumps
the processes 1√

Δn
([X,X]n − [X,X]) do not converge in law for the Skorokhod

topology.

Remark 5.4.4 This result is surprising by its assumptions, when compared with
Theorem 5.3.5 in the (simple) case X is continuous: the results are formally the
same, but the assumptions are deeply different, since (K) is much stronger than (Q).
This is of course due to the very special properties of the quadratic test function
f (x)ij = xixj .

Remark 5.4.5 Assumption (Q) is obviously not the weakest possible assumption, at
least when X is discontinuous. What is really needed is that (i) of (Q) holds and that
σ is càdlàg at each jump time of X. However, unless X has locally finitely many
jumps, this latter property is “almost” the same as σ being càdlàg everywhere.

The ij th and jith components of the process (5.4.1) are the same, as are Z
ij

and

Z
ji

in (5.4.3). By Itô’s formula,

Z
n,ij = Z

n,ij
t +Zn,jit , (5.4.6)
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where

Z
n,jk
t = 1√

Δn

[t/Δn]∑

i=1

∫

I (n,i)

(
X
j
s− −Xj(i−1)Δn

)
dXks . (5.4.7)

Therefore it is natural to give also a CLT for the process Zn = (Zn,ij )1≤i,j≤d , and in
fact the previous theorem will be a simple consequence of the following one (as for
Theorem 5.1.2 we give a joint convergence with the discretized process X(n)). The
limiting process can be defined on the same very good filtered extension described
before (5.4.3), and with the notation Rn± of (5.1.3), as

Z
ij
t =

1√
2

d∑

k,l=1

∫ t

0
σ̂
ij,kl
s dW ′kl

s +
∞∑

p=1

(
ΔX

j
Tp
Rip− +ΔXiTpRjp+

)
1{Tn≤t}. (5.4.8)

The process Z has the same properties as Z, except that (5.4.4) is replaced by

E
(
Z
ij
t Z

kl
t |F
)= 1

2

∑

s≤t

(
ΔXis ΔX

k
s c
jl
s +ΔXjs ΔXls ciks−

)+ 1

2

∫ t

0
ciks c

jl
s ds. (5.4.9)

Theorem 5.4.6 Let X be an Itô semimartingale satisfying Assumption (Q). Then
the (d + d2)-dimensional processes (X(n),Zn) with Zn given by (5.4.7) converge
stably in law to (X,Z), where the process Z = (Zij )1≤i,j≤d is defined on a very
good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P) and, conditionally
on F , is centered with independent increments and finite second moments given by
(5.4.9). This processZ can be realized as (5.4.8), and it is F -conditionally Gaussian
if further the processes X and σ have no common jumps.

We will first prove Theorem 5.4.6 and then deduce Theorem 5.4.2. The proof pro-
ceeds by several lemmas, which basically establish the result for bigger and bigger
classes of processes X.

First we establish some notation: The processes Zn and Z depend on X, and we
make this explicit by writing Zn(X) and Z(X). For any two real semimartingales
Y,Y ′ we set

ζ
(
Y,Y ′
)n
i
= 1√

Δn

∫

I (n,i)

(Ys− − Y(i−1)Δn) dY
′
s .

By a localization argument similar to Lemma 4.4.9, and which we omit, we can
and will replace (Q) by the following strengthened assumption.

Assumption 5.4.7 (or (SQ)) We have (Q) and

(i) if X is continuous, then
∫∞

0 (‖bs‖2 + ‖cs‖2) ds ≤A for some constant A;
(ii) if X is discontinuous, then (SH) (that is, Assumption 4.4.6) holds.

As usual the F -conditional distribution of the limiting process Z(X) does not
depend on the choice of the exhausting sequence (Tp). So below we choose the
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sequence (Sp) described before (5.1.9), and Rp± is associated by (5.1.3) with Tp =
Sp . In connection with this, and on the extended space described above, we define
the d2-dimensional variables ηp with components:

η
jk
p = R

j
p−ΔXkSp +Rkp+ΔXjSp . (5.4.10)

We start with an auxiliary result in the continuous case. For l, r = 1, . . . , d ′ and
j, k = 1, . . . , d we set

ξ
n,lr
i = 1√

Δn

∫

I (n,i)

(
Wl
s− −Wl

(i−1)Δn

)
dWr

s

ζ
′n,jk
i =

d ′∑

l,r=1

σ
jl

(i−1)Δn
σ kr(i−1)Δnξ

n,lr
i (5.4.11)

ρ
n,jk
i = ζ

(
Xj ,Xk

)n
i
− ζ ′n,jki .

Lemma 5.4.8 Assume that X is continuous, with σ càdlàg bounded and b bounded
and piecewise constant, in the sense that

bs =
∑

q≥0

btq1[tq ,tq+1)(t) (5.4.12)

for a sequence tq of (deterministic) times increasing strictly to +∞. Then for all

j, k = 1, . . . , d the array (ρn,jki ) is asymptotically negligible (or, AN: see (2.2.33)).

Proof We have ρn,jki =∑4
m=1 ζ(m)

n,jk
i , where

ζ(1)n,jki = ζ
(
Bj ,Bk

)n
i
, ζ(2)n,jki = ζ

(
Xc,j ,Bk

)n
i

ζ(3)n,jki = ζ
(
Bj ,Xc,k

)n
i
, ζ(4)n,jki = ζ

(
Xc,j ,Xc,k

)n
i
− ζ ′n,jki

(recall Bt =
∫ t

0 bs ds and Xct =
∫ t

0 σs dWs .) Thus it is enough to prove the AN prop-

erty of the array ζ(m)n,jki for each m= 1,2,3,4.

We have |ζ(1)n,jki | ≤ KΔ3/2
n , so the AN property for m = 1 readily follows.

Next, E((ζ(m)n,jki )2)≤KΔ2
n for m= 2,3, and also

E
(
ζ(m)

n,jk
i |F(i−1)Δn

) = 0 (5.4.13)

for all i when m= 3: then (2.2.35) yields the AN property for m= 3. When m= 2
the equality (5.4.13) holds for all i such that the interval I (n, i) contains no times tp ,
because on these intervals bt = b(i−1)Δn . That is, (5.4.13) holds for all i ≤ [t/Δn]
except at most Nt of them, where Nt = sup(p : tp ≤ t), and we then deduce from
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E((ζ(2)n,jki )2)≤KΔ2
n that

E

(( [t/Δn]∑

i=1

ζ(2)n,jki

)2)
≤ KΔnt(1+Nt),

thus obtaining the AN property for m= 2. Finally, we have

ζ(4)n,jki = 1√
Δn

∫

I (n,i)

(∫ t

(i−1)Δn

d ′∑

l=1

(
σ
jl
s − σ jl(i−1)Δn

)
dWl

s

)
dX

c,k
t

+ 1√
Δn

∫

I (n,i)

d ′∑

l,r=1

σ
jl

(i−1)Δn

(
Wl
t −Wl

(i−1)Δn

) (
σkrs − σkr(i−1)Δn

)
dWr

s .

By (2.1.34) applied repeatedly, plus the Cauchy-Schwarz inequality, we deduce

E
((
ζ(4)n,jki

)2) ≤ K
√
Δn

(
E

(∫

I (n,i)

‖σt − σ(i−1)Δn‖4 dt

))1/2

,

which in turn implies

[t/Δn]∑

i=1

E
((
ζ(4)n,jki

)2) ≤ K
√
t

(
E

(∫ t

0
‖σs − σΔn[s/Δn]‖4 ds

))1.2

.

Since σ is right-continuous and bounded, the above goes to 0 by the dominated
convergence theorem. Since (5.4.13) holds for m = 4, the AN property for m = 4
follows from (2.2.35) again. �

Lemma 5.4.9 Assume that X is continuous, with σ càdlàg bounded and∫∞
0 ‖bs‖2 ds ≤A for a constant A. Then for all j, k = 1, . . . , d the array (ρn,jki ) is

asymptotically negligible.

Proof Exactly as in Lemma 3.4.8, there is a sequence b(p) of adapted processes,
all bounded and of the form (5.4.12), and such that

E

(∫ ∞

0

∥∥b(p)s
∥∥2
)
≤2A, α(p)=:E

(∫ ∞

0

∥∥b(p)s −bs
∥∥2 ds
)
→0 as p→∞.

(5.4.14)
Recall X =X0 +B +Xc with Bt =

∫ t
0 bs ds and Xct =

∫ t
0 σs dWs , and set

B(p)t =
∫ t

0
b(p)s ds, X(p)=X0 +B(p)+Xc, B(p)= B −B(p).
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The previous lemma applies to each process X(p), and the variables ζ ′n,jki are
the same for X and X(p). Therefore it is enough to show that, for any T ,

lim
p→∞ sup

n
E

([t/Δn]∑

i=1

∣∣ζ
(
Xj ,Xk

)n
i
− ζ (X(p)j ,X(p)k)n

i

∣∣
)
→ 0. (5.4.15)

We have

ζ
(
Xj ,Xk

)n
i
− ζ (X(p)j ,X(p)k)n

i
= 1√

Δn

3∑

r=1

χ(p, r)ni , where

χ(p,1)ni =
∫

I (n,i)

(
B(p)

j
s −B(p)j(i−1)Δn

)
bks ds

χ(p,2)ni =
∫

I (n,i)

(
X(p)

j
s −X(p)j(i−1)Δn

) (
bks − b(p)ks

)
ds

χ(p,3)ni =
d ′∑

l=1

∫

I (n,i)

(
B(p)

j
s −B(p)j(i−1)Δn

)
σkls dW

l
s ,

and (5.4.15) will follow if we prove that for all t > 0 and r = 1,2,3, and as p→∞:

sup
n

1√
Δn

E

([t/Δn]∑

i=1

∣∣χ(p, r)ni
∣∣
)
→ 0. (5.4.16)

Recalling (5.4.14) and the boundedness of σ , we deduce from (2.1.33) and
(2.1.34) that

E

(
sup

t∈I (n,i)

∣∣X(p)jt −X(p)j(i−1)Δn

∣∣2
)
≤ KΔn.

Therefore, with the notation α(p)ni = E(
∫
I (n,i)

‖bs − b(p)s‖2 ds), further applica-
tions of (2.1.33) and (2.1.34) and the Cauchy-Schwarz inequality yield

E
(∣∣χ(p, r)ni

∣∣) ≤
{
KΔn

√
α(p)ni if r = 1,2

KΔn α(p)
n
i if r = 3.

Since
∑
i≥1 α(p)

n
i ≤ α(p) and

∑[t/Δn]
i=1

√
α(p)ni ≤

√
tα(p)/Δn, we deduce (5.4.16).

�

Lemma 5.4.10 Assume that X has the form

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + δ � pt , (5.4.17)



5.4 The Central Limit Theorem for Quadratic Variation 167

where b and σ are as in the previous lemma, and where δ is as in (5.1.8), with
further

δ(ω, t, z) �= 0 ⇒ Γ (z) >
1

p
(5.4.18)

for some integer p ≥ 1. Then (X(n),Zn(X))
L-s=⇒ (X,Z(X)).

Proof 1) Below, we write X′ = δ ∗ p and X′′ = X − X′. We also use the notation
(5.1.9), including Pm and the stopping times Sp . Recalling (5.4.10), we also set

η(n,p)jk =R−(n,p)j ΔXkSp +R+(n,p)k ΔX
j
Sp

η(n,p)= (ΔXSp,η(n,p)
)
, ηp = (ΔX,ηp)

Θnt =
∑
p:Sp≤Δn[t/Δn] η(n,p), Θ

n

t =
∑
p:Sp≤Δn[t/Δn] η(n,p)

Θt =∑p:Sp≤t ηp

(5.4.19)

(η(n,p) = ηp = 0 if p /∈ Pm because of (5.4.18), so the sums above are finite

sums). So Θ
n

t and Θt are (d + d2)-dimensional, and the first d components of
Θ
n

are the discretized process X′(n), and Θ = (X′,Z(X′)). Finally, Zn,jk(X′′) =∑[t/Δn]
i=1 (ζ(Bj ,Bk)ni + ζ(Xc,j ,Bk)ni + ζ(Bj ,Xc,k)ni + ζ(Xc,j ,Xc,k)ni ), so we

deduce from the previous lemma that, with the notation (5.4.11) and ζ ′ni =
(ζ
′n,jk
i )1≤j,k≤d ,

Zn
(
X′′
)−Z′n u.c.p.=⇒ 0, where Z′nt =

[t/Δn]∑

i=1

ζ ′ni . (5.4.20)

2) Let us now consider the setting of Theorem 4.2.1, with un = Δn and q =
d2 and q ′ = d ′2. We choose a d ′2-dimensional FW1 -measurable function Φ on the
canonical Wiener space ΩW such that

Φlm =
∫ 1

0
Wl
s dW

m
s P

W -almost surely

(with P
W the Wiener measure), so (4.2.3) is satisfied. Finally we take θ with com-

ponents θjk,lm = σ jlσ km, and G(x,y)= y for y ∈ R
d2

(so the process Y does not
show). Then, with the notation U

n
(G) and U(G) of (4.2.6) and (4.2.7), Proposi-

tion 4.4.10 implies

(
U
n
(G),
(
η(n,p)

)
p≥1

) L-s−→ (U(G), (ηp)p≥1
)
. (5.4.21)

The quantities in (4.2.5) are easily computed and write as follows:

γΦα (x,G)= 0, γ̂ Φα (x,G)= 0, γ Φα
(
x,Gjk,Gj

′k′)= 1

2

d ′∑

l,r=1

αjk,lrαj
′k′,lr
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for any d2 × d ′2 matrix α. This has two consequences: first, that U
n
(G)= Z′n, as

defined by (5.4.20); second, that γΦθs (x,G
jk,Gj

′k′)= 1
2 c

jk
s c

j ′k′
s , which implies that

U(G) is a version of the process Z(Xc) associated with the continuous process Xc

by (5.4.9). Thus (5.4.21) is the same as

(
Z′n,
(
η(n,p)

)
p≥1

) L-s−→ (Z(Xc), (ηp)p≥1
)
, (5.4.22)

where the convergence takes place in the space D
d2 × (Rd)N∗ . Using (5.4.20) and

X′′(n) P=⇒X′′ and the continuity of X′′, we deduce (recall (2.2.5) and (2.2.9)):

((
X′′(n),Zn

(
X′′
))
,
(
η(n,p)

)
p≥1

) L-s−→ ((X′′,Z(Xc)), (ηp)p≥1
)

in D
d+d2 × (Rd)N∗ . Since the set {Sp : p ∈ Pm} is locally finite, this yields

((
X′′(n),Zn

(
X′′
))
,Θ

n) L-s=⇒ ((X′′,Z(Xc)),Θ)

for the product topology on D
d+d2 × D

d+d2
. Now, (X′′(n),Zn(X′′)) + Θn =

(X(n),Zn(X′′)+Θn) and Θ = (X′,Z(X′)) and (X′,Z(Xc)) is continuous, so an-
other application of (2.2.9) allows us to deduce

(
X(n),Zn

(
X′′
)+Θn) L-s=⇒ (X′′ +X′,Z(Xc)+Z(X′)) = (X,Z(X)). (5.4.23)

To finish the proof, we plug X =X′ +X′′ into ζ(Xj ,Xk)ni and develop linearly,
to obtain the following property: on the set ΩnT on which |Sp − Sq | > Δn for all
p,q ∈ Pm with Sp ≤ T , we have for all i ≤ [T/Δn]:

ζ
(
Xj ,Xk

)n
i
= ζ
(
X′′j ,X′′k

)n
i
+
∑

p≥1

η(n,p)jk 1{Sp∈I (n,i)}.

Hence

t ≤ T ⇒ Z(X)nt = Z
(
X′′
)n
t
+Θnt on the set ΩnT .

Since P(ΩnT )→ 1, we deduce (X(n),Zn(X))
L-s=⇒ (X,Z(X)) from (5.4.23). �

Lemma 5.4.11 Assume that X is continuous and (SQ)-(i) holds. Then (X(n),

Zn(X))
L-s=⇒ (X,Z(X)).

Proof The proof is somewhat similar to the proof of Lemma 5.4.9. One can find a
sequence σ(p) of adapted bounded and càdlàg processes, such that

E

(∫ ∞

0

∥∥σ(p)s
∥∥4 ds
)
≤ 2A, α′(p) := E

(∫ ∞

0

∥∥σ(p)s − σs
∥∥4 ds
)
→ 0

(5.4.24)
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as p→∞. Set

X(p)ct =
∫ t

0
σ(p)s dWs, X(p)=X0 +B +X(p)c, X(p)=X−X(p).

For each p, the processes (X(p)(n),Zn(X(p))) converge stably in law to
(X(p),Z(X(p))) by the previous lemma. Thus, by Proposition 2.2.4, it suffices
to prove the following three properties, as p→∞:

X(p)
u.c.p.=⇒ 0, η > 0, t > 0 ⇒ supn P

(
sups≤t

∥∥X(n)s
∥∥> η
)
→ 0 (5.4.25)

η > 0, t > 0 ⇒ supn P

(
sups≤t

∥∥Zn(X)s −Zn
(
X(p)
)
s

∥∥> η
)
→ 0 (5.4.26)

Z
(
X(p)
) L-s=⇒ Z(X). (5.4.27)

The proof of (5.4.27) is exactly the same as for (5.2.20) in Lemma 5.2.8. By
Doob’s inequality we have E(sups≤t ‖X(p)s‖2)≤ 4E(

∫ t
0 ‖σ(p)s − σs‖2 ds), which

goes to 0 by (5.4.24). This implies the first claim in (5.4.25), which in turn implies
the second one.

It remains to prove (5.4.26). For this, observe that

Zn(X)
jk
t −Zn

(
X(p)
)jk
t
= 1√

Δn

4∑

r=1

[t/Δn]∑

i=1

χ(p, r)ni , where

χ(p,1)ni =
∫

I (n,i)

(
X(p)

j
s −X(p)j(i−1)Δn

)
bks ds

χ(p,2)ni =
d ′∑

l=1

∫

I (n,i)

(
B
j
s −Bj(i−1)Δn

) (
σkls − σ(p)kls

)
dWl

s

χ(p,3)ni =
d ′∑

l=1

∫

I (n,i)

(
X(p)

c,j
s −X(p)c,j(i−1)Δn

) (
σkls − σ(p)kls

)
dWl

s

χ(p,4)ni =
d ′∑

l=1

∫

I (n,i)

(
X(p)

j
s −X(p)j(i−1)Δn

)
σkls dW

l
s .

Moreover χ(p, r)ni is a martingale increment for r = 2,3,4. Therefore (5.4.26) will
follow if we prove that for all t > 0 we have, as p→∞:

sup
n

1

Δ
v/2
n

E

([t/Δn]∑

i=1

∣∣χ(p, r)ni
∣∣v
)
→ 0 when

{
either r = 1,2 and v = 1
or r = 3,4 and v = 2.

(5.4.28)
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We set

ani = E

(∫

I (n,i)

‖bs‖2 ds

)
, a′(p)ni = E

(∫

I (n,i)

∥∥σ(p)s
∥∥4 ds
)

α′(p)ni = E

(∫

I (n,i)

∥∥σs − σ(p)s
∥∥4 ds
)
.

We deduce from (2.1.34) and the Cauchy-Schwarz inequality that

E

(
sup

t∈I (n,i)

∣∣X(p)jt −X(p)j(i−1)Δn

∣∣4
)
≤ KΔn α

′(p)ni

E

(
sup

t∈I (n,i)

∣∣X(p)c,jt −X(p)c,j(i−1)Δn

∣∣4
)
≤ KΔn a

′(p)ni

E

(
sup

t∈I (n,i)

∣∣Bjt −Bj(i−1)Δn

∣∣2
)
≤ KΔn a

n
i .

Then we obtain, by a repeated use of the Cauchy-Schwarz inequality and (2.1.34)
again:

E
(∣∣χ(p, r)ni

∣∣v) ≤

⎧
⎪⎨

⎪⎩

KΔ
3/4
n (α′(p)ni )1/4 (a

n
i )

1/2 if r = 1,2 and v = 1

KΔn (α
′(p)ni )1/2 (a′(p)

n
i )

1/2 if r = 3, v = 2

KΔ
3/2
n

√
α′(p)ni if r = 4, v = 2.

Hölder’s inequality and
∑
i≥1 a

n
i ≤A and

∑
i≥1 a

′(p)ni ≤ 2A yield

[t/Δn]∑

i=1

(
α′(p)ni

)1/4 (
ani
)1/2 ≤√A t1/4

Δ
1/4
n

α′(p)1/4

[t/Δn]∑

i=1

(
α′(p)ni

)1/2 (
a′(p)ni

)1/2 ≤√2Aα′(p)1/2

[t/Δn]∑

i=1

(
α′(p)ni

)1/2 ≤ t1/2

Δ
1/2
n

α′(p)1/2.

At this stage, we deduce (5.4.28) from the property α′(p)→ 0. �

Lemma 5.4.12 Assume (SH). Then (X(n),Zn(X))
L-s=⇒ (X,Z(X)).

Proof 1) For each p ∈N
∗ we set

X#(p) = (δ1{Γ≤1/p}) � (p− q), X(p) = X−X#(p). (5.4.29)
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We can also write X(p) as (5.4.17), provided we replace δ by δ(p) = δ 1{Γ>1/p}
and bt by b(p)t = bt −

∫
{z:Γ (z)>1/p,‖δ(t,z)‖≤1} δ(t, z)λ(dz). Observe that δ(p) sat-

isfies (5.4.18), and b(p) is bounded for any fixed p. Thus (X(p)(n),Zn(X(p))
L-s=⇒

(X(p),Z(X(p)) for each p by Lemma 5.4.10. Therefore, by Proposition 2.2.4, it
suffices to prove the three properties (5.4.25), (5.4.26) and (5.4.27), as p→∞ (with
of course the present definition of X(p)).

2) We can realize all processes Z(X(p)) and also Z(X) on the same extension
of the space, with the same W ′, Rn− and Rn+, via the formula (5.4.3). Then

Z(X)
ij
t −Z

(
X(p)
)ij
t
= Z(X#(p)

)ij
t

=
∞∑

q=1

(
ΔX#(p)

j
Tq
R
j
q− +ΔX#(p)iTqR

j
p+
)

1{Tq≤t}.

Hence, since ct is bounded, and with a(p)= ∫{z:Γ (z)≤1/p} Γ (z)
2 λ(dz), we have

Ẽ

(
sup
s≤t
∥∥Z(X)s −Z

(
X(p)
)
s

∥∥2
)
≤KE

(
∑

s≤t

∥∥ΔX#(p)s
∥∥2
)
≤Kt a(p)

because ‖δ(ω, t, z)‖ ≤ Γ (z). Since a(p)→ 0 as p→∞, we have (5.4.27). More-
over, we also have E(sups≤t ‖X#(p)s‖2)≤Kta(p), hence (5.4.25).

3) It remains to prove (5.4.26), and this is done as in the previous lemma. We
have

Zn(X)
jk
t −Zn

(
X(p)
)jk
t
= 1√

Δn

4∑

r=1

[t/Δn]∑

i=1

χ(p, r)ni , where

χ(p,1)ni =
∫

I (n,i)

(
X(p)

#,j
s− −X(p)#,j(i−1)Δn

)
bks ds

χ(p,2)ni =
d ′∑

l=1

∫

I (n,i)

(
X(p)

#,j
s− −X(p)#,j(i−1)Δn

)
σkls dW

l
s

χ(p,3)ni =
∫

I (n,i)

∫ (
X(p)

#,j
s− −X(p)#,j(i−1)Δn

)
δ(s, z)k (p− q)(ds, dz)

χ(p,4)ni =
∫

I (n,i)

∫

{z:Γ (z)≤1/p}
(
X
j
s− −Xj(i−1)Δn

)
δ(s, z)k (p− q)(ds, dz).

Since χ(p, r)ni for r = 2,3,4 are martingale increments, (5.4.26) will follow if we
prove that for all t > 0, and as p→∞, we have (5.4.28) for r = v = 1, and for
r = 2,3,4 and v = 2.
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(2.1.33), (2.1.34) and (2.1.37), plus (SH), yield

s ∈ I (n, i) ⇒
{
E
((
X
j
s− −Xj(i−1)Δn

)2) ≤ KΔn

E
((
X(p)

#,j
s− −X(p)#,j(i−1)Δn

)2) ≤ Ka(p)Δn.

Another application of the same properties and the Cauchy-Schwarz inequality then
yield

E
(∣∣χ(p,1)ni

∣∣) ≤ KΔ2
n

√
a(p)

r = 2,3,4 ⇒ E
(∣∣χ(p, r)ni

∣∣2) ≤ KΔ2
n a(p).

Thus the left side of (5.4.28) is smaller thanKt
√
Δn a(p) when r = v = 1, and than

Kta(p) when r = 2,3,4 and v = 2. The result follows because a(p)→ 0. �

Proof of Theorem 5.4.6 As said before, we can assume (SQ). Under this assumption,

the convergence (X(n),Zn(X))
L-s=⇒ (X,Z(X)) has been proved in Lemma 5.4.12

when X has jumps and satisfies (SH), and in Lemma 5.4.11 when X is continuous
because in this case X has the form (5.4.17) with a vanishing δ.

When X and σ have no common jumps, the discontinuous part of Z(X) is F -
conditionally Gaussian by Proposition 5.1.1, and its continuous part is always F -
conditionally Gaussian, and those two parts are F -conditionally independent: then
Z(X) itself is F -conditionally Gaussian. �

Proof of Theorem 5.4.2 In view of (5.4.6) and since Z
ij = Zij +Zji , the first claim

follows from Theorem 5.4.6.
It remains to prove the last claims, for which we can again assume (SQ). With

the notation tn =Δn[t/Δn] and f ij (x)= xixj , we have

[X,X]t−[X,X]Δn[t/Δn] = ηnt +η′nt , ηnt =
∫ t

tn

cs ds, η′nt =
∑

tn<s≤t
f (ΔXs).

On the one hand, we have for all m≥ 1:

∥∥ηnt
∥∥ ≤
∫ t

tn

(‖cr‖ ∧m
)
dr +
∫ t

tn

(‖cr‖ −m
)+
dr

≤ mΔn +
(
Δn

∫ t

tn

((‖cr‖ −m
)+)2

dr

)1/2

,

because t− tn ≤Δn, and where the second inequality comes from Cauchy-Schwarz.
Then

lim
n

sup
s≤t

1√
Δn

∥∥ηns
∥∥ ≤
(∫ t

0

((‖cr‖ −m
)+)2

dr

)1/2
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for all m, and since
∫ t

0 ‖cs‖2 ds <∞ we deduce ηnt /
√
Δn

u.c.p.=⇒ 0. From this and the

property 1√
Δn
([X,X]nt − [X,X]Δn[t/Δn]) L-s=⇒Z it follows that, when X is continu-

ous, we indeed have 1√
Δn
([X,X]n − [X,X]) L-s=⇒Z.

Finally whenX has jumps, and under (SH), we still have ηnt /
√
Δn

u.c.p.=⇒ 0 because
c is bounded, and we also have

E
(∥∥η′nt
∥∥)≤KE

(
∑

tn<s≤t
‖ΔXs‖2

)
=KE

(‖δ‖2 � q
t
− ‖δ‖2 � q

tn

)≤KΔn,

hence η′nt /
√
Δn

P−→ 0. Then the stable convergence in law of the variables (5.4.5)
towards Zt follows. �

5.5 A Joint Central Limit Theorem

In the previous section, we have obtained a CLT for V
n
(f,X), another one for

V
′n
(f,X), and a last one for Z

n
or Zn, as defined in (5.4.1) and (5.4.7). How-

ever, there also exists a joint CLT for the triples (V
n
(f,X),V

′n
(f ′,X),Zn) or

(V
n
(f,X),V

′n
(f ′,X),Zn). Such a joint CLT, besides its own interest, has applica-

tions in various problems for high-frequency data: for example it is used (or, rather,
an extension of it, given in Chap. 11, is used) for testing whether a process jumps
or not; it is also used for estimating the relative importance of the “jump part” (as
measured by a suitable functional of type V n(f,X)) and the continuous martingale
part (as measured by some V ′n(f ′,X)).

The assumptions for the joint CLT are those under which the CLT for each of
the non-vanishing components holds, as they should be. The two test functions f
and f ′ are of dimensions q and q ′, and of course we suppose that at least one of
them is not identically 0, and also that they satisfy the conditions in Theorems 5.1.2
respectively in Theorems 5.3.5 or 5.3.6, in connection with the properties of X.

The limit of the processes (V
n
(f,X),V

′n
(f ′,X),Zn), for example, is expected

to be the process (V (f,X),V
′
(f ′,X),Z), but this triple is a priori meaningless as

long as we have not specified the “joint” law of this triple. For this, we do as follows:

• With the same Rp± (recall (5.1.2) and (5.1.3)), define V (f,X) by (5.1.4) and the
process Z′′ by

Z
′′ij
t =

∞∑

p=1

(
ΔX

j
Tp
Rip− +ΔXiTpRjp+

)
1{Tp≤t}. (5.5.1)

• Let (U
′
(f ′,X),Z′) be a (q ′ + d2)-dimensional continuous process on the ex-

tended space, which conditionally on F is a centered Gaussian martingale inde-
pendent of all Rp± and with variance-covariance given by (5.3.7) with f ′ instead
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of f and by

E
(
Z
′ij
t Z

′kl
t |F) = 1

2

∫ t

0
ciks c

jl
s ds

E
(
U
′(
f ′i ,X

)
t
Z′klt |F)=

∫ t

0
γ̃σs
(
f ′i
)kl
ds,

(5.5.2)

where, for a d × d ′ matrix α and a function g on R
d we have set

γ̃α(g)
kl = E

((
g(αU)− γ̂α(g)

)
U (αU)k (αU)l

)
(5.5.3)

(this complements the notation (5.2.4), and U is an N (0, Id ′)-distributed vari-
able).

• Set Z = Z′ +Z′′, and Z
ij = Zij +Zji .

• Set V
′
(f ′,X)= U ′(f ′,X)+A(f ′,X)+A′(f ′,X)+U ′′(f ′,X), where we use

the notation (5.3.8).

The above completely specifies the process (V (f,X),V
′
(f ′,X),Z,Z) “glob-

ally”, and separately the processes V (f,X), V
′
(f ′,X), Z, Z are the same as in the

individual CLTs.

Theorem 5.5.1 Let f be as in Theorem 5.1.2, and assume either that f ′ = 0 and
(H) holds, or that f ′ and X satisfy any one of the sets of assumptions of Theo-
rems 5.3.5 or 5.3.6. Then we have the following stable convergence in law:

(
V
n
(f,X),V

′n
(f ′,X),Zn

) L-s=⇒ (V (f,X),V (f ′,X),Z)
(
V
n
(f,X),V

′n
(f ′,X),Zn

) L-s=⇒ (V (f,X),V (f ′,X),Z)
(5.5.4)

with (V (f,X),V (f ′,X),Z) and (V (f,X),V (f ′,X),Z) as above.

Proof Exactly as for Theorem 5.4.2, it suffices to prove the second convergence.
By localization we may assume (SH) in all cases, and also (SK), (SK-r) and (SK’)
when relevant, depending on the properties of f ′.

1) The key ingredient is an extension of (5.4.21). As in the proof of Lemma 5.4.10
we consider the setting of Theorem 4.2.1 with un = Δn, but now q and q ′ in this
theorem are d + d2 and d ′ + d ′2 here. The function Φ on ΩW , satisfying (4.2.3),
is (d ′ + d ′2)-dimensional with the following components (with obvious notation for
the labels of the components):

Φi = Wi
1, Φlm =

∫ 1

0
Wl
s dW

m
s P

W -almost surely.

The process θ is in principle (d + d2)(d ′ + d ′2)-dimensional, but the only non-
vanishing components are

θi,r = σ ir , θjk,lm = σ jlσ km. (5.5.5)
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The (q ′ + d2)-dimensional function G on R
w × (Rd ×R

d2
) is given by

x ∈R
w, y ∈R

d, z ∈R
d2 � Gi

(
x, (y, z)

)= f ′i (y), Gjk
(
x, (y, z)

)= zjk.

With this set of notation, the process U
n
(G) of (4.2.6) has the components

U
n(
Gj
) = U

n(
f ′
)
, U

n(
Gjk
) = Z′n,jk, (5.5.6)

where U
n
(f ′) is given by (5.2.12) (with f ′ instead of f ) and Z′n is given by

(5.4.20).
Moreover, the process U(G) of (4.2.7), with θ again given by (5.5.5), is char-

acterized by the numbers given in (4.2.5) (the argument x does not appear here),
in which α is a (d + d2)× (d ′ + d ′2) matrix which will eventually take the values
θt . Using these numbers, an elementary computation allows us to check that, with
U(f ′,X)=U ′(f ′,X)+U ′′(f ′,X) and Z′ as described before the statement of the
theorem, the pair (U(f ′,X),Z′) is a version of U(G).

To complete the picture, we also recall that, with the notation (5.1.12) and with

ζp =∑d
i=1 ∂if (ΔXSp)R(n,p)

i , we have ζ np − ζp P−→ 0 for all p. Then, at this
stage, we deduce from Proposition 4.4.10 that as soon as X satisfies (SH), and with
η(n,p) and ηp as in the proof of Lemma 5.4.10,

(
U
n(
f ′
)
,Z′n,
(
ζ np , η(n,p)

)
p≥1

) L-s−→ (U(f ′,X),Z′, (ζp, ηp)p≥1
)

(5.5.7)

(we also use (5.5.6) here), for the product topology on D
q ′+d2 × (Rq+d2

)N
∗
.

2) In this step, we fix the integer m ≥ 1. We use the notation of the previous
sections, in addition to the already mentioned Z′n and ζ np : in particular X(m),
X′(m), Yn(m) are given by (5.1.10) and (5.1.12). As for the processes introduced
in (5.4.29), we employ another notation to distinguish them from the previously
defined X(m): namely, we set

X̃(m)=X− (δ 1Acm) ∗ (p− q).

We also set

Θn(m)t =
∑

p∈Pm:Sp≤Δn[t/Δn]
η(n,p), Θ(m)t =

∑

p∈Pm:Sp≤t
ηp (5.5.8)

which are the process Θn and the last d2 components of the process Θ associated
with X̃(m) by (5.4.19). In view of the definitions of Θ(m)n and Yn(m) and of the
fact that

V
(
f,X′(m)

)
t
=

∑

p∈Pm:Sp≤Δn[t/Δn]

d∑

i=1

∂fi(ΔXSp)R
i
p,
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we deduce from (5.5.7) that

(
Yn(m),U

n(
f ′
)
,Z′n +Θ(m)n) L-s=⇒ (V (f,X′(m)),U(f ′,X),Z′ +Θ(m)).

(5.5.9)
The process X̃(m) satisfies the assumptions of Lemma 5.4.10 (with b replaced

by the bounded process b(m) of (5.1.10)), and X̃(m)c = Xc for all m. Therefore,
by (5.4.20) and the final step of the proof of Lemma 5.4.10, we deduce from (5.5.9)
that
(
Yn(m),U

n(
f ′
)
,Zn
(
X̃(m)
)) L-s=⇒ (V (f,X′(m),U ′(f ′,X)),Z′ +Θ(m)).

(5.5.10)
3) Now we are ready to prove the second convergence in (5.5.4). The convergence

(5.5.10) holds for any m, and as m→∞ we have seen V (f,X(m))
u.c.p.=⇒ V (f,X)

in (5.1.16), and Θ(m)
u.c.p.=⇒ Z′′ in step 2 of the proof of Lemma 5.4.12. Therefore, it

remains to prove the following three properties (for all T ,η > 0):

lim
m→∞ lim sup

n→∞
P

(
sup
t≤T
∥∥V n(f,X)t − Yn(m)t

∥∥> η
)
= 0 (5.5.11)

lim
m→∞ lim sup

n→∞
P

(
sup
t≤T
∥∥Zn(X)t −Zn

(
X̃(m)
)
t

∥∥> η
)
= 0 (5.5.12)

V
′n(
f ′,X
)−Un(f ′) u.c.p.=⇒ A

(
f ′,X
)+A′(f ′,X). (5.5.13)

(5.5.11) results from the property limn P(Ωn(T ,m)) = 1 for all m and a com-
bination of (5.1.13) and (5.1.17). (5.5.12) is shown in step 3 of the proof of
Lemma 5.4.12. As for (5.5.13), it follows from the next three arguments: first, in

Lemma 5.2.5 we have U
n
(f ′) − Yn(f ′,X) u.c.p.=⇒ 0, under the conditions of The-

orem 5.2.2 (on f ′, instead of f ; these conditions are satisfied under the assump-
tions of the present theorem). Second, by Lemma 5.3.13 it is enough to prove
the result when X is continuous. Third, recalling the decomposition (5.3.1), it re-

mains to prove that An(f,X)
u.c.p.=⇒ A(f ′,X)+A′(f ′,X), and this is exactly (5.3.24)

plus (5.3.25).
Thus all three properties above are satisfied, and the proof is complete. �

5.6 Applications

In this section we pursue the applications which have been outlined in the previous
chapter, and give another very important application which is the Euler approxima-
tion schemes for a stochastic differential equation.

5.6.1 Estimation of the Volatility

To begin with, we consider the problem of estimating the volatility or the integrated
volatility. This has been introduced in Sect. 3.5.1, from which we borrow all nota-
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tion, and we suppose that the underlying process is continuous. That is, we have a
one-dimensional Itô semimartingale X of the form

Xt = X0 +
∫ t

0
bs ds +

∫ s

0
σs dWs. (5.6.1)

Our concern is to “estimate” the variable
∫ t

0 cs ds at some terminal time t , where
ct = σ 2

t .
Let us recall the following first. We set for p > 0:

D(X,p,Δn)t =
[t/Δn]∑

i=1

∣∣Δni X
∣∣p.

Then when p ≤ 2, or p > 2 and (3.4.6) holds, and if σ is càdlàg, we have

Δ
1−p/2
n D(X,p,Δn)t

u.c.p.=⇒ mpA(p)t , where A(p)t =
∫ t

0
|σs |p ds (5.6.2)

(since X is continuous) and mp = E(|U |p) is the p absolute moment of an N (0,1)
random variable U .

When p = 2, thenD(X,2,Δn)= [X,X]n is the approximate quadratic variation
and, if X is continuous, we can rewrite Theorem 5.4.2 as

1√
Δn

(
D(X,2,Δn)−A(2)

) L-s=⇒ Zt =
√

2
∫ t

0
cs dW

′
s, (5.6.3)

andW ′ is another Brownian motion, defined on a very good extension of the original
filtered probability space, and is independent of F . This holds without the càdlàg
property of σ , but we need

∫ t
0 b

2
s ds <∞ for all t .

This results tells us that the approximation of the integrated volatilityA(2)t given
by D(X,2,Δn)t is accurate with the “rate”

√
Δn. However this is of little help for

constructing, for example, a confidence interval for the (unknown) value A(2)t on
the basis of the observations XiΔn at stage n. To this end we need more, namely a
standardized version of the CLT, which goes as follows (we are not looking here for
the minimal hypotheses):

Theorem 5.6.1 Let X be a continuous Itô semimartingale satisfying Assumption
(H). Then for each t > 0 the random variables

√
3 (D(X,2,Δn)t −A(2)t )√

2D(X,4,Δn)t
(5.6.4)

converge stably in law to a limit which is N (0,1) and independent of F , in restric-
tion to the set ΩWt = {A(2)t > 0} of (3.5.10).

Proof On the one hand the left side of (5.6.3) at time t , say Znt , converges stably
in law to Zt . On the other hand, Gnt = 1

Δn
D(X,4,Δn)t converges in probability
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to 3A(4)t (recall m4 = 3). By (2.2.5), the pair (Gnt ,Z
n
t ) converges stably in law to

(3A(4)t ,Zt ), and by the continuous mapping theorem Znt /
√
Gnt converges stably

in law as well to Z′t = Zt/
√

3A(4)t , in restriction to the set {A(4)t > 0} which
coincides with ΩWt .

Now, conditionally on F , the variable Zt is centered normal with variance
2A(4)t , so Z′t is F -conditionally centered normal with variance 2/3, in restric-
tion to the F measurable set ΩWt . Upon observing that the left side of (5.6.4) is√

3 Znt /
√

2Gnt , the result follows. �

The stable convergence in law above seems of little practical importance, only
the fact that the limit in law is N (0,1) really matters, but it is given for free, and in
the case ΩWt is a proper subset of Ω it is necessary for having a sound statement:
indeed, the stable convergence in law restricted to a subset Ω ′ ⊂Ω is meaningful,
whereas the simple convergence in law cannot be “restricted” to a subset.

Note that the statement of the theorem is “empty” at time t = 0, becauseΩW0 = ∅.
Also, we can consider (5.6.4) as a process, but there is nothing like a functional
convergence for this process.

In practice, when X is continuous we usually have ΩWt = Ω . In this case, we
are in good shape for deriving an (asymptotic) confidence interval: if α ∈ (0,1),
denote by zα the α-symmetric quantile of N (0,1), that is the number such that
P(|U | > zα) = α where U is an N (0,1) variable. Then a confidence interval with
asymptotic significance level α for A(2)t is given by

[
D(X,2,Δn)t − zα

√
2D(X,4,Δn)t

3
,D(X,2,Δn)t + zα

√
2D(X,4,Δn)t

3

]
.

All the quantities above are, as they should be, known to the statistician when the
variables XiΔn are observed.

If we are interested in estimating A(p)t for p �= 0 we can again use (5.6.2).
However the CLTs which now apply are Theorem 5.3.5-(i) when p > 1 and Theo-
rem 5.3.6-(i) when p ≤ 1: in both cases this requiresX to be continuous with further
(K) when p > 1 and (K’) when p ≤ 1. The following result is then proved exactly
as the previous theorem:

Theorem 5.6.2 Let p > 0. If X is a continuous Itô semimartingale satisfying (K)
when p > 1 and (K’) when p ≤ 1, and for each t > 0, the random variables

√
m2p (Δ

1−p/2
n D(X,p,Δn)t −mpA(p)t )√

(m2p −m2
p)Δ

2−p
n D(X,2p,Δn)t

converge stably in law to a limit which is N (0,1) and independent of F , in restric-
tion to the set ΩWt (which equals Ω when (K’-1) holds).
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A confidence interval with asymptotic significance level α forA(p)t is then given
by

[
Δ

1−p/2
n

mp

(
D(X,p,Δn)t − zα

√
(m2p −m2

p)D(X,2p,Δn)t
m2p

)
,

Δ
1−p/2
n

mp

(
D(X,p,Δn)t + zα

√
(m2p −m2

p)D(X,2p,Δn)t
m2p

)]
.

Finally, observe that when p ∈ (0,1) the same holds even if X has jumps, pro-
vided it satisfies (K’-p), but this is wrong if p ≥ 1.

5.6.2 Detection of Jumps

For the problem of jump detection, as expounded in Sect. 3.5.2, we do not have
the tools for going further. Indeed, the choice of the cut-off level x = xn in (3.5.9)
requires a CLT for the statistic Sn of (3.5.6). In this chapter we do have a CLT
for D(X,p,Δn)t or D(X,p, kΔn)t when X is continuous (or equivalently, in
restriction to Ω(c)t ), as seen just above. Theorem 5.1.2 also provide a CLT for
D(X,p,Δn)t or D(X,p, kΔn)t in restriction to Ω(d)t . But in both cases we need
a joint CLT for the pair (D(X,p,Δn)t ,D(X,p, kΔn)t ), and such results will be
given in Chap. 11 only.

5.6.3 Euler Schemes for Stochastic Differential Equations

This subsection is concerned with probably the most useful and widespread ex-
ample of discretization of processes, outside the realm of statistics of processes.
Historically speaking, it is also the oldest example, its roots going back to Euler
who introduced the well known method bearing his name for solving differential
equations.

This example necessitates some non-trivial background about the general theory
of stochastic differential equations (SDE, in short). A comprehensive exposition of
the theory would go way beyond the scope of this book, and we will make use
of the results of the theory (including the convergence results) without reproving
everything. For the most basic results and a general understanding of the setting of
SDEs, we refer for example to Protter [83].

1 – The setting. The setting is as follows: we have a filtered probability space
(Ω,F , (Ft )t≥0,P) endowed with a q-dimensional driving process X for the SDE.
The most usual case, which gives rise to Itô differential equations, is the continuous
case where X is a (d − 1)-dimensional Brownian motion, plus a last component
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which is the drift t . However, here we consider a more general situation where the
driving process X is a d-dimensional Itô semimartingale satisfying Assumption (H)
(the initial value X0 of X is irrelevant here).

Our SDE will be q-dimensional, and apart from the driving process X it involves
two other ingredients: one is the initial condition, which for simplicity we take non-
random, as a given point y0 in R

q . The other is the coefficient, which is a function
f from R

q into R
q ⊗R

d (the set of q × d matrices). The equation reads as follows:

dYt = f (Yt−) dXt , Y0 = y0 (5.6.5)

or, component-wise and in integral form, as

i = 1, . . . , q ⇒ Y it = yi0 +
d∑

j=1

∫ t

0
f (Ys−)ij dXjs . (5.6.6)

Below we consider only the most common case where the function f is C1

and with linear growth, that is ‖f (y)‖ ≤ K(1 + ‖y‖) for some constant K . This
implies that the equation has a unique (strong) solution: that is, there is a process
Y which is a semimartingale on (Ω,F , (Ft )t≥0,P) satisfying (5.6.6), and any other
semimartingale satisfying the same is almost surely equal to Y . Furthermore, the
solution is a strong Markov process as soon as the driving process X is a Lévy
process.

2 – The Euler scheme. Although existence and uniqueness are ensured, the “explicit”
solution and its law are in general not available. However for practical purposes it is
often the case that we need to evaluate the law of Y , at least in the following sense:
we want E(g(Yt )) for some functions g on R

q , or maybe E(G(Y )) for a function
G on the Skorokhod space D

q . In the absence of explicit or closed formulas, this
evaluation is necessarily done via a numerical approximation.

Now, suppose that X is a Lévy process. If we want E(g(Yt )), which is a func-
tion h(y0) of the starting point, we can use the integro-differential equation (or
pseudo-differential equation) which is satisfied by the function h and try to solve
it numerically: there are several ways for doing this when X, hence Y as well, are
continuous, since in this case h satisfies a partial differential equation whose coef-
ficients are specified by the coefficient f . However these methods work effectively
only when the dimension q is small, and are not really available when X is not con-
tinuous. Moreover evaluating E(G(Y )) for a functional G on the Skorokhod space
is virtually impossible by analytical methods. And of course, when X is a general
semimartingale, no analytical method is available, even for E(g(Yt )).

Therefore we must rely in general on Monte-Carlo simulations. This means that
we “simulate” a large number N of independent copies of Y , say Y (1), . . . , Y (N).
By the ordinary Law of Large Numbers, as N→∞ we have

1

N

N∑

r=1

G
(
Y (r)
) → E

(
G(Y)
)
. (5.6.7)
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This leads to another problem: how do we simulate the process Y ? An exact sim-
ulation is in general impossible again, and this is where the Euler schemes come
into play. First, simulating the whole driving process X, say on a fixed time interval
[0, T ], is numerically meaningless. At the best, we can simulate the discrete ap-
proximation X(n)t =XΔn[t/Δn] for some time step Δn > 0 which is as small as one
wishes (non regular discretization schemes are of course possible here). Simulating
X(n) amounts to simulating the increments Δni X. This is still in general an arduous
task, although for quite a few Lévy processes it is indeed possible: if the compo-
nents of X are Brownian motions, of course, or stable processes, or tempered stable
processes, there are easy methods to perform the simulation in a very efficient way.

Now we turn to the simulation of the solution Y itself, assuming that simulating
the increments Δni X is actually feasible. At stage n, the Euler approximation of Y
is the process Yn defined recursively on i as follows:

Yn0 = y0, Y niΔn = Yn(i−1)Δn + f
(
Yn(i−1)Δn

)
Δni X (5.6.8)

(we use here a matrix notation). This defines Yn on the grid (iΔn : i ∈ N), in a
feasible way in the sense of simulation. For the mathematical analysis, we need to
extend Yn to all times t . The simplest way consists in setting

t ∈ [(i − 1)Δn, iΔn
) ⇒ Ynt = Yn(i−1)Δn, (5.6.9)

which is of course consistent with (5.6.8).
At this point, we have to emphasize the fact that Yn is not the discretized version

Y (n) of the solution X, in the sense of (5.6.7).

3 – The error process. Our main concern will be an evaluation of the error incurred
by replacing Y with its Euler approximation Yn. There are two sorts of errors: one
is the “weak” error, that is E(g(Y nt )) − E(g(Yt )), or E(G(Yn)) − E(G(Y )) for a
functional G, but this is in general impossible to evaluate accurately, especially for
a functionalG, and especially also whenX is an arbitrary semimartingale. The other
sort of error is the “strong” error, that is Yn − Y . Of course, the only sensible thing
to do is to compare Yn and Y on the grid points, so our strong error process will be
the piecewise constant process

Un = Yn − Y (n). (5.6.10)

Our analysis of the behavior of Un is based upon a result from Kurtz and Protter
[68], which will be stated without proof. We first need some notation. For any two
real-valued semimartingales V and V ′, we write

Z
(
V,V ′
)n
t
=

[t/Δn]∑

i=1

∫

I (n,i)

(Vs− − V(i−1)Δn) dV
′
s .
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Next, a sequence V n of processes of the form V nt =
∑[t/Δn]
i=1 ζ ni with ζ ni being FiΔn

measurable is said to have the P-UT property if for each t the sequence of variables

[t/Δn]∑

i=1

(∣∣E
(
ζ ni 1{|ζ ni |≤1} |F(i−1)Δn

)∣∣+E
(∣∣ζ ni
∣∣2 1{|ζ ni |≤1} |F(i−1)Δn

)

−E(ζ ni 1{|ζ ni |≤1} |F(i−1)Δn

)2 + ∣∣ζ ni
∣∣1{|ζ ni |>1}

)
(5.6.11)

is bounded in probability. This is the P-UT property stated in Jacod and Shiryaev
[57], see Theorem VI.6.15, the acronym meaning “predictably uniformly tight”, and
restricted here to processes that are constant on each interval [(i − 1)Δn, iΔn].

The next theorem gathers the results that are needed later. It says that the Euler
approximationXn always converges to the solutionX, and it provides a criterion for
obtaining a rate of convergence. The statement below is a mixture of Theorem 3.2
of Jacod and Protter [55] and Theorem 2.2 of Jacod [58].

Theorem 5.6.3 Let X be a q-dimensional semimartingale and f be a C1 function
from R

q into R
q ⊗R

d , with linear growth.

a) We have Un
u.c.p.=⇒ 0.

b) Suppose that, for some sequence αn of positive numbers tending to infin-
ity, each sequence (αnZ(Xi,Xj )n) has the P-UT property, and suppose also
that (X(n), (αnZ(Xi,Xj )n)1≤i,j≤q) converges stably in law to (X,Z), where
Z = (Z ij )1≤i,j≤q is defined on a very good filtered extension of the space
(Ω,F , (Ft )t≥0,P). Then Z is a semimartingale on the extended space and αnUn

converges stably in law to U , where U = (Ui)1≤i≤d is the unique solution on the
extended space of the following linear equation:

Uit =
d∑

j=1

q∑

k=1

∫ t

0
∂kf

ij (Ys−)Uks− dX
j
s −

d∑

j,l=1

q∑

k=1

∫ t

0
∂kf

ij (Ys−)f kl(Ys−) dZ ljs .

(5.6.12)

Taking this theorem for granted, we are now in a position to state (and prove)
the CLT-type result which we want for Un. In this result, the ingredients Tp , Rp−,
Rp+, W ′ and c̃ and σ̂ are exactly those occurring in (5.4.3), and in particular W ′
and Rp− and Rp+ are defined on a very good extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of
(Ω,F , (Ft )t≥0,P).

Theorem 5.6.4 Let X be a d-dimensional Itô semimartingale which satisfies As-
sumption (Q). Let f be a C1 function from R

q into R
q ⊗ R

d , with linear growth.
Let Un be the error process (5.6.10) of the Euler scheme Zn associated by (5.6.9)
with (5.6.5).

Then 1√
Δn
Un converges stably in law to a limiting process U which is the unique

solution on the extended space (Ω̃, F̃, (F̃t )t≥0, P̃) of the following linear equation:
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Uit =
d∑

j=1

q∑

k=1

∫ t

0
∂kf

ij (Ys−)Uks− dX
j
s

− 1√
2

d∑

j,l,m,r=1

q∑

k=1

∫ t

0
∂kf

ij (Ys−)f kl(Ys−)̃c lj,mrs dW ′mr
s

−
d∑

j,l=1

q∑

k=1

∞∑

p=1

∂kf
ij (YTp−)f kl(YTp−)

× (ΔXjTp Rlp− +ΔXlTn R
j
p+
)
1{Tp≤t}. (5.6.13)

This equation is (5.6.12), written with Z = Z, the process given by (5.4.3), in line
with Theorem 5.4.6 and the fact that Zn in that theorem is (Z(Xi,Xj )n/

√
Δn )i,j≤d

here.
Coming back to the computation of E(G(Y )) for a continuous functional G on

the Skorokhod space, we use (5.6.7) with N simulated copies of the Euler approx-
imation Yn, for some given time step Δn. The limit in (5.6.7) (as N→∞) is then
E(G(Yn)) and, on top of the statistical (Monte-Carlo) error of order 1/

√
N , we have

the approximation error E(G(Yn))− E(G(Y )). This is where the theorem helps: it
basically says that, provided G is well behaved, this approximation error is of order√
Δn. It also gives (in principle) a way to evaluate this error by using the equation

(5.6.13) in the same way as in the “standardization” made in Theorem 5.6.1.
Note however that, although the rate

√
Δn is sharp “in general”, it is not so for

the error E(g(Y nt )) − E(g(Yt )), and when X is a Lévy process: in this case, and
provided Δn is such that t/Δn is an integer, this error is of order Δn: see Talay and
Tubaro [91] or Jacod, Kurtz, Méléard and Protter [59].

Proof By localization, it is enough to prove the result whenX satisfies (SQ). In view
of Theorems 5.4.6 and 5.6.3, it remains to prove that for all j, k ≤ d the sequence
of processes Zn,jk has the P-UT property.

1) Letting V nt =
∑[t/Δn]
i=1 ζ ni be adapted processes, we give two criteria for the

P-UT property. First, the expectation of (5.6.11) is smaller than 2E(
∑[t/Δn]
i=1 |ζ ni |),

so

sup
n

E

([t/Δn]∑

i=1

∣∣ζ ni
∣∣
)
< ∞ ∀t ⇒ (

V n
)

has P-UT. (5.6.14)

Second, suppose that E(ζ ni | F(i−1)Δn) = 0 (we have martingale increments). The
first summand in (5.6.11) equals |E(ζ ni 1{|ζ ni |>1} | F(i−1)Δn)|, and |ζ ni 1{|ζ ni |>1}| ≤
(ζ ni )

2. Then the expectation of (5.6.11) is smaller than 2E(
∑[t/Δn]
i=1 |ζ ni |2), and we

have

E
(
ζ ni |F(i−1)Δn

)= 0

supn E
(∑[t/Δn]

i=1

∣∣ζ ni
∣∣2)<∞ ∀t

}
⇒ (V n) has P-UT. (5.6.15)
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Another evident property is that if, two sequences (V n) and (V ′n) have the P-UT
property, then so does the sum (V n + V ′n).

2) For any process Y we write for s ≥ (i − 1)Δn:

Yni,s = Ys − Y(i−1)Δn . (5.6.16)

Under (SH) we set b′t = bt +
∫
{‖δ(t,z)>1} δ(t, z)λ(dz), so we have

Z
n,jk
t =

d+2∑

l=1

[t/Δn]∑

i=1

ζ(l)ni , where

ζ(l)ni =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
Δn

∫
I (n,i)

X
j,n
i,s− σkls dWl

s if l = 1, . . . , d

1√
Δn

∫
I (n,i)

∫
X
j,n
i,s− δ(s, z)k (p− q)(ds, dz) if l = d + 1

1√
Δn

∫
I (n,i)

X
j,n
i,s− b′ks ds if l = d + 2

and it is enough to prove that each sequence V (l)n =∑[t/Δn]i=1 ζ(l)ni has the P-UT
property. (2.1.33), (2.1.34) and (2.1.36) yield E(‖Xni,s‖2)≤KΔn if s ∈ I (n, i), and
b′ and σ are bounded. Therefore by the Cauchy-Schwarz and Doob’s inequalities
E(|ζ(l)ni |p)≤KΔn if p = 2 and l = 1, . . . , d + 1, and also if p = 1 and l = d + 2.
Then the P-UT property for Y(l)n follows from (5.6.15) for l = 1, . . . , d + 1 and
from (5.6.14) for l = d + 2.

3) Finally we suppose that X is continuous and
∫ t

0 (‖bs‖2 + ‖cs‖2) ds ≤ Kt for

all t . Then X =X0 +B +Xc and Zn,jkt =∑2d+2
l=1
∑[t/Δn]
i=1 ζ(l)ni , where

ζ(l)ni =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1√
Δn

∫
I (n,i)

X
c,j,n
i,s− σkls dWl

s if l = 1, . . . , d

1√
Δn

∫
I (n,i)

B
j,n
i,s− σkls dWl

s if l = d + 1, . . . ,2d

1√
Δn

∫
I (n,i)

X
c,j,n
i,s− bks ds if l = 2d + 1

1√
Δn

∫
I (n,i)

B
j,n
i,s− bks ds if l = 2d + 2.

Again it is enough to prove that each sequence Y(l)n =∑[t/Δn]i=1 ζ(l)ni has the P-UT
property. (2.1.33) and (2.1.34) yield for all p ≥ 2 and s ∈ I (n, i):

∥∥Bni,s
∥∥2 ≤Δn

∫

I (n,i)

‖br‖2 dr, E
(∥∥Xc,ni,s

∥∥p)≤KpΔp/2−1
n E

(∫

I (n,i)

‖cr‖p/2 dr
)
.

Therefore by the Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities, we
get
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E
(∣∣ζ(l)ni

∣∣p)≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E
(∫
I (n,i)

‖cs‖2 ds
)

if p = 2, l = 1, . . . , d

E
(∫
I (n,i)

‖bs‖2 ds
∫
I (n,i)

‖cs‖ds
)

if p = 2, l = d + 1, . . . ,2d

E
(∫
I (n,i)

(‖bs‖2 + ‖cs‖) ds
)

if p = 1, l = 2d + 1√
Δn E
(∫
I (n,i)

‖bs‖2 ds
)

if p = 1, l = 2d + 2.

Since
∫ t

0 ‖bs‖2 ds and
∫ t

0 ‖cs‖2 ds and
∫ t

0 ‖cs‖ds are bounded by hypothesis, it fol-
lows that the array ζ(l)ni satisfies the conditions in (5.6.15) when l = 1, . . . ,2d and
in (5.6.14) when l = 2d + 1,2d + 2. This completes the proof. �
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Chapter 6
Integrated Discretization Error

In contrast with the previous chapters and most of the forthcoming ones, here we
study a different kind of functionals, namely

∑Nn(t)
i=1 f (X(i−1)Δn), for a regular dis-

cretization scheme with time step Δn→ 0.
The law of large numbers for this sort of functionals is evident: as soon as the

d-dimensional process X is, say, càdlàg and f is a continuous function on R
d , we

have

Δn

[t/Δn]∑

i=1

f (X(i−1)Δn) →
∫ t

0
f (Xs) ds,

the convergence taking place for each ω and being locally uniform in time: this
comes from the convergence of Riemann sums. The choice of X(i−1)Δn in the
ith summand is arbitrary, we could have taken Xtn,i for any tn,i ∈ I (n, i) = ((i −
1)Δn, iΔn] instead, but it fits better for later results.

The associated Central Limit Theorem is more interesting. It concerns the behav-
ior of the following processes (recall the discretized versionX(n)t =XΔn[t/Δn] of the
process X):

Ṽ n(f,X)t = Δn
[t/Δn]∑

i=1

f (X(i−1)Δn)−
∫ Δn[t/Δn]

0
f (Xs) ds

=
∫ Δn[t/Δn]

0

(
f
(
X(n)s
)− f (Xs)

)
ds

(taking Δn[t/Δn] instead of t as the upper bound is for convenience: it avoids
boundary terms). The variable Ṽ n(f,X) may be viewed as a kind of “integrated”
measure of the error incurred by the discretization, whenX is replaced byX(n). Per-
haps more to the point, we could take the absolute value of the error, or some power
of it, which leads us to introduce the following processes for a priori any p > 0:

Ṽ n(f,p,X)t =
∫ Δn[t/Δn]

0

∣∣f
(
X(n)s
)− f (Xs)

∣∣p ds.
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It may appear that this chapter digresses from the main stream of this book.
However, consider for a moment the case of the identity function f (x) = x. The
functional V n(f,X)t =∑[t/Δn]i=1 f (Δni X) is equal to X(n)t − X0, which converges
pathwise to Xt − X0 for the Skorokhod topology. In this case the CLT given in
Theorem 5.1.2 does not apply, whereas Theorem 5.3.6 amounts simply to X(n) −
X0 →X−X0, because with the notation of this theorem we have in the present case
V
′n
(f,X) = X(n) − X0 and U

′
(f,X) = A′(f,X) = 0 and A(f,X)+ U ′′(f,X) =

X−X0.
In other words, one can view a CLT for Ṽ n(f,X) or for Ṽ n(f,p,X) as a sub-

stitute of proper CLTs for V n(f,X) or V ′n(f,X), which do not exist as such when
f (x)= x.

The content of this chapter is taken from the paper [56] of Jacod, Jakubowski and
Mémin, with a few improvements.

6.1 Statements of the Results

The process of interest X is a d-dimensional Itô semimartingale, on the filtered
probability space (Ω,F , (Ft )t≥0,P), written in its Grigelionis form as

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+ (δ1{‖δ‖≤1}) � (p− q)t + (δ1{‖δ‖>1}) � pt . (6.1.1)

Here,W is a d ′-dimensional Brownian motion and p is a Poisson measure on R+ ×
E with compensator q(dt, dz)= dt⊗λ(dz) (λ is a σ -finite measure on the auxiliary
space (E,E)). Then b and δ are d-dimensional and σ is d × d ′-dimensional, and as
usual c= σσ�.

Most of the time, we will need an assumption of the same type but stronger than
Assumption 4.4.2, or (H). Below, r is a real in [0,2].

Assumption 6.1.1 (or (H-r)) X is an Itô semimartingale given by (6.1.1), and we
have:

(i) The process b is locally bounded.
(ii) The process σ is càdlàg.

(iii) There is a localizing sequence (τn) of stopping times and, for each n, a deter-
ministic nonnegative function Γn on E such that

∫
Γn(z)

rλ(dz) <∞ (with the
convention 00 = 0) and ‖δ(ω, t, z)‖∧1≤ Γn(z) for all (ω, t, z)with t ≤ τn(ω).

(H-2) is exactly (H), whereas (H-r) for r ∈ [0,2) implies r ∈ I(X) where, ac-
cording to (3.2.2), I(X) is the set of all p ≥ 0 such that

∑
s≤t ‖ΔXs‖p <∞ a.s.

for all t . In fact, (H-r) when r < 2 is slightly stronger than (H) plus the property
r ∈ I(X). Furthermore all (H-r) are the same as (H) whenX is continuous. Observe
also that, as far as the coefficient δ is concerned, (H-r) is the same as Assumption
5.3.2, that is (K-r), except that we do not require r ≤ 1. Finally (H-r) implies (H-r ′)
for all r ′ ∈ [r,2].



6.1 Statements of the Results 189

The results are somewhat similar to Theorem 5.4.2, and we start with a descrip-
tion of the limiting processes. As in the previous chapter, we consider an auxiliary
space (Ω ′,F ′,P′) supporting a d ′-dimensional Brownian motion W ′ (the same di-
mension as for W ) and a sequence (κn)n≥1 of i.i.d. variables, uniformly distributed
on (0,1) and independent of W ′. We also consider an arbitrary weakly exhausting
sequence (Tn)n≥1 for the jumps ofX, see, e.g., before (5.1.2). Then we construct the
very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P) by (4.1.16),
that is:

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ) and such that
κn is F̃Tn measurable for all n andW ′ is (F̃t )-adapted.

Then W ′ is a Brownian motion independent of (W, p), and p is a Poisson measure
with compensator q and independent of (W,W ′), on the extended space.

We start with the processes Ṽ n(f,X), or rather with−Ṽ n(f,X)which are some-
what more natural to consider.

Theorem 6.1.2 Let f be a C2 function from R
d into R

q . Assume that X is an Itô
semimartingale, which either is continuous or satisfies (H) (that is, (H-2)). Then the
processes − 1

Δn
Ṽ n(f,X) converge stably in law to the process

Ṽ (f,X)t = 1

2

(
f (Xt )− f (X0)

)+ Ṽ ′(f,X)t + Ṽ ′′(f,X)t , (6.1.2)

where

Ṽ ′(f,X)t = 1√
12

d∑

j=1

d ′∑

k=1

∫ t

0
∂jf (Xs)σ

jk
s dW ′k

s (6.1.3)

Ṽ ′′(f,X)t =
∑

n:Tn≤t

(
f (XTn− +ΔXTn)− f (XTn−)

)(
κn − 1

2

)
. (6.1.4)

The first term in (6.1.2) is a sort of “bias”, analogous to the last three terms in
(5.3.6), and it is defined on the original space, whereas Ṽ ′(f,X) and Ṽ ′′(f,X) in-
volve extra randomness and necessitates the extension of the space. The process
Ṽ ′(f,X) is obviously well defined. The process Ṽ ′′(f,X) is well defined by Propo-
sition 4.1.4, because the variables κn − 1/2 are centered and

∑

s≤t

∥∥f (Xs− +ΔXs)− f (Xs−)
∥∥2 < ∞ (6.1.5)

for all t . Note also that Ṽ ′(f,X) and Ṽ ′′(f,X) are, conditionally on F , two inde-
pendent processes with independent increments, centered and with covariances

E
(
Ṽ ′
(
f j ,X
)
t
Ṽ ′
(
f k,X
)
t
|F) = 1

12

d∑

l,m=1

∫ t

0
∂lf

j (Xs) c
lm
s ∂mf

k(Xs) ds
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E
(
Ṽ ′′
(
f j ,X
)
t
Ṽ ′′
(
f k,X
)
t
|F) = 1

12

∑

s≤t

(
f j (Xs− +ΔXs)− f j (Xs−)

)

× (f k(Xs− +ΔXs)− f k(Xs−)
)

(we use here the fact that the variance of κn is 1/12).
Now, (6.1.5) holds as soon as f is C1, but the C2 property of f is heavily used

in the proof, through Itô’s formula. However, we can take advantage of the gener-
alized Itô’s formula given in Theorem 3.2.2, to obtain a similar result under weaker
conditions on f (but stronger assumptions on X).

For this we recall that a Cp function, when p is not an integer, is a [p]-
continuously differentiable function whose [p]th partial derivatives are Hölder with
index p− [p] on every compact subset of Rd . We also need the following process,
well defined as soon as 1 ∈ I(X):

B ′t =
∫ t

0
bs ds − (δ 1{‖δ‖≤1}) ∗ qt . (6.1.6)

Theorem 6.1.3 Let f be a Cr function from R
d into R

q , for some r ∈ (0,2), and
assume that X satisfies (H-r), with moreover Xc = 0 when r ∈ [1,2) and Xc =
B ′ = 0 when r < 1. Then the processes − 1

Δn
Ṽ n(f,X) converge stably in law to the

process

Ṽ (f,X)t = 1

2

(
f (Xt )− f (X0)

)+ Ṽ ′′(f,X)t , (6.1.7)

where Ṽ ′′(f,X) is again defined by (6.1.4).

Above, we have r ∈ I(X) and (6.1.5) holds when f is Cr/2, hence a fortiori
when it is Cr : so again Ṽ ′′(f,X) is well defined. Since Xc = 0 we have Ṽ ′(f,X)=
0, and the two formulas (6.1.2) and (6.1.7) agree. Note also that Ṽ ′(f,X) is of finite
variation when r ≤ 1, but in general not when r > 1. Moreover, again when r < 1,
the limit (6.1.7) can also be written as

Ṽ (f,X)t =
∑

n:Tn≤t

(
f (XTn− +ΔXTn)− f (XTn−)

)
κn,

because then Xt =X0 +∑n:Tn≤t ΔXTn by our assumption B ′ = 0.
Now we turn to the processes Ṽ n(f,p,X). Of course, here, f is one-dimen-

sional, and for simplicity we assume that is C2, although C1 would be enough when
r ≤ 1 below.

Theorem 6.1.4 Let p > 0 and f be a C2 real-valued function on R
d . Assume that

X satisfies (H-r), where r = p ∧ 2, with moreover Xc = 0 when p ∈ (1,2) and
Xc = B ′ = 0 when p ≤ 1. Then the processes 1

Δn
Ṽ n(f,p,X) converge stably in

law to the following limit:
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Ṽ (f,p,X)t =
{

1
2

∑d
j,k=1

∫ t
0 ∂jf (Xs)∂kf (Xs)c

jk
s ds + Ṽ ′(f,p,X)t if p = 2

Ṽ ′(f,p,X)t otherwise,
(6.1.8)

where

Ṽ ′(f,p,X)t =
∑

n:Tn≤t

∣∣f (XTn− +ΔXTn)− f (XTn−)
∣∣p κn. (6.1.9)

Note that our assumptions imply
∑

s≤t

∣∣f (Xs− +ΔXs)− f (Xs−)
∣∣p < ∞,

hence Ṽ ′(f,p,X) is finite-valued (by Proposition 4.1.3 in this case). The limiting
process Ṽ (f,p,X) is increasing in time, as it should be because each Ṽ n(f,p,X)
is also increasing by construction. The forms of the limits in Theorems 6.1.2 and
6.1.4 are thus deeply different.

Remark 6.1.5 The reader will observe that, in contrast with Theorem 6.1.3, we as-
sume B ′ = 0 when p = r ≤ 1, and not just when p < 1. The asymptotic behavior
of Ṽ n(f,1,X) when Xc = 0 and B ′ �= 0 is unknown, although it is known that for
each t the sequence of variables Ṽ n(f,1,X)t/Δn is bounded in probability.

Remark 6.1.6 This result is remarkable in the sense that, since Ṽ n(f,p,X) is a kind
of pth power of the error involved when replacing f (Xs) by f (X(n)s ), one would
expect the rate to be the pth power of a basic rate. But this is not the case: the rate
is always 1/Δn.

This is of course due to the jumps. Indeed, if there is a single jump in the interval
I (n, i)= ((i−1)Δn, iΔn], say at time T , the integral

∫
I (n,i)

|f (X(n)s )−f (Xs)|p ds
is approximately |f (X(i−1)Δn +ΔXT )−f (X(i−1)Δn)|p (iΔn−T ), whose order of
magnitude is always Δn.

Remark 6.1.7 Assumption (H-r) for any r ∈ [0,2] entails that σt is càdlàg, but this
property is not required for the previous result, as will be apparent from the proof.
We only need σt to be locally bounded. This will not be the case in the forthcoming
result, for which the càdlàg property is needed when p �= 2.

When X is continuous we have another result, with a “true rate”. This result
coincides with the previous one when p = 2 and improves on it when p > 2. It also
shows that, when p < 2, one cannot have a result like Theorem 6.1.4, unless we
assume Xc = 0.

To describe the limit, we need a notation. For x = (xj )1≤j≤d ′ ∈ R
d ′ and p > 0

we set (the dimension d ′ is implicit in the next formula):

ρ(p,x) = E

(∫ 1

0

∣∣∣∣∣

d ′∑

j=1

xj W
j
s

∣∣∣∣∣

p

ds

)
. (6.1.10)
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These are explicitly calculable, using the multinomial formula, when p is an even
integer, and in particular ρ(2, x)= ‖x‖2/2, implying that for p = 2 the limit below
is the same as in (6.1.8) in the absence of jumps. When d ′ = 1 and for all p > 0, it is
also explicit: we have ρ(p,x)= 2mp|x|p/(p + 2), where as usual mp is the p ab-
solute moment of the law N (0,1). Moreover ρ(p,x) is obviously continuous in x.

Theorem 6.1.8 Let f be a C2 function on R
d , and let p > 0. Assume also that X

is a continuous Itô semimartingale satisfying (H). Then if ξt is the d ′-dimensional
càdlàg process with components ξkt =

∑d
j=1 ∂jf (Xt ) σ

jk
t , we have

1

Δ
p/2
n

Ṽ n(f,p,X)t
u.c.p.=⇒
∫ t

0
ρ(p, ξs) ds.

This result is in fact a law of large numbers, in contrast with Theorem 6.1.4, and
one could look for an associated CLT. We will not do that here.

6.2 Preliminaries

The theorems of this chapter encompass two cases:

(a) The process X is a continuous Itô semimartingale, we then set r = 2.
(b) The process X satisfies (H-r) for some r ∈ (0,2].
As is now customary for us, we introduce a strengthened version of (H-r):

Assumption 6.2.1 (or (SH-r)) We have (H-r), and the processes b and σ are
bounded, and ‖δ(ω, t, z)‖ ∧ 1≤ Γ (z) with Γ bounded and

∫
Γ (z)r λ(dz) <∞.

An obvious extension of the localization Lemma 4.4.9 yields that, if one of our
theorems holds for all X satisfying (SH-r), it also holds for any X satisfying (H-r).
So in case (b) above we may replace (H-r) by (SH-r), and in both cases the process
X itself is bounded. Then a further (trivial) localization allows us to reduce the
problem to the following two cases, still labeled (a) and (b), and where A is some
constant:

• case (a): X is continuous, r = 2, and∫ t
0 ‖bs‖ds +

∫ t
0 ‖σs‖2 dt + ‖Xt‖ ≤A

• case (b):
∥∥δ(t, z)

∥∥≤ Γ (z) and
Γ (z)+ ∫ Γ (z)rλ(dz)+ ‖bt‖ + ‖σt‖ + ‖Xt‖ ≤A.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(6.2.1)

In case (b) we also use the following notation:

b′′t = bt +
∫

{‖δ(t,z)‖>1}
δ(t, z)λ(dz)

r ≤ 1 ⇒ b′t = bt −
∫

{‖δ(t,z)‖≤1}
δ(t, z)λ(dz).

(6.2.2)



6.2 Preliminaries 193

Then ‖b′′t ‖ ≤A+A2, and ‖b′t‖ ≤ 2A when r ≤ 1. We can rewrite (6.1.1) as

Xt =X0 +
∫ t

0
b′′s ds +

∫ t

0
σs dWs + δ ∗ (p− q)t if r ∈ (0,2]

Xt =X0 +
∫ t

0
b′s ds +

∫ t

0
σs dWs + δ ∗ pt if r ∈ (0,1].

(6.2.3)

Then B ′t =
∫ t

0 b
′
s ds is the same as in (6.1.6).

6.2.1 An Application of Itô’s Formula

The functionals Ṽ n(f,X) and Ṽ n(f,p,X) involve in an essential way the variables
f (Xs)− f (X(i−1)Δn) and |f (Xs)− f (X(i−1)Δn)|p , and to evaluate these variables
we use Itô’s formula, in its classical version when f is C2 or p ≥ 2 and in its
extended form of Theorem 3.2.2 when f is Cr or p < 2. Note that under (6.2.1) the
values that f (x) takes when ‖x‖>A are irrelevant, so it is no restriction to assume
that f has compact support.

The two types of variables above are quite different, the second one showing an
interplay between f and the exponent p. In order to treat both at once, we consider
below a (possibly multidimensional) function g = g(y;x) on R

d ×R
d (we use this

special notation because y plays the role of a parameter). We will assume either one
of the following two properties for g:

g is continuous with compact support, and (y, x) �→ g(y;x) is Cr. (6.2.4)

g is Lipschitz, with compact support. (6.2.5)

So (6.2.5) is slightly weaker than (6.2.4) with r = 1, and typically below r ∈ (0,2]
will be the same number here and in (6.2.1).

We denote by ∂jg and ∂2
jkg the partial derivatives of the function x �→ g(y;x),

when they exist (derivatives with respect to y will not be used).
We associate the function h, and also the function k when r ≥ 1, on R

d ×R
d ×

R
d , by

h(y;x,w)=g(y;x+w)−g(y;x), k(y;x,w)=h(y;x,w)−
d∑

j=1

∂jg(y;x)wj .

Then h, and k when r ≥ 1, are continuous, and
∥∥h(y;x,w)∥∥ ≤ K‖w‖r∧1, r ≥ 1 ⇒ ∥∥k(y;x,w)∥∥ ≤ K‖w‖r . (6.2.6)

Our processes of interest in this subsection are, for s ≥ (i − 1)Δn:

s �→ g
(
Xni ;Xs

)
, where Xni = X(i−1)Δn .

We give the results in three lemmas, starting with the simplest case r ≤ 1.



194 6 Integrated Discretization Error

Lemma 6.2.2 Assume (6.2.1), case (b) with r ≤ 1 and B ′ = Xc = 0. Then under
(6.2.5) when r = 1 and (6.2.4) when r < 1, we have for s ≥ (i − 1)Δn:

g
(
Xni ;Xs

) =
∫ s

(i−1)Δn

∫

E

h
(
Xni ;Xv−, δ(v, z)

)
p(dv, dz). (6.2.7)

Proof We have Xs = Xni +
∑
(i−1)Δn<v≤s ΔXv and the result is a simple conse-

quence of (3.2.5) (which is a “pathwise” result) applied with f (x)= g(Xni ;x). �

Lemma 6.2.3 Assume (6.2.1), case (b), with 1 ≤ r < 2 and Xc = 0. Then under
(6.2.4) we have for s ≥ (i − 1)Δn:

g
(
Xni ,Xs

) =
∫ s

(i−1)Δn
γ
(
Xni ;X

)
v
dv

+
∫ s

(i−1)Δn

∫

E

h
(
Xni ;Xv−, δ(v, z)

)
(p− q)(dv, dz), (6.2.8)

where

γ (y;X)v =
d∑

j=1

∂jg(y;Xv)b′′jv +
∫

E

k
(
y;Xv−, δ(v, z)

)
λ(dz). (6.2.9)

If further X satisfies (SH-1) and b′t is given by (6.2.2), we also have

g
(
Xni ;Xs

) =
d∑

j=1

∫ s

(i−1)Δn
∂jg
(
Xni ;X

)
v
b′jv dv

+
∫ s

(i−1)Δn

∫

E

h
(
Xni ;Xv−, δ(v, z)

)
p(dv, dz). (6.2.10)

Note that the integrand in the last part of (6.2.9) has a norm smaller thanKΓ (z)r

by (6.2.1) and (6.2.6), so ‖γ (y,X)v‖ ≤K .

Proof Here we use (3.2.4) with f (x) = g(Xni ;x) as in the previous proof, on the
time interval [(i− 1)Δn,∞) instead of [0,∞). Taking the first formula (6.2.3) with
σ ≡ 0 into consideration, and if γ ′(y;X)v and γ ′′(y;X)v denote the first and the
second terms in the right side of (6.2.9), this gives

g
(
Xni ;Xs

) =
∫ s

(i−1)Δn
γ ′
(
Xni ;X

)
v
dv

+
∫ s

(i−1)Δn

∫

E

k
(
Xni ;Xv−, δ(v, z)

)
p(dv, dz)

+
∫ s

(i−1)Δn

∫

E

d∑

j=1

∂jg
(
Xni ;Xv−

)
δ(v, z)j (p− q)(dv, dz).
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Since ‖k(Xni ;Xv−, δ(v, z))‖ ≤ KΓ (z)r by (6.2.6), the second term on the right
above has locally integrable variation. Its compensator is the same integral with
respect to q, that is the process

∫ s
(i−1)Δn

γ ′′(Xni ;X)v dv. So this term is in fact

∫ s

(i−1)Δn
γ ′′
(
Xni ;X

)
v
dv+
∫ s

(i−1)Δn

∫

E

k
(
Xni ;Xv−, δ(v, z)

)
(p− q)(dv, dz).

Since k(y;x,w)+∑d
j=1 ∂jg(y;x)wj = g(y;x), we deduce (6.2.8).

Finally under (SH-1), and by (6.2.6), the last integral in (6.2.8) is an ordinary
integral, which splits into two integrals with respect to p and q, respectively. We also
have b′′t − b′t =

∫
E
δ(t, z)λ(dz), so (6.2.10) is just another of writing (6.2.8). �

Lemma 6.2.4 Assume (6.2.1), case (b) with r = 2. Then under (6.2.4) with r = 2
also, we have for s ≥ (i − 1)Δn:

g
(
Xni ;Xs

) =
∫ s

(i−1)Δn

(
γ
(
Xni ;X

)
v
+ γ̃ (Xni ;X

)
v

)
dv

+
d ′∑

j=1

∫ s

(i−1)Δn
γ̃ ′
(
Xni ;X

)j
v
dWj

v

+
∫ s

(i−1)Δn

∫

E

h
(
Xni ;Xv−, δ(v, z)

)
(p− q)(dv, dz), (6.2.11)

where γ is as in (6.2.9) and

γ̃ (y;X)v = 1

2

d∑

j,k=1

∂2
jkg(y;Xv)cjkv , γ̃ ′(y;X)kv =

d∑

j=1

∂jg(y;Xv)σ jkv .

If further X satisfies (SH-1) and b′t is given by (6.2.2), we also have

g
(
Xni ;Xs

) =
d∑

j=1

∫ s

(i−1)Δn
∂j g
(
Xni ;X

)
v
b′jv dv

+
∫ s

(i−1)Δn
γ̃
(
Xni ;X

)
v
dv++

d ′∑

j=1

∫ s

(i−1)Δn
γ̃ ′
(
Xni ;X

)j
v
dWj

v

+
∫ s

(i−1)Δn

∫

E

h
(
Xni ;Xv−, δ(v, z)

)
p(dv, dz). (6.2.12)

Proof Taking into account the first formula (6.2.3) again, plus the fact that the jumps
of X are bounded by A, this is exactly the version (2.1.20) of Itô’s formula applied
with the same f as in the previous proof and on the time interval [(i − 1)Δn,∞).
The only difference is that instead of the truncation level 1 for the jumps, here we
take A, so in last term of (2.1.20) vanishes and in the one before the last we can
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delete the indicator function. We then get exactly (6.2.11), and under the additional
assumption (SH-1), we deduce (6.2.12) from (6.2.11) as in the previous lemma. �

6.2.2 Reduction of the Problem

In this subsection we show that, in case (b), we can reduce the problem to the situa-
tion where X has only finitely many jumps on finite intervals, exactly as in Chap. 5.
For proving this, we need some notation. We set Am = {z : Γ (z) > 1/m} for m≥ 1
an integer, and

X(m)t =X0 +
∫ t

0
b′′s ds +

∫ t

0
σs dWs + δm ∗ (p− q)t , where δm = δ 1Am.

Lemma 6.2.5 Assume (6.2.1), case (b). On the extended space, we have:

(i) If f is Cr with compact support, Ṽ (f,X(m))
u.c.p.=⇒ Ṽ (f,X) as m→∞.

(ii) If f is C2 with compact support and p ≥ r , Ṽ (f,p,X(m)) u.c.p.=⇒ Ṽ (f,p,X) as
m→∞.

Proof 1) We may assume f to be one-dimensional here. First, by Doob’s inequality,

E

(
sup
s≤t
∥∥X(m)s −Xs

∥∥2
)
≤ 4E
((‖δ‖2 1Acm

) ∗ q
t

) ≤ amt,

where am = 4
∫
Acm
Γ (z)2λ(dz) goes to 0 as m→∞ by Lebesgue’s theorem. Hence

X(m)
u.c.p.=⇒ X as m→∞. (6.2.13)

Therefore the dominated convergence theorem for stochastic and ordinary integrals
yields

∫ t

0
∂jf
(
X(m)s

)
σ
jk
s dW ′k

s

u.c.p.=⇒
∫ t

0
∂jf (Xs)σ

jk
s dW ′k

s

∫ t

0
∂jf
(
X(m)s

)
∂kf
(
X(m)s

)
c
jk
s ds

u.c.p.=⇒
∫ t

0
∂jf (Xs) ∂kf (Xs) c

jk
s ds

as soon as f is C1, because ∂jf is then continuous and bounded. We also have

f (X(m))
u.c.p.=⇒ f (X). Hence in view of (6.1.2) and (6.1.3) if r = 2, or (6.1.7) if

r < 2, and of (6.1.8), it remains to prove that Ṽ ′′(f,X(m)) u.c.p.=⇒ Ṽ ′′(f,X) and

Ṽ ′(f,p,X(m)) u.c.p.=⇒ Ṽ ′(f,p,X).
2) The difference Ṽ ′′(f,X(m))− Ṽ ′′(f,X) is a square-integrable martingale on

the extended space, and its quadratic variation process is

F(m)t =
∑

n:Tn≤t

(
f
(
X(m)Tn− +ΔX(m)Tn

)− f (X(m)Tn−
)

− f (XTn− +ΔX(m)Tn
)+ f (XTn−)

)2
(
κn − 1

2

)2

.
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Each summand in F(m)t above goes to 0 by (6.2.13) and is smaller than
K‖ΔXTn‖2r∧2, because ‖ΔX(m)‖ ≤ ‖ΔX‖ and f is Cr with compact support.
Since E(

∑
n:Tn≤t ‖ΔXTn‖2r∧2) <∞ by hypothesis, an application of the Lebesgue

theorem yields E(F (m)t )→ 0. Then we conclude Ṽ ′′(f,X(m))− Ṽ ′′(f,X) u.c.p.=⇒ 0
from Doob’s inequality.

3) Observe that |Ṽ ′(f,p,X(m))s − Ṽ ′(f,p,X)s | is smaller for s ≤ t than
∑

q:Tq≤t

∣∣∣∣f
(
X(m)Tq− +ΔX(m)Tq

)− f (X(m)Tq−
)∣∣p

− ∣∣f (XTq− +ΔXTq )− f (XTq−)
∣∣p∣∣.

The qth summand above is smaller than K‖ΔXTq‖p when f is C2 with compact
support, and it goes to 0 in probability, so the dominated convergence theorem and
the property

∑
s≤t ‖ΔXs‖p <∞ gives the convergence to 0 of the above sum. �

Lemma 6.2.6 Assume (6.2.1), case (b), with Xc = 0 if r < 2 and also B ′ = 0 if
further r < 1. Let f be Cr with compact support. Then

lim
m→∞ sup

n
E

(
1

Δn
sup
s≤t
∣∣Ṽ n
(
f,X(m)

)
s
− Ṽ n(f,X)s

∣∣
)
= 0.

Proof 1) Again we may assume f to be one-dimensional. The proof is somewhat
reminiscent of the proof of Theorem 5.1.2. We apply Lemmas 6.2.2, 6.2.3 or 6.2.4,
according to the value of r , with the function g(y;x)= f (y)−f (x) which satisfies
(6.2.4). With the notation of those lemmas, and recalling I (n, i)= ((i−1)Δn, iΔn],
we see that

Ṽ n(f,X)t − Ṽ n
(
f,X(m)

)
t
=
[t/Δn]∑

i=1

∫

I (n,i)

(
g
(
X(m)ni ;X(m)s

)− g(Xni ;Xs
))
ds.

(6.2.14)
2) We consider first the case r ≥ 1, and observe that in view of the form of

the function g, the functions h(y;x,w) and k(y;x,w) and the variables γ (y;X)v ,
γ̃ (y;X)v and γ̃ ′(y;X)v do not depend on y. Then we set

θ(m,1)v =
{
γ
(
X(m)
)
v
− γ (X)v if r < 2

γ
(
X(m)
)
v
− γ (X)v + γ̃

(
X(m)
)
v
− γ (X)v if r = 2

θ(m,2)v =

⎧
⎪⎪⎨

⎪⎪⎩

∫
E

(
h
(
X(m)v−, δm(v, z)

)− h(Xv−, δ(v, z)
))2
λ(dz) if r < 2

∫
E

(
h
(
X(m)v−, δm(v, z)

)− h(Xv−, δ(v, z)
))2
λ(dz)

+∑d ′
j=1

(
γ̃ ′
(
X(m)v

)j − γ̃ ′(Xv)j
)2 if r = 2

ρ(m)ni,s =
∫ s

(i−1)Δn

∫

E

(
h
(
X(m)v−, δm(v, z)

)− h(Xv−, δ(v, z)
))
(p− q)(dv, dz).
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Then (6.2.14) and Lemmas 6.2.3 or 6.2.4, according to the case, yield

Ṽ n(f,X)t − Ṽ n
(
f,X(m)

)
t
=
[t/Δn]∑

i=1

∫

I (n,i)

(
ζ(m,1)ni,s + ζ(m,2)ni,s

)
ds, with

ζ(m,1)ni,s =
∫ s

(i−1)Δn
θ(m,1)v dv,

ζ(m,2)ni,s=
{
ρ(m)ni,s if r < 2

ρ(m)ni,s +
∑d ′
j=1

∫ s
(i−1)Δn

(γ̃ ′(X(m))jv −γ̃ ′(X)jv) dWj
v if r = 2

We are thus left to prove that, for l = 1,2,

1

Δn
E

(
sup
s≤t

∣∣∣∣∣

[s/Δn]∑

i=1

∫

I (n,i)

ζ(m, l)ni,s ds

∣∣∣∣∣

)
→ 0. (6.2.15)

Now we use (6.2.13) and the facts that δm converges pointwise to δ (because
δ(t, z)= 0 if z /∈ ∪m≥1Am) with ‖δm(ω, t, z)‖ ≤ Γ (z) and

∫
Γ (z)rλ(dz) <∞, and

that g(y;x)= f (y)− f (x) is Cr with compact support and r ≥ 1, and (6.2.6): all
these, plus Lebesgue’s theorem for the second statement below, give the following
properties for l = 1,2.

∣∣θ(m, l)t
∣∣ ≤ K, θ(m, l)t

P−→ 0 ∀ t as m→∞. (6.2.16)

We are now ready to prove (6.2.15). First, we have | ∫
I (n,i)

ζ(m,1)ni,s ds| ≤
Δn
∫
I (n,i)

|θ(m,1)s |ds, therefore the left-hand side of (6.2.15) is smaller than

E(
∫ t

0 |θ(m,1)s |ds) and (6.2.15) for l = 1 follows from (6.2.16). Second,
∫
I (n,i)

ζ(m,

2)ni,s ds is a martingale increment for the discrete-time filtration (FiΔn)i≥1, and a
simple calculation shows that

E

((∫

I (n,i)

ζ(m,2)ni,s ds

)2)
≤ Δ2

nE

(∫

I (n,i)

θ(m,2)s ds

)
. (6.2.17)

Hence by the Doob and Cauchy-Schwarz inequalities,

E

(
sup
s≤t

∣∣∣∣∣

[s/Δn]∑

i=1

∫

I (n,i)

ζ(m,2)ni,s ds

∣∣∣∣∣

)
≤ 2Δn

√√√√
E

(∫ t

0
θ(m,2)s ds

)
,

and we conclude (6.2.15) for l = 2 using (6.2.16) again.

3) Finally we assume r < 1, so Xc = 0 and B ′ = 0. In this case we set

θ(m)t =
∫

E

∣∣h
(
X(m)t−, δm(t, z)

)− h(Xt−, δ(t, z)
)∣∣λ(dz)
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ζ(m)ni,s =
∫ s

(i−1)Δn

∫

E

(
h
(
X(m)v−, δm(v, z)

)− h(Xv−, δ(v, z)
))
p(dv, dz).

Exactly as for (6.2.16) we have

θ(m)t ≤ K, θ(m)t
P−→ 0 ∀ t as m→∞. (6.2.18)

By Lemma 6.2.2 and (6.2.14) we now obtain

Ṽ n(f,X)t − Ṽ n
(
f,X(m)

)
t
=

[t/Δn]∑

i=1

∫

I (n,i)

ζ(m)ni,s ds. (6.2.19)

On the other hand we have E(|ζ(m)ni,s |)≤ E(
∫ s
(i−1)Δn

θ(m)v dv). Therefore

E

(
sup
s≤t
∣∣Ṽ n
(
f,X(m)

)
s
− Ṽ n(f,X)s

∣∣
)
≤
[t/Δn]∑

i=1

E

(∫

I (n,i)

∣∣ζ(m)ni,s
∣∣ds
)

≤ ΔnE
(∫ t

0
θ(m)s ds

)

and E(
∫ t

0 θ(m)s ds)→ 0 by (6.2.18) as m→∞. This completes the proof. �

Lemma 6.2.7 Assume (6.2.1), case (b), with Xc = 0 if r < 2 and also B ′ = 0 if
further r ≤ 1. Let f be C2 with compact support and p ≥ r . Then

lim
m→∞ sup

n
E

(
1

Δn
sup
s≤t
∣∣Ṽ n
(
f,p,X(m)

)
s
− Ṽ n(f,p,X)s

∣∣
)
= 0.

Proof 1) We apply again Lemmas 6.2.2, 6.2.3 or 6.2.4, with the function g(y;x)=
|f (x)− f (y)|p which satisfies (6.2.4) when p > r or p = r �= 1, and (6.2.5) when
p = r = 1, because f is C2 with compact support. We then have

Ṽ n
(
f,p,X(m)

)
t
− Ṽ n(f,p,X)t

=
[t/Δn]∑

i=1

∫

I (n,i)

(
g
(
X(m)ni ;X(m)s

)− g(Xni ;Xs
))
ds. (6.2.20)

At this point we reproduce the proof of the previous lemma, with the following
changes. We recall the notation Xni =X(i−1)Δn .

2) We consider first the case r > 1, and we introduce some notation, in which
s ≥ (i − 1)Δn; when 1< r < 2 we set

θ(m,1)ni,s = γ
(
X(m)ni ;X(m)

)
v
− γ (Xni ;X

)
s

θ(m,2)ni,s =
∫

E

(
h
(
X(m)ni ;X(m)s−, δm(s, z)

)− h(Xni ;Xs−, δ(s, z)
))2
λ(dz),
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whereas when r = 2 we set

θ(m,1)ni,s = γ
(
X(m)ni ;X(m)

)
s
− γ (Xni ;X

)
s
+ γ̃ (X(m)ni ;X(m)

)
s
− γ (X)s

θ(m,2)ni,s =
∫

E

(
h
(
X(m)ni ;X(m)s−, δm(s, z)

)− h(Xni ;Xs−, δ(s, z)
))2
λ(dz)

+
d ′∑

j=1

(
γ̃ ′
(
X(m)s

)j − γ̃ ′(Xni ;Xs
)j )2

and for all r > 1,

ρ(m)ni,s =
∫ s

(i−1)Δn

∫

E

(
h
(
X(m)ni ;X(m)v−, δm(v, z)

)

− h(Xni ;Xv−, δ(v, z)
))
(p− q)(dv, dz).

Then (6.2.20) and Lemmas 6.2.3 or 6.2.4 yield

Ṽ n
(
f,p,X(m)

)
t
− Ṽ n(f,p,X)t =

[t/Δn]∑

i=1

∫

I (n,i)

(
ζ(m,1)ni,s + ζ(m,2)ni,s

)
ds,

where ζ(m,1)ni,s =
∫ s

(i−1)Δn
θ(m,1)ni,v dv and

r < 2 ⇒ ζ(m,2)ni,s = ρ(m)ni,s
r = 2 ⇒ ζ(m,2)ni,s = ρ(m)ni,s

+
d ′∑

j=1

∫ s

(i−1)Δn

(
γ̃ ′
(
X(m)ni ;X(m)

)j
v
− γ̃ ′(Xni ;X

)j
v

)
dWj

v

and as in the previous lemma we are left to prove that (6.2.15) holds for l = 1,2.
With

θ(m, l)nt = θ(m, l)ni,t if (i − 1)Δn ≤ t < iΔn, θ
′
(m, l)t = sup

n
θ(m, l)nt ,

the same arguments as for (6.2.16) yield here that, for l = 1,2:

∣∣θ ′(m, l)t
∣∣ ≤ K, θ

′
(m, l)t

P−→ 0 ∀ t as m→∞. (6.2.21)

We have | ∫
I (n,i)

ζ(m,1)ni,s ds| ≤Δn
∫
I (n,i)

|θ(m,1)ni,s |ds, so for l = 1 the left-hand

side of (6.2.15) is smaller than E(
∫ t

0 |θ
′
(m,1)s |ds) and (6.2.15) for l = 1 follows

from (6.2.21). Next, the same argument as in the previous lemma yields that, instead
of (6.2.17), we have

E

((∫

I (n,i)

ζ(m,2)ni,s ds

)2)
≤ Δ2

nE

(∫

I (n,i)

θ
′
(m,2)s ds

)
.
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We conclude (6.2.15) for l = 2 as in the previous lemma again.

3) Finally we assume r ≤ 1, and we set, again for s ≥ (i − 1)Δn:

θ(m)ni,s =
∫

E

∣∣h
(
X(m)ni ;X(m)s−, δm(v, z)

)− h(Xni ;Xs−, δ(s, z)
)∣∣λ(dz)

ζ(m)ni,s =
∫ s

(i−1)Δn

∫

E

(
h
(
X(m)ni ;X(m)s−, δm(s, z)

)

− h(Xni ;Xs−, δ(s, z)
))
p(ds, dz)

θ(m)nt = θ(m)ni,t if (i − 1)Δn ≤ t < iΔn, θ
′
(m)t = sup

n
θ(m)nt .

Exactly as for (6.2.21) we have

θ
′
(m)t ≤ K, θ

′
(m)t

P−→ 0 ∀ t as m→∞.
Now we have (6.2.19) and E(|ζ(m)ni,s |)≤ E(

∫ s
(i−1)Δn

θ(m)ni,v dv). Hence

E

(
sup
s≤t
∣∣Ṽ n
(
f,X(m)

)
s
− Ṽ n(f,X)s

∣∣
)
≤ ΔnE

(∫ t

0
θ
′
(m)s ds

)

again, and E(
∫ t

0 θ
′
(m)s ds)→ 0 by (6.2.18). This completes the proof. �

Combining the three previous lemmas and Proposition 2.2.4, we deduce the fol-
lowing:

Corollary 6.2.8 Assume (6.2.1), case (b).
(i) Let f be Cr with compact support, and Xc = 0 when r < 2 and also B ′ = 0

when further r < 1. If for each m≥ 1 we have − 1
Δn
Ṽ n(f,X(m))

L-s=⇒ Ṽ (f,X(m))

as n→∞, then we also have − 1
Δn
Ṽ n(f,X)

L-s=⇒ Ṽ (f,X).

(ii) Let f is C2 with compact support and p be such that r = p ∧ 2, and
Xc = 0 when p < 2 and also B ′ = 0 when further p ≤ 1. If for each m ≥ 1

we have 1
Δn
Ṽ n(f,p,X(m))

L-s=⇒ Ṽ (f,p,X(m)) as n→∞, then we also have

1
Δn
Ṽ n(f,p,X)

L-s=⇒ Ṽ (f,p,X).

6.3 Proof of the Theorems

On top of (6.2.1), and in the light of Corollary 6.2.8, when X is discontinuous we
see that it suffices to prove the results for each process X(m). This process satisfies
(6.2.1) and its jump coefficient δm is smaller in modulus than Γ (z)1Am(z). Put in
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another way, we have to prove the result when X satisfies (6.2.1) with, in case (b), a
function Γ having the following property:

Γ (z) ≤ A, λ
({
z : Γ (z) > 0

})
< ∞. (6.3.1)

We can take for the weakly exhausting sequence (Tn) of stopping times the succes-
sive jump times of the Poisson process 1{Γ>0} ∗ p, whose parameter is λ({z : Γ (z) >
0}). Moreover, (6.3.1) implies that actually (SH-0) holds, so we can use the second
form (6.2.3), that is

Xt = X0 +
∫ t

0
b′s ds +

∫ t

0
σs dWs + δ ∗ pt .

Finally, as already said, we can assume f to be with compact support.

6.3.1 Proof of Theorem 6.1.2

Step 1) This step is devoted to the following lemma.

Lemma 6.3.1 Let at be a progressively measurable process which satisfies
E(
∫ t

0 |as |ds) <∞ for all t , and set At =
∫ t

0 as ds. Then

1

Δn

[t/Δn]∑

i=1

∫

I (n,i)

ds

∫ s

(i−1)Δn
av dv

u.c.p.=⇒ At/2

1

Δn

[t/Δn]∑

i=1

E

(∫

I (n,i)

ds

∫ s

(i−1)Δn
av dv |F(i−1)Δn

)
u.c.p.=⇒ At/2

(6.3.2)

1

Δ2
n

[t/Δn]∑

i=1

∫

I (n,i)

ds

∫

I (n,i)

ds′
∫ s∧s′

(i−1)Δn
av dv

u.c.p.=⇒ At/3

1

Δ2
n

[t/Δn]∑

i=1

E

(∫

I (n,i)

ds

∫

I (n,i)

ds′
∫ s∧s′

(i−1)Δn
av dv |F(i−1)Δn

)
u.c.p.=⇒ At/3.

Proof We prove only the second claim, the first claim being similar, and even
slightly simpler. Write A(a)nt and A′(a)nt for the two left sides of (6.3.2), and
A(a)t =

∫ t
0 as ds, to emphasize the dependency on at .

1) Here we proveA(a)n
u.c.p.=⇒ A(a)/3. Suppose first that a is continuous. For each

t the variables θ(n, t)= sup(|a(s + r)− a(s)| : s ≤ t, r ≤Δn) go to 0 as n→∞.
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Since
∫
I (n,i)

ds
∫
I (n,i)

ds′
∫ s∧s′
(i−1)Δn

dv =Δ3
n/3, we have

sup
s≤t

∣∣∣∣∣A(a)
n
s −

Δn

3

[s/Δn]∑

i=1

a(i−1)Δn

∣∣∣∣∣ ≤
t

3
θ(n, t).

Then A(a)n
u.c.p.=⇒ A(a)/3 follows from Riemann integration.

When a is not continuous but satisfies E(
∫ t

0 |as |ds) < ∞ for all t , we can
find a sequence a(q) of continuous adapted processes satisfying the same inte-
grability condition and such that E(

∫ t
0 |a(q)s − as |ds)→ 0 as q→∞. We have

A(a(q))n
u.c.p.=⇒ A(a(q))/3 as n→∞ by what precedes, whereas A(a(q))

u.c.p.=⇒ A(a)

as q→∞, and

∣∣A
(
a(q)
)n
t
−A(a)nt

∣∣ ≤
∫ t

0

∣∣a(q)s − as
∣∣ds,

hence A(a)n
u.c.p.=⇒ A(a)/3 follows.

2) Next, we prove A′(a)n u.c.p.=⇒ A(a)/3, which in view of what precedes amounts

to showing that Mn =A(a)n −A′(a)n u.c.p.=⇒ 0. Set

a(m)t = at 1{|at |≤m}, M(m)n = A
(
a(m)
)n −A′(a(m))n

a′(m)t = at 1{|at |>m}, M ′(m)n = A
(
a′(m)
)n −A′(a′(m))n.

We then have

M(m)nt =
[t/Δn]∑

i=1

ζ(m)ni , where ζ(m)ni = η(m)ni − ξ(m)ni and

η(m)ni =
1

Δ2
n

∫

I (n,i)

ds

∫

I (n,i)

ds′
∫ s∧s′

(i−1)Δn
a(m)v dv

ξ(m)ni = E
(
η(m)ni |F(i−1)Δn

)
,

and the same for M ′(m) with the variables ζ ′(m)ni , η′(m)ni and ξ ′(m)ni .
On the one hand, |η(m)ni | ≤mΔn by the definition of a(m)t , so |ζ(m)ni | ≤ 2mΔn,

and thus E(
∑[t/Δn]
i=1 |ζ(m)ni |2)≤ 4m2tΔn. SinceM(m)n is a martingale for the filtra-

tion (FΔn[t/Δn]), for any given m we deduceM(m)n
u.c.p.=⇒ 0 as n→∞ from Doob’s

inequality.
On the other hand, it is obvious that |η′(m)ni | ≤

∫
I (n,i)

|a′(m)s |ds, hence
E(|ζ ′(m)ni |)≤ 2E(

∫
I (n,i)

|a′(m)s |ds) by the contraction property of the conditional
expectation. Therefore

E

(
sup
s≤t
∣∣M ′(m)ns

∣∣
)
≤ 2E

(∫ t

0
|as |1{|as |>m} ds

)
,
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which tends to 0 as m→∞ by the dominated convergence theorem and our as-

sumption on at . Combining this withM(m)n
u.c.p.=⇒ 0 as n→∞ and Proposition 2.2.1

and gives Mn =M(m)n +M ′(m)n u.c.p.=⇒ 0, and the result is proved. �

Step 2) For any t we denote by Ωn(t) the set on which any interval I (n, i) included
into [0, t + 1] contains at most one stopping time Tq , so

P
(
Ωn(t)
) → 1 as n→∞. (6.3.3)

We also use the following notation, with the convention T0 = 0:

i(n, q) = i, κ(n, q) = i − Tq/Δn on the set
{
Tq ∈ I (n, i)

}

Nnt = q on the set
{
Tq ≤Δn[t/Δn]< Tq+1

}
.

(6.3.4)

We can apply the Itô’s formulas (6.2.12) in case (a) and (6.2.7) in case (b) (recall
then that (SH-0) holds), and with the function g(y;x)= f (x)− f (y) which here is
C2 by the assumptions of the theorem. With the notation

wt =
d∑

j=1

∂jf (Xt )b
′j
t +

1

2

d∑

j,k=1

∂2
jkf (Xt )c

jk
t , ξ kt =

d∑

j=1

∂jf (Xt )σ
jk
t

(6.3.5)
(so ξ is the process showing in Theorem 6.1.8) we deduce that, on the setΩn(t), we
have

− 1

Δn
Ṽ n(f,X)t =

[t/Δn]∑

i=1

(
ζ ni + ζ ′ni + ζ ′′ni

)+
Nnt∑

q=1

(
η(q)n − η′(q)n), (6.3.6)

where

ζ ′′ni = 1

Δn

∫

I (n,i)

ds

∫ s

(i−1)Δn
wv dv, ζ ′ni =

1

2

d ′∑

k=1

∫

I (n,i)

ξ ks dW
k
s

ζ ni =
1

Δn

d ′∑

k=1

∫

I (n,i)

ds

∫ s

(i−1)Δn
ξkv dW

k
v − ζ ′ni

η(q)n = (f (XTq− +ΔXTq )− f (XTq−)
)
κ(n, q)

η′(q)n = ζ ni(n,q) + ζ ′ni(n,q) + ζ ′′ni(n,q).
On the other hand, we can write the limit (6.1.2) as follows, by Itô’s formula

again and because the sum over the Tq ’s below is a finite sum:

Ṽ (f,X) = 1

2

∫ t

0
ws ds + 1

2

d ′∑

k=1

∫ t

0
ξks dW

k
s +

1

12

d ′∑

k=1

∫ t

0
ξks dW

′k
s

+
∑

q:Tq≤t

(
f (XTq− +ΔXTq )− f (XTq−)

)
κq. (6.3.7)
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Step 3) Our assumptions imply the following:

• in case (a):
∫∞

0

(‖ws‖ + ‖ξks ‖2
)
ds ≤ K, η(q)n = η′(q)n = 0

• in case (b): ‖ws‖ + ‖ξks ‖ ≤ K.
(6.3.8)

Then Lemma 6.3.1 yields in both cases:

[t/Δn]∑

i=1

ζ ′′ni
u.c.p.=⇒ 1

2

∫ t

0
ws ds.

Next, the variable ζ ′ni is the increment over the interval I (n, i) of the continuous

process 1
2

∑d ′
k=1

∫ t
0 ξ

k
s dW

k
s , so we know that

[t/Δn]∑

i=1

ζ ′ni
u.c.p.=⇒ 1

2

d ′∑

k=1

∫ t

0
ξks dW

k
s .

Therefore we deduce from (6.3.3), (6.3.6) and (6.3.7) and the property supn N
n
t <∞

that it is enough to prove the following two convergences:

q ≥ 1 ⇒ η′(q)n P−→ 0 (6.3.9)

[t/Δn]∑

i=1

ζ ni +
Nnt∑

q=1

η(q)n
L-s=⇒ 1√

12

d ′∑

k=1

∫ t

0
ξks dW

′k
s

+
∑

q:Tq≤t

(
f (XTq− +ΔXTq )− f (XTq−)

)
κq. (6.3.10)

Step 4) In this step we prove (6.3.9). In case (a) there is nothing to prove. In case
(b), wt and ξk are bounded, hence ‖ζ ′′ni ‖ ≤ KΔn and E(‖ζ ′ni(n,q)‖2) ≤ KΔn and

E(‖ζ ni(n,q)‖2) ≤ KΔn by an application of Proposition 2.1.10-(a) with A = E, be-

cause the integers i(n, q) are then GA0 measurable. Therefore (6.3.9) holds.

Step 5) In this step we prove a part of (6.3.10), namely

[t/Δn]∑

i=1

ζ ni
L-s=⇒ Yt = 1√

12

d ′∑

k=1

∫ t

0
ξks dW

′k
s . (6.3.11)

For this we will apply Theorem 2.2.15 to the array (ζ ni ), which is an array of mar-
tingale differences for the discrete-time filtrations (Gni =FiΔn)i≥0. In particular we

have (2.2.39) with (Ωn,Gn, (F
n

t ),Pn) = (Ω,F , (Ft ),P). Recall that ζ ni = (ζ n,li )
and ξkt = (ξk,ls ) are q-dimensional. Moreover the limiting process Y above is, con-
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ditionally on F , a continuous centered Gaussian martingale with

Ẽ
(
Y lt Y

m
t |F
) = 1

12

∫ t

0

d ′∑

k=1

ξk,ls ξ k,ms ds.

Therefore, to obtain (6.3.11) it is enough to prove the following three properties,
where M is either one of the components of W or is a bounded martingale on
(Ω,F , (Ft )t≥0,P) which is orthogonal to W , and t ≥ 0:

[t/Δn]∑

i=1

E
(∥∥ζ ni
∥∥4 |F(i−1)Δn

) P−→ 0 (6.3.12)

[t/Δn]∑

i=1

E
(
ζ
n,l
i ζ

n,m
i |F(i−1)Δn

) P−→ 1

12

∫ t

0

d ′∑

k=1

ξk,ls ξ k,ms ds (6.3.13)

[t/Δn]∑

i=1

E
(
ζ ni Δ

n
i M |F(i−1)Δn

) P−→ 0. (6.3.14)

An easy calculation using (2.1.34) shows that

E
(∥∥ζ ni
∥∥4 |F(i−1)Δn

) ≤ K

d ′∑

k=1

E

((∫

I (n,i)

∥∥ξks
∥∥2 ds
)2

|F(i−1)Δn

)
.

In case (b), ξk is bounded, so the right side above is smaller than KΔ2
n and (6.3.12)

follows. In case (a), it is smaller than K
∑d ′
k=1 E(θ(t)n

∫
I (n,i)

‖ξks ‖2 ds | F(i−1)Δn)

if i ≤ [t/Δn], where θ(t)n = supi≤[t/Δn]
∑d ′
k=1

∫
I (n,i)

‖ξks ‖2 ds. Hence the left side
of (6.3.12) has an expectation smaller than

KE

(
θ(t)n

d ′∑

k=1

∫ t

0

∥∥ξks
∥∥2
)
,

which goes to 0 by the dominated convergence theorem (recall (6.3.8), which in par-
ticular yields that θ(t)n is bounded and goes to 0 as n→∞). Hence again (6.3.12)
holds.

Next, we have

ζ
n,l
i ζ

n,m
i = 1

Δ2
n

d ′∑

k,k′=1

∫

I (n,i)

ds

∫

I (n,i)

ds′
∫ s

(i−1)Δn
ξk,lv dWk

v

∫ s′

(i−1)Δn
ξ
k′,m
v′ dWk′

v′

− 1

2Δn

d ′∑

k,k′=1

∫

I (n,i)

ds

∫ s

(i−1)Δn
ξk,lv dWk

v

∫

I (n,i)

ξ
k′,m
v′ dWk′

v′
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− 1

2Δn

d ′∑

k,k′=1

∫

I (n,i)

ds

∫ s

(i−1)Δn
ξk,mv dWk

v

∫

I (n,i)

ξ
k′,l
v′ dW

k′
v′

+ 1

4

d ′∑

k,k′=1

∫

I (n,i)

ξ k,mv dWk
v

∫

I (n,i)

ξ
k′,l
v′ dW

k′
v′ .

Then by standard stochastic calculus and Fubini’s theorem, we get that E(ζ n,li ζ
n,m
i |

F(i−1)Δn)= E(θ
n,l,m
i |F(i−1)Δn), where

θ
n,l,m
i = 1

Δ2
n

d ′∑

k=1

∫

I (n,i)

ds

∫

I (n,i)

ds′
∫ s∧s′

(i−1)Δn
ξk,lv ξ k,mv dv

− 1

Δn

d ′∑

k=1

∫

I (n,i)

ds

∫ s

(i−1)Δn
ξk,lv ξ k,mv dv+ 1

4

d ′∑

k=1

∫

I (n,i)

ξ k,mv ξk,lv dv.

At this stage, (6.3.13) follows from (6.3.8) and Lemma 6.3.1, because 1
3 − 1

2 +
1
4 = 1

12 .
When M is a bounded martingale and is orthogonal to W , we have E(ζ ni Δ

n
i M |

F(i−1)Δn) = 0 because ζ ni is a stochastic integral with respect to W , and (6.3.14)
holds. If M =Wk , we see that E(ζ ni Δ

n
i M |F(i−1)Δn)= E(θni |F(i−1)Δn), where

θni =
1

Δn

∫

I (n,i)

ds

∫ s

(i−1)Δn
ξkv dv−

1

2

∫

I (n,i)

ξ ks ds.

Then Lemma 6.3.1 yields
∑[t/Δn]
i=1 E(θni |F(i−1)Δn)

P−→ 0, giving (6.3.14). We have
thus finished the proof of (6.3.11).

Step 6) In this final step, we prove (6.3.10), which is equivalent to proving
([t/Δn]∑

i=1

ζ ni ,
(
κ(n, q)

)
q≥1

)
L-s−→
(

1√
12

d ′∑

k=1

∫ t

0
ξks dW

′k
s , (κq)q≥1

)
(6.3.15)

by the same argument which allows us to deduce (5.1.15) from (5.1.14), for exam-
ple.

In order to obtain (6.3.15), we can use Theorem 4.3.1, with vn = Δn: there is
a slight difference here, since κ(n, q) in (6.3.4) is the variable 1− κ(n, q) in that
lemma, but since κq and 1− κq have the same law it makes no difference. Let us
recall that a consequence of that theorem (and with its notation) is that

(
U
n
(g),
(
κ(n, q)

)
q≥1

) L-s−→ (U(g), (κq)q≥1
)
. (6.3.16)

Hence here we need to replace the processes U
n
(g) and U(g) by

∑[t/Δn]
i=1 ζ ni and

1√
12

∑d ′
k=1

∫ t
0 ξ

k
s dW

′k
s , respectively. We can then copy the proof of that theorem with
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these changes, so that the key property (4.3.7), itself implied by (4.3.5), is provided
by (6.3.11), which holds under the measure P, and also under the measures Qω
which are a regular version of the conditional distribution P(. | G0) where (Gt ) is as
in Step 3. We leave the details to the reader (the proof is slightly simpler, because
we do not need the processes w(n,p) and W ′′(p) here). We end up with (6.3.16),
which completes the proof of Theorem 6.1.2.

6.3.2 Proof of Theorem 6.1.3

The proof is the same as in the previous subsection, with a few changes and simpli-
fications. We are in case (b) here, with r < 2 (and still (SH-0), according to (6.3.1)).

We still have (6.3.6) (the function g is now Cr only), with ξkt = 0 and:

wt =
{∑d

j=1 ∂jf (Xt )b
′j
t if r ≥ 1

0 if r < 1,

hence ζ ni = ζ ′ni = 0, and also ζ ′′ni = 0 if r < 1. Furthermore (6.3.7) still holds, Step 4
is irrelevant, and the rest of the proof is the same.

6.3.3 Proof of Theorem 6.1.4

Step 1) For this theorem, f is one-dimensional. We are in case (b) of (6.2.1), and
we also have (SH-0) because of (6.3.1).

We use the notation Ωn(t) of (6.3.3), as well as (6.3.4) and (6.3.5), and for any
two reals y and z > 0 we write {y}z = |y|z sign(y).

First, suppose p ≥ 2. We then apply the version (6.2.12) of Itô’s formula (because
(SH-0) holds) with the function g(y;x)= |f (x)− f (y)|p , which is C2 with com-
pact support and satisfies ∂jg(y;x)= p{f (x)−f (y)}p−1 ∂jf (x) and ∂2

jkg(y;x)=
p{f (x)− f (y)}p−1 ∂2

jkf (x)+p(p− 1)|f (x)− f (y)|p−2 ∂jf (x) ∂kf (x). We then
obtain on the set Ωn(t):

1

Δn
Ṽ n(f,p,X)t =

[t/Δn]∑

i=1

(
ζ ni + ζ ′ni + ζ ′′ni

)+
Nnt∑

q=1

(
η(q)n − η′(q)n + η′′(q)n),

(6.3.17)
where, with Yni,s = f (Xs)− f (X(i−1)Δn):

ζ ni =
p

Δn

∫

I (n,i)

ds

∫ s

(i−1)Δn

{
Yni,v
}p−1

wv dv

ζ ′ni =
p

Δn

d ′∑

k=1

∫

I (n,i)

ds

∫ s

(i−1)Δn

{
Yni,v
}p−1

ξkv dW
k
v
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ζ ′′ni = p(p− 1)

2Δn

d ′∑

k=1

∫

I (n,i)

ds

∫ s

(i−1)Δn

∣∣Yni,v
∣∣p−2(

ξkv
)2
dv

η(q)n = ∣∣f (XTq− +ΔXTq )− f (XTq−)
∣∣p κ(n, q)

η′(q)n = ζ ni(n,q) + ζ ′ni(n,q) + ζ ′′ni(n,q)
η′′(q)n = (∣∣f (XTq− +ΔXTq )− f (X(i(n,q)−1)Δn)

∣∣p

− ∣∣f (XTq−)− f (X(i(n,q)−1)Δn)
∣∣p

− ∣∣f (XTq− +ΔXTq )− f (XTq−)
∣∣p)κ(n, q).

Next if 1 ≤ p < 2 we apply (6.2.10) to obtain (6.3.17) on the set Ωn(t), with
ζ ′ni = ζ ′′ni = 0 and η′(q)n = ζ ni(n,q), and wt =∑d

j=1 ∂jf (Xt )b
′j
t . Finally, when p ≤

1 we apply (6.2.7) to obtain (6.3.17) again on the setΩn(t), with ζ ni = ζ ′ni = ζ ′′ni = 0
and η′(q)n = 0.

Step 2) In view of (6.2.1), case (b), we deduce from (2.1.44) that if l > 0 and
s ∈ I (n, i),

E
(∣∣Yni,v
∣∣l) ≤ KΔ

1∧(l/2)
n .

Then since w and ξk are bounded, we deduce when p ≥ 1:

E
(∣∣ζ ni
∣∣) ≤ KΔ

1+(2∧(p−1))/2
n , E

(∣∣ζ ′′ni
∣∣) ≤ KΔ

1+(2∧(p−2))/2
n ,

E
(
ζ ′ni |F(i−1)Δn

) = 0, E
(∣∣ζ ′ni
∣∣2) ≤ KΔ

p∧2
n ,

(6.3.18)

from which the following properties readily follow:

p > 1 ⇒ E
(∑[t/Δn]

i=1

∣∣ζ ni
∣∣) → 0

p > 1 ⇒ E
(
sups≤t

∣∣∑[s/Δn]
i=1 ζ ′ni

∣∣2) → 0

p > 2 ⇒ E
(∑[t/Δn]

i=1 |ζ ′′ni |
) → 0.

⎫
⎪⎪⎬

⎪⎪⎭
(6.3.19)

When p = 2 we have ζ ′′ni = 1
Δn

∑d ′
k=1

∫
I (n,i)

ds
∫ s
(i−1)Δn

(ξkv )
2 dv, so Lemma 6.3.1

yields

p = 2 ⇒
[t/Δn]∑

i=1

ζ ′′ni
u.c.p.=⇒ 1

2

d∑

j,k=1

∫ t

0
∂jf (Xs) ∂kf (Xs) c

jk
s ds. (6.3.20)

Moreover X(i(n,r)−1)Δn → XTr−, hence by (6.3.18) and the same argument as in
Step 3 of the proof of Theorem 6.1.2, we get for all q ≥ 1:

η′(q)n P−→ 0, η′′(q)n → 0. (6.3.21)
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At this stage we put (6.3.17) and (6.3.3) together with (6.3.19), (6.3.20) and
(6.3.21), plus the fact that ζ ′ni = ζ ′′ni = 0 when p < 2 and ζ ni = 0 when p ≤ 1: in
view of (6.1.8) and (6.1.9), we deduce that for proving the claim it suffices to show
that

Nnt∑

q=1

η(q)n
L-s−→

∑

q:Tq≤t

∣∣f (XTq− +ΔXTq )− f (XTq−)
∣∣p κn.

Now, as in Step 5 of the proof of Theorem 6.1.2, this amounts to proving

(κ(n, q))q≥1
L-s−→ (κq)q≥1, and this follows from Theorem 4.3.1.

6.3.4 Proof of Theorem 6.1.8

Here we suppose that X is a continuous Itô semimartingale satisfying (H), and f is
a C2 function, and p > 0. For proving Theorem 6.1.8, and by localization, we can
again suppose that for some constant A,

∥∥bt (ω)
∥∥ ≤ A,

∥∥σt (ω)
∥∥ ≤ A,

∥∥X(ω)
∥∥ ≤ A.

Then, as before, it is no restriction to suppose that f has compact support. We can
also exclude the case p = 2, which has been shown in Theorem 6.1.4.

1) Since f is C2, with the notation wt and ξkt of (6.3.5), we deduce from (6.2.12)
applied to g(y;x)= f (x)− g(y) and from the continuity of X that

f (Xs)− f (X(i−1)Δn) =
∫ s

(i−1)Δn
wv dv+

d ′∑

k=1

∫ s

(i−1)Δn
ξkv dW

k
v .

Hence with the additional notation

βni,s =
∫ s

(i−1)Δn
wv dv

β ′ni,s =
d ′∑

j=1

∫ s

(i−1)Δn

(
ξkv − ξk(i−1)Δn

)
dWk

v

β ′′ni,s =
d ′∑

k=1

ξk(i−1)Δn

(
Wk
s −Wk

(i−1)Δn

)

αni,s =
∣∣βni,s + β ′ni,s + β ′′ni,s

∣∣p − ∣∣β ′′ni,s
∣∣p

ζ ni =
1

Δ
p/2
n

∫

I (n,i)

∣∣β ′′ni,s
∣∣p ds, ζ ′ni =

1

Δ
p/2
n

∫

I (n,i)

αni,s ds
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we have

1

Δ
p/2
n

Ṽ n(f,p,X)t =
[t/Δn]∑

i=1

(
ζ ni + ζ ′ni

)
. (6.3.22)

2) In this step we show that the array (ζ ′ni ) is asymptotically negligible, that is
∑[t/Δn]
i=1 ζ ′ni

u.c.p.=⇒ 0. For this we recall the elementary estimates, for x, y ∈ R and
ε ∈ (0,1]:
∣∣|x + y|p − |x|p∣∣ ≤

{ |y|p if p ≤ 1

Kp(|x|p−1|y| + |y|p) ≤ ε|x|p +Kp,ε|y|p if p ≥ 1,

and also |x + y|p ≤Kp(|x|p + |y|p). Applying this twice, we see that in all cases
for p,

∣∣αni,s
∣∣ ≤ ε

∣∣β ′′ni,s
∣∣p +Kε

∣∣βni,s
∣∣p +Kε

∣∣β ′ni,s
∣∣p,

where Kε also depends on p (which here is fixed).
Since wt and ξkt | are bounded, we have |βni,s |p ≤KΔpn and E(|β ′′ni,s |p)≤KΔp/2n

by the properties of the Brownian motion. If we set a(n, i, q)=∑d ′
k=1 E(

∫
I (n,i)

|ξkv −
ξk(i−1)Δn

|q dv), we deduce from the Hölder and Burkholder-Davis-Gundy inequali-
ties that

E
(∣∣β ′ni,s
∣∣p) ≤ KΔ

(p/2−1)+
n a(n, i,p ∨ 2)(p/2)∧1.

Putting together all these estimates results in

E
(∣∣αni,s
∣∣) ≤ KεΔ

p/2
n +KεΔ(p/2−1)+

n a(n, i,p ∨ 2)(p/2)∧1 +KεΔpn ,
which in turn gives by Hölder’s inequality again when p < 2

[t/Δn]∑

i=1

E
(∣∣ζ ′ni
∣∣) ≤ Ktε+KεtΔp/2n +

([t/Δn]∑

i=1

a(n, i,p ∨ 2)

)(p/2)∧1

. (6.3.23)

We have
∑[t/Δn]
i=1 a(n, i, q) ≤∑d ′

k=1 E(
∫ t

0 |ξks − ξkΔn[s/Δn]|qds), which goes to 0 as

n→∞ for all q > 0 because the process ξk is càdlàg and bounded. Then letting
first n→∞, then ε→ 0 in (6.3.23), we deduce that

∑[t/Δn]
i=1 E(|ζ ′ni |)→ 0, which

prove the asymptotic negligibility of the array (ζ ′ni ).
3) At this stage, and by (6.3.22), it remains to prove that, with the notation

(6.1.10),

[t/Δn]∑

i=1

ζ ni
u.c.p.=⇒
∫ t

0
ρ(p, ξs) ds.

To see this, we introduce the variables ηni = E(ζ ni |F(i−1)Δn). In view of the form of
ζ ni , and since ξ(i−1)Δn = (ξk(i−1)Δn

)1≤k≤d ′ is measurable with respect to F(i−1)Δn ,
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whereasWs−W(i−1)Δn is independent of that σ -field when s ≥ (i−1)Δn, a simple
application of the scaling property of the Brownian motion yields that indeed ηni =
Δn ρ(p,d

′, ξ(i−1)Δn). Thus

[t/Δn]∑

i=1

ηni
u.c.p.=⇒
∫ t

0
ρ
(
p,d ′, ξs

)
ds

by Riemann integration, because x �→ ρ(p,d ′, x) is continuous and ξt is càdlàg.
Hence it remains to prove that the array (ζ ni − ηni ) is asymptotically negli-

gible. To this end, we observe that E((ζ ni )
2 | F(i−1)Δn) ≤ KΔ2

n, implying that
the array (E((ζ ni )

2 | F(i−1)Δn)) is asymptotically negligible, and we conclude by
Lemma 2.2.11.



Part III
More Laws of Large Numbers

The basic setting considered in the previous chapters is far from covering all cases
of interest:

• From a theoretical viewpoint, it would be interesting to see what happens when
the test function f is not “smooth enough”, or in the degenerate case where the
limiting processes vanish and thus other normalizing factors are needed.

• From a purely statistical viewpoint, in parametric statistics one needs test func-
tions f which depend not only on the increments Δni X of the process X, but
also on the value X(i−1)Δn , or maybe on the whole “past” path of X before time
(i−1)Δn. Also, as seen in Sect. 5.6, we need to consider test functions which de-
pend on several successive increments, or on the “truncated” increments to allow
us to estimate for example the volatility when the process X has jumps.

• From a practical viewpoint, regular discretization schemes are obviously insuf-
ficient. Very often the process X is observed at irregular, and perhaps random,
times. Even worse, in the multivariate case, the discretization schemes may be
different for each component of the process of interest.

Below, we study some of these situations. This part is concerned with the law of
large numbers only, and the associated central limit theorems will be considered in
the next part.

The relevant bibliographical notes are not given in this part; they are provided at
the end of the chapters of Part IV, together with the historical comments about the
corresponding Central Limit Theorems.



Chapter 7
First Extension: Random Weights

In this chapter, we give a first—and rather straightforward—extension of the Laws
of Large Numbers of Chap. 3, in the case where the test function f is random.

7.1 Introduction

Let X be our basic d-dimensional semimartingale, on the filtered space (Ω,F ,
(Ft )t≥0,P). So far, we have considered the behavior of following two functionals:

V n(f,X)t =
Nn(t)∑

i=1

f
(
Δni X
)

V ′n(f,X)t =Δn
[t/Δn]∑

i=1

f
(
Δni X/

√
Δn
)
,

(7.1.1)

where f is a function on R
d , and whereΔni X is the increment ofX over the interval

I (n, i)= (T (n, i− 1), T (n, i)]. The LLN for V n(f,X) allows for arbitrary random
discretization schemes, whereas for V ′n(f,X) we consider only regular schemes
T (n, i)= iΔn.

Our aim is to replace the summands f (Δni X) or f (Δni X/
√
Δn ) by more general

ones, still depending on Δni X of course, but also on other random inputs and, why
not, on i and n as well. This can be done in many ways, the most general one being
simply to replace f (Δni X) by an arbitrary variable χni , in which case obviously
anything can happen!

In fact, we want somehow to retain the structure (7.1.1), and the simplest way
for extending the first functional V n(f,X), for example, is to consider weights χni
(random or not), that is the processes

Nn(t)∑

i=1

χni f
(
Δni X
)
.
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Again, this formulation is so general that it allows for about any possible limiting
behavior. However, one can immediately single out two natural special cases:

(1) Take non-random numbers χni , with some nice limiting behavior, in connection
with the sequence Δn, for example χni = g(τ(n, i)) for some given function g
on R+ and some points τ(n, i) in I (n, i)= [T (n, i− 1), T (n, i)]. This amounts
to affecting the summand f (Δni X) with a weight which is the value of the func-
tion g, at the time τ(n, i) at which this summands physically occurs. Such a
setting may be aimed to put more emphasis on certain parts of the half line than
on others.

(2) Take the weights χni to be of the form g(Xτ(n,i)), where τ(n, i) ∈ I (n, i), and
for some given function g on R

d . This amounts to put more emphasis on certain
parts of the “space”, that is when X is in the regions of Rd where g is biggest.

The setting (2) above is heavily used, for example, in statistics of processes in
case of high frequency data, and especially in parametric statistics, as we shall see
in Sect. 7.4 below.

Summarizing the previous discussion, it appears that the proper extensions of the
two functionals V n(f,X) and V ′n(f,X) are

V n(F,X)t =
Nn(t)∑

i=1

F
(
., τ (n, i),Δni X

)
,

V ′n(F,X)t = Δn

[t/Δn]∑

i=1

F
(
., τ (n, i),Δni X/

√
Δn
)
.

(7.1.2)

Here, F = F(ω, t, x) is a function on Ω ×R+ ×R
d , but as usual we omit to men-

tion the sample point ω, and τ(n, i) is a—possibly random—time in the interval
[T (n, i − 1), T (n, i)]. As for (7.1.1), the T (n, i) are arbitrary stopping times when
we consider V n(F,X), but are T (n, i) = iΔn when we consider V ′n(F,X), and
Nn(t)= sup(i : T (n, i)≤ t). The function F may have values in R

q .
As a function of the last argument x, F(ω, t, x) should of course satisfy the

same conditions as in Theorems 3.3.5 and 3.4.1 respectively, more or less uniformly
in (ω, t). We also need some regularity in t , and global measurability in (ω, t, x).
However, for the LLN’s there is no need of any sort of adaptation property to the
filtration (Ft )t≥0. This is because the limiting results in Chap. 3 are “pathwise”
results, up to taking subsequences which allow us to replace the convergence in
probability by the almost sure convergence. This is most apparent for V ′n(F,X):
the argument is straightforward and has indeed nothing to do with the structure of
the process X: as soon as we have an LLN for V ′n(f,X) for all test functions f , we
have the LLN for V ′n(F,X). Therefore we begin with this case.
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7.2 The Laws of Large Numbers for V ′n(F,X)

Here we extend Theorem 3.4.1, whose notation and assumptions are in force. In
particular we have a regular discretization scheme with stepsize Δn→ 0, and X is
a d-dimensional Itô semimartingale, with characteristics (B,C, ν) having the form
(2.1.25), that is

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
cs ds, ν(dt, dx) = dt Ft (dx).

We consider the processes V ′n(F,X) of (7.1.2), and we suppose the following on
F and the times τ(n, i):

Assumption 7.2.1 (i) Each τ(n, i) is a measurable variable with values in [(i −
1)Δn, iΔn].

(ii) F is a measurable function on (Ω ×R+ ×R
d,F ⊗R+ ⊗Rd), and the set

DF of all (ω, t, x) such that (s, y) �→ F(ω, s, y) is not continuous at the point (t, x)
satisfies:

E

(∫ ∞

0
ρcs (DF,.,s) ds

)
= 0 (7.2.1)

where DF,ω,t = {x : (ω, t, x) ∈ DF } (compare with (3.4.10); here, according to
(3.4.4), and for any matrix a ∈M+

d×d , the notation ρa stands for the normal law
N0, a)).

(iii) There is localizing sequence of random times τn (not necessarily stopping
times), and continuous positive functions fn on R

d , such that

t < τn(ω) ⇒
∣∣F(ω, t, x)

∣∣ ≤ fn(x). (7.2.2)

The same comments as after Corollary 3.4.4 apply here, about the condition
(7.2.1). In particular, when ct is everywhere invertible, this condition amounts to
saying that for almost all ω the function (t, x) �→ F(ω, t, x) is Lebesgue-almost
everywhere continuous on R+ ×R

d .

Theorem 7.2.2 Assume that X is a d-dimensional Itô semimartingale, and that the
discretization scheme is regular with stepsizeΔn. Let F satisfy Assumption 7.2.1, in
which each function fn satisfies one of the following three conditions (the same for
all n):

(a) fn(x)= o(‖x‖2) as ‖x‖→∞,
(b) fn(x)=O(‖x‖2) as ‖x‖→∞, and X is continuous,
(c) fn(x) = O(‖x‖p) as ‖x‖ →∞ for some p > 2, and X is continuous and

satisfies
∫ t

0
‖bs‖2p/(2+p) ds < ∞,

∫ t

0
‖cs‖p/2 ds < ∞.
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Then

V ′n(F,X)t
u.c.p.=⇒ V ′(F,X)t :=

∫ t

0
ds

∫

Rd

F (s, x)ρcs (dx).

Once more, the conditions on X are exactly the same as for Theorem 3.4.1,
whereas the limiting process is a straightforward extension of (3.4.7).

Example 7.2.3 The simplest (non-trivial) functions F satisfying Assumption 7.2.1
for all processes X are F(ω, t, x) = g(Xt (ω), x) and F(ω, t, x) = g(Xt−(ω), x),
where g is a continuous function on R

d ×R
d such that |g(y, x)| ≤ f (x) for some

positive continuous function f . Then under the assumptions of the theorem on fn =
f we have

Δn

[t/Δn]∑

i=1

g
(
Xτ(n,i),Δ

n
i X/
√
Δn
) u.c.p.=⇒

∫ t

0
ds

∫

Rd

g(Xs, x)ρcs (dx)

and the same if we take Xτ(n,i)− instead of Xτ(n,i) above, and whatever τ(n, i) is
inside I (n, i): for example one can take for τ(n, i) the time at which X reaches its
maximum (in the one-dimensional case), or its minimum, inside I (n, i), if such a
thing exists, or the time at which the biggest jump of X occurs within I (n, i).

Proof The proof is an extension of the proof of Corollary 3.4.4, and exactly as in
that proof it is enough to show that for each fixed t we have

V ′n(F,X)t
P−→
∫ t

0
ds

∫

Rd

F (s, x)ρcs (dx). (7.2.3)

Below, we fix t > 0. Since τn→∞ in (7.2.2), it is enough to show (7.2.3) on
the set {τm > t}, for any given m ≥ 1. In other words, it is enough to prove the
result when |F(ω, s, x)| ≤ f (x) for all s ≤ t and some function f > 0 satisfying the
appropriate condition (a), (b) or (c), according to the case. For each n we introduce
the positive finite (random) measure mn =mn(ω,ds, dx) on R+ ×R

d :

mn(ω,ds, dx) = Δn

[t/Δn]∑

i=1

f
(
Δni X(ω)/

√
Δn
)
ε(τ(n,i)(ω),Δni X(ω)/

√
Δn )
(ds, dx)

(εa is the Dirac mass at a). We also consider the measure m:

m(ω,ds, dx) = 1[0,t](s) f (x) ds ρcs(ω)(dx).

Note that (7.2.1) yields that, for all ω outside a P null set N , the bounded function
F/f = F(ω, s, x)/f (x) is m(ω,ds, dx) almost everywhere continuous.

We set θn(s) = 0 if s < τ(n,1) and θn(s) = t ∧ (iΔn) if τ(n, i) ≤ s < τ(n, i +
1) for some i ≥ 1. For any bounded function g on R

d , we have mn(1[0,s] ⊗ g) =
V ′n(gf,X)θn(s) and m(1[0,s] ⊗ g)= V ′(gf,X)s∧t (notation (3.4.7)). Since θn(s)→
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s∧ t uniformly in s, we deduce from Theorem 3.4.1 that for any bounded continuous
g we have

mn(1[0,s] ⊗ g) P−→ m(1[0,s] ⊗ g).
We take a countable family G of continuous bounded functions on R

d which is
convergence determining, so the family (1[0,s] ⊗ g; s ∈Q+, g ∈ G) is convergence-
determining for the measures on R+×R

d . Hence, as in the proof of Corollary 3.4.4,
from any sequence nk→∞ one can extract a subsequence nkl →∞ such that, for
all ω outside a P null set N ′ containing the set N , we have mnkl (ω, .)→ m(ω, .)

weakly. Since the function F/f is bounded and m(ω, .) almost everywhere contin-
uous when ω /∈ N ′, we deduce mnkl (F/f )→ m(F/f ) outside N ′, that is almost
surely. The left and right sides of (7.2.3) are respectively equal to mn(F/f ) and
m(F/f ), so by the subsequence principle (2.2.17) we deduce that (7.2.3) holds. �

7.3 The Laws of Large Numbers for V n(F,X)

In this section, X is an arbitrary semimartingale with characteristics (B,C, ν) and
jump measure μ, on (Ω,F , (Ft )t≥0,P), and we consider a random discretization
scheme T = (T (n, i)i≥0 : n≥ 1) satisfying (3.1.1), recall Definition 3.1.1.

The processes of interest are V n(F,X), as given by (7.1.2), but we can no longer
choose τ(n, i) arbitrary in I (n, i). Basically we have to choose either end point of
that interval, thus giving rise to two different functionals (“l” and “r” are for “left”
and “right”, respectively):

V n,l(F,X)t =
Nn(t)∑

i=1

F
(
T (n, i − 1),Δni X

)

V n,r (F,X)t =
Nn(t)∑

i=1

F
(
T (n, i),Δni X

)
.

(7.3.1)

Our aim is to extend Theorem 3.3.1 to this situation. We use all notation of
Sect. 3.3 below, and in particular when 1 ∈ I(X) we recall that

Xt =X0 +B ′t +Xct +
∑

s≤t
ΔXs,

where B ′ is a predictable process of finite variation.
Actually, we will extend part (A) of Theorem 3.4.1 in full detail, and simply

indicate the extensions of parts (B) and (C) without proof, since they will not be
used in the sequel and they are a bit messy to prove.

We have two different assumptions on the test function F , regarding the behavior
in time, according to which—left or right—functionals we consider. As in Chap. 3,
we allow F to be q-dimensional. We denote by DlF and DrF respectively the set of
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all (ω, t, x) for which there exist sequences tn→ t and xn→ x, with further tn < t ,
resp. tn ≥ t , and such that F(ω, tn, xn) does not converge to F(ω, t, x). ThenDlF,ω,t
and DrF,ω,t are the (ω, t)-sections of DlF and DrF , as in Assumption 7.2.1.

Assumption 7.3.1 The function F is F ⊗R+ ⊗Rd measurable, and

P
({
ω : ∃t > 0 : (ω, t,ΔXt(ω)

) ∈DlF
}) = 0. (7.3.2)

Moreover, for some θ > 0 we have a sequence fn of nonnegative functions on R
d

and a localizing sequence (τn) of random times (not necessarily stopping times),
such that ‖F(ω, t, x)‖ ≤ fn(x) for t < τn(ω) and ‖x‖ ≤ θ .

Assumption 7.3.2 The same as above, upon substituting DlF with DrF .

Note that Assumption 7.3.1 implies that F is essentially left-continuous in time,
whereas Assumption 7.3.2 implies that it is essentially right-continuous. We cannot
replace (7.3.2) by E(1DlF

∗ νt ) = 0 for all t , contrary to what happens in Theo-
rem 3.3.5, unless the set DF is predictable.

Theorem 7.3.3 Let X be a d-dimensional semimartingale and T be any random
discretization scheme and F be a q-dimensional function on Ω × R+ × R

d . Let
either V n(F,X) = V n,l(F,X) and F satisfy Assumption 7.3.1, or V n(F,X) =
V n,r (F,X) and F satisfy Assumption 7.3.2. Assume that each n the function fn
and X satisfy any one of the following four conditions (the same for all n):

(A-a) fn(x)= o(‖x‖2) as x→ 0,
(A-b) Xc = 0 and there is a p ∈ I(X)∩(1,2] such that fn(x)=O(‖x‖p) as x→ 0,
(A-c) Xc = 0 and 1 ∈ I(X) and fn(x)= o(‖x‖) as x→ 0,
(A-d) Xc = 0 and there is a p ∈ I(X)∩[0,1] such that fn(x)=O(‖x‖p) as x→ 0,

and B ′ = 0.

Then we have the following Skorokhod convergence in probability:

V n(F,X)
P=⇒ V (F,X) := F � μ.

The remarks made after Theorem 3.3.1 also hold in this more general setting. In
particular, we have the following slightly stronger property:

W
n
(F)t = V n(F,X)t − V (F,X)Tn(t) u.c.p.=⇒ 0. (7.3.3)

We emphasize once more than there is no adaptation to (Ft ) required from F .
The integral F ∗μt in the limit above is an ordinary (Lebesgue) integral, which ex-
ists and is finite in all cases because of the specific assumptions on F , in connection
with those on X.

Proof We consider only the case V n(F,X)= V n,l(F,X), the other case being sim-
ilar. As for Theorem 3.4.1, we prove the stronger statement (7.3.3).
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In a first step we extend Lemma 3.3.7 to obtain (7.3.3) when F satisfies (7.3.2)
and F(ω, t, x)= 0 when ‖x‖ ≤ ε, for some ε > 0. Using the notation of that lemma,
we can in fact reproduce its proof, the only change being that

W
n
(F)t =

QT∑

q=1

(
F
(
T
(
n, i(n, q)− 1

)
,Δni(n,q)X

′ +ΔXSq
)

− F(Sq,ΔXSq )
)
1{Sq≤Nn(t)}.

Outside a null set, Δni(n,q)X
′ → 0 by (3.3.6), whereas T (n, i(n, q) − 1) is

strictly smaller than Sq and tends to Sq . Then (7.3.2) yields F(T (n, i(n, q) −
1),Δni(n,q)X

′ + ΔXSq )→ F(Sq,ΔXSq )) a.s. and, since QT is finite, we deduce
(7.3.3).

Now we turn to the general case. By our usual localization argument, we can
suppose that ‖F(ω, t, x)‖ ≤ f1(x) for all ω ∈Ω , t ≥ 0, and all x with ‖x‖ ≤ θ (that
is, τ1 =∞). With the notation of (3.3.16), we set

Gε(ω, t, x) = F(ω, t, x)ψ ′ε(x), Fε = F −Gε.
Then, for (7.3.3) it is enough to prove (3.3.17), which we recall below:

ε > 0 ⇒ W
n
(Fε)

u.c.p.=⇒ 0

t, η > 0 ⇒ lim
ε→0

lim sup
n

P

(
sup
s≤t
∥∥Wn

(Gε)s
∥∥> η
)
= 0.

(7.3.4)

Since Fε(ω, t, x)= 0 when ‖x‖ ≤ ε, and since obviously Fε satisfies (7.3.2), Step 1
yields the first part of (7.3.4). On the other hand ‖Gε(ω, t, x)‖ ≤ f1(x) as soon
as ε < θ . In this case it follows that we have exactly the same upper bound for
‖Wn

(Gε)t‖ here as in Part 2 of the proof of Theorem 3.3.1, with the same control
functions h or hε on R

d . Hence the same proof yields the second part of (7.3.4), and
the proof is complete. �

For extending (B) of Theorem 3.4.1 we need F(t, x) to be close enough to a
quadratic function of x near 0, with coefficients which are random processes them-
selves:

Assumption 7.3.4 The function F is F ⊗ R+ ⊗ Rd measurable, and satisfies
(7.3.2). Moreover, for some θ > 0 we have a sequence fn of nonnegative functions
on R

d and a localizing sequence (τn) of random times (not necessarily stopping
times), such that ‖F(ω, t, x) −∑f

j,k=1 α(ω)
jk
t x

j xk‖ ≤ fn(x) for t < τn(ω) and

‖x‖ ≤ θ , where the αjk are q-dimensional measurable processes (not necessarily
adapted), whose paths are left continuous with right limits.

Assumption 7.3.5 The same as above, upon substituting DlF with DrF in (7.3.2),
and with αjk being càdlàg.
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As said before, we state the result without proof:

Theorem 7.3.6 Let X be a d-dimensional semimartingale and T be any random
discretization scheme and F be a q-dimensional function on Ω × R+ × R

d . Let
either V n(F,X) = V n,l(F,X) and F satisfy Assumption 7.3.4, or V n(F,X) =
V n,r (F,X) and F satisfy Assumption 7.3.5, with fn(x) = o(‖x‖2) as x→ 0 for
all n. Then

V n(F,X)
P=⇒ V (F,X)t :=

d∑

j,k=1

∫ t

0
α
jk
s dC

jk
s + F � μt .

Finally for extending (C) of Theorem 3.4.1 we need the following:

Assumption 7.3.7 The function F is F ⊗ R+ ⊗ Rd measurable, and satisfies
(7.3.2). Moreover, for some θ > 0 we have a sequence fn of nonnegative func-
tions on R

d and a localizing sequence (τn) of random times (not necessarily stop-
ping times), such that ‖F(ω, t, x) −∑f

j=1 α(ω)
j
t x

j‖ ≤ fn(x) for t < τn(ω) and

‖x‖ ≤ θ , where the αj are q-dimensional measurable processes (not necessarily
adapted), whose paths are left continuous with right limits.

Assumption 7.3.8 The same as above, upon substituting DlF with DrF in (7.3.2),
and with αj being càdlàg.

Theorem 7.3.9 Let X be a d-dimensional semimartingale with 1 ∈ I(X) and Xc =
0, and T be any random discretization scheme and F be a q-dimensional function
on Ω × R+ × R

d . Let either V n(F,X) = V n,l(F,X) and F satisfy Assumption
7.3.7, or V n(F,X) = V n,r (F,X) and F satisfy Assumption 7.3.8, with fn(x) =
o(‖x‖) as x→ 0 for all n. Then

V n(F,X)
P=⇒ V (F,X)t :=

d∑

j=1

∫ t

0
α
j
s dVar

(
B ′j
)
s
+ F � μt .

7.4 Application to Some Parametric Statistical Problems

Among many other applications, the previous results can be used for estimating a
parameter θ in some parametric statistical models for processes observed at discrete
times, on a finite time interval.

Although more general situations are amenable to a similar analysis, we consider
below the case of a (continuous) diffusion process, with a diffusion coefficient de-
pending on an unknown parameter θ lying in some domain Θ of Rq . That is, we
have

Xθt = x +
∫ t

0
b
(
s,Xθs
)
ds +
∫ t

0
σ
(
θ, s,Xθs

)
dWs.
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Here, x ∈ R
d is the (known) starting point, b is a (possibly unknown) function on

R+ ×R
d , and σ is a known function on Θ ×R+ ×R

d . Of courseW is a Brownian
motion, say d ′-dimensional, and the functions b and σ(θ, .) are nice enough for
the above equation to have a unique solution. The “true” (unknown) value of the
parameter is θ0, and we observe the process Xθ0 at all times iΔn within some fixed
interval [0, T ].

As is customary in statistics, we use the “weak” formulation. That is, we consider
the filtered space (Ω,F , (Ft )) which is the canonical space Cd of all continuous d-
dimensional functions on R+, and X denotes the canonical process Xt(ω)= ω(t).
Then for each θ the law of Xθ is a probability measure Pθ on it. Upon enlarging this
canonical space if necessary, so that it accommodates a d ′-dimensional Brownian
motion, and without changing the notation, the canonical process X satisfies

Xt = x +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(θ, s,Xs) dWs, Pθ -almost surely.

(Note that the Brownian motion W depends on θ , in this formulation.)
The aim here is to estimate θ in a consistent way, asΔn→ 0. This means finding,

for each n, a function hn on (Rd)[T/Δn] (not depending on θ , of course), which
satisfies the weak consistency condition

θ̂n := hn(XΔn,X2Δn, . . . ,XΔn[T/Δn])
Pθ−→ θ ∀ θ ∈Θ.

Of course, this is only the first step for the solution of the statistical problem. If
it can be achieved, a second step consists in finding, among all such θ̂n, the “best”
ones, for which θ̂n − θ goes to 0 as fast as possible. The first step requires Laws
of Large Numbers in our sense, whereas the second step needs a Central Limit
Theorem, and will be considered in Chap. 10 only.

Typically, estimation problems are solved by using the maximum likelihood es-
timator, when available. Here, the likelihood at stage n is not available if the drift
coefficient b is unknown, and even when it is known it is (almost) never explicit.
So a lot of work has been done on this topic, using substitutes like “approximated
likelihoods” or “quasi-likelihoods”. We will not go deep into this, and will only
consider simple contrast functions, in the spirit of Genon-Catalot and Jacod [37].

As usual, we set c(θ, t, x) = σ(θ, t, x)σ (θ, t, x)∗, which takes its values in
M+

d×d . We consider a function g on M+
d×d ×R

d , and the associated contrast func-
tions (they are functions of θ , depending on the observed values of the X at stage n
only):

Φn(θ) = Δn

[T/Δn]∑

i=1

g

(
c
(
θ, (i − 1)Δn,X(i−1)Δn

)
,
Δni X√
Δn

)
.

The assumptions made below on c and g imply that each Φn(θ) is continuous in θ ,
and as customary for this kind of problem we assume that Θ is compact. Then we
take for θ̂n the minimum contrast estimator:

θ̂n = any value realizing the minimum of θ �→Φn(θ).
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Since c is a known function and g is chosen by the statistician, θ̂n is indeed a func-
tion hn of the observations XiΔn at stage n.

In order to achieve consistency, we need two types of conditions:

1 – The function (θ, t, x) �→ c(θ, t, x) is continuous, and (t, x) �→ b(t, x) is locally
bounded.

2 – The function g is continuous with at most polynomial growth, and for all a, a′ ∈
M+

d×d we have:

G
(
a, a′
)=
∫
g(a, x)ρa′(dx) satisfies G

(
a, a′
)
> G
(
a′, a′
)

if a �= a′. (7.4.1)

Furthermore, consistent estimators cannot exist, of course, if for different values
of θ the processes Xθ are the same. This leads us to introduce the sets

ΩθT =
{∫ T

0

∥∥c
(
θ ′, s,Xs

)− c(θ, s,Xs)
∥∥ds > 0 ∀ θ ′ �= θ

}
.

On the σ -field FT , the measures Pθ ′ for θ ′ �= θ are all singular with respect to
Pθ in restriction to the set ΩθT , whereas there exists θ ′ �= θ such that Pθ and Pθ ′
are equivalent in restriction to the complement (ΩθT )

c: therefore, on (ΩθT )
c one

cannot distinguish between θ and θ ′ even when the whole path of Xt for t ∈ [0, T ]
is observed, hence there are no estimators which are consistent for estimating θ on
this set.

Theorem 7.4.1 In the previous setting and under the previous assumptions, the
estimators θ̂n satisfy for all θ0:

θ̂n −→ θ0 in Pθ0 -probability, in restriction to the set Ωθ0
T .

As mentioned before, the convergence above cannot hold outside Ωθ0
T . Quite

fortunately, this set is equal or almost surely equal to Ω itself in many cases, for
example when c is continuous and c(θ,0, x) �= c(θ ′,0, x) for all θ �= θ ′, where x is
the initial condition.

Notice the compactness assumption on Θ . When Θ is closed but unbounded, it
may happen that θ̂n is not well defined, or that it drifts away to infinity instead of
going to θ0. To avoid these two problems, one needs additional assumptions on the
behavior of c(θ, t, x) as ‖θ‖→∞, a very strong one being that for all A large we
have ‖c(θ ′, t, x)− c(θ, t, x)‖ ≥ CA for a positive constant CA, for all t ∈ [0, T ] and
all ‖x‖ ≤A and all ‖θ ′‖>A and ‖θ‖ ≤A/2. Weaker assumptions are possible but
complicated.

It can also happen that Θ is an open set, so θ̂n may drift toward the boundary.
The problem is similar to the previous one, but the conditions ensuring consistency
are more difficult to state, although in the same spirit. We will not pursue this topic
here.
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Proof The “true” value θ0 is fixed, and for simplicity we write P = Pθ0 . Under P,
the process X is a continuous Itô semimartingale satisfying (H).

1) We observe that Φn(θ)= V n(Fθ ,X)T , provided τ(n, i)= (i − 1)Δn and Fθ
is

Fθ(ω, t, x) = g
(
c
(
θ, s,Xs(ω)

)
, x
)
.

Our hypotheses imply Assumption (7.2.1) and (c) of Theorem 7.2.2 (here, bt =
b(t,Xt ) and ct = c(θ0, t,Xt )). Then this theorem implies, with the notation G of
(7.4.1), that

Φn(θ)
P−→ Φ(θ) =

∫ t

0
G
(
c(θ, s,Xs), c(θ0, s,Xs)

)
ds. (7.4.2)

This is a convergence for each fixed θ ∈ Θ . However, by localization we may
assume that ‖Xt‖ ≤ C for some constant C and all t , whereas Θ is compact by
hypothesis and thus the assumptions on c and g yield for all A> 1:

‖x‖ ≤ C, ∥∥θ−θ ′∥∥≤ ε ⇒ ∣∣g(c(θ, s, x), y)−g(c(θ ′, s, x), y)∣∣≤ φA(ε)+K ‖y‖
p

A

for some p ≥ 1 and functions φA satisfying φA(ε)→ 0 as ε→ 0. It follows that

E

(
sup

θ,θ ′: ‖θ−θ ′‖≤ε

∣∣Φn(θ)−Φn
(
θ ′
)∣∣
)
+ sup
θ,θ ′: ‖θ−θ ′‖≤ε

∣∣Φ(θ)−Φ(θ ′)∣∣ ≤ φA(ε)+ KT
A

because E(‖Δni X‖p) ≤ KΔp/2n for all i, n and also ‖c(θ0, s,Xs)‖ ≤ K , which in
turn implies

∫ ‖y‖p ρc(θ0,s,Xs)(dy) ≤ K . The compact set Θ may be covered by
Nε balls of radius ε, with centers θi for i = 1, . . . ,Nε , and we deduce from what
precedes that for all η > 0:

P

(
sup
θ

∣∣Φn(θ)−Φ(θ)
∣∣> η
)
≤ P

(
sup

1≤i≤Nε

∣∣Φn(θi)−Φ(θi)
∣∣>

η

3

)

+ P

(
sup

θ,θ ′: ‖θ−θ ′‖≤ε

∣∣Φn(θ)−Φn
(
θ ′
)∣∣>

η

3

)

+ P

(
sup

θ,θ ′: ‖θ−θ ′‖≤ε

∣∣Φ(θ)−Φ(θ ′)∣∣> η
3

)

≤
Nε∑

i=1

P

(∣∣Φn(θi)−Φ(θi)
∣∣> η

3

)
+ 6

η
φA(ε)+ KT

A
.

The first term in the right member above goes to 0 as n→∞ by (7.4.2) for each
ε > 0 fixed. Since A is arbitrarily large and φA(ε)→ 0 as ε→ 0, we then deduce

sup
θ

∣∣Φn(θ)−Φ(θ)
∣∣ P−→ 0. (7.4.3)
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2) By the subsequence principle, we can replace the convergence in probability in
(7.4.3) by the convergence for all ω in a full setΩ0, and below we fix ω ∈Ω0∩Ωθ0

T .
On the one hand, Φn converges to Φ uniformly on Θ and, being continuous, admits
at least a minimum on the compact set Θ at some (not necessarily unique) point
θ̂n. On the other hand, (7.4.1) implies that Φ has a unique minimum at θ0 (because
we are on Ωθ0

T ). Hence, necessarily, θ̂n(ω)→ θ0 if ω ∈Ω0 ∩Ωθ0
T . This finishes the

proof. �

Example 7.4.2 The simplest choice for the function g is probably the following one:

g(a, x) =
d∑

i,j=1

(
aij − xixj )2.

The associated function G is

G
(
a, a′
) =

d∑

i,j=1

(
aij − a′ij )2 +

d∑

i,j=1

(
a′ii a′jj + (a′ij )2),

which clearly satisfies (7.4.1).

Example 7.4.3 The previous choice may be the simplest one, but it is not the op-
timal one, as we will see in Chap. 10 (although it gives rise to the “optimal” rate
of convergence). An optimal choice is not available in general, but it is under the
additional assumption that the diffusion coefficient c(θ, t, x) is invertible, that is,
takes its values in the set M++

d×d . In this case it is enough to define the function g on
M++

d×d (the argument is exactly the same as in the previous theorem), and one may
take

g(a, x) = log deta + x∗ a−1 x,

which is also − logha(x) if ha denotes the product of (2π)d/2 and the density of
the measure ρa . Then the associated function G is

G
(
a, a′
)=−

∫
logha(x)ρa′(dx)=G

(
a′, a′
)−
∫

log
ha(x)

ha′(x)
ρa′(dx).

Since
∫
ha(x)
ha′ (x)

ρa′(dx) = 1 we deduce from Jensen’s inequality that G(a,a′) ≥
G(a′, a′), with equality if and only if ha/ha′ = 1 almost everywhere, that is if
a = a′. Hence, here again, we have (7.4.1).

When b≡ 0 and c(θ, t, x)= c(θ) does not depend on (t, x) (so X is a Brownian
motion with variance c(θ) under Pθ ), the contrast Φn is, up to a constant, minus the
likelihood: our estimator is thus the MLE (maximum likelihood estimator), and the
optimality properties are not a surprise (but of course we need here the invertibility
of c).



Chapter 8
Second Extension: Functions of Several
Increments

8.1 Introduction

Now we want to extend the Laws of Large Numbers to functionals in which the test
function depends on several successive increments, which may indeed mean several
different things.

1) The most natural meaning is the following one. We take an integer k ≥ 2 and a
function F on (Rd)k , and we substitute V n(f,X) and V ′n(f,X) with

V n(F,X)t =
Nn(t)−k+1∑

i=1

F
(
Δni X,Δ

n
i+1X, . . . ,Δ

n
i+k−1X

)
, (8.1.1)

V ′n(F,X)t =Δn
[t/Δn]−k+1∑

i=1

F
(
Δni X/

√
Δn,Δ

n
i+1X/

√
Δn, . . . ,Δ

n
i+k−1X/

√
Δn
)
.

(8.1.2)

For V n(F,X) the discretization scheme is arbitrary, whereas for V ′n(F, x) it is
regular. Note that the upper limit Nn(t)− k + 1 is exactly what is needed to use all
increments Δni X occurring up to time t .

In these two definitions the same increment Δni X occurs into several different
summands. This breaks down the “almost independence” of the summands which
in the previous chapters was important for proving the LLN, and even more for the
CLT.

To overcome these difficulties we can add up summands which involve non-
overlapping intervals and discard the others. This leads us to introduce the processes

Vn(F,X)t =
[Nn(t)/k]∑

i=1

F
(
Δnik−k+1X, . . . ,Δ

n
ikX
)

V ′n(F,X)t =Δn
[t/kΔn]∑

i=1

F
(
Δnik−k+1X/

√
Δn, . . . ,Δ

n
ikX/
√
Δn
)
.

(8.1.3)
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These functionals are much easier to handle than the previous ones, but also with
less practical interest unless F is invariant by a permutation of its k arguments (this
property is referred to as F being a symmetrical function). When F is not symmetri-
cal, they put more emphasis on some increments than on others: for example if k = 2
and F(x, y) = f (x) does not depend on the second argument, then Vn(F,X) and
V ′n(F,X) skip all increments with an even index. This fact implies that Vn(F,X)
simply does not converge in general when F is not symmetrical.

2) In most applications, the test function F is of one of the following non-exclusive
forms:

• Product form, that is

F(x1, . . . , xk) =
k∏

j=1

fj (xj ). (8.1.4)

• Positively homogeneous of degree w ≥ 0, that is, it satisfies

λ≥ 0, xi ∈R
d ⇒ F(λx1, . . . , λxk) = λwF(x1, . . . , xk),

with the non-standard convention 00 = 1.
• Extended multipower, that is of product form with each fj being positively ho-

mogeneous of some degree wj ≥ 0. Then F is positively homogeneous of degree
w =w1 + · · · +wk .

• Multipower, that is

F(x1, . . . , xk) =
k∏

j=1

d∏

i=1

∣∣xij
∣∣wij , wij ≥ 0, (8.1.5)

where again 00 = 1, so that when wij = 0 the factor |xij |w
i
j does not show. A

multipower is an extended multipower with degree w = w1 + · · · + wk , where
wj =w1

j + · · ·+wdj . Conversely, when d = 1 any extended multipower is a mul-
tipower.

A multipower variation, or realized multipower variation, is the functional V ′n(F,X)
with F of the form (8.1.5). These functionals have been introduced by Barndorff-
Nielsen and Shephard [8]. Observe that, as soon as F is positively homogeneous of
degree w, and if the scheme is regular, we have

V n(F,X) = Δ
w/2−1
n V ′n(F,X), Vn(F,X) = Δ

w/2−1
n V ′n(F,X).

3) In some applications we need to consider functionals whose summands depend
on a number kn of increments which increases to infinity as n→∞. This occurs for
example when the process X is corrupted by a noise, as we shall see in Chap. 16,
and to eliminate the noise one takes a moving average of kn successive observations,
and typically kn is then of the order 1/

√
Δn or bigger.
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We could plug in kn in (8.1.1) or (8.1.2), but then at stage n the function F = Fn
depends on n since it is a function on (Rd)kn . Therefore any limit theorem needs
some sort of “compatibility” between the Fn’s, which is not easy to formulate for
functions on different spaces!

This is a rather tricky issue, which so far has no satisfactory answer for general
discretization schemes. However, for a regular scheme, and among several possibil-
ities, an appealing way to solve this issue is as follows. The objective is to replace
V n(F,X), say, by

[t/Δn]−kn+1∑

i=1

Fn
(
Δni X,Δ

n
i+1X, . . . ,Δ

n
i+kn−1X

)
. (8.1.6)

The ith summand involves the increments of X over the interval [(i − 1)Δn, (i −
1+ kn)Δn], whose length is

un = knΔn.

Then we re-scale time in such a way that this interval becomes [0,1], by putting

t ∈ [0,1] �→ X(n, i)t = X(i−1)Δn+tun −X(i−1)Δn . (8.1.7)

The increments of X in the ith summand convey exactly the same information as
the restriction to the time interval [0,1] of the discretized version of the process
X(n, i), along the regular discretization scheme with time step 1/kn, that is (a no-
tation similar to (2.2.12), except that the time interval is restricted to [0,1]):

t ∈ [0,1] �→ X(n, i)
(n)
t = X(n, i)[knt]/kn . (8.1.8)

The paths of the processes X(n, i) and X(n, i)(n) belong to the space D
d
1 of all

càdlàg functions from [0,1] into R
d (a function in D

d
1 , as just defined, may have a

jump at time 1, so D
d
1 is different from the “usual” Skorokhod space D([0,1],Rd),

whose elements are continuous at time 1). Then it is natural, instead of the sequence
of functions Fn on (Rd)kn , to take a single function Φ on the space D

d
1 , and to

interpret the sum (8.1.6) as being

V n(Φ,kn,X)t =
[t/Δn]−kn+1∑

i=1

Φ
(
X(n, i)(n)

)
. (8.1.9)

Put another way, (8.1.6) is the same as (8.1.9), when the functions Fn are given by

Fn(x1, . . . , xkn) = Φ
(
y(n)
)
, where y(n)(t)=

kn∑

j=1

xj1{j/kn≤t}. (8.1.10)

This provides us the needed “compatibility relation” between the different Fn’s.
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The “normalized” version is as follows:

V ′n(Φ, kn,X)t = Δn

[t/Δn]−kn+1∑

i=1

Φ

(
1√
un
X(n, i)(n)

)
. (8.1.11)

The argument of Φ is somewhat similar to the Brownian motion w(n, i) defined in
(4.2.4), and is actually the same when X = W is a Brownian motion. This is the
reason motivating the choice of the normalizing factor 1/

√
un. Because of the time

change performed in (8.1.8), this is the same as the factor 1/
√
Δn for the increments

Δni X.
We will use a few specific notations below. The space D

d
1 can be identified with

the (closed) subspace of Dd consisting of all functions which are constant after time
1, and we endow it with the relative topology, still called the Skorokhod topology,
and with the associated Borel σ -field, which is Dd1 = σ(x(t) : t ∈ [0,1]). We also
need the sup norm

x# = sup
(∥∥x(t)

∥∥ : t ∈ [0,1]). (8.1.12)

We always assume that the test function Φ on D
d
1 satisfies the following (note that

the continuity for the Skorokhod topology implies the continuity for the sup-norm,
but does not imply the uniform continuity for the sup-norm on bounded sets):

For each v ≥ 0 the function Φ is continuous for the Skorokhod topology,
and also bounded and uniformly continuous for the sup-norm
on the set {x : x# ≤ v}; we then set Φ#(v)= supx∈Dd1 :x#≤v |Φ(x)|.

⎫
⎬

⎭

(8.1.13)
4) In the whole chapter, X is a d-dimensional semimartingale defined on (Ω,F ,
(Ft )t≥0,P), with characteristics (B,C, ν) and jump measure μ. The LLNs for
V n(F,X) and Vn(F,X) on the one hand, and for V n(Φ,kn,X) on the other hand,
are studied in two different sections, and they do not reduce one to the other. In
contrast, the LLNs for V ′n(F,X), V ′n(F,X) and V ′n(Φ, kn,X) are essentially the
same and are treated in a single theorem.

8.2 The Law of Large Numbers for V n(F,X) and Vn(F,X)

Here, we extend Case (A-a) of Theorem 3.3.1. Cases (A-b,c,d) can be dealt with in
the same way, but are not treated here because of their limited interest for applica-
tions. Cases (B) and (C) are significantly more complicated, and are not treated at
all below.

Theorem 8.2.1 Let X be a d-dimensional semimartingale and T = (Tn) be any
random discretization scheme. Let also F be a continuous function from (Rd)k into
R
q , which satisfies

F(z) = o
(‖z‖2) as z→ 0 in

(
R
d
)k
. (8.2.1)
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Then for each t we have the following convergence in probability, where fj denotes
the function fj (x) = F(0, . . . ,0, x,0, . . . ,0) on R

d with x occurring as the j th
argument:

V n(F,X)t
P−→ V (F,X)t :=

k∑

j=1

fj � μt , in restriction to the set {ΔXt = 0}.
(8.2.2)

If further F is a symmetrical function, hence all fj are equal to the same function f ,
we have the following Skorokhod convergence in probability:

Vn(F,X) P=⇒ V (f,X) := f � μ. (8.2.3)

Remark 8.2.2 When F is a symmetrical function we have a bit more than (8.2.3),
namely

W
n

t = Vn(F,X)t − V (f,X)kΔn[t/kΔn] u.c.p.=⇒ 0. (8.2.4)

The process W
n

is the discretized version of a process similar to (3.3.7), which in-
volves a suitably defined interpolation of V n(F,X) and could be shown to converge
to 0 in the u.c.p. sense as well.

When F is not symmetrical, the convergence (8.2.3) fails. For example let d = 1
andX be a Poisson process with jump times T1, T2, . . . , and k = 2 and F(x, y)= x4.
Suppose also that we have a regular scheme with Δn = 1/n. On the set A= {T1 <

1/4, T2 > 1} the variables Vn(F,X)s equals 1 when [nT1] is even, and to 0 when
[nT1] is odd, if n≥ 4 and for all s ∈ (1/2,1]. Hence the processes Vn(F,X) do not
converge.

Remark 8.2.3 The convergence in (8.2.2) does not take place on the set {ΔXt �= 0},
usually. The reason is basically the same as for the lack of convergence of V(F,X)t
when F is not symmetrical (or, for that matter, of V n(f,X)t in Theorem 3.3.1):
indeed, if t is one of the discretization points T (n, i) for infinitely many n’s, and is
not a discretization point for infinitely many n’s also, the two—usually different—
quantities

∑k−1
j=1 fj ∗μt + fk ∗μt− and

∑k−1
j=1 fj ∗μt + fk ∗μt are limit points of

the sequence V n(F,X)t .

Remark 8.2.4 It is important to observe that we cannot replace (8.2.2) by Skorokhod
convergence in probability, even when F is symmetrical, and this is a fundamental
difference with Theorem 3.3.1. Indeed, ifX has a jump at time S, say, and if T (n, i−
1) < S ≤ T (n, i), the process V n(F,X) has a jump of approximate size fj (ΔXS) at
time T (n, i + k − j); then as soon as at least two of the variables fj (ΔXS) are not
vanishing, the process V n(F,X) has two “big jumps” at two distinct times lesser
apart than kΔn, and this prevents the convergence for the Skorokhod topology.

Example 8.2.5 Suppose that d = 1 and write gp(x)= |x|p . A useful example is

F(x1, . . . , xk) = |x1 + · · · + xk|p, (8.2.5)
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which is symmetrical, and satisfies (8.2.1) when p > 2. Then (8.2.3) yields

Vn(F,X) P=⇒ gp ∗ μ, which can also be interpreted as a consequence of Theo-
rem 3.3.1 for the function f = gp and the discretization scheme T ′(n, i)= T (n, ik)
for i ≥ 0 and n ≥ 1. As to (8.2.2), it reads as V n(F,X)t

P−→ k gp ∗ μt on the set
{ΔXt = 0}.

Another useful example is the multipower function

F(x1, . . . , xk) =
k∏

j=1

|xj |pj (8.2.6)

which satisfies (8.2.1) if p = p1 + · · · + pk > 2. Unless all pj but one vanish,

V n(F,X)t
P−→ 0 on the set {ΔXt = 0} because the functions fj are then all iden-

tically 0. In other words, the previous theorem gives a trivial result and is not sharp
enough to capture the genuine behavior of V n(F,X). We will see in Chap. 15 how
to circumvent this problem.

Proof of Theorem 8.2.1 Although the results here are significantly different from
those in Theorem 3.3.1, the proof is basically the same.

Step 1) This step is the counterpart of Lemma 3.3.7, and this is where the difference
between (3.3.2) and (8.2.2) really occurs. We wish to prove the results when F is
continuous and, for some ε > 0, satisfies F(x1, . . . , xk)= 0 if ‖xj‖ ≤ ε for all j .

We use the notation of Lemma 3.3.7: the successive jump times S1, . . . of X
with size bigger than ε/2 and the number QT of such jumps occurring within the
time interval [0, T ]. We also set X′ =X− (x 1{‖x‖>ε/2})∗μ. Recalling the intervals
I (n, i) = (T (n, i − 1), T (n, i)], we also have an integer-valued variable MT such
that for all n≥MT and i ≤Nn(T );

• either the interval I (n, i) contains no Sq (recall (3.1.2)), and
s ∈ I (n, i) ⇒ ‖Xs −XT (n,i−1)‖ ≤ ε

• or I (n, i) contains exactly one Sq , and we write i = i(n, q), and
s ∈ I (n, i) ⇒ ‖Xs −XT (n,i−1) −ΔXSq 1{Sq≤s}‖ ≤ ε

• q ≥ 0, Sq < T ⇒ Sq+1 ∧ T > T (n, i(n, q)+ k)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(8.2.7)

(this is (3.3.10) plus an additional property). We write the (random) integer i(n, q)
as i(n, q) = m(n,q) + l(n, q), where l(n, q) ∈ {0,1, . . . , k − 1} and m(n,q) is a
multiple of k.

(a) We start by proving (8.2.4), which implies (8.2.3), when F is symmetrical. In
this case the process W

n
of (8.2.4) satisfies, for n≥MT and t ≤ T ,

W
n

t =
QT∑

q=1

(
ζ nq − f (ΔXSq )

)
1{Sq≤k[t/kΔn]}, where

ζ nq = F
(
Δnm(n,q)+1X, . . . ,Δ

n
m(n,q)+kX

)
,
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and Δnm(n,q)+jX equals Δnm(n,q)+jX′ if j = 1, . . . , k, except when j = l(n, q), in
which case it equals Δni(n,q)X

′ +ΔXSq . Since X′ is continuous at time Sq and F is
continuous and symmetrical, we have ζ nq → f (ΔXSq ) by the definition of f , and
(8.2.4) follows.

(b) Next, we prove (8.2.2). By (3.3.10) and (8.2.7) we have for n≥MT , and on
the set {ΔXT = 0}:

V n(F,X)T =
QT∑

q=1

k∑

j=1

ζ(n, j, q), where

ζ(n, j, q) = F
(
Δni(n,q)+1−jX, . . . ,Δ

n
i(n,q)+k−jX

′),

and Δni(n,q)+lX equals Δni(n,q)+lX′ if l = 1 − j, . . . , k − j , except when l = 0, in
which case it equals Δni(n,q)X

′ +ΔXSq . Here again, ζ(n, j, q)→ fj (ΔXSq ), and
(8.2.2) follows.

Step 2) We are now ready to prove the claims when F is continuous and satisfies
(8.2.1). We consider the functions of (3.3.16), which are ψ ′ε = 1−ψε and ψε(x)=
ψ(‖x‖/ε), where ψ is C∞ on R with 1[1,∞) ≤ψ ≤ 1[1/2,∞). The two functions

F ′ε(x1, . . . , xk) = F(x1, . . . , xk)

k∏

j=1

ψ ′ε(xj ), Fε = F − F ′ε

are continuous and Fε vanishes on a neighborhood of 0, hence Step 1 yields

V n(Fε,X)t
P−→∑k

j=1(fjψε)∗μt on the set {ΔXt = 0}. Moreover (fjψε)∗μ u.c.p.=⇒
fj ∗ μ as ε→ 0 by the dominated convergence theorem (since ‖(fjψε)(x)‖ ≤
K‖x‖2 by (8.2.1) and ψε→ 1 and

∑
s≤t ‖ΔXs‖2 <∞). Therefore, for (8.2.2) it

suffices to prove that

t, η > 0 ⇒ lim
ε→0

lim sup
n

P

(
sup
s≤t
∥∥V n
(
F ′ε
)
s

∥∥> η
)
= 0. (8.2.8)

For this, we first deduce from (8.2.1) and the definition of F ′ε that we have
‖F ′ε(x1, . . . , xk)‖ ≤ θ(ε)((‖x1‖2 ∧ 1) + · · · + (‖xk‖2 ∧ 1)), where θ(ε)→ 0 as
ε→ 0. Then if h(x)= ‖x‖2 ∧ 1, we have

sup
s≤t
∥∥V n
(
F ′ε
)
s

∥∥ ≤ k θ(ε)V n(h,X)t .

Since V n(h,X) converges in probability for the Skorokhod topology by Theo-
rem 3.3.1-(B), we deduce (8.2.8) θ(ε)→ 0 as ε→ 0.

When F is symmetrical, the proof of (8.2.3) is the same, upon observing that Fε
is also symmetrical and thus Vn(Fε,X)

P=⇒ (fψε) ∗μ by Step 1. �
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8.3 The Law of Large Numbers for V n(Φ,kn,X)

We now turn to the process V n(Φ,kn,X), as defined in (8.1.9), and when the dis-
cretization scheme is regular. If z ∈ R

d and t ∈ (0,1] we define the step function
yz,t by

s ∈ [0,1] �→ yz,t (s) = z1{s≥t}.

The map (t, z) �→ yt,z from (0,1] × R
d into D

d
1 is continuous for the Skorokhod

topology, including at the points (1, z) because of our specific definition of this
topology. Hence if the test function Φ satisfies (8.1.13), the map (t, z) �→Φ(yt,z) is
continuous, and bounded on (0,1] × {z : ‖z‖ ≤ v} for any v > 0. Thus the formula

Φ(z) =
∫ 1

0
Φ(yz,t ) dt, (8.3.1)

defines a continuous and locally bounded function Φ on R
d .

Theorem 8.3.1 Let X be a d-dimensional semimartingale and T be a regular dis-
cretization scheme, and assume that kn→∞ and un = knΔn→ 0. Let also Φ be a
q-dimensional function on D

d , which satisfies (8.1.13) and

Φ#(v) = o
(
v2) as v→ 0. (8.3.2)

Then for each t we have the following convergence in probability:

1

kn
V n(Φ,kn,X)t

P−→ V (Φ,X)t := Φ ∗μt−. (8.3.3)

Remark 8.3.2 The limit in (8.3.3) is equal to Φ ∗ μt on the set {ΔXt = 0}, so this
result partially extends (8.2.2). More specifically, but only in the regular scheme set-
ting, if k is an integer and F is a continuous function on (Rd)k satisfying (8.2.1) it is
simple to construct a function Φ on D

d satisfying (8.1.13) and (8.3.2), and such that
(8.1.10) holds with kn = k, and also such that Φ(yz,t ) = fj (z) when j−1

k
≤ t < j

k
:

then (8.2.2) is just another way of writing (8.3.3).
However, this does not provide another proof of Theorem 8.2.1 for regular

schemes, since we need kn →∞ for the above theorem to apply: it simply re-
flects the “compatibility” of the two results. There are also obvious differences:
for instance, the fact that kn→∞ “kills” any particular summand in the defini-
tion of V n(Φ,kn,X)t , and this is why the limit in (8.3.3) is not restricted to the set
{ΔXt �= 0}.

Remark 8.3.3 Exactly as for Theorem 8.2.1, we cannot replace (8.3.3) by Sko-
rokhod convergence in probability. The reason is in a sense the opposite: the limit
in (8.3.3) is purely discontinuous, whereas the processes which converge have all
jumps smaller than U/kn for some (random) U .
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As for Theorem 3.3.1, we begin the proof with a special case.

Lemma 8.3.4 When Φ is such that Φ#(ε) = 0 for some ε > 0, the convergence
(8.3.3) holds, and it even holds for every ω.

Proof Step 1) We again use the notation of Lemma 3.3.7: the successive
jump times S1, . . . of X with size bigger than ε/2, the process X′t = Xt −∑
q≥1:Sq≤t ΔXSq , and now Qt denotes the number of jumps in the open interval

(0, t) (a slight change of notation). Similar to (8.2.7), and since un→ 0, we obtain
that for some finite (random) integerMt(ω) we have for all i ≤ [t/Δn], and as soon
as n≥Mt ,

• X′(n, i)# ≤ ε
•Qt ≥ 1 ⇒ S1 > un, SQt < t − un
• 2≤ q ≤Qt ⇒ Sq − Sq−1 > un.

⎫
⎪⎬

⎪⎭
(8.3.4)

Let i(n, q) be the unique integer such that (i(n, q)− 1)Δn < Sq ≤ i(n, q)Δn, and
set

Y(n, q, j)s = ΔXSq 1{s≥j/kn} = yΔXSq , j/kn(s)

α(n, q, j) = Φ
(
X′
(
n, i(n, q)+ 1− j)(n) + Y(n, q, j))

ζ nq =
1

kn

kn∧i(n,q)∑

j=1

α(n, q, j),

Ant =
{ 1
kn
Φ(X(n,1− kn + t/Δn)) if t/Δn is an integer and SQt+1 = t

0 otherwise.

We have Φ(X(n, i)(n)) = Φ(X′(n, i)(n)) = 0 when n ≥Mt and i is such that the
interval ((i−1)Δn, (i−1)Δn+un] is in [0, t] and contains no Sq , becauseΦ#(ε)=
0. Hence

n≥Mt ⇒ 1

kn
V n(Φ,kn,X)t =

Qt∑

q=1

ζ nq +Ant . (8.3.5)

On the one hand, if n≥Mt and t/Δn is an integer, (8.3.4) yields X(n,1− kn +
t/Δn)

# ≤ ε+ ‖ΔXt‖. Hence (8.1.13) yields Ant → 0. On the other hand if ‖z‖ ≤ ε
we have y#

z,s ≤ ε, hence Φ(yz,s)= 0 by our assumption on Φ , and thus Φ(z) = 0.

This implies Φ ∗μt− =∑Qt
q=1Φ(ΔXsq ). Therefore in view of (8.3.4) we only have

to prove that

1≤ q ≤Qt ⇒ ζ nq → Φ(ΔXSq ). (8.3.6)

Step 2) Below we fix ω and also q between 1 and Qt and we always take n ≥Mt .
Then i(n, q) > kn and thus ζ nq = 1

kn

∑kn
j=1 α(n, q, j). This step is devoted to proving
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that

ζ nq − ζ ′nq → 0, where ζ ′nq = 1

kn

kn∑

j=1

Φ
(
Y(n, q, j)

)
. (8.3.7)

For this, we first observe that, since X′ is continuous at time Sq , we have

χn = sup
1≤j≤kn

X′
(
n, i(n, q)+ 1− j)# → 0. (8.3.8)

Then there is some v > 0 such that χn+‖ΔXSq‖ ≤ v for all n, and by (8.1.13) there
is a function φ(ε) such that φ(ε)→ 0 as ε→ 0 and |Φ(x+ y)−Φ(x)| ≤ φ(y#) for
all x, y ∈D

d
1 such that x# ≤ v and (x + y)# ≤ v. It follows that

1≤ j ≤ kn ⇒ ∣∣α(n, q, j)−Φ(Y(n, q, j))∣∣ ≤ φ(χn).

Therefore |ζ nq − ζ ′nq | ≤ φ(χn), and (8.3.7) follows from (8.3.8).

Step 3) Now we are ready to prove (8.3.6), which by (8.3.7) amounts to

ζ ′nq → Φ(ΔXsq ). (8.3.9)

Recalling the definition of ζ ′nq and the fact that Y(n, q, j)= yz,j/kn with z=ΔXSq ,

we see that ζ ′nq is a Riemann approximation of the integral Φ(z) = ∫ 1
0 Φ(yz,s) ds.

Since s �→ Φ(yz,s) is bounded and continuous on (0,1] for any fixed z, (8.3.9)
readily follows. �

Proof of Theorem 8.3.1 Step 1) For any ε ∈ (0,1) we decompose Φ as Φε +Φ ′ε ,
where

Φε(x) = Φ(x)ψε
(
x#), Φ ′ε(x) = Φ(x)ψ ′ε

(
x#)

(here, ψε and ψ ′ε are as before (8.2.8) or in (3.3.16)). The function Φε satisfies the
assumptions of the previous lemma, hence 1

kn
V n(Φε, kn,X)t → Φε ∗ μt− point-

wise. Thus it remains to prove the following two properties:

Φε ∗μt− P−→ Φ ∗μt− as ε→ 0, (8.3.10)

η > 0 ⇒ lim
ε→0

lim sup
n

P

(
1

kn

∣∣V n
(
Φ ′ε, kn,X

)
t

∣∣> η
)
= 0. (8.3.11)

The first property is easy. Indeed, on the one hand, (yz,s)# = ‖z‖ and thus if
‖z‖ ≥ ε we have Φ(yz,s)=Φε(yz,s) for all s ∈ (0,1], hence Φ(z)=Φε(z): there-
fore Φε → Φ pointwise. On the other hand (8.3.2) yields Φε(z) = o(‖z‖2) as
z→ 0. Since

∑
s≤t ‖ΔXs‖2 <∞, (8.3.10) follows from the dominated convergence

theorem.

Step 2) The proof of (8.3.11) is more involved. We set T0 = 0 and let T1, . . . be the
successive jump times of X with size bigger than 1, and X′t =Xt − (x1{‖x‖≤1}) ∗μ.
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Let Ωnt be the set on which, for each q ≥ 1 with Tq ≤ t , we have Tq − Tq−1 > un
and sups∈(0,un](‖XTq+s −XTq‖ + ‖XTq− −XTq−s‖) ≤ 1/2. We have Ωnt →Ω as
n→∞, so it is enough to prove that

η > 0 ⇒ lim
ε→0

lim sup
n

P

(
Ωnt ∩
{

1

kn

∣∣V n
(
Φ ′ε, kn,X

)
t

∣∣> η
})

= 0.

Recall that ψ ′ε(v) = 0 if v ≥ ε. Then if ε < 1/2 and on the set Ωnt we have
(X(n, i)(n))# ≥ ε for any i such that Tq ∈ (iΔn, iΔn+un] for some q , in which case
Φ ′ε(X(n, i)(n))= 0. For the other values of i we have X(n, i)=X′(n, i). Therefore
|V n(Φ ′ε, kn,X)t | ≤ V n(|Φ ′ε, kn,X′)t , and it is enough to show that

η > 0 ⇒ lim
ε→0

lim sup
n

1

kn
E
(
V n
(∣∣Φ ′ε
∣∣, kn,X′

)
t

) = 0. (8.3.12)

Step 3) Recall the decomposition X′ =X0 + B +Xc + (x1{‖x‖≤1}) ∗ (μ− ν) and,
with Var(Bi) denoting the variation process of the ith component Bi , set

A =
d∑

i=1

(
Var
(
Bi
)+Cii)+ (‖x‖21{‖x‖≤1}

) ∗ ν.

This increasing process has jumps smaller than 2 because ‖ΔB‖ ≤ 1 identically, so
it is locally bounded, and our usual localization procedure shows that it is enough
to prove (8.3.12) when the process A is in fact bounded by a constant.

The processM =Xc+(x1{‖x‖≤1})∗(μ−ν) is a square integrable martingale, the
predictable quadratic variation of its ith component being such that A−〈Mi,Mi〉 is
non-decreasing. Therefore we deduce from the definition of A and its boundedness
and from Doob’s inequality that

E

(
sup
s∈[0,1]

∥∥X′(n, i)s
∥∥2
)
≤ KE(A(i−1)Δn+un −A(i−1)Δn). (8.3.13)

Now, (8.3.2) yields an increasing function θ on R+ such that limv→0 θ(v) = 0
and Φ(y) ≤ (y#)2 θ(y#) for all y ∈ D

d . In view of the definition of Φ ′ε , we deduce
|Φ ′ε(y)| ≤ (y#)2 θ(ε). Then by (8.3.13) we obtain

1

kn
E
(
V n
(
Φ ′ε, kn,X′

)
t

) ≤ Kθ(2ε) 1

kn

[t/Δn]−kn+1∑

i=1

E(A(i−1)Δn+un −A(i−1)Δn)

≤ Kθ(ε)E(At+un).

At this point, and since θ(ε)→ 0 as ε→ 0, (8.3.12) follows. �
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8.4 The LLN for V ′n(F,X), V ′n(F,X) and V ′n(Φ,kn,X)

Now we turn to the processes V ′n(F,X) and V ′n(F,X) of (8.1.2) and (8.1.3), and
also V ′n(Φ, kn,X) of (8.1.11), and we extend Theorem 3.4.1. In particular, we sup-
pose that the discretization scheme is regular, with stepsize Δn at stage n.

8.4.1 The Results

Theorem 3.4.1 has been proved when X is an Itô semimartingale, and here we make
the same hypothesis. For convenience, we recall that X has a Grigelionis represen-
tation, possibly defined on an extended space still denoted as (Ω,F , (Ft )t≥0,P),
that is

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+ (δ1{‖δ‖≤1})� (p− q)t + (δ1{‖δ‖>1})�pt , (8.4.1)

where W is a d ′-dimensional Wiener process and p is a Poisson measure with com-
pensator q(dt, dz) = dt ⊗ λ(dz). Recall that a version of the process Ct is given
by

Ct =
∫ t

0
cs ds, where ct = σtσ ∗t .

In fact, for simplicity we do not do extend Theorem 3.4.1 in the utmost generality,
and rather we make the Assumption (H), or Assumption 4.4.2, which we recall here:

Assumption (H) X has the form (4.2.1), with bt locally bounded and σt càdlàg.
Moreover ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn)
is a localizing sequence of stopping times and each function Γn on E satisfies∫
Γn(z)

2λ(dz) <∞.

When a ∈M+
d×d (a d × d symmetric nonnegative matrix), we use the notation

ρa =N (0, a) of (3.4.4). Then ρk⊗a denotes the kth power of ρa and is a Gaussian
law on (Rd)k . We also denote by ρa the law (on the space D

d and also, by restric-
tion, on the space D

d
1 ) of the (non-standard) d-dimensional Brownian motion with

covariance matrix a at time 1.
We state the results in two different theorems.

Theorem 8.4.1 Assume that X satisfies (H). Let F be a continuous function on
(Rd)k , which is of polynomial growth when X is continuous and which satisfies the
following property when X jumps:

∣∣F(x1, . . . , xk)
∣∣ ≤

k∏

j=1

Ψ
(‖xj‖
)(

1+ ‖xj‖2) (8.4.2)
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where Ψ is a continuous function on [0,∞) which goes to 0 at infinity. Then, with
cs = σsσ ∗s , we have

V ′n(F,X)t
u.c.p.=⇒ V ′(F,X)t :=

∫ t

0
ρk⊗cs (F )ds, (8.4.3)

V ′n(F,X) u.c.p.=⇒ 1

k
V ′(F,X). (8.4.4)

Theorem 8.4.2 Assume that X satisfies (H). Let Φ be a function on D
d
1 satisfy-

ing (8.1.13) and with Φ# being of polynomial growth when X is continuous, and
satisfying Φ#(v) = o(v2) as v →∞ when X jumps. If moreover kn →∞ and
un = knΔn→ 0, and with cs = σsσ ∗s , we have

V ′n(Φ, kn,X)t
u.c.p.=⇒ V ′(Φ,X)t :=

∫ t

0
ρcs (Φ)ds. (8.4.5)

Before giving the proof, we state a corollary similar to Corollary 3.4.3.

Corollary 8.4.3 Assume that X satisfies (H). Let F be a Borel function on (Rd)k

which satisfies F(z)∼H(z) as z→ 0, where H is a positively homogeneous con-
tinuous function of degree p ∈ (0,2) on (Rd)k . Then, with cs = σsσ ∗s , we have

Δ
1−p/2
n V n(F,X)t

u.c.p.=⇒
∫ t

0
ρk⊗cs (H)ds.

Example 8.4.4 The first theorem takes the following form, when F has the product
form (8.1.4) with each fi continuous and of polynomial growth: If X is continuous,
then

V ′n(F,X)t
u.c.p.=⇒
∫ t

0

k∏

i=1

ρcs (fi) ds.

The same holds when X jumps, provided each fi satisfies fi(x) = o(‖x‖2) as
‖x‖→∞.

When further the fi are positively homogeneous of order pi , and again under (H)
and either supi=1,...,k pi < 2 or X continuous, we deduce that

Δ
1− 1

2 (p1+···+pk)
n V n(F,X)t

u.c.p.=⇒
∫ t

0

k∏

i=1

ρcs (fi) ds.

8.4.2 The Proofs

Proof of Theorem 8.4.2 Step 1) The proof is basically the same as for Theo-
rem 3.4.1, with some simplifications due to the fact that we assume (H). To begin
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with, by virtue of the localization lemma 4.4.9 we can replace Assumption (H) by
the strengthened Assumption (SH) (Assumption 4.4.6, according to which we fur-
ther have bt and σt and Xt are bounded and also ‖δ(ω, t, x)‖ ≤ Γ (z) for a bounded
function Γ satisfying

∫
Γ (z)2λ(dz) <∞). Then, up to modifying the drift term in

the Grigelionis decomposition (8.4.1), we can write

X =X′ +X′′, where X′t =X0 +
∫ t

0
b′s ds +

∫ t

0
σs dWs, X

′′
t = δ � (p− q)t ,

(8.4.6)
and b′t and σt are bounded, σt is càdlàg, and ‖δ(t, z)‖ ≤ Γ (z) with Γ bounded and
with
∫
Γ (z)2λ(dz) <∞.

Step 2) In this step, we deduce from (SH) a number of estimates, after some notation:

β(n, i)= 1√
un
σ(i−1)Δn W(n, i), X(n, i)= 1√

un
X(n, i),

X
′
(n, i)= 1√

un
X′(n, i), X

′′
(n, i)= 1√

un
X′′(n, i)

⎫
⎬

⎭ (8.4.7)

(recall the notation Y(n, i) of (8.1.7), associated with any process Y , and also x# as
given by (8.1.12)). We also set

γ ni = E

(
1

un

∫ (i−1)Δn+un

(i−1)Δn
‖σs − σ(i−1)Δn‖2 ds

)

γ ′n =
∫

{z:Γ (z)≤u1/4
n }
Γ (z)2λ(dz).

(8.4.8)

Then (SH) and (2.1.44) yield for q > 0:

E
(
β(n, i)#q

)+E
(
X
′
(n, i)#q

) ≤ Kq, E
(
X
′′
(n, i)#2) ≤ K. (8.4.9)

Since X
′
(n, i)− β(n, i)= 1√

un

∫ (i−1)Δn+un
(i−1)Δn

(b′s ds + (σs − σ(i−1)Δn) dWs), we de-
duce from (2.1.43) that for q ≥ 2,

E
((
X
′
(n, i)− β(n, i))#q) ≤ Kq

(
u
q/2
n + γ ni

)
. (8.4.10)

Finally, (2.1.39) applied with r = 2 and q = 1/2 gives

E
(
X
′′
(n, i)#2 ∧ 1

) ≤ K
(
u

1/4
n + γ ′n

)
. (8.4.11)

Step 3) We associate with the test function Φ on D
d
1 the following variables:

ζ ni =ΔnΦ(β(n, i)(n)), Unt =
∑[t/Δn]−kn+1
i=1 ζ ni

ζ ′ni = E(ζ ni |F(i−1)Δn), U ′nt = ∑[t/Δn]−kn+1
i=1 ζ ′ni

ζ ′′ni =Δnρc(i−1)Δn
(Φ), U ′′nt = ∑[t/Δn]−kn+1

i=1 ζ ′′ni .

⎫
⎪⎪⎬

⎪⎪⎭
(8.4.12)
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In this step we prove that

Unt
u.c.p.=⇒
∫ t

0
ρcs (Φ)ds. (8.4.13)

We start by showing that

U ′n −U ′′n u.c.p.=⇒ 0. (8.4.14)

To see this, observe that ζ ′ni =Δnρc(i−1)Δn
(Φ(n)), where Φ(n)(x)=Φ(x(n)) for all

x ∈ D
d
1 and x(n) denotes the discretized version of x, as defined by (8.1.8). Then

(8.4.14) will follow from the property

sup
a:‖a‖≤K

∣∣ρa
(
Φ(n)
)− ρa(Φ)

∣∣ → 0 (8.4.15)

for any K > 0, because our assumptions yield ‖ct‖ ≤ K . If (8.4.15) fails, we
have a sequence (αn) of d × d ′ matrices converging to a limit α, such that
lim supn |ρanα∗n (Φ(n)) − ραnα∗n (Φ)| > 0. Then if W ′ denotes a d ′-dimensional

standard Brownian motion with time interval [0,1], we have ραnα∗n (Φ
(n)) =

E(Φ(αnW
′(n))) and ραnα∗n (Φ) = E(Φ(αnW

′)). On the one hand, αnW ′(n)→ αW ′

uniformly over [0,1], hence Φ(αnW ′(n))) → Φ(αnW
′) because Φ is continu-

ous for the sup-norm. On the other hand the growth assumption on Φ implies
|Φ(αnW ′(n)))| ≤ K(1 + W ′#q) for some q ≥ 0, and this variable is integrable.
Hence ραnα∗n (Φ

(n))→ ραnα∗n (Φ) by the dominated convergence theorem, and we
get a contradiction: so (8.4.15) holds, hence (8.4.14) as well.

Next, since Φ is the difference of two nonnegative functions having the same
continuity and growth properties, it suffices to consider the case when Φ ≥ 0. In

this case, by the criterion (2.2.16), proving (8.4.13) amounts to proving Uny
P−→∫ t

0 ρcs (Φ)ds for any given t . Therefore, in view of (8.4.12) and of the (pathwise)
convergence U ′′nt → ∫ t0 ρcs (Φ)ds, which follows from Riemann integration be-
cause t �→ ρct (Φ) is càdlàg, it is enough to prove that for all t ,

E

(([t/Δn]∑

i=1

(
ζ ni − ζ ′ni

)
)2)

→ 0. (8.4.16)

The variables ζ ni − ζ ′ni are centered, and because of the growth condition on Φ
we have E((ζ ni − ζ ′ni )2) ≤ KΔ2

n. Furthermore, E((ζ ni − ζ ′ni )(ζ nj − ζ ′nj )) = 0 when
|i − j |> kn. Hence the left side of (8.4.16) is smaller than Ktun, and this finishes
the proof of (8.4.13).

Step 4) At this stage, it remains to prove that

Hnt := E

([t/Δn]−kn+1∑

i=1

∣∣χni
∣∣
)
→ 0, where χni =ΔnΦ

(
X(n, i)/

√
un
)− ζ ni .

(8.4.17)
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Suppose first that X is continuous and that the function Φ# has polynomial
growth. Using (8.1.13), we obtain the following property: there are two positive
constants K and p, and for any A> 1 a positive function θA satisfying θA(ε)→ 0
as ε→ 0, such that for all x, y ∈D

d all ε ∈ (0,1] and all A> 1, we have:

∣∣Φ(x + y)−Φ(x)∣∣ ≤ θA(ε)+ A
p y#2

ε2
+K x

#2p + y#2p

Ap
. (8.4.18)

This applied to x = β(n, i) and y = X(n, i) − β(n, i) allows us to deduce from
(8.4.9) and (8.4.10) that

Hnt ≤ t
(
θA(ε)+ K

Ap

)
+ KA

p

ε2

(
t
√
un +E

(∫ t

0
sup

v∈[(s−un)+,s]
‖σv − σs‖2 ds

))
,

where K depends on p. The càdlàg and boundedness properties of σ yield that
the last term above goes to 0 as n→∞. Therefore lim supn H

n
t ≤ t

k
(θA(ε)+ K

Ap
),

for all A > 1 and ε ∈ (0,1]. By taking A large first, and then ε small, we deduce
(8.4.17).

Second, suppose that X has jumps, so Φ#(v)= o(v2) as v→∞, and there is a
positive function Ψ on R+ with Ψ (v)→ 0 as v→∞, such that Φ#(v)≤ Ψ (v)v2.
Then there are functions θA as above, such that for all x, y, z ∈ D

d
1 and ε ∈ (0,1]

and A> 3 we have:
∣∣Φ(x + y + z)−Φ(x)∣∣

≤ θA(ε)+K
(
Ψ (A)
(
x#2 + y#2 + z#2)+ A

2y#2

ε2
+ A

2(z#2 ∧ 1)

ε2

)
. (8.4.19)

This applied with x = β(n, i) and y = X′(n, i) − β(n, i) and z = X′′(n, i), plus
(8.4.9)–(8.4.11), yields

Hnt ≤ t
(
θA(ε)+KΨ (A)

)

+ KA
2

ε2

(
tu

1/4
n + tγ ′n +E

(∫ t

0
sup

v∈[(s−un)+,s]
‖σs − σv‖2 ds

))
,

and we conclude (8.4.17) as above. �

Proof of Theorem 8.4.1 The convergence (8.4.3) looks like a particular case of
(8.4.5): take kn = k for all n, and define the function Φ on D

d as

Φ(x) = F

(
x

(
1

k

)
− x(0), x

(
2

k

)
− x
(

1

k

)
, . . . , x(1)− x

(
k − 1

k

))
.

Then V ′n(F,X)= V ′n(Φ, kn,X) and also ρa(Φ)= ρk⊗a (F ).
In fact, we cannot deduce (8.4.3) from (8.4.5) straight away for two reasons: here

kn does not go to infinity (a fact explicitly used for showing (8.4.15)), and when
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X jumps the assumption (8.4.2) does not imply the required growth condition on
Φ . However here, and with the notation (8.4.12) and Φ as above, we simply have
ζ ′′ni = ζ ′ni identically and thus U ′n = U ′′n. Therefore the previous proof applies
without changes in the case X is continuous, and we have (8.4.3).

When X jumps, we have to take care of the weakened growth condition (8.4.2),
and this leads us to reproduce the previous proof with some changes which we now
explain. We use the notation (8.4.12) and (8.4.17), except that

βni,j = σ(i−1)ΔnΔ
n
i+j−1W/

√
Δn

ζni =ΔnF
(
βni,1, . . . , β

n
i,k

)
, ζ ′′ni =Δnρk⊗c(i−1)Δn

(F )

χni = Δn(F
(
Δni X/

√
Δn, . . . ,Δ

n
i+k−1X/

√
Δn
)− ζ ni

(so here ζ ′ni = ζ ′′ni ). Then we replace (8.4.9)–(8.4.11) by estimates on conditional
expectations, for the second moments only, and we get in exactly the same way that

E

(∥∥βni,j
∥∥2 + ‖Δ

n
i+j−1X‖2

Δn
|F(i+j−2)Δn

)
≤ K,

E

(∥∥∥∥
Δni+j−1X√

Δn
− βni,j

∥∥∥∥
2

∧ 1 |F(i+j−2)Δn

)
≤KΔ1/4

n +Kγ ′n (8.4.20)

+ K

Δn
E

(∫ (i+j−1)Δn

(i+j−2)Δn
‖σs − σ(i−1)Δn‖2 ds |F(i+j−2)Δn

)
.

The estimate (8.4.19) is no longer valid, but (8.4.2) gives the following: for all
ε ∈ (0,1] and A> 3 and xi, yi ∈R

d we have

∣∣F(x1 + y1, . . . , xk + yk)− F(x1, . . . , xk)
∣∣

≤ θA(ε)+KΨ (A)
k∏

j=1

(
1+‖xj‖2+‖yj‖2)+KA2k

k∑

j=1

(‖yj‖2∧1

ε2

)
. (8.4.21)

Applying this with xj = βni,j and yj =Δni+j−1X/
√
Δn − βni,j and (8.4.20) repeat-

edly, and by successive conditioning, we see that

E

([t/Δn]−kn+1∑

i=1

∣∣χni
∣∣
)
≤ Kt
(
θA(ε)+Ψ (A)+ A

2k

ε2

(
Δ

1/4
n + γ ′n

))

+ KA
2k

ε2
E

(∫ t

0
sup

v∈[(s−un)+,s]
‖σs − σv‖2 ds

)
, (8.4.22)

which goes to 0 by the same argument as in the previous theorem.
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Finally, the convergence (8.4.4) is proved in exactly the same way. The only
difference is that we now have

U ′nt =
[t/Δn]−kn+1∑

i=1

ρk⊗c(i−1)kΔn
(F ),

which is a Riemann sum for 1
k

∫ t
0 ρ

k⊗
cs
(F )ds. �

Proof of Corollary 8.4.3 Since H is continuous and positively homogeneous of
degree p ∈ (0,2), (8.4.3) yields, for j = 1,2, and where H1 =H and H2 = |H |;

Δ
1−p/2
n V n(Hj ,X)t = V ′n(Hj ,X)t

u.c.p.=⇒
∫ t

0
ρk⊗cs (Hj ) ds. (8.4.23)

Using the same functions ψε as in the proof of Theorem 8.2.1 (or (3.3.16)) for
ε ∈ (0,1], we see that the function Gε(z)= (|F(z)| +H2(z))ψε(‖z‖) vanishes on a
neighborhood of 0, so Theorem 8.2.1 yields that V n(Gε,X) converges in probability
in the Skorokhod sense. Since p < 2 it follows that

Δ
1−p/2
n V n(Gε,X)

u.c.p.=⇒ 0. (8.4.24)

Moreover the assumption F ∼H near 0 implies the existence of a function θ on R+
such that θ(ε)→ 0 as ε→ 0, and that |F −H | ≤ θ(ε)H2 +Gε . Therefore

∣∣Δ1−p/2
n V n(F,X)−Δ1−p/2

n V n(H1,X)
∣∣

≤ θ(ε)Δ1−p/2
n V n(H2,X)+Δ1−p/2

n V n(Gε,X),

and the result follows from (8.4.23) and (8.4.24). �

8.5 Applications to Volatility

We continue the first example started in Chap. 3 about the estimation of the inte-
grated (squared) volatility, or other powers of it.

The setting is as in the previous section: an Itô semimartingaleX given by (8.4.1),
and a regular discretization scheme, and we start with the d = 1 dimensional case.
We look for estimates for

A(p)t =
∫ t

0
|σs |p ds.

WhenX is continuous, or when p < 2, we have already seen thatΔ1−p/2
n D(X,p,

Δn)t converges to mpA(p)t in probability, see (3.5.4), and we even have an associ-
ated CLT when X is continuous, see Theorem 5.6.1. When X has jumps and p ≥ 2
these estimators badly fail, since they actually converge to another limit, but an al-
ternative method is provided by Theorem 8.4.1 via the multipower variations which
have been introduced by Barndorff-Nielsen and Shephard [8] especially for this
reason. We briefly explain this here.
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We take the special product form (8.2.6) for F . Then Theorem 8.4.1 yields that

D(X,p1, . . . , pk,Δn)t =
[t/Δn]−k+1∑

i=1

∣∣Δni X
∣∣p1
∣∣Δni+1X

∣∣p2 · · · ∣∣Δni+k−1X
∣∣pk

(the realized multipower variation with indices p1, . . . , pk) satisfies under (H):

Δ
1−(p1+···+pk)/2
n D(X,p1, . . . , pk,Δn)t

u.c.p.=⇒
k∏

j=1

mpj A(p1 + · · · + pk), (8.5.1)

as soon as pj < 2 for all j . This provides (many) estimators forA(p)t , for any value
of p. For example the equal-multipowers variation, with all pj the same, gives us

k >
p

2
⇒ Δ

1−p/2
n

[t/Δn]−k+1∑

i=1

k∏

j=1

∣∣Δni+j−1X
∣∣p/k u.c.p.=⇒ mkp/k A(p)t .

Next, we turn to the d-dimensional case. The counterpart of A(p) is the
following family of processes, indexed by all multi-indices of the form I =
(l; (rj ,mj ,pj )1≤j≤l ), where l ∈ N

∗ and rj and mj range through {1, . . . , d}, and
the powers pj range through (0,∞) if rj =mj , and through N∗ otherwise:

A(I)t =
∫ t

0

l∏

j=1

(
c
rjmj
s

)pj ds.

When l ≥ 2 and rj =mj for all j , we easily extend (8.5.1) to obtain the following
(below, all kj are integers, and we set K0 = 0 and Kj = k1 + · · · + kj and p =
p1 + · · · + pl):

kj > pj ∀j ⇒
⎧
⎨

⎩
Δ

1−p
n

∑[t/Δn]−Kl+1
i=1

∏l
j=1
∏kj
u=1 |Δni+Kj−1+u−1X

rj |2pj /kj
u.c.p.=⇒ ∏lj=1m

kj
2pj /kj

∫ t
0

∏l
j=1(c

rj rj
s )pj ds.

(8.5.2)
It is more difficult to approximate A(I)t when the indices rj andmj are different

and the pj ’s are not integers. However when all pj ’s are integers (so in fact we may
assume that pj = 1 for all j , up to repeating the same indices) we may use the
equalities uv = 1

2 ((u+ v)2 − u2 − v2) and uv = 1
4 ((u+ v)2 − (u− v)2) to obtain

that, for example,

Δ1−l
n

[t/Δn]−2l+1∑

i=1

l∏

j=1

(∣∣Δni+2j−2X
rj +Δni+2j−2X

mj
∣∣ ∣∣Δni+2j−1X

rj +Δni+2j−1X
mj
∣∣

− ∣∣Δni+2j−2X
rj
∣∣ ∣∣Δni+2j−1X

rj
∣∣− ∣∣Δni+2l−2X

mj
∣∣ ∣∣Δni+2j−1X

mj
∣∣)

u.c.p.=⇒ 2l m2l
1

∫ t

0

l∏

j=1

c
rjmj
s ds (8.5.3)
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and

Δ1−l
n

[t/Δn]−2l+1∑

i=1

l∏

j=1

(∣∣Δni+2j−2X
rj +Δni+2j−2X

mj
∣∣ ∣∣Δni+2j−1X

rj +Δni+2j−1X
mj
∣∣

− ∣∣Δni+2j−2X
rj −Δni+2l−2X

mj
∣∣ ∣∣Δni+2j−1X

rj −Δni+2j−1X
mj
∣∣)

u.c.p.=⇒ 4l m2l
1

∫ t

0

l∏

j=1

c
rjmj
s ds. (8.5.4)



Chapter 9
Third Extension: Truncated Functionals

As seen before, the results of Chap. 3 do not allow one to approximate, or estimate,
such quantities as the second characteristic C = 〈Xc,Xc〉 of a discontinuous semi-
martingale X. The realized multipower variations allow one to do so when X is an
Itô semimartingale. Here we propose another method, in many respect more natural
and easier to understand, and which consists in “truncating” the increments at some
level. This method allows us to separate the jumps and the continuous martingale
part of X, and it requires less assumptions on the test functions than multipower
variations.

The choice of the truncation level should be done in connection with the mesh
of the discretization scheme, and should also be related with the process X itself.
These two requirements can be fulfilled in a reasonably simple way only when we
have a regular discretization scheme and X is an Itô semimartingale. So in the
whole chapter, X is an Itô semimartingale with the Grigelionis decomposition

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+ (δ1{‖δ‖≤1})� (p− q)t + (δ1{‖δ‖>1})�pt , (9.0.1)

where W is a d ′-dimensional Wiener process and p is a Poisson measure with com-
pensator q(dt, dz)= dt ⊗ λ(dz). Recall that ct = σtσ ∗t is a version of the process ct
such that Ct =

∫ t
0 cs ds. We also set

X′t = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs, X′′t = Xt −X′t . (9.0.2)

The basic observation is that, for a regular scheme with time step Δn, a typi-
cal increment Δni X

′ is of order of magnitude
√
Δn, whereas an increment Δni X

′′
is either “big” because there is a big jump in the interval ((i − 1)Δn, iΔn], or it is
negligible with respect to

√
Δn, as illustrated by Lemmas 2.1.6 and 2.1.8 for exam-

ple. Therefore a solution to our problem is to “truncate” the increments Δni X from
below or from above, depending on whether we want to approximate the jumps or
the continuous part. The truncation level vn goes to 0, but not as fast as

√
Δn. Do-
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ing so, we may hope that Δni X 1{‖Δni X‖≤vn} is approximately equal to Δni X
′, and

Δni X 1{‖Δni X‖>vn} is approximately equal to Δni X
′′.

This idea originates in Mancini [73], who takes vn =
√
Δn log(1/Δn). This par-

ticular choice of vn is good in some cases, and “too close” to
√
Δn for other results.

So it is more convenient to take

vn = αΔ�n for some α > 0, � ∈
(

0,
1

2

)
(9.0.3)

(when � = .48 or .49 the difference between the convergence rates toward 0 of
this vn and of

√
Δn log(1/Δn) is tiny; moreover, in practice, what is important are

the relative sizes of vn and of a “typical” increment Δni X, so that the choice of the
constant α, in connection with the “average” value of σt , is probably more important
than the choice of the exponent � ).

Then, instead of the functionals V n(f,X) for example, we have the upwards and
downwards truncated functionals, defined as

V n(f, vn+,X)t =
[t/Δn]∑

i=1

f
(
Δni X
)

1{‖Δni X‖>vn}

V n(f, vn−,X)t =
[t/Δn]∑

i=1

f
(
Δni X
)

1{‖Δni X‖≤vn}.

(9.0.4)

The last subsections of this chapter are devoted to another important, and closely
related, question: we want to approximate the matrix-valued variable ct for a given
time t or maybe cT for some finite stopping time T . We call these approximations
“local approximations”.

9.1 Approximation for Jumps

In this first section we consider the simplest question, which is the approximation of
f ∗μ. Although a version for arbitrary discretization schemes is available, we con-
sider only a regular scheme here, and in this case the upwards truncated functionals
V n(f, vn+,X) answer the question.

The next result looks like (A) of Theorem 3.3.1, but the assumptions on f , in
connection with those on X itself, are much weaker when the number p below is
smaller than 2. On the other hand, we need X to be an Itô semimartingale and,
although it is not necessary when r = 2 below, we make the simplifying assumption
(H-r), or Assumption 6.1.1, for some r ∈ [0,2]. This assumption, which is the same
as (H) when r = 2, is recalled below:

Assumption (H-r) X has the form (9.0.1), with bt locally bounded and σt càdlàg.
Moreover ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn)
is a localizing sequence of stopping times and each function Γn on E satisfies∫
Γn(z)

rλ(dz) <∞.
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Under (H-1) we have the decomposition (3.2.3), that is

X = X0 +B ′ +Xc + x � μ, B ′ = B − (x1{‖x‖≤1}) ∗ ν. (9.1.1)

Since (9.0.1) holds, we also have in this case:

B ′t =
∫ t

0
b′s ds, b′t = bt −

∫
δ(t, z)1{‖δ(t,z)‖≤1} λ(dz).

Theorem 9.1.1 LetX be an Itô semimartingale satisfying (H-r) for some r ∈ [0,2].
If f is a q-dimensional continuous function on R

d , such that f (x) = O(‖x‖r ) as
x → 0, and if vn satisfy (9.0.3), we have the following convergence for the Sko-
rokhod topology:

V n(f, vn+,X) P=⇒ V (f,X) := f � μ. (9.1.2)

Proof As for Theorem 3.3.1 we prove slightly more, namely

W
n
(f )t := V n(f, vn+,X)t − f ∗μΔn[t/Δn] u.c.p.=⇒ 0. (9.1.3)

As usual, by localization we may assume the strengthened assumption (SH-r),
that is we suppose, additionally to (H-r), that bt and σt and Xt are bounded and
‖δ(ω, t, z)‖ ≤ Γ (z), with Γ bounded and

∫
Γ (z)rλ(dz) < ∞. Then b′t is also

bounded when r ≤ 1.
When the function f vanishes on a neighborhood of 0, say f (x)= 0 for ‖x‖ ≤

ε, we have V n(f, vn+,X) = V n(f,X) as soon as vn ≤ ε, and (9.1.3) amounts to
Lemma 3.3.7.

Coming back to a general function f , we consider the functions of (3.3.16),
which are ψ ′ε = 1 − ψε and ψε(x) = ψ(‖x‖/ε), where ψ is C∞ on R with
1[1,∞) ≤ ψ ≤ 1[1/2,∞). Letting fε = fψε and f ′ε = fψ ′ε , what precedes shows that

V n(fε, vn+,X) P=⇒ fε ∗μ, whereas fε ∗μ u.c.p.=⇒ f ∗μ as ε→ 0 by the dominated
convergence theorem (recalling

∑
s≤t ‖ΔXs‖r <∞ and ‖fε(x)‖ ≤ K‖x‖r when

‖x‖ ≤ 1). Hence it remains to prove that

t, η > 0 ⇒ lim
ε→0

lim sup
n

P

(
sup
s≤t
∥∥Wn(

f ′ε
)
s

∥∥> η
)
= 0.

Let h′ε(x)= ‖x‖rψ ′ε(x), so ‖f ′ε‖ ≤Kh′ε and

∥∥Wn(
f ′ε
)
t

∥∥ ≤ KV n
(
h′ε, vn+,X

)
t
+Kh′ε ∗μt .

Since h′ε ∗μt→ 0 as ε→ 0 by the same argument as above, we are left to prove

t, η > 0 ⇒ lim
ε→0

lim sup
n

P
(
V n(hε, vn+,X)t > η

)= 0. (9.1.4)
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We first consider the case 1< r ≤ 2, and we use the decomposition (9.0.2). Then
(2.1.33) and (2.1.34) yield E(‖Δni X′‖p)≤KpΔp/2n for all p, and Markov’s inequal-
ity yields

[t/Δn]∑

i=1

P
(∥∥Δni X

′∥∥> vn/2
)≤ 23/(1−2�)

v
3/(1−2�)
n

[t/Δn]∑

i=1

E
(∥∥Δni X

′∥∥3/(1−2�))≤Kt√Δn.
(9.1.5)

Then the set Ωnt on which ‖Δni X′‖ ≤ vn/2 for all i ≤ [t/Δn] satisfies P(Ωnt )→ 1.
On Ωnt , and if ‖Δni X‖ > vn, we must have ‖Δni X′′‖ > vn/2 and thus ‖Δni X‖ ≤
2‖Δni X′′‖. It follows that

V n
(
h′ε, vn+,X

)
t
≤ 2r V n

(
h′ε,X′′

)
t

on Ωnt . (9.1.6)

Theorem 3.3.1-(A-b) yields V n(h′ε,X′′)t
P−→ h′ε ∗μt , hence we conclude (9.1.4) as

above.
Next, suppose that 0 ≤ r ≤ 1. We use (9.1.1) and put X

′
t = X0 + B ′t + Xct and

X
′′ =X−X′. The assumptions implies thatX

′
satisfies (9.1.5), so as above we have

(9.1.6) with X
′′

instead of X′′, on a set Ω ′nt whose probability goes to 1 as n→∞.

Since Theorem 3.3.1-(A-d) yields V n(h′ε,X
′′
)t

P−→ h′ε ∗ μt , we conclude (9.1.4)
again. �

We can weaken the continuity assumption on f exactly as in Theorem 3.3.5.
More interesting is the following version of Corollary 3.3.4, whose proof is omitted
because it is exactly the same:

Corollary 9.1.2 Let X be an Itô semimartingale satisfying (H), and let f be a
q-dimensional continuous function on R

d such that f (x) = O(‖x‖r ) as x → 0,
for some r ∈ [0,2]. Then if T is a finite stopping time with P(ΔXT �= 0) = 0,
the stopped processes V n(f, vn+,X)t∧T converge in probability, for the Skorokhod
topology, to the stopped process f ∗μt∧T , in restriction to the set

ΩT =
{
∑

s≤T
‖ΔXs‖r <∞

}
.

9.2 Approximation for the Continuous Part of X

The second main result of this chapter is a version of the Law of Large Numbers for
functionals of normalized increments, similar to Theorem 3.4.1. Now we truncate
from above, using cut-off levels vn satisfying (9.0.3): that is, instead of V ′n(f,X),
we consider

V ′n(f, vn−,X)t = Δn

[t/Δn]∑

i=1

f
(
Δni X/

√
Δn
)

1{‖Δni X‖≤vn}.
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More generally, and it is useful for applications, we can consider functionals of
successive increments, as in Chap. 8, but subject to truncation. If k is an integer and
F is a function on (Rd)k

V ′n(F, vn−,X)t =Δn
[t/Δn]−k+1∑

i=1

F

(
Δni X√
Δn
, . . . ,

Δni+k−1X√
Δn

) k−1∏

l=0

1{‖Δni+lX‖≤vn}.

(9.2.1)

We do not consider the analogue of V ′n(F,X) here, neither the analogue of
V ′n(Φ, kn,X) when at stage n we have a functional of kn successive incre-
ments, with kn → ∞. However, when in (9.2.1) the function F has the form
F(x1, . . . , xk) = f (x1 + · · · + xk), another truncated functional is probably more
natural than V ′n(F, vn−,X), and given by

V ′n(f, k, vn−,X)t

=Δn
[t/Δn]−k+1∑

i=1

f

(
Δni X+ · · · +Δni+k−1X√

Δn

)
1{‖Δni X+···+Δni+k−1X‖≤vn}. (9.2.2)

When k = 1 this is again the same as V ′n(f, vn−,X)t ; it can also be viewed as the
sum
∑k−1
i=0 V

′n(f, vn−,X(n, i))t−iΔn , whenΔn is replaced by kΔn, andX(n, i)t =
Xt−iΔn −XiΔn .

As in Theorem 8.4.1, ρk⊗a denotes the k-fold product of the law ρa = N (0, a)
on R

d .

Theorem 9.2.1 Assume that X satisfies (H-r) for some r ∈ [0,2], and let vn satisfy
(9.0.3). Let F be a continuous function on (Rd)k which satisfies for some p ≥ 0:

∣∣F(x1, . . . , xk)
∣∣ ≤ K

k∏

j=1

(
1+ ‖xj‖p

)
. (9.2.3)

Then when X is continuous, or when X jumps and either p ≤ 2 or

p > 2, 0< r < 2, � ≥ p− 2

2(p− r) , (9.2.4)

we have, with cs = σsσ ∗s :

V ′n(F, vn−,X)t u.c.p.=⇒ V ′(F,X)t :=
∫ t

0
ρk⊗cs (F )ds. (9.2.5)

If f is a function on R
d satisfying |f (x)| ≤ K(1+ ‖x‖p), and under the same

conditions on X and p, we also have for all integers k ≥ 1:

V ′n(f, k, vn−,X)t u.c.p.=⇒ V ′(f,X)t :=
∫ t

0
ρkcs (F )ds. (9.2.6)
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An analogue of Corollary 8.4.3 also holds, and we leave the details to the reader.
When X is continuous, this is simply the version of Theorem 8.4.1 for the trun-

cated functionals, a result indeed of very little interest. When X is discontinuous
and under (H-2) = (H) and when k = 1, this gives—for truncated functionals—
a seemingly very slight improvement upon Theorem 3.4.1, or of Theorem 8.4.1
when k ≥ 2: namely we replace the assumption f (x)= o(‖x‖2) by the assumption
f (x)= O(‖x‖2), as ‖x‖→∞, or the assumption (8.4.2) by (9.2.3) with p = 2. It
is however quite significant for applications, because f (x) = xjxl satisfies (9.2.3)
with p = 2 and we deduce that

[t/Δn]∑

i=1

Δni X
jΔni X

l 1{‖Δni X‖≤vn}
u.c.p.=⇒ C

jl
t =

∫ t

0
c
jl
s ds.

This is simpler than the estimators given in (8.5.3) and (8.5.4) for l = 1. This also
gives, together with (9.1.2) for the same function f , and with j, l ranging from 1 to
d , a way of estimating separately the continuous part and the purely discontinuous
part of the quadratic variation-covariation of X.

If (H-r) holds for some r < 2 the improvement is more significant: indeed, what-
ever p in (9.2.3), we can choose� (hence vn) in such a way that the theorem holds.

Proof We mainly focus on (9.2.5). By our usual localization argument it is enough
to prove the result under the strengthened Assumption (SH-r) recalled in the proof
of Theorem 9.1.1, instead of (H-r). Without loss of generality we can assume that
p ≥ 2 because the condition (9.2.3) weakens as p increases. Then as in (3.4.15),
and instead of the decomposition (9.0.2), we can write

X′t =X0 +
∫ t

0
b′′s ds +

∫ t

0
σs dWs, X′′ =X−X′ = δ ∗ (p− q), (9.2.7)

where b′′t = bt+
∫
δ(t, z)1{‖δ(t,z)‖>1} λ(dz) is bounded. Below, we also use the func-

tions ψ,ψε,ψ ′ε of the proof of Theorem 9.1.1.

Step 1) Set

Fm(x1, . . . , xk)= F(x1, . . . , xk)

k∏

j=1

ψ ′m(xj ). (9.2.8)

Each function Fm being continuous and bounded, Theorem 8.4.1 yields, as n→∞:

V ′n(Fm,X)t
u.c.p.=⇒
∫ t

0
ρk⊗cs (Fm)ds. (9.2.9)

Since F is of polynomial growth and ct is bounded, we have
∫ t

0 ρ
k⊗
cs
(Fm)ds

u.c.p.=⇒∫ t
0 ρ

k⊗
cs
(F )ds as m→∞, by Lebesgue’s theorem (we have Fm→ F pointwise and

|Fm| ≤ |F |). Hence by Proposition 2.2.1, and in view of (9.2.9), we are left to prove
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that for all t ,

lim
m→∞ lim sup

n→∞
E

(
sup
s≤t
∣∣V ′n(F, vn−,X)s − V ′n(Fm,X)s

∣∣
)
= 0. (9.2.10)

Step 2) For all n bigger than some nm we have m ≤ un := vn/√Δn because of
(9.0.3), and thus ψ ′m(x)≤ 1{‖x‖≤un}. Thus (9.2.3) implies

∣∣∣∣∣F(x1, . . . , xk)

k∏

j=1

1{‖xj ‖≤un} − Fm(x1, . . . , xk)

∣∣∣∣∣

≤ K

k∏

j=1

(
1+ ‖xj‖p 1{‖xj ‖≤un}

) k∑

j=1

1{‖xj ‖>m2 }.

By singling out the two cases ‖y‖ ≤ ‖x‖/2 and ‖y‖> ‖x‖/2, we also get

1+ ‖x + y‖p 1{‖x+y‖≤un} ≤ K
(
1+ ‖x‖p + ‖y‖p ∧ upn

)

(
1+ ‖x + y‖p 1{‖x+y‖≤un}

)
1{‖x+y‖>m2 } ≤

K

m
‖x‖p+1 +K ‖y‖p ∧ upn .

Therefore

n≥ nm ⇒ sup
s≤t
∣∣V ′n(F, vn−,X)s − V ′n(Fm,X)s

∣∣ ≤ K

k∑

j=1

U
n,m,j
t ,

where, with the notation (9.2.7),

U
n,m,j
t =

[t/Δn]∑

i=1

ζ(j,m)ni

ζ(j,m)ni =Δn
j−1∏

l=1

Zni+l−1

k∏

l=j+1

Zni+l−1 Z(m)
n
i+j−1

Zni = 1+
(‖Δni X′‖√

Δn

)p
+
(‖Δni X′′‖√

Δn

∧
un

)p

Z(m)ni =
1

m

(‖Δni X′‖√
Δn

)p+1

+
(‖Δni X′′‖√

Δn

∧
un

)p
.

Hence it is enough to prove that for all j and t ,

lim
m→∞ lim sup

n→∞
E
(
U
n,m,j
t

) = 0. (9.2.11)

Step 3) By (SH-r) and (2.1.33) and (2.1.34) we have, with the notation (9.0.2),

E
(∥∥Δni X

′/
√
Δn
∥∥q |F(i−1)Δn

) ≤ Kq (9.2.12)
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for all q > 0. On the other hand, we apply (2.1.45) when r > 1 and (2.1.46) when
0< r ≤ 1 with q =� and p = 2 to get when r > 0:

E
(∥∥Δni X

′′/Δ�n
∥∥2∧1 |F(i−1)Δn

) ≤ KΔ1−r�
n φn, (9.2.13)

where φn→ 0 as n→∞. Since p ≥ 2 we also have
∣∣(∥∥Δni X

∥∥/
√
Δn
)∧ un

∣∣p = upn
∣∣(∥∥Δni X

∥∥/un
√
Δn
)∧ 1
∣∣p

≤ Kupn
∣∣(∥∥Δni X

∥∥/Δ�n
)∧ 1
∣∣2.

Since p ≥ 2, and with the convention that κ = 0 when X = X′ is continuous and
κ = 1 otherwise, we deduce from (9.2.12) and (9.2.13) that

E
(
Zni |F(i−1)Δn

)≤K + κ K Δwn φn
E
(
Z(m)ni |F(i−1)Δn

)≤ K
m
+ κ K Δwn φn

where w =�(p− r)+ 1− p
2
.

(9.2.14)
Observe that, since � ∈ (0,1/2) and r ∈ (0,2], we have w ≥ 0 when p = 2 or

when (9.2.4) holds. Hence, coming back to the definition of ζ(j,m)ni , by successive
conditioning we deduce from the previous estimates that, under this condition,

E
(
ζ(j,m)ni

) ≤ KΔn

(
1

m
+ φn
)
. (9.2.15)

Then E(U
n,m,j
t )≤Kt(φn + 1/m) and since φn→ 0 we obtain (9.2.11).

Step 4) It remains to prove (9.2.6), which is of course a particular case of (9.2.5)
when k = 1. When k ≥ 2, the proof is exactly similar, and left to the reader, af-
ter pointing out that when F(x1, . . . , xk) = f (x1 + · · · + xk) we have ρk⊗cs (F ) =
ρkcs (f ). (One could also argue that this is an application of (9.2.5) with k = 1, for
each of the k processes V ′n(f, vn−,X(n, i)) corresponding to kΔn instead of Δn,
as introduced after (9.2.2); although X(n, i) depends on n, it is basically the same
as X itself.) �

9.3 Local Approximation for the Continuous Part of X: Part I

Instead of approximating the process Ct , it is may be useful to approximate ct at
some given time t . This is possible, using the methods of the previous section or of
Chap. 8.

We could more generally approximate the variable g(ct ), at least for functions
g on M+

d×d which have the form g(a) = ρk⊗a (F ) for some function F on (Rd)k

to which Theorem 9.2.1 applies, for example. However, below we will only do the
approximation for ct itself. The reason is that, if the sequence ĉ nt approximates ct ,
then g(̂c nt ) approximates g(ct ) as soon as g is continuous; moreover, the perfor-
mances of the approximation g(̂c nt ) are just as good as those obtained by a direct
approximation of g(ct ).
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The idea is straightforward. Suppose for a moment that X is continuous. An
approximation of Cijt is given by

∑[t/Δn]
i=1 Δni X

iΔni X
j , hence an approximation of

C
ij
t+s − Cijt is

∑[(t+s)/Δn]
i=[t/Δn]+1Δ

n
i X

iΔni X
j , and in turn 1

s
(C
ij
t+s − Cijt ) converges to

c
ij
t as s → 0, because c is assumed to be right-continuous. If we mix these two

approximations, we may hope that

1

knΔn

[t/Δn]+kn∑

i=[t/Δn]+1

Δni X
i Δni X

j

converges to cijt , provided we take a sequence of integers kn increasing to ∞ and
such that knΔn→ 0. It is indeed the case, and this section is devoted to proving this
property.

When X jumps, the same heuristic argument leads first to eliminate the jumps,
and this can be done in two ways: we truncate the increments, or we take multipow-
ers. The first method requires choosing cut-off levels vn as in (9.0.3), the second
one needs an appropriate (but relatively arbitrary) choice of the powers, and we will
use the same as in (8.5.4) with l = 1. This leads us to introduce the following three
sequences of variables:

ĉ ni (kn)
jl = 1

knΔn

kn−1∑

m=0

Δni+mX
j Δni+mX

l

ĉ ′n(kn)jli =
π

8knΔn

kn−1∑

m=0

(∣∣Δni+mX
j +Δni+mXl

∣∣ ∣∣Δni+m+1X
j +Δni+m+1X

l
∣∣

− ∣∣Δni+mXj −Δni+mXl
∣∣ ∣∣Δni+m+1X

j −Δni+m+1X
l
∣∣)

ĉ ni (kn, vn)
jl = 1

knΔn

kn−1∑

m=0

Δni+mX
j Δni+mX

l 1{‖Δni+mX‖≤vn}.

(9.3.1)

Of course we do this for all j, l = 1, . . . , d , thus obtaining M+
d×d -valued variables

ĉ ni (kn), ĉ
′n
i (kn) and ĉ ni (kn, vn). These variables are a priori well defined when

i ≥ 1. However, for convenience we make the following convention:

i ∈ Z, i ≤ 0 ⇒ Δni Y = 0 for any process Y . (9.3.2)

Then the variables ĉ ni (kn), ĉ
′n
i (kn) and ĉ ni (kn, vn) become also defined by (9.3.1)

when i ≤ 0, and of course they vanish identically when i ≤−kn.
These variables approximate ciΔn , but we usually want an approximation of ct or

ct− for some time t , possibly random. For this, recalling I (n, i)= ((i−1)Δn, iΔn],
we can take
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t ∈ I (n, i) ⇒

⎧
⎪⎨

⎪⎩

ĉ n(kn, t−)= ĉ ni−kn(kn), ĉ n(kn, t)= ĉ ni+1(kn)

ĉ ′n(kn, t−)= ĉ ′ni−kn−k+1(kn), ĉ ′n(kn, t)= ĉ ′ni+1(kn)

ĉ n(kn, vn, t−)= ĉ ni−kn(kn, vn), ĉ n(kn, vn, t)= ĉ ni+1(kn, vn).

(9.3.3)
So with the convention (9.3.2), when for example t > 0, the variables ĉ n(kn, t−) are
well defined for all n, and not only when n is big enough to have t ≥ (kn + 2)Δn.
Note also that ĉ n(kn,0)= ĉ n1 (kn).

Remark 9.3.1 In (9.3.3) the choice of the indices i − kn and i + 1 is somewhat
arbitrary, but designed in such a way that, for example, ĉ n(kn, t−) and ĉ n(kn, t)
involve the increments of X over the kn successive intervals which are closest to t
on the left and right sides of t respectively, but do not contain t itself.

We could alternatively take the indices i − ln and i + ln − kn, for any sequence
ln ∈N such that ln/kn→ 1: the results would be the same for the LLN below, at the
price of a slightly more complicated proof when t is inside the intervals on which
the increments are taken, but the associated CLT described in Chap. 13 would then
fail unless (ln − kn)/√kn→ 0.

When cs is almost surely continuous at time t , we can take ĉ n(kn, t) to be ĉ nin(kn)
with any sequence in of integer such that inΔn→ t , and using a window of size
knΔn which is approximately symmetrical about t is clearly best.

The same comments apply to the other estimators as well.

For the second claim of the next theorem, we recall that if both X and c are Itô
semimartingales, the pair (X, c) is also a d + d2-dimensional Itô semimartingale.
Moreover, it has a “joint” Grigelionis representation, and the Poisson random mea-
sure appearing in this representation is called a driving Poisson measure for (X, c)
(recall also that there are many Grigelionis representations, hence many possible
driving Poisson measures).

Theorem 9.3.2 Assume that X satisfies (H), and let kn satisfy kn → ∞ and
knΔn→ 0, and vn satisfy (9.0.4). Let T be a stopping time.

a) In restriction to the set {T <∞} we have

ĉ n(kn, T )
P−→ cT , ĉ ′n(kn, T )

P−→ cT , ĉ n(kn, vn, T )
P−→ cT . (9.3.4)

b) In restriction to the set {0< T <∞} we have

ĉ n(kn, T−) P−→ cT−, ĉ ′n(kn, T−) P−→ cT−, ĉ n(kn, vn, T−) P−→ cT−,
(9.3.5)

provided either one of the following two hypotheses holds:

(b-1) for some stopping time S we have T > S identically and T is FS measurable,
(b-2) the process ct is an Itô semimartingale, and on the set {0< T <∞} we have

p({T } × E) = 1, that is T is a “jump time” of p, for some driving Poisson
measure p for the pair (X, c).
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The condition (b-1) is satisfied when T is non-random, but otherwise it is very
restrictive. When ct is an Itô semimartingale the condition (b-2) is satisfied in par-
ticular by any stopping time T satisfying ‖ΔXT ‖ + ‖ΔcT ‖> 0 on {0 < T <∞}:
quite happily, this is a rather mild condition, because on the set {ΔcT = 0} we have
of course cT− = cT , and on this set we can use ĉ n(kn, T+) instead of ĉ n(kn, T−),
for example. Moreover, there are many stopping times T satisfying (b-2), although
‖ΔXT ‖ + ‖ΔcT ‖> 0 fails.

The convergence of the truncated and bipower approximate quadratic variations
towards cT in (9.3.4), for example, is intuitive, since these quantities are designed

to eliminate the jumps ofX. In contrast, the convergence ĉ n(kn, T )
P−→ cT is rather

counter-intuitive when X has jumps. This convergence is due to the fact that, since
T is fixed (albeit random), the discontinuous part of X on the shrinking interval
(T ,T + (kn + 2)Δn] is asymptotically negligible in front of its Brownian part, as
seen from Corollary 2.1.9, which will play a crucial role in the proof.

So it may seem that considering ĉ n(kn, vn, T ) and ĉ ′n(kn, T ) is superfluous.
However, from a practical point of view, and when knΔn is not very small, it may
be wise to use the truncated or bipower versions in case of jumps. Furthermore,
as we will see in the next section, the truncated versions are also useful from a
mathematical viewpoint.

Proof Step 1) We will prove in a unified way (a), and (b) under the hypothesis
(b-1), whereas (b) under (b-2) will be deduced at the very end.

We begin with some preliminaries. It is enough to prove the results separately
for each component (j, l). Then by the polarization identity (2.1.7) this amounts to
proving the result for the one-dimensional processes Xj +Xl and Xj −Xl . In other
words, it is no restriction to assume that X is one-dimensional. Up to modifying the
Brownian motion W and the process σ (but not c), we can also assume that W is
one-dimensional.

Next, as usual our localization procedure allows us to assume the strengthened
assumption (SH) instead of (H).

Another simplification arises naturally in the context of (b-1): it is enough to
prove (9.3.5) in restriction to the set {T −S ≥ a} for all a > 0. Thus, up to replacing
T by T ∨ (S + a), we can suppose that T − S ≥ a identically for some a > 0, and
of course we can suppose also that n is large enough to have (kn+ 3)Δn < a. A last
simplification is possible: upon replacing T by T ∧ N (which satisfies (b-1) with
S ∧ (N − a) when T satisfies (b-1)), for N arbitrarily large, it is no restriction to
assume that T is bounded.

Finally we will vary the process X in the course of the proof, so we mention it in
our notation, writing for example ĉ ni (kn, vn,X) instead of ĉ ni (kn, vn).

We will unify the proof as follows. When we prove (a), if T ∈ I (n, i) we set
in = i + 1 and Tn = (in − 1)Δn, so cTn → cT . When we prove (b) under (b-1) and
if T ∈ I (n, i) again, we set in = i − kn for the first and last parts of (9.3.5), and
in = i − kn − 1 for the second part; in these cases we again set Tn = (in − 1)Δn, so
cTn→ cT−. Therefore in both cases Tn is a stopping time, and our claims amount to
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the following:

ĉ nin(kn,X)−cTn
P−→ 0, ĉ ′nin (kn,X)−cTn

P−→ 0, ĉ nin(kn, vn,X)−cTn
P−→ 0.

Step 2) We introduce the processes

Ynt = σTn(Wt −WTn)1{Tn≤t}, Y ′nt =
∫ t

Tn∧t
(σs − σTn) dWs

and in this step we prove that

ĉ nin

(
kn,Y

n
)− cTn P−→ 0, ĉ ′nin

(
kn,Y

n
)− cTn P−→ 0. (9.3.6)

Observe that (9.3.1) and (9.3.3) for Yn give us (recalling that σt and W are one-
dimensional, and our definition of Tn) that ĉ nin(kn,Y

n) = cTn c̃n and ĉ ′nin (kn,Y
n) =

cTn c̃
′
n, where

c̃n = 1

knΔn

kn−1∑

i=0

(
Δnin+iW

)2
, c̃′n =

π

2knΔn

kn−1∑

i=0

∣∣Δnin+iW
∣∣ ∣∣Δnin+i+1W

∣∣.

Therefore, (9.3.6) will be a consequence of

c̃n
P−→ 1, c̃′n

P−→ 1. (9.3.7)

Since Tn is a stopping time, the variables Δnin+iW for i ≥ 0 are i.i.d. with the law

N (0,
√
Δn ). Thus (9.3.7) follows from standard calculations (both c̃n and c̃′n have

mean 1 and a variance going to 0), and (9.3.6) is proved.
At this stage, it thus remains to prove the following three properties:

Zn = ĉ nin(kn,X)− ĉ nin(kn,Y n)
P−→ 0

Z′n = ĉ ′nin (kn,X)− ĉ ′nin (kn,Y n)
P−→ 0

Z′′n = ĉ nin(kn, vn,X)− ĉ nin(kn,Y n)
P−→ 0.

⎫
⎪⎪⎬

⎪⎪⎭
(9.3.8)

Step 3) In this step we prove the last part of (9.3.8). Since |(x + y)2 − x2| ≤ εx2 +
1+ε
ε
y2 for all x, y ∈ R and ε > 0, we observe that for all v ≥ 1 and ε ∈ (0,1] we

have

∣∣(x+y+ z+w)2 1{|x+y+z+w|≤v} −x2
∣∣≤K |x|

4

v2
+ εx2+ K

ε

((
v2∧y2)+ z2+w2).

(9.3.9)
Recalling (9.2.7) and putting B ′′t =

∫ t
0 b
′′
s ds, we use the above with x =Δnin+iY n/√

Δn and y =Δnin+iX′′/
√
Δn and z=Δnin+iY ′n/

√
Δn and w =Δnin+iB ′′/

√
Δn (so
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x + y + z+w =Δnin+iX/
√
Δn), and v = vn/√Δn = αΔ�−1/2

n , to get

∣∣Z′′n
∣∣ ≤ 1

kn

kn−1∑

i=0

(
KΔ1−2�

n

∣∣∣∣
Δnin+iY

n

√
Δn

∣∣∣∣
4

+ ε
∣∣∣∣
Δnin+iY

n

√
Δn

∣∣∣∣
2

+ K
ε
Δ2�−1
n

∣∣∣∣
Δnin+iX

′′

Δ�n

∧
1

∣∣∣∣
2

+ K
ε

∣∣∣∣
Δnin+iY

′n
√
Δn

∣∣∣∣
2

+ K
ε

∣∣∣∣
Δnin+iB

′′
√
Δn

∣∣∣∣
2)
.

We set γn = sups∈[Tn,Tn+(kn+2)Δn) |σs − σTn |2, which is bounded and goes to 0
for each ω because of our definition of in. In view of (SH), (2.1.33), (2.1.34), and
(2.1.45) applied with p = 2 and q =� and r = 2, plus the fact that (in + i − 1)Δn
is a stopping time for all i ≥ 0, we deduce that for some sequence φn of numbers
decreasing to 0 and all q ≥ 2 we have for 0≤ i ≤ kn − 1:

∣∣Δnin+iB
′′∣∣ ≤ KΔn, E

(∣∣Δnin+iY
n
∣∣q |F(in+i−1)Δn

)≤KqΔq/2n

E
(∣∣Δnin+iY

′n∣∣q |F(in+i−1)Δn

)≤KqΔq/2n E(γn |F(in+i−1)Δn)≤KqΔq/2n

E

( |Δnin+iX′′|
Δ�n

∧
1 |F(in+i−1)Δn

)
≤KΔ1−2�

n φn.

(9.3.10)

Therefore

E
(|Zn|
) ≤ Kε+ K

ε

(
Δ1−2�
n + φn +E(γn)

)
.

Letting first n→∞ and then ε→ 0, we deduce the first part of (9.3.8).

Step 4) Next, we prove the second part of (9.3.8). Instead of (9.3.9) we use the
following, which holds for all A≥ 1:

∣∣|x + y + z+w| |x′ + y′ + z′ +w′| − |x| |x′|∣∣

≤ |x + y + z+w|
(
A
(|y′| ∧ 1

)+ |y
′|2
A2

+ |z′| + |w′|
)

+ |x′ + y′ + z′ +w′|
(
A
(|y| ∧ 1

)+ |y|
2

A2
+ |z| + |w|

)
.

Using this formula with x, y, z,w as in Step 4 and x′ =Δnin+i+1Y
n/
√
Δn and y′ =

Δnin+i+1X
′′/
√
Δn, z′ =Δnin+i+1Y

′/
√
Δn and w′ =Δnin+i+1B

′′/
√
Δn, we get

∣∣Z′n
∣∣ ≤ 1

kn

kn−1∑

i=0

[ |Δnin+iX|√
Δn

(
A

( |Δnin+i+1X
′′|√

Δn

∧
1

)

+ |Δ
n
in+i+1X

′′|2
A2Δn

+ |Δ
n
in+i+1Y

′n|√
Δn

+ |Δ
n
in+i+1B

′′|√
Δn

)
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+
(
A

( |Δnin+iX′′|√
Δn

∧
1

)
+ |Δ

n
in+iX

′′|2
A2
√
Δn

+ |Δ
n
in+iY

′n|√
Δn

+ |Δ
n
in+iB

′′|√
Δn

)

× |Δ
n
in+i+1X|√
Δn

]
.

Then, by the same argument (and with the same notation) as in Step 3, and upon
using (2.1.45) with p = 1 and q = 1/2 and r = 2 now and also the properties
E(|Δnin+iX′′|2 | F(in+i−1)Δn)≤KΔn and E(|Δnin+iX| | F(in+i−1)Δn)≤K

√
Δn, we

get by successive conditioning:

E
(∣∣Z′n
∣∣) ≤ K

(
Aφn + 1

A2
+√Δn +E(

√
γn )

)
.

Letting first n→∞ and then A→∞, we deduce the second part of (9.3.8).

Step 5) Next, we prove the first part of (9.3.8). We complement the notation (9.2.7)
by putting X′′(κ) = (δ1{Γ≤κ}) ∗ (p − q) and B ′′(κ) = B ′′ − (δ1{Γ>κ}) ∗ q, for any
κ ∈ (0,1). The set Ωn(κ) on which the Poisson process p([0, t] × {z : Γ (z) > κ})
has no jump on the interval (T − (kn + 2)Δn,T )∪ (T ,T + (kn + 2)Δn] converges
to Ω as n→∞, and on this set we have Δni X = Δni B ′′(κ) + Δni Y n + Δni Y ′n +
Δni X

′′(κ) for i = in, in+ 1, . . . , in+ kn− 1. Then we can apply (9.3.9) with v =∞
(so the first term on the right does not show), with x = Δnin+iY n/

√
Δn and y =

Δnin+iX
′′(κ)/

√
Δn and z=Δnin+iY ′n/

√
Δn and w =Δnin+iB ′′(κ)/

√
Δn, to get that

on the set Ωn(κ) we have |Zn| ≤ Zn(κ), where

Zn(κ) = 1

kn

kn−1∑

i=0

(
ε2
∣∣∣∣
Δnin+iY

n

√
Δn

∣∣∣∣
2

+ K
ε

∣∣∣∣
Δnin+iX

′′(κ)√
Δn

∣∣∣∣
2

+ K
ε

∣∣∣∣
Δnin+iY

′n
√
Δn

∣∣∣∣
2

+ K
ε

∣∣∣∣
Δnin+iB

′′(κ)√
Δn

∣∣∣∣
2)
.

Then we use (9.3.10) and also |Δni B ′′(κ)| ≤ KκΔn and E(|Δnin+iX′′(κ)|2) ≤
KΔnθ(κ), where θ(κ) = ∫{z:Γ (z)≤κ} Γ (z)2 λ(dz) (the latter coming from (2.1.36)
with p = 2): we then deduce

E
(
Zn(κ)

) ≤ Kε2 + Kθ(κ)
ε

+ K
ε
E(γn)+ KκΔn

ε
. (9.3.11)

On the other hand, for all η > 0 we have P(|Zn|> η)≤ P(Ωn(κ))+ 1
η
E(Zn(κ)).

Letting n→∞, we deduce from (9.3.11) and Ωn(κ)→Ω that

lim sup
n

P
(|Zn|> η

) ≤ Kε2

η
+ Kθ(κ)

ε η
.

This is true for all ε, κ ∈ (0,1). Letting ε = θ(κ)1/3 and taking advantage of the
property θ(κ)→ 0 as κ→ 0, we deduce that P(|Zn|> η)→ 0, and this completes
the proof of the first part of (9.3.8).
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Step 6) So far, we have proved (a) and (b) under (b-1). We now turn to (b) under
(b-2), and we will consider the first convergence in (9.3.5) only, the other two being
proved in the same way. We come back to the general case d ≥ 1. The assumption
is that p({T } ×E)= 1 if 0< T <∞, where p is a driving Poisson measure for the
pair (X,σ ).

Choose any function Γ ′ : E→ (0,∞) such that
∫
Γ ′(z)λ(dz) <∞. Let A =

{z : Γ ′(z) > 1/m} for somem ∈N
∗ (so λ(A) <∞), and denote by (Gt ) the smallest

filtration containing (Ft ) and such that the restriction of p to R+ × A is G0 mea-
surable. Let R1,R2, . . . be the successive jump times of the Poisson process 1A ∗ p,
and XAt =Xt −

∑
p≥1ΔXRp 1{Rp≤t}. By Proposition 2.1.10, page 44, W is a (Gt )-

Brownian motion, and the restriction p′ of p to R+×Ac is a Poisson measure whose
compensator is the restriction q′ of q to the same set.

Then XA is an Itô semimartingale, relative to the filtration (Gt ), with the same
Grigelionis representation (9.0.1) as X, except that p and q are replaced by p′ and q′,
and bt is replaced by bAt = bt −

∫
{‖δ(t,z)‖≤1}∩A δ(t, z)λ(dz), whereasW , σ and δ are

unchanged. In particular, XA satisfies (H).
Observe that eachRp is positive and G0 measurable, so it satisfies (b-1) (with S =

0), relative to the filtration (Gt ). Therefore we deduce that ĉ n(kn,Rp−,XA) P−→
cRp−. For p ≥ 1, the set Ωnp = {Rp−1 < Rp − (kn + 2)Δn}) (with R0 = 0) goes
to Ω as n→∞, because knΔn → 0. Since Δni X = Δni XA if there is no Rq in
I (n, i), we see that on Ωnp we have ĉ n(kn,Rp−,XA)= ĉ n(kn,Rp−,X), and thus

ĉ n(kn,Rp−,X) P−→ cRp−. Then if Gm = {R1,R2, . . . } (this depends on m, as are
the Rp’s implicitly), the previous property obviously yields

ĉ n(kn, T−,X) P−→ cT− (9.3.12)

in restriction to the set {T ∈Gm}, hence also in restriction to the set {T ∈ ∪m≥1Gm}.
It remains to observe that {0< T <∞}= {T ∈ ∪m≥1Gm}. �

9.4 From Local Approximation to Global Approximation

As seen before, and still in the same general setting, one of the main problems is
the approximation of the integral

∫ t
0 g(cs) ds for some test function g on the space

M+
d×d . When g has the form g(a) = ρk⊗a (F ) for a suitable function F on (Rd)k ,

Theorems 8.4.1 or 9.2.1 provide approximations, under suitable assumptions on F .
Now, we can also use our local estimators: since the variables of (9.3.1) are ap-

proximations of ciΔn , one may hope that the variables

Cn(g, kn,X)t = Δn

[t/Δn]−kn+1∑

i=1

g
(
ĉ ni (kn)

)
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Cn(g, kn, vn,X)t = Δn

[t/Δn]−kn+1∑

i=1

g
(
ĉ ni (kn, vn)

)

converge to
∫ t

0 g(cs) ds, under appropriate assumptions on g (we leave out the esti-
mators based on the bipower approximations ĉ ′ni (kn)). This is the object of the next
result:

Theorem 9.4.1 Assume that X satisfies (H), and let g be a continuous function on
M+

d×d , satisfying for some p ≥ 0:
∣∣g(x)
∣∣ ≤ K

(
1+ ‖x‖p). (9.4.1)

a) If either X is continuous or p < 1, we have

Cn(g, kn,X)t
u.c.p.=⇒
∫ t

0
g(cs) ds. (9.4.2)

b) If either p ≤ 1, or (H-r) holds for some r ∈ [0,2) and

p > 1, � ≥ p− 1

2p− r , (9.4.3)

we have

Cn(g, kn, vn,X)t
u.c.p.=⇒
∫ t

0
g(cs) ds. (9.4.4)

The bigger r is, the more stringent is (9.4.3): when r increases we need to trun-
cate more, and the same when p increases.

Remark 9.4.2 We can compare this result with Theorem 9.2.1. We want to approx-
imate

∫ t
0 g(cs) ds. On the one hand, if g(a) = ρk⊗a (F ) with some k and some F ,

the condition (9.2.3) on F with p = q is basically the condition (9.4.1) on g, with
p = q/2, and the assumptions in Theorem 9.2.1 and in (b) above are thus basically
the same: so, as far as the growth of the test function is concerned, the two theorems
are very similar.

On the other hand, the existence of k and F such that g(a)= ρk⊗a (F ) is a serious
restriction on g. For example it implies that g is C∞ on the restriction of g to the set
of invertible matrices, whereas in Theorem 9.4.1 only the continuity of g is needed.
This is perhaps of little practical relevance, but mathematically speaking it means
that the present theorem quite significantly improves on Theorem 9.2.1.

Finally, in most practical situations g is given and, when it corresponds to some
k and F , finding an explicit function F solving this question is often difficult.

Example 9.4.3 When X has jumps, (9.4.2) fails in general when we do not have
(9.4.1) with p < 1. For example take g(x) = x. Then, up to some (negligible)
boundary terms, Cn(g, kn,X) is the approximate quadratic variation, which does
not converge to Ct =

∫ t
0 cs ds.
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Proof of Theorem 9.4.1 By localization we can and will assume (SH-r) throughout
the proof, with r = 2 when p ≤ 1. Up to proving the desired convergence sepa-
rately for g+ and g−, we can also assume g ≥ 0, and then it is enough to prove the
convergence in probability for each t fixed.

1) We first prove the results when g is bounded. For any t > 0 we have
ĉ n(kn, t)= ĉ ni (kn) when (i − 2)Δn ≤ t < (i − 1)Δn, hence

Cn(g, kn,X)t = Δng
(
ĉ n1 (kn)

)+
∫ ([t/Δn]−kn)Δn

0
g
(
ĉ n(kn, s)

)
ds.

Thus

E

(∣∣∣∣∣C
n(g, kn, g)t −

∫ t

0
g(cs) ds

∣∣∣∣∣

)
≤ KknΔn +

∫ ([t/Δn]−kn)Δn

0
an(s) ds,

where an(s) = E(|g(̂c n(kn, s))− g(cs)|). Now, (9.3.4) implies that an(s)→ 0 for
each s and stays bounded uniformly in (n, s) because g is bounded. Hence (9.4.2)
follows from the dominated convergence theorem, and (9.4.4) is obtained in exactly
the same way.

2) With ψε,ψ ′ε as given by (3.3.16) or in the proof of Theorem 9.1.1, we write
gm = gψm and g′m = gψ ′m. The function g′m is continuous and bounded, so the

previous step yields Cn(g′m,kn,X)t
P−→ ∫ t0 g′m(cs) ds and Cn(g′m,kn, vn,X)t

P−→∫ t
0 g

′
m(cs) ds for any m fixed, and

∫ t
0 g

′
m(cs) ds =

∫ t
0 g(cs) ds for all m large enough

because cs is bounded. On the other hand g′m(x) ≤K‖x‖p 1{‖x‖>m} for all m ≥ 1.
Then it remains to prove that

lim
m→∞ lim sup

n→∞
E

(
Δn

[t/Δn]∑

i=1

∥∥̂c ni (kn)
∥∥p 1{‖̂c ni (vn)‖>m}

)
= 0 (9.4.5)

lim
m→∞ lim sup

n→∞
E

(
Δn

[t/Δn]∑

i=1

∥∥̂cni (kn, vn)
∥∥p 1{‖̂c ni (kn,vn)‖>m}

)
= 0, (9.4.6)

under the relevant assumptions in (a) or (b).
We start with (9.4.5). Letting κ = 0 when X is continuous and κ = 1 otherwise,

for all q ≥ 2 we have by (2.1.44) and (SH-2):

E
(∥∥Δni X

∥∥q) ≤ Kq
(
Δ
q/2
n + κ Δ(q/2)∧1

n

)
.

In view of the definition of ĉ ni (kn), we deduce from Hölder’s inequality, and for
q ≥ 1:

E
(∥∥̂c ni (kn)

∥∥q) ≤ Kq
(
1+ κ Δq∧1−q

n

)
.
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Therefore if q > p, Markov’s inequality yields

E
(∥∥̂c ni (kn)

∥∥p 1{‖̂c ni (vn)‖>m}
) ≤ Kq

mq−p
(
1+ κ Δq∧1−q

n

)
.

Taking q = 2p in the continuous case and q = 1>p otherwise, we deduce (9.4.5).
Now we turn to (9.4.6), with a proof somewhat similar to the proof of (9.2.10).

Without loss of generality, we may assume p ≥ 1. For all n bigger than some nm
we have 2m ≤ un = vn/√Δn. With the notation (9.2.7) we have ‖̂c ni (kn, vn)‖ ≤
ζ ′ni + ζ ′ni , where

ζ ′ni = 1

kn

kn−1∑

j=0

(‖Δni+jX′‖√
Δn

)2

, ζ ′′ni = u2
n

kn

kn−1∑

j=0

(‖Δni+jX′′‖
Δ�n

∧
1

)2

.

Therefore
∥∥̂c ni (kn, vn)

∥∥1{‖̂c ni (kn,vn)‖>m} ≤
2

m

(
ζ ′ni
)2 + 2ζ ′′ni .

By (9.2.12), (9.2.13) and Hölder’s inequality, for all q ≥ 1 we have

E
(∣∣ζ ′ni
∣∣q |F(i−1)Δn

) ≤ Kq, E
(∥∥ζ ′′ni
∥∥q |F(i−1)Δn

) ≤ Ku
2q
n Δ

1−r�
n φn

for some sequence φn→ 0. Setting w = 1− p+�(2p− r), we deduce

E
(∥∥̂c ni (kn, vn)

∥∥p 1{‖̂c ni (kn,vn)‖>m} |F(i−1)Δn

) ≤ K

mp
+KΔwn φn. (9.4.7)

Since w ≥ 0 when either p = 1 or (9.4.3) holds, (9.4.6) follows. �

9.5 Local Approximation for the Continuous Part of X: Part II

Still another family of processes occurs in applications, when the process X jumps.
For example we may have to approximate such quantities as

∑

s≤t
f (ΔXs)g(cs−) or

∑

s≤t
f (ΔXs)g(cs)

for suitable functions f and g: we have already seen such expressions in (5.1.5) for
example. This sort of process mixes the jumps with the “local” value of ct , and the
approximation for them mixes the approach of Theorem 3.3.1 when f (x)= o(‖x‖2)

as x→ 0 and Theorem 9.1.1 otherwise, with the results of the two previous sections.
More generally, we may have to approximate a process of the form

∑

s≤t
G(ΔXs, cs−, cs),
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of which the two previous ones are special cases. This leads us to introduce the
following: we consider a function G on R

d ×M+
d×d ×M+

d×d . We also take a
sequence kn of integers with kn→∞ and knΔn→ 0, and a cut-off sequence vn
as in (9.0.3), with which we associate the M+

d×d -valued variables ĉ ni (kn, vn) by
(9.3.1). Then we set

V n(G; kn, vn,X)t =
[t/Δn]−kn∑

i=kn+1

G
(
Δni X, ĉ

n
i−kn(kn, vn), ĉ

n
i+1(kn, vn)

)
1{‖Δni X‖>vn}.

(9.5.1)

The summation bounds are chosen in such a way that the right side only depends
on the increments Δni X within the interval [0, t], and that one does not use the
convention (9.3.2). If we are willing to use it we can start the summation at i = 0.
When G(x,y, y′) only depends on (x, y), one can extend the summation up to i =
[t/Δn]: the results below are not modified if we perform those changes.

Theorem 9.5.1 Assume that X satisfies (H-r) for some r ∈ [0,2], and choose vn as
in (9.0.3) and kn such that kn→∞ and knΔn→ 0. Let G be a continuous function
on R

d ×M+
d×d ×M+

d×d and, when r > 0, assume

‖x‖ ≤ η ⇒ ∣∣G(x, y, y′)∣∣≤ f (x)(1+ ‖y‖p)(1+ ∥∥y′∥∥p) (9.5.2)

for some η > 0, with f a function on R
d satisfying f (x)= o(‖x‖r ) as x→ 0, and

either p ∈ [0,1], or p > 1 and (9.4.3) holds. Then, we have the following Skorokhod
convergence in probability:

V n(G; kn, vn,X)t P=⇒
∑

s≤t
G(ΔXs, cs−, cs). (9.5.3)

Under (H-r) we have
∑
s≤t ‖ΔXs‖r <∞ for all t , hence the assumptions on G

made above imply that the limiting process in (9.5.3) is well defined and càdlàg of
finite variation. The condition f (x)= o(‖x‖r ) as x→ 0 is not really restrictive for
applications, although in view of Theorem 9.1.1 one would rather expect f (x) =
O(‖x‖r ); however, we do not know how to prove the result under this (slightly)
weaker condition on f .

Remark 9.5.2 The functionals V n(G; kn, vn,X) involve two truncations.
a) It is possible to use two different truncation levels vn = αΔ�n and v′n = α′Δ� ′

n

with α,α′ > 0 and �,� ′ ∈ (0,1/2), and replace ‖Δni X‖> vn by ‖Δni X‖> v′n in
(9.5.1). However, since both truncations serve the same purpose of separating the
jumps from the “continuous” part of X, there seems to be no need for taking two
different levels vn and v′n.

b) On the other hand, one could delete one, or even both, truncations: when
f (x) = o(‖x‖2) as x → 0 one can dispense with the first one (v′n above), and
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when p < 1 in (9.5.2) we can use the non-truncated ĉ ni (kn). If for example f (x)=
o(‖x‖2) as x→ 0 in (9.5.2) the processes

[t/Δn]−kn∑

i=kn+1

G
(
Δni X, ĉ

n
i−kn(kn, vn), ĉ

n
i+1(kn, vn)

)

also satisfy (9.5.3). In practice, however, it is probably better always to use the
truncated versions.

c) One could also replace ĉni (kn, vn) by the bipower version ĉ′ni (kn), and the
results would be the same.

Remark 9.5.3 The reader will notice that no growth condition on (y, y′) �→
G(x,y, y′) is required when ‖x‖> η, whereas η > 0 is also arbitrarily small. This
is due to the fact that for any given η > 0 and on any fixed time interval [0, t], there
are finitely many jumps of X bigger than η, hence also a (bounded in n) number of
increments Δni X bigger than η, and thus the continuity of (x, y, y′) �→G(x,y, y′)
when ‖x‖> ε is enough to imply the convergence of the corresponding summands
in (9.5.1) to those in (9.5.3).

One could even weaken the continuity assumption, exactly as in Theorem 3.3.5.
Namely, if D is a subset of Rd such that P(∃t > 0 : ΔXt ∈D)= 0, or equivalently
1D ∗ν∞ = 0 a.s., the previous result holds when the functionG is continuous outside
D×M+

d×d ×M+
d×d .

Proof Step 1) By localization we may assume (SH-r). We use the simplifying
notation V n(G)= V n(G; kn, vn,X), because only G will vary in the proof, and the
right side of (9.5.3) is denoted by V (G)t . We have

V n(G)t =
[t/Δn]−kn∑

i=kn+1

ζ(G)ni , where

ζ(G)ni = G
(
Δni X, ĉ

n
i−kn(kn, vn), ĉ

n
i+1(kn, vn)

)
1{‖Δni X‖>vn}. (9.5.4)

Step 2) In this step, and according to the scheme of the proof of Theorem 9.1.1, to
which the present theorem reduces when G(x,y, y′) = f (x), we prove the result
when G(x,y, y′)= 0 if ‖x‖ ≤ ε, for some ε > 0.

(SH-r) implies ‖δ(ω, t, z)‖ ≤ Γ (z) for some bounded function Γ with
∫
Γ (z)r ×

λ(dz) < ∞. We let Sq be the successive jumps times of the Poisson process
1{Γ>ε/2} ∗ p, with the convention S0 = 0, and i(n, q) denotes the unique random
integer i such that Sq ∈ I (n, i). The jumps of X outside the set ∪q≥1{Sq} have a
size smaller than ε/2, hence the properties of G yields for some (random) inte-
gers nt :

• s /∈ ∪q≥1{Sq(ω)} ⇒ G(ΔXs(ω), cs−(ω), cs(ω))= 0
• Δni(n,q)X(ω)→ΔXSq (ω) as n→∞
• n≥ nt,ω, i ∈{j : 1≤ j ≤ [Δn/t]}\{i(n, q)(ω) : q ≥ 1} ⇒ ζ(G)ni (ω)= 0.
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Then, in view of (9.5.4) and of the continuity ofG, the convergence (9.5.3) holds as
soon as for each q ≥ 1 we have

ĉ ni(n,q)−kn(kn, vn)
P−→ cSq−, ĉ ni(n,q)+1(kn, vn)

P−→ cSq . (9.5.5)

Since Sq is a jump time of the driving Poisson measure p, these two convergences
follow from Theorem 9.3.2.

When r = 0 we take for Sq the successive jump times of 1{Γ>0} ∗ p. We know
that ‖Δni X‖ ≤ vn, hence ζ(G)ni = 0, for all i smaller than [t/Δn] and different from
all i(n, q), on a set whose probability goes to 1 as n→∞. Then the same argument
as above shows the convergence (9.5.2), without any growth restriction on G, and
the theorem is proved in this case.

Step 3) In this step we provide some estimates. It is understood below that the integer
i satisfies i ≥ kn+1, and for simplicity we write ξni = 1+‖̂c ni (kn, vn)‖p . First, (SH-
r) and the fact that either p ≤ 1 or (9.4.3) holds imply (9.4.7) withw ≥ 0 andm= 1,
and we deduce

E
(∣∣ξni
∣∣ |F(i−1)Δn

) ≤ K. (9.5.6)

Next, we take ε ∈ (0,1) and we set

Aε =
{
z : Γ (z)≤ ε}, a(ε) =

∫

Aε

Γ (z)r λ(dz).

We use the decomposition X = X′ + X′′ of (9.0.2) and we also set X(ε) = X −
(δ 1Acε ) ∗ p. Thus X(ε)= Y(ε)+ Y ′(ε), where

r ∈ (1,2] ⇒ Y(ε)= (δ 1Aε) ∗ (p− q), Y ′(ε)=X′ − (δ 1{‖δ‖≤1}∩Acε ) ∗ q
r ∈ (0,1] ⇒ Y(ε)= (δ 1Aε) ∗ p, Y ′(ε)=X′ − (δ 1{‖δ‖≤1}) ∗ q.

Since ‖δ(s, z)‖ ≤ Γ (z), we deduce from (2.1.36) when r > 1 and (2.1.40) when
r ≤ 1 that

E
(∥∥Δni Y (ε)

∥∥r |F(i−1)Δn

) ≤ KΔn a(ε), (9.5.7)

where a(ε)→ 0 as ε→ 0. Moreover when r ≤ 1 the process Y ′(ε) is as X′ in
(9.0.2), except that bt is substituted with b(ε)t = bt −

∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz),

which satisfies ‖b(ε)t‖ ≤ K for a constant K which does not depend on ε. When
r > 1 we have the same, except that now b(ε)t = bt −

∫
{‖δ(t,z)‖≤1}∩Acε δ(t, z)λ(dz)

satisfies ‖b(ε)t‖ ≤ Kε1−r . Hence in both cases we deduce from (2.1.33) and
(2.1.34) that, for all q > 0:

E
(∥∥Δni Y

′(ε)
∥∥q |F(i−1)Δn

) ≤ Kq
(
Δ
q/2
n +Δqn ε−q(r−1)+). (9.5.8)

Now, ‖x + y‖r 1{‖x+y‖>vn} ≤Kq(‖x‖q+r/vqn + ‖y‖r ) for all x, y ∈R
d and q >

0. Taking q = 4−r
1−2� and putting together (9.5.7) and (9.5.8), plus X(ε) = Y(ε)+
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Y ′(ε), we obtain

E
(∥∥Δni X(ε)

∥∥r 1{‖Δni X(ε)‖>vn} |F(i−1)Δn

) ≤ Kε Δ
2
n +KΔn a(ε). (9.5.9)

Step 4) We use once more the functions ψε and ψ ′ε of (3.3.16) and we set

Gε
(
x, y, y′

)=G(x, y, y′)ψε(x), G′ε
(
x, y, y′

)=G(x, y, y′)ψ ′ε(x).

Step 2 gives us V n(Gε)
P=⇒ V (Gε) for each ε > 0. On the other hand, the processes

c and ΔX are bounded by (SH-r), so (9.5.2) yields |G(ΔXt, ct−, ct )| ≤K‖ΔXt‖r .
Hence the behavior of f near 0 and the fact that r ∈ I(X) yield that V (Gε)

u.c.p.=⇒
V (G) as ε→ 0. It thus remains to prove that

t > 0 ⇒ lim
ε→0

lim sup
n

E

(
sup
s≤t
∣∣V n
(
G′ε
)
s

∣∣
)
= 0.

Our assumptions on G yield that, as soon as ε < η, we have |G′ε(x, y, y′)| ≤
θ(ε)‖x‖r (1+ ‖y‖p)(1+ ‖y′‖p)1{‖x‖≤ε} for some continuous function θ on [0,1]
with θ(0)= 0. Then, if T (ε)1, T (ε)2, . . . are the successive jump times of the Pois-
son process 1Acε ∗ p, and recalling the notation ξni of Step 3 and also (9.5.4), we see
that
∣∣ζ
(
G′ε
)n
i

∣∣

≤
{
K θ(ε) εrξni−knξ

n
i+1 if T (ε)q ∈ I (n, i) for some q ≥ 1

K‖Δni X(ε)‖r ξni−knξni+1 1{‖Δni X(ε)‖>vn} otherwise.

Therefore we see that |V n(G′ε)t | ≤ KZn(ε)t +Kθ(ε)Z′n(ε)t , where

Zn(ε)t =
[t/Δn]−kn∑

i=kn+1

∥∥Δni X(ε)
∥∥r ξni−knξ

n
i+1 1{‖Δni X(ε)‖>vn}

Z′n(ε)t = εr
[t/Δn]−kn∑

i=kn+1

ξni−knξ
n
i+1 z(ε)

n
i

z(ε)ni = 1∪q≥1{T (ε)q∈I (n,i)}

and, since θ(ε)→ 0 as ε→ 0, it remains to prove that

lim
ε→0

lim sup
n→∞

E
(
Zn(ε)t

) = 0, sup
n≥1, ε∈(0,1)

E
(
Z′n(ε)t

)
< ∞. (9.5.10)

Combining (9.5.6), (9.5.9) and the FiΔn measurability of ξni+1, we get by succes-
sive conditioning that E(Zn(ε)t )≤ t (KεΔn +Ka(ε)), and the first part of (9.5.10)
follows because a(ε)→ 0 as ε→ 0.

Another application of (9.5.6) and of the FiΔn -measurability of ξni−kn z(ε)
n
i yields

E(ξni−knξ
n
i+1 z(ε)

n
i |FiΔn)≤Kξni−kn z(ε)ni . By definition of the T (ε)q ’s, the variable
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z(ε)ni is independent of F(i−1)Δn and satisfies, with the notation a′(ε)= λ({Γ > ε}):
E
(
z(ε)ni |F(i−1)Δn

) = P
(
z(ε)ni = 1

) = 1− e−Δna′(ε) ≤ Δn a
′(ε).

Therefore by conditioning on F(i−1)Δn and then taking the expectation and us-
ing once more (9.5.6), we obtain E(ξni−knξ

n
i+1 z(ε)

n
i ) ≤ KΔn a′(ε), from which

we deduce E(Z′n(ε)t ) ≤ K t εr a′(ε). The assumption
∫
Γ (z)rλ(dz) <∞ yields

εr a′(ε)≤K , and the second part of (9.5.10) follows. �

9.6 Applications to Volatility

We continue again the application about the estimation of the volatility. The setting
is as in the previous section: an Itô semimartingaleX given by (8.4.1) and satisfying
(H), and a regular discretization scheme. Below, we will put in use the truncated
functional, with vn as in (9.0.3).

We have seen in (8.5.2), (8.5.3) and (8.5.4) how to estimate the variable∫ t
0

∏l
j=1(c

rjmj
s )pj ds for all integers rj and mj in {1, . . . , d} and all integers pj , or

all reals pj > 0 when further mj = rj for all j , using the multipower variations.
The same quantities can also be approximated with the help of Theorem 9.2.1.
Namely, if kj are integers, and K0 = 0 and Kj = k1 + · · · + kj and pj > 0 and
p = p1 + · · · + pl , we have

kj > pj/2 ∀j ⇒

Δ
1−p
n

[t/Δn]−Kl+1∑

i=1

l∏

j=1

kj∏

u=1

∣∣Δni+Kj−1+u−1X
rj
∣∣2pj /kj 1{‖Δni+Kj−1+u−1X‖≤vn}

u.c.p.=⇒
l∏

j=1

m
kj
2pj /kj

∫ t

0

l∏

j=1

(
c
rj rj
s

)pj ds, (9.6.1)

and also, when mj does not necessarily agree with rj ,

Δ1−l
n

[t/Δn]−l+1∑

i=1

l∏

j=1

Δni+j−1X
rj Δni+j−1X

mj 1{‖Δni+j−1X‖≤αΔ�n }

u.c.p.=⇒
∫ t

0

l∏

j=1

c
rjmj
s ds. (9.6.2)

There is no theoretical reason to prefer either (8.5.2) or (9.6.1), when X jumps.
We recall that when X is continuous, we also have

Δ
1−p
n

[t/Δn]−l+1∑

i=1

l∏

j=1

∣∣Δni+Kj−1+u−1X
rj
∣∣2pj u.c.p.=⇒

l∏

j=1

m2pj

∫ t

0

l∏

j=1

(
c
rj rj
s

)pj ds

(9.6.3)
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(by Theorem 8.4.1). This last estimator is better behaved from a practical viewpoint
than those in both (8.5.2) and (9.6.1), in the continuous case: we will see that, al-
though the rate of convergence of all these estimators is the same, the asymptotic
variance of (9.6.3) is less than for the others.

Note that Theorem 9.4.1 provides still another method for approximating the
right side of (9.6.2), namely

Δn

[t/Δn]−kn+1∑

i=1

l∏

j=1

ĉ ni (kn, vn)
rjmj

u.c.p.=⇒
∫ t

0

l∏

j=1

c
rjmj
s ds

where kn→∞ and knΔn→ 0. However, unless l = 1 above, we need to have (H-r)
for some r < 2 and � ≥ l−1

2l−r .
Another application of truncated functionals consists in determining the “pro-

portion of jumps” for an observed path of a one-dimensional process X. This is a
rather vague notion, often understood as follows: what is the ratio of the part of
the quadratic variation due to the jumps (or, to the continuous part), over the total
quadratic variation? These ratios are

Rt = [X,X]t −Ct
[X,X]t , 1−Rt = Ct

[X,X]t .

The motivation for looking at those ratios is that, at least when t is large enough,
[X,X]t and Ct are roughly proportional to the “variance of the increments” and the
“variance of the increments of the continuous part”, respectively, the drift part being
treated roughly as a non-random factor. This statement is of course mathematically
rather unfounded, but the variable Rt is well defined and does provide some insight
on the relative importance of the jumps versus the continuous part.

If we put together Theorems 9.1.1 and 9.2.1, we get an estimator for Rt , on the
basis of a discretely (and regularly) observed path. Namely, if we complement the
notation D(X,p,Δn)t of (5.3.23) by putting

D(X,p,vn+,Δn)t =
[t/Δn]∑

i=1

∣∣Δni X
∣∣p 1{|Δni X|>vn},

D(X,p, vn−,Δn)t =
[t/Δn]∑

i=1

∣∣Δni X
∣∣p 1{|Δni X|≤vn},

we have for t > 0:

D(X,2, vn+,Δn)t
D(X,2,Δn)t

P−→ Rt .



Part IV
Extensions of the Central Limit

Theorems

The applications sketched at the end of most previous chapters show us that, as
useful as the Laws of Large Numbers may be, they are not enough. In all cases we
need a way to assert the rate at which our functionals converge. This is the aim of
this part: stating and proving Central Limit Theorems associated with the LLNs of
the four previous chapters.



Chapter 10
The Central Limit Theorem
for Random Weights

In this chapter, the setting and notation are the same as in Chap. 7.
Only regular discretization schemes are considered. The basic d-dimensional

process X is an Itô semimartingale on the space (Ω,F , (Ft )t≥0,P), with the Grige-
lionis decomposition

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt , (10.0.1)

where W is a d ′-dimensional Wiener process and p is a Poisson measure with com-
pensator q(dt, dz)= dt ⊗ λ(dz). We set c= σσ�, and μ= μX is the jump measure
of X.

The process X will satisfy various additional conditions, according to the case.
But it will at least satisfy Assumption (H), or 4.4.2, which we recall here:

Assumption (H) We have (10.0.1), with bt locally bounded and σt càdlàg, and
‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn) is a localizing
sequence of stopping times and each function Γn satisfies

∫
Γn(z)

2λ(dz) <∞.

10.1 Functionals of Non-normalized Increments—Part I

The test function, here and in the whole chapter, is “random”, that is, it is a function
F onΩ ×R+ ×R

d . For the non-normalized functional associated with F , we have
introduced in (7.3.1) two different versions, according to whether we plug the left or
the right endpoint of the discretization interval I (n, i), as the time argument in F .
For the Central Limit Theorem it will be important to take the left endpoint. Hence
we consider the following, called V n,l(F,X) in Chap. 7:

V n(F,X)t =
[t/Δn]∑

i=1

F
(
., (i − 1)Δn,Δ

n
i X
)
. (10.1.1)

J. Jacod, P. Protter, Discretization of Processes,
Stochastic Modelling and Applied Probability 67,
DOI 10.1007/978-3-642-24127-7_10, © Springer-Verlag Berlin Heidelberg 2012
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The function F onΩ ×R+ ×R
d is q-dimensional. Under appropriate assumptions

on F we have proved (Theorem 7.3.3) that V n(F,X)
P=⇒ F ∗ μ (convergence in

probability for the Skorokhod topology).
Our aim is toward an associated CLT and, as in Chap. 5, we will need F to be C2

in x and o(‖x‖3) as x→ 0. But this is not enough. Indeed, the key point in the proof
of Theorem 5.1.2 is the behavior of the variables ζ np defined in (5.1.12), page 130,
and which are of the form

ζ np =
1√
Δn

(
f
(
ΔXSp +

√
ΔnR(n,p)

)− f (ΔXSp)− f
(√
ΔnR(n,p)

))
,

where R(n,p) is a suitable sequence of d-dimensional variables which converges
(stably in law) as n→∞, and Sp is a stopping time. Then we use a Taylor’s expan-
sion for f , which says that ζ np is approximately equal to ∇f (ΔXSp)R(n,p). In the
present setting, and for the left functional V n,l(F,X) for example, the variable ζ np
takes the form

ζ np =
1√
Δn

(
F
(
S−(n,p),ΔXSp +

√
ΔnR(n,p)

)

− F(Sp,ΔXSp)− F
(
S−(n,p),

√
ΔnR(n,p)

))
, (10.1.2)

where S−(p,n)= (i − 1)Δn when (i − 1)Δn < Sp ≤ iΔn. Therefore we need also
some smoothness of F(ω, t, x), as a function of t , in order to find an equivalent
to ζ np : the situation here is akin to the situation in Theorem 5.3.5, regarding the
regularity of σt as a function of t , see after Example 5.3.1. A way to solve the
problem is to assume the following:

Assumption 10.1.1 The q-dimensional function F is such that the maps ω �→
F(ω, t, x) are Ft measurable for all (t, x). Each function x �→ F(ω, t, x) is of
class C2 (the partial derivatives are denoted ∂iF and ∂2

ijF ), and the functions
t �→ ∂iF (ω, t, x) are càdlàg, and F(ω, t,0)= ∂iF (ω, t,0)= 0.

Moreover there is a real γ ∈ (1/2,1], a localizing sequence (τn) of stopping
times and, for each n, two continuous functions fn and f n on R

d , with fn(x) =
o(‖x‖) and f n(x)= O(‖x‖2) as x→ 0, and such that we have identically

s, t ≤ τn(ω) ⇒
{
‖∂2
ijF (ω, t, x)‖ ≤ fn(x)

‖F(ω, t, x)− F(ω, s, x)‖ ≤ f n(x)|t − s|γ .
(10.1.3)

This implies Assumption 7.3.1, because (t, x) �→ F(ω, t, x) is continuous.
We have to describe the limiting process, and for this we basically need the same

ingredients as in Sect. 5.1.1: we consider an arbitrary weakly exhausting sequence
(Tn)n≥1 for the jumps of X; we also consider an auxiliary space (Ω ′,F ′,P′) en-
dowed with a triple sequence (Ψn−,Ψn+, κn)n≥1 of variables, all independent, and
with the following laws:

Ψn± are d ′-dimensional, N (0, Id ′), κn is uniform on [0,1].
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Then we consider the very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F ,
(Ft )t≥0,P) defined as in (4.1.16), that is

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ),
such that (Ψn−,Ψn+, κn) is F̃Tn measurable for all n.

We define the d-dimensional random variables

Rn = √
κn σTn−Ψn− +

√
1− κn σTnΨn+

where σ is the process occurring in (10.0.1).
The next proposition describes the limiting process, and it is proved exactly as

Proposition 5.1.1, using Proposition 4.1.4, page 102.

Proposition 10.1.2 Suppose that X satisfies Assumption (H) and that F satisfies
Assumption 10.1.1. The formula

V (F,X)t =
∞∑

n=1

(
d∑

i=1

∂iF (Tn−,ΔXTn)Rin
)

1{Tn≤t} (10.1.4)

defines a q-dimensional process Z(F,X) on (Ω̃, F̃, (F̃t )t≥0, P̃) which is a.s.
càdlàg, adapted, and conditionally on F has centered and independent increments
and satisfies

Ẽ
(
V (F,X)it V (F,X)

j
t |F
) = 1

2

∑

s≤t

d∑

k,l=1

(
∂kF

i ∂lF
j
)
(s−,ΔXs)

(
ckls− + ckls

)
,

and its F -conditional law does not depend on the choice of the exhausting se-
quence Tn. Moreover, if X and σ have no common jumps, the process V (F,X)
is F -conditionally Gaussian.

The main result is the exact analogue of Theorem 5.1.2, recall that X(n) is the
discretized process X(n)t =X[Δn[t/Δn].
Theorem 10.1.3 Suppose that X satisfies Assumption (H) and that F satisfies As-
sumption 10.1.1. Then if

V
n
(F,X)t = 1√

Δn

(
V n(F,X)t − F � μΔn[t/Δn]

)
,

where V n(F,X) is given by (10.1.1), the (d + q)-dimensional processes (X(n),
V
n
(F,X)) converge stably in law to (X,V (F,X)), where V (F,X) is defined in

(10.1.4). Moreover, for each fixed t the variables

1√
Δn

(
V n(F,X)t − F � μt

)
(10.1.5)

converge stably in law to the variable V (F,X)t .
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Proof The proof is essentially the same as for Theorem 5.1.2, page 127. To avoid
lengthy developments, we constantly refer to the proof of that theorem and use the
same notation, and we only point out the necessary changes to be made to that
proof.

Step 1) The localization lemma 4.4.9, page 118, applies, so we can suppose that X
satisfies the strengthened Assumption (SH), or 4.4.6: in addition to (H) the processes
bt and σt and Xt are all bounded by a constant A, and ‖δ(ω, t, z)‖ ≤ Γ (z) with Γ
bounded and

∫
Γ (z)2λ(dz) <∞. In particular, ‖Δni X‖ ≤ 2A always, so it is no

restriction to suppose that F(ω, t, x) = 0 whenever ‖x‖ ≥ 3A, and we can then
choose the functions fn and f n in Assumption 10.1.1 to vanish as well when ‖x‖ ≥
4A, so that they are bounded.

A further localization procedure can be performed, along the sequence τn of As-
sumption 10.1.1. For each q set Fq(ω, t, x) = F(ω, t ∧ τq(ω), x). Assuming that
the result holds for each Fq , and since V

n
(Fq,X)t = V n(F,X)t and V (Fq,X)t =

V (F,X)t for all t ≤ τq , we deduce that (X(n),V
n
(F,X))

L-s=⇒ (X,V (F,X)) in
restriction to the time interval [0, T ] (as processes indexed by time), and to

the set {τq ≥ T }. Since P(τq ≥ T )→ 1, we indeed have (X(n),V
n
(F,X))

L-s=⇒
(X,V (F,X)) in restriction to any time interval [0, T ], hence also on the whole
half-line R+. The same argument works for (10.1.5) as well.

Therefore it is enough to prove the results for each Fq , or equivalently for a
function F which satisfies Assumption 10.1.1 and vanishes when ‖x‖>A for some
A> 0 and satisfies also

∥∥∂2
ijF (ω, t, x)

∥∥≤ ‖x‖ θ(‖x‖), ∥∥F(ω, t, x)− F(ω, s, x)∥∥≤K(‖x‖2 ∧ 1
) |s − t |γ

(10.1.6)
where γ > 1

2 and the function θ on R+ is bounded, increasing and continuous with
θ(0)= 0. Then, since F(ω, t,0)= ∂iF (ω, t,0)= 0, we also have
∥∥F(ω, t, x)

∥∥ ≤ K‖x‖3 θ
(‖x‖), ∥∥∂iF (ω, t, x)

∥∥ ≤ K‖x‖2 θ
(‖x‖)∥∥∂iF (ω, t, x)− ∂iF (ω, t, y)

∥∥ ≤ K‖x − y‖. (10.1.7)

Step 2) We use the same specific choice Sp as in Sect. 5.1.2 for the sequence of
stopping times that weakly exhausts the jumps of X, and we also use the notation
(5.1.9)–(5.1.12), page 129, except that ζ np is now given by (10.1.2). Then the ana-
logue of (5.1.13) becomes

V
n
(F,X)t = V n

(
F,X(m)

)
t
+ Yn(m)t ∀t ≤ T , on the set Ωn(T ,m).

We can rewrite ζ np as ζ np = ζ n,1p + ζ n,2p + ζ n,3p , where

ζ n,1p = 1√
Δn

(
F
(
S−(n,p),ΔXSp +

√
ΔnR(n,p)

)

− F (Sp,ΔXSp +
√
ΔnR(n,p)

))
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ζ n,2p = 1√
Δn

(
F
(
Sp,ΔXSp +

√
ΔnR(n,p)

)− F(Sp,ΔXSp)
)

ζ n,3p =− 1√
Δn
F
(
S−(n,p),

√
ΔnR(n,p)

)
.

The last part of (10.1.6) implies ‖ζ n,1p ‖ ≤KΔγ−1/2
n , and since the sequence R(n,p)

is bounded in probability the first part of (10.1.7) yields ζ n,3p
P−→ 0. Therefore a

Taylor expansion for the term ζ
n,2
p gives us that

p ≥ 1 ⇒ ζ np −
d∑

i=1

∂iF (Sp,ΔXSp)R(n,p)
i P−→ 0. (10.1.8)

Then, another application of Proposition 4.4.10 allows us to deduce from (10.1.8)
that

(
ζ
n

p

)
p≥1

L-s−→ (ζp)p≥1, where ζp =
(
ΔXSp,

d∑

i=1

∂iF (Sp,ΔXSp)R
i
p

)
.

(10.1.9)
This is the present form for (5.1.14), from which we deduce (5.1.15), page 130,
(with V (F,X′(m))). Then we can go along the proof of Theorem 5.1.2 down to
(5.1.17), that is, in order to prove our first claim it is enough to show that:

lim
m→∞ lim sup

n→∞
P

(
Ωn(t,m)∩

{
sup
s≤t
∥∥V n
(
F,X(m)

)
s

∥∥> η
})
= 0. (10.1.10)

Step 3) For proving (10.1.10) we proceed again as in Theorem 5.1.2, with F being
one-dimensional, with a few changes. Instead of (5.1.18), we set

kni (ω;x, y)= F
(
ω, (i−1)Δn, x + y

)− F (ω, (i−1)Δn, x
)− F (ω, (i−1)Δn, y

)

(10.1.11)

gni (ω;x, y)= kni (ω;x, y)−
d∑

i=1

∂iF
(
ω, (i − 1)Δn, x

)
yi .

These, as well as F(ω, (i − 1)Δn, x), are F(i−1)Δn measurable. Therefore we can
apply Itô’s formula to the process X(m)t −X(m)(i−1)Δn for t > (i − 1)Δn, to get

ξ(m)ni := F
(
(i − 1)Δn,Δ

n
i X(m)

)−
∑

s∈I (n,i)
F
(
(i − 1)Δn,ΔX(m)s

)

= A(n,m, i)iΔn +M(n,m, i)iΔn,

where M(n,m, i) and A(n,m, i) are the same as in Theorem 5.1.2, except that in
the definitions of a(n,m, i)t and a′(n,m, i)t one substitutes k and g with kni and gni .
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Now, (10.1.7) implies that the functions kni and gni satisfy (5.1.22), uni-
formly in ω,n, i, so the estimates (5.1.23), and of course (5.1.24), are valid here.
Then, with the same notation for T (n,m, i), we have (5.1.21), and if Zn(m)t =

1√
Δn

∑[t/Δn]
i=1 ξ(m)ni we deduce as in Theorem 5.1.2 that

lim
m→∞ lim sup

n→∞
P

(
Ωn(t,m)∩

{
sup
s≤t
∣∣Zn(m)s

∣∣>
η

2

})
= 0. (10.1.12)

Therefore, proving (10.1.10) amounts to showing that

lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∣∣V n
(
F,X(m)

)
s
−Zn(m)s

∣∣>
η

2

)
= 0. (10.1.13)

For this, we observe that V
n
(F,X(m))t −Zn(m)t = 1√

Δn

∑[t/Δn]
i=1 ξ ′(m)ni , where

ξ ′(m)ni =
∑

s∈I (n,i)

(
F
(
(i − 1)Δn,ΔX(m)s

)− F (s,ΔX(m)s
))
.

(10.1.6) yields |ξ ′(m)ni | ≤ KΔγn
∑
s∈I (n,i) ‖ΔX(m)s‖2, and since the variable∑

s≤t ‖ΔX(m)s‖2 is finite and γ > 1
2 , we readily deduce (10.1.13), and thus

(10.1.10) follows.

Step 4) It remains to prove the second claim, that is 1√
Δn
(V n(F,X)t −F �μt) L-s−→

V (F,X)t for any fixed t . This is deduced from the first claim exactly as in Theo-
rem 5.1.2, page 133. �

10.2 Functionals of Non-normalized Increments—Part II

Assumption 10.1.1 is reasonably weak, except for the second part of (10.1.3). A
typical test function F which we want to consider in applications is of the form
F(ω, t, x)= F(Yt (ω), x) for an auxiliary Itô semimartingale Y and a smooth func-
tion F , but then this assumption fails because t �→ Yt is not Hölder with index
γ > 1

2 . Note that in such a case we can always consider the Itô semimartingale Z =
(X,Y ) and of course V n(F,X) = V n(G,Z), where G(ω, t, (x, y)) = F(ω, t, x).
This is why, without any loss of generality, we state the result when Y =X.

Therefore we consider the functionals

V n
(
F(X),X

)
t
=

[t/Δn]∑

i=1

F
(
X(i−1)Δn,Δ

n
i X
)
.

The precise assumptions on F are as follows:
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Assumption 10.2.1 The q-dimensional function F on R
d ×R

d is C2 and satisfies
for all A> 0:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(y,0) = ∂
∂xj
F (y,0) = 0,

limx→0 supy:‖y‖≤A 1
‖x‖
∥∥ ∂2

∂xj ∂xk
F (y, x)

∥∥ = 0,

sup(y,x):‖y‖≤A,0<‖x‖≤A 1
‖x‖2

∥∥ ∂
∂yj
F (y, x)

∥∥ < ∞.

The limiting process takes a different form here. We still use the previous nota-
tion Tn, Ψn−, Ψn+, κn. Below, when writing the partial derivatives of F , the two
arguments are ordered according to the notation F(y, x). Note that for all A> 0, all
first partial derivatives of F (with respect to the components of y or those of x) are
smaller than KA‖x‖ when ‖y‖ ≤ A and ‖x‖ ≤ 1. Then again the next proposition
is proved exactly as Proposition 5.1.1, page 127.

Proposition 10.2.2 Suppose that X satisfies (H) and that F satisfies Assump-
tion 10.2.1. The formula

V
(
F(X),X

)
t
=

∞∑

n=1

(
d∑

i=1

(
∂F

∂xi
− ∂F
∂yi

)
(XTn−,ΔXTn)

√
κn (σTn−Ψn−)i

+
d∑

i=1

∂F

∂xi
(XTn−,ΔXTn)

√
1− κn (σTnΨn+)i

)
1{Tn≤t} (10.2.1)

defines a q-dimensional process V (F(X),X) on (Ω̃, F̃, (F̃t )t≥0, P̃) which is a.s.
càdlàg, adapted, and conditionally on F has centered and independent increments
and satisfies

Ẽ
(
V
(
F(X),X

)i
t
V
(
F(X),X

)j
t
|F)

= 1

2

∑

s≤t

d∑

k,l=1

((
∂F

i

∂xk
− ∂F

i

∂yk

)(
∂F

j

∂xl
− ∂F

j

∂yl

)
(Xs−,ΔXs)ckls−

+
(
∂F

i

∂xk

∂F
j

∂xl

)
(Xs−,ΔXs)ckls

)
,

and its F -conditional law does not depend on the choice of the exhausting se-
quence Tn. If further the processes X and σ have no common jumps, the process
Z(F(X),X) is F -conditionally Gaussian.

Our second main theorem is as follows (the notation F(X−) ∗μ means the inte-
gral process of (ω, t, x) �→ F(Xt−(ω), x) with respect to μ):
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Theorem 10.2.3 Suppose that X satisfies (H) and that F satisfies Assumption
10.2.1. Then if

V
n(
F(X),X

)
t
= 1√

Δn

(
V n
(
F(X),X

)
t
− F(X−) ∗μΔn[t/Δn]

)
,

the processes (X(n),V
n
(F (X),X)) converge stably in law to the process (X,

V (F (X),X)), where V (F(X),X) is defined in (10.2.1). Moreover for each fixed
t the variables

1√
Δn

(
V n
(
F(X),X

)
t
− F(X−) ∗μt

)

converge stably in law to the variable V (F(X),X)t .

Remark 10.2.4 In the definition of Rn, hence in the process V (F,X) of (10.1.4),
there is a complete symmetry between “before” and “after” a jump, because

√
κn

and
√

1− κn have the same distribution. On the other hand, the process Z(F ,X)
of (10.2.1) exhibits an essential dissymmetry, due to the fact the ith summand in
V n(F (X),X) involves Δni X, which is “symmetrical” around the jump time if there
is one, and also X(i−1)Δn which only involves what happens before the jump.

Remark 10.2.5 One could also take F satisfying a “mixture” of the two Assump-
tions 10.1.1 and 10.2.1, namely

F(ω, t, x) = G
(
ω, t,Xt (ω), x

)

with a function G(ω, t, y, x) that satisfies Assumption 10.1.1 when considered as
a function of (ω, t, x) (with some uniformity in y), and that satisfies Assump-
tion 10.2.1 when considered as a function of (y, x). Details are left to the reader.

Proof Step 1) The proof is basically the same as for Theorem 10.1.3, and we
briefly indicate the necessary changes.

First, we can again assume (SH) and thus, since X is bounded, the values of F
outside some compact set do not matter. So we can suppose that F and its derivatives
are bounded, hence

∥∥∥∥
∂2

∂xi∂xj
F (y, x)

∥∥∥∥≤
(‖x‖ ∧ 1

)
θ
(‖x‖),

∥∥∥∥
∂

∂xi
F (y, x)

∥∥∥∥≤
(‖x‖2 ∧ 1

)
θ
(‖x‖),

∥∥F(y, x)
∥∥≤ (‖x‖3 ∧ 1

)
θ
(‖x‖),

∥∥∥∥
∂

∂yi
F (y, x)

∥∥∥∥≤K
(‖x‖2 ∧ 1

)
,

(10.2.2)

where θ is as in the proof of Theorem 10.1.3.
Here again, the second claim follows from the first one as in Step 5 of

the proof of Theorem 5.1.2, page 133, so we concentrate on the convergence

(X(n),V
n
(F (X),X))

L-s=⇒ (X,V (F (X),X)).
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Step 2) As in the previous proof, we use the notation (5.1.9)–(5.1.12), except that
ζ np is now given by

ζ np =
1√
Δn

(
F
(
XS−(n,p),ΔXSp +

√
ΔnR(n,p)

)

− F(XSp−,ΔXSp)− F
(
XS−(n,p),

√
ΔnR(n,p)

))
.

This can be rewritten as ζ np = ζ n,1p + ζ n,2p , where

ζ n,1p = 1√
Δn

(
F
(
XSp− −

√
ΔnR−(n,p),ΔXSp +

√
ΔnR−(n,p)

+√ΔnR+(n,p)
)− F(XSp−,ΔXSp)

)

ζ n,2p = − 1√
Δn
F
(
XS−(n,p),

√
ΔnR(n,p)

)
.

The sequences R−(n,p) and R+(n,p) are bounded in probability, so as in the pre-

vious theorem we have ζ n,2p
P−→ 0 by (10.2.2), and a Taylor’s expansion in ζ n,1p

gives, with the notation F
1 = ∂F/∂xi and F

2 = F 1 − ∂F/∂yi :

ζ np −
d∑

i=1

(
F

2
(XSp−,ΔXSp)R−(n,p)i + F 1

(XSp−,ΔXSp)R+(n,p)i
) P−→ 0.

(10.2.3)

Then Proposition 4.4.10 and (10.2.3) yield (10.1.9), where now

ζ
n

p =
(
ΔXSp,

d∑

i=1

(
F

2
i (XSp−,ΔXSp)Rip− + F 1

i (XSp−,ΔXSp)Rip+
)
)
.

At this point, the same argument as in the previous theorem shows that we are left
to prove the analogue of (10.1.10), that is

lim
m→∞ lim sup

n→∞
P

(
Ωn(t,m)∩

{
sup
s≤t
∥∥V n
(
F(X),X(m)

)
s

∥∥> η
})
= 0. (10.2.4)

Step 3) For proving (10.2.4) we can again assume that F is one-dimensional, and
we replace (10.1.11) by

kni (ω;x, y)= F
(
X(i−1)Δn(ω), x + y

)− F (X(i−1)Δn(ω), x
)− F (X(i−1)Δn(ω), y

)

gni (ω;x, y)= kni (ω;x, y)−
d∑

i=1

F
1
i

(
X(i−1)Δn(ω), x

)
yi.
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By (10.2.2) and F(y,0) = F 1
i (y,0) = 0, we see that kni and gni satisfy (5.1.22),

page 132, uniformly in ω,n, i. Hence as in the previous theorem we deduce
(10.1.12), where now Zn(m)s = 1√

Δn

∑[t/Δn]
i=1 ξ(m)ni and

ξ(m)ni = F
(
X(i−1)Δn,Δ

n
i X(m)

)−
∑

s∈I (n,i)
F
(
X(i−1)Δn,ΔX(m)s

)
.

Therefore (10.2.4) will follow if we can prove

lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∣∣V n
(
F(X),X(m)

)
s
−Zn(m)s

∣∣>
η

2

)
= 0. (10.2.5)

We still have V
n
(F (X),X(m))t −Zn(m)t = 1√

Δn

∑[t/Δn]
i=1 ξ ′(m)ni , except that now

ξ ′(m)ni =
∑

s∈I (n,i)

(
F
(
X(i−1)Δn,ΔX(m)s

)− F (Xs−,ΔX(m)s
))
.

The last property in (10.2.2) yields |F(y′, x)− F(y, x)| ≤K‖x‖2 ‖y′ − y‖. Re-
calling ΔX(m)s =

∫
{z:Γ (z)≤1/m} δ(s, z)p({s}, dz) and ‖δ(t, z)‖ ≤ Γ (z), we obtain

with um =
∫
{z:Γ (z)≤1/m} Γ (z)

2λ(dz), and using the fact that q is the compensator
of p:

E
(∣∣ξ ′(m)ni

∣∣) ≤ KE

(
∑

s∈I (n,i)
‖X(i−1)Δn −Xs−‖

∥∥ΔX(m)s
∥∥2
)

= KE

(∫

I (n,i)

∫

{z:Γ (z)≤1/m}
‖X(i−1)Δn −Xs−‖

∥∥δ(s, z)
∥∥2 p(ds, dz)

)

= KE

(∫

I (n,i)

∫

{z:Γ (z)≤1/m}
‖X(i−1)Δn −Xs−‖

∥∥δ(s, z)
∥∥2 q(ds, dz)

)

≤ KumE
(∫

I (n,i)

‖X(i−1)Δn −Xs−‖ds
)
.

(SH) implies E(‖X(i−1)Δn − Xs−‖) ≤ K
√
Δn if s ∈ I (n, i), thus E(|ξ ′(m)ni |) ≤

KumΔ
3/2
n , which yields

E

([t/Δn]∑

i=1

∣∣ξ ′(m)ni
∣∣
)
≤ Kt um

√
Δn,

and (10.2.5) follows because limm→∞ um = 0. This ends the proof. �
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10.3 Functionals of Normalized Increments

For the Central Limit Theorem for functionals of normalized increments, it is as
important as before to take the time τ(n, i)= (i − 1)Δn at the left endpoint of the
discretization interval I (n, i). That is, we consider the functionals

V ′n(F,X)t = Δn

[t/Δn]∑

i=1

F
(
., (i − 1)Δn,Δ

n
i X/
√
Δn
)
.

Exactly as in Chap. 5, there is a CLT like Theorem 5.2.2 when we “center” each
summand in V ′n(F,X) around its F(i−1)Δn -conditional expectation: this basically
requires Assumption 7.2.1 on F , plus the Ft measurability of ω �→ F(ω, t, x). We
do not do this here, since it is mainly a tool for proving the CLT when we center
V ′n(F,X) around

∫ t
0 ds
∫
Rd
F (s, x)ρcs (dx), which is then an extension of Theo-

rems 5.3.5 and 5.3.6.
For this, and in addition to the properties of F(ω, t, x) as a function of x, we also

need some regularity in t . This can be the Hölder property (10.1.3), with γ > 1/2,
or we can instead consider F(ω, t, x)= F(Xt(ω), x) as in the previous section. For
the application to statistics which we develop in the next section we really need a
mixture of the two approaches. That is, we consider functionals of the form

V ′n
(
F(X),X

)
t
= Δn

[t/Δn]∑

i=1

F
(
(i − 1)Δn,X(i−1)Δn,Δ

n
i X/
√
Δn
)
,

where F is a (non-random) function on R+ ×R
d ×R

d . In view of Theorem 7.2.2,
the CLT will describe the behavior of the following processes (recall that for a ∈
M+

d×d , ρa denotes the N (0, a) law):

V
′n(
F(X),X

)
t
= 1√

Δn

(
V ′n
(
F(X),X

)
t
−
∫ t

0
ds

∫

Rd

F (s,Xs, x)ρcs (dx)

)
.

(10.3.1)

The assumptions on x �→ F(t, y, x) are the same as in Theorems 5.3.5 or 5.3.6,
with some kind of uniformity in (t, y), plus some smoothness in t and y. We gather
in a single statement the extensions of both Theorems 5.3.5 and 5.3.6, so we also
state the assumptions on F as a whole package, although only a part of them is
used in any specific situation. Recall that F is an R

q -valued function on R+×R
d ×

R
d . We suppose the existence of an integer q ′ ∈ {0, . . . , q} and, when q ′ < q , of a

nonempty subset B of Rd which is a finite union of affine hyperplanes, such that

j ≤ q ′ ⇒ x �→ F
j
(t, y, x) is C1 on R

d

j > q ′ ⇒ x �→ F
j
(t, y, x) is C1 outside the set B.

(10.3.2)

We denote by d(x,B) the distance between x ∈ R
d and B . For each A > 0 we

have a function gA on R
d of polynomial growth, which varies with A of course, but
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may also be different in each of the conditions under consideration below, whereas
w ∈ (0,1] and 0< s ≤ s′ always:

t ≤A, ‖y‖ ≤A ⇒ ∥∥F(t, y, x)
∥∥ ≤ gA(x) (10.3.3)

t ≤A,‖y‖ ≤A ⇒
∣∣∣∣
∂

∂xi
F
j
(t, y, x)

∣∣∣∣≤
{
gA(x) if j ≤ q ′
gA(x)
(
1+ 1

d(x,B)1−w
)

if j > q ′, x ∈ Bc
(10.3.4)

t ≤A, ‖y‖ ≤A, x ∈ Bc, ‖z‖ ≤ 1
∧ d(x,B)

2
, j > q ′

⇒
∣∣∣∣
∂

∂xi
F
j
(t, y, x + z)− ∂

∂xi
F
j
(t, y, x)

∣∣∣∣

≤ (gA(x)+ gA(z)
)(

1+ 1

d(x,B)2−w

)
‖z‖ (10.3.5)

t ≤A, ‖y‖ ≤A ⇒ ∥∥F(t, y, x + z)− F(t, y, x)∥∥≤ gA(x)
(‖z‖s + ‖z‖s′)

(10.3.6)

u, t ≤A, ‖y‖ ≤A ⇒ ∥∥F(t, y, x)− F(u,y, x)∥∥ ≤ gA(x)|t − u|γ . (10.3.7)

Observe that (10.3.3) with the function gA and (10.3.6) with the (possibly differ-
ent) function g′A imply ‖F(t, y, x)‖ ≤ LA(1 + ‖x‖r ′) when t ≤ A and ‖y‖ ≤ A,
with the constant LA = gA(0)+ 2g′A(0). In the opposite direction, and exactly as in
Remark 5.3.7, if ‖F(t, y, x)‖ ≤ LA(1+ ‖x‖r ′) and (10.3.4) hold, then the compo-

nents F
j

for j ≤ q ′ satisfy (10.3.6). Note also the two powers s and s′ in (10.3.6):
the biggest one controls the behavior of the left side as ‖z‖→∞, the smallest one
controls its behavior as z→ 0.

Remark 10.3.1 Splitting the components of F into two distinct families may seem
strange at first glance. This is done because we extend both Theorems 5.3.5 or 5.3.6
in a single statement: the components that are everywhere C1 need no condition like
(10.3.5), which is a kind of (local) Lipschitz condition for the derivative, outside B .

As for X, we need the assumptions (K), (K-r), (K’) or (K’-r), which we briefly
recall (below, r is a number in [0,1)):
Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}

where M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and 〈M,M〉t =∫ t
0 as ds and the compensator of

∑
s≤t 1{‖Δσs‖>1} is

∫ t
0 ãs ds, with the following

properties: the processes b̃, σ̃ , ã and a are progressively measurable, the processes
b̃, a and ã are locally bounded, and the processes σ̃ and b are càdlàg or càglàd.
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Assumption (K-r) (for r ∈ [0,1)) We have (K) except for the càdlàg or càglàd
property of b, and ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where
(τn) is a localizing sequence of stopping times and the Borel functions Γn on E sat-
isfy
∫
Γn(z)

rλ(dz) <∞. Moreover the process b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz)

is càdlàg or càglàd.

Assumption (K’) We have (K) and both processes ct and ct− take their values
in M++

d×d .

Assumption (K’-r) We have (K-r) and both processes ct and ct− take their values
in M++

d×d .

Finally, in the limiting process we need the notation ρa of course, but also the
notation of (5.2.4) and (5.3.4) which we state again (below, α is a d × d ′ matrix, U
is an N (0, Id ′) variable, and W is the d ′-dimensional standard Brownian motion,
and a = αα∗, and g,g′ are continuous with polynomial growth on R

d ):

γ̂α(g) = E(g(αU)U∗), γ̂ ′α(g)jk = E(g(αW1)
∫ 1

0 W
j
s dW

k
s )

γ α(g, g
′)= E((g(αU)− γ̂α(g)U) (g′(αU)− γ̂α(g′)U))− ρa(g)ρa(g′).

}

(10.3.8)
These functions are one-dimensional, except for γ̂α(g) which is a d ′-dimensional
row vector. They all are continuous, as functions of α. They will be applied to the
“sections” of F or its derivatives, which we denote below as F t,y(x)= F(t, y, x),
and ∂jF t,y(x)= ∂

∂xj
F (t, y, x).

Theorem 10.3.2 Let X be a d-dimensional Itô semimartingale, and F be a q-
dimensional function on R+ ×R

d ×R
d which is continuous and satisfies (10.3.2).

We also assume (10.3.3) and (10.3.4) and (10.3.7) for some γ > 1
2 (recall that each

gA is of polynomial growth, and w ∈ (0,1]), plus one of the following five sets of
hypotheses:

(a) We have q ′ = q and (K) and X is continuous.
(b) We have (K’) and (10.3.5) for some w ∈ (0,1] and X is continuous.
(c) We have q ′ = q and (K-1) and the functions gA in (10.3.3) and (10.3.4) are

bounded.
(d) We have q ′ = q and (K-r) and (10.3.6) with r ≤ s ≤ s′ < 1.
(e) We have (K’-r) and (10.3.5) and (10.3.6) with r ≤ s ≤ s′ < 1.

Then

V
′n(
F(X),X

) L-s=⇒ V
′(
F(X),X

)

(stable convergence in law), with the following limiting process:
(i) When, for all t ,y, the function x �→ F(t, y, x) is globally even, the pro-

cess V
′
(F (X),X) = U ′(F ′X),X) is defined on a very good filtered extension
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(Ω̃, F̃ , (F̃t )t≥0, P̃) of the initial space (Ω,F , (Ft )t≥0,P), and conditionally on F
is a continuous centered Gaussian process with independent increments satisfying

Ẽ
(
U
′(
F(X),X

)j
t
U
′
(F ,X)kt |F

)

=
∫ t

0

(
ρcs
(
F
j

s,Xs
F
k

s,Xs

)− ρcs
(
F
j

s,Xs

)
ρcs
(
F
j

s,Xs

))
ds. (10.3.9)

(ii) Otherwise, we have

V
′(
F(X),X

)=U ′(F(X),X)+A(F(X),X)+A′(F(X),X)+U(F(X),X),

where U
′
(F (X),X) is as in (i), except that (10.3.9) is replaced with

Ẽ
(
U
′(
F(X),X

)j
t
U
′
(F ,X)kt |F

)=
∫ t

0
γ σs

(
F
j

s,Xs
,F

k

s,Xs

)
ds,

and where, with σ̃t and b′t as in (5.3.2) and (5.3.3),

A
(
F(X),X

)i
t
=

d∑

j=1

∫ t

0
b
′j
s ρcs
(
∂jF

i

s,Xs

)
ds

A
′(
F(X),X

)i
t
=

d∑

j=1

d ′∑

m,k=1

∫ t

0
σ̃
jkm
s γ̂ ′σs

(
∂jF

i

s,Xs

)mk
ds

U
(
F(X),X

)i
t
=

d ′∑

k=1

∫ t

0
γ̂σs
(
F
i

s,Xs

)k
dWk

s .

As for Theorems 5.3.5 and 5.3.6, when x �→ F(t, y, x) is even, (ii) reduces to (i).

Remark 10.3.3 Suppose that F(t, y, x)= g(y)f (x). Then

V n
(
F(X),X

)
t
=
[t/Δn]∑

i=1

g(X(i−1)Δn)Δ
n
i V

n(f,X)

V ′n
(
F(X),X

)
t
=
[t/Δn]∑

i=1

g(X(i−1)Δn)Δ
n
i V

′n(f,X).

Put otherwise, V n(F (X),X) is the integral process, with respect to the process
V n(f,X), of the piecewise constant process taking the value g(X(i−1)Δn) on each
interval I (n, i), and the same for V ′n(F (X),X).

This leads one to guess that the limit of these functionals is of the same type,
that is

∫ t
0 g(Xs−) dV (g,X)s and

∫ t
0 g(Xs−) dV

′(g,X)s , under appropriate assump-
tions, of course: this is exactly what Theorems 7.3.3 and 7.2.2 say, in this prod-
uct situation. Then one would also guess the same for the limit in the associated
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CLT. And indeed, this is what happens in Theorem 10.3.2, that is V
′
(F (X),X)t =∫ t

0 g(Xs−) dV
′
(f,X)s , as an elementary calculation based on (10.3.8) and on the

form of V
′
(F (X),X) shows.

On the other hand, for the limits of the CLT for the non-normalized functionals,
we do not have Z(F(X),X)t =

∫ t
0 g(Xs−) dZ(f,X)s , because the derivative of g

also enters the picture. In other words, the two Theorems 10.2.3 and 10.3.2 are
indeed deeply different.

Remark 10.3.4 One could of course suppose that F = F(ω, t, y, x) depends on ω
as well, in an adapted way. If the conditions (10.3.4)–(10.3.7) are uniform in ω,
Theorem 10.3.2 still holds, with the same proof. However, we cannot think of any
application for which this generalized setting would be useful.

Proof It is enough to prove (ii), and (i) is a particular case.
As we have seen, Theorems 5.3.5 and 5.3.6 are rather long to prove, and here

we need only slight modifications of their proofs. Thus below we use all notation
of those proofs and simply point out the changes which are needed for dealing with
the present situation.

Step 1) The localization lemma 5.3.12 holds in this context, so we can replace
(K), (K’), (K-r) or (K’-r) by the strengthened assumptions (SK), (SK’), (SK-r)
or (SK’-r), respectively, and which are

Assumption (SK) We have (K) and the processes b, b̃, σ , X, σ̃ , a and ã are
bounded, and ‖δ(ω, t, z)‖ ≤ Γ (z) with Γ bounded and

∫
Γ (z)2 λ(dz) <∞.

Assumption (SK-r) We have (SK) and also
∫
Γ (z)r λ(dz) <∞.

Assumption (SK’) We have (SK) and the process c−1 is bounded.

Assumption (SK’-r) We have (SK-r) and the process c−1 is bounded.

It is of course enough to prove the convergence results in restriction to any finite
interval, andX is bounded: so the argument (t, y) in F(t, y, x) remains in a compact
and the values of F outside this compact are irrelevant. In other words, we may
assume that in all properties (10.3.3)–(10.3.7) the functions gA is replaced by a
single function g, not depending on A.

Note that if (10.3.6) holds for some s ≤ s′, it also holds with the exponents r, r ′
if r ≤ s and r ′ ≥ s′. Then, a glance at the proof of Lemma 5.3.13 shows that this
proof does not change if we substitute V ′n(f,X) with V ′n(F (X),X), implying that
we need only to prove the CLT for V ′n(F (X),X′) instead of V ′n(F (X),X). A
warning should however be issued here: the second argument of F should remain
X, that is, those processes are

V ′n
(
F(X),X′

)
t
= Δn

[t/Δn]∑

i=1

F
(
(i − 1)Δn,X(i−1)Δn,Δ

n
i X

′/
√
Δn
)
.



288 10 The Central Limit Theorem for Random Weights

Step 2) As in (5.3.1), we have V
′n
(F (X),X′)= Yn +An, where

Ynt =
√
Δn

[t/Δn]∑

i=1

(
ζ ni −E

(
ζ ni |F(i−1)Δn

))

ζ ni = F (i−1)Δn,X(i−1)Δn

(
Δni X

′/
√
Δn
)

Ant =
1√
Δn

(
Δn

[t/Δn]∑

i=1

E
(
ζ ni |F(i−1)Δn

)−
∫ t

0
ρcs (F s,Xs ) ds

)
.

When F is bounded, and since as a function of the third argument x it
satisfies (5.2.14), uniformly in (t, y) by Step 1, we can reproduce the proof

of Lemma 5.2.5 to obtain that Yn−Un(F ) u.c.p.=⇒ 0, where, with the notation
βni =σ(i−1)ΔnΔ

n
i W/

√
Δn,

U
n
(F )t =

√
Δn

[t/Δn]∑

i=1

(
F (i−1)Δn,X(i−1)Δn

(
βni
)− ρσ(i−1)Δn

(F (i−1)Δn,X(i−1)Δn
)
)

(note that (5.2.10) holds here because of (SK-1)). When F is not bounded, the same
property Yn − Un(F ) u.c.p.=⇒ 0 (under our standing assumptions on F ) is deduced
from the bounded case exactly as in Lemma 5.2.8, upon using again the fact that the
estimates in (5.3.21) and (5.3.22) are uniform in (t, y).

At this stage, we apply Theorem 4.2.1 with θ = σ and Y =X and Φ(y)= y(1)
and un =Δn to obtain that U

n
(F )

L-s=⇒ U(F(X),X)+U ′(F (X),X), as defined in
(ii). From what precedes, we deduce

Yn
L-s=⇒ U

(
F(X),X

)+U ′(F(X),X).

Step 3) In view of the decomposition V
′n
(F (X),X′)= Yn+An, it remains to prove

that

An
u.c.p.=⇒ A

(
F(X),X

)+A′(F(X),X).
It is enough to prove this property for each component, so we can and will assume
below F to be one-dimensional. In this case, either q ′ = 1 (under the hypotheses
(a,c,d) here), or q ′ = 0 (under the hypotheses (b,e) here). We can thus suppose that
we are in case (a) of (5.3.20), page 152, for X′ (when q ′ = 1) or in case (b) of
(5.3.20) for X′ (when q ′ = 0), and each function F(t, y, .) satisfies (5.3.21) and
(5.3.22) uniformly in (t, y).

Step 4) Let us introduce the notation, similar to (5.3.23), page 152:

An(1)t =
√
Δn

[t/Δn]∑

i=1

E

(
F (i−1)Δn,X(i−1)Δn

(
Δni X

′
√
Δn

)
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− F (i−1)Δn,X(i−1)Δn

(
βni
) |F(i−1)Δn

)

An(2)t = 1√
Δn

(
Δn

[t/Δn]∑

i=1

ρci−1)Δn
(F (i−1)Δn,X(i−1)Δn

)−
∫ t

0
ρcs (F s,Xs ) ds

)
,

we are left to prove

An(1)
u.c.p.=⇒ A

(
F(X),X

)+A′(F(X),X), (10.3.10)

An(2)
u.c.p.=⇒ 0. (10.3.11)

For (10.3.10) one can reproduce the proof given in Part C of Sect. 5.3.3, pages
154–160, with f substituted with F (i−1)Δn,X(i−1)Δn

. We also substitute bs with b′s
(because we use the process X′, instead of X, supposed to be continuous in Sect.
5.3.3 but not necessarily here), and we use again the uniformity in (t, y) of all esti-
mates for F t,y . The only (small) changes occur in the proofs of Lemmas 5.3.18 and
5.3.19, where the right sides of (5.3.51) and (5.3.52) are respectively

Δn

d∑

j=1

b
′j
(i−1)Δn

ρc(i−1)Δn

(
∂jF

l

(i−1)Δn,X(i−1)Δn

)
, and

Δn

d∑

j=1

r∑

k,m=1

σ̃
jkm

(i−1)Δn
γ̂ ′σ(i−1)Δn

(
∂jF

l

(i−1)Δn,X(i−1)Δn

)mk
.

In both cases those variables are Riemann approximations for the integrals of the
two càdlàg processes

d∑

j=1

b
′j
s ρcs
(
∂jF

l

(i−1)Δn,X(i−1)Δn

)

d∑

j=1

r∑

k,m=1

σ̃
jkm
s γ̂ ′σs

(
∂jF

l

(i−1)Δn,X(i−1)Δn

)mk
,

and (10.3.10) follows.

Step 5) It remains to prove (10.3.11). With the notation ψt(α, y)= ραα∗(F t,y) when
α is a d × d ′ matrix, we have

An(2)t = 1√
Δn

(
Δn

[t/Δn]∑

i=1

ψ(i−1)Δn(σ(i−1)Δn,Xi−1)Δn)−
∫ t

0
ψs(σs,Xs) ds

)

= −ηnt −
[t/Δn]∑

i=1

ζ ni −
[t/Δn]∑

i=1

ζ ′ni ,



290 10 The Central Limit Theorem for Random Weights

where

ηnt =
1√
Δn

∫ t

[t/Δn]Δn
ψs(σs,Xs) ds

ζ ni =
1√
Δn

∫

I (n,i)

(
ψ(i−1)Δn(σu,Xu)−ψ(i−1)Δn(σ(i−1)Δn,X(i−1)Δn)

)
du

ζ ′ni = 1√
Δn

∫

I (n,i)

(
ψu(σu,Xu)−ψ(i−1)Δn(σu,Xu)

)
du.

Exactly as for (5.3.27), the function ψt is C1 on the set MA×R
d or M′

A×R
d ,

according to whether we are in case (a) or (b) of (5.3.20), and with ∇ψt denoting
the family of all first partial derivatives and Zt = (σt ,Xt ) (a d×d ′ +d-dimensional
bounded process), we have
∣∣ψs(Zt )

∣∣+ ∥∥∇ψs(Zt )
∥∥ ≤ K∣∣ψs(Zt )−ψs(Zs)

∣∣ ≤ K‖Zt −Zs‖∣∣ψs(Zt )−ψs(Zs)−∇ψs(Zs)(Zt −Zs)
∣∣ ≤ Ψ

(‖Zt −Zs |
) (‖Zt −Zs‖

)
∣∣ψt(Zt )−ψs(Zt )

∣∣ ≤ K|t − s|γ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10.3.12)
for some constant K and some increasing function Ψ on R+, continuous and null
at 0.

The first and last properties in (10.3.12) yield |ηnt | ≤ K
√
Δn and |ζ ′ni | ≤

KΔ
1/2+γ
n , hence ηnt

u.c.p.=⇒ 0 and
∑[t/Δn]
i=1 ζ ′ni

u.c.p.=⇒ 0, because γ > 1
2 for the latter.

It thus remains to prove that
∑[t/Δn]
i=1 ζ ni

u.c.p.=⇒ 0. But for this we observe that, since
(SK-1) holds, the process Z is an Itô semimartingale satisfying (SH). Therefore the
argument of Part B of Sect. 5.3.3, see page 153, which is performed for the Itô
semimartingale σ satisfying (SH) and for the function ψ satisfying (5.3.27), works
identically here forZ and the functionψt which satisfies (10.3.12) (note that ζ ni here

is the analogue of ηni + η′ni there). Thus we get
∑[t/Δn]
i=1 ζ ni

u.c.p.=⇒ 0, hence (10.3.11),
and the proof is complete. �

10.4 Application to Parametric Estimation

We continue here our (rather sketchy) description of the application of the function-
als “with random weights” to the estimation of a parameter, which was begun in
Chap. 7. We recall the setting: the d-dimensional canonical continuous process X
is, under the probability measure Pθ (where θ belongs to a compact subset Θ of
R
q ), a diffusion of the form

Xt = x +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(θ, s,Xs) dWs.
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Here, the initial value x ∈ R
d is known, as well as the function c(θ, s, x) =

σ(θ, s, x)σ (θ, s, x)∗, whereas the function b is not necessarily known. The process
X is observed at times iΔn, within a fixed time interval [0, T ].

We have introduced a minimum contrast estimator for estimating θ as follows.
We choose a smooth enough function g on M+

d×d ×R
d and we set

Φn(θ) = Δn

[T/Δn]∑

i=1

g

(
c
(
θ, (i − 1)Δn,X(i−1)Δn

)
,
Δni X√
Δn

)
.

Then we set

θ̂n = any value realizing the minimum of θ �→Φn(θ).

Here we want to study the asymptotic behavior of the estimation error θ̂n − θ
under Pθ , and for this we need assumptions on the coefficient c and on the chosen
functions g which are stronger than in Chap. 7. Namely, we assume the following
(the smoothness of g could be slightly relaxed but, since g is at the choice of the
statistician, it is innocuous to use assumptions which may be too strong):

1 – The function (t, x) �→ b(t, x) is locally bounded, continuous in x and either
càdlàg or càglàd in t .

2 – The function θ �→ σ(θ, t, x) is C2, and the functions σ(θ, t, x) and ∂
∂θj
σ (θ, t, x)

for j = 1, . . . , q are locally Hölder in t with some Hölder exponent γ > 1
2 , and C2

in x.

3 – The function g is C3 in both argument with third derivatives of at most polyno-
mial growth, and x �→ g(y, x) is globally even on R

d , and it satisfies slightly more
than (7.4.1), namely the C3 function a �→ G(a,a′) = ∫ g(a, x)ρa′(dx) on M+

d×d
satisfies

(i) a = a′ is the unique minimum of G(., a′)
(ii) the d2 × d2 symmetrical matrix ∂2G(a,a′)/∂aij ∂ai′j ′ is

definite positive and denoted by H(a)ij,i
′j ′ , when a = a′.

(10.4.1)

As seen in Theorem 7.4.1 we have the consistency, that is

θ̂n
Pθ0−→ θ0 on the set Ωθ0

T =
{∫ T

0

∥∥c(θ, s,Xs)− c(θ0, s,Xs)
∥∥ds > 0 ∀ θ �= θ0

}
.

Saying that ω ∈Ωθ0
T is saying that the observed path satisfies a “global” identifia-

bility condition. This is not enough for having a distributional result about the error
θ̂n − θ0, and for this we also need a “local” identifiability condition, expressed by
the following:

Ω
′θ0
T =
{∫ T

0

∥∥∇θ c(θ0, s,Xs)
∥∥ds > 0

}
, (10.4.2)
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where ∇θ c denotes the family of all first partial derivatives with respect to θ (for all
components of c as well). Note that if ω ∈Ω ′θ0

T then the integrals in the definition of

Ω
θ0
T are positive for θ �= θ0 which are close enough to θ0. In a sense, the distinction

between global and local identifiability looks like the distinction between (i) and (ii)
in (10.4.1), corresponding to a = a′ being a global or a local minimum of G(., a′).

We need some more notation. The time T is fixed, and we introduce the following
q × q (random) symmetric matrices with components

A(θ)lm =
d∑

j,k,j ′,k′=1

∫ T

0
ds

∫
∂

∂ajk
g
(
c(θ, s,Xs), x

) ∂

∂aj
′k′ g
(
c(θ, s,Xs), x

)

× ∂

∂θ l
c(θ, s,Xs)

jk ∂

∂θm
c(θ, s,Xs)

j ′k′ ρc(θ,s,Xs)(dx) (10.4.3)

B(θ)lm =
d∑

j,k,j ′,k′=1

∫ T

0
ds

∫
∂2

∂ajk ∂aj
′k′ g
(
c(θ, s,Xs), x

)

× ∂

∂θ l
c(θ, s,Xs)

jk ∂

∂θm
c(θ, s,Xs)

j ′k′ ρc(θ,s,Xs)(dx). (10.4.4)

Observe that, by (10.4.1) and (10.4.2), the symmetric matrix B(θ0) is nonnegative,
and also invertible on the set Ω ′θ0

T . We also consider the variables

An(θ)
lm = Δn

[T/Δn]∑

i=1

d∑

j,k,j ′,k′=1

∂

∂ajk
g

(
c
(
θ, (i − 1)Δn,X(i−1)Δn

)
,
Δni X√
Δn

)

× ∂

∂aj
′k′ g

(
c
(
θ, (i − 1)Δn,X(i−1)Δn

)
,
Δni X√
Δn

)

× ∂

∂θ l
c
(
θ, (i − 1)Δn,X(i−1)Δn

)jk ∂

∂θm
c
(
θ, (i − 1)Δn,X(i−1)Δn

)j ′k′

Bn(θ)
lm = Δn

[T/Δn]∑

i=1

d∑

j,k,j ′,k′=1

× ∂2

∂ajk ∂aj
′k′ g

(
c
(
θ, (i − 1)Δn,X(i−1)Δn

)
,
Δni X√
Δn

)

× ∂

∂θ l
c
(
θ, (i − 1)Δn,X(i−1)Δn

)jk ∂

∂θm
c
(
θ, (i − 1)Δn,X(i−1)Δn

)j ′k′
.

The variable An(θ) takes its values in the set M+
q×q ; when it is invertible, that is it

belongs to M++
q×q , we need to take below a version of the square-root of its inverse,

written An(θ)−1/2. We need to do that in a “continuous” way, that is when we write
An(θ)

−1/2 we implicitly use a map a �→ a−1/2 which is continuous on M++
q×q (for

example if q = 1 then a−1/2 is always
√
a, or always −√a ).
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Theorem 10.4.1 In the previous setting and under the previous assumptions, as-
sume further that θ0 belongs to the interior of Θ . Then, under the measure Pθ0 , we
have:

(i) The sequence 1√
Δn
(θ̂n − θ0) converges stably in law, in restriction to the set

Ω
θ0
T ∩Ω ′θ0

T , to a variable defined on an extension of the space and which, condi-
tionally on F , is centered Gaussian with covariance matrix

B(θ0)
−1A(θ0)B(θ0)

−1 (10.4.5)

where A(θ) and B(θ) are defined by (10.4.3) and (10.4.4).
(ii) In restriction to the set Ωθ0

T ∩ Ω ′θ0
T ∩ {A(θ0) is invertible}, the symmetric

nonnegative matrix An(θ̂n) is invertible for all n large enough, and the standardized
sequence

1√
Δn
An(θ̂n)

−1/2Bn(θ̂n) (θ̂n − θ0)

(where An(θ̂n)−1/2 is chosen arbitrarily when An(θ̂n) is not invertible) converges
stably in law to a variable defined on an extension of the space and which, condi-
tionally on F , is centered Gaussian with the identity matrix as its covariance.

Proof For simplicity we write P = Pθ0 . Our assumptions on b and σ yield that X
satisfies Assumption (K).

1) We begin with some preliminaries. We introduce the two following multidi-
mensional functions on R+ ×R

d ×R
d , depending on θ :

Fθ(t, y, x)
l =

d∑

j,k=1

∂

∂ajk
g
(
c(θ, t, y), x

) ∂
∂θ l

cjk(θ, t, y)

Gθ (t, y, x)
lm =

d∑

j,k,j ′,k′=1

∂2

∂ajk ∂aj
′k′ g
(
c(θ, t, y), x

)

× ∂

∂θ l
cjk(θ, t, y)

∂

∂θm
cj
′,k′(θ, t, y)

+
d∑

j,k=1

∂

∂ajk
g
(
c(θ, t, y), x

) ∂2

∂θ l ∂θm
cjk(θ, t, y),

where l, l′ range between 1 and q . With this notation we see that the first two partial
derivatives of the contrast function Φn(θ), which is clearly C2, are

∂

∂θ l
Φn(θ)= V ′n

(
F
l

θ (X),X
)
T
,

∂2

∂θ l ∂θm
Φn(θ)= V ′n

(
G
lm

θ (X),X
)
T
.
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In the proof of Theorem 7.4.1, see (7.4.3), we have proved that Φn(θ) converges
in probability, uniformly in θ , to

Φ(θ)=
∫ T

0
ds

∫
g
(
c(θ, s,Xs), x

)
ρc(θ0,s,Xs)(dx).

Note that Φ is C2, with

∂

∂θ l
Φ(θ)=

∫ T

0
ds

∫
Fθ(s,Xs, x)

l ρc(θ0,s,Xs)(dx)

∂2

∂θ l ∂θm
Φ(θ)=

∫ T

0
ds

∫
Gθ(s,Xs, x)

lm ρc(θ0,s,Xs)(dx).

By (10.4.1), for all (s, y), the function θ �→ ∫ g(c(θ, t, y), x)ρc(θ0,t,y)(dx) reaches
its minimum at θ = θ0, hence with the notation H of (10.4.1) we have for all t, y:
∫
Fθ0(t, y, x)

l ρc(θ0,t,y)(dx)= 0

∫
Gθ0(t, y, x)

lm ρc(θ0,t,y)(dx)

=
d∑

j,k,j ′,k′=1

H
(
c(θ0, t, y)

)jk,j ′k′ ∂
∂θ l

cjk(θ, t, y)
∂

∂θm
cj
′,k′(θ, t, y).

(10.4.6)

It follows in particular that, by comparing with (10.4.4),

∂2

∂θ l ∂θm
Φ(θ0) = B(θ0)

lm. (10.4.7)

2) Now we give some limit theorems. First, the function G
lm

θ satisfies Assump-
tion 7.2.1, and is continuous in θ , so we can reproduce the proof of the uniform
convergence (7.4.3) to obtain that

sup
θ

∣∣∣∣
∂2

∂θ l ∂θm
Φn(θ)− ∂2

∂θ l ∂θm
Φ(θ)

∣∣∣∣
P−→ 0.

Since θ̂n
P−→ θ0 on Ωθ0

T , we deduce that

∂2

∂θ l ∂θm
Φn(θ̂n)

P−→ B(θ0)
lm on Ωθ0

T . (10.4.8)

In exactly the same way, we also obtain

An(θ̂n)
lm P−→ A(θ0)

lm, Bn(θ̂n)
lm P−→ B(θ0)

lm on Ωθ0
T . (10.4.9)
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Second, the function Fθ0 satisfies (10.3.4), (10.3.5) withB = ∅, and (10.3.7) with
the Hölder exponent γ > 1

2 of σ and its derivatives in θ , considered as functions of
time. We can then apply Theorem 10.3.2, case (a), and with a vanishing centering
term in (10.3.1) because of (10.4.6). We thus obtain

(
1√
Δn

∂

∂θl
Φn(θ0)

)

1≤j≤q
L-s−→ Z, (10.4.10)

where Z is defined on an extension on the space (Ω,F ,P) and, conditionally on F ,
is centered Gaussian with covariance

Ẽ
(
Zl Zm |F) =

∫ T

0
ds

∫
Fθ0(s,Xs, x)

l F θ0(s,Xs, x)
m ρc(θ0,s,Xs)(dx)

= A(θ0)
lm.

3) We can now start solving the statistical problem. The—well established—idea
consists in putting together two facts, both relying upon the smoothness of Φn:

(i) on the set Ωn where θ̂n is a minimum of Φn and belongs to the interior of Θ ,
we have ∂

∂θj
Φn(θ̂n)= 0.

(ii) we can use a Taylor expansion to evaluate the difference ∂
∂θj
Φn(θ̂n) −

∂
∂θj
Φn(θ0), on the setΩ ′n on which the ball centered at θ0 and with radius ‖θ̂n− θ0‖

is contained in Θ .
In other words, on the set Ωn ∩Ω ′n, and with vector notation, we have

0= ∂

∂θj
Φn(θ̂n)= ∂

∂θj
Φn(θ0)+

q∑

l=1

∂2

∂θj ∂θ l
Φn(θ̃n)

(
θ̂ ln − θ l0

)
, (10.4.11)

where θ̃n is random, with ‖θ̃n−θ0‖ ≤ ‖θ̂n−θ0‖. Since θ0 is in the interior ofΘ , one
readily checks that P(Ωθ0

T \(Ωn ∩Ω ′n))→ 0. Therefore we deduce from (10.4.10)

and (10.4.11) that the random vector with components 1√
Δn

∑q

l=1
∂2

∂θj ∂θ l
Φn(θ̃n)×

(θ̂ ln − θ l0) converges stably in law to Z, in restriction to Ωθ0
T .

On the other hand, (10.4.7), (10.4.8) and θ̂n
P−→ θ0 on the set Ωθ0

T imply that
∂2

∂θj ∂θ l
Φn(θ̃n)

P−→ B(θ0)
jl on the setΩθ0

T . Since further B(θ0) is invertible onΩ ′θ0
T ,

we deduce that

1√
Δn
(θ̂n − θ0)

L-s−→ B(θ0)
−1Z in restriction to the set Ωθ0

T ∩Ω ′θ0
T . (10.4.12)

The variable on the right side above is F -conditionally centered Gaussian with co-
variance given by (10.4.5), and (i) is proved.

4) It remains to prove (ii), whose first claim readily follows from (10.4.9). In
view of (10.4.12), and exactly as in the proof of Theorem 5.6.1 for example, the

second claim follows from the fact that An(θ̂n)−1/2Bn(θ̂n)
P−→A(θ0)

−1/2B(θ0) on
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the setΩθ0
T ∩ {A(θ0) is invertible}, which in turn follows from (10.4.9) and from the

“continuous” choice made for a−1/2 when a ∈M++
q×q . �

Example 10.4.2 Let us come back to Example 7.4.2, with the function g(a, x) =∑d
i,j=1(a

ij − xixj )2. Then (10.4.1) is satisfied (the second derivative of G is the
identity matrix). Moreover we have

A(θ)lm = 4
d∑

j,k,j ′,k′=1

∫ T

0

(
cjj

′
ckk

′ + cjk′cj ′k)(θ, s,Xs)

× ∂

∂θ l
c(θ, s,Xs)

jk ∂

∂θm
c(θ, s,Xs)

j ′k′ ds

B(θ)lm = 2
d∑

j,k=1

∫ T

0

∂

∂θ l
c(θ, s,Xs)

jk ∂

∂θm
c(θ, s,Xs)

jk ds.

Example 10.4.3 Now we turn to Example 7.4.3, assuming that c(θ, t, x) ∈M++
d×d

identically, and the function g is g(a, x)= log deta + x∗ a−1 x. In this case it turns
out that

A(θ)= 2B(θ), B(θ)lm =
∫ T

0
trace

(
∂c

∂θ l
c−1 ∂c

∂θm
c−1
)
(θ, s,Xs) ds,

see Genon-Catalot and Jacod [37] for a proof. Note that this form of B(θ) implies
that g satisfies (10.4.1).

Under the assumption that c is invertible, it can be checked that the value
B(θ0)

−1A(θ0)B(θ0)
−1 with A,B as above realizes the “minimum” of all possi-

ble asymptotic covariances of minimum contrast estimators, in the sense that if an-
other sequence of estimators θ̂ ′n is associated with another function g′ giving rise
to the matrices A′(θ0) and B ′(θ0), then the difference B ′(θ0)

−1A′(θ0)B
′(θ0)

−1 −
B(θ0)

−1A(θ0)B(θ0)
−1 is always nonnegative. Thus the contrast associated with the

present function g is best in the asymptotic sense, provided of course we deal with
a model in which c is everywhere invertible.
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Chapter 11
The Central Limit Theorem for Functions
of a Finite Number of Increments

In this chapter we give the Central Limit Theorems associated with the Laws of
Large Numbers of Chap. 8, when the number of increments in the test function is
fixed, the case when the number of increments increases to infinity being postponed
to the next chapter. This is again a rather straightforward extension of Chap. 5.

Only regular discretization schemes are considered. The d-dimensional Itô semi-
martingale X has the Grigelionis decomposition

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt , (11.0.1)

where W is a d ′-dimensional Wiener process and p is a Poisson measure with com-
pensator q(dt, dz) = dt ⊗ λ(dz), and c = σσ�. We also assume at least Assump-
tion (H), that is

Assumption (H) In (11.0.1), bt is locally bounded and σt is càdlàg, and ‖δ(ω, t, z)‖
∧ 1≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn) is a localizing sequence of
stopping times and each function Γn satisfies

∫
Γn(z)

2λ(dz) <∞.

11.1 Functionals of Non-normalized Increments

In this section we consider the functionals

V n(F,X)t =
[t/Δn]−k+1∑

i=1

F
(
Δni X,Δ

n
i+1X, . . . ,Δ

n
i+k−1X

)
,

Vn(F,X)t =
[t/kΔn]∑

i=1

F
(
Δnik−k+1X,Δ

n
ik−k+2X, . . . ,Δ

n
ikX
)
,
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where k is an integer and F is a function on (Rd)k . We have seen in Theorem 8.2.1
that, if F is continuous and F(z)= o(‖z‖2) as z→ 0 in (Rd)k , then

• t > 0 ⇒ V n(F,X)t
P−→ ∑k

j=1 fj ∗μt
• F symmetrical ⇒ Vn(F,X)t

P=⇒ f ∗μ
(11.1.1)

where fj (x) = F(0, . . . ,0, x,0, . . . ,0) (with x at the j th place), and where f =
f1 = . . . , fk in the symmetrical case (meaning that F is invariant by all the permu-
tations of the k variables in R

d ), and μ = μX is the jump measure of X. The first
convergence holds onΩ here, because P(ΔXt �= 0)= 0 for any t under our standing
assumption (H).

We wish to provide the CLTs associated with these two convergences. The reader
will have noticed the difference in the two statements (11.1.1): functional conver-
gence for Vn(F,X) (so we may hope for a “functional” CLT), convergence for any
fixed time t for V n(F,X) (so we may only hope for a finite-dimensional CLT).

11.1.1 The Results

The description of the limiting process involves more auxiliary random variables
than for Theorem 5.1.2. We set K− = {−k + 1,−k + 2, . . . ,−1} and K+ =
{1,2, . . . , k − 1} and K = K− ∪ K+. We have a family of variables ((Ψn,j )j∈K,
Ψn−,Ψn+, κn,Ln)n≥1, defined on an auxiliary space (Ω ′,F ′,P′), all independent,
and with the following laws:

Ψn,j ,Ψn−,Ψn− are d ′-dimensional, N (0, Id ′),
κn is uniform on [0,1],
Ln is integer-valued, uniform on {0,1, . . . , k − 1}.

(11.1.2)

We also consider an arbitrary weakly exhausting sequence (Tn)n≥1 for the jumps of

X (see after (5.1.1), page 126). The very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃)

of (Ω,F , (Ft )t≥0,P) is defined by (4.1.16), that is:

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ) and such that
(
(Ψn,j )j∈K,Ψn−,Ψn+, κn,Ln

)
is F̃Tn measurable for all n.

(11.1.3)

We also define the d-dimensional random variables

Rn,j =

⎧
⎪⎨

⎪⎩

σTn−Ψn,j if j ∈K−√
κn σTn−Ψn− +

√
1− κn σTnΨn+ if j = 0

σTnΨn,j if j ∈K+.
(11.1.4)
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Next, the test function F is a R
q -valued function on (Rd)k , where k ≥ 2, and we

assume that is it C2. Exactly as in the case k = 1, the limiting process involves the
derivatives of F , but here they are taken at points like (0, . . . ,0,ΔXs,0, . . . ,0),
and we must establish carefully our notation, which is unfortunately but neces-
sarily cumbersome. The first and second partial derivatives ∂F/∂xil (where xl =
(xil )1≤i≤d ∈R

d ) and ∂2F/∂xil ∂x
j

l′ are denoted globally as ∇F and ∇2F . We asso-
ciate the following R

q -valued functions on R
d :

fj (x)= F(0, . . . ,0, x,0, . . . ,0)
∂if(l);j (x)= ∂F

∂xil
(0, . . . ,0, x,0, . . . ,0)

}
where x is at the j th place. (11.1.5)

Note that ∂if(l);l = ∂ifl , with the usual notation ∂if = ∂f/∂xi . When F is sym-
metrical there are a function f and a family of functions (∂∗i f )1≤i≤d on R

d such
that

1≤ i ≤ d, 1≤ j, l ≤ k ⇒ fj = f, ∂if(l);j =
{
∂if if l = j
∂∗i f if l �= j (11.1.6)

(as the notation suggests, ∂∗i f is a partial derivative, but the “ ∗ ” indicates that it is
not the derivative of f ; it is in fact the ith partial derivative of the function y �→
F(x, y,0, . . . ,0), evaluated at y = 0).

The next proposition introduces the limiting processes.

Proposition 11.1.1 Assume (H), and suppose that F satisfies ‖∂if(l);j (x)‖ ≤K‖x‖
when ‖x‖ ≤ 1 for all l, j ≤ k and i ≤ d . The formulas

V (F,X)t =
∞∑

n=1

(
k∑

j,l=1

d∑

i=1

∂if(l);j (ΔXTn)Rin,l−j

)
1{Tn≤t} (11.1.7)

and, when further F is symmetrical,

V(F,X)t =
∞∑

n=1

(
k∑

j,l=1

d∑

i=1

∂if(l);j (ΔXTn)Rin,l−j 1{Ln=j−1}

)
1{Tn≤t} (11.1.8)

define two q-dimensional processes V (F,X) and V(F,X) on (Ω̃, F̃ , (F̃t )t≥0, P̃)

which are a.s. càdlàg, adapted, and conditionally on F have centered and indepen-
dent increments and satisfy (recall c= σσ ∗):

Ẽ
(
V (F,X)it V (F,X)

i′
t |F
)

=
∑

s≤t

d∑

r,r ′=1

(
1

2

k∑

j,j ′=1

(
∂rf

i
(j);j ∂r ′f

i′
(j ′);j ′
)
(ΔXs)

(
crr

′
s− + crr

′
s

)



300 11 CLT for Functions of a Finite Number of Increments

+
k∑

j=2

j−1∑

l=1

k+l−j∑

l′=1

(
∂rf

i
(l);j ∂r ′f

i′
(l′);j+l′−l

)
(ΔXs) c

rr ′
s−

+
k−1∑

j=1

k∑

l=j+1

k∑

l′=1+l−j

(
∂rf

i
(l);j ∂r ′f

i′
(l′);j+l′−l

)
(ΔXs) c

rr ′
s

)
(11.1.9)

Ẽ
(
V(F,X)it V(F,X)i

′
t |F
)

=
∑

s≤t

d∑

r,r ′=1

1

2

(
∂rf

i ∂r ′f
i′ + (k − 1)∂∗r f i ∂∗r ′f

i′)(ΔXs)
(
crr

′
s− + crr

′
s

)
(11.1.10)

and their F -conditional laws do not depend on the choice of the exhausting se-
quence Tn. If further the processes X and σ have no common jumps, both processes
are F -conditionally Gaussian processes.

Proof The process V (F,X) is formally of the form (4.1.7), that is the nth summand
in (11.1.7) is VTnUn1{Tn≤t}, where

Un =
(
(Ψn,j )j∈K,

√
κn Ψn−,

√
1− κn Ψn+

)

and Vt is a suitable process whose components are linear combinations of the
components of σt and σt− times the components of the functions ∂if(l);j for all
possible values of j, l, i. Moreover the Un’s are i.i.d. centered variables inde-
pendent of F , with moments of all orders, whereas our assumption on F yields
‖Vt‖ ≤ K(‖σt‖ + ‖σt−‖)‖ΔXt‖ as soon as ‖ΔXt‖ ≤ 1. Then (4.1.10) holds, and
Proposition 4.1.4 gives that the process Z(F,X) satisfies all the claims, provided
we prove that the right sides of (4.1.11) and (11.1.9) agree.

This last property comes from the fact, again, that the Un are i.i.d. centered and
independent of F , from the obvious property

E
(
Rin,j R

i′
n,j ′ |F

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cii
′
Tn− if j = j ′ ∈K−

1
2 (c

ii′
Tn− + cii

′
Tn
) if j = j ′ = 0

cii
′
Tn

if j = j ′ ∈K+
0 otherwise

and from rather tedious but elementary calculations.
The proof for the process Z(F,X) is similar, provided we take

Un =
(
(Ψn,j1{Ln=l})j∈K,0≤l≤k−1,

(√
κn Ψn−1{Ln=l}

)
0≤l≤k−1,

(√
1− κn Ψn+1{Ln=l}

)
0≤l≤k−1

)

which are still i.i.d. centered with all moments and independent of F . The calcula-
tion of (11.1.10) is simpler than (11.1.9), due to the simpler structure (11.1.6). �
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We are now ready to state the main results of this section.

Theorem 11.1.2 Assume (H), and let F be a C2 function from (Rd)k into R
q , sat-

isfying

F(0)= 0, ∇F(0)= 0,
∥∥∇2F(z)

∥∥= o
(‖z‖) as z→ 0 in

(
R
d
)k
.

(11.1.11)
a) For each t , the q-dimensional variables

1√
Δn

(
V n(F,X)t −

k∑

j=1

fj � μt

)
(11.1.12)

converge stably in law to the variable V (F,X)t defined by (11.1.7).
b) If further F is symmetrical, the q-dimensional processes

1√
Δn

(
Vn(F,X)t − f � μkΔn[t/kΔn]

)
(11.1.13)

converge stably in law to the process V(F,X) defined by (11.1.8). Moreover, for
each fixed t , the variables

1√
Δn

(
Vn(F,X)t − f � μt

)
(11.1.14)

converge stably in law to the variable V(F,X)t .

The condition (11.1.11) obviously implies the assumptions of Proposition 11.1.1.
When k = 1, so F = f is a function on R

d , we have Vn(F,X) = V n(F,X) =
V n(f,X), and (11.1.11) is exactly what is imposed on the function f in Theo-
rem 5.1.2, which is thus a particular case of the above (except for the joint Sko-
rokhod convergence with the discretized process X(n), which does not hold when
k ≥ 2). Indeed, we then have Rn,0 = Rn (notation (5.1.3)) and ∂if(1);1 = ∂if and
further Ln = 0, so the processes (5.1.4), (11.1.7) and (11.1.8) are all the same.

11.1.2 An Auxiliary Stable Convergence

Before starting the proof, and by the localization lemma 4.4.9, we see that we
can replace (H) by the stronger assumption (SH), that is Assumption 4.4.6, under
which bt and σt and Xt are bounded and ‖δ(ω, t, z)‖ ≤ Γ (z) with Γ bounded and∫
Γ (z)2λ(dz) <∞.
In this subsection we basically extend Proposition 4.4.10 to the present situation,

and in the case where the process U
n
(G) is absent.
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We first introduce some notation. The integer k is fixed, and m ≥ 1 is another
integer and T > 0. We take Am = {z : Γ (z) > 1/m}. We choose the weakly ex-
hausting sequence for the jumps of X to be the sequence (Sp) defined in (4.3.1),
that is

(Sp)p≥1 is a reordering of the double sequence (S(m, j) :m,j ≥ 1)
where S(m,1), S(m,2), . . . are the successive jump times of
the process 1{Am\Am−1} ∗ p.

⎫
⎬

⎭

Next, similar to (4.4.20) and (4.4.21), we set

b(m)t = bt −
∫
Am∩{z:‖δ(t,z)‖≤1} δ(t, z)λ(dz),

X(m)t =X0 +
∫ t

0 b(m)s ds +
∫ t

0 σs dWs + (δ 1Acm) � (p− q)t ,

X′(m)=X−X(m) = (δ 1Am) � p.

⎫
⎪⎬

⎪⎭
(11.1.15)

Ωn(T ,m)= the set of all ω such that the jumps of X′(m) in
[0, T ] are spaced by more than kΔn, and no such
jump occurs in [0, kΔn] or [T − kΔn,T ], and
for all t ∈ [0, T ], s ∈ [0, kΔn]
we have ‖X(m)t+s −X(m)t‖ ≤ 2/m.

(11.1.16)

Note the slight modification in the definition of the sets Ωn(T ,m), which neverthe-
less satisfy

P
(
Ωn(T ,m)

) → 1 as n→∞. (11.1.17)

Last, for j ∈K, and with the convention Δni Y = 0 when i ≤ 0, we define the vari-
ables

R(n,p, j)= 1√
Δn
Δni+jX

R(n,p,0)= 1√
Δn
(Δni X−ΔXSp)

L(n,p)= i − 1− k[ i−1
k

]

⎫
⎪⎪⎬

⎪⎪⎭
if (i − 1)Δn < Sp ≤ iΔn (11.1.18)

(compare with (4.4.16), we have R(n,p,0)=R−(n,p)+R+(n,p)).

Lemma 11.1.3 Under (SH), and recalling the notation Rp,j of (11.1.4), we have

((
R(n,p, j)

)
−k+1≤j≤k−1,L(n,p)

)
p≥1

L-s−→ ((Rp,j )−k+1≤j≤k−1,Lp
)
p≥1.

(11.1.19)

Proof The proof is basically the same as for Proposition 4.4.10. On the set {(i −
1)Δn < Sp ≤ iΔn} we put

α(n,p, j)= 1√
Δn
Δni+jW

α−(n,p)= 1√
Δn
(WSp −W(i−1)Δn), α+(n,p)= 1√

Δn
(WiΔn −WSp)
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w′(n,p)s = 1√
kΔn

(W([(i−1)/k]−1+s)kΔn −W([(i−1)/k]−1)kΔn)

κ(n,p)= Sp

Δn
− (i − 1), κ ′(n,p)= Sp

kΔn
−
[
i − 1

k

]

(so w′(n,p)s and κ ′(n,p) are exactly like w(n,p) and κ(n,p) in (4.3.2) with
vn = kΔn, and further κ ′(n,p) = (L(n,p) + κ(n,p))/k). Then a simple calcula-
tion shows:

α(n,p, j)=√k (w′(n,p)1+(L(n,p)+j+1)/k−w′(n,p)1+(L(n,p)+j)/k),
α−(n,p)=

√
k (w′(n,p)1+κ ′(n,p) −w′(n,p)1+L(n,p)/k),

α+(n,p)=
√
k (w′(n,p)1+(1+L(n,p))k −w′(n,p)1+κ ′(n,p)),

L(n,p)= j − 1 on the set
{ j−1
k
< κ ′(n,p)≤ j

k

}
, j = 1 . . . , k.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(11.1.20)

Theorem 4.3.1 implies that (w′(n,p), κ ′(n,p))p≥1
L-s−→ (W ′′(p), κ ′p)p≥1 where

the W ′′(p) and κ ′p are all independent one from another and from F as well, and
eachW ′′(p) is a d ′-dimensional Brownian motion and κ ′p is uniform over [0,1]. We

then put Lp = j − 1 on the set { j−1
k
< κ ′p ≤ j

k
} for j = 1 . . . , k. Taking advantage

of (11.1.20), and since the law of κ ′p has no atom, we deduce (as for (5.3.25)) that

((
α(n,p, j)

)
j∈K, α−(n,p),α+(n,p),L(n,p)

)
p≥1

L-s−→ ((√k (W ′′(p)1+(L′p+j+1)/k −W ′′(p)1+(L′p+j)/k
))
j∈K,

√
k
(
W ′′(p)1+κ ′p −W ′′(p)1+L′p/k

)
,

√
k
(
W ′′(p)1+(1+L′p)/k −W ′′(p)1+κ ′p

)
,L′p
)
p≥1. (11.1.21)

At this stage we set κp = κ ′p − Lp/k. Since κ ′p is uniform over (0,1], it
is easy to check that Lp is uniform over {0, . . . , k − 1} and independent of
κp , which itself is uniform over (0,1]. Because of the independence between
W ′′(p) and κ ′p , plus the scaling property and the independence of the increments
of W ′′(p), we see that the right side of (11.1.21) has exactly the same law as
((Ψp,j )j∈K,

√
κp Ψp−,

√
1− κp Ψp−,Lp)p≥1, as given by (11.1.2), and is indepen-

dent of F . In other words, we have proved that

(
α(n,p, j)j∈K, α−(n,p),α+(n,p),L(n,p)

)
p≥1

L-s−→ ((Ψp,j )j∈K,√κp Ψp− ,
√

1− κp Ψp+,Lp
)
p≥1.

Therefore, since σt is càdlàg, it is now enough to prove that for any p ≥ 1 we
have, with S−(n,p, j)= sup(iΔn : iΔn < Sp) for j ≤ 0 and S+(n,p, j)= inf((i −
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1)Δn : iΔn ≥ Sp) when j ≥ 1:

R(n,p,0)− σS−(n,p,0)α−(n,p)− σSpα+(n,p) P−→ 0

j ∈K− ⇒ R(n,p, j)− σS′−(n,p,j)α(n,p, j)
P−→ 0

j ∈K+ ⇒ R(n,p, j)− σS′+(n,p,j)α(n,p, j)
P−→ 0.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

The first part above is in fact (4.4.19). The two other parts are shown in exactly the
same way. �

11.1.3 Proof of Theorem 11.1.2

Now we proceed to the proof of Theorem 11.1.2. As said before, we can and will
assume (SH). We heavily use the notation (11.1.5), as well as those of the previous
subsection, and we closely follow the proof of Theorem 5.1.2. We consider the two
processes

V
n
(F,X)t = 1√

Δn

(
V n(F,X)t −

k∑

j=1

fj ∗μXt
)
,

Vn(F,X)t = 1√
Δn

(
Vn(F,X)t − f � μXkΔn[t/kΔn]

)
,

which replace (5.1.6), the second one being defined when F is symmetrical only.

Step 1) As before, Pm denotes the set of all indices p such that Sp = S(m′, j) for
some j ≥ 1 and somem′ ≤m, and i(n,p) is the integer such that (i(n,p)−1)Δn <
Sp ≤ i(n,p)Δn. As in (5.1.12), we set

Yn(m)t =
∑

p∈Pm: Sp≤Δn[t/Δn]
ζ np , where ζ np =

1√
Δn

k∑

j=1

ζ(j)np and

ζ(j)np = F
(√
ΔnR(n,p,1− j), . . . ,ΔXSp

+√ΔnR(n,p,0), . . . ,
√
ΔnR(n,p, k− j)

)− fj (ΔXSp)
− F (√ΔnR(n,p,1− j), . . . ,

√
ΔnR(n,p,0), . . . ,

√
ΔnR(n,p, k− j)

)
.

In view of (11.1.16) and (11.1.18), we have

V
n
(F,X)T = V n

(
F,X(m)

)
T
+ Yn(m)T on the set Ωn(T ,m). (11.1.22)

(In contrast with (5.1.13), this equality holds for T , but not for all t ≤ T ; it holds in
fact for any t ≤ T such that |t − Sp|> (k + 1)Δn for all p ∈ Pm, but not for the t’s
which are too close to some Sp .)
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For any (p, j) the sequence R(n,p, j) is bounded in probability by (11.1.19).
Since F is C2 and satisfies (11.1.11), the definition of ζ(j)np and a Taylor expansion
of F around (0, . . . ,0,ΔXSp ,0, . . . ,0) give

1√
Δn
ζ(j)np −

k∑

l=1

d∑

i=1

∂if(l);j (ΔXSp)R(n,p, l − j)i P−→ 0. (11.1.23)

Then another application of Lemma 11.1.3 yields that

(
ζ np
)
p≥1

L-s−→ (ζp)p≥1, where ζp =
k∑

j,l=1

d∑

i=1

∂if(l);j (ΔXSp)Rip,l−j .

Since the set {Sp : p ∈Pm} ∩ [0, t] is finite, we deduce that, as n→∞:

Yn(m)
L-s=⇒ V

(
F,X′(m)

)
, (11.1.24)

where V (F,X′(m)) is associated with the process X′(m) of (11.1.15) by (11.1.7).

Step 2) When F is symmetrical we have a similar result. We set, with ζ(j)np as
above:

Yn(m)t =
∑

p∈Pm: Sp≤t
ζ ′np , where ζ ′np =

1√
Δn

k∑

j=1

ζ ′(j)np 1{L(n,p)=j−1}

and now we have

Vn(F,X)t = Vn
(
F,X(m)

)
t
+Yn(m)t ∀t ≤ T , on the set Ωn(T ,m) (11.1.25)

(note the difference with (11.1.22): this holds for all t ≤ T ). Using again (11.1.23),
we deduce from Lemma 11.1.3 that

(
ζ ′np
)
p≥1

L-s−→ (ζ ′p
)
p≥1, where ζ ′p =

k∑

j,l=1

d∑

i=1

∂if(l);j (ΔXSp)Rip,l−j 1{Lp=j−1}.

Therefore we have, as n→∞,

Yn(m) L-s=⇒ V
(
f,X′(m)

)
. (11.1.26)

Step 3) All processes V (F,X′(m)) are defined on the same extension, and
V (F,X) = V (F,X′(m)) + V (F,X(m)). Then, using the properties (11.1.2), we
can reproduce the proof of (5.1.16) to obtain that (with F symmetrical for the sec-
ond statement below):

V
(
F,X′(m)

) u.c.p.=⇒ V (F,X), V
(
F,X′(m)

) u.c.p.=⇒ V(F,X). (11.1.27)
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At this stage, and in view of (11.1.17) and (11.1.22), in order to prove (a) it
remains to show that for all t > 0, η > 0 we have

lim
m→∞ lim sup

n→∞
P
(∣∣V n
(
F,X(m)

)
t

∣∣> η
) = 0. (11.1.28)

Analogously, for (b) it suffices, by (11.1.25), to show that for all t > 0, η > 0 we
have

lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∣∣Vn
(
F,X(m)

)
s

∣∣> η
)
= 0 (11.1.29)

(this gives the convergence of (11.1.13), which in turn implies the convergence of
(11.1.14) by Step 5 of the proof of Theorem 5.1.2).

Step 4) In this step we begin the proof of (11.1.28), and it is enough to do this
when F is one-dimensional. We fix t > 0. For j = 1, . . . , k we setGj(x1, . . . , xj )=
F(x1, . . . , xj ,0, . . . ,0), a function on (Rd)j . Note thatG1 = f1 andGk = F . Since
F(0)= 0, an easy computation shows that, as soon as kΔn < t ,

V
n
(F,X)t =

k∑

j=1

Yn,j (X)t −Wn(X)t −W ′n(X)t ,

where

Yn,j (X)t = 1√
Δn

[t/Δn]−k+1∑

i=1

ζ
n,j
i (X)

ζ
n,j
i (X)=Gj (Δni X, . . . ,Δni+j−1X

)−Gj (Δni X, . . . ,Δni+j−2X,0
)

−Δni+j−1

(
fj ∗μX

)

Wn(X)t = 1√
Δn

k∑

j=2

fj ∗μX(j−1)Δn

W ′n(X)t = 1√
Δn

k∑

j=1

(
fj ∗μXt − fj ∗μXΔn([t/Δn]+j−k)

)
.

Therefore, in view of (11.1.17), it is enough to prove the following properties, for
all η > 0:

lim
m→∞ lim sup

n→∞
P
(
Ωn(t,m)∩

{∣∣Yn,j
(
X(m)
)
t

∣∣> η
}) = 0. (11.1.30)

lim sup
n→∞

P
(∣∣Wn
(
X(m)
)
t

∣∣> η
) = 0, lim sup

n→∞
P
(∣∣W ′n(X(m)

)
t

∣∣> η
) = 0.

(11.1.31)
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The proof of (11.1.31) is elementary. Indeed, |fj (x)| ≤ K‖x‖2 if ‖x‖ ≤ 1 by
(11.1.11), hence

E
(∣∣fj ∗μX(m)s+r − fj ∗μX(m)s

∣∣) ≤ E
(‖δ‖2 ∗ q

s+r − ‖δ‖2 ∗ q
s
|) ≤ Kr,

where the last inequality comes from (SH). Thus both E(|Wn(X(m))|) and
E(|W ′n(X(m))|) are smaller than Kk

√
Δn, implying (11.1.31).

Step 5) The next two steps are devoted to proving (11.1.30), so j is fixed. In the
present step we generalize the notation (5.1.18) and the estimates (5.1.22).

We denote by u= (x1, . . . , xj−1) the current point in (Rd)j−1, soGj(x1, . . . , xj )

is also written as Gj(u, xj ). We set (compare with (5.1.18), page 131):

ku(x, y) = Gj(u, x + y)−Gj(u, x)−Gj(0, y),

gu(x, y) = ku(x, y)−
d∑

i=1

∂Gj

∂xi
(u, x)yi .

Below, ∇Gj and ∇2Gj denote the families of all first and second order derivatives
of Gj , with respect to all variables x1, . . . , xj . The hypothesis (11.1.11) yields that,
for some αm going to 0 as m→∞, and recalling that Gj is one-dimensional here,

‖u‖ ≤ 2k

m
, ‖x‖ ≤ 3

m
⇒

⎧
⎪⎨

⎪⎩

|Gj(u, x)| ≤ αm(‖u‖3 + ‖x‖3)

|∇Gj(u, x)| ≤ αm(‖u‖2 + ‖x‖2)

|∇2Gj(u, x)| ≤ αm(‖u‖ + ‖x‖).
(11.1.32)

This implies

‖u‖ ≤ 2k

m
, ‖x‖ ≤ 3

m
, ‖y‖ ≤ 1

m
⇒
{ |ku(x, y)| ≤Kαm(‖u‖ + ‖x‖)‖y‖
|gu(x, y)| ≤Kαm(‖u‖ + ‖x‖)‖y‖2,

(11.1.33)
although the proof is not as straightforward as for (5.1.22). More precisely, under
the above condition on x, y,u, a Taylor expansion (with y being the “increment”
of the variable) and (11.1.32) yield |ku(x, y)| ≤ Kαm(‖u‖2 + ‖x‖2 + ‖y‖2)‖y‖
and |gu(x, y)| ≤ Kαm(‖u‖ + ‖x‖ + ‖y‖)‖y‖2, which give (11.1.33) when ‖y‖ ≤
‖u‖ ∨ ‖x‖.

When ‖y‖ is bigger than both ‖u‖ and ‖x‖, we use Taylor’s formula for u and
(11.1.32) again to get that |ku(x, y)−k0(x, y)| and |gu(x, y)−g0(x, y)| are smaller
than Kαm ‖y‖2 ‖u‖, and then we can apply (5.1.22), page 132, to the functions k0

and g0, to finally obtain (11.1.33) again.

Step 6) Here we prove (11.1.30). We will in fact prove more, namely

lim
m→∞ lim sup

n→∞
P

(
Ωn(t,m)∩

{
sup
s≤t
∣∣Yn,j
(
X(m)
)
s

∣∣> η
})
= 0. (11.1.34)
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We will construct a decomposition

1√
Δn
ζ
n,j
i

(
X(m)
)= η(m)ni + η′(m)ni on the set Ωn(t,m), (11.1.35)

in such a way that we have

η′(m)ni is F(i+j−1)Δn measurable and E
(
η′(m)ni |F(i+j−2)Δn

)= 0, (11.1.36)

limm→∞ lim supn→∞ E
(∑[t/Δn]−k+1

i=1 |η(m)ni |
)= 0

limm→∞ lim supn→∞ E
(∑[t/Δn]−k+1

i=1 (η′(m)ni )2
)= 0.

}
(11.1.37)

By (11.1.36) the expectation in the second part of (11.1.37) is also the expectation of
the variable (

∑[t/Δn]−k+1
i=1 η′(m)ni )2. Hence it is clear that (11.1.35)–(11.1.37) imply

(11.1.34).
For each i ≥ 1 write U(n,m, i) = (Δni X(m), . . . ,Δni+j−2X(m)). As in Theo-

rem 5.1.2, we set T (n,m, i)= inf(s > (i + j − 2)Δn : ‖X(m)s −X(m)(i−1)Δn‖>
2/m), so T (n,m, i) > (i + j − 1)Δn for all i ≤ [t/Δn] − k + 1 on Ωn(t,m).
Moreover, on the set Ωn(t,m) we have ‖Δni X(m)‖ ≤ 2/m for all i ≤ t/Δn, so
Ωn(t,m)⊂ B(n,m, i) := {‖U(n,m, i)‖ ≤ 2k/m} for all i ≤ t/Δn−k+1. Then we
can apply Itô’s formula to the processX(m)t−X(m)(i+j−2)Δn for t ≥ (i+j−2)Δn
and to the C2 function x �→ Gj(u, x): this yields the decomposition (11.1.35),
with

η(m)ni =
1√
Δn

1B(n,m,i)

∫ (i+j−1)Δn∧T (n,m,i)

(i+j−2)Δn
a
(
U(n,m, i), n,m, i

)
s
ds

η′(m)ni =
1√
Δn

1B(n,m,i) M
(
U(n,m, i), n,m, i

)
(i+j−1)Δn∧T (n,m,i),

where, on the one hand,

a(u,n,m, i)s =
d∑

r=1

∂Gj

∂xr

(
u,X(m)s −X(m)(i+j−2)Δn

)
b(m)rs

+ 1

2

d∑

r,l=1

∂2Gj

∂xr ∂xl

(
u,X(m)s −X(m)(i+j−2)Δn

)
crls

+
∫

Am

gu
(
X(m)t −X(m)(i+j−2)Δn, δ(s, z)

)
λ(dz)

and on the other hand M(u,n,m, i)t for t ≥ (i + j − 2)Δn is a square-integrable
martingale vanishing at time (i+j−2)Δn and with predictable bracket

∫ t
(i−1)Δn

a′(u,
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n,m, i)s ds, where a′(u,n,m, i)s is given by

a′(u,n,m, i)s =
d∑

r,l=1

(
∂Gj

∂xr

∂Gj

∂xl

)(
u,X(m)s −X(m)(i+j−2)Δn

)
crls

+
∫

Am

ku
(
X(m)s −X(m)(i+j−2)Δn, δ(s, z)

)2
λ(dz).

In particular, we have (11.1.36), and also

E(
(
η′(m)ni

)2 = 1

Δn
E

(
1B(n,m,i)

∫ (i+j−2)Δn∧T (n,m,i)

(i+j−2)Δn
a′
(
U(n,m, i), n,m, i

)
s
ds

)
.

We can now reproduce the end of Step 4 of the proof of Theorem 5.1.2: by (SH)
we have ‖δ(t, z)‖ ≤ Γ (z) and ‖b(m)t‖ ≤Km. Then (11.1.32) and (11.1.33) yield,
as soon as (i − 1)Δn ≤ t ≤ T (n,m, i) (so ‖X(m)t −X(m)(i−1)Δn‖ ≤ 3/m), and on
the set B(n,m, i):

∣∣a(n,m, i)t
∣∣ ≤ Kαm

(∥∥U(n,m, i)
∥∥+ (∥∥X(m)t −X(m)(i−1)Δn

∥∥

+m(∥∥U(n,m, i)∥∥2 + ∥∥X(m)t −X(m)(i−1)Δn

∥∥2))

a′(n,m, i)t ≤ Kα2
m

(∥∥U(n,m, i)
∥∥2 + ∥∥X(m)t −X(m)(i−1)Δn

∥∥2).

We also have (5.1.24), page 133, which implies for p = 1,2:

E
(∥∥U(m,n, i)

∥∥p) ≤ K
(
s(p/2)∧1 +mpsp).

At this stage, we get that the two “lim sup” in (11.1.37) are smaller than Ktαm and
Ktα2

m respectively. This ends the proof of (11.1.37), hence of (11.1.30), hence also
of (a) of Theorem 11.1.2.

Step 7) It remains to prove (11.1.29), when F is symmetrical. For this, we observe
that with the same notation ζ n,ji (X) as in Step 4 above, except that now fj = f for
all j , we have

Vn(F,X)t =
k∑

j=1

Yn,j (X)t , Yn,j (X)t = 1√
Δn

[t/kΔn]∑

i=1

ζ
n,j

ki−k+1(X).

We have the decomposition (11.1.35) with (11.1.36), and we have proved the lim-
iting results (11.1.37). Those results also hold if, instead of summing over all i
between 1 and [t/Δn] − k + 1, we sum over i = kl − k + 1 for all l ranging from 1
to [t/kΔn]. Hence, similar to (11.1.34), we get for all η > 0:

lim
m→∞ lim sup

n→∞
P

(
Ωn(t,m)∩

{
sup
s≤t
∣∣Yn,j
(
X(m)
)
s

∣∣> η
})
= 0,

and we deduce (11.1.29).
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11.2 Functionals of Normalized Increments

In this section we study the functionals

V ′n(F,X)t =Δn
[t/Δn]−k+1∑

i=1

F
(
Δni X/

√
Δn, . . . ,Δ

n
i+k−1X/

√
Δn
)

(11.2.1)

V ′n(F,X)t =Δn
[t/kΔn]∑

i=1

F
(
Δnik−k+1X/

√
Δn, . . . ,Δ

n
ikX/
√
Δn
)
.

Under appropriate conditions on F they converge in the u.c.p. sense to
∫ t

0 ρ
k⊗
cs
(F )ds

and 1
k

∫ t
0 ρ

k⊗
cs
(F )ds respectively, see Theorem 8.4.1. The associated CLTs are thus

about the processes:

V
′n
(F,X)t = 1√

Δn

(
V ′n(F,X)t −

∫ t

0
ρk⊗cs (F )ds

)
(11.2.2)

and

V ′n(F,X)t = 1√
Δn

(
V ′n(F,X)t − 1

k

∫ t

0
ρk⊗cs (F )ds

)
. (11.2.3)

11.2.1 The Results

Not surprisingly, we need the same assumptions on X as for Theorems 5.3.5
and 5.3.6, in connection with the assumptions on the test function F . Those as-
sumptions, namely 4.4.3, 5.3.2, 4.4.4 and 5.3.4, are briefly recalled for the reader’s
convenience below:

Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}

where M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and 〈M,M〉t =∫ t
0 as ds and the compensator of

∑
s≤t 1{‖Δσs‖>1} is

∫ t
0 ãs ds, with the following

properties: the processes b̃, σ̃ , ã and a are progressively measurable, the processes
b̃, a and ã are locally bounded, and the processes σ̃ and b are càdlàg or càglàd.

Assumption (K-r) (for r ∈ [0,1]) We have (K) except for the càdlàg or càglàd
property of b, and ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where
(τn) is a localizing sequence of stopping times and the Borel functions Γn on E sat-
isfy
∫
Γn(z)

rλ(dz) <∞. Moreover the process b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz)

is càdlàg or càglàd.
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Assumption (K’) We have (K) and both processes ct and ct− take their values
in M++

d×d .

Assumption (K’-r) We have (K-r) and both processes ct and ct− take their values
in M++

d×d .

Under appropriate conditions on F , the limit will be like the process U
′
(f,X)

in Theorem 5.3.5, that is an F -conditionally continuous centered Gaussian pro-
cess with independent increments. The description of the conditional variance is
slightly more involved: if a ∈M+

d×d , we take independent N (0, a) distributed
variables U1,U2, . . . , we consider the σ -fields G = σ(U1, . . . ,Uk−1) and G′ =
σ(U1, . . . ,Uk) and we set for any two functions F andG on (Rd)k with polynomial
growth:

Ra(F,G) =
k−1∑

j,j ′=0

E
(
E
(
F(Uk−j , . . . ,U2k−j−1) | G′

)

×E
(
G(Uk−j ′ , . . . ,U2k−j ′−1) | G′

)

−E
(
F(Uk−j , . . . ,U2k−j−1) | G

)

×E
(
G(Uk−j ′ , . . . ,U2k−j ′−1) | G′

))
. (11.2.4)

This has a covariance structure, in the sense that the matrix with entries Ra(Fi,Fj )
is symmetric nonnegative for any functions F1, . . . ,Fq . When k = 1 we have the
simple expression Ra(F,G)= ρa(FG)− ρa(F )ρa(G).

Below, we combine the extensions of both Theorems 5.3.5 and 5.3.6 into a single
statement, as in the previous chapter, and we present all assumptions on F together.
However, depending on the hypotheses made on the process X, only a part of them
is used for each statement. For simplicity we consider only the “globally even” case,
which here means that the function F on (Rd)k satisfies for all x1, . . . , xk ∈R

d :

F(−x1, . . . ,−xk) = F(x1, . . . , xk). (11.2.5)

We need a multivariate result, that is, F = (F 1, . . . ,F q) is q-dimensional. We
have some integer q ′ ∈ {0, . . . , q} and, when q ′ < q we also have a non-empty subset
B of (Rd)k which is a finite union of affine hyperplanes, and we suppose that

j ≤ q ′ ⇒ x �→ Fj (x) is C1 on
(
R
d
)k

j > q ′ ⇒ x �→ Fj (x) is continuous on
(
R
d
)k and C1 outside B.

(11.2.6)

We denote by d(z,B) the distance between z ∈ (Rd)k and B . Below, xj and v run
through R

d , and z and y run through (Rd)k . As usual, ∇F is the family of all first
partial derivatives of F . In the forthcoming conditions, the numbers w, s, s′,p are
subject to 0<w ≤ 1 and 0< s ≤ s′ and p ≥ 0, but otherwise unspecified, although
in the various statements of the theorem some of them may be further restricted:
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∥∥F(z)
∥∥ ≤ K

(
1+ ‖z‖p) (11.2.7)

∣∣∇Fj (z)∣∣≤
{
K(1+ ‖z‖p) if j ≤ q ′
K(1+ ‖z‖p)(1+ 1

d(z,B)1−w
)

if j > q ′ and z ∈ Bc (11.2.8)

z ∈ Bc, ‖y‖ ≤ 1
∧ d(z,B)

2
, j > q ′ ⇒

∣∣∇Fj (z+ y)−∇Fj (z)∣∣≤ K ‖y‖
(

1+ 1

d(z,B)2−w

)(
1+ ‖z‖p) (11.2.9)

∥∥F(x1, . . . , xj−1, xj + v, xj+1, . . . , xk)− F(x1, . . . , xk)
∥∥

≤ K
(‖v‖s + ‖v‖s′)

k∏

l=1

(
1+ ‖xl‖2). (11.2.10)

As already mentioned, in the last condition above s controls the behavior as v→ 0,
and s′ controls the behavior as ‖v‖→∞. The last condition implies the first one,
with p = (k − 1)p′ + s′. Conversely, and as in Remark 5.3.7, when q ′ = q the two
conditions (11.2.7) and (11.2.8) imply (11.2.10) with s = 1 ∧ p and p′ = s′ = p.
The same comments as in Remark 10.3.1) apply to the present set of assumptions,
and the reader will notice that in (11.2.10) we have all ‖xl‖ to the power 2, instead
of ‖x‖ to an arbitrary power p in (5.3.11): this is due to the fact that we consider
several increments instead of a single one in our functional V ′n(F,X).

Theorem 11.2.1 Let X be a d-dimensional Itô semimartingale and F be a function
from (Rd)k into R

q which is continuous, globally even, and satisfies (11.2.6). We
also assume (11.2.7) and (11.2.8) (recall w ∈ (0,1]), plus one of the following five
sets of hypotheses:

(a) We have q ′ = q and (K) and X is continuous.
(b) We have (K’) and (11.2.9) and X is continuous.
(c) We have q ′ = q and (K-1), and F and ∇F are bounded.
(d) We have q ′ = q and (K-r) with some r ∈ (0,1), and (11.2.10) with r≤ s≤ s′<1.
(e) We have (K’-r) with some r ∈ (0,1), and (11.2.9) and (11.2.10) with r ≤ s ≤

s′ < 1.

Then the sequence of processes V
′n
(F,X) in (11.2.2) converges stably in law

to a continuous process V
′
(F,X) which is defined on a very good filtered exten-

sion (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P), and conditionally on F is a centered
Gaussian process with independent increments satisfying

Ẽ
(
V
′(
F i,X
)
t
V
′(
Fj ,X

) |F)=
∫ t

0
Rcs
(
F i,F j

)
ds. (11.2.11)

The same holds for the sequence V ′n(F,X) of (11.2.3), with a limit V ′(F,X) which
conditionally on F is a centered Gaussian process with independent increments
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satisfying

Ẽ
(
V ′
(
F i,X
)
t
V ′
(
Fj ,X

) |F)= 1

k

∫ t

0

(
ρk⊗cs
(
F iF j
)− ρk⊗cs

(
F i
)
ρk⊗cs
(
Fj
))
ds.

(11.2.12)

The reader will notice the difference in the covariances in (11.2.11) and (11.2.12),
which is due to the fact that in the first case the functional involves overlapping
intervals and thus has a more complicated covariance structure. In the discontinuous
case the conditions are rather restrictive, as shown in the following example:

Example 11.2.2 We consider the multipower variations, corresponding to the test
functions (8.1.5), that is

F(x1, . . . , xk) =
k∏

j=1

d∏

i=1

∣∣xij
∣∣wij , wij ≥ 0 (11.2.13)

(recall the non-standard convention 00 = 1, so that the factor |xij |w
i
j does not show

when wij = 0). Let u be the minimum of all non-vanishing wij , and wj =w1
j +· · ·+

wdj . The function F is C1 on (Rd)k if and only if u > 1, in which case it satisfies

(11.2.7) and (11.2.8) (case j ≤ q ′). When u ≤ 1, F is C1 outside B = ∪kdj=1{z ∈
(Rd)k : zj = 0}, and it satisfies (11.2.7), (11.2.8) and (11.2.9) (case j > q ′) with
p =∑j wj and w = u. As for (11.2.10), and with w as above, it is satisfied with
r =w and r ′ = p′ = supj wj .

Therefore in the continuous case the theorem applies under (K), and also (K’)
if there is at least a wij in the interval (0,1]. In the discontinuous case, we need
wj < 1 for all j (hence w < 1), and also (K’-r) with r =w. This is quite restrictive,
but Vetter [93] has shown that the result as stated in the above theorem fails in
dimension d = 1, when for example k = 2 and w1 =w2 = 1 and (K’-1) holds.

Example 11.2.3 Another interesting example is

F(x1, . . . , xk) =
d∏

i=1

∣∣xi1 + · · · + xik
∣∣wi , wi ≥ 0 (11.2.14)

(in Sect. 11.4.3 below we will use a 2-dimensional test function, when d = 1, whose
first component is given by (11.2.13) and second component given by (11.2.14)).
Here u is the smallest non-vanishing power wi . Then F is C1 on (Rd)k if and only
if u > 1, in which case it satisfies (11.2.7) and (11.2.8) (case j ≤ q ′). When u≤ 1,
F is C1 outside B = ∪dj=1{z = (x1, . . . , xk) : xj1 + · · · + xjk = 0}, which is again
a finite union of hyperplanes. It then satisfies (11.2.7), (11.2.8) and (11.2.9) (case
j > q ′) with p =∑i w

i and w = u, and also (11.2.10) with r =w and r ′ = p′ = p.
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11.2.2 Elimination of Jumps

The proof of Theorem 11.2.1 goes along the same route as Theorems 5.3.5 and 5.3.6.
First of all, the localization Lemma 5.3.12 holds here without change, so instead

of (K), (K-r), (K’) or (K’-r) we can and will assume the strengthened versions
(SK), (SK-r), (SK’) or (SK’-r), that is Assumptions 4.4.7, 5.3.10, 4.4.8 or 5.3.11.
In other words, ‖δ(ω, t, z)‖ ≤ Γ (z) with Γ bounded and

∫
Γ (z)rλ(dz) <∞, and

all processes b, σ , b̃, σ̃ , a, ã are bounded, and furthermore in case of (SK’) or (SK’-
r) the inverse process c−1

t exists and is also bounded. In particular we can write X
as in (5.3.13), that is

X =X′ +X′′ where X′t =X0+
∫ t

0
b′s ds+

∫ t

0
σs dWs, X′′ = δ ∗ p, (11.2.15)

where b′t = bt −
∫
{z:‖δ(t,z)‖≤1} δ(t, z)λ(dz) is also bounded.

Second, the next lemma, similar to Lemma 5.3.13, shows that we only need to
prove the results when X =X′ is continuous.

Lemma 11.2.4 Under (SK-1) and the assumptions (c), or under (SK-r) and the
assumptions (d) or (e), we have

1√
Δn

(
V ′n(F,X)− V ′n(F,X′)) u.c.p.=⇒ 0

1√
Δn

(
V ′n(F,X)− V ′n

(
F,X′
)) u.c.p.=⇒ 0.

Proof The two claims are proved in the same way, and we prove the first one only.
We need to show that the array (ηni ) defined by

ηni =
√
Δn

(
F

(
Δni X√
Δn
, . . . ,

Δni+k−1X√
Δn

)
− F
(
Δni X

′
√
Δn
, . . . ,

Δni+k−1X
′

√
Δn

))

is asymptotically negligible, that is
∑[t/Δn]
i=1 ηni

u.c.p.=⇒ 0. For j = 0, . . . , k we set

X
n

i,j =
(
Δni X√
Δn
, . . . ,

Δni+j−1X√
Δn

,
Δni+jX′√
Δn

, . . . ,
Δni+k−1X

′
√
Δn

)
, (11.2.16)

with obvious conventions when j = 0 (there is only X′) and when j = k (there is
only X). Then

ηni =
k−1∑

j=0

ηni,j where ηni,j =
√
Δn
(
F
(
X
n

i,j+1

)− F (Xni,j
))
,

and it suffices to prove that for each j the array (ηni,j ) is asymptotically negligible.
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In case (c) the function F is C1
b on (Rd)k , hence ‖ηni,j‖ ≤ K

√
Δn (1 ∧

‖Δni+jX′′/
√
Δn‖) and we conclude as in Lemma 5.3.13, page 150.

In cases (d) and (e) the function F satisfies (11.2.10), with p′ ≤ 2 and r ≤ s ≤
s′ < 1, and we can always take s = r . Hence

∥∥ηni,j
∥∥≤K√Δn

((
αni+j
)r + (αni+j

)s′)
j−1∏

l=0

αni+l
k−1∏

l=j
α′ni+l , where

αni = 1+ ∥∥Δni X/
√
Δn
∥∥2,

α′ni = 1+ ∥∥Δni X′/
√
Δn
∥∥2, αni =

∥∥Δni X
′′/
√
Δn
∥∥.

As in the proof of Lemma 5.3.13, we have E(αni | F(i−1)Δn) ≤ K and E((α′ni )q |
F(i−1)Δn) ≤ Kq for all q > 0 and E((αni )

q | F(i−1)Δn) ≤ KqΔ1−q/2
n for all q ∈

[r,1]. By Hölder’s inequality and successive conditioning we get E(‖ηni,j‖) ≤
K(Δ

1+ 1−r
4

n + Δ1+ 1−s′
4

n ), again as in Lemma 5.3.13, page 150, and the result fol-
lows. �

11.2.3 Preliminaries for the Continuous Case

In view of Lemma 11.2.4, we need only to consider the case where X =X′ is con-
tinuous, under the strengthened assumptions. In other words we only have to prove
(a) and (b) and, as in (5.3.20), page 152 and with the notation (5.3.19), in those two
cases we have for some A≥ 1:

(a) q ′ = q, (SK), F is C1 and ∇F has polynomial growth, σt ∈MA

(b) q ′ < q, (SK’), F satisfies (11.2.7), (11.2.8), (11.2.9), σt ∈M′
A.

(11.2.17)

As in pages 151–152, we use the notation (5.3.18), that is φB(z)= 1+1/d(z,B)
with the convention B = ∅ and d(z,B) =∞ in case (a) (now, φB is a function on
(Rd)k). Then F is C1 outside B and our assumptions on F yield for z, y ∈ (Rd)k ,
and some w ∈ (0,1] and p ≥ 0:
∥∥F(z)

∥∥≤K(1+ ‖z‖p), z /∈ B ⇒ ∥∥∇F(z)∥∥≤K(1+ ‖z‖p)φB(z)1−w
(11.2.18)

∥∥F
(
z+ y − F(z))∥∥≤ φ′C(ε)+

K

C

(‖z‖p+1 + ‖y‖p+1)+ KC
p‖y‖
ε

(11.2.19)

∥∥∇Fj (z+ y)−∇Fj (z)∥∥≤

⎧
⎪⎨

⎪⎩

φ′C(ε)+ K
C
(‖z‖p+1+‖y‖p+1)+ KCp‖y‖

ε
if j ≤ q ′

K(1+ ‖z‖p + ‖y‖p)φB(z)2−w‖y‖
if j > q ′ and if z /∈ B,‖y‖ ≤ d(z,B)

2
(11.2.20)
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for some p (which may be bigger than the values p appearing in the conditions
(11.2.7)–(11.2.9), because we use here the Euclidean norm of z and y), and for all
C ≥ 1 and ε ∈ (0,1], and where φ′C(ε)→ 0 as ε→ 0 for all C.

Next we introduce some notation, somewhat similar to (8.4.7), and where
i, j ≥1:

βni,j = σ(i−1)Δn Δ
n
i+j−1W/

√
Δn, β

n

i =
(
βni,1, . . . , β

n
i,k

)
, X

n

i =Xni,k (11.2.21)

with the notation (11.2.16). Note that β
n

i andX
n

i are (Rd)k-valued random variables.
We have the following extension of (5.3.30):

Δni+j−1X√
Δn

− βni,j =
1√
Δn

∫

I (n,i+j−1)
bs ds

+ 1√
Δn

∫

I (n,i+j−1)
(σs − σ(i−1)Δn) dWs.

Using this for all j = 1, . . . , k, and similar to (5.3.31), we deduce from (SK) the
following estimates, where l ≥ 2 (below, the constants K also depend on k; recall
that X =X′):

E
(∥∥βni
∥∥l)+E

(∥∥Xni
∥∥l) ≤ Kl, E

(∥∥Xni − βni
∥∥l)≤Kl Δn. (11.2.22)

Therefore, since F is of polynomial growth, the variables F(X
n

i ) and F(β
n

i ) are
integrable, and the following q-dimensional variables are well-defined:

χni =
√
Δn
(
F
(
X
n

i

))− F (βni
)
), χ ′ni = E

(
χni |F(i−1)Δn

)
, χ ′′ni = χni − χ ′ni

ζ ni =
√
Δn
(
F
(
β
n

i

)−E
(
F
(
β
n

i

) |F(i−1)Δn

))=√Δn
(
F
(
β
n

i

)− ρk⊗c(i−1)Δn
(F )
)
.

(11.2.23)
We now write the decomposition V

′n
(F,X) = Yn + An(0) + An(1) + An(2),

where Yn+An(0) is analogous to Yn(F,X) in (5.2.3), and An(1) and An(2) are as
in (5.3.23):

Ynt =
∑[t/Δn]−k+1
i=1 ζ ni , An(0)t =∑[t/Δn]−k+1

i=1 χ ′′ni
An(1)t =∑[t/Δn]−k+1

i=1 χ ′ni
An(2)t = 1√

Δn

(∑[t/Δn]−k+1
i=1 Δn ρ

k⊗
c(i−1)Δn

(F )− ∫ t0 ρk⊗cs (F )ds
)
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(11.2.24)

We also have V ′n(F,X)= Yn +An(0)+An(1)+An(2), where

Ynt =
∑[t/kΔn]
i=1 ζ nik−k+1, An(0)t =∑[t/kΔn]i=1 χ ′′nik−k+1

An(1)t =∑[t/kΔn]i=1 χ ′nik−k+1

An(2)t = 1√
Δn

(∑[t/kΔn]
i=1 Δn ρ

k⊗
c(ik−k)Δn (F )− 1

k

∫ t
0 ρ

k⊗
cs
(F )ds

)
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(11.2.25)

Therefore the theorem will follow from the next three lemmas:
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Lemma 11.2.5 Under (11.2.17) we have Yn
L-s=⇒ V

′
(F,X).

Lemma 11.2.6 Under (11.2.17) we have Yn L-s=⇒ V ′(F,X).

Lemma 11.2.7 Under (11.2.17), for j = 0,1,2 we have

An(j)
u.c.p.=⇒ 0, An(j) u.c.p.=⇒ 0. (11.2.26)

11.2.4 The Processes Yn and Yn

Proof of Lemma 11.2.6 We apply Theorem 4.2.1, page 106, in the following setting:
take un = kΔn and q ′ = kd ′ and q = kd , and the functionΦ onΩW and the process
θ with components Φ(y)jl = yl(j/k)− yl((j − 1)/k) and θj,i,j

′,l = σ il1{j=j ′} for
j, j ′ = 1, . . . , k and l = 1, . . . , d ′ and i = 1, . . . , d , and finally G(y,x)= F(√k x)
for x ∈ (Rd)k , so the process Y does not enter the picture. With these conventions,
we have Yn = 1√

k
U
n
(G), where U

n
(G) is defined by (4.2.6), page 106.

Now, since F satisfies (11.2.5), it is straightforward to check that the functions
of (4.2.5) satisfy γ̂ Φθt (x,G

j )=0 and γΦθt (x,G
j ,Gl)=ρk⊗ct (F jF l)−ρk⊗ct (F j )×

ρk⊗cy (F
l). Therefore the lemma is a special case of Theorem 4.2.1. �

The previous proof is simple because the summands in Yn involve non-
overlapping intervals. For Yn this is no longer the case: we do have E(ζ ni |
F(i−1)Δn)) = 0, but ζ ni is not FiΔn measurable but only F(i+k−1)Δn measurable.
So we need to rewrite Yn as a sum of martingale increments for the discrete-time
filtration (FiΔn)i≥0. Doing so, we significantly complicate the form of the (discrete-
time) predictable quadratic variation, and we need a non trivial extension of the con-
vergence Δn

∑[t/Δn]
i=1 g(Z(i−1)Δn)→

∫ t
0 g(Zs) ds when Z is a càdlàg process and g

a continuous function.
We begin by solving the second problem. We will use the simplifying notation

wni =Δni W/
√
Δn, σni = σiΔn, cni = ciΔn, (11.2.27)

so in particular βni,j = σni−1w
n
i+j−1. Next, we let u,v ≥ 1 be integers and D be a

compact subset of R
v , and g be a function on D2 × (Rd ′)u such that, for some

γ ≥ 0,

g is continuous and
∣∣g(z1, z2;y1, . . . , yu)

∣∣≤K
u∏

j=1

(
1+ ‖yj‖γ

)
. (11.2.28)

Lemma 11.2.8 Let g be as above with 1≤ u≤ k − 1 and Z be a D-valued càdlàg
adapted process satisfying

s, t ≥ 0 ⇒ E
(‖Zt+s −Zt‖2) ≤ K s. (11.2.29)
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Then if 1≤ j, j ′ ≤ k we have, with the notation (11.2.27) and Zni = ZiΔn ,

Δn

[t/Δn]∑

i=k
g
(
Zni−j ,Z

n
i−j ′ ;wni−u, . . . ,wni−1

)

P−→
∫ t

0
ds

∫
g(Zs,Zs;y1, . . . , yu)ρ(dy1) . . . ρ(dyu). (11.2.30)

Proof Set

μni =Δn g
(
Zni−k,Z

n
i−k;wni−u, . . . ,wni−1

)

Γs =
∫
g(Zs,Zs;y1, . . . , yu)ρ(dy1) . . . ρ(dyu).

(11.2.28) yields the existence of a family of continuous increasing function θC with
θC(0)= 0 such that, for any ε ∈ (0,1] and C > 1, we have

∣∣g(z1, z2;y1, . . . , yu)− g(z, z;y1, . . . , yu)
∣∣

≤K
u∏

j=1

(
1+ ‖yj‖γ+1)

(
θC(ε)+ 1

C
+ ‖z1 − z‖ + ‖z2 − z‖

ε

)
.

The variables wni have moments of all order (they are N (0,1)), so in view of
(11.2.29) we can combine the previous estimate and the Cauchy-Schwarz inequality
to get

E

([t/Δn]∑

i=1

∣∣Δn g
(
Zni−j ,Z

n
i−j ′ ;wni−u

)−μni
∣∣
)
≤ Kt

(
θC(ε)+ 1

C
+
√
Δn

ε

)
.

By choosing first C large, then ε small, then n large, we deduce that the left side
above actually goes to 0 as n→∞. Therefore, (11.2.30) will hold, provided we
have

[t/Δn]∑

i=k
μni

P−→
∫ t

0
Γs ds.

For this, we observe that μni is F(i−1)Δn measurable, and we set μ′ni = E(μni |
F(i−k)Δn) and μ′′ni = μni −μ′ni . We deduce from (11.2.28) that

E
(∣∣μni
∣∣2)≤KΔ2

n, E
(∣∣μ′′ni
∣∣2)≤KΔ2

n, j ≥ k ⇒ E
(
μ′′ni μ

′′n
i+j
)= 0.

Hence

E

(([t/Δn]∑

i=k
μ′′ni

)2)
≤ KktΔn → 0
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and it remains to show
∑[t/Δn]
i=k μ′ni

P−→ ∫ t0 Γs ds. Observe that μ′ni = Γ(i−k)Δn ,
whereas Γs is càdlàg because Zs is so and g is continuous. Then the result follows
because

∑[t/Δn]
i=k μ′ni is a Riemann approximation of

∫ t
0 Γs ds. �

Proof of Lemma 11.2.5 1) For j ∈ {0, . . . , k − 1}, we define by a downward induc-
tion on j the following functions Fj on MA× (Rd ′)j , and with ρ as in the previous
lemma:

Fk(α;y1, . . . , yk) = F(αy1, . . . , αyk),

Fj (α;y1, . . . , yj ) =
∫
Fj+1(α;y1, . . . , yj , z)ρ(dz).

(11.2.31)

In particular F0(α)= ρk⊗αα∗(F ). With this notation, we have the decomposition

ζ ni =
k−1∑

j=0

ζ ni,j , where

ζ ni,j =
√
Δn
(
Fj+1
(
σni−1;wni , . . . ,wni+j

)− Fj
(
σni−1;wni , . . . ,wni+j−1

))

(recall (11.2.23) and (11.2.27)). Therefore, if we set

U
′n
t =

[t/Δn]∑

i=k
ηni , where ηni =

k−1∑

j=0

ζ ni−j,j

(11.2.32)

Lnt =
k−1∑

j=0

(
k−j−1∑

i=1

ζ ni,j −
[t/Δn]−j∑

i=[t/Δn]−k+1

ζ ni,j

)
,

we have Ynt = U ′nt + Lnt . Observe that ζ ni−j,j is FiΔn measurable, and wni is inde-
pendent of F(i−1)Δn and with law ρ, so E(ζ ni−j,j | F(i−1)Δn)= 0. Thus ηni is FiΔn
measurable and E(ηni |F(i−1)Δn)= 0, and the process U

′n
is a discrete sum of mar-

tingale increments.

2) In this step, we prove

sup
s≤t
∥∥Lns
∥∥ P−→ 0. (11.2.33)

By (11.2.17), as soon as i + j ≤ [t/Δn] we have ‖ζ ni,j‖ ≤ K
√
ΔnZ

n
t , where

Znt = 1+ sup(‖wni ‖p : 1≤ i ≤ [t/Δn]) with p as in (11.2.7). Since E(‖Δni W‖8p)≤
KΔ

4p
n , Markov’s inequality yields P(‖Δni W‖ > Δ1/2−1/4p

n ) ≤ KpΔ2
n, and thus

Znt ≤Δ−1/4
n when n is bigger than some a.s. finite variable Mt . Since Lnt contains

less than k2 summands we deduce sups≤t ‖Lns ‖ ≤ Kk2√ΔnZnt ≤ Kk2Δ
1/4
n when

n≥Mt , hence the result.
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3) Due to the decomposition Ynt =U ′nt +Lnt and to (11.2.33), it remains to prove
that the sequence U

′n
converges stably in law to V

′
(F,X). Since ηni are martingale

increments, by Theorem 2.2.15 it is enough to show the following three properties:

[t/Δn]∑

i=k
E
(∥∥ηni
∥∥4 |F(i−1)Δn

) P−→ 0 (11.2.34)

[t/Δn]∑

i=k
E
(
η
n,l
i η

n,r
i |F(i−1)Δn

) P−→
∫ t

0
Rcs
(
F l,F r

)
ds (11.2.35)

[t/Δn]∑

i=k
E
(
ηni Δ

n
i N |F(i−1)Δn

) P−→ 0 (11.2.36)

for all t > 0 and for any bounded martingale N orthogonal to W and also for N =
Wl for any l.

As in the previous step, ‖ηni ‖ ≤ K
√
Δn (1 +∑k−1

j=0 ‖wni−j‖p). Hence the ex-
pected value of the left side of (11.2.34) is smaller than KtΔn, thus goes to 0, and
(11.2.34) holds.

4) In this step we prove (11.2.36). When N is a bounded martingale orthogonal
to W , exactly the same argument as for (4.2.10), page 108, shows that the left side
of (11.2.36) vanishes. So it remains to consider the case N =Wl . For simplicity, we
write

ζ
n

i,j = E
(
ζ ni,j Δ

n
i+jW

l |F(i+j−1)Δn

)
, (11.2.37)

and we will prove the following:

(i) ζ
n

i,j is F(i+k−1)Δn-measurable

(ii) E
(
ζ
n

i,j |F(i−1)Δn

)= 0

(iii)
∑[t/Δn]
i=1 E

(∥∥ζ ni,j
∥∥2) → 0.

(11.2.38)

Indeed, assuming this, a simple computation shows that

E

(∥∥∥∥∥

[t/Δn]∑

i=1

ζ
n

i,j

∥∥∥∥∥

2)
≤ (2k − 1)

[t/Δn]∑

i=1

E
(∥∥ζ ni,j
∥∥2) → 0

and we conclude (11.2.36) by the definition (11.2.32) of ηni .
Now we proceed to prove (11.2.38). The variables wni , . . . ,w

n
i+j−1 are

F(i+j−1)Δn -measurable, and Δni Wi+j =
√
Δnw

n
i+j . Therefore

ζ
n

i,j = Δn

∫
Fj+1
(
σni−1;wni , . . . ,wni+j−1, z

)
zl ρ(dz)

and, since the function F is of polynomial growth, the same is true of each Fj .
Thus E(‖ζ ni,j‖2) ≤ KΔ2

n, and the part (iii) of (11.2.38) follows, whereas part (i)
is obvious since j ≤ k − 1. For (ii), we deduce from what precedes and from the
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definition of the functions Fj that

E
(
ζ
n

i,j |Fi−1)Δn

) =
∫
Fj+1
(
σni−1, z1, . . . , zj+1

)
zlj+1 ρ(dz1) . . . ρ(dzj+1)

=
∫
Fk
(
σni−1, z1, . . . , zk

)
zlj+1 ρ(dz1) . . . ρ(dzk).

Since F is globally even, the function G(z1, . . . , zk) = Fk(α; z1, . . . , zk) z
r
j+1 is

globally odd in the sense that G(−y) = −G(y) for all y ∈ (Rd)k . Thus the above
integral vanishes, and (i) of (11.2.38) is proved, hence (11.2.36) as well.

5) For (11.2.35) we need to evaluate E(η
n,l
i η

n,r
i | F(i−1)Δn). For j, j ′ between 0

and k− 1 we introduce some new functions on MA ×MA × (Rd ′)j∨j ′ :

F lrj,j ′
(
α,α′;y1, . . . , yj∨j ′

) =
∫
F lj+1(α;y1+(j ′−j)+ , . . . , yj∨j ′ , y)

× F rj ′+1

(
α′;y1+(j−j ′)+ , . . . , yj∨j ′ , y

)
ρ(dy)

− F lj (α;y1+(j ′−j)+ , . . . , yj∨j ′)

× F rj ′
(
α′;y1+(j−j ′)+ , . . . , yj∨j ′

)
(11.2.39)

A simple calculation shows that

E
(
ζ
n,l
i−j,j ζ

n,r
i−j ′,j ′ |F(i−1)Δn

)=>Δn F lrj,j ′
(
σni−j−1, σ

n
i−j ′−1;wni−j∨j ′ , . . . ,wni−1

)
.

(11.2.40)

Summing these over j, j ′ between 0 and k− 1 gives us the left side of (11.2.35),
but it also gives the right side, as seen below. Indeed, a version of the variables
U1,U2, . . . inside (11.2.4) is given by Ui = αwi if a = αα∗: in this formula, and
if one takes F = F l and G = F r and the σ -fields G = F(k−1)Δn and G′ = FkΔn ,
the (j, j ′)th summand is exactly E(ζ

n,l
k−j,j ζ

n,r
k−j ′,j ′ | F(k−1)Δn) in the case σt = α

identically. In other words,

Rαα∗
(
F l,F r

)=
k−1∑

j,j ′=0

∫
F lrj,j ′(α,α;y1, . . . , yj∨j ′) ρ(dy1) . . . ρ(dyj∨j ′).

(11.2.41)
Since E(ηn,li η

n,r
i |F(i−1)Δn)=

∑k−1
j,j ′=0 E(ζ

n,l
i−j,j ζ

n,r
i−j ′,j ′ |F(i−1)Δn), by (11.2.40)

and (11.2.41) we see that (11.2.35) amounts to the convergence (11.2.30) for the
functions g = F lr

j,j ′ and the processZt = σt . That is, we have to check the conditions
of Lemma 11.2.8.

For this, we first observe that under (SK) the process Zt = σt satisfies (11.2.29)
and takes its values in the compact sets D =MA or D =M′

A, according to the
case. Next, in view of the definitions of Fj and F lr

j,j ′ , plus the continuity of the
test function F and (11.2.7), by repeated applications of the dominated convergence
theorem we can check that the function g = F lr

j,j ′ satisfies (11.2.28). This completes
the proof. �
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11.2.5 Proof of Lemma 11.2.7

For proving (11.2.26) we can argue component by component, so we assume here
that F is one-dimensional. That is, q = 1 and in case (a) q ′ = 1, whereas in case (b)
q ′ = 0. We only prove the results for An(j), since for An(j) it is the same.

Step 1) The process An(2) is the same as in (5.3.23) except that [t/Δn] and ρcs are
substituted with [t/Δn] − k+ 1 and ρk⊗cs . So the proof of Part B of Sect. 5.3.3 holds

here as well, giving An(2)
u.c.p.=⇒ 0.

Step 2) We use the notation (11.2.23). The variable χ ′′ni is F(i+k−1)Δn -measurable
and E(χ ′′ni |F(i−1)Δn)= 0 by construction. Hence, exactly as in (11.2.38) and right

after this, for proving An(0)
u.c.p.=⇒ 0 it suffices to show that

[t/Δn]∑

i=1

E
(∣∣χni
∣∣2) → 0. (11.2.42)

Combining (11.2.19) and the estimates (11.2.22), we deduce from the definition of
χni that

E

([t/Δn]∑

i=1

∣∣χni
∣∣2
)
≤ Kt

(
φ′C(ε)2 +

1

C2
+ ΔnC

2p

ε2

)
. (11.2.43)

Letting n→∞, then ε→ 0, then C→∞, we deduce (11.2.42), and An(0)
u.c.p.=⇒ 0

is proved.

Step 3) We now start the proof of An(1)
u.c.p.=⇒ 0. The argument is the same as for the

proof of (5.3.25), pages 152–160, except that we argue with the function F on (Rd)k

and thus replace βni and Δni X/
√
Δn by β

n

i and X
n

i , hence θni by θ
n

i =Xni − βni .
The variable θ

n

i is indeed kd-dimensional, with the components

θ
n,j l

i = Δni+j−1X
l

√
Δn

− (σ(i−1)ΔnΔ
n
i+j−1W)

l

√
Δn

,

for j = 1 . . . , k and l = 1, . . . , d . Then, exactly as after (5.3.31), we have a de-
composition θ

n

i = 1√
Δn

∑4
r=1 ζ (r)

n
i , where the d-dimensional variables ζ (r)n,j.i =

(ζ (r)
n,j l
i )1≤l≤d are given by

ζ (1)n,j.i = Δn b(i−1)Δn

ζ (2)n,j.i =
∫

I (n,i+j−1)

(
σ̃(i−1)Δn(Ws −W(i−1)Δn)

)
dWs

ζ (3)n,j.i =
∫

I (n,i+j−1)

(
M ′
s −M ′

(i−1)Δn

)
dWs
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ζ (4)n,j.i =
∫

I (n,i+j−1)
(bs − b(i−1)Δn) ds +

∫

I (n,i+j−1)

(∫ s

(i−1)Δn
b̃′udu
)
dWs

+
∫

I (n,i+j−1)

(∫ s

(i−1)Δn
(̃σu − σ̃(i−1)Δn) dWu

)
dWs. (11.2.44)

We also set

Ani =
{∥∥θni
∥∥> d
(
β
n

i,j ,B
)
/2
}
.

Then, with obvious vector notation (the gradient ∇F is kd-dimensional, and below
∇F(.)θni stands for the usual scalar product), (5.3.32) becomes

F
(
Y
n

i

)− F (βni
) = ∇F (βni

)
θ
n

i +
(
F
(
β
n

i + θni
)− F (βni

))
1Ani

−∇jF
(
β
n

i

)
θ
n

i 1Ani +
(∇jF
(
β
n

i + uni θni
)−∇jF

(
β
n

i

))
θ
n

i 1(Ani )c

where uni is a random number between 0 and 1. Exactly as for (5.3.32), all variables
in the right side above are almost surely well defined.

We still have the decomposition (5.3.33), that is An(1)=∑7
r=1D

n(r), where

Dn(r)t =
[t/Δn]−k+1∑

i=1

δ(r)ni , δ(r)ni = E
(
δ′(r)ni |F(i−1)Δn

)
and

δ′(r)ni = ∇F (βni
)
ζ (r)ni for r = 1,2,3,4

δ′(5)ni = −√Δn ∇F
(
β
n

i

)
θ
n

i 1Ani

δ′(6)ni =
√
Δn
(∇F (βni + uni θni

)−∇F (βni
))
θ
n

i 1(Ani )c

δ′(7)ni =
√
Δn (F

(
β
n

i + θni
)− F (βni

)
1Ani .

Step 4) We replace the definition (5.3.35) of αni by

αni = Δ
3/2
n +E

(∫ (i+k−1)Δn

(i−1)Δn

(‖bs − b(i−1)Δn‖2 + ‖σ̃s − σ̃(i−1)Δn‖2)ds
)
.

(11.2.45)
Then (5.3.36) and (5.3.37) become for any l > 0 (here and below the constants
depend on k, without special mention):

E
(∥∥ζ(1)ni

∥∥l)+E
(∥∥ζ(2)ni

∥∥l)≤KlΔln
E
(∥∥ζ(4)ni

∥∥l)≤Kl Δl−1
n αni , E

(∥∥ζ(3)ni
∥∥l)≤KlΔl/2+(1∧(l/2))n .

(11.2.46)

Next, we set

γ ni =
{

1 if w = 1
φB(β

n

i ) if w < 1
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(in particular in case (a) we have γ ni = 1). When w < 1, we have σt ∈M′
A, hence

conditionally on F(i−1)Δn the kd-dimensional vector β
n

i is centered Gaussian with
a covariance which is bounded, as well as its inverse (by a non-random bound).
Then Lemma 5.3.14 applies in this situation, giving us E((γ ni )

t ) ≤ Kt for all t ∈
(0,1). In view of this, the proof of Lemma 5.3.15 applies without changes other
than notational, apart from Step 2 of that proof. For this step, for any fixed j one
should replace (5.3.44) by

ζ (3)n,j.i = (M ′
(i+j−1)Δn −M ′

(i−1)Δn

)
Δni+j−1W

−
∫

I (n,i+j−1)
σ ′s(Ws −W(i+j−2)Δn) dW

′
s

−
∫

I (n,i+j−1)

∫

E′
δ′(s, z)(Ws −W(i+j−2)Δn)

(
p′ − q′
)
(ds, dz),

and take the augmented filtration defined by F ′t = Ft if t < (i + j − 1)Δn and
F ′t =Ft ∧ σ(Ws : s ≥ 0) otherwise. Then with

W̃n
i = sup

s∈((i−1)Δn,(i+k−1)Δn]
‖Ws −W(i−1)Δn‖

we still have the estimate (5.3.45) for ζ (3)n,j.i , conditionally on F(i+j−2)Δn . If we
do this for all j , we end up with

l ≤ 2 ⇒ E
(∥∥ζ (3)ni

∥∥l |F ′(i−1)Δn

)≤Kl Δl/2n
(
W̃n
i

)l
, (11.2.47)

and the rest of the proof of Lemma 5.3.15 is unchanged.
The proof of Lemma 5.3.16, page 158, also goes true without major changes, due

to the properties (11.2.18)–(11.2.20) of F : since we have here

E
(∥∥βni
∥∥l) ≤ Kl, E

(∥∥θni
∥∥l) ≤ KnΔ

(l/2)∧1
n

for all l ≥ 0, the arguments which all rely upon a repeated use of Hölder’s inequality

and Lemma 5.3.15 are still true. Therefore we obtain that Dn(r)
u.c.p.=⇒ 0 for r =

4,5,6,7.

Step 5) At this stage, it remains to prove only Dn(r)
u.c.p.=⇒ 0 for r = 1,2,3, and this

property is clearly true if we have

r = 1,2,3 ⇒ E
(∇F (βni

)
ζ (r)ni |F(i−1)Δn

) = 0.

For this, it is enough to prove that, for all j = 1, . . . , k and j = 1, . . . , d and r =
1,2,3, we have with G= ∂F/∂xlj :

E
(
G
(
β
n

i

)
ζ (r)

n,j l
i |F(i−1)Δn

) = 0. (11.2.48)
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When r = 3, this property is proved exactly as in Lemma 5.3.17, page 159,

upon taking the augmented filtration (F ′t ) described in Step 4 above: then β
n,j.

i

is F ′(i+j−1)Δn
measurable, whereas as in Step 3 of the proof of Lemma 5.3.15,

page 156, one sees that E(ζ (3)n,j li |F ′(i+j−1)Δn
)= 0, hence (11.2.48) follows.

Finally, suppose that r = 1 or r = 2. Let Ys =W(i−1)Δn+s −W(i−1)Δn which, as
a process, takes its values in the space C

d ′ of all continuous functions from R+ into
R
d ′ . We endow this space with the σ -field Cd ′ generated by all coordinates y �→
y(s) and the Wiener measure PW , which is the law of W , and also the F(i−1)Δn -

conditional law of Y . From the definition of ζ
n,j l

i , we see that this variable is almost
surely equal (and even everywhere equal when r = 1) to L(ω,Y ) for an appropriate
function L on Ω × C

d ′ , which is F(i−1)Δn ⊗ Cd ′ -measurable and is “even” in the
sense that L(ω,−y)= L(ω,y). As forG(β

n

i ), it is also (everywhere) equal to some
function L′(ω,Y ), with the same property as L except that now it is “odd”, that
is L′(ω,−y) = −L(ω,y): this is because F is globally even, so its first partial
derivative is globally odd. Hence the product L′′ = LL′ is odd in this sense.

Now, a version of the conditional expectation in (11.2.48) is given by
∫
L′′(ω, y)×

PW(dy), and since PW is invariant by the map y �→ −y and y �→ L′′(ω, y) is odd,
we obtain (11.2.48). This completes the proof.

11.3 Joint Central Limit Theorems

So far, we have “separate” CLTs for the non-normalized functionals V n(F,X) and
the normalized functionals V ′n(F,X). In some applications, we need a “joint” CLT
for these two functionals, with different test functions and perhaps different numbers
of increments k. And even, in some cases, it is necessary to have a joint CLT for
these, together with the approximate quadratic variation [X,X]n studied in Chap. 5.
In other words, we need an analogue of Theorem 5.5.1, see page 174, in the setting
of the present chapter.

The two test functions are F and F ′, respectively with dimensions q and q ′, and
it is no restriction to suppose that both are defined on (Rd)k with the same k. We set

V
n#
(F,X)t = 1√

Δn

(
V n(F,X)t −

k∑

j=1

fj ∗μt
)

V
′n(
F ′,X
)
t
= 1√

Δn

(
V ′n(F,X)t −

∫ t

0
ρk⊗cs (F )ds

)

(11.3.1)

Z
n#,j l
t = 1√

Δn

([t/Δn]−k+1∑

i=1

Δni X
jΔni X

l − [Xj ,Xl]
t

)

Z
n,jl

t = 1√
Δn

([t/Δn]∑

i=1

Δni X
jΔni X

l − [Xj ,Xl]
Δn[t/Δn]

)
.
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In particular V
n#
(F,X) is as in (11.1.12), and V

′
(F ′,X) as in (11.2.2), and Z

n
as

in (5.4.1).
The joint CLT will be considered in two cases:

case (A): for the variables (V
n#
(F,X)t ,V

′n
(F ′,X)t ,Z

n#
t ), with t fixed

case (B): for the processes (V
′n
(F ′,X),Zn).

Basically, the joint CLT combines the CLTs for the components, and needs a de-
scription of the dependency between the components of the limit. For describing
the “joint” limit we do as in Sect. 5.5, see page 173:

• We define V (F,X) by (11.1.7) and, with the same Rn,j , we set

Z
′′ij
t =

∞∑

p=1

∞∑

n=1

(
ΔXiTp R

j

p,0 +ΔXjTp Rip,0
)

1{Tp≤t}. (11.3.2)

• We consider the R
d2

-valued function on (Rd)k whose components are F
ij
(x1,

. . . , xk) = xi1 xj1 . Then we use the notation Ra(F,G) of (11.2.4) with F and G
being the components of F ′ or those of F ; note that, due to the special form of
F , we have

Ra
(
F
ij
,F

ml) = aimajl + ailajm. (11.3.3)

• Let (V
′
(F ′,X),Z′) be a (q ′ + d2)-dimensional continuous process on the ex-

tended space, which conditionally on F is a centered Gaussian martingale inde-
pendent of all Rp,j and with variance-covariance given by

Ẽ
(
V
′(
F i,X
)
t
V
′(
Fj ,X

) |F)=
∫ t

0
Rcs
(
F i,F j

)
ds

Ẽ
(
V
′(
F i,X
)
t
Z
′lm
t |F)=

∫ t

0
Rcs
(
F i,F

lm)
ds (11.3.4)

Ẽ
(
Z
′ij
t Z

′lm
t |F)=

∫ t

0
Rcs
(
F
ij
,F

lm)
ds.

• Set Z = Z′ +Z′′.
The results are as follows:

Theorem 11.3.1 Let F be a C2 function from (Rd)k into R
q , satisfying (11.1.11),

and let F ′ be a function from (Rd)k into R
q ′ . Assume

• either X satisfies (H) and F ′ is identically 0,
• or F ′ andX satisfy the conditions of Theorem 11.2.1 (in particular, F ′ is globally

even, and (H) still holds).
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Then for each t we have

(
V
n#
(F,X)t ,V

′n(
F ′,X
)
t
,Z

n#
t

) L-s−→ (V (F,X)t ,V ′
(
F ′,X
)
t
,Zt
)
. (11.3.5)

Theorem 11.3.2 If F ′ and X satisfy the conditions of Theorem 11.2.1, we have the
(functional) stable convergence in law

(
V
′n(
F ′,X
)
,Z

n) L-s=⇒ (V ′(F ′,X),Z). (11.3.6)

Proof of Theorems 11.3.1 and 11.3.2 The proof of the two theorems is conducted
together, and it is an extension of the proof of Theorem 5.5.1. We freely use the nota-
tion of the previous sections. It as usual, by localization we assume the strengthened
assumptions (SH), (SK), (SK’), (SK-r), according to the case.

1) Set

Z
′n,j l
t = 1√

Δn

[t/Δn]−k+1∑

i=1

(
d ′∑

u,v=1

σ
ju

(i−1)Δn
σ lv(i−1)ΔnΔ

n
i W

uΔni W
v − cjl(i−1)Δn

)
.

We let G be the (q ′ + d2)-dimensional function on (Rd)k whose components are
(with obvious notation for the labels of components):

Gi(x1, . . . , xk)= F ′i (x1, . . . , xk), Glm(x1, . . . , xk)= F lm(x1).

Lemma 11.2.5 is valid with the function G instead of F ′, and it then takes the form

(
Yn,Z

′n) L-s=⇒ (U ′(G,X),Z′). (11.3.7)

This result is indeed based on Theorem 4.2.1, but we also have a joint conver-
gence with the “jumps”. Namely, as in Theorem 4.3.1 (and with the same proof),
Lemma 11.1.3 can be improved to give

(
Yn,Z

′n
,
((
R(n,p, j)

)
−k+1≤j≤k−1,L(n,p)

)
p≥1

)

L-s−→ (U ′(F ′,X),Z′, ((Rp,j )−k+1≤j≤k−1,Lp
)
p≥1

)
. (11.3.8)

2) We fix the integer m ≥ 1 for this step of the proof. Recall Yn(m), as given
before (11.1.22), and set accordingly

Θ̂n(m)
jl
t =

∑

p∈Pm:Sp≤Δn([t/Δn]−k+1)

(
R(n,p,0)j ΔXlSp +R(n,p,0)l ΔXjSp

)

Θ̂(m)
jl
t =

∑

p∈Pm:Sp≤t

(
R
j

p,0ΔX
l
Sp
+Rlp,0ΔXjSp

)
.
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Then (11.3.8) and the same argument as for deriving (11.1.24) from (11.1.19) give
the following functional convergence, as n→∞:

(
Yn(m),Y n,Z

′n+ Θ̂n(m)) L-s=⇒ (V (F,X′(m)),U ′(F ′,X),Z′ + Θ̂(m)). (11.3.9)

3) We are now in a position to prove (11.3.6). We have (11.3.9) for each m, and

Θ̂(m)
u.c.p.=⇒ Z

′′
as m→∞ is proved as in Step 2 of the proof of Lemma 5.4.12.

Then, assuming that

V
′n(
F ′,X
)− Yn u.c.p.=⇒ 0 ∀T ,η > 0 (11.3.10)

and

lim
m→∞ lim sup

n
P

(
sup
t≤T
∥∥Zn(t−(k−1)Δn)+ −Z

′n
t − Θ̂n(m)t

∥∥> η
)
= 0, (11.3.11)

we deduce that
(
V
′n(
F ′,X
)
t
,Z

n

(t−(k−1)Δn)+
) L-s=⇒ (U ′(F ′,X),Z).

Since U
′
(F ′,X) is continuous we also have the convergence, toward the same

limit, of the sequence (V
′n
(F ′,X)(t−(k−1)Δn)+ ,Z

n

(t−(k−1)Δn)+). This in turn yields
(11.3.6).

So it remains to prove (11.3.10) and (11.3.11). By Lemma 11.2.4 it suf-
fices to prove (11.3.10) when X is continuous, and then this property fol-
lows from Lemma 11.2.7. As for (11.3.11), we observe that with the notation
Z′n,Z′,Θn(m),Θ(m) used in (5.5.9), page 176, we have

Z
′n,ij
t = Z′n,ij

(t−(k−1)Δn)+ +Z
′n,ji
(t−(k−1)Δn)+ , Z

′ij
t = Z′ijt +Z′jit

Θ̂n(m)
ij
t =Θn(m)ij(t−(k−1)Δn)+ +Θn(m)

ij

(t−(k−1)Δn)+ ,

Θ̂(m)
ij
t =Θ(m)ijt +Θ(m)ijt .

Therefore (5.5.12) and the same argument as for deducing (5.5.10) from (5.5.9) give
us (11.3.11).

4) Finally we turn to the proof of (11.3.5). We have seen in (11.1.27) that

V (F,X(m))
u.c.p.=⇒ V (F,X) as m→∞. Moreover, if t is fixed, we have

Z
n#
t −Zn(t−(k−1)Δn)+ =−

1√
Δn

([X,X]t − [X,X]Δn([t/Δn]−k+1)+
) P−→ 0,

where the last convergence is shown in the proof of Theorem 5.4.2, page 172 (this is
proved when k = 1, but the proof is valid for any k). Therefore, in view of (11.3.9),
(11.3.10) and (11.3.11), it remains to show that

lim
m→∞ lim sup

n→∞
P
(
V
n
(F,X)T − Yn(m)T |> η

)= 0

for all t . This is a consequence of (11.1.22) and limn P(Ωn(T ,m))= 1 for allm and
(11.1.28), and therefore the proof is complete. �
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11.4 Applications

We pursue here the two applications started in Chap. 3. For simplicity we consider
the one-dimensional case (d = d ′ = 1) only. We observe the semimartingale X at
all times iΔn within a fixed time interval [0, t]. We also assume that X satisfies, at
least, the following:

We have (K) and
∫ t

0
cs ds > 0 a.s. (11.4.1)

11.4.1 Multipower Variations and Volatility

Again, our aim is to estimate the quantity

A(p)t =
∫ t

0
|σs |p ds, (11.4.2)

mainly when p = 2, on the basis of the discrete observations of XiΔn for all
i = 0, . . . , [t/Δn]. When the process X is continuous, the problem was solved in
Sect. 5.6.

When X jumps, though, these methods do not work, especially in the most in-
teresting case p = 2. However we have seen in Sect. 8.5 that, for example, if p > 0
and k is an integer and

D(X;p,k;Δn)t =
[t/Δn]−k+1∑

i=1

k∏

j=1

∣∣Δni+j−1X
∣∣p/k, (11.4.3)

(the “equal-multipower” variation), then

k >
p

2
⇒ Δ

1−p/2
n D(X;p,k;Δn) u.c.p.=⇒ (mp/k)

k A(p). (11.4.4)

Now, Theorem 11.2.1 allows us to obtain a rate of convergence in (11.4.4), under
appropriate conditions. More precisely, the left side of (11.4.4) is ΔnV ′n(F,X)t for
the function F(x1, . . . , xk) =∏kj=1 |xj |p/k . As mentioned in Example 11.2.2, this

function is C1 (and even C∞) on (R\{0})k and satisfies (11.2.7), and also (11.2.8)
and (11.2.9) with w = 1 ∧ (p/k), and also (11.2.10) with r = r ′ = p/k. So we
require k > p.

In this case, the asymptotic variance for the CLT is easily computed. Indeed,
one has an explicit form for Ra(F,F ) in (11.2.4), which is (after some tedious
calculations):

Ra(F,F )=M(p,k)ap where

M(p,k)= (m2p/k)
k+1+ (m2p/k)

k (mp/k)
2− (2k+1)m2p/k (mp/k)

2k+ (2k−1)(mp/k)2k+2

m2p/k − (mp/k)2 .

(11.4.5)
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If we want Δ1−p/2
n D(X;p,k;Δn)t to be a feasible estimator for the variable

(mp/k)
k A(p)t , we also need a consistent estimator for the asymptotic variance,

which is M(p,k)A(2p)t . For this, we can use again (11.4.4), and the same proof
as for Theorem 5.6.1, page 177, gives us the following, by taking advantage of
Theorem 11.2.1 (note that under our standing assumption (11.4.1) the set ΩWt of
(3.5.10) has probability 1, and thus A(p)t > 0 a.s. for all p > 0):

Theorem 11.4.1 Let p > 0. If X is a (possibly discontinuous) Itô semimartingale
satisfying (11.4.1) and (K’-r) for some r < 1 and if k is an integer satisfying

p < k ≤ p

r
,

then for each t > 0 the random variables

(m2p/k)
k/2 (Δ

1−p/2
n D(X;p,k;Δn)t − (mp/k)k A(p)t )√
M(p,k)Δ

2−p
n D(X;2p,k,Δn)t

converge stably in law to a limit which is N (0,1) and independent of F .

11.4.2 Sums of Powers of Jumps

Here we consider the problem of estimating the quantity

A(p)t =
∑

s≤t
|ΔXs |p

when p > 3. This as such is of doubtful interest for applications, but it plays a
crucial role for the detection of jumps, as we will see in the next subsection. The
condition p > 3 is not needed for consistency, but is crucial for obtaining rates of
convergence.

The previous results provide us with a whole family of possible estimators. In-
deed, fix an integer k and consider the function F on R

k given by

F(x1, . . . , xk) = |x1 + · · · + xk|p,

that is (8.2.5). It is symmetric and satisfies (11.1.11) because p > 3. The associated
function f is f (x)= |x|p , whose first derivative is ∂f (x)= p{x}p , with the nota-
tion {y}p = yp when y ≥ 0 and {y}p =−|y|p when y < 0. More generally with the
notation (11.1.5) we have ∂f(l);j (x)= p{x}p−1 for all j, l.

By Theorem 8.2.1, both variables 1
k
V n(F,X)t and Vn(F,X)t are estimators

for A(p)t , as is also the variable V n(f,X)t (which is V n(f,X)t = V n(F,X)t =
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Vn(F,X)t if we take k = 1). The normalized “estimation errors” are then

E(p, k)n = 1√
Δn

(
1

k
V n(F,X)t −A(p)t

)

E(p, k)n = 1√
Δn

(
Vn(F,X)t −A(p)t

)
.

(11.4.6)

Theorem 11.1.2 says that

E(p, k)n
L-s−→

E(p, k)= p
k

∞∑

n=1

{ΔXTn}p−1(kRn,0 +
k−1∑

j=1

(k − j)(Rn,j +Rn,−j )1{Tn≤t}

E(p, k)n
L-s−→

E(p, k)= p
∞∑

n=1

{ΔXTn}p−1

(
k∑

j=1

k∑

l=1

Rin,l−j 1{Ln=j−1}

)
1{Tn≤t}

respectively, where {x}q = |x|qsign(x). The associated F -conditional variances are

Ẽ
(
E(p, k)2 |F) = (2k2 + 1)p2

6k

∑

s≤t
|ΔXs |2p−2(cs− + cs),

(11.4.7)

Ẽ
(
E(p, k)2 |F) = kp2

2

∑

s≤t
|ΔXs |2p−2(cs− + cs).

It is interesting to see that (11.4.8) follows from (5.1.5), without resorting to
Theorem 11.1.2 at all: indeed Vn(F,X) is nothing else than V n(f,X), but for the
regular discretization scheme with stepsize kΔn, so, taking into account the fact that
one normalizes by 1√

Δn
to get the limit, we see that (11.4.8) is exactly the same as

(5.1.5) in this case.
We can compare the variances. The following inequalities are simple:

Ẽ
(
E(p,1)2 |F) ≤ Ẽ

(
E(p, k)2 |F) ≤ Ẽ

(
E(p, k)2 |F).

Therefore it is always best (asymptotically) to use the simple estimator V n(f,X)t .
As to the ratio of the variance of E(p, k) over the variance of E(p, k), it decreases
from 1 to 2/3 as k increases from 1 to ∞: this means that if we need to use an
estimator with k ≥ 2, it is always best to use 1

k
V n(F,X)t , and the advantage over

Vn(F,X)t is bigger when k is large.
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11.4.3 Detection of Jumps

Now we turn to detection of jumps, as started in Sect. 3.5.2, page 93. With k ≥ 2 an
integer, p > 3, and F and f as above, we introduce two different test statistics:

S(p, k)n = V n(F,X)t

kV n(f,X)t
, S(p, k)n = Vn(F,X)t

V n(f,X)t
, (11.4.8)

Note that S(p, k)n is the same as Sn in (3.5.6). Recalling the two subsets Ω(c)t and
Ω
(d)
t on which the path s �→Xs on [0, t] is continuous or not, and recalling (11.4.1),

we have

S(p, k)n
P−→
{

1 on the set Ω(d)t
kp/2−1 on the set Ω(c)t ,

according to Theorem 3.5.1. The very same proof as for this theorem, based upon
Theorems 8.2.1 and 8.4.1, shows that, under the same assumptions, we have the
same result for S(p, k)n:

S(p, k)n
P−→
{

1 on the set Ω(d)t
kp/2−1 on the set Ω(c)t .

To establish the distributional asymptotic behavior of these test statistics,
we need a joint Central Limit Theorem for the pairs (V n(f,X)t ,V n(F,X)t )
or (V n(f,X)t ,Vn(F,X)t ). This amounts to a CLT for the pairs of variables
(E(p,1)n,E(p, k)n) and (E(p,1)n,E(p, k)n), with the notation (11.4.6).

Proposition 11.4.2 In the above setting, the following holds:
a) The pair (E(p,1)n,E(p, k)n) converges stably in law to a 2-dimensional vari-

able (Z,Z) which, conditionally on F , is centered with covariance

Ẽ
(
Z2 |F) = Ẽ(ZZ |F) = p2

2

∑

s≤t
|ΔXs |2p−2 (cs− + cs)

(11.4.9)

Ẽ
(
Z

2 |F) = (2k2 + 1)p2

6k

∑

s≤t
|ΔXs |2p−2(cs− + cs).

b) The pair (E(p,1)n,E(p, k)n) converges stably in law to a 2-dimensional vari-
able (Z, Z̃) which, conditionally on F , is centered, with

Ẽ
(
Z2 |F) = Ẽ(Z Z̃ |F) = p2

2

∑

s≤t
|ΔXs |2p−2 (cs− + cs)

(11.4.10)

Ẽ
(
Z̃2 |F) = kp2

2

∑

s≤t
|ΔXs |2p−2(cs− + cs).
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Moreover when the processesX and σ have no common jumps, the variables (Z,Z)
and (Z, Z̃) are F -conditionally Gaussian.

Proof a) Consider the two-dimensional function G on (Rd)k whose first com-
ponent is G1 = F and second component is G2(x1, . . . , xk) = |x1|p . We have
V n(G1,X)t = V n(F,X)t and V n(G2,X)t = V n(f,X)([t/Δn]−k+1)Δn .

Set tn = ([t/Δn] − k + 1)Δn. We have tn→ t and the limiting process Z(f,X)
of (5.1.4) is a.s. continuous at time t . Then we deduce from Theorem 5.1.2 that

1√
Δn

(
V n(f,X)tn −A(p)Δn[tn/Δn]

)− 1√
Δn

(
V n(f,X)t −A(p)Δn[t/Δn]

)

converges in law to 0, hence also in probability. Moreover, we have (5.1.25) with t ,

and also with tn (same proof), so (V n(G2,X)t − V n(f,X)t )/√Δn P−→ 0. In other
words, proving (a) amounts to proving
(

1√
Δn

(
V n
(
G2,X

)
t
−A(p)t

)
,

1√
Δn

(
V n
(
G1,X

)
t
− kA(p)t

)) L-s−→ (Z,Z).

(11.4.11)
Now, the function G satisfies (11.1.11), and g1

j = f for all j , and g2
1 = f and

g2
j = 0 when j = 2, . . . , k. Moreover g′1j (l)(x)= g′21(1)(x)= p{x}p−1 for all j, l and

also g′2
j (l)
= 0 when j and l are not both equal to 1. Therefore (a) of Theorem 11.1.2

yields that the pair of variables (11.4.11) converge stably in law to V (G,X)t , which
is F -conditionally centered, and whose components and Z = V (G2,X)t and Z =
1
k
V (G1,X)t satisfy (11.4.9) by a simple computation based on (11.1.9).

b) Here we consider the two-dimensional function G on (Rd)k with compo-
nents G1 = F and G2(x1, . . . , xk) = |x1|p + · · · + |xk|p , so G is symmetrical. We
have Vn(G1,X)t = Vn(F,X)t and Vn(G2,X)t = V n(f,X)(kΔn[t/kΔn]. Exactly as

above, we have (Vn(G2,X)t − V n(f,X)t )/√Δn P−→ 0, so we need to prove
(

1√
Δn

(
Vn
(
G2,X

)
t
−A(p)t

)
,

1√
Δn

(
Vn
(
G1,X

)
t
−A(p)t

)) L-s−→ (Z, Z̃).

(11.4.12)
The function G satisfies (11.1.11), and g1

j = g2
j = f for all j , and g′1

j (l)
(x) =

g′2j (j)(x) = p{x}p−1 for all j, l and also g′2j (l) = 0 when j �= l. Therefore (b)
of Theorem 11.1.2 yields that the variables (11.4.12) converge stably in law to
(Z, Z̃) = V(G,X)t , which is F -conditionally centered and satisfies (11.4.10) be-
cause of (11.1.10). �

This result becomes degenerate (all limits vanish) when X is continuous. In this
case, we should replace E(p, k)n and E(p, k)n by

E′(p, k)n = 1√
Δn

(
Δ

1−p/2
n

k
V n(F,X)t − kp/2−1mpA(p)t

)
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E ′(p, k)n = 1√
Δn

(
Δ

1−p/2
n Vn(F,X)t − kp/2−1mpA(p)t

)

(we use here the notation (11.4.2)). To express the result, we again need some nota-
tion. Recall that d = 1 here. We then set

Mp(k, l)=R1(F,G), where

F(x1, . . . , xk)= |x1 + · · · + xk|p, G(x1, . . . , xk)= |x1 + · · · + xl |p

M
′
p(k)= E

(|U |p |U +√k− 1V |p), where
U and V are independent N (0,1).

(11.4.13)

There is no explicit form for these quantities, unless p is an even integer or when
k = l = 1, in which case Mp(1,1)=m2p −m2

p and M
′
p(1)=m2p .

Proposition 11.4.3 In the above setting, and if further X is continuous, we have:
a) The pair (E′(p,1)n,E′(p, k)n) converges stably in law to a 2-dimensional

variable (Z′,Z′) which, conditionally on F , is centered Gaussian with covariance

Ẽ
(
Z′2 |F) = Mp(1,1)A(2p)t =

(
m2p −m2

p

)
A(2p)t

Ẽ
(
Z′Z′ |F) = 1

k
Mp(k,1)A(2p)t

Ẽ
(
Z
′2 |F) = 1

k2
Mp(k, k)A(2p)t .

b) The pair (E′(p,1)n,E ′(p, k)n) converges stably in law to a 2-dimensional
variable (Z′, Z̃′) which, conditionally on F , is centered Gaussian with covariance

Ẽ
(
Z′2 |F) = (m2p −m2

p

)
A(2p)t

Ẽ
(
Z′ Z̃′ |F)= (M ′

p(k)− kp/2m2
p

)
A(2p)t

Ẽ
(
Z̃′2 |F)= kp−1(m2p −m2

p

)
A(2p)t .

(This proposition does not require p > 3, it holds for all p > 1, and even for
p ∈ (0,1] when σs and σs− never vanish).

Proof a) We use the same functionG and times tn as in (a) of the previous proof. We
have E′(p, k)n = 1

k
V
′n
(G1,X)t , where we use the notation (11.2.2). We also have

E′(p,1)n = V ′n(G2,X)tn +αn, where αn = 1√
Δn
mp
∫ t
tn
c
p/2
s ds. As in the previous

proof again, V
′n
(G2,X)tn − V ′n(G2,X)t

P−→ 0, and obviously αn→ 0 because
t − tn ≤ kΔn. Therefore (k E′(p, k)n,E′(p,1)n) has the same stable limit in law
as V

′n
(G,X)t . The assumptions of (a) of Theorem 11.2.1 being fulfilled, the result

follows from this theorem and the definition (11.4.13).
b) Now we use G as in (b) of the previous proof, and again the result is a conse-

quence of the same Theorem 11.2.1, part (b). �
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Coming back to the variables S(p, k)n and S(p, k)n of (11.4.8), we have the
following behavior.

Theorem 11.4.4 Assume (11.4.1). With the notation ut = λ({z : δ(t, z) �= 0}) and
T = inf(t : ∫ t0 us ds =∞), assume also that the process

wt =
{∫

{|δ(t,z)|≤1} δ(t, z)λ(dz) if ut <∞
+∞ otherwise.

(11.4.14)

is Lebesgue-almost everywhere equal on the interval [0, T ] to an R+-valued càdlàg
(resp. càglàd) process if b is càdlàg (resp. càglàd). Then we have:

a) The variables 1√
Δn
(S(p, k)n − 1) and 1√

Δn
(S(p, k)n − 1) converge stably in

law, in restriction to the set Ω(d)t on which X has at least one jump on the interval
[0, t], to two variables S(p, k) and S(p, k) which are F -conditionally centered with
conditional variances

Ẽ
(
S(p, k)2 |F)= (k−1)(2k−1)

6k

∑
s≤t |ΔXs |2p−2 (cs−+cs )
(
∑
s≤t |ΔXs |p)2

Ẽ
(
S(p, k)2 |F)= k−1

2

∑
s≤t |ΔXs |2p−2 (cs−+cs)
(
∑
s≤t |ΔXs |p)2 .

⎫
⎪⎬

⎪⎭
(11.4.15)

Moreover when the processes X and σ have no common jumps, the variables
S(p, k) and S(p, k) are F -conditionally Gaussian.

b) The variables 1√
Δn
(S(p, k)n − kp/2−1) and 1√

Δn
(S(p, k)n − kp/2−1) con-

verge stably in law, in restriction to the set Ω(c)t on which X is continuous on the
interval [0, t], to two variables S′(p, k) and S ′(p, k), which are F -conditionally
centered Gaussian with conditional variances

Ẽ
(
S′(p, k)2 |F)= Mp(k,k)−2kp/2Mp(k,1)+kpMp(1,1)

k2m2
p

A(2p)t
(A(p)t )2

Ẽ
(
S ′(p, k)2 |F)= kp−2((k+1)m2p+(k−1)m2

p)−2kp/2−1M
′
p(k)

m2
p

A(2p)t
(A(p)t )2

.

⎫
⎪⎬

⎪⎭
(11.4.16)

Proof The first claim (a) is an application of Proposition 11.4.2, upon using the
so-called “delta method” in statistics. The second claim (b) follows analogously
from Proposition 11.4.3, at least when X is continuous, that is when Ω(c)t =Ω . To
accommodate the case Ω(c)t �=Ω (which is the real case of interest), we do exactly
as in the proof of Theorem 3.5.1, whose notation is used, see page 94. The only
change is that we need the semimartingales X(q) of that proof to satisfy (11.4.1),
and for this the only thing to prove is that the process b − w is either càdlàg or
càglàd on [0, T ].

For this we observe that we can modify the function z �→ δ(ω, t, z) on a set of
times t having a vanishing Lebesgue measure, without altering (11.0.1). Therefore
our assumption implies that, upon choosing a “good” version of δ, one may suppose
that w itself is càdlàg (resp. càglàd) when b is càdlàg (resp. càglàd). This completes
the proof. �
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We also have a standardized version for these results, exactly as in Theo-
rem 11.4.1. That is, we can find positive variables Γn, depending only on the values
XiΔn for 0≤ i ≤ [t/Δn] at stage n, and such that

S(p, k)n − 1

Γn

L-s−→ S on Ω(c)t , where

S is F-conditionally centered with variance 1

S(p, k)n − kp/2−1

Γn

L-s−→ S onΩ(d)t , where

S is F-conditionally N (0,1)

(11.4.17)

and the same for S(p, k)n. Of course Γn is not the same in the two statements above,
and it depends on (p, k). More precisely, for the first case above, (Γn)2 should
converge in probability to the first conditional variance in (11.4.15), in restriction to
the set Ω(d)t , and for the second case it should converge in probability to the first
conditional variance in (11.4.16), in restriction to the set Ω(c)t .

There are in fact many choices for Γn, all relying upon “estimators” for the
random quantities appearing in the numerator and the denominator of the right
sides of (11.4.15) and (11.4.16). For A(p)t and A(2p)t we can use the variables
D(X;q, k′;Δn)t of (11.4.3) (with q = p and q = 2p and a suitable choice of k′),
or those given in Chap. 9. For A(p)t , appearing in the denominator of (11.4.15) we
may use the square of

∑[t/Δn]
i=1 |Δni X|p . For the numerator of (11.4.15) we may use

the estimators provided in Theorem 9.5.1.
We are now ready to construct the test. At each stage n, and based upon the

statistics Sn = S(p, k)n or Sn = S(p, k)n, the critical (rejection) region for the null
hypotheses Ω(d)t and Ω(c)t respectively will be

Cdn = {Sn > 1+ γn}, Ccn =
{
Sn < k

p/2−1 − γ ′n
}
.

Here γn and γ ′n are positive “observable” variables (that is, depending on XiΔn for
i = 0,1, . . . only), and chosen so that the asymptotic level of either family of tests
is some prescribed value α ∈ (0,1).

Consider for example the second test, for which the normalized variables (Sn −
kp/2−1)/Γn are asymptotically N (0,1) (conditionally under the null hypothesis
Ω
(c)
t ), where Γn is as in (11.4.17). We can then take γn = Γnzα , where zα is the

α-quantile of N (0,1), that is the number such that P(U > zα) = α, where U is
N (0,1). For the first test, the suitably normalized (Sn − 1)/Γn is asymptotically
centered with variance 1, but no longer necessarily Gaussian, so we can replace zα
by a quantity constructed using the Markov inequality, which is of course too large,
or we may do “conditional simulations” to get a hand on the correct value of the
α-quantile.

In any case, the precise definition of the asymptotic level, and even more of the
asymptotic power, would take us too far here, and leads to rather intricate problems.
For more information, the reader can consult Aït-Sahalia and Jacod [2] for tests
based on S(p, k)n, whereas Fan and Fan [32] have introduced the (more accurate)
tests based on S(p, k)n.
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Comments: We have in fact a whole family of tests, according to whether we choose
S(p, k) or S(p, k), and according to the values of k and p. Comparing two tests with
different k’s and/or p’s is a delicate matter, and comparing the asymptotic variances
of the test statistics is of course not enough: if k′p′/2−1 > kp/2−1 the two possible
limit values of S(p′, k′)n are easier to distinguish for S(p′, k′)n than for S(p, k)n,
but the asymptotic variance may also be bigger, for one of the two tests, or for both.

Let us just say that, and in restriction to Ω(d)t , the ratio of the asymptotic vari-
ances of S(p, k)n and S(p, k)n is 2k−1

3k , which increases from 1/2 when k = 2 to 2/3
when k increases to infinity. This suggests that one should preferably use S(p, k) if
one wants to construct a test on the basis of this theorem.
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Chapter 12
The Central Limit Theorem for Functions
of an Increasing Number of Increments

As the name suggests, the topic of this chapter is the same as the previous one,
except that the number of successive increments involved in each summand of the
functionals is no longer fixed but goes to infinity as the time step goes to 0.

Only regular discretization schemes are considered. The d-dimensional Itô semi-
martingale X has the Grigelionis decomposition

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt , (12.0.1)

where W is a d ′-dimensional Wiener process and p is a Poisson measure with com-
pensator q(dt, dz) = dt ⊗ λ(dz), and c = σσ�. We also assume at least Assump-
tion (H), that is

Assumption (H) In (12.0.1), bt is locally bounded and σt is càdlàg, and ‖δ(ω, t, z)‖
∧ 1≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn) is a localizing sequence of
stopping times and each function Γn satisfies

∫
Γn(z)

2λ(dz) <∞.

Before starting, we recall the general setting of Chap. 8. We have a sequence kn
of integers satisfying

kn → ∞, un = knΔn → 0. (12.0.2)

We define the re-scaled processes X(n, i), with time ranging through [0,1], and the
“discretized” versions X(n, i)(n) of those, along the time step 1/kn, according to

X(n, i)t =X(i−1)Δn+tun −X(i−1)Δn, X(n, i)
(n)
t =X(n, i)[knt]/kn .

Then X(n, i)(n) only involves the increments ΔnjX for j = 0, . . . , kn− 1. The func-
tionals of interest here are
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V n(Φ,kn,X)t =
[t/Δn]−kn+1∑

i=1

Φ
(
X(n, i)(n)

)

V ′n(Φ, kn,X)t = Δn

[t/Δn]−kn+1∑

i=1

Φ
(
X(n, i)(n)/

√
un
)
,

whereΦ is a function on the Skorokhod space Dd1 (recall the comments after (8.1.8),
about the Skorokhod topology on this space).

As for functionals depending on a single increment, the central limit theorems
require some kind of differentiability of the function Φ . Differentiability for a func-
tion on D

d
1 is not a trivial notion, and to avoid many complications we will restrict

ourselves to a very special situation. Namely, we say that Φ is a moving average
function if it has the form

Φ(x) = f
(∫
x(s)G(ds)

)
, where

• f is a continuous function on R
d

• G is a signed finite measure on [0,1] with G({0})= 0.

⎫
⎬

⎭ (12.0.3)

Such a function Φ on D
d
1 satisfies the basic assumption (8.1.13), page 230. For a

better understanding of this class of functions, let us consider the left-continuous
function

g(s) = G
([s,1]). (12.0.4)

A simple computation shows that the ith summand in V n(Φ,k,X)t is

Φ
(
X(n, i)(n)

) = f

(
kn∑

j=1

g(j/kn)Δ
n
i+j−1X

)
.

For example, if G is the Dirac mass at 1, then Φ(X(n, i)(n)) is equal to
f (X(i−1+kn)Δn −X(i−1)Δn), which reduces to Φ(X(n, i)(n))= f (Δni X) when fur-
ther kn = 1 (a case excluded in this chapter, however).

Although very restrictive in a sense, this setting covers many statistical applica-
tions, especially in the case when there is an observation noise: see Chap. 16.

The content of this chapter is formally new, although partly contained in the
paper [63] of Jacod, Podolskij and Vetter, and its main motivation is to serve as an
introduction to Chap. 16 on noise.

12.1 Functionals of Non-normalized Increments

12.1.1 The Results

Below, the test function Φ is always a moving average function. As soon as the
function f in (12.0.3) satisfies f (z)= o(‖z‖2) as z→ 0 in R

d (the same as in (A-a)
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of Theorem 3.3.1), for each t > 0 we have by Theorem 8.3.1:

1

kn
V n(Φ,kn,X)t = 1

kn

[t/Δn]−kn+1∑

i=1

f

(
kn∑

j=1

g(j/kn)Δ
n
i+j−1X

)

P−→
∑

s<t

∫ 1

0
f
(
g(u)ΔXs

)
du (12.1.1)

(we do not have Skorokhod convergence here). In this formulation the measure G
has disappeared and only the function g shows up, but it is important that g be
left-continuous with bounded variation.

In particular, in the one-dimensional case d = 1, we get when p > 2:

1

kn

[t/Δn]−kn+1∑

i=1

∣∣∣∣∣

kn∑

j=1

g(j/kn)Δ
n
i+j−1X

∣∣∣∣∣

p
P−→
(∫ 1

0

∣∣g(u)
∣∣p du
)
∑

s<t

|ΔXs |p.

Here we aim to a CLT associated with (12.1.1), and as usual we give a multi-
dimensional result. That is, we consider an R

q -valued function Φ on D
d , whose

coordinates Φl are of the form (12.0.3) with the associated measures Gl and func-
tions f l and gl . Moreover, the functions f l should have a very special form, namely
they should be linear combinations of positively homogeneous functions, as intro-
duced before (3.4.3): recall that h is a positively homogeneous function with degree
p > 0 if it satisfies

x ∈R
d , λ≥ 0 ⇒ h(λx)= λp h(x), or equivalently h(x)= ‖x‖p h(x/‖x‖).

This is of course very restrictive; for example if d = 1 this is equivalent to saying
that h(x) = α+xp for x ≥ 0 and h(x) = α−(−x)p if x < 0, for α± arbitrary reals.
In any dimension, it implies h(0)= 0.

The “rate of convergence” will be
√
un, so we are interested in the convergence

of the q-dimensional process Yn(X) with components

Yn(X)lt =
1√
un

(
1

kn

[t/Δn]−kn+1∑

i=1

f l

(
kn∑

j=1

gl(j/kn)Δ
n
i+j−1X

)

−
∑

s≤t

∫ 1

0
f l
(
gl(u)ΔXs

)
du

)
(12.1.2)

when each f l is a linear combination of positively homogeneous functions, hence
in particular f l(0)= 0.

We have to describe the limiting process, which again is rather tedious. We begin
with some notation. We assume that each function f l is C1 on R

d , and we set for



342 12 CLT: Functions of an Increasing Number of Increments

x ∈R
d and t ∈ [0,1] and j, j ′ = 1, . . . , q and i, i′ = 1, . . . , d :

h−(x, t)ji =
∫ t

0 ∂if
j (gj (s + 1− t)x) gj (s) ds

h+(x, t)ji =
∫ 1
t
∂if

j (gj (s − t)x) gj (s) ds
H−(x)jj

′
ii′ =

∫ 1
0 h−(x, t)

j
i h−(x, t)

j ′
i′ dt

H+(x)jj
′

ii′ =
∫ 1

0 h+(x, t)
j
i h+(x, t)

j ′
i′ dt.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(12.1.3)

For i, i′ fixed, the Rq⊗R
q -valued functionH±ii′ on R

d is locally bounded and takes
its values in the set M+

q×q of all q × q symmetric nonnegative matrices. Moreover,

the assumptions made on f below will imply that |Ht(x)jj
′

ii′ | = o(‖x‖4) as x→ 0. In
this case, and recalling c = σσ ∗, the following formulas define two M+

q×q -valued

processes ξs = (ξ jj
′

s ) and Ξt = (Ξjj
′

t ), the second one being non-decreasing for the
strong order in M+

q×q :

ξ
jj ′
s =

d∑

i,i′=1

(
cii

′
s−H−(ΔXs)

jj ′
ii′ + cii

′
s H+(ΔXs)

jj ′
ii′
)
, Ξt =

∑

s≤t
ξs . (12.1.4)

This is enough to characterize the limiting process, which will be as follows:

Y(X) is defined on a very good filtered extension (Ω̃, F̃, (F̃t )t≥0, P̃) of
(Ω,F , (Ft )t≥0,P) and, conditionally on F , is a purely discontinuous

centered Gaussian martingale with Ẽ(Y (X)
j
t Y (X)

i′
t |F)=Ξjj

′
t .

⎫
⎬

⎭

(12.1.5)
As usual, it is convenient to give a “concrete” realization of this limit. To this

end, we consider an auxiliary space (Ω ′,F ′,P′) endowed with a sequence (Ψn)n≥1
of independent q-dimensional variables, standard centered normal. We also con-
sider an arbitrary weakly exhausting sequence (Tn)n≥1 for the jumps of X (see
after (5.1.1), page 126). The very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of
(Ω,F , (Ft )t≥0,P) is defined by (4.1.16), page 104, as

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ) and such that
Ψn is F̃Tn measurable for all n.

We also need a “square-root” of the matrix-valued process ξ , that is a R
q ⊗ R

q -

valued process αt = (αjlt )1≤j,l≤q which is optional and satisfies
∑q

l=1 α
jl
t α

j ′l
t =

ξ
jj ′
t . Since Ξt above is finite-valued, Proposition 4.1.3, page 101, implies that the

following process

Y(X)t =
∑

n≥1: Tn≤t
αTnΨn (12.1.6)

is well defined on the extended space and satisfies (12.1.5).
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Remark 12.1.1 We can make another, more concrete but “high-dimensional”,
choice for αt . The matrices H±(x) admit a measurable (in x) (qd) × (qd)-
dimensional square-root H̃±(x) in the sense that

H±(x)jj
′

ii′ =
q∑

l=1

d∑

r=1

H̃±(x)jlir H̃±(x)
j ′l
i′r .

This procedure is purely non-random. Then in (12.1.6) we take independent stan-
dard centered Gaussian variables Ψn which are qdd ′-dimensional, instead of being
q-dimensional, and then we use (12.1.6) with the following choice of αt (which now
is Rq ⊗R

qdd ′ -valued):

α
j,lrv
t =

q∑

i=1

(
H̃−(ΔXt)jlir σ

iv
t− + H̃+(ΔXt)jlir σ ivt

)
.

Theorem 12.1.2 Assume (H), and let f be a q-dimensional function on R
d , whose

components are linear combinations of positively homogeneous C2 functions with
degree strictly bigger than 3. For j = 1, . . . , q , let Gj be finite signed measures
supported by (0,1], the associated functions gj by (12.0.4) being all Hölder with
some index θ ∈ (0,1]. Finally, assume that

un = knΔn → 0, k2θ+1
n Δn → ∞. (12.1.7)

Then for each t > 0 the q-dimensional variables Yn(X)t defined by (12.1.2) con-
verge stably in law to the variable Y(X)t which is the value at time t of the process
characterized by (12.1.5), or equivalently defined by (12.1.6).

Remark 12.1.3 When f is a linear combination of r positively homogeneous C2

functions with degrees p1, . . . , pr , saying that pi > 3 for all i (that is, the assump-
tion in the theorem) is equivalent to saying that

f (0) = ∂if (0) = 0, ∂2
ij f (x) = o

(‖x‖) as ‖x‖→ 0. (12.1.8)

This is exactly the same condition as for the CLT for V n(f,X).
The fact that f is a linear combination of r positively homogeneous functions

will be needed, in a crucial way, in the proof of Lemma 12.1.8 below.

Remark 12.1.4 The second condition in (12.1.7) may look strange. It comes
from the last—centering—term in (12.1.2): we have to approximate the integral∫ 1

0 f
l(gl(u)ΔXs)du by Riemann sums with stepsize 1/kn, at a rate faster than

√
un.

Now, under our assumptions the function u �→ f l(gl(u)ΔXs) is Hölder with index
θ , so the necessary rate is achieved only under (12.1.7).

Upon replacing the last term in (12.1.2) by

∑

s≤t

1

kn

kn∑

r=1

f l
(
gl(r/kn)ΔXs

)
, (12.1.9)

we would obtain the above CLT with no conditions on kn except (12.0.2).
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Remark 12.1.5 When all measures Gj equal the Dirac mass at 1, and with kn = 1,
the process Yn(X) is exactly the process 1√

Δn
(V n(f,X)− f ∗ μ) of (5.1.7), and

this is the case even if we replace the last centering term in (12.1.2) by (12.1.9).
However, the limit obtained in Theorem 5.1.2, page 127, is not the same than the
limit we would obtain if Theorem 12.1.2 were true for kn = 1, and for example the
latter is always F -conditionally Gaussian, whereas the former is so only when the
processes X and σ do not jump at the same times. The conclusion is that, even with
the version using (12.1.9), the assumption kn→∞ is crucial.

12.1.2 An Auxiliary Stable Convergence Result

The localization lemma 4.4.9 applies here, so instead of (H) we assume (SH), that is,
the processes b and σ and X are bounded, and ‖δ(ω, t, z)‖ ≤ Γ (z) with Γ bounded
and
∫
Γ (z)2λ(dz) <∞.

For any R
d -valued process U we write

U
(
gj
)n
i
=

kn∑

r=1

gj
(
r

kn

)
Δni+r−1U. (12.1.10)

The components of U(gj )ni are denoted by U(gj )n,vi for v = 1, . . . , d . There is
another way to write these variables, when U is a semimartingale. Namely, if we set

g
j
n(t) =

kn∑

r=1

gj (r/kn)1((r−1)Δn,rΔn](t) (12.1.11)

(those are step functions on R), we have

U
(
gj
)n
i
=
∫ (i−1)Δn+un

(i−1)Δn
g
j
n

(
s − (i − 1)Δn

un

)
dUs. (12.1.12)

Below we make use of the notation of Sect. 4.4.2: we set Am = {z : Γ (z) >
1/m}. We choose the weakly exhausting sequence for the jumps of X to be the
sequence (Sp) defined in (4.3.1), that is

(Sp)p≥1 is a reordering of the double sequence (S(m, j) :m,j ≥ 1),
where S(m,1), S(m,2), . . . are the successive jump times
of the process 1{Am\Am−1} ∗ p.

⎫
⎬

⎭

Next, similar to (4.4.20), we set

b(m)t = bt −
∫

Am∩{z:‖δ(t,z)‖≤1}
δ(t, z)λ(dz)

X(m)t =X0 +
∫ t

0
b(m)s ds +

∫ t

0
σs dWs + (δ 1Acm) � (p− q)t (12.1.13)
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X′(m)=X−X(m) = (δ 1Am) � p,

whereas we slightly modify (4.4.21) by setting

Ωn(T ,m)= the set on which the jumps of X′(m) in [0, T ] are more
than un apart, and no such jump occurs in [0, un] nor,
in [T − un,T ], and ‖X(m)t+s −X(m)t‖ ≤ 2/m
for all t ∈ [0, T ], s ∈ [0, un],

(12.1.14)

so we still have for all m≥ 1:

P
(
Ωn(T ,m)

) → 1 as n→∞. (12.1.15)

Finally, we define the q-dimensional variables R(n,p) as follows: with i(n,p)
being the unique integer with i(n,p)Δn < Sp ≤ (i(n,p)+ 1)Δn, we set (recall that
X(g) is defined by (12.1.10) with U =X)

R(n,p)j = 1

kn
√
un

i(n,p)∑

l=(i(n,p)−kn+1)∨1

(
f j
(
X
(
gj
)n
l

)

− f j
(
gj
(
i(n,p)− l + 1

kn

)
ΔXSp

))
. (12.1.16)

The aim of this subsection is to prove the following key proposition:

Proposition 12.1.6 Assume (SH) and the hypotheses of Theorem 12.1.2 about f
and the gj ’s. Then, with αt and Ψp as in (12.1.6), we have

(
R(n,p)

)
p≥1

L-s−→ (Rp)p≥1, where Rp = αSp Ψp. (12.1.17)

The proof follows the same scheme as for Proposition 4.4.10, but it is technically
more demanding, and we divide it into a series of lemmas. Before starting, we recall
that (as in Theorem 4.3.1 for example) it is enough to prove

(
R(n,p)

)
1≤p≤P

L-s−→ (Rp)1≤p≤P (12.1.18)

for any finite P . Below we fix P , as well as the smallest integer m such that for any
p = 1, . . . ,P we have Sp = S(m′, j) for somem′ ≤m and some j ≥ 1. The process
X(m) associated with m by (12.1.13) will play a crucial role.

To begin with, we put for x ∈R
d , 1≤ j ≤ q and 1≤ l ≤ d and 1≤ r ≤ kn:

h−(x, j, l)nr =
1

kn

r∑

u=1

∂lf
j

(
gj
(
u+ kn − r

kn

)
x

)
gj
(
u

kn

)

(12.1.19)

h+(x, j, l)nr =
1

kn

kn∑

u=1+r
∂lf

j

(
gj
(
u− r
kn

)
x

)
gj
(
u

kn

)
.
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Next, for 1≤ v ≤ d ′, and with the convention Δni Y = 0 when i ≤ 0, we set

z
n,j lv
p− (x)= 1√

un

kn−1∑

r=1

h−(x, j, l)nr Δni(n,p)−kn+rW
v,

(12.1.20)

z
n,j lv
p+ (x)= 1√

un

kn−1∑

r=1

h+(x, j, l)nr Δni(n,p)+rW
v,

z
n,j
p−(x)=

1√
un

kn−1∑

r=1

d∑

l=1

h−(x, j, l)nr Δni(n,p)−kn+rX(m)
l,

(12.1.21)

z
n,j
p+(x)=

1√
un

kn−1∑

r=1

d∑

l=1

h+(x, j, l)nr Δni(n,p)+rX(m)
l,

We end this series of notation by introducing the smallest filtration (Gt ) onΩ which
contains (Ft ) and such that Sp is G0 measurable for all p ≤ P : this is the same as
in Theorem 4.3.1 (with P instead of l), and we know that W is a (Gt )-Brownian
motion, and the representation (12.1.13) for X(m) is the same relative to (Ft ) and
to (Gt ).

Lemma 12.1.7 Assume (SH) and the hypotheses of Theorem 12.1.2 about f and
the gj ’s. Then for each p ≤ P we have

R(n,p)j − (zn,jp−(ΔXSp)+ zn,jp+(ΔXSp)
) P−→ 0. (12.1.22)

Proof It is enough to prove (12.1.22) on the set {un < Sp < T } for T arbitrary large.
So below T is fixed, as well as j , and we may suppose that i(n,p)≥ kn.

On the setΩn(T ,m)∩ {Sp < T } we have Δni X =Δni X(m) if i(n,p)− kn+ 1≤
i < i(n,p) and Δni X =Δni X(m)+ΔXSp when i = i(n,p), where X(m) is given
by (12.1.13). Hence on Ωn(T ,m) ∩ {Sp < T }, and by virtue of (12.1.10), the lth
summand in (12.1.16) is

f j
(
gj
(
i(n,p)− l+1

kn

)
ΔXSp +X(m)

(
gj
)n
l

)
− f j
(
gj
(
i(n,p)− l+1

kn

)
ΔXSp

)
.

A Taylor expansion shows that this difference is Bnl + B ′nl , where the leading term
is

Bnl =
d∑

v=1

∂vf
j

(
gj
(
i(n,p)− l + 1

kn

)
ΔXSp

)
X(m)
(
gj
)n,v
l

(12.1.23)

and the remainder term satisfies
∣∣B ′nl
∣∣≤K(∥∥X(m)(gj )n

l

∥∥2 + ∥∥X(m)(gj )n
l

∥∥2+w) (12.1.24)
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for some w ≥ 0, because ∇2f has polynomial growth and gj is bounded, as well as
ΔXSp . Moreover, by a change of order of summation and a relabeling, it is tedious
but straightforward to deduce from (12.1.10), (12.1.19) and (12.1.21) that

1

kn
√
un

i(n,p)∑

l=i(n,p)−kn+1

Bnl = zn,jp−(ΔXSp)+ zn,jp+(ΔXSp)+B ′′n,
(12.1.25)

with B ′′n = 1√
un

d∑

v=1

h+(ΔXSp , j, v)n0Δ
n
i(n,p)X(m)

v.

Since ΔXSp is bounded and supn |h+(x, j, v)n0 | is locally bounded in x, we have
|h+(ΔXSp , j, v)n0 | ≤K . Hence, putting these facts together, we see that, on the set
{Sp < T } ∩Ωn(T ,m), the left side of (12.1.22) is smaller in absolute value than

K

kn
√
un

i(n,p)∑

l=i(n,p)−kn+1

(∥∥X(m)
(
gj
)n
l

∥∥2 + ∥∥X(m)(gj )n
l

∥∥2+w)

+ K√
un

∥∥Δni(n,r)X(m)
∥∥.

Taking advantage of (12.1.15), we see that the result will hold if we can prove

E
(∥∥Δni(n,r)X(m)

∥∥)≤K√Δn
(12.1.26)

E

(
i(n,p)∑

l=(i(n,p)−kn+1)∨1

∥∥X(m)
(
gj
)n
l

∥∥w′
)
≤Kknun

for any w′ ≥ 2; Since X(m) has the representation (12.1.13) relative to the filtration
(Gt ) and since i(n,p) is G0 measurable, the first part of (12.1.26) comes from (SH)
and (2.1.44). The second part holds for the same reason, because of (12.1.12) and
|gjn(t)| ≤K . �

Lemma 12.1.8 Assume (SH) and the hypotheses of Theorem 12.1.2 about f and
the gj ’s. Then for each p ≤ P we have

z
n,j
p−(ΔXSp)−

d∑

l=1

d ′∑

v=1

σ lvSp−z
n,j lv
p− (ΔXSp)

P−→ 0

z
n,j
p+(ΔXSp)−

d∑

l=1

d ′∑

v=1

σ lvSpz
n,j lv
p+ (ΔXSp)

P−→ 0.

Proof The proofs of the two claims are similar, and we only prove the first one. We
have |h−(ΔXSp , j, l)nr | ≤K because ‖ΔXSp‖ ≤K . Therefore E(|zn,j lvp− (ΔXSp)|)≤
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K and, since σ is càdlàg, the first claim is equivalent to proving that

Bn :=
(
z
n,j
p−(ΔXSp)−

d∑

l=1

d ′∑

v=1

σ lvSp−un z
n,j lv
p− (ΔXSp)

)
1{Sp>un}

P−→ 0. (12.1.27)

Now we apply the property f j =∑R
r=1 αrf

j
r , where f jr is positively homoge-

neous of degree w(r, j) > 3. By construction, the maps f �→ z
n,j
p− and f �→ z

n,j lv
p−

are linear, so it is obviously enough to prove the result with each f jr instead of
f j , or equivalently to suppose that f j itself is positively homogeneous of degree
w > 3. Therefore each ∂lf j is also positively homogeneous of degree w− 1, hence
∂lf

j (zx) = |z|w−1(∂lf
j (x)1{z>0} + ∂lf j (−x)1{z<0}) for all z ∈ R and x ∈ R

d .
Plugging this into (12.1.19) gives us

h−(x, j, l)nr = ∂lf
j (x)h−+(j, l)nr + ∂lf j (−x)h−−(j, l)nr , where

h−+(j, l)nr =
1

kn

r∑

u=1

∣∣∣∣g
j

(
u+ kn − r

kn

)∣∣∣∣
w−1

gj
(
u

kn

)
1{gj ( u+kn−r

kn
)>0}

h−−(j, l)nr =
1

kn

r∑

u=1

∣∣∣∣g
j

(
u+ kn − r

kn

)∣∣∣∣
w−1

gj
(
u

kn

)
1{gj ( u+kn−r

kn
)<0}.

Comparing (12.1.20) and (12.1.21), and using the above, we see that, if Sp > un,

Bn =
d∑

l=1

(
∂lf

j (ΔXSp)B
l
n+ + ∂lf j (−ΔXSp)Bln−

)
(12.1.28)

where, with the notation φln±(t)=
∑kn−1
r=1 h−±(j, l)nr 1((r−1)Δn,rΔn](t),

Bln± =
1√
un

∫ (i(n,p)−1)Δn

(i(n,p)−kn)+Δn
φln±
(
s − (i(n,p)− kn

)
Δn
)

×
(
dX(m)ls −

d ′∑

u=1

σ lu
(Sp−un)+ dW

u
s

)
.

In view of (12.1.28), in order to get (12.1.27) it suffices to prove that

Bln+
P−→ 0, Bln−

P−→ 0. (12.1.29)

For this, we proceed as in the proof of Proposition 4.4.10: recalling (12.1.13), we
apply (2.1.33), (2.1.34) and (2.1.39) (with r = 2 and q = 1/2 and s = un), all rela-
tive to the filtration (Gt ) (so i(n,p) is G0 measurable), plus the fact that |φln±| ≤K ,
to obtain
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E
((
Bln±
)2 ∧ 1
) ≤ K√un +K

∫

{Γ (z)≤u1/4
n }
Γ (z)2 λ(dz)

+KE

(
sup

0≤s≤un
‖σ(Sp−un)++s − σ(Sp−un)+‖2

)

which goes to 0. Hence (12.1.29) holds. �

We can consider x �→ z
n,j lv
p± (x) as two processes znp± indexed by R

d and with

values in R
qdd ′ , and as such they have continuous paths because x �→ h±(x, t) are

Lipschitz, uniformly in t , on every compact subset of Rd (recall that f is C2 and
all gj are bounded). In other words znp− and znp+ are random variables taking their

values in the set C= C(Rd,Rqdd
′
) of continuous functions, a set which we endow

with the local uniform topology.
We are now going to prove that these processes converge stably in law, hence

we need to describe the limits. Those are defined as follows, on an auxiliary space
(Ω ′,F ′,P′) which supports two independent i.i.d. sequences (W(p−) : p ≥ 1) and
(W(p+) : p ≥ 1) of standard d ′-dimensional Brownian motions. Then, with x rang-
ing through R

d and j, l, v ranging through the appropriate sets of indices, we set

z
jlv
p−(x)=

∫ 1

0
h−(x, t)jl dW(p−)vt , z

jlv
p+(x)=

∫ 1

0
h+(x, t)jl dW(p+)vt .

(12.1.30)
Those are independent centered Gaussian processes, the laws of all zp−, resp. all
zp+, being the same, and it turns out that they have versions with paths in C (this
will be a consequence of the forthcoming proof). As is usual for stable convergence,
we take the product extension (4.1.16), page 104. The following lemma is stated for
p between 1 to P , but there is a version for all p ≥ 1. It could be deduced from
Theorem 4.3.1, but a direct proof is in fact simpler.

Lemma 12.1.9 Assume (SH) and the hypotheses of Theorem 12.1.2 about f and
the gj ’s. Then

(
znp−, znp+

)
1≤p≤P

L-s−→ (zp−, zp+)1≤p≤P

for the product topology on (C(Rd ,Rqdd
′
)× C(Rd ,Rqdd

′
))P , each C(Rd,Rqdd

′
)

being endowed with the local uniform topology.

Proof 1) We need to prove that if F1±, . . . ,FP± are bounded Lipschitz functions on
C and Z is a bounded variable on (Ω,F), and if Vn =∏Pp=1Fp−(znp−)Fp+(znp+)
and z− and z+ are two independent processes on (Ω ′,F ′,P′) with the same laws as
zp− and zp+, then

E(Z Vn) → E(Z)

P∏

p=1

E
′(Fp−(z−)

)
E
′(Fp+(z+)

)
. (12.1.31)
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This is the analogue of (4.3.4), where the processes U
n
(g) and the variables

κ(n,p) do not show up, and w(n,p) and W ′′(p) are replaced by (znp−, znp+)
and (zp−, zp+); moreover (znp−, znp+) has exactly the same measurability proper-
ties as w(n,p), namely it depends only on Sp and on the increments of W over
((Sp − un)+, Sp + un]. Hence the proof of Theorem 4.3.1, page 109, goes through
without change down to the end of Step 6, showing that it is enough to prove
(12.1.31) when Z is G0 measurable, where G0 is as before Lemma 12.1.7.

Step 7 of that proof is not valid here. However, put

z
n,j lv
− (x)= 1√

un

kn−1∑

r=1

h−(x, j, l)nr ΔnrWv

z
n,j lv
+ (x)= 1√

un

kn−1∑

r=1

h+(x, j, l)nr ΔnrWv.

Then in restriction to the set Ωn on which Sp > un and |Sp − Sp′ | > 2un for all
p,p′ ∈ {1, . . . ,P }, the processes (znp−, znp+ : 1 ≤ p ≤ P) are all independent, and
independent of G0, with the same laws as zn− and zn+ above. Therefore

E(Z 1Ωn Vn) = E(Z 1Ωn)
P∏

p=1

E
(
Fp−
(
zn−
))
E
(
Fp+
(
zn+
))
.

Since P(Ωn)→ 1, (12.1.31) follows from the convergence in law (we no longer
need stable convergence here) of zn− and zn+ to z− and z+, respectively.

2) We prove for example zn−
L−→ z− (the proof of zn+

L−→ z+ is similar). This
can be done in two independent steps: one consists in proving the finite-dimensional
convergence in law, the other consists in proving that the processes zn− are “C-tight”,
which together with the first step also implies that there is a continuous version for
the limit x �→ z−(x).

The first step amounts to (zn−(x1), . . . , z
n−(xI ))

L−→ (z−(x1), . . . , z−(xI )) for ar-
bitrary x1, . . . , xI in R

d . The (qdd ′I )-dimensional random vector with components
z
n,j lv
− (xi) is centered Gaussian with covariance

E
(
z
n,j lv
− (xi) z

n,j ′l′v′
− (xi′)

)=
{

1
kn

∑kn−1
r=1 h−(xi, j, l)nr h−(xi′ , j ′, l′)nr if v = v′

0 if v �= v′.

Recalling (12.1.19), when v = v′ the right side above is a Riemann approximation
for the triple integral

∫ 1

0

(∫ t

0
∂lf

j
(
gj (s)xi

)
ds

∫ t

0
∂l′f

j ′(gj ′
(
s′
)
xi′
)
ds′
)
dt.
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Hence, recalling (12.1.3), we get

E
(
z
n,j lv
− (xi) z

n,j ′l′v′
− (xi′)

)→ c
(
i, i′, j, j ′, l, l′

)

:= δvv′
∫ 1

0
h−(xi, t)jl h−(xi′ , t)

j ′
l′ dt .

In view of (12.1.30), we have c(i, i′, j, j ′, l, l′)= E(z
jlv
− (xi) z

j ′l′v′
− (xi′)), which im-

plies the desired convergence in law because the processes are Gaussian.
The second step, according to a C-tightness criterion which extends Kol-

mogorov’s continuity criterion and may be found for example in Ibragimov and
Has’minski [49], is accomplished if one can prove that for any A> 0, we have

‖x‖, ‖x′‖ ≤A ⇒ E
(∣∣zn,j lv− (x)− zn,j lv−

(
x′
)∣∣w) ≤ KA‖x − x′‖w′ (12.1.32)

for some w > 0 and w′ > d (since d is the dimension of the “parameter” x here).
Proving (12.1.32) is simple: our assumptions on f and gj yield |h−(x, j, l)nr −
h−(x′, j ; l)nr | ≤ KA‖x − x′‖ if ‖x‖, ‖x′‖ ≤ A, and clearly the law of the process
(zn−(x) : x ∈ R

d) does not depend on i(n,p), so we may assume that i(n,p)= kn.
Then an application of the Burkholder-Davis-Gundy inequality yields for w ≥ 1:

E
(∣∣zn,j lv− (x)− zn,j lv−

(
x′
)∣∣w)

≤ K

u
w/2
n

E

((
kn−1∑

r=1

∣∣h−(x, j, l)nr − h−
(
x′, j, l

)n
r

∣∣2 ∣∣ΔnrWv
∣∣2
)w/2)

≤ KA,w‖x − x′‖w
u
w/2
n

E

((
kn−1∑

r=1

∣∣ΔnrWv
∣∣2
)w/2)

≤KA,w‖x − x′‖w,

the last equality above coming from Hölder’s inequality and E(|Δni W |w) ≤
KwΔ

w/2
n . Then we get (12.1.32), upon choosing w =w′ > d . �

Proof of Proposition 12.1.6 First, by (2.2.5) and the previous lemma,

(
d∑

l=1

d ′∑

v=1

(
σ lvSp−z

n,j lv
p− + σ lvSpzn,j lvp+

)
)

p,j

L-s=⇒
(

d∑

l=1

d ′∑

v=1

(
σ lvSp−z

jlv
p− + σ lvSpzjlvp+

)
)

p,j

(12.1.33)

where p and j range through {1, . . . ,P } and {1, . . . , q} respectively. The above are
processes with paths in C′ = C(Rd ,R), and the convergence takes place for the
local uniform topology.

At this stage, we give a useful property of the stable convergence. Let Zn =
(Znx )x∈Ra be a sequence of processes on (Ω,F ,P), with paths in the set C′′ =
C(Ra,Rb) of continuous functions, for some a, b ∈N

∗, and which converges stably
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in law to a limiting process Z = (Zx)x∈Ra , given on an extension (Ω̃, F̃ , P̃) of the
original space. Then, for any R

a-valued variable V on (Ω,F), we have

ZnV
L-s−→ ZV . (12.1.34)

This is a simple consequence of the second half of (2.2.6), page 47: indeed, let-
ting Y be bounded measurable on (Ω,F) and φ be bounded continuous on R

b, we
see that the function G(ω, z) = Y(ω)φ(z(V (ω))) on Ω × C′′ is bounded measur-
able, and continuous in z ∈ C′′. Then we deduce from (2.2.6) that E(Y φ(ZnV ))→
Ẽ(Y φ(ZV )), which is (12.1.34).

We deduce from (12.1.33) and (12.1.34) that

(
d∑

l=1

d ′∑

v=1

(
σ lvSp−z

n,j lv
p− (ΔXSp)+ σ lvSpzn,j lvp+ (ΔXSp)

)
)

p,j

L-s−→
(

d∑

l=1

d ′∑

v=1

(
σ lvSp−z

jlv
p−(ΔXSp)+ σ lvSpzjlvp+(ΔXSp)

)
)

p,j

which, combined with Lemmas 12.1.7 and 12.1.8, yields

(
R(n,p)j

)
p,j

L-s−→
(

d∑

l=1

d ′∑

v=1

(
σ lvSp−z

jlv
p−(ΔXSp)+ σ lvSpzjlvp+(ΔXSp)

)
)

p,j

.

Then in view of (12.1.22), and in order to obtain (12.1.18), it remains to observe
that the right side above is the same as (Rjp)1≤p≤P,1≤j≤q , as given by (12.1.17), in
the sense that both Pq-dimensional random vectors have the same F -conditional
distribution. This property is an easy consequence of (12.1.3), (12.1.4), (12.1.6) and
(12.1.30). �

12.1.3 Proof of Theorem 12.1.2

As said before, we may assume (SH). The time t is fixed throughout. The proof is
basically the same as for Theorems 5.1.2 and 11.1.2.

Step 1) We use the notation Am, X(m), X′(m), Ωn(t,m), i(n,p) of Sect. 12.1.2,
see page 344, and Pm is the set of all indices p such that Sp = S(m′, j) for some
j ≥ 1 and some m′ ≤m.

With the notation (12.1.2) and (12.1.10), we get

Yn(X)t = Yn
(
X(m)
)
t
+Zn(m)t on the set Ωn(t,m), (12.1.35)
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where Zn(m)t =∑p∈Pm: Sp≤t ζ
n
p , and ζ np = (ζ n,jp )1≤j≤q is given by

ζ
n,j
p = 1√

un

(
1

kn

i(n,p)∑

l=(i(n,p)−kn+1)∨1

(
f j
(
X
(
gj
)n
l

)− f j (X(m)(gj )n
l

))

−
∫ 1

0
f j
(
gj (u)ΔXSp

)
du

)
.

Moreover, again on the set Ωn(t,m), we have with the notation (12.1.16):

ζ
n,j
p = R(n,p)j + γ (p, j)n + γ ′(j,p)n, where

γ (j,p)n =− 1

kn
√
un

i(n,p)∑

l=i(n,p)−kn+1

f j
(
X(m)
(
gj
)n
l

)

γ ′(j,p)n =− 1√
un

∫ 1

0

(
f j
(
gj (u)ΔXSp

)− f j (gj ((1+ [ukn]
)
/kn
)
ΔXSp
))
du.

Step 2) By hypothesis, u �→ f j (gj (u)ΔXSp) is Hölder with index θ (pathwise

in ω), hence (12.1.7) implies γ ′(j,p)n
P−→ 0. On the other hand, (12.1.8) yields

|f j (X(m)(gj )nl )| ≤K‖X(m)(gj )nl )‖2 on the setΩn(t,m)∩{Sp ≤ t} (recall the end
of the definition (12.1.14) ofΩn(T ,m)). This, in view of (12.1.15) and (12.1.26) and

un→ 0, implies γ (j,p)n
P−→ 0. Therefore ζ n,jp − R(n,p)j P−→ 0 and, by Propo-

sition 12.1.6, we obtain exactly as for (5.1.15):

Zn(m)t
L-s−→ Y

(
X′(m)

)
t
, as n→∞,

where Y(X′(m)) is associated with the process X′(m) by (12.1.6), that is with the
sum extended over the stopping times Sp (instead of Tp) for p ∈Pm only.

The convergence Y(X′(m))t
P−→ Y(X)t follows from (12.1.6) and the property∑

s≤t ‖ξs‖<∞. Hence we are left to prove that, for all t > 0 and η > 0,

lim
m→∞ lim sup

n→∞
P
(∣∣Yn
(
X(m)
)
t

∣∣> η
) = 0. (12.1.36)

Step 3) For (12.1.36) it suffices to consider the one-dimensional case q = 1. So we
drop the index j everywhere. With gn associated to g = gj by (12.1.11), we write

X(n,m, i)t =
∫ (i−1)Δn+t

(i−1)Δn
gn

(
s − (i − 1)Δn

un

)
dX(m)s.
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We thus have X(m)(g)ni =X(n,m, i)un by (12.1.12). We also set

Y ′n
(
X(m)
)
t
= 1

kn
√
un

[t/Δn]−kn+1∑

i=1

(
f
(
X(n,m, i)un

)−
∑

s≤un
f
(
ΔX(n,m, i)s

)
)
.

(12.1.37)
Observe that when (r − 1)Δn < t ≤ rΔn for some r = 1, . . . , kn, we have
ΔX(n,m, i)t = g( rkn )ΔX(m)(i−1)Δn+t . Then, comparing (12.1.37) with (12.1.2),
we see that

Yn
(
X(m)
)
t
− Y ′n(X(m))

t
= W(n,m)t +W ′(n,m)t +W ′′(n,m)t ,

where, with J (n, r, t) being the union of the two intervals (0, (r − 1)Δn] and
(([ t

Δn
] − kn + r)Δn, [ tΔn ]Δn],

W(n,m)t =− 1√
un

∑

[t/Δn]Δn<s≤t

∫ 1

0
f
(
g(u)ΔX(m)s

)
du

W ′(n,m)t = 1√
un

∑

s≤[t/Δn]Δn

(
1

kn

kn∑

r=1

f

(
g

(
r

kn

)
ΔX(m)s

)

−
∫ 1

0
f
(
g(u)ΔX(m)s

)
du

)

W ′′(n,m)t =− 1

kn
√
un

kn∑

r=1

∑

s∈J (n,r,t)
f

(
g

(
r

kn

)
ΔX(m)s

)
.

We have ‖ΔX(m)‖ ≤ 1, and E(
∑
v∈(t,t+s] ‖ΔX(m)v‖2)≤Ks by (SH), and our

assumptions on f and g yield

‖x‖ ≤ 1 ⇒ ∣∣f (g(u)x)∣∣≤K‖x‖2,
∣∣f
(
g(u)x
)− f (g(u′)x)∣∣≤K‖x‖2

∣∣u− u′∣∣θ .
Hence we have E(|W(n,m)t |) ≤ KΔn√

un
and E(|W ′(n,m)t |) ≤ Kt

kθn
√
un

, and also

E(|W ′′(n,m)t |) ≤ K√un, which all go to 0 as n → ∞. Therefore instead of
(12.1.36) it is enough to prove

lim
m→∞ lim sup

n→∞
P
(
Ωn(t,m)∩

{∣∣Y ′n
(
X(m)
)
t

∣∣> η
}) = 0.

At this stage, we reproduce Step 4 of the proof of Theorem 5.1.2, with the process
X(n,m, i) instead of X(m)t −X(m)(i−1)Δn . The only difference is that instead of
(5.1.21) we now have to prove

lim
m→∞ lim sup

n

1

kn
√
un

E

([t/Δn]−kn+1∑

i=1

∣∣A(n,m, i)((i−1)Δn+un)∧T (n,m,i)
∣∣
)
= 0

(12.1.38)
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lim
m→∞ lim sup

n

1

k2
nun

E

([t/Δn]−kn+1∑

i=1

A′(n,m, i)((i−1)Δn+un)∧T (n,m,i)

)
= 0,

(12.1.39)
where A(n,m, i) and A′(n,m, i) are still given by (5.1.20), and with the formula
(5.1.23), page 133, replaced by

∣∣a(n,m, i)t
∣∣≤Kαm

(∥∥X(n,m, i)t
∥∥+m∥∥X(n,m, i)t

∥∥2)

a′(n,m, i)t ≤Kα2
m

∥∥X(n,m, i)t
∥∥2

(recall that αm is some sequence going to 0 asm→∞). Now, since |gn| ≤K we ob-
tain E(‖X(n,m, i)un‖2)≤K(un +m2u2

n), and both (12.1.38) and (12.1.39) follow.

12.2 Functionals of Normalized Increments

We keep the setting of the previous section, but now we are interested in the func-
tionals V ′n(Φ, kn,X). Recall the notation ρa for the law (on D

d or on D
d
1 ) of a

d-dimensional Brownian motion with covariance matrix a at time 1. Theorem 8.4.2
yields that, when X satisfies (H),

V ′n(Φ, kn,X)t
u.c.p.=⇒
∫ t

0
ρcs (Φ)ds

as soon as the function f in (12.0.3) is of polynomial growth when X is contin-
uous, and f (x) = o(‖x‖2) as ‖x‖ →∞ otherwise. Moreover one has an explicit
form for ραα∗(Φ) when α is a d × d ′ matrix and if Φ satisfies (12.0.3): indeed,
the d-dimensional variable

∫ 1
0 αWs G(ds) is centered Gaussian with covariance

Λ(g)αα∗, where

Λ(g)=
∫

(0,1]2
(s ∧ t)G(ds)G(dt)=

∫

(0,1]2
G(ds)G(dt)

∫ s∧t

0
du=
∫ 1

0
g(s)2 ds

(12.2.1)
(the third equality comes from Fubini’s theorem). Therefore ρa(Φ)= ρΛ(g)a(f ) for
any d × d covariance matrix a.

We give an associated CLT, in the q-dimensional case. For j = 1, . . . , q , we
have a test function Φj of the form (12.0.3), with the associated measure Gj and
the functions f j and gj (see (12.0.4)) and the (strictly) positive numbers Λ(gj ) de-
fined above. We will derive the asymptotic behavior of the q-dimensional processes
Y ′n(X) with components:

Y ′n(X)jt =
1√
un

([t/Δn]−kn+1∑

i=1

f j

(
1√
un

kn∑

r=1

gj (r/kn)Δ
n
i+r−1X

)

−
∫ t

0
ρΛ(gj )cs

(
f j
)
ds

)
. (12.2.2)
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In Theorem 11.2.1 we were faced with two additional difficulties, in compar-
ison with the CLT for functionals depending on a single increment: one was the
description of the limit, the other was the lack of (conditional) independence of the
summands of the functional, because of the overlapping intervals.

Here the two same problems arise. The solution of the first one—the description
of the limit—is a simple extension of the description in Sect. 11.2.1. The solution
of the second one is significantly more difficult here, because the (conditional) in-
dependence of summands is ensured only if they are more than kn indices apart,
whereas kn→∞. The solution will be achieved by splitting the sum into big blocks
which will be independent when we “separate” them by “small” blocks of kn suc-
cessive summands. Then the independence ensures a CLT for the sum of the big
blocks, and the sum of the small blocks is seen to be asymptotically negligible when
the relative sizes of big versus small blocks goes to infinity.

12.2.1 The Results

Once more, we extend both Theorems 5.3.5 and 5.3.6 at once, but only in the
case of an “even” function. According to the case, we need one of the assump-
tions 4.4.3, 5.3.2, 4.4.4 and 5.3.4, which we recall below:

Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}

where M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and 〈M,M〉t =∫ t
0 as ds and the compensator of

∑
s≤t 1{‖Δσs‖>1} is

∫ t
0 ãs ds, with the following

properties: the processes b̃, σ̃ , ã and a are progressively measurable, the processes
b̃, a and ã are locally bounded, and the processes σ̃ and b are càdlàg or càglàd.

Assumption (K-r) (for r ∈ [0,1]) We have (K) except for the càdlàg or càglàd
property of b, and ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where
(τn) is a localizing sequence of stopping times and the Borel functions Γn on E sat-
isfy
∫
Γn(z)

rλ(dz) <∞. Moreover the process b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz)

is càdlàg or càglàd.

Assumption (K’) We have (K) and both processes ct and ct− take their values
in M++

d×d .

Assumption (K’-r) We have (K-r) and both processes ct and ct− take their values
in M++

d×d .

As for the test function, the assumptions on f = (f j )1≤j≤q will vary, exactly
as in the afore-mentioned theorems. For the same reasons (see e.g. Remark 10.3.1)
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we split the components into two parts, and suppose that for some integer q ′ ∈
{0, . . . , q} we have

j ≤ q ′ ⇒ x �→ f j (x) is C1 on R
d

j > q ′ ⇒ x �→ Fj (x) is continuous on R
d and C1 outside B,

(12.2.3)

where, when q ′ < q , B is non empty and a finite union of affine hyperplanes of
R
d . We denote by d(x,B) the distance between x ∈R

d and B . Below, the numbers
w, s, s′,p are subject to 0<w ≤ 1 and 0< s ≤ s′ and p ≥ 0. Then we set

∥∥f (x)
∥∥ ≤ K

(
1+ ‖x‖p) (12.2.4)

∣∣∇f j (x)∣∣≤
{
K(1+ ‖x‖p) if j ≤ q ′
K(1+ ‖x‖p)(1+ 1

d(x,B)1−w
)

if j > q ′ and x ∈ Bc (12.2.5)

x ∈ Bc, ‖y‖ ≤ 1
∧ d(x,B)

2
, j > q ′ ⇒

∣∣∇f j (x + y)−∇f j (x)∣∣≤ K ‖y‖
(

1+ 1

d(x,B)2−w

)(
1+ ‖x‖p) (12.2.6)

∥∥f (x + y)− f (x)∥∥ ≤ K
(
1+ ‖x‖p)(‖y‖r + ‖y‖r ′). (12.2.7)

Next, we describe the limit. To this end, we observe that the formula

L
(
gj
)
t
=
∫ t+1

t

gj (s − t) dWl
s (12.2.8)

defines a family (L(gj ) : 1≤ j ≤ q) of d ′-dimensional centered processes which is
globally Gaussian and stationary, with covariance structure

E
(
L
(
gj
)i
t
L
(
gl
)m
s

) = δim
∫ (t+1)∧(s+1)

t∨s
gj (u− t) gl(u− s) du.

If α is a d×d ′ matrix, we write αL(gj )t for the d-dimensional variable with compo-
nents
∑d ′
m=1 α

imL(gj )mt . The law of the family (αL(gj ) : 1≤ j ≤ q) only depends
on the gj ’s and on a = αα∗. This is reflected in the following notation, in which we
use the notation (12.2.1), and which makes sense because all f j have polynomial
growth:

R
jl
a =
∫ 2

0
E
(
f j
(
αL
(
gj
)

1

)
f l
(
αL
(
gl
)
t

))
dt − 2ρΛ(gj ) a

(
f j
)
ρΛ(gl) a

(
f l
)
.

(12.2.9)
Observing that ρΛ(gj ) a(f

j )= E(f j (αL(gj )t ) for all t , we easily check that Ra is
a covariance matrix (which depends on the families f j and gj , although it does not
show in the notation).

We are now ready to state the result.
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Theorem 12.2.1 Let X be a d-dimensional Itô semimartingale, and f = (f j ) be
a globally even q-dimensional function on R

d which satisfies (12.2.3). We also as-
sume (12.2.4) and (12.2.5) (recall w ∈ (0,1]), plus one of the following five sets of
hypotheses:

(a) We have q ′ = q and (K) and X is continuous.
(b) We have (K’) and (12.2.6) and X is continuous.
(c) We have q ′ = q and (K-1), and f and ∇f are bounded.
(d) We have q ′ = q and (K-r) for some r ∈ [0,1), and (12.2.8) with r ≤ s ≤ s′ < 1.
(e) We have (K’-r) with some r ∈ (0,1), and (12.2.7) and (12.2.8) with r ≤ s ≤

s′ < 1.

Finally, we let Gj be finite signed measures supported by (0,1], such that the func-
tions gj associated by (12.0.4) are Hölder with some index θ ∈ (0,1], and we as-
sume (12.1.7).

Then the processes Y ′n(X) of (12.2.2) converge stably in law to a process Y ′(X)
which is defined on a very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of the space
(Ω,F , (Ft )t≥0,P), and conditionally on F is a continuous centered Gaussian pro-
cess with independent increments satisfying

Ẽ
(
Y ′(X)jt Y ′(X)lt |F

) =
∫ t

0
R
jl
cs ds. (12.2.10)

12.2.2 Preliminaries for the Proof

We follow the scheme of the proof of Theorem 11.2.1.

1) First, by the localization lemma 5.3.12, instead of (K), (K-r), (K’) or (K’-r) we
can and will assume the strengthened versions (SK), (SK-r), (SK’) or (SK’-r), that
is Assumptions 4.4.7, 5.3.10, 4.4.8 or 5.3.11. In other words, ‖δ(ω, t, z)‖ ≤ Γ (z)
with Γ bounded and

∫
Γ (z)rλ(dz) <∞, and all processes b, σ , X, b̃, σ̃ , a, ã are

bounded, and furthermore in case of (SK’) or (SK’-r) the inverse process c−1
t is also

bounded. In particular we can write X as in (5.3.13), that is

X =X′ +X′′ where X′t =X0 +
∫ t

0
b′s ds +

∫ t

0
σs dWs, X′′ = δ ∗ p,

where b′t = bt −
∫
{z:‖δ(t,z)‖≤1} δ(t, z)λ(dz) is also bounded. As in (5.3.14), we can

also write σ as

σt = σ0 +
∫ t

0
b̃′s ds +

∫ t

0
σ̃s dWs +M ′

t , (12.2.11)

where b̃′t = b̃t + ã′t is bounded and M ′ is a martingale orthogonal to W , with
bounded jumps, and predictable bracket

∫ t
0 a

′
s ds where ‖a′t‖ is bounded.

2) The aim of the next lemma is to eliminate the jumps.
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Lemma 12.2.2 Under (SK-1) and the assumption (c), or under (SK-r) and the
assumptions (d) or (e), we have

Y ′n(X)− Y ′n(X′) u.c.p.=⇒ 0.

Proof By (12.2.2), and with the notation X(gj ) of (12.1.10), the result is equivalent
to asymptotic negligibility, for each j = 1, . . . , q , of the array

ζ ni =
Δn√
un

(
f j
(
X
(
gj
)n
i
/
√
un
)− f j (X′(gj )n

i
/
√
un
))
.

In case (c), |ζ ni | ≤ KΔn√
un
(1 ∧ (‖X′′(gj )ni ‖/

√
un )). Then (12.1.12), (SK-1) and

(2.1.47) yield E(|ζ ni |) ≤ KΔn φn, with φn→ 0. The asymptotic negligibility fol-
lows.

In cases (d) and (e) the function f satisfies (12.2.8), with p′ ≤ 2 and r ≤ s ≤
s′ < 1, and we can always take s = r . Hence

∥∥ζ ni
∥∥≤K Δn√

un

((
α′′ni
)r + (α′′ni

)s′)
α′ni , where

α′ni = 1+ (∥∥X′(gj )n
i

∥∥/
√
un
)2
, α′′ni = ∥∥X′′(gj )n

i

∥∥/
√
un.

(SK-r) together with (12.1.12), (2.1.33), (2.1.34) and Lemma 2.1.7 imply
E((α′ni )q) ≤ Kq for all q ≥ 0 and E((α′′ni )q) ≤ Kqu1−q/2

n for all q ≥ r . Apply-
ing twice Hölder’s inequality with the first exponent equal to 4

3+r and 4
3+r ′ , we

obtain E(|ζ ni |)≤KΔn(u
1−r

4
n +u

1−r′
4

n ), and the asymptotic negligibility follows from
un→ 0. �

3) In view of this lemma, it remains to consider the case whenX =X′ is continuous,
and we have the same two cases as in (5.3.20):

(a) q ′ = q, (SK), f is C1 and ∇f has polynomial growth, σt ∈MA

(b) q ′ < qt, (SK’), f satisfies (12.2.4), (12.2.5) and (12.2.6), σt ∈M′
A

for some A> 0. These assumptions will be in force throughout the rest of the sec-
tion.

Now we introduce some notation. Recalling (12.1.11), we set

β
n,j

i = 1√
un
σ(i−1)Δn

∫ (i−1)Δn+un
(i−1)Δn

gj
(
s−(i−1)Δn

un

)
dWs

β
′n,j
i = 1√

un
σ(i−1)Δn

∫ (i−1)Δn+un
(i−1)Δn

g
j
n

(
s−(i−1)Δn

un

)
dWs.

⎫
⎬

⎭ (12.2.12)

The d-dimensional random vectors β
n,j

i and β
′n,j
i are, conditionally on F(i−1)Δn ,

centered Gaussian with respective covariances Λ(gj ) c(i−1)Δn and Λ(gjn)c(i−1)Δn ,

where for any function h on [0,1] we set Λ(h) = ∫ 1
0 h(s)

2 ds (an extension of
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(12.2.1)). Then, exactly as for (8.4.9)–(8.4.11) and upon using (12.1.12), we have
the following estimates for all v ≥ 2 (recall that X is continuous and |gjn(t)| ≤K):

E
(∥∥βn,ji

∥∥v)+E
(∥∥β ′n,ji

∥∥v)+E
(∥∥X
(
gj
)n
i
/
√
un
∥∥v) ≤ Kv, (12.2.13)

E
(∥∥ 1√

un
X(gj )ni − β ′n,ji

∥∥v)≤Kv
(
u
v/2
n + 1

un
γ ni

)
,

where γ ni = E
(∫ (i−1)Δn+un
(i−1)Δn

‖σs − σ(i−1)Δn‖2ds
) ≤ Ku2

n.

⎫
⎬

⎭ (12.2.14)

Since f is of polynomial growth, the variables f j (X(gj )ni /
√
un ), f j (β

n,j

i ) and

f j (β
′n,j
i ) are integrable, so we can set

χ
n,j
i = Δn√

un

(
f j
(
X(gj )ni /

√
un
)− f j (β ′n,ji

))

χ̂
n,j
i = Δn√

un

(
f j
(
β
′n,j
i

)− f j (βn,ji
))

χ
′n,j
i = E

(
χ
n,j
i |F(i−1)Δn

)
, χ̂

′n,j
i = E

(
χ̂
n,j
i |F(i−1)Δn

)

χ
′′n,j
i = χn,ji − χ ′n,ji , χ̂

′′n,j
i = χ̂n,ji − χ̂ ′n,ji .

Next, we define a family of processes:

Hn(1)jt = Δn√
un

∑[t/Δn]−kn+1
i=1

(
f j
(
β
n,j

i

)− ρΛ(gj ) c(i−1)Δn
(f j )
)

Hn(2)jt =
∑[t/Δn]−kn+1
i=1 χ

′′n,j
i , Hn(3)jt =

∑[t/Δn]−kn+1
i=1 χ

′n,j
i ,

Hn(4)jt =
∑[t/Δn]−kn+1
i=1 χ̂

′′n,j
i , Hn(5)jt =

∑[t/Δn]−kn+1
i=1 χ̂

′n,j
i ,

Hn(6)jt = 1√
un

(
Δn
∑[t/Δn]−kn+1
i=1 ρΛ(gj ) c(i−1)Δn

(f j )− ∫ t0 ρΛ(gj ) cs (f j ) ds
)
.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(12.2.15)
Then we have

Y ′n(X)j =
6∑

l=1

Hn(l)j ,

and the theorem will follow from the next two lemmas:

Lemma 12.2.3 The processes (Hn(1)j )1≤j≤q converge stably in law to the process

U
′
(F,X).

Lemma 12.2.4 For l = 2,3,4,5,6 and j = 1, . . . , q we have

Hn(l)j
u.c.p.=⇒ 0. (12.2.16)

12.2.3 Proof of Lemma 12.2.4

We want to prove (12.2.16), and for this we can argue component by component:
that is, we can assume q = 1 and the index j does not show up: we simply write f
and g, and χni , χ ′ni , and so on.
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Step 1) We first study Hn(6). With the notation (5.3.23), page 152, in which we
substitute cs with Λ(g)cs , we have

Hn(6)t = 1√
kn
An(2)(t−un)+ −

1√
un

∫ t

(t−un)+
ρΛ(g)cs (f ) ds.

The absolute value of the last term in the right side above is smaller thanK
√
un, and

the first term goes to 0 locally uniformly in t by (5.3.24): these two facts obviously
imply (12.2.16) for l = 6.

Step 2) Next, we study Hn(5), and this is where the second condition in (12.1.7)
comes into play. With the same function ψ(α) = ραα∗(f ) as in (5.3.26), we have
Hn(5)t =∑[t/Δn]−kn+1

i=1 ζ ni , where

ζ ni =
Δn√
un

(
ψ
(√
Λ(gn)σ(i−1)Δn

)−ψ(√Λ(g)σ(i−1)Δn

))
.

The function ψ is C1
b on the set MA in case (a), and on the set M′

A in case (b).
Moreover, since Λ(g) > 0, we have 1

C
≤Λ(gn)≤ C for some C > 0 and all n large

enough, and thus

∣∣ζ ni
∣∣ ≤ KΔn√

un

∣∣√Λ(gn)−
√
Λ(g)
∣∣ ≤ KΔn√

un

∣∣Λ(gn)−Λ(g)
∣∣

by the C1
b property of ψ and the boundedness of σt .

The Hölder property of g and (12.1.11) yield |gn − g| ≤ Kk−θn , hence (12.2.1)
gives |Λ(gn) − Λ(g)| ≤ Kk−θn as well. Then |ζ ni | ≤ KΔn/(k2θ+1

n Δn)
1/2 and

(12.1.18) for l = 5 follows from (12.1.7).

Step 3) Next, we study Hn(2). The conditions on f yield, for some p ≥ 0 and all
ε ∈ (0,1):
∣∣f (x + y)− f (x)∣∣≤K(1+ ‖x‖p + ‖y‖p)

(‖y‖
ε
+ 1{d(x,B)≤ε}

)
(12.2.17)

in both cases (a) and (b) (in case (a), d(x,B)=∞ for all x). Observe that when B �=
∅, the proof of Lemma 5.3.14, page 156, written for γ ni = φB(βni ), works equally

well if we replace βni by β
′n
i = β ′n,ji , because

√
Λ(gn) stays in an interval [a, a′]

away from 0. We deduce that in case (b), we have E(d(β
′n
i ,B)

−1/2)≤K , and thus

P
(
d
(
β
n

i ,B
)≤ ε) ≤ K

√
ε

by Markov’s inequality. This fact, plus (12.2.13) and (12.2.14), plus the Cauchy-
Schwarz inequality, allows us to deduce from (12.2.17) that

E
(∣∣χni
∣∣2) ≤ K

Δ2
n

un

(√
un

ε2
+ ε1/4

)
. (12.2.18)
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We have Hn(2) =∑kn−1
r=0 H

n(2, r), with Hn(2, r)t =∑ln(r,t)
i=1 χ ′′n(i−1)kn+r+1 and

ln(r, t)= [([t/Δn] − r)/kn]. The variables χ ′′n(i−1)kn+r+1 are martingale increments,
relative to the discrete time filtration (F(ikn+r)Δn)i≥0. Therefore by Doob’s inequal-
ity and (12.2.18):

E

(
sup
s≤t
∣∣Hn(2, r)s

∣∣2
)
≤ 4E

(
ln(r,t)∑

i=1

∣∣χn(i−1)kn+r+1

∣∣2
)
≤Kt 1

k2
n

(√
un

ε2
+ ε1/4

)
.

Then, taking the square-root and summing up over r yields for all ε ∈ (0,1):

E

(
sup
s≤t
∣∣Hn(2)s

∣∣
)
≤ K

√
t

(
u

1/4
n

ε
+ ε1/8

)
.

and we conclude (12.2.16) for l = 2 because un→ 0 and ε > 0 is arbitrarily small.

Step 4) Here we study Hn(4). The random vector β
′n
i − βni is, conditionally on

F(i−1)Δn , centered Gaussian with covariance an c(i−1)Δn , where an =
∫ 1

0 (gn(s) −
g(s))2ds. The Hölder property of g implies an ≤Kk−2θ

n , and thus E(‖β ′ni −βni ‖r )≤
Krk

−rθ
n for any r > 0. Using (12.2.17), and exactly as for (12.2.18), we deduce

E
(∣∣χ̂ni
∣∣2) ≤ K

Δ2
n

un

(
1

ε2 k2θ
n

+ ε1/4
)
.

We can then repeat the end of the previous step to conclude (12.2.16) for l = 4.

Step 5) Now we start the proof of (12.2.16) for l = 3, and this essentially reproduces
Part C of Sect. 5.3.3, pages 154–160, except that Δn is substituted with un. Instead
of (5.3.30), and by virtue of (12.1.12), we have

θni :=
X(g)ni√
un

− β ′ni = 1√
un

∫ (i−1)Δn+un

(i−1)Δn
gn
(
s − (i − 1)Δn

)
bs ds

+ 1√
un

∫ (i−1)Δn+un

(i−1)Δn
gn
(
s − (i − 1)Δn

)
(σs − σ(i−1)Δn) dWs.

Then as for (5.3.31),

l > 0 ⇒ E
(∥∥θni
∥∥l) ≤ Klu

(l/2)∧1
n .

Next, since X is continuous, and recalling (12.2.11), we have the decomposition
θni = 1√

un

∑4
j=1 ζ(j)

n
i , where

ζ(1)ni = b(i−1)Δn

∫ (i−1)Δn+un

(i−1)Δn
gn

(
s − (i − 1)Δn

un

)
ds

ζ(2)ni =
∫ (i−1)Δn+un

(i−1)Δn
gn

(
s − (i − 1)Δn

un

)(
σ̃(i−1)Δn(Ws −W(i−1)Δn)

)
dWs
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ζ(3)ni =
∫ (i−1)Δn+un

(i−1)Δn
gn

(
s − (i − 1)Δn

un

)(
M ′
s −M ′

(i−1)Δn

)
dWs

ζ(4)ni =
∫ (i−1)Δn+un

(i−1)Δn
gn

(
s − (i − 1)Δn

un

)
(bs − b(i−1)Δn) ds

+
∫ (i−1)Δn+un

(i−1)Δn
gn

(
s − (i − 1)Δn

un

)(∫ s

(i−1)Δn
b̃′udu
)
dWs

+
∫ (i−1)Δn+un

(i−1)Δn
gn

(
s− (i−1)Δn

un

)(∫ s

(i−1)Δn
(̃σu− σ̃(i−1)Δn) dWu

)
dWs.

The other notation of Part C of Sect. 5.3.3 are unchanged, except for βni which is
replaced by β

n

i everywhere. Then

Hn(3) =
7∑

j=1

Dn(j) (12.2.19)

where, with uni a random number with values in [0,1] and Ani = {‖θni ‖ >
d(β

n

i ,B)/2} and, with vector notation,

Dn(j)t =
[t/Δn]−kn+1∑

i=1

δ(j)ni , where δ(j)ni = E
(
δ′(j)ni |F(i−1)Δn

)
, and

δ′(j)ni =
1

kn
∇f (βni

)
ζ(j)ni for j = 1,2,3,4

δ′(5)ni = −
√
un

kn
∇f (βni

)
θni 1Ani

δ′(6)ni =
√
un

kn

(∇f (βni + uni θni
)−∇f (βni

))
θni 1(Ani )c

δ′(7)ni =
√
un

kn

(
f
(
β
n

i + θni
)− f (βni

))
1Ani .

Next, we replace (5.3.35) by

αni = u
3/2
n +E

(∫ (i−1)Δn+un

(i−1)Δn

(‖bs − b(i−1)Δn‖2 + ‖σ̃s − σ̃(i−1)Δn‖2)ds
)
.

Step 6) As seen in Step 3, (5.3.39) holds true here, with γ ni associated by (5.3.38)

with β
′n
i instead of βni . Then (5.3.36), (5.3.37) and Lemma 5.3.15 holds with un

instead of Δn.
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Now we proceed to Lemma 5.3.16, page 158, which we prove in the present
setting. First, because 1

kn

∑[t/Δn]
i=1 αni → 0, we have instead of (5.3.46):

0< v ≤ 1 ⇒ Δn

uvn

[t/Δn]∑

i=1

(
αni
)v → 0. (12.2.20)

Then it remains to prove (5.3.47) for j = 4,5,6,7. (5.3.48) holds with the additional
factor 1/kn, hence

[t/Δn]∑

i=1

E
(∣∣δ′(4)ni

∣∣) ≤ KΔn

uvn

[t/Δn]∑

i=1

(
αni
)v
,

for some v ∈ (0,1), and (5.3.47) for j = 4 follows from (12.2.20).
In case (a) the result for j = 5,7 is again obvious, and for j = 6 we see that,

instead of (5.3.49), we have

E
(∣∣δ′(6)ni

∣∣) ≤ Kun

kn

(
φ′C(ε)+

1

C
+ K
ε

√
un

)
.

By un/kn =Δn and un→ 0, we conclude (5.3.47) for j = 6 as in Lemma 5.3.16.
In case (b), we get (5.3.50) with

√
un /kn instead of

√
Δn. We deduce

E(|δ′(j)ni |) ≤ Ku1+w/4
n /kn = KΔnuw/4n for some w > 0, and again we conclude

(5.3.47) for j = 5,6,7.

Step 7) The proof of Lemma 5.3.17 remains valid here, to give Dn(3)= 0. Finally
we can reproduce the proof of Step 5 of Sect. 11.2.5 to obtain that, since f is glob-
ally even on R

d , we also have Dn(1)=Dn(2)= 0 identically. In view of (12.2.19),
this ends the proof of Lemma 12.2.4.

12.2.4 Block Splitting

Now we start the proof of Lemma 12.2.3. We are concerned with the process
Hn(1)t =∑[t/Δn]−kn+1

i=1 ζ ni , where the components of ζ ni are

ζ
n,j
i = Δn√

un

(
f j
(
β
n,j

i

)− ρΛ(gj ) c(i−1)Δn

(
f j
))
.

Although the variable ζ ni has a vanishing F(i−1)Δn -conditional expectation, it is
not FiΔn measurable. To tackle this problem, we split the sum over i into blocks
of size mkn, separated by blocks of size kn, in order to ensure some “conditional
independence” of the successive summands, and it remains a residual sum for the
summands occurring just before time t .
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More specifically, we fix an integer m ≥ 2 (which will eventually go to infin-
ity). The lth block of size mkn contains ζ ni for all i between I (m,n, l)= (l − 1)×
(m + 1)kn + 1 and I (m,n, l) + mkn − 1. The number of such blocks which can
be accommodated without using data after time t is then ln(m, t) = [[t/Δn]−1

(m+1)kn
].

The “real” times corresponding to the beginning of the lth big block is then
t (m,n, l)= (I (m,n, l)− 1)Δn.

At this stage, we set

ζ(m)ni =
mkn−1∑

r=0

ζ nI (m,n,i)+r , Zn(m)t =
ln(m,t)∑

i=1

ζ(m)ni .

The process Zn(m) is still difficult to analyze because any one summand ζ(m)ni in it
involves the process σs evaluated at many different times. It is convenient to modify
the definition by freezing the volatility at the beginning of each large block, and this
leads to set (below, i + r ≥ 1 always):

β̂
n,j
i,r = 1√

un
σ(i−1−r)Δn

∫ (i−1)Δn+un
(i−1)Δn

gj
(
s−(i−1)Δn

un

)
dWs

η
n,j
i,r = Δn√

un
(f j (β̂

n,j
i,r )− ρΛ(gj ) c(i−1−r)Δn (f

j ))

η(m)ni =
∑mkn−1
r=0 ηnI (m,n,i)+r,r

Mn(m)t = ∑ln(m,t)
i=1 η(m)ni .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12.2.21)

The variables ηn,ji,r are one-dimensional, but the variables β̂n,ji,r are d-dimensional,

and we write its components as β̂n,lji,r for l = 1, . . . , d .
The rest of this subsection is devoted to proving that Hn(1) has the “same be-

havior” as Mn(m), asymptotically as n→∞ and also m→∞.

Lemma 12.2.5 We have for all t > 0:

lim
m→∞ lim sup

n→∞
E

(
sup
s≤t
∥∥Hn(1)s −Zn(m)s

∥∥
)
= 0. (12.2.22)

Proof Denote by J (n,m, t) the set of all integers j between 1 and [t/Δn]− kn+ 1,
which are not in the big blocks, that is not of the form I (m,n, i) + l for some
i ≥ 1 and 0 ≤ l ≤ mkn − 1. We further divide J (n,m, t) into kn disjoint subsets
J (n,m, t, r) for r = 1, . . . , kn, where J (n,m, t, r) is the set of all j ∈ J (n,m, t)
equal to r modulo kn. Then

Hn(1)t −Zn(m)t =
kn∑

r=1

Z
n
(m, r)t , Z

n
(m, r)t =

∑

j∈J (n,m,t,r)
ζ nj . (12.2.23)

Observe that E(ζ nj | F(j−1)Δn) = 0 and ζ nj is F(j+kn)Δn measurable. Then

Z
n
(m, r)t is a sum of martingale increments, because any two distinct indices in
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J (n,m, t, r) are more than kn apart. Furthermore (12.2.13) and the polynomial
growth of f imply that E(‖ζ nj ‖2)≤KΔ2

n/un. Therefore by Doob’s inequality,

E

(
sup
s≤t
∥∥Zn(m, r)s

∥∥2
)
≤ 4E

(
∑

j∈J (n,m,t,r)

∥∥ζ nj
∥∥2
)
≤ Kt

Δ2
n

mu2
n

,

where the last inequality comes from the fact that the number of points in
J (n,m, t, r) is not more than ln(m, t), which is less than t/mun. Therefore

E

(
sup
s≤t
∥∥Zn(m, r)s

∥∥
)
≤ K

√
t
Δn√
mun

= K
√
t

1√
mkn

.

By virtue of (12.2.23), we deduce that the expectation in (12.2.22) is less than
K
√
t /
√
m, and the result follows. �

Lemma 12.2.6 We have for all t > 0 and all m≥ 1:

E

(
sup
s≤t
∥∥Zn(m)s −Mn(m)s

∥∥
)
→ 0.

Proof 1) We start as in the previous lemma: J ′(n,m, t) the set of all integers j
between 1 and [t/Δn] − kn + 1, which are inside the big blocks, that is of the form
j = I (m,n, i)+ l for some i ≥ 1 and l ∈ {0, . . . ,mkn − 1}. Then J ′(n,m, t, r) is
the set of all j ∈ J (n,m, t) equal to r modulo kn. Hence

Zn(m)t −Mn(m)t =
kn∑

r=1

Mn(m, r)t , Mn(m, r)t =
∑

j∈J (n,m,t,r)
θnj , (12.2.24)

where θnj = ζ nj − ηnj,l when j = I (m,n, i)+ l. Then, as in the previous lemma,

E

(
sup
s≤t
∥∥M ′n(m, r)s

∥∥2
)
≤ 4E

(
∑

i∈J ′(n,m,t,r)

∥∥θni
∥∥2
)
. (12.2.25)

2) Now we give an estimate for E(‖θnj ‖2) for j ∈ J (n,m, t, r). When j =
I (m,n, i)+ l again, we can write

θnj =
√
un

kn

(
f
(√
Λ(g)σ(j−1)ΔnU

)− f (√Λ(g)σ(j−1−l)ΔnU
)

− (ψ(√Λ(g)σ(j−1)Δn

)−ψ(√Λ(g)σ(j−1−l)Δn
)))
, (12.2.26)

where ψ(α)= E(f (αU)) is as in (5.3.26) once more and U is N (0, Id ′).
Now (SK) implies, as in (5.3.28) and because lΔn ≤mun,

E
(‖σ(j−1)Δn − σ(j−1−l)Δn‖2) ≤ Kmun. (12.2.27)
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On the other hand we have (12.2.17), which, exactly as for (12.2.18), yields for all
ε ∈ (0,1), all A′ > 1 and α,α′ ∈MA′ in case (a) or α,α′ ∈M′

A′ in case (b):

E
(∥∥f (αU)− f (α′U)∥∥2) ≤ KA′

(‖α− α′‖2

ε2
+ ε1/4

)
. (12.2.28)

Combining (12.2.26), (12.2.27) and (12.2.28), and using that
√
Λ(g)σt takes its

values in MA′ in case (a) and in M′
A′ in case (b), where A′ =A(Λ(g)∨ 1

Λ(g)
), and

by successive conditioning, we obtain for all ε ∈ (0,1):

E
(∥∥θnj
∥∥2) ≤ Kun

k2
n

(
mun

ε2
+ ε1/4

)
. (12.2.29)

Then by (12.2.25), and since J ′(n,m, k, r) contains at most [t/un] points, we get

E

(
sup
s≤t
∥∥Mn(m, r)s

∥∥2
)
≤ Kt

k2
n

(
mun

ε2
+ ε1/4

)
.

It remains to use (12.2.24), which yields

E

(
sup
s≤t
∥∥Zn(m)s −Mn(m)s

∥∥
)
≤ K

√
t

(√
mun

ε
+ ε1/8

)

and the result follows because ε is arbitrarily small. �

12.2.5 Proof of Lemma 12.2.3

We are now almost ready to prove Lemma 12.2.3. The key step is a CLT for the
processes Mn(m) of (12.2.21). Recalling the processes L(gj ) of (12.2.8), we can
set

A(α; s, t)j l = E
(
f j
(
αL
(
gj
)
s

)
f l
(
αL
(
gl
)
t

))− ρΛ(gj )αα∗
(
f j
)
ρΛ(gl)αα∗

(
f l
)
,

and we have:

Lemma 12.2.7 For each m ≥ 1 the processes Mn(m) converge stably in law
to a limit M(m) defined on a very good extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F ,
(Ft )t≥0,P), and which conditionally on F is a continuous centered Gaussian pro-
cess with independent increments with

Ẽ
(
M(m)

j
t M(m)

l
t |F
)= 1

m

∫ t

0

(∫

[0,m]2
A(σs;u,v)jl dudv

)
ds. (12.2.30)
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Proof 1) We will apply Theorem 2.2.15, page 58, to the array (η(m)ni ), with

Nn(t) = [t/un(m + 1)] and T (n, i) = t (m,n, i + 1) and (Ωn,Gn, (F
n

t ),Pn) =
(Ω,F , (Ft ),P) and Gni =Ft (m,n,i+1), so we have (2.2.29) and (2.2.39).

First, E(η(m)ni | Gni−1) = 0 is clear. Since f has polynomial growth and ct
is bounded, we have E(‖ηni,r‖4 | F(i−1−r)Δn) ≤ KΔ4

n/u
2
n, hence E(‖η(m)ni ‖4 |

Gni−1)≤Km4u2
n and it follows that

ln(m,t)∑

i=1

E
(∥∥η(m)ni

∥∥4 | Gni−1

) P−→ 0 (12.2.31)

for any t > 0 because ln(m, t)≤ t/mun.
Next, we show that

E
(
η(m)ni (Nt(m,n,i+1) −Nt(m,n,i)) | Gni−1

) = 0 (12.2.32)

for any martingale N which either is bounded and orthogonal to the Brownian
motion W , or is one of the components of W . In the former case, (12.2.32) is
proved exactly as at the very end of the proof of Theorem 4.2.1, because ζ(m)′ni
is a function of the process W(m,n, i)s = Wt(m,n,i)+s − Wt(m,n,i). In the latter
case, η(m)ni (Nt(m,n,i+1) −Nt(m,n,i)) is again a function of the process W(m,n, i),
sayG(W(m,n, i)), which satisfiesG(−W(m,n, i))=−G(W(m,n, i)) because the
function f is globally even; since the Gni−1-conditional laws of W(m,n, i) and
−W(m,n, i) are the same, we have (12.2.32).

2) At this stage, by Theorem 2.2.15 it remains to prove the following conver-
gence, for all t > 0, and where C(m)jlt denotes the right side of (12.2.30):

ln(m,t)∑

i=1

E
(
η(m)

n,j
i η(m)

n,l
i | Gni−1

) P−→ C(m)
jl
t . (12.2.33)

We fix for a moment i and n, and we set I = I (m,n, i). Then from the first
formula in (12.2.21) one easily sees that the Gni−1-conditional distribution of the

family of variables (β̂n,jwI+r,r : r ≥ 0,1 ≤ w ≤ d,1 ≤ j ≤ q) is the same as the law

of the variables (αL(gj )wr/kn : r ≥ 0,1 ≤ w ≤ d,1≤ j ≤ q) taken at α = σ(I−1)Δn .
Thus

E
(
η
n,j
I+r,r η

n,l
I+r ′,r ′ | Gni−1

) = Δ2
n

un
A
(
σ(I−1)Δn; r/kn, r ′/kn

)j l
,

and a simple calculation yields

E
(
η(m)

n,j
i η(m)

n,l
i | Gni−1

)= un
k2
n

mkn−1∑

r,r ′=0

A
(
σ(I (m,n,i)−1)Δn; r/kn, r ′/kn

)j l
.

(12.2.34)
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The functions gj being Hölder on [0,∞), it is clear from (12.2.8) that the process
L(gj )t is continuous in probability in t , and is a Gaussian process, and the f j

have polynomial growth and are continuous. So it readily follows that the functions
(α, s, t) �→ A(α; s, t)j l are continuous. Now, the right side of (12.2.34) is un times
a Riemann sum for the integral

∫
[0,m]2 A(σ(I (m,n,i)−1)Δn;u,v)jl dudv, and the left

side of (12.2.33) is thus a Riemann sum for the triple integral (times 1/m) defining
C(m)

jl
t . Therefore (12.2.33) follows from the continuity of the function A(.)jl . �

Proof of Lemma 12.2.3 In view of Lemmas 12.2.5, 12.2.6 and 12.2.7, and because
of Proposition 2.2.4, the only property which remains to be proved is

M(m)
L-s=⇒ Y ′(X) as m→∞, (12.2.35)

where Y ′(X) is as in Theorem 12.2.1. Recall that M(m) and Y ′(X) are, condition-
ally on F , centered, Gaussian, continuous and with independent increments and
with covariances at time t respectively C(m)jlt and Cjlt , where Cjlt is the right side
of (12.2.10). Therefore, (12.2.35) follows from the fact that the F -conditional dis-
tributions of M(m) converge to the F -conditional distribution of Y ′(x), and this is
implied by

C(m)
jl
t

P−→ C
jl
t as m→∞

for all t . In turn, and since the function A(.)jl is locally bounded, this is implied by

1

m

∫

[0,m]2
A(α;u,v)jl dudv → R

jl
αα∗ (12.2.36)

for each d × d ′ matrix α.
To see this, we first observe that (we drop the indices j, l below)

Rαα∗ =
∫ 2

0
A(α;1, t) dt. (12.2.37)

Next, since the process L(α) is stationary, we have A(α;u+ t, v + t)=A(α;u,v)
for all u,v, t ≥ 0. Moreover the variables L(α)t and L(α)s are independent if |s −
t |> 1, and thus A(α; t, s)= 0 in this case. Hence

1

m

∫

[0,m]2
A(α;u,v) dudv = 1

m

∫ m

0
du

∫ (u+1)∧m

(u−1)∨0
A(α;1, v− u+ 1) dv

= 1

m

∫ m

0
du

∫ 2∧(m+1−u)

(u−1)+
A(α;1, t) dt

and, in view of (12.2.37), the property (12.2.36) is straightforward by the dominated
convergence theorem. �



Chapter 13
The Central Limit Theorem for Truncated
Functionals

In this chapter we prove the Central Limit Theorems associated with the Laws of
Large Numbers of Chap. 9. The proofs use techniques which we have established
and employed earlier in this book, with one exception: new techniques are needed
for studying the local estimators of the volatility ct .

Only regular discretization schemes are considered. The d-dimensional Itô semi-
martingale X has the Grigelionis decomposition

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt , (13.0.1)

where W is a d ′-dimensional Wiener process and p is a Poisson measure with com-
pensator q(dt, dz) = dt ⊗ λ(dz), and c = σσ�. We also assume at least Assump-
tion (H-r) for some r ∈ [0,2] (recall that (H-2) = (H)), that is Assumption 6.1.1,
recalled below:

Assumption (H-r) We have (13.0.1) with bt locally bounded and σt càdlàg and
‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn) is a localizing
sequence of stopping times and each function Γn satisfies

∫
Γn(z)

rλ(dz) <∞.

We also consider a sequence of truncation levels vn satisfying

vn = αΔ�n for some α > 0, � ∈
(

0,
1

2

)
. (13.0.2)

13.1 A Central Limit Theorem for Approximating the Jumps

Here we consider the functionals

V n(f, vn+,X)t =
[t/Δn]∑

i=1

f (Δni X)1{‖Δni X‖>vn}.
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372 13 The Central Limit Theorem for Truncated Functionals

Assuming (H-r), we know by Theorem 9.1.1, page 249, that V n(f, vn+,X) P=⇒
f ∗ μ if f (x) = O(‖x‖r ) as x → 0, and we are now looking for the associated
central limit theorem, which describes the behavior of the processes

V
n
(f, vn+,X)t = 1√

Δn

(
V n(f, vn+,X)t − f � μΔn[t/Δn]

)
.

Although the assumptions on f are different, the results look very much like
Theorem 5.1.2, and in particular the limiting process is the same. We briefly recall
how this limiting process is constructed. We have an auxiliary space (Ω ′,F ′,P′)
endowed with a triple sequence (Ψn−,Ψn+, κn)n≥1 of variables, all independent,
and with the following laws:

Ψn± are d ′-dimensional, N (0, Id ′), κn is uniform on [0,1].
We take an arbitrary weakly exhausting sequence (Tn)n≥1 of stopping times
for the jumps of X. The very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of
(Ω,F , (Ft )t≥0,P) is

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ) and such that
(Ψn−,Ψn+, κn) is F̃Tn measurable for all n,

⎫
⎬

⎭

and finally we set

Rn =Rn− +Rn+, where Rn− =√κn σTn−Ψn−, Rn+ =
√

1− κn σTnΨn+.
(13.1.1)

Under (H-r), the proof of Proposition 5.1.1 goes through for a q-dimensional
C1 test function f satisfying ∂if (x)= O(‖x‖r/2), in which case we can define the
process Z(f,X) by (5.1.4), that is

V (f,X)t =
∞∑

n=1

(
d∑

i=1

∂if (ΔXTn)R
i
n

)
1{Tn≤t}.

This process has a version which is càdlàg, adapted, and conditionally on F has
centered and independent increments and satisfies

Ẽ
(
V (f,X)it V (f,X)

j
t |F
)= 1

2

∑

s≤t

d∑

k,l=1

(
∂kf

i ∂lf
j
)
(ΔXs)

(
ckls− + ckls

)
. (13.1.2)

As in Theorem 5.1.2, we give a joint convergence with the discretized processes
X
(n)
t =XΔn[t/Δn]:

Theorem 13.1.1 Assume (H-r) for some r ∈ [0,2], and let f be a C1 function from
R
d into R

q , with f (0)= 0 and ∂if (x)= O(‖x‖p−1) for all i = 1, . . . , d as x→ 0,
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for some p > 1. If further

p > r + 1∨ r, 1

2(p− r) < � <
1

2

∧ 1

2r
, (13.1.3)

then
(
X(n),V

n
(f, vn+,X)

) L-s=⇒ (X,V (f,X)) (13.1.4)

and also, for each fixed t ,

1√
Δn

(
V n(f, vn+,X)t − f � μt

) L-s−→ V (f,X)t .

The comments made after Theorem 5.1.2, page 128, hold here as well.

Remark 13.1.2 It is enlightening to compare the conditions on f and X in the two
theorems, and for this we consider the case f (x)= gp(x)= ‖x‖p for some p > 1,
so f is C1 and ∂if (x)= O(‖x‖p−1) as x→ 0. Under (H-r), Theorem 5.1.2 applies
if p > 3, and Theorem 13.1.1 applies (with a proper choice of � ) if p > r + 1∨ r ,
and the latter is smaller than 3 if and only if r < 3

2 .
So the conditions on the power p for the function gp may be more or less strin-

gent in these two theorems, according to the properties of X.

Remark 13.1.3 The previous remark leads one to inquire why those two theorems
have such different assumptions. For Theorem 5.1.2 the reason for which p should
be bigger than 3 when f = gp comes from the interference with the “Brownian
part”. In Theorem 13.1.1 the Brownian part is eliminated, but the “correct” centering
for the processes V n(f, vn,X) should be (f (x)1{‖x‖>vn}) ∗ μ rather than f ∗ μ.
Then, although η(f )nt = (f (x)1{‖x‖>vn}) ∗ μ− f ∗ μ goes to 0 under (H-r) when
f = gp and p ≥ r , the rate of convergence may be smaller than

√
Δn. Indeed, in the

proof below, we prove the CLT with the “correctly centered” processes, and then
deduce the CLT as stated in the theorem.

In fact, the second condition in (13.1.3) is designed for a rate faster than
√
Δn

in the above convergence. Of course this condition is not sharp in the literal sense:
for example when r = 0, that is when X has locally finitely many jumps, the result
holds (in a straightforward way) with no condition on f except differentiability, and
no condition on � except 0 < � < 1

2 . On the other hand, if the jumps of X are

those of a stable process with index β ∈ (0,2), then 1√
Δn
η(gp)

n
t

P−→ 0 if and only
if p > β + 1/2� , whereas (H-r) is satisfied if and only if r > β: so the second
condition (13.1.3) is indeed sharp.

Proof By localization we can assume (SH-r), that is Assumption 6.2.1 accord-
ing to which we have (H-r) and the processes b, σ and X are bounded, and
‖δ(ω, t, z)‖ ≤ Γ (z) with Γ bounded and

∫
Γ (z)rλ(dz) <∞. Note also that the

last claim is deduced from the first one, as in Theorem 5.1.2, so we only have to
prove (13.1.4).
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Step 1) We introduce the auxiliary processes

Y
n
(f, vn+,X)t = 1√

Δn

(
V n(f, vn+,X)t −

(
f (x)1{‖x‖>vn}

) ∗μΔn[t/Δn]
)
.

In this step we show that it is enough to prove

(
X(n), Y

n
(f, vn+,X)

) L-s=⇒ (X,V (f,X)). (13.1.5)

To show this, it clearly suffices to prove that

t > 0 ⇒ Unt =
1√
Δn

(∥∥f (x)
∥∥1{‖x‖≤vn}

) ∗μt P−→ 0. (13.1.6)

The assumption of f implies ‖f (x)‖ ≤K‖x‖p if ‖x‖ ≤ 1. Hence (SH-r) yields

E
(
Unt
)≤ K√

Δn
E
(
(Γ ∧ vn)p ∗ pt

)≤ K t v
p−r
n√
Δn

∫
Γ (z)r λ(dz)≤ K t v

p−r
n√
Δn

,

and 1
2(p−r) < � in (13.1.3) yields (13.1.6).

Step 2) In this step we suppose that f (x)= 0 when ‖x‖ ≤ ε for some ε > 0. In this
case Y

n
(f, vn+,X) = V n(f,X), as given by (5.1.6), as soon as vn ≤ ε. Then our

result is nothing else than Theorem 5.1.2, except that f is C1 instead of C2.
However, coming back to the proof of Theorem 5.1.2 and using its notation,

we see that when m> 2/ε we have V
n
(f,X(m))t = 0 and V (f,X(m))t = 0 for all

t ≤ T , on the setΩn(T ,m). Hence, only Step 1 of that proof is needed for a function
f as above, and only the C1 property is used there. In other words, when f is C1

and vanishes on a neighborhood of 0 we have Theorem 5.1.2 and our present result
as well.

Step 3) Here we use the function ψ of (3.3.16) (a C∞ function on R+ with 1[1,∞) ≤
ψ ≤ 1[1/2,∞)), and ψε = ψ(‖x‖/ε) and ψ ′ε = 1 − ψε . The function fε = fψε is
C1 and vanishes on a neighborhood of 0. Then by the previous step and Proposi-
tion 2.2.4, it remains to prove the following two properties, where f ′ε = fψ ′ε:

V
(
f ′ε,X
) u.c.p.=⇒ 0 as ε→ 0 (13.1.7)

t > 0, η > 0 ⇒ lim
ε→0

lim sup
n→∞

P

(
sup
s≤t
∥∥Yn
(
f ′ε, vn+,X

)
s

∥∥> η
)
= 0. (13.1.8)

It is enough to prove these for each component, so below we assume that q = 1.
For (13.1.7), V (f ′ε,X) is F -conditionally a martingale satisfying (13.1.2),

whereas our assumption on f and the facts that ψ ′ε(x) ≤ 1{‖x‖≤ε} and |∂iψ ′ε(x)| ≤
K
ε

1{‖x‖≤ε} imply

ε ∈ (0,1] ⇒ ∣∣f ′ε(x)
∣∣≤K‖x‖p 1{‖x‖≤ε},

∣∣∂if ′ε(x)
∣∣≤K‖x‖p−1 1{‖x‖≤ε}.

(13.1.9)
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Then, since (13.1.3) implies p − 1 ≥ r , Doob’s inequality and the boundedness of
ct yield

Ẽ

(
sup
s≤t
∣∣V
(
f ′ε,X
)
s

∣∣2
)
≤ KE

(
∑

s≤t
‖ΔXs‖2r 1{‖ΔXs‖≤ε}

)

= K
∫ t

0
E

(∫

{‖δ(s,z)‖≤ε}
∥∥δ(s, z)

∥∥2r λ(dz)
)
ds.

Using ‖δ(s, z)‖ ≤ Γ (z) and
∫
Γ (z)2r λ(dz) <∞, we then deduce (13.1.7) from

Lebesgue’s theorem.

Step 4) We start proving (13.1.8). Set H(ε)nt =
∑
s≤t f ′ε(ΔXs)1{‖ΔXs‖>vn}. Then

Y
n
(fε, vn+,X)t =

[t/Δn]∑

i=1

ζ(ε)ni , where

ζ(ε)ni =
1√
Δn

(
f ′ε
(
Δni X
)

1{‖Δni X‖>vn} −Δni H(ε)n
)

and in this step we show that it is enough to exhibit subsets Ani of Ω and variables
ζ ′(ε)ni ≥ 0 such that

|ζ(ε)ni | ≤ ζ ′(ε)ni on the set Ani
t > 0 ⇒ ∑[t/Δn]

i=1 P((Ani )
c) → 0 as n→∞

t > 0 ⇒ limε→0 lim supn→∞ E
(∑[t/Δn]

i=1 ζ ′(ε)ni
) = 0.

⎫
⎪⎬

⎪⎭
(13.1.10)

Indeed, assuming the above properties, we see that the second one yields P(Ωnt )→
1, where Ωnt = ∩i≤[t/Δn]Ani , and the first one implies that on the set Ωnt we

have |Yn(fε, vn+,X)s | ≤∑[s/Δn]i=1 ζ ′(ε)ni for all s ≤ t : so the third property and
P(Ωnt )→ 1 yield (13.1.8).

Step 5) The conditions in (13.1.3) imply that one can choose a real l with

1 < l <
1

2r�
, r > 1 ⇒ l <

2(p− 1)� − 1

2(r − 1)�
. (13.1.11)

We set un = (vn)l and Fn = {z : Γ (z) > un} and

X′′n = (δ 1Fn) ∗ p, X′′(ε)n = (δ 1Fn∩{‖δ‖≤2ε}) ∗ p, Nnt = 1Fn ∗ p
X′nt =Xt −X′′nt

=X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + (δ1(Fn)c ) ∗ (p− q)t − (δ1{|δ|≤1}∩Fn) ∗ qt

Ani =
{∥∥Δni X

′n∥∥≤ vn/2
}∩ {Δni Nn ≤ 1

}
.
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Below we use an argument already encountered several times, see for example
the proof of Theorem 4.3.1, Step 3: Let (Gnt ) denote the smallest filtration con-
taining (Ft ) and such that the restriction of the measure p to R+ × Fn is Gn0 mea-
surable. Then W and the restriction p

n
of p to R+ × (Fn)c are still a Brownian

motion and a Poisson measure relative to (Gnt ), and the stochastic integrals defining
X′n, which are with respect to W and p

n
, can be taken relative to (Ft ) or to (Gnt )

without difference. Hence, taking advantage of the strengthened assumption (SH-r),
we can use the estimate (2.1.44) and the properties

∫
Fcn
Γ (z)m λ(dz)≤Kum−rn and

∫
Fn
Γ (z)λ(dz)≤Ku−(r−1)+

n to get for m≥ 2:

E
(∥∥Δni X

′n∥∥m | Gn0
) ≤ KmΔn

(
Δ
m/2−1
n + um−rn +Δm−1

n u−m(r−1)+
n

)
. (13.1.12)

We have r ≤ 2 and (13.1.11) implies 2(r − 1)+l� ≤ 1, so taking m= 2 yields

E
(∥∥Δni X

′n∥∥2 | Gn0
) ≤ KΔn. (13.1.13)

On the other hand Nn is a Poisson process with parameter λ(Fn), which is
smaller than K/urn, and we deduce

P
(
Δni N

n ≥ 2
) ≤ KΔ2

nu
−2r
n . (13.1.14)

Then (13.1.12), Markov’s inequality, un = αlΔl�n and (13.1.14) yield for m≥ 2:

[t/Δn]∑

i=1

P
((
Ani
)c) ≤ Km t

(
Δ
m(1/2−�)−1
n +Δm�(l−1)−rl�

n

+Δm(1−�−l�(r−1)+)−1
n +Δ1−2rl�

n

)
.

We have 1− 2rl� > 0 and 1/2−� > 0 and l > 1 and 1−� − l�(r − 1)+ > 0,
so by taking m large enough we conclude the second part of (13.1.10).

On the set Ani , and if vn ≤ ε, we have four mutually exclusive possibilities:

1. Δni N
n=0, which impliesΔni X=Δni X′n, hence f ′ε(Δni X)=0, andΔni H(ε)

n=0.
2. Δni N

n = 1 and Δni X
′′n = Δni X

′′(ε)ni = 0, hence again f ′ε(Δni X) = 0 =
Δni H(ε)

n = 0.
3. Δni N

n = 1 and Δni X
′′n �= 0 and Δni X

′′(ε)ni = 0; so the only jump of X inside the
interval ((i − 1)Δn, iΔn] with size bigger than vn has in fact a size bigger than
2ε and then Δni H(ε)

n = 0, and also ‖Δni X′′n‖ > 2ε, implying ‖Δni X‖> ε and
thus f ′ε(Δni X)= 0.

4. Δni N
n = 1 and Δni X

′′n =Δni X′′(ε)ni �= 0; then Δni X =Δni X′n +Δni X′′(ε)n and
Δni H(ε)

n
i = f ′ε(Δni X′′(ε)ni )1{‖Δni X′′(ε)ni ‖>vn}.

Therefore the first part of (13.1.10) is satisfied as soon as vn ≤ ε, if we take

ζ ′(ε)ni =
1√
Δn

∣∣f ′ε
(
Δni X

′n +Δni X′′(ε)n
)

1{‖Δni X′n+Δni X′′(ε)n‖>vn}

− f ′ε
(
Δni X

′′(ε)n
)
1{‖Δni X′′(ε)n‖>vn}

∣∣1{‖Δni X′n‖≤vn/2}.
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Step 6) In this step we prove the last part of (13.1.10), with the above choice for
ζ ′(ε)ni . One deduces from (13.1.9) that

∣∣f ′ε(x + z)1{‖x+z‖>v} − f ′ε(x)1{‖x‖>v}
∣∣1{‖z‖≤v/2}

≤ K
(‖x‖p−1 ‖z‖ + ‖x‖p 1{‖x‖≤2v}

)
.

It is then enough to prove the following two properties:

1√
Δn

[t/Δn]∑

i=1

E
(∥∥Δni X

′′(ε)n
∥∥p 1{‖Δni X′′(ε)n‖≤2vn}

) → 0 as n→∞ (13.1.15)

lim
ε→0

lim sup
n→∞

1√
Δn

[t/Δn]∑

i=1

E
(∥∥Δni X

′′(ε)n
∥∥p−1 ∥∥Δni X

′n∥∥) = 0. (13.1.16)

For (13.1.15) we use ‖x‖p 1{‖x‖≤2vn} ≤Kvp−r∧1
n ‖x‖r∧1. The variables δ̂n(q)s,t

associated with δ(t, z)1Fn(z) by (2.1.35) satisfy δ̂n(r)s,t ≤ K and also δ̂n(1)s,t ≤
K/ur−1

n when r > 1, so (2.1.40) yields

E
(∥∥Δni X

′′(ε)n
∥∥p 1{‖Δni X′′(ε)n‖≤2vn}

) ≤ KΔ
1+(p−r∧1−l(r−1)+)�
n .

By (13.1.3) and (13.1.11) we have (p− r ∧ 1− l(r − 1)+)� > 1
2 , hence (13.1.15)

holds.
For (13.1.16), observe that ‖Δni X′′(ε)ni ‖ ≤ Δni G(ε)n, where G(ε)nt = ((Γ ∧

(2ε))1Fn) ∗ p. When p ≤ 2 we use p ≥ r + 1 and (2.1.40), and when p > 2
we use (2.1.41) and also (Δn/ur−1

n )p−1 ≤ KΔn if further r > 1 (because in this
case (p − 1)(1 − (r − 1)l�) ≥ 1 by 2rl� < 1), to get that E((Δni G(ε)

n)p−1) ≤
KΔn(φ(ε)+Δ1/(p−1)

n ), where φ(ε)→ 0 as ε→ 0. Thus (13.1.13) and the Cauchy-
Schwarz inequality, plus the Gn0 measurability of Δni G(ε)

n, yield

E
(∥∥Δni X

′′(ε)n
∥∥p−1 ∥∥Δni X

′n∥∥) = E
((
Δni G(ε)

n
)p−1

E
(∥∥Δni X

′n∥∥ | Gn0
))

≤ K
√
ΔnE
((
Δni G(ε)

n
)p−1)≤KΔ3/2

n

(
φ(ε)+Δ1/(p−1)

n

)
.

At this stage, (13.1.16) follows from φ(ε)→ 0 as ε→ 0. �

13.2 Central Limit Theorem for Approximating
the Continuous Part

Now we turn to the functionals

V ′n(F, vn−,X)t =Δn
[t/Δn]−k+1∑

i=1

F

(
Δni X√
Δn
, . . . ,

Δni+k−1X√
Δn

) k−1∏

l=0

1{‖Δni+lX‖≤vn}.
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which converge to
∫ t

0 ρ
k⊗
cs
(F )ds. Recall that k is an integer and F a continuous

function on (Rd)k growing at a rate less than ‖x‖p in each of the k arguments. This
convergence holds under (H) when X is continuous, and also when it jumps and
p ≤ 2, whereas we need (H-r) with r < 2 and � ≥ (p − 2)/2(p − r) when p > 2
and X jumps. Here we are looking for the associated Central Limit Theorem, that is
we want to find the behavior of the processes

V
′n
(F, vn−,X)t = 1√

Δn

(
V ′n(F, vn−,X)t −

∫ t

0
ρk⊗cs (F )ds

)
. (13.2.1)

When f is a function on R
d , the following functionals are also of interest, see

(9.2.2):

V ′n(f, k, vn−,X)t

=Δn
[t/Δn]−k+1∑

i=1

f

(
Δni X+ · · · +Δni+k−1X√

Δn

)
1{‖Δni X+···+Δni+k−1X‖≤vn}.

(13.2.2)

13.2.1 The Results

The problem is almost the same as in Sect. 11.2, and the result similar to Theo-
rem 11.2.1. More precisely, when X is continuous, we have the following property:
for any t , outside a set whose probability goes to 0 as n→∞, and for all s ≤ t
we have V

′n
(F, vn−,X)s = V ′n(F,X)s , as given by (11.2.2) (see the proof below);

then the asymptotic results are exactly the same, and no further proof is needed.
When X has jumps, the truncation basically eliminates the jumps and consequently
the assumptions on the test function F are much weaker for V

′n
(F, vn−,X) than

for V
′n
(F,X).

The assumptions onX will be 4.4.3, 5.3.2, 4.4.4 or 5.3.4, which we briefly recall:

Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}

where M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and 〈M,M〉t =∫ t
0 as ds and the compensator of

∑
s≤t 1{‖Δσs‖>1} is

∫ t
0 ãs ds, with the following

properties: the processes b̃, σ̃ , ã and a are progressively measurable, the processes
b̃, a and ã are locally bounded, and the processes σ̃ and b are càdlàg or càglàd.

Assumption (K-r) (for r ∈ [0,1]) We have (K) except for the càdlàg or càglàd
property of b, and ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where
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(τn) is a localizing sequence of stopping times and the Borel functions Γn on E sat-
isfy
∫
Γn(z)

rλ(dz) <∞. Moreover the process b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz)

is càdlàg or càglàd.

Assumption (K’) We have (K) and both processes ct and ct− take their values
in M++

d×d .

Assumption (K’-r) We have (K-r) and both processes ct and ct− take their values
in M++

d×d .

We restate the conditions on F given in (11.2.7)–(11.2.10), with slight but im-
portant modifications in the exponents. The function F is globally even on (Rd)k

and q-dimensional. For some integer q ′ ∈ {0, . . . , q} and, when q ′ < q , for some
subset B of (Rd)k which is a finite union of affine hyperplanes, we have

j ≤ q ′ ⇒ x �→ Fj (x) is C1 on
(
R
d
)k

j > q ′ ⇒ x �→ Fj (x) is continuous on
(
R
d
)k and C1 outside B.

(13.2.3)

We denote by d(z,B) the distance between z ∈ (Rd)k and B . In the conditions
below we always have w ∈ (0,1], and z and y run through (Rd)k , and xj and v run
through R

d . The numbers p,p′, s, s′,w are subject to 0<w ≤ 1 and 0< s ≤ s′ and
p,p′ ≥ 0, but otherwise arbitrary, and ∇F stands for the family of all first partial
derivatives of F :
∥∥F(z)

∥∥ ≤ K
(
1+ ‖z‖p) (13.2.4)

∣∣∇Fj (z)∣∣≤
{
K
(
1+ ‖z‖p) if j ≤ q ′

K
(
1+ ‖z‖p)(1+ 1

d(z,B)1−w
)

if j > q ′ and z ∈ Bc (13.2.5)

z ∈ Bc, ‖y‖ ≤ 1
∧ d(z,B)

2
, j > q ′

⇒ ∣∣∇Fj (z+ y)−∇Fj (z)∣∣≤ K ‖y‖
(

1+ 1

d(z,B)2−w

)(
1+ ‖z‖p)

(13.2.6)

∥∥F(x1, . . . , xj−1, xj + v, xj+1, . . . , xk)− F(x1, . . . , xk)
∥∥

≤ K
(‖v‖s + ‖v‖s′)

k∏

l=1

(
1+ ‖xl‖p′

)
. (13.2.7)

These are exactly the same as (11.2.7)–(11.2.10) (see after (11.2.10), page 312, for
comments about the connections between those conditions), except for the last one
in which the exponent 2 for ‖xl‖ is replaced by p′.

The limiting process is the same as in Theorem 11.2.1, page 312. It is based
on the following quantities, where F and G are two functions on (Rd)k with
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polynomial growth and a ∈ M+
d×d and the variables U1,U2, . . . are indepen-

dent N (0, a) distributed, and we use the two σ -fields G = σ(U1, . . . ,Uk−1 and
G′ = σ(U1, . . . ,Uk):

Ra(F,G) =
k−1∑

j,j ′=0

E
(
E
(
F(Uk−j , . . . ,U2k−j−1) | G′

)

×E
(
G(Uk−j ′ , . . . ,U2k−j ′−1) | G′

)

−E
(
F(Uk−j , . . . ,U2k−j−1) | G

)

×E
(
G(Uk−j ′ , . . . ,U2k−j ′−1) | G′

))
. (13.2.8)

Theorem 13.2.1 Let X be a d-dimensional Itô semimartingale and F be a func-
tion from (Rd)k into R

q which is continuous, globally even, and satisfies (13.2.3),
(13.2.4) and (13.2.5). We also assume (13.0.2) for the truncation levels vn, and one
of the following four sets of hypotheses:

(a) We have q ′ = q and (K) and X is continuous.
(b) We have (K’) and (13.2.6) and X is continuous.
(c) We have q ′ = q and (K-r) for some r ∈ (0,1], and (13.2.7) with r ≤ s ≤ 1≤ s′,

and

� ≥ p′ − 2

2(p′ − r) if k ≥ 2 and p′ > 2, and

{
r = 1 ⇒ s = s′ = 1
r < 1 ⇒ s ≥ r

2−r , � ≥ s′−1
2(s′−r) .
(13.2.9)

(d) We have (K’-r) with some r ∈ (0,1], and (13.2.6) and (13.2.7) with r ≤ s ≤ 1≤
s′, as well as (13.2.9).

Then the processes V
′n
(F, vn−,X) of (13.2.1) converge stably in law to a

continuous process V
′
(F,X) which is defined on a very good filtered extension

(Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P), and conditionally on F is a centered
Gaussian process with independent increments satisfying, with the notation (13.2.8):

Ẽ
(
V
′(
F i,X
)
t
V
′(
Fj ,X

) |F)=
∫ t

0
Rcs
(
F i,F j

)
ds.

Moreover, under the same conditions, and for any real γ > 0, we have

1√
Δn

(
V ′n(F, γ vn−,X)− V ′n(F, vn−,X)

) u.c.p.=⇒ 0, (13.2.10)

and also, recalling (13.2.2),

1√
Δn

(
V ′n(f, k, γ vn−,X)− V ′n(F, vn−,X)

) u.c.p.=⇒ 0 (13.2.11)

when F takes the form F(x1, . . . , xk)= f (x1 + · · · + xk) for a function f on R
d .
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Observe that, when k = 1, (13.2.7) implies (13.2.4), or equivalently (9.2.3) (see
page 251) with p = s′, whereas when k ≥ 2 it implies (9.2.3) with p = p′. Thus
(9.2.4) is weaker than (13.2.9), as it should be because the CLT implies the LLN.

The condition (13.2.4) agrees with (9.2.3), page 251, so (9.2.4) is weaker than
(13.2.9), as it should be because the CLT implies the LLN.

This theorem is the same as Theorem 11.2.1 when X is continuous, and in that
case there is no reason to look at truncated functionals anyway: so (a) and (b) above
are here just for completeness. The main improvement upon Theorem 11.2.1, when
X has jumps, is due to the way Condition (13.2.7) is used: here we allow s′ ≥ 1
and p′ > 2, and those two numbers can actually be arbitrarily large, upon choosing
� appropriately. This improvement is illustrated, in a more concrete way, by the
following example, which deals with the same test function F as Example 11.2.2,
page 313.

Example 13.2.2 Consider the truncated multipower variations, corresponding to the
one-dimensional test function (11.2.13):

F(x) =
k∏

j=1

d∏

i=1

∣∣xij
∣∣wij , wij ≥ 0,

and suppose that X has jumps. Let wj = w1
j + · · · + wdj and u = min(wij : wij >

0,1 ≤ i ≤ d,1 ≤ j ≤ k). (13.2.4)–(13.2.7) hold with p =∑j wj and p′ = s′ =
1∨max(w1, . . . ,wd), and s = 1∧ u, and with B =∪kdj=1{z ∈ (Rd)k : zj = 0} when
u ≤ 1 (otherwise B = ∅, or equivalently we are in the case q ′ = q = 1). Then if
(K’-r) holds for some r ∈ [0,1), the above theorem applies as soon as s ≥ r and
� ∈ [ p′−1

2(p′−r) ,
1
2 ).

Another interesting case is

F(x) =
k∏

j=1

d∏

i=1

(
xij
)wij , wij ∈N. (13.2.12)

(There are no absolute values, which is why the wij ’s are integers.) This function
is differentiable, so we have q ′ = q = 1 in (13.2.3). Then (13.2.4), (13.2.5) and
(13.2.7) hold with p,p′, s′ as above and s = 1. It is globally even if and only if the
sum of all wij is even. In this case the theorem applies under (K-1) if s′ = 1, which

amounts to having F(x)=∏kj=1 x
mj
j for indices mj in {1, . . . , d}: this is of course

an uninteresting case where ρk⊗cs (F )= 0. It also applies under (K-r) when r < 1 for

any function like (13.2.12), provided � ∈ [ p′−1
2(p′−r) ,

1
2 ).

Remark 13.2.3 If (K-1) holds but not (K-r) for any r < 1, the present theorem needs
F to have linear growth in each variable xj , because (13.2.7) with s′ = s = 1 im-
plies for example ‖F(x1, . . . , xk)‖ ≤G(x1, . . . , xk−1)(1+ ‖xk‖) for some function
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G, and then there is no restriction on the truncation levels vn other than (13.0.2).
This contrasts with Theorem 11.2.1, which needs F and ∇F to be bounded in this
situation.

When (K-r) holds for some r < 1, Theorem 13.2.1 applies without restriction
on the growth of F and ∇F (say, when F is C1 everywhere) apart from being
polynomial, again in contrast with Theorem 11.2.1 which needs a sub-linear growth
for F . On the other hand, there is a restriction on the truncation levels, which should
be “small enough” (that is, � big enough). Note at this juncture that, when X and
F satisfy the conditions of the theorem, it is always possible to find an � < 1/2
which satisfies (13.2.1).

When k = 1 the theorem above is similar to Theorems 5.3.5 and 5.3.6, pages
147–148, and in (K-r) the property that the process σt is an Itô semimartingale
is crucial. However we have also proved a CLT for the quadratic variation, when
X jumps, under the hypothesis (H) only. We may wonder whether the “truncated
realized quadratic variation”, defined by

Ĉn(vn−,X)jlt =
[t/Δn]∑

i=1

Δni X
j Δni X

l 1{‖Δni X‖≤vn}

enjoys the same property (note that Ĉn(vn−,X)jl =ΔnV ′n(F, vn−,X) with k = 1
and F(x) = xjxl). This is indeed true, provided we have (H-r) with r < 1. When
only (H-1) holds one does not know whether or not this result holds, and Mancini
[75] has shown that it fails when the discontinuous part of X is a Cauchy process,
which satisfies (H-r) for all r > 1 but not for r = 1.

For some applications, we need a joint CLT for the above process and the ap-
proximate quadratic variation [X,X]n itself. That is, we consider the two processes

Z
n

t =
1√
Δn

([X,X]nt − [X,X]Δn[t/Δn]
)

C
n
(vn−,X)t = 1√

Δn

(
Ĉn(vn−,X)t −Ct

) (13.2.13)

(Z
n

is as in (5.4.1)). The limit is, as usual, defined on a very good exten-
sion (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P): recalling the process Z defined by
(5.4.3), page 161, we define two d × d-dimensional processes by

Z
′ij
t =

1√
2

d∑

k,l=1

∫ t

0

(
σ̂
ij,kl
s + σ̂ j i,kls

)
dW ′kl

s

Z
′′ij
t =

∞∑

p=1

(
ΔX

j
Tp
Rip +ΔXiTpRjp

)
1{Tp≤t},

(13.2.14)

so that Z = Z′ + Z′′; here, Rp is as in (13.1.1) and W ′ is a d ′ × d ′-dimensional

Brownian motion independent of the Rp’s and of F . Note that Z
′

is, conditionally
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on F , a continuous centered Gaussian martingale with variance-covariance given by

E
(
Z
′ij
t Z

′kl
t |F
) =
∫ t

0

(
ciks c

jl
s + cils cjks

)
ds. (13.2.15)

Theorem 13.2.4 Assume (H-r) for some r ∈ (0,1), and suppose that in (13.0.2) we
have � ∈ [ 1

4−2r ,
1
2 ). Then with the notation (13.2.13) we have the following stable

(functional) convergence in law:

(
Z
n
,C

n
(vn−,X)

) L-s=⇒ (Z′ +Z′′,Z′),

where Z
′

and Z
′′

are defined by (13.2.14).

Therefore in this case, not only does V n(2;vn−,X)jl converge to the “continu-
ous limit” Cjlt , but the CLT for C

n
(vn−,X) is the same as if X were continuous.

Finally, we state a theorem which extends Theorem 11.3.2 (page 327), and “al-
most” includes the previous one as a particular case (take F = 0 below, but the
assumptions on X are stronger than in the previous theorem). The process Z

′′
is as

in (13.2.14); the function F on (Rd)k is q-dimensional, and the pair (V
′
(F,X),Z

′
)

denotes (as on page 326) a (q + d × d)-dimensional process which, conditionally
on F , is continuous, centered, Gaussian, independent of Z

′′
, and with variance-

covariance given by

Ẽ
(
V
′(
F i,X
)
t
V
′(
Fj ,X

) |F)=
∫ t

0
Rcs
(
F i,F j

)
ds

Ẽ
(
V
′(
F i,X
)
t
Z
′lm
t |F)=

∫ t

0
Rcs
(
F i,F

lm)
ds (13.2.16)

Ẽ
(
Z
′ij
t Z

′lm
t |F)=

∫ t

0
Rcs
(
F
ij
,F

lm)
ds,

where F
ij
(x1, . . . , xk)= xi1xj1 . Finally we consider the normalized (non-truncated)

functionals V ′n(F,X), and the associated processes (the same as in (11.2.2)):

V
′n
(F,X)t = 1√

Δn

(
V ′n(F,X)t −

∫ t

0
ρk⊗cs (F )ds

)
.

Theorem 13.2.5 Let X be a d-dimensional Itô semimartingale and F be a function
from (Rd)k into R

q which is continuous, globally even, and satisfies (13.2.3). We
also assume (13.2.4) and (13.2.5) (recall w ∈ (0,1]), plus one of the following four
sets of hypotheses:

(a) We have q ′ = q and (K) and X is continuous; then we set r = 0.
(b) We have (K’) and (13.2.6) and X is continuous; then we set r = 0.
(d) We have q ′ = q and (K-r) for some r < 1, and (13.2.7) with r ≤ s ≤ s′ < 1 and

p′ ≤ 2.
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(e) We have (K’-r) with some r ∈ (0,1), and (13.2.6), and (13.2.7) with r ≤ s ≤
s′ < 1 and p′ ≤ 2.

Let also vn satisfy (13.0.2) with� ∈ [ 1
4−2r ,

1
2 ). Then we have the following stable

(functional) convergence in law:

(
V
′n
(F,X),Z

n
,C

n
(vn−,X)

) L-s=⇒ (V ′(F,X),Z′ +Z′′,Z′).

The cases considered here are the same as in Theorem 11.2.1, page 312, and
the reader will notice that there is no (c) here! This is because we need r < 1 for
the CLT for Ĉn(vn−,X) to hold, hence no joint CLT is available in case (c) of
Theorem 11.2.1.

This theorem is useful in some statistical applications, but one could as well have

a joint CLT for a sequence of functionals whose components are of the form Z
n,ij

or
V n(F,X) or V n(F, vn+,X) or V ′n(F,X) or V ′n(F, vn−,X), that is, all processes
considered so far.

13.2.2 Proofs

We begin with a lemma which requires only (SH-r) for some r ∈ [0,2], and will be
used several times in the sequel. According to the value of r , we set

X′ =X−X′′, X′′ =
{
δ ∗ p if r ≤ 1
δ ∗ (p− q) if r > 1. (13.2.17)

Although this differs from (11.2.15) when r > 1, we use the notation X
n

i,j of
(11.2.16), that is

X
n

i,j =
(
Δni X√
Δn
, . . . ,

Δni+j−1X√
Δn

,
Δni+jX′√
Δn

, . . . ,
Δni+k−1X

′
√
Δn

)
, (13.2.18)

with the process X′ as defined here. Then, recalling un = αΔ�n , we set

Fu(x1, . . . , xk) = F(x1, . . . , xk)

k∏

j=1

1{‖xj ‖≤u} for u > 0, (13.2.19)

ηnij = Fvn/
√
Δn

(
X
n

i,j+1

)− Fvn/√Δn
(
X
n

i,j

)
for j = 0,1, . . . , k − 1. (13.2.20)

Lemma 13.2.6 Assume (SH-r) for some r ∈ (0,2], and suppose that F satisfies
(13.2.7) for some p′ ≥ 0 and s′ ≥ 1 ≥ s > 0. Let m ≥ 1 and suppose that k = 1 or
� ≥ m(p′∨2)−2

2(m(p′∨2)−r) . Then, with θ > 0 arbitrarily fixed when r > 1 and θ = 0 when

r ≤ 1, there is a sequence φn (depending on m,s, s′, θ ) of positive numbers going
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to 0 as n→∞, such that

E
(∥∥ηni,j
∥∥m |F(i−1)Δn

)≤ (Δ
2−r

2 (1∧ms
r
)−θ

n +Δ(1−r�)(1∧
ms′
r
)−ms′ 1−2�

2 −θ
n

)
φn.

(13.2.21)

Proof The assumption on F weakens when p′ increases, so we can assume p′ ≥ 2.
For simplicity we write un = vn/√Δn = αΔ�−1/2

n , which goes to ∞.
Recall ‖δ(t, z)‖ ≤ Γ (z) with Γ bounded and

∫
Γ (z)r λ(dz) <∞. We set Y =

Γ ∗ p when r ≤ 1 and Y = X′′ otherwise, so in all cases ‖Δni X′′‖ ≤ ‖Δni Y‖. Then
we set

Uni =
‖Δni X′‖√
Δn

, V ni =
‖Δni Y‖
Δ�n

∧
1, Wn

i =
‖Δni Y‖√
Δn

∧
1,

Zni,j = u−2/(1−2�)
n

(
Uni+j
)p′+2/(1−2�) + (1+ (Uni+j

)p′)(
Wn
i+j
)s

+ (1+ (Uni+j
)p′)

us
′
n

(
V ni+j
)s′
.

Below we suppose that n is large enough to have un > 1. Singling out the case
‖xj + y‖ ≤ un and ‖xj‖ ≤ un (implying ‖y‖ ≤ 2un) for which (13.2.7) is used,
and the three cases ‖xj + y‖ ≤ un < ‖xj‖, and un

2 < ‖xj‖ ≤ un < ‖xj + y‖, and
2‖xj‖ ≤ un < ‖xj + y‖ (implying ‖y‖> un/2), for which (13.2.4) is used, we see
that for j = 0, . . . , k − 1 we have
∥∥Fun(x1, . . . , xj , xj+1 + y, xj+2, . . . , xk)− Fun(x1, . . . , xk)

∥∥

≤ K

j∏

l=1

(
1+ ‖xl‖p′ ∧ up

′
n

) k∏

l=j+2

(
1+ ‖xl‖p′

)

× (u−2/(1−2�)
n ‖xj+1‖p′+2/(1−2�)+ (1+‖xj+1‖p′

)(‖y‖s ∧ 1+‖y‖s′ ∧ us′n
))

(an empty product is set to 1). This is applied with xl = Δni+l−1X/
√
Δn when

l ≤ j and xl =Δni+l−1X
′/
√
Δn when l > j and y =Δni+jX′′/

√
Δn. Then, observ-

ing that ‖Δni Y/
√
Δn ‖ ∧ un ≤ un

1∧α V
n
i , we see that ‖xl‖p′ ∧ up

′
n ≤K((Uni+l−1)

p′ +
u
p′
n (V

n
i+l−1)

2) (recall p′ ≥ 2) if l ≤ j , and ‖y‖s ∧ 1 = (Wn
i+j )s , and ‖y‖s′ ∧ us′n ≤

us
′
n (V

n
i+l−1)

s′ , and thus

∥∥ηni,j
∥∥≤K

j∏

l=1

(
1+ up′n

(
V ni+l−1

)2 + (Uni+l−1

)p′)
k∏

l=j+2

(
1+ (Uni+l−1

)p′)
Zni,j .

Now we give some estimates based on (SH-r). We apply Proposition 2.1.10
(page 44) with Gt = GEt given by (2.1.48) with the set A=E, and we deduce from
(2.1.33), and (2.1.34) (pages 40–40) that

m> 0 ⇒ E
((
Uni
)m | G(i−1)Δn

) ≤ Km. (13.2.22)
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Next, Corollary 2.1.9 (use (a) or (c), according to whether r > 1 or not) yields that,
for a suitable sequence φn going to 0 (this sequence varies from line to line below,
for example it depends on m in the next formula):

E
((
V ni
)m |F(i−1)Δn

)≤Δ(1−r�)(1∧
m
r
)

n φn

E
((
Wn
i

)m |F(i−1)Δn

)≤Δ
2−r

2 (1∧m
r
)

n φn.

(13.2.23)

Assuming r ≤ 1 first, we observe that the variables Wn
i+j and V ni+j are

G(i+j−1)Δn measurable. Then, recalling ms′ ≥ 1, we deduce from (13.2.22) and
(13.2.23) and successive conditioning that we have, with θ = 0:

E
(∣∣Zni,j
∣∣m |F(i+j−1)Δn

)

≤KΔmn +
(
Δ

2−r
2 (1∧ms

r
)−θ

n +Δ(1−r�)(1∧
ms′
r
)−ms′ 1−2�

2 −θ
n

)
φn, (13.2.24)

and we can indeed dispense with the first term on the right when m≥ 1, because the
last exponent of Δn is strictly smaller than 1.

When r > 1 the successive conditioning argument no longer works, but we may
instead apply Hölder’s inequality, to get (13.2.24) with an arbitrarily small θ > 0
(and then of course K =Kθ depends on θ ).

(13.2.22) and (13.2.23) also yield

E
(∣∣1+up′n

(
V ni+l−1

)2+ (Uni+l−1

)p′ ∣∣m |F(i+l−2)Δn

)≤Km
(
1+Δ1−p′m/2+�(p′m−r)

n

)

E
(∣∣1+ (Uni+l−1

)p′ ∣∣m |F(i+l−2)Δn

) ≤ Km.

The first expression above is smaller than K if � ≥ p′m−2
2(p′m−r) , and is needed

when j ≥ 1, that is when k ≥ 2. Then by successive conditioning again, we get
(13.2.21). �

Proof of Theorem 13.2.1 By our usual localization procedure we can assume the
strengthened assumption (SH-r), in addition to (K), (K’), (K-r) or (K’-r), according
to the case.

Suppose first that X is continuous. As seen in the proof of Theorem 13.1.1, the
sets Ani = {‖Δni X‖ ≤ vn} satisfy

∑[t/Δn]
i=1 P((Ani )

c) <∞. Then on the set Ωnt =
∩i≤[t/Δn]Ani , whose probability goes to 1 as n→∞, we have V

′n
(F, vn−,X)s =

V
′n
(F,X)s for all s ≤ t , and thus the result amounts to Theorem 11.2.1, page 312.

Note that the left side of (13.2.10) vanishes in this case (for all times t ≤ T ) when n
is large enough (depending on T ). When F(x1, . . . , xk)= f (x1+ · · · + xk), the left
side of (13.2.11) also vanishes for all times t ≤ T when n is large enough, by the
same argument.

It remains to consider the cases (c) and (d). The process X′ satisfies (K) in case
(c) and (K’) in case (d), so V

′n
(F, vn−,X′) converges stably in law to V

′
(F,X)=
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V
′
(F,X′) by what precedes. Hence it remains to prove that

1√
Δn

(
V ′n(F, vn−,X)− V ′n

(
F,vn−,X′

)) u.c.p.=⇒ 0. (13.2.25)

With the notation (13.2.20), at time t the left side above is equal to
√
Δn
∑k−1
j=0×∑[t/Δn]−k+1

i=1 ηni,j , hence it is enough to prove that E(‖ηni,j‖) ≤ K
√
Δn φn for a

sequence of numbers φn going to 0. By virtue of the previous lemma, applied with
m = 1 and with θ = 0 because r ≤ 1, it is a simple matter to check that this holds
under the condition (13.2.9), which in fact is exactly designed for this purpose. This
completes the proof of the stable convergence result in cases (c) and (d).

Finally, (13.2.25) holds as well with γ vn instead of vn, and the same argument
(based in fact on Lemma 13.2.6 for k = 1) shows that when F(x1, . . . , xk)= f (x1+
· · · + xk) we also have

1√
Δn

(
V ′n(f, k, γ vn−,X)− V ′n

(
f, k, γ vn−,X′

)) u.c.p.=⇒ 0.

Then we deduce (13.2.10) and (13.2.11) in cases (c) and (d) from the same for the
continuous process X′. �

Proof of Theorems 13.2.4 and 13.2.5 In all cases of the two theorems we have at
least (H-r) for some r < 1, and by localization we may and will assume the strength-
ened assumption (SH-r). We write Z

n
(X) and Z(X), Z

′
(X), Z

′′
(X) instead of Z

n

and Z, Z
′
, Z

′′
, to emphasize the dependency upon the processX. We also set (with-

out discretization of the process C):

C
n(
X′
) = 1√

Δn

([
X′,X′

]n −C).

We consider the 2d-dimensional process Y = (X′,X): it satisfies (SH-r) and
the volatility process of Y , say σ , is σ i,j = σ i+d,j = σ ij for i = 1, . . . , d and j =
1, . . . , d ′, and X′ is continuous. Therefore a version of the (2d)× (2d)-dimensional
process Z(Y )= Z′(Y )+Z′′(Y ), see (13.2.14), is given, component by component
for i, j = 1, . . . , d , by

Z(Y )ij = Z(X)i,j+d = Z′(X)i+d,j = Z′(X)ij
Z(Y )i+d,j+d = Z′(X)ij +Z′′(X)ij .

Moreover, if we extend F so that it becomes a function on (Rd × R
d)k by

F((x1, y1), . . . ) = F(x1, . . . ), the pair (Y,F ) satisfies the assumptions of Theo-
rem 11.3.2, page 327, as soon as (X,F ) satisfies those of Theorem 13.2.5, and
of course V

′n
(F,X′)= V ′n(F,Y ). Therefore

(
V
′n(
F,X′
)
,Z

n(
X′
)
,Z

n
(X)
) L-s=⇒ (V ′(F,X′),Z′(X),Z′(X)+Z′′(X)),

(13.2.26)
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where Z
′
(X) is given by (13.2.14) and (V

′
(F,X′),Z′(X)) is as in (13.2.16). The

convergence (13.2.26) is used for proving Theorem 13.2.5, but, when we prove The-
orem 13.2.4, we can take F = 0 and this convergence is implied by Theorem 5.4.2,
page 162, and thus the assumption (H) is enough.

In view of (13.2.26), and for proving both theorems, it thus remains to show that

V
′n(
F,X′
)− V ′n(F,X) u.c.p.=⇒ 0, Z

n(
X′
)−Cn(vn−,X) u.c.p.=⇒ 0.

The first property above is given by Lemma 11.2.4, page 314. For the second one,
we observe that Ĉn(vn−,X′)s = [X′,X′]ns for all s ≤ t on a setΩnt whose probabil-

ity goes to 1, whereas 1√
Δn
(Ct − CΔn[t/Δn]) u.c.p.=⇒ 0 because ct is locally bounded.

Therefore this second property amounts to

1√
Δn

(
Ĉn(vn−,X)− Ĉn

(
vn−,X′

)) u.c.p.=⇒ 0. (13.2.27)

The left side above, evaluated at time t , is
√
Δn
∑[t/Δn]
i=1 ηni,0, where ηni,0 is given

by (13.2.20) with k = 1 and the function F(x)jk = xjxk . This function satisfies
(13.2.4) and (13.2.7) with p = s′ = 2 and s = 1, so when r < 1 and � ≥ 1

4−2r
we deduce from (13.2.21) with θ = 0 and m = 1 that E(‖ηni,0‖) ≤

√
Δn φn, and

(13.2.27) follows. �

13.3 Central Limit Theorem for the Local Approximation
of the Continuous Part of X

This section is devoted to establishing a Central Limit Theorem for the approxima-
tions of the “spot volatility” ct given in Sect. 9.3. To do this we need an assumption
which is almost the same as (K) plus (H-r), and goes as follows, for some r ∈ [0,2]:

Assumption 13.3.1 (or (K-r)) The process X satisfies (H-r), and the process σ
satisfies (H) = (H-2).

Although not obvious at first glance, this assumption implies (K), except that it
does not require the process bt to be càdlàg or càglàd. Conversely, (K) “almost”
implies (K-2). To see this, under (K) we can write a “global” Grigelionis repre-
sentation for the pair (X,σ ): we have a Wiener process W and a Poisson random
measure p, and X is given by (13.0.1) and σ by

σt = σ0+
∫ t

0
b̃s ds+

∫ t

0
σ̃s dWs+ (̃δ1{‖̃δ‖≤1})� (p− q)t + (̃δ1{‖̃δ‖>1})�pt , (13.3.1)

for some predictable function δ̃(ω, t, z) on Ω × R+ × E. (5.3.2) holds with the
same b̃ and σ̃ , and with M = (̃δ1{‖̃δ‖≤1}) � (p− q) and, as soon as further δ̃ satisfies

a condition similar to the condition on δ in (H-2), we have (K-2).
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Warning: One has to be aware of the following fact. Under (K) we have (5.3.2)
for some local martingale M which may have a non-vanishing continuous martin-
gale part Mc

t =
∫ t

0 σ̃
′
s dW

′
s (again in vector notation), where W ′ is a q-dimensional

Wiener process orthogonal to W . This means that we have not considered a global
Grigelionis representation for the pair (X,σ ), and the Brownian motionW drives X
but is not enough to drive the continuous part of σ . In this case we can write (13.3.1)
with (W,W ′) instead of W , and with a process σ̃ which indeed is a mix of the two
processes σ̃ and σ̃ ′ (associated with M as above) showing in (5.3.2).

Apart from some necessary conditions on the jumps of σ , the reason for intro-
ducing (K-2) instead of simply (K) is precisely that we want the process σ̃ showing
in the Grigelionis representation of σ to be càdl‘àg: as we will see, its left limit
appears in the limits obtained below.

Note also that (K-r) is very close to (K-r) as well, except that (K-r) is meaningful
for r ≤ 1 only.

13.3.1 Statements of Results

We first recall the estimators for the processes ct and ct−, as introduced in Sect. 9.3.
Only the non-truncated and truncated estimators are studied below, because the anal-
ysis of the estimators based on multipowers is more difficult to do. The truncation
levels vn are of the form (13.0.2), and we choose a sequence kn of integers with
kn→∞ and knΔn→ 0. We again use the convention (9.3.2), page 255, according
to which Δni Y = 0 for any process Y when i is a nonpositive integer. Then if i ∈ Z

we define the M+
d×d -valued variables ĉ ni (kn) and ĉ ni (kn, vn) by

ĉ ni (kn)
jl = 1

knΔn

kn−1∑

m=0

Δni+mX
j Δni+mX

l

ĉ ni (kn, vn)
jl = 1

knΔn

kn−1∑

m=0

Δni+mX
j Δni+mX

l 1{‖Δni+mX‖≤vn}.

Recalling I (n, i)= ((i − 1)Δn, iΔn], the estimators of ct− and ct are respectively

ĉ n(kn, t−)= ĉ ni−kn(kn), ĉ n(kn, t)= ĉ ni+1(kn)

ĉ n(kn, vn, t−)= ĉ ni−kn(kn, vn), ĉ n(kn, vn, t)= ĉ ni+1(kn, vn)

}
if t ∈ I (n, i).

(13.3.2)
(Note that, with the convention (9.3.2), ĉ ni (kn) for example is defined for all i ∈ Z,
and vanishes when i ≤−kn; hence ĉ n(kn, t−) is defined even when t ≤ knΔn, and
vanishes when t ≤ 0; also, t = 0 is considered as belonging to I (n,0) above.)

According to Theorem 9.3.2, and since we assume at least (K-2) below, for any
stopping time T we have
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ĉ n(kn, T )
P−→ cT , ĉ n(kn, vn, T−) P−→ cT on {T <∞}

ĉ n(kn, T−) P−→ cT−, ĉ n(kn, vn, T−) P−→ cT− on {0< T <∞}
(13.3.3)

without restriction for the first line, and under either one of the next two conditions
for the second one (where p is a driving Poisson measure for (X,σ )):

(b-1) T > S and T is FS measurable for some stopping time S
(b-2) p({T } ×E)= 1 almost surely on {0< T <∞}. (13.3.4)

Under (K-2), if T satisfies (b-1) it is predictable, hence cT− = cT a.s. So if we want
to have access to the left limits of the process ct we need stopping times satisfying
(b-2). Of course if T = T1∧T2 where T1 and T2 satisfy (b-1) and (b-2), respectively,
we also have the second line of (13.3.3).

Our aim is to prove an associated central limit theorem. We give a multivariate
version, so we have a set L which indexes the times Tl and T ′l at which the “pre”
and “post” estimators are taken. There is no special reason for taking the same index
set for both, but it is also not a restriction. There is no restriction on the size of
L, which may be infinite and even uncountable, although, since we consider the
product topology below, this is essentially irrelevant and using only finite sets L
would be the same. We wish to determine the asymptotic behavior of the “estimation
errors” in the truncated case

Zn−l = ĉ n(kn, vn, Tl−)− cTl−, Zn+l = ĉ n(kn, vn, T ′l
)− cT ′l , (13.3.5)

or in the non-truncated case

Zn−l = ĉ n(kn, Tl−)− cTl−, Zn+l = ĉ n(kn, T ′l
)− cT ′l . (13.3.6)

Below we need quite strong restrictions on the stopping times Tl , because those
should satisfy at least (13.3.4), and also unfortunately on T ′l . Heuristically, because
we want a joint convergence of the Zn±l above for all l, we need that the random
times Tl and T ′l be in some sense independent of the Wiener process W . The pre-
cise structure of the family (Tl, T ′l )l∈L is as follows, in connection with the driving
Poisson measure p showing in (13.0.1) and (13.3.1):

• Tl = tl ∧ Sl and T ′l = t ′l ∧ S′l , where
− tl and t ′l are non-random, in (0,∞) and [0,∞) respectively,
− Sl and S′l are stopping times,
− if S = Sl or S = S′l , then p({S} ×E)= 1 on {S <∞}.

• for all l �=m we have Tl �= Tm and T ′l �= T ′m almost surely.

(13.3.7)

The condition on S is satisfied if ‖ΔXS‖+‖ΔσS‖> 0 on {S <∞}. The last condi-
tion above is essential: as we will see, the (suitably normalized) errors Zn−l and Zn−m
for example are, asymptotically, F -conditionally independent when l �=m, and this
is clearly wrong on the set {Tl = Tm} because they are equal on this set. However,
we do not impose or exclude any relation between the two families (Tl) and (T ′l ) :
we may for example have P(T ′l = Tm) > 0 for some l,m.
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Remark 13.3.2 One could very slightly weaken this assumption: if there is a T ′l ,
say T ′1, which is bigger than all others (that is T ′1 > T ′l for all l �= 1), we can relax
the condition on this T ′1 to be an arbitrary finite stopping time. This “improvement”
looks ridiculous, but it means that the forthcoming theorem also gives the asymp-
totic behavior of the “post” estimators ĉ n(kn, vn, T ) and ĉ n(kn, T ) for any finite
stopping time T .

For example if L = {1,2} and T ′1 > T ′2 there is no restriction on T ′1 (other than
being a finite stopping time), but the result does not extend to the case where T ′2 is
an arbitrary stopping time.

3) Next, we describe the limit. We assume (K-r), and the càdlàg process σ̃t of
(13.3.1) has components (̃σ ij,kt )1≤i≤d,1≤j,k≤d ′ . Let (Ω̃, F̃ , (F̃t )t≥0, P̃) be a very
good filtered extension of (Ω,F , (Ft )t≥0,P) which supports two independent fam-
ilies of i.i.d. variables (Y (−, l), Y ′(−, l)) and (Y (+, l), Y ′(+, l)) indexed by L, in-
dependent of F , all with the same law as (Y,Y ′), as described below (δij is the
Kronecker symbol):

• Y = (Y jk : 1≤ j, k ≤ d ′) and Y ′ = (Y ′j : 1≤ j ≤ d ′)
are independent centered Gaussian vectors,

• E(Y jk Y uv) = δjuδkv + δjvδku, E(Y ′j Y ′k) = δjk/3.
(13.3.8)

With the notation

A
ij,kw
t = σ ikt σ jwt , Ã

ij,w
t =

d ′∑

k=1

(
σ ikt σ̃

jk,w
t + σ jkt σ̃ ik,wt

)
, (13.3.9)

we associate the d2-dimensional variables with components

Z(−, l)ij =
d ′∑

k,w=1

A
ij,kw
Tl− Y(−, l)kw, Z(+, l)ij =

d ′∑

k,w=1

A
ij,kw

T ′l
Y (+, l)kw

Z′(−, l)ij =
d ′∑

w=1

Ã
ij,w
Tl− Y

′(−, l)w, Z′(+, l)ij =
d ′∑

w=1

Ã
ij,w

T ′l
Y ′(+, l)w.

(13.3.10)

The variables Z(−, l), Z(+, l), Z′(−, l) and Z′(+, l) are also characterized by their
F -conditional (global) law: they are F -conditionally independent centered Gaus-
sian, with conditional covariances (compare with (13.2.15)):

Ẽ
(
Z(−, l)ij Z(−, l)kw |F) = cikTl− c

jw
Tl− + ciwTl− c

jk
Tl−

Ẽ
(
Z(+, l)ij Z(+, l)kw |F) = cik

T ′l
c
jw

T ′l
+ ciw

T ′l
c
jk

T ′l

Ẽ
(
Z′(−, l)ij Z′(−, l)kw |F) =

d ′∑

v=1

Ã
ij,v
Tl− Ã

kw,v
Tl−

Ẽ
(
Z′(+, l)ij Z′(+, l)kw |F) =

d ′∑

v=1

Ã
ij,v

T ′l
Ã
kw,v

T ′l
.

(13.3.11)
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Theorem 13.3.3 Let X satisfy (K-r) for some r ∈ [0,2), and let (Tl, T ′l )l∈L satisfy
(13.3.7). Let vn be as in (13.0.2) and let kn satisfy, for some β ∈ [0,∞]:

kn → ∞, knΔn → 0, kn
√
Δn → β. (13.3.12)

a) If X is continuous, both the truncated versions (13.3.5) and the non-truncated
versions (13.3.6) satisfy

β = 0⇒ (
√
kn Z

n−
l ,

√
kn Z

n+
l )l∈L

L-s−→ (Z(−, l),Z(+, l))l∈L
0< β <∞⇒ (

√
kn Z

n−
l ,

√
kn Z

n+
l )l∈L

L-s−→ (Z(−, l)+ β Z′(−, l),Z(+, l)+ β Z′(+, l))l∈p
β =∞⇒ ( 1√

knΔn
Zn−l ,

1√
knΔn

Zn+l
)
l∈L

L-s−→ (Z′(−, l),Z′(+, l))l∈L.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(13.3.13)

b) If

knΔ
τ
n → β ′ ∈ (0,∞), where τ ∈ (0,1) (13.3.14)

(so (13.3.12) holds, with β = 0 when τ < 1
2 , and β = β ′ if τ = 1

2 , and β =∞ when
τ > 1

2 ), we have (13.3.13) for the non-truncated versions (13.3.6), as soon as

either r <
4

3
, or

4

3
≤ r < 2

1+ τ
(

and then τ <
1

2

)
. (13.3.15)

c) Under (13.3.14) we have (13.3.13) for the truncated versions (13.3.5), as soon
as

r <
2

1+ τ ∧ (1− τ) , � >
τ ∧ (1− τ)

2(2− r) , (13.3.16)

The convergence in (13.3.13) is for the product topology, so when L is infinite
it really amounts to the convergence for any finite subset of L. We also see why
the last condition in (13.3.7) is necessary: the limits of, say, Zn−l and Zn−m are F -
conditionally independent if l �= m, and this cannot be true in restriction to the set
{Tl = Tm}, because Zn−l = Zn−m on this set.

This result is in deep contrast with Theorem 13.2.4 when X is not continuous,
and a few comments are in order:

• Instead of (H-r), this theorem requires the stronger assumption (K-r): from its
very formulation, which involves the process σ̃ (at least in some cases), we see
that it cannot hold if we only assume (H-r).

• On the other hand, there is virtually no restriction on the jumps of X, that is on
the value of r in (K-r), except that r < 2 is required: for a given r , there is always
a choice of τ in (13.3.14) and � satisfying (13.3.16) (since the first condition in
(13.3.16) implies τ∧(1−τ)2(2−r) <

1
2 ).

• Even more, in all cases we can use the non-truncated version of the estimators
(with a suitable “rate” for kn, as expressed by the number τ and depending on
the number r such that Assumption (K-r) holds). However, when X jumps, it is
probably wiser from a practical standpoint to use the truncated versions.
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• In practice, the discretization step Δn is fixed by the structure of the data, but
we can choose the window length kn at will. In the case of (13.3.14), the “rate
of convergence” of the estimator is Δ(τ∧(1−τ))/2n and thus the “optimal” choice,
leading to the asymptotically smallest estimation variance, is τ = 1/2 (the rate
is then Δ1/4

n ), with β small. However in the discontinuous case this works only
when r < 4

3 , both for the truncated and the non-truncated versions.
• For practical purposes again, we also need an estimator for the asymptotic vari-

ance, as given by (13.3.11). There is no reasonable way to estimate σ̃T , hence
in practice choosing β > 0 should be avoided, and this is why we have chosen
to single out the case β = 0 in (13.3.13), although it can be viewed as the sec-
ond convergence taken with β = 0. In the light of the previous comment, under
(13.3.14) we should choose τ smaller than, but as close as possible to 1

2 if r ≤ 4
3 ,

and τ = 2−r
r

if r > 4
3 (if, by chance, the smallest value of r for which (K-r) holds

is known).

Remark 13.3.4 From the comments above, only the case β = 0 in (13.3.13) has
practical relevance. However the three cases are interesting from a mathematical
standpoint, and are easily understood. If ct were constant the error would be of
order 1/

√
kn because we basically use kn approximately i.i.d. variables (the squared

increments of X) to estimate a variance. Now, ct varies over an interval of length
knΔn, and by a quantity of order of magnitude

√
knΔn because of (K-r). So the two

rates
√
kn and 1/

√
knΔn compete: the first one is smaller when β = 0 and bigger

when β =∞, and both are of the same order when 0< β <∞.

Remark 13.3.5 We have chosen to assume (K-r), that is basically (H-r) (which is
“necessary” here) plus the fact that σt is an Itô semimartingale. This is a natural
choice in the general setting of this book, but other types of requirements could be
imposed on σt , such as assuming for example that E(‖ct+s − ct‖ ∧ 1) ≤ K sθ for
some constants K and θ . Then we would have the first convergence in (13.3.13) as
soon as knΔ

2θ/(1+2θ)
n → 0.

Remark 13.3.6 In Chap. 9 other estimators ĉ ′n(kn, T±) have been introduced. They
are based on bipower variations, and we recall their definition. We set

ĉ ′n(kn)jl = π

8knΔn

kn−1∑

m=0

(∣∣Δni+mX
j +Δni+mXl

∣∣ ∣∣Δni+m+1X
j +Δni+m+1X

l
∣∣

− ∣∣Δni+mXj −Δni+mXl
∣∣ ∣∣Δni+m+1X

j −Δni+m+1X
l
∣∣)

and the estimators are

ĉ ′n(kn, t−) = ĉ n[t/Δn]−kn−1(kn), ĉ ′n(kn, t) = ĉ n[t/Δn]+2(kn).

These also satisfy (13.3.13) (under appropriate conditions), but with different
asymptotic variances.
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For example suppose that we are in the one-dimensional case d = 1, and we
have a single stopping time T1 = T , and we are in the case (13.3.14) with τ < 1

2 .
Then

√
kn (̂c

n(kn, T )− cT ) converges stably in law to Z = √2 cT Y (+,1) by our
theorem, and one can show that

√
kn (̂c

′n(kn, T )− cT ) converges stably in law to
Z = π

2

√
M(2,2) cT Y (+,1), where M(p,k) is given by (11.4.5): this is of course

not a surprise, in view of Theorem 11.2.1 applied with k = 2 and the function
F(x, y)= |xy|. However, after some elementary computation, we see that

Ẽ
(
Z

2 |F) =
(
π2

2
+ π

2
− 3

)
c2
T ≈ 3.5 c2

T ,

to be compared with Ẽ(Z2 | F) = 2c2
T . In other words, from an asymptotic view-

point, it is always better to use ĉ n(kn, T ) rather than ĉ ′n(kn, T ) for estimating cT .

Next, we state a trivial but interesting consequence of that theorem. We can con-
sider (̃c n(kn, t))t≥0 as a process, which by construction is piecewise constant in

time. For any fixed t we have c̃ n(kn, t)
P−→ ct . Do we also have stable convergence

in law of c̃ n(kn, t)− ct as processes, after a suitable normalization ?
The candidate for the limit is as follows: we have a process (Yt , Y ′t )t≥0 on a

very good filtered extension (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P), such that the
variables (Yt , Y ′t ) are i.i.d. with the same law as (Y,Y ′) in (13.3.8) when t varies.
Then, as in (13.3.10), set

Z
ij
t =

d ′∑

k,w=1

A
ij,kw
t Y kwt , Z

′ij
t =

d ′∑

w=1

Ã
ij,w
t Y ′wt .

Then Theorem 13.3.3 readily gives the following:

Theorem 13.3.7 Let X satisfy (K-r) for some r ∈ [0,2). If either X is continu-
ous and (13.3.12) holds, or (13.3.14) and (13.3.15) hold, we have the following

finite-dimensional stable convergence in law (denoted as
Lf -s−→ below, see (2.2.15),

page 50):

β = 0⇒ (√kn
(
c̃ n(kn, t)− ct

))
t≥0

Lf -s−→ (Zt )t≥0

0< β <∞⇒ (√kn
(
c̃ n(kn, t)− ct

))
t≥0

Lf -s−→ (Zt + β Z′t
)
t≥0

β =∞⇒
(

1√
knΔn

(
c̃ n(kn, t)− ct

))

t≥0

Lf -s−→ (Z′t
)
t≥0.

There is no way to obtain a functional convergence here. Indeed, the processes
(Yt ) and (Y ′t ) are white noise processes, and thus (Zt ) and (Z′t ) as well have the
path structure of white noises, and for example their paths are almost surely not
Borel, as functions of t . Note that a similar result would hold for the “pre-t” esti-
mators c̃ n(kn, t−), and even for the joint pre- and post-t estimators, and also for the
truncated estimators under (13.3.16).
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We end this set of results with an extension of Theorem 13.3.3 in the case where
one consider simultaneously the estimators ĉ ni (kn, vn) for several values of kn. This
is in view of some applications, and to stay relatively simple we consider two of
them only, with kn and with mkn respectively, where m≥ 2 is an integer. So, in the
setting of this theorem, we consider Zn±l as defined by (13.3.5) or 13.3.6), and also

Z
n−
l = ĉ n(mkn, vn, Tl−)− cTl−, Z

n+
l = ĉ n(mkn, vn, T ′l

)− cT ′l ,
or in the non-truncated case

Z
n−
l = ĉ n(mkn,Tl−)− cTl−, Z

n+
l = ĉ n(mkn,T ′l

)− cT ′l .

We also suppose that the extension (Ω̃, F̃ , (F̃t )t≥0, P̃) supports, in addition to the
variables (Y (±, l), Y ′(±, l)), another family (Ŷ (±, l), Ŷ ′(±, l)) independent of the
first one and of F , and with the same law, characterized by (13.3.8). Finally, we
complement (13.3.10) with the variables

Z(−, l)ij = 1

m

d ′∑

k,w=1

A
ij,kw
Tl−
(
Y(−, l)kw +√m− 1 Ŷ (−, l)kw)

Z(+, l)ij = 1

m

d ′∑

k,w=1

A
ij,kw

T ′l

(
Y(+, l)kw +√m− 1 Ŷ (+, l)kw)

Z
′
(−, l)ij = 1

2m

d ′∑

w=1

Ã
ij,w
Tl−
(
(3m− 1)Y ′(−, l)kw + (m− 1)

√
4m− 1 Ŷ ′(−, l)kw)

Z
′
(+, l)ij = 1

2m

d ′∑

w=1

Ã
ij,w

T ′l

(
(3m− 1)Y ′(+, l)kw + (m− 1)

√
4m− 1 Ŷ ′(+, l)kw).

(13.3.17)

Theorem 13.3.8 Under the assumptions of Theorem 13.3.3, and in the three cases
(a), (b), (c) of this theorem, we have the following stable convergence in law:

β = 0⇒√kn
(
Zn−l ,Z

n+
l ,Z

n−
l ,Z

n+
l

)
l∈L

L-s−→ (Z(−, l),Z(+, l),Z(−, l),Z(+, l))
l∈L

0< β <∞⇒√kn
(
Zn−l ,Z

n+
l ,Z

n−
l ,Z

n+
l

)
l∈L

L-s−→ (Z(−, l)+ βZ′(−, l),Z(+, l)+ βZ′(+, l),
Z(−, l)+ βZ′(−, l),Z(+, l)+ βZ′(+, l))

l∈p

β =∞⇒ 1√
knΔn

(
Zn−l ,Z

n+
l ,Z

n−
l ,Z

n+
l

)
l∈L

L-s−→ (Z′(−, l),Z′(+, l),Z′(−, l),Z′(+, l))
l∈L.
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The next three subsections are devoted to the proof of Theorem 13.3.3. In the
last subsection below we briefly show how the proof has to be modified in order to
obtain Theorem 13.3.8.

13.3.2 Elimination of the Jumps and of the Truncation

We begin with some notation. The rate of convergence in (13.3.13) can be written
as

zn =
{√

kn if β <∞
1√
knΔn

if β =∞ , hence zn ≤K
(√
kn
∧ 1√

knΔn

)
. (13.3.18)

Recalling the Poisson random measure p of (13.0.1) and (13.3.1), we choose a pos-
itive Borel function Γ ′ on E which is λ-integrable and with λ({z : Γ ′(z) > 1}) > 0,
and we define the double sequence of (finite) stopping times R(m,p) for m,p ≥ 1
as follows:

(R(m,p) : p ≥ 1) are the successive jump times
of the Poisson process 1{Γ ′>1/m} ∗ p.

The next lemma shows that it is enough to prove the result when the double
sequence (Tl, T ′l ) has a special form: the index set L is finite, with a partition L=
L1 ∪L2, and

• if l ∈ L1 then Tl = tl ∈ (0,∞) and T ′l = t ′l ∈ [0,∞) (tl , t ′l non-random)
• if l ∈ L2 then Tl = T ′l =R(ml,pl) for some pl,ml ≥ 1
• l �=m ⇒ Tl �= Tm, T ′l �= T ′m almost surely.

(13.3.19)

Lemma 13.3.9 If any one of the claims of Theorem 13.3.3 holds for all families
(Tl, T

′
l )l∈L satisfying (13.3.19), it also holds when L is arbitrary and (Tl, T ′l )l∈L

satisfies (13.3.7) only.

Proof In this proof the times Tl, T ′l vary, so to emphasize the dependency we write
Zn±(R) instead of Zn±l when Tl = R or T ′l = R, and for either the truncated or the
non-truncated version, according to the case. We also consider the case β = 0 in
(13.3.13), the other cases being proved in the same way.

We are given a family (Tl, T
′
l )l∈L satisfying (13.3.7), with the associated

(Sl, S
′
l , tl , t

′
l ), and we want to prove (13.3.13). As said before, it is enough to con-

sider a finite L, say L= {1, . . . ,Q}, and we can assume also that tl �= tl′ and t ′l �= t ′l′
when l′ �= l.

For any m≥ 1 we set T (m)l = tl and T ′(m)l = t ′l when 1≤ l ≤Q, and T (m)l =
T ′(m)l = R(m, l −Q) when l > Q. Any finite sub-family (T (m)l, T ′(m)l)1≤l≤M
satisfies (13.3.19) because the tl’s, resp. the t ′l ’s, are pairwise distinct, and because
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P(R(m,p)= t)= 0 for any t ≥ 0. Therefore we can apply the hypothesis: for any fi-
nite sub-family, hence also for the whole family, we have the convergence (13.3.13)
for (T (m)l, T ′(m)l)l≥1, that is

(√
kn Z

n−(T (m)l
)
,
√
kn Z

n+(T ′(m)l
))
l≥1

L-s−→ (Z(m−, l),Z(m+, l))
l≥1,

(13.3.20)

where the limits Z(m±, l) are associated with T (m)l and T ′(m)l by (13.3.10).
With any two sets L = {p1 < · · · < pQ} and L′ = {p′1 < · · · < p′Q} of pos-

itive integers we put Ωm,L,L′ = ∩Ql=1({Tl = T (m)pl } ∩ {T ′l = T ′(m)p′l }). On

Ωm,L,L′ we have Zn−(Tl)= Zn(T (m)pl ) and Zn+(T ′l )= Zn+(T ′(m)p′l ), whereas,
by virtue of the definition (13.3.10), the F -conditional law of the variable
(Z(m−,pl),Z(m+,p′l ))l∈L is the same, in restriction to ΩL, as the F -conditional
law of (Z(−, l)Z(+, l))l∈L. Then, due to a basic property of stable convergence in
law, we deduce from (13.3.20) that

(√
kn Z

n−(Tl),
√
kn Z

n+(T ′l
))
l∈L

L-s−→ (Z(−, l),Z(+, l))
l∈L

in restriction to Ωm,L,L′ .

Therefore, another basic property of the stable convergence in law yields the above
convergence holds on Ω ′ = ∪m≥1Ωm, where Ωm is the union of all Ωm,L,L′ over
all families L and L′ of Q distinct positive integers.

At this stage, it thus remains to check that P(Ω ′)= 1. We put Bm = {R(m,p) :
p ≥ 1}. Observe that Ωm is the set on which, for all l ∈ L, we have either Tl = tl
or Tl ∈ Bm, together with either T ′l = t ′l or T ′l ∈ Bm. The sets Bm increase to the set
B = {t > 0 : p({t} × E) = 1}, hence Ω ′ is the set on which, for all l ∈ L, we have
either Tl = tl or Tl ∈ B , together with either T ′l = t ′l or T ′l ∈ B . Since by hypothesis
Sl ∈ B and S′l ∈ B almost surely and Tl = tl ∧ Sl and T ′l = t ′l ∧ S′l , we see that
P(Ω ′)= 1, and the proof is complete. �

In view of this lemma, below we restrict our attention to families (Tl, T ′l )l∈L of
the form (13.3.19). We associate with (Tl, T ′l ) the following notation:

Tl ∈ I (n, i) ⇒ in(−, l)= (i − kn − 1)+

T ′l ∈ I (n, i) ⇒ in(+, l)= i
Sn(±, l)= in(±, l)Δn.

(13.3.21)

Note that in(±, l) ≥ 0 always, and as soon as in(−, l) ≥ 1 (that is, for all n large
enough) we have

c̃ n(kn, vn, Tl−) = c̃ nin(−,l)+1(kn, vn), c̃ n(kn, Tl−) = c̃ nin(−,l)+1(kn),

c̃ n(kn, vn, T
′
l ) = c̃ nin(+,l)+1(kn, vn), c̃ n(kn, T

′
l ) = c̃ nin(+,l)+1(kn).

(13.3.22)
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In the next lemma we compare the above estimators when we vary the pro-
cess X, so we explicitly mention this process in our notation, writing for example
ĉ n(kn, vn, Tl−, Y ) when we use a given process Y .

Lemma 13.3.10 Assume (SH-r) for some r ∈ (0,2), and let X = X′ + X′′ be the
decomposition introduced in (13.2.17).

a) When X =X′, or when (13.3.14) and � ≤ 1−τ
r

hold, we have

P
(
ĉ n(kn, vn, Tl−,X) �= ĉ n(kn, Tl−,X)

) → 0

P
(
ĉ n(kn, vn, T

′
l ,X) �= ĉ n(kn, T ′l ,X)

) → 0.
(13.3.23)

b) Under (13.3.14) and (13.3.16) we have (recall (13.3.18) for zn)

zn
(
ĉ n(kn, vn, Tl−,X)− ĉ n(kn, vn, Tl−,X′)

) P−→ 0

zn
(
ĉ n(kn, vn, T

′
l ,X)− ĉ n(kn, vn, T ′l ,X′)

) P−→ 0.
(13.3.24)

Proof 1) We start with the statements relative to T ′l in both (13.3.23) and (13.3.24),
and we set in = in(+, l). We have P(̂c n(kn, vn, T

′
l ,X) �= ĉ n(kn, T

′
l ,X)) ≤∑kn

i=1 a(n, j), where

a(n, j) = P
(∥∥Δnin+jX

∥∥> vn
)

≤ P
(∥∥Δnin+jX

′∥∥> vn/2
)+ P
(∥∥Δnin+jX

′′∥∥> vn/2
)
.

If j ≥ 0 we have {in+j = i} ∈F(i−1)Δn because Sn(+, l) is a stopping time. There-
fore we can apply (13.2.22) and (13.2.23) on each of these sets and then sum up over
i to obtain

P
(∥∥Δnin+jX

′∥∥> vn/2
) ≤ KmΔm(1/2−�)n

∑

i≥1

E
((
Unin+j
)m 1{in+j=i}

)

≤ KmΔm(1/2−�)n

P
(∥∥Δnin+jX

′′∥∥> vn/2
) ≤ K

∑

i≥1

E
((
V nin+j
)r 1{in+j=i}

) ≤ Δ1−r�
n φn,

where φn → 0 as n→∞, and m > 0 is arbitrary. Upon taking m big enough,
and since � < 1

2 , we deduce that a(n, j) ≤ Δn when X = X′, and this read-
ily gives (13.3.23) for T ′l when X = X′ because knΔn→ 0. Otherwise, we have
a(n, j)≤ 2Δ1−r�

n φn, which again implies (13.3.23) when (13.3.14) and � ≤ 1−τ
r

hold, because we then have knΔ1−r�
n φn ≤Kφn→ 0.

Next, assume (13.3.14) and (13.3.16). With the notation (13.2.20), we have

ĉ n
(
kn, vn, T

′
l ,X
)j l − ĉ n(kn, vn, T ′l ,X′

)j l = 1

kn

kn∑

w=1

ηnin+w,0,
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provided we take k = 1 and F(x) = xjxl . This function satisfies (13.2.4) and
(13.2.7) with p = s′ = 2 and s = 1. Applying (13.2.21) with m= 1, in restriction to
the sets {in = i − 1}, and summing over i ≥ 1, we deduce

E
(∥∥̂c n
(
kn, vn, T

′
l ,X
)− ĉ n(kn, vn, T ′l ,X′

)∥∥) ≤ (Δ
2−r

2 (1∧ 1
r
)−θ

n +Δ(2−r)�−θn

)
φn,

where θ > 0 is arbitrarily small and φn→ 0 again. Under (13.3.14) we have zn ≤
K/Δ

(τ∧(1−τ))/2
n . Then, as soon as (13.3.16) holds, we deduce (13.3.24) for T ′l .

2) Observe that the previous argument proves the results for T ′l because we have
(13.3.22) and Sn(+, l) is a stopping time. It works as well for Tl−, as long as
Sn(−, l) is a stopping time, which is the case when l ∈ L1. When l ∈ L2, however,
Sn(−, l) is no longer a stopping time, so the previous proof fails.

We thus resort to the same trick as in Step 7 of the proof of Theorem 9.3.2. We
have Tl = R(m,p) for some p,m ≥ 1, and we denote by (Gt ) the smallest filtra-
tion containing (Ft ) and such that (R(m,q) : q ≥ 1) is G0 measurable. By Propo-
sition 2.1.10, page 44, W is a (Gt )-Brownian motion, and the restriction p′ of p to
R+ × {z : Γ ′(s) ≤ 1

m
} is a (Gt )-Poisson measure whose compensator is the restric-

tion q′ of q to the same set. Then Xt = Xt −∑q≥1ΔXR(m,q)1{R(m,q)≤t} is an Itô
semimartingale, relative to the filtration (Gt ), with the same Grigelionis represen-
tation (13.0.1) as X, except that p and q are replaced by p′ and q′, and the process

bt is replaced by another bounded process b
′
t , and W , σ and δ are unchanged. In

particular, X satisfies (SH-r) relative to (Gt ). Moreover, by a simple calculation, the
decomposition X =X′ +X′′ similar to X =X′ +X′′ is

X
′
t −X′t =

∫ t

0
αs ds, where αs =

{
0 if r ≤ 1
− ∫{z:Γ ′(z)>1/m} δ(t, z)λ(dz) if r > 1.

Now we can prove the results, using the fact that Sn(−, l) is a (Gt )-stopping time:

(i) (13.3.23) with Tl− holds forX′, and forX under (13.3.14) and� ≤ 1−τ
r

. Since
R(m,p − 1) < Tl − (kn + 2)Δn for all large n, hence ĉ n(kn, vn, Tl−,X) =
ĉ n(kn, vn, Tl−,X) and the same for the non-truncated versions: thus (13.3.23)
with Tl− holds for X itself, under the same conditions.

(ii) (13.3.24) with Tl− holds for the pair (X,X
′
). As seen above, we have

ĉ n(kn, vn, Tl−,X) = ĉ n(kn, vn, Tl−,X) for all n large enough, whereas we
have (13.3.23) for both X′ and X

′
, so to get (13.3.24) with Tl− for the pair

(X,X′) it remains to prove that

zn
(
ĉ n
(
kn, Tl−,X′

)− ĉ n(kn, Tl−,X′
)) P−→ 0. (13.3.25)

To see this, we set At =
∫ t

0 αs ds, soΔni X
′ =Δni X

′ +Δni A and ‖Δni A‖ ≤KΔn (be-

cause α is bounded), hence |Δni X′jΔni X′l −Δni X
′j
Δni X

′l | ≤KΔ2
n+KΔn‖Δni X

′‖.

Since E(‖Δni X
′‖ | G(i−1)Δn)≤K

√
Δn (by (13.2.22) for example), we deduce

E
(∥∥̂c ni
(
kn,X

′)− ĉ ni
(
kn,X

′)∥∥ | G(i−1)Δn

) ≤ K
√
Δn.
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Applying this on each set {in(−, l)= i − 1} (which belongs to G(i−1)Δn ), summing
over i ≥ 1, and since zn

√
Δn→ 0, we deduce (13.3.25). �

We are now ready to state the last result of this subsection:

Lemma 13.3.11 Assume that (a) of Theorem 13.3.3 holds for the non-truncated
versions (13.3.6). Then (b) of this theorem also holds, as well as (a) and (c) for the
truncated versions.

Proof We consider a family (Tl, T ′l )l∈L which, by virtue of Lemma 13.3.9, may
be assumed to satisfy (13.3.19). Since (K-r) implies (H-r), by localization we may
assume (SH-r), so the previous lemma applies.

Our hypothesis is that (13.3.13) holds when X is continuous and for the non-
truncated versions (13.3.6) of the estimators. A first application of (13.3.23) (with
X = X′) gives that (13.3.13) holds as well for the truncated versions, when X is
continuous.

Next, assume X discontinuous, and (13.3.14) and (13.3.16). Then the fact that
(13.3.13) holds for X′ and the truncated version, together with (13.3.24), immedi-
ately yield that (13.3.13) holds for X and the truncated versions.

Finally, assume X discontinuous, and (13.3.14) and (13.3.15). We have the first
part of (13.3.16), and we can also find a � ∈ (0, 1

2 ) which satisfies the second part
of (13.3.16), together with � ≤ 1−τ

r
. Then, with vn =Δ�n for this particular value

of � , we have (13.3.13) for X and the truncated versions, and that it also holds for
the non-truncated versions then readily follows from (13.3.23) again. �

13.3.3 The Scheme of the Proof in the Continuous Case

In view of Lemma 13.3.9 and 13.3.11, and upon localizing, it remains to prove the
convergence (13.3.13) under the following strengthened assumption:

Assumption (SK) We have (K-r) with X continuous (so the value of r here is
irrelevant), and the processes b, b̃, σ and σ̃ are bounded, and we have ‖̃δ(ω, t, z)‖∧
1≤ Γ (z) with a function Γ on E which is bounded and with

∫
E
Γ (z)2λ(dz).

It is also enough to consider the non-truncated estimators, so we use the version
(13.3.6) for Zn±l , and a family (Tl, T ′l )l∈L which satisfies (13.3.19) with a finite
set L. Below, and until the end of the section, all these hypotheses are in force.

We again introduce some notation, complementing (13.3.9) and (13.3.21). Below
we write the various components of all these variables: the indices j,m are between
1 and d , whereas u,w are between 1 and d ′:

Yn(±, l)uw = 1

knΔn

kn∑

i=1

Δnin(±,l)+iW
uΔnin(±,l)+iW

w − δuw (13.3.26)
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Y ′n(+, l)u = 1

kn

kn∑

i=1

(
Wu
(in(+,l)+i−1)Δn −Wu

in(+,l)Δn
)

Y ′n(−, l)u = 1

kn

kn∑

i=1

(
Wu
(in(−,l)+i−1)Δn −Wu

(in(−,l)+kn−1)Δn

)

Zn(±, l)jm =
d ′∑

u,w=1

A
jm,uw

Sn(±,l) Y
n(±, l)uw

Z′n(±, l)jm =
d ′∑

w=1

Ã
jm,w

Sn(±,l) Y
′n(±, l)w.

(13.3.27)

The reader will observe the differences in the definitions of Y ′n(+, l) and Y ′n(−, l).
The main terms are Zn(±, l) and Z′n(±, l), and the remainder terms are naturally
the differences

Z′′n(+, l) = Zn+l −Zn(+, l)−Z′n(+, l)
Z′′n(−, l) = Zn−l −Zn(−, l)−Z′n(−, l). (13.3.28)

Upon multiplying both members of these two equalities by zn, as given by
(13.3.18), and observing that zn/

√
kn = 1 and zn

√
knΔn → β when β < ∞,

whereas zn/
√
kn→ 0 and zn

√
knΔn = 1 when β =∞, we see that all three cases

of (13.3.13) follow from the next two lemmas:

Lemma 13.3.12 Assuming (SK), we have the following stable convergence:
(√
kn Z

n(−, l),√kn Zn(+, l), 1√
knΔn

Z′n(−, l), 1√
knΔn

Z′n(+, l)
)

l∈L
L-s−→ (Z(−, l),Z(+, l),Z′(−, l),Z′(+, l))

l∈L. (13.3.29)

Lemma 13.3.13 Under (SK) we have for all l ∈ L:

zn Z
′′n(−, l) P−→ 0, zn Z

′′n(+, l) P−→ 0.

The remainder of this section is thus devoted to proving these two lemmas.

13.3.4 Proof of Lemma 13.3.12

We start with two preliminary results. First, let (Un)n≥1 be an i.i.d. sequence of
N (0, Id ′)-distributed variables on some space (Ω ′,F ′,P′), and set for 1≤u,v≤d ′:

Yuvn = k
−1/2
n

kn∑

i=1

(
Uui U

v
i − δuv

)
, Y ′un = k

−3/2
n

kn∑

i=1

(kn − i)Uui .
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Lemma 13.3.14 The variables (Yn,Y ′n) converge in law to (Y,Y ′), as defined in
(13.3.8).

Proof The pair (Yn,Y ′n) is equal to
∑kn
i=1(ζ

n
i , ζ

′n
i ), where ζ ni and ζ ′ni are d ′2 and d ′

dimensional variable with components:

ζ
n,uv
i = k

−1/2
n

(
Uui U

v
i − δuv

)
, ζ

′n,u
i = k

−3/2
n (kn − i)Uui . (13.3.30)

The variables (ζ ni , ζ
′n
i ) are centered, and independent when i varies, for each n.

Moreover

kn∑

i=1

E
′(ζ n,uvi ζ

n,ws
i

)= δuwδvs + δusδvw

kn∑

i=1

E
′(ζ n,uvi ζ

′n,w
i

)= 0

(13.3.31)
kn∑

i=1

E
′(ζ ′n,ui ζ

′n,v
i

)=
kn∑

i=1

(kn − i)2
k3
n

δuv → 1

3
δuv

kn∑

i=1

E
′(∥∥ζ ni
∥∥4)+

kn∑

i=1

E
′(∥∥ζ ′ni
∥∥4) ≤ K

kn
→ 0.

The result then follows from Theorem 2.2.14. �

The next stable convergence result does not formally follows from the conver-
gence (4.3.4) in Theorem 4.3.1, but it is very similar, although simpler to prove.

Lemma 13.3.15 With Y(±, l) and Y ′(±, l) as defined before (13.3.8), we have the
following stable convergence:

(√
kn Y

n(±, l), 1√
knΔn

Y ′n(±, l)
)

l∈L
L-s−→ (Y(±, l), Y ′(±, l))

l∈L.

Proof Put Y
n
(±, l) = √

kn Y
n(±, l) and Y

′n
(±, l) = 1√

knΔn
Y ′n(±, l), and let

(Y,Y ′) be as in (13.3.8) again. We need to prove that

E(Z)
∏

l∈L
fl
(
Y
n
(−, l))gl

(
Y
n
(+, l))f ′l

(
Y
′n
(−, l))g′q

(
Y
′n
(+, l))

→ E(Z)
∏

l∈L
E
′(fl(Y )

)
E
′(gl(Y )

)
E
′(f ′l
(
Y ′
))
E
′(g′l
(
Y ′
))
, (13.3.32)

for any continuous bounded functions fl and gl on Md ′×d ′ (the set of all d ′ × d ′
matrices) and f ′l and g′l on R

d ′ , and any F measurable bounded variable Z on
(Ω,F ,P).
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Recalling (13.3.19), we set G = σ(Tl, T ′l : l ∈ L) and H = σ(Wt : t ≥ 0)
∨

G.
Since the variables Yn±l are H measurable, we can replace Z by Z = E(Z |H). In
other words it is enough to prove (13.3.32) when Z is H measurable. Moreover the
processW is independent of G by (13.3.19), hence is an (Ht )-Wiener process where
(Ht ) is the smallest filtration such that G ⊂H0 and to whichW is adapted. For each
j ≥ 1 the set

Bj = ∪l∈L
((
(Tl − 1/j)+, Tl

]∪ (T ′l , T ′l + 1/j
])

is (Ht )-predictable. We can thus define W(j) and W(j) as in Theorem 4.3.1, and
set Hj = σ(W(j)t : t ≥ 0)

∨
G. The σ -fields Hj increase with j , and

∨
j Hj =H.

Hence if Z is bounded H measurable, we have Zj = E(Z | Hj )→ Z in L
1(P).

Thus if (13.3.32) holds for each Zj , it also holds for Z. In other words it is enough
to prove (13.3.32) when Z is Hj -measurable for any given j ≥ 1.

Second, we use the simplifying notation un = (kn + 1)Δn. We let Ωn be the set
on which Tl > un and |Tl − Tl′ | > 2un and |T ′l − T ′l′ | > 2un for all l, l′ ∈ L with
l �= l′, and also either Tl = T ′l′ or |Tl − T ′l′ |> 2un for all l, l′ ∈ L. Since un→ 0, we
have Ωn→Ω . Therefore, instead of (13.3.32) it is enough to prove that

E(Z)1Ωn
∏

l∈L
fl
(
Y
n
(−, l))gl

(
Y
n
(+, l))f ′l

(
Y
′n
(−, l))g′q

(
Y
′n
(+, l))

→ E(Z)
∏

l∈L
E
′(fl(Y )

)
E
′(gl(Y )

)
E
′(f ′l
(
Y ′
))
E
′(g′l
(
Y ′
))
, (13.3.33)

when Z is bounded and Hj measurable. Below we take n sufficiently large to have
un <

1
j

. Then we observe that, because of the independence ofW and G, and in view
of (13.3.26) and of the scaling and symmetry properties of the (Ht )-Wiener process
W , we have the following: in restriction to the G measurable set Ωn, for any l ∈ L
the G-conditional law of (Y

n
(±, l), Y ′n(±+, l)) is the same as the law of (Yn,Y ′n),

as given by (13.3.29); moreover, again conditionally on G and in restriction to Ωn,
the variables (Y

n
(−, l), Y ′n(−, l)) and (Y

n
(+, l′), Y ′n(+, l′)) are independent when

l, l′ range through L, and they are globally independent of the σ -field Hj . Therefore
when Z is Hj measurable, the left side of (13.3.33) takes the form

E(Z 1Ωn)
∏

l∈L
E
′(fl(Yn)f ′l

(
Y ′n
))

E
′(gl(Yn)g′l

(
Y ′n
))
.

Since E(Z1Ωn)→ E(Z), (13.3.32) amounts to (Yn,Y ′n)
L−→ (Y,Y ′), which is the

previous lemma. �

We are now ready to prove Lemma 13.3.12. We have (13.3.27), which is anal-
ogous to (13.3.10) except that we replace Tl− and T ′l by Sn(−, l) and Sn(+, l),
and of course Y(±, l) and Y ′(±, l) by Yn(±, l) and Y ′n(±, l). Now, from the
definition (13.3.21) of Sn(±, l) and the càdlàg property of σ and σ̂ , we see that
ASn(−,l)→ATl− and ASn(+,l)→AT ′l , and analogously for ÃSn(±,l). Then (13.3.29)
follows from the previous lemma and the property (2.2.5) of stable convergence.
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13.3.5 Proof of Lemma 13.3.13

For the proof of Theorem 13.3.3 it thus remains to prove Lemma 13.3.13, which we
do in a number of steps.

Step 1) We assume (SK), so we can rewrite (13.3.1) as

σt = σ0 +
∫ t

0
b̃′s ds +

∫ t

0
σ̃s dWs +Mt, (13.3.34)

where b̃′ is again bounded, andM = δ̃ ∗ (p− q). The index l is fixed in the statement
of the lemma, and we omit it in our notation: for example we write in(±), T and
T ′ instead of in(±, l), Tl and T ′l . Our first task is to express the remainder term
Z′′n(±)= Z′′n(±, l) into tractable pieces.

For this, for i between 1 and kn, we first define the following variables (we use
vector notation there, βni (±) is d-dimensional, the others are d × d ′-dimensional):

ξni (±)= σ̃Sn(±)(WSn(±)+(i−1)Δn −WSn(±)),
ξ ′ni (±)= σSn(±)+(i−1)Δn − σSn(±)
ξ̃ ni (±)= ξ ′ni (±)− ξni (±), βni (±)= σSn(±)+(i−1)ΔnΔ

n
in(±)+iW.

A rather tedious, but otherwise elementary, computation based on (13.3.27) and
(13.3.28), and of course on the basic formulas (13.3.1), (13.3.2) and (13.3.6), allows
us to check that

Z′′n(±) =
6∑

j=1

ζ n(j,±), (13.3.35)

where

ζ n(1,+)= cSn(+) − cT ′ , ζ n(1,−)= cSn(−)+knΔn − cT−
ζ n(2,+)= 0

ζ n(2,−)jm = cjmSn(−) − c
jm

Sn(−)+(kn−1)Δn
+

d ′∑

w=1

Ã
jm,w

Sn(−)
(
Ww
Sn(−)+(kn−1)Δn −Wv

Sn(−)
)

and further for j = 3,4,5,6 we have

ζ n(j,±) = 1

knΔn

kn∑

i=1

ηni (j,±) (13.3.36)

where

ηni (3,±)jm =Δnin(±)+iXj Δnin(±)+iXm − βni (±)j βni (±)m
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ηni (4,±)jm =
d ′∑

u,v,w=1

(
σ
ju

Sn(±) σ̃
mv,w
Sn(±) + σmuSn(±) σ̃

jv,w

Sn(±)
)

× (Δnin(±)+iWuΔnin(±)+iW
v −Δnδuv

)(
Ww
Sn(±,l)+(i−1)Δn −Ww

Sn(±)
)

ηni (5,±)jm =
d ′∑

u,w=1

ξ ′ni (±)ju ξ ′ni (±)mw Δnin(±)+iWuΔnin(±)+iW
w

ηni (6,±)jm =
d ′∑

u,w=1

(
σ
ju

Sn(±)̃ξ
n
i (±)mw + σmuSn(±)̃ξ ni (±)jw

)
Δnin(±)+iW

uΔnin(±)+iW
w.

In view of the decomposition (13.3.35), it is thus enough to prove that, for j =
1,2,3,4,5,6, we have

zn ζ
n(j,±) P−→ 0. (13.3.37)

Step 2) In this step we prove (13.3.37) when Sn(±) is a stopping time, that is for
Sn(+), and for Sn(−) when T = Tl with l ∈ L1 (as in (13.3.19)). To simplify the
notation, we write in = in(±) and Sn = Sn(±).

Proof of (13.3.37) for j = 1 Recall that (SK) implies E(‖σR − σR′‖2)≤KΔn for
any two stopping times R,R′ with R ≤ R′ ≤ R +Δn, and since σ is bounded we
deduce E(‖cR − cR′ ‖2)≤KΔn as well.

Applying this with R = T ′ and R′ = Sn(+) gives the result for ζ n(+,1), because
znΔn→ 0. Applying this with R = Sn(−)+ (kn − 1)Δn and R′ = T , plus the fact
that cT− = cT a.s. because T is non-random here, we get the result for ζ n(1,−). �

Proof of (13.3.37) for j = 3 Let ρni (±)=Δnin+iX− βni (±). We deduce from (SK)
and (2.1.44), page 43, and the fact that (in+ i− 1)Δn is a stopping time that, for all
i ≥ 1 and q ≥ 2,

E
(∥∥ρni (±)

∥∥q) ≤ KqΔ
1+q/2
n , E

(∥∥βni (±)
∥∥q) ≤ KΔ

q/2
n . (13.3.38)

We have ‖ηni (3,±)‖ ≤ 2‖ρni (±)‖2+‖ρni (±)‖‖βni (±)‖, hence (13.3.38) and the
Cauchy-Schwarz inequality yield E(‖ζ ni (3,±)‖) ≤ K

√
Δn and the result follows

from zn
√
Δn→ 0. �

Proof of (13.3.37) for j = 4 Observe that

ζ n(4,±)jm =
d ′∑

u,v,w=1

A(j,m,u, v,w)n Φ(j,m,u, v,w)n,
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where each A(j,m,u, v,w)n is bounded FSn(±) measurable and

Φ(j,m,u, v,w)n

= 1

knΔn

kn∑

i=1

(
Ww
(in+i−1)Δn −Ww

Sn

)(
Δnin+iW

uΔnin+iW
v −Δnδuv

)
.

A straightforward computation shows that the first two FSn -conditional moments
of the variables Φ(j,m,u, v,w)n are respectively 0 and smaller than KΔn. Then

1√
Δn
Φ(j,m,u, v,w)n is bounded in probability as n varies, and the result follows,

again because zn
√
Δn→ 0. �

Proof of (13.3.37) for j = 5 As in the proof for j = 1, we have E(‖ξ ′ni (±)‖2) ≤
KknΔn. Since ξ ′ni (±) is FSn+(i−1)Δn measurable, successive conditioning yields
E(‖ηni (5,±)‖) ≤ KknΔ2

n, hence E(‖ζ(5,±)‖) ≤ KknΔn. The result follows be-
cause znknΔn→ 0. �

Proof of (13.3.37) for j = 6 Recalling (13.3.34) and (SK), we have

ξ̃ ni (±) =
∫ Sn+(i−1)Δn

Sn

b̃′s ds

+
∫ Sn+(i−1)Δn

Sn

(̃σs − σ̃Sn) dWs +MSn+(i−1)Δn −MSn, (13.3.39)

where M = δ̃ ∗ (p− q) and b̃′t = b̃t +
∫
{‖̃δ(t,z)‖>1} δ̃(t, z)λ(dz) is bounded. Then if

ε ∈ (0,1], on the set Ω(n, i, ε)= {‖ΔMs‖ ≤ ε ∀ s ∈ (Sn, Sn+ (i − 1)Δn]} we have

ξ̃ ni (±) =
∫ Sn+(i−1)Δn

Sn

b̃(ε)s ds

+
∫ Sn+(i−1)Δn

Sn

(̃σs − σ̃Sn) dWs +M(ε)Sn+(i−1)Δn −M(ε)Sn,

where M(ε)= (̃δ 1{Γ≤ε}) ∗ (p− q) and b̃(ε)t = b̃′t −
∫
{Γ (z)>ε} δ̃(t, z)λ(dz) (here Γ

is the function appearing in (SK)). We have
∫
{Γ (z)>ε} ‖̃δ(t, z)‖2 λ(dz) ≤ φ(ε) :=∫

{Γ (z)>ε} Γ (z)
2 λ(dz), which goes to 0 as ε→ 0, hence also ‖b(ε)t‖ ≤K/ε. Then,

with the notation

γn = 1

knΔn
E

(∫ Sn+knΔn

Sn

‖σ̃Sn+s − σ̃Sn‖2 ds

)
,

we deduce that

E
(∥∥̃ξni (±)

∥∥2 1Ω(n,i,ε)
)≤KknΔnρ(n, ε), where ρ(n, ε)= knΔn

ε
+ γn + φ(ε).
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Observing that ξ̃ ni (±) and Ω(n, i, ε) are F(in+i−1)Δn measurable, we deduce by
successive conditioning and the above, plus the boundedness of σ and the Cauchy-
Schwarz inequality, that

E
(∥∥ηni (6,±)

∥∥1Ω(n,i,ε)
) ≤ KΔn

√
knΔnρ(n, ε).

Since Ω(n, kn, ε) ⊂ Ω(n, i, ε) if 1 ≤ i ≤ kn, the previous estimate and (13.3.36)
yield

E
(∥∥ζ ni (6,±)

∥∥1Ω(n,kn,ε)
) ≤ K

√
knΔnρ(n, ε). (13.3.40)

Now, since σ̃ is càdlàg and either Sn + knΔn < T and sn → T , or Sn > T ′
and Sn + knΔn → T ′, we see that γn → 0. This and limε→0 φ(ε) = 0 yield
limε→0 lim supn ρ(n, ε) = 0. Moreover the sequence zn

√
knΔn is bounded, so we

deduce

lim
ε→0

lim sup
n

znE
(∥∥ζ n(6,±)∥∥1Ω(n,kn,ε)

) = 0.

Finally, P(Ω(n, kn, ε)) → 1 as n → ∞ for each ε > 0 because the interval
(Sn, Sn + (kn − 1)Δn] tends to the empty set. Then what precedes immediately
yields (13.3.37) for j = 6. �

Proof of (13.3.37) for j = 2 Only ζ n(2,−) needs to be considered. Using (K), we
can apply Itô’s formula to ct = σtσ ∗t to get, with S′n = Sn + (kn − 1)Δn:

ζ n(2,−) =
∫ S′n

Sn(−)
b̂s ds −

∫ S′n

Sn(−)
(Ãs − ÃSn) dWs +MS′n −MSn(−),

where ‖b̂s‖ ≤K and Ã is given by (13.3.9) and M =G ∗ (p− q) with

Gjm(t, z) = −
d ′∑

u=1

(
δ̃ju(t, z)̃δmu(t, z)+ σ jut− δ̃mu(t, z)+ σmut− δ̃ju(t, z)

)
.

Observe that (13.3.37) is similar to (13.3.39), and Ã is càdlàg and ‖G(t, z)‖ ≤
KΓ (z). Then the same proof as in the previous step yields that ζ n(2,−) sat-
isfies (13.3.40) for all ε ∈ (0,1], where now Ω(n, kn, ε) = {‖ΔMs‖ ≤ ε ∀ s ∈
(Sn, Sn + (kn − 1)Δn}. Then we conclude (13.3.37) for j = 2 in the same way
as for j = 6. �

Step 3) In this short step we extend the previous result to a slightly more general
situation. Above we have Sn(±)= in(±)Δn; however, we could replace Sn(±) by a
more general stopping time, which is not necessarily a multiple of Δn. Namely we
could take any S′n(±) satisfying

S′n(±) is a stopping time and, according to the case,
S′n(−)+ knΔn < T ≤ Sn(−)+ (kn + 2)Δn, T ′ ≤ S′n(+)≤ T ′ + 2Δn.

(13.3.41)
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We thus replace in(±) by i′n(±) = S′n(±)/Δn, which is no longer an integer in
general. However, if for any process Y we naturally define the increment Δn

i′n(±)+iY
as being

Δni′n(±)+iY = YS′n(±)+iΔn − YS′n(±) (13.3.42)

then we can define the processes ζ ′n(j,±) as ζ n(j,±), with S′n(±) and i′n(±) in-
stead of Sn(±) and in(±) everywhere. Moreover, the property (13.3.41) is the only
property (in addition to (SK) of course) which is used in the above proof. Therefore
we have

(13.3.41) ⇒ znζ
′n(j,±) P−→ 0 for j = 1,2,3,4,5,6. (13.3.43)

Step 4) It remains to prove (13.3.37) for ζ n(j,−) when Sn(−) is not a stopping
time, that is when T = Tl =R(m,p) for some p,m≥ 1.

We use the same trick as in Lemma 13.3.10, slightly modified as follows:
with the convention R(m,0) = 0 when p = 1, we transfer the initial time at R =
R(m,p− 1), that is we consider the filtration F ′t =FR+t and the enlarged filtration
(G′t ) which is the smallest one containing (F ′t ) and such that all (R(m,q) : q ≥ 1)
are G′0 measurable. Then we consider the process W ′

t =WR+t −WR and, recalling
that R(m,q) are the successive jump times of 1G ∗ p where G = {z : Γ ′(z) > 1

m
},

the measure p′ defined by p′((0, t] × A) = p((R,R + t] × (A ∩Gc)). By Proposi-
tion 2.1.10, page 44, W ′ is a (G′t )-Wiener process and p′ is a (G′t )-Poisson random
measure with compensator q′(dt, dz)= dt⊗ (1Gc(z)λ(dz)). Then, with the notation

δ̃(t, z)= δ̃(R + t, z), σ̃ ′t = σ̂R+t , b̃′t = b̃R+t −
∫

{‖̃δ′(t,z)‖≤1}∩G
δ̃′(t, z)λ(dz)

(note that δ̃′ is a (G′t )-predictable function), we can define the processes (X′, σ ′) by

σ ′t = σR +
∫ t

0
b̃R+sds +

∫ t

0
σ̃ ′s dW ′

s +
(
δ̃′1{‖̃δ′‖≤1}

)
�
(
p′ − q′
)
t
+ ( δ̃′1{‖̃δ′‖>1}

)
� p′
t

X′t =XR +
∫ t

0
bR+sds +

∫ t

0
σ ′s dW ′

s .

The process X′ satisfies (SK), because X does. Moreover if i′n(−) = (in(−) −
R/Δn)

+, then S′n(−) = i′n(−)Δn is a (G′t )-stopping time because R and T =
R(m,p) are G′0 measurable,. In other words, we are in the situation of (13.3.41)
with T replaced by R(m,p) − R, at least as soon as n is large enough for hav-
ing i′n(−) > 0 Then if we use the notation (13.3.42) and associate ζ ′n(j,−) with
(i′n(−), S′n(−),X′,W ′, σ ′, σ̃ ′) instead of (in(−), Sn(−),X,W,σ, σ̃ ) we thus obtain
(13.3.43) by virtue of Step 3.

Now, the definition of σ ′ implies σ ′t = σt −
∑
q≥p ΔσR(m,q)1{R(m,q)−R≤t}.

Therefore σ ′t = σR+t , hence also X′t =XR+t , for all t < R(m,p)−R = Tl−R. Us-
ing (13.3.42), we deduce that Δn

i′n(−)+iX
′ =Δn

in(−)+iX for all i = 1, . . . , kn, when
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i′n(−) > 0, and the same for W ′ and W . It follows that for all n large enough we
have ζ ′n(j,−)= ζ n(j,−), and we thus deduce (13.3.37) from (13.3.43).

This ends the proof of Lemma 13.3.13, hence of Theorem 13.3.3 as well.

13.3.6 Proof of Theorem 13.3.8

Now we consider Theorem 13.3.8. First, Lemma 13.3.9 holds for this theorem as
well as for Theorem 13.3.3, with exactly the same proof, whereas the claims of
Lemma 13.3.10 are clearly true if we replace kn by mkn. Hence Lemma 13.3.11
also holds in the setting of Theorem 13.3.8.

Next, we define Y
n
(±, l) and Y

′n
(±, l) as in the previous subsection, except

that kn is substituted with mkn. This allows us to define Z
n
(±, l) and Z

′n
(±, l)

by (13.3.27) with Y
n
(±, l) and Y

′n
(±, l) instead of Yn(±, l) and Y ′n(±, l), and

Z
′′n
(±, l) = Zn±l − Zn(±, l) − Z′n(±, l), as in (13.3.28). Upon replacing kn by

mkn all the way through, the proof of Lemma 13.3.13 gives

zn Z
′′n
(−, l) P−→ 0, zn Z

′′n
(+, l) P−→ 0.

At this stage, it thus remains to prove that

(√
kn Z

n(−, l),√kn Zn(+, l),
√
kn Z

n
(−, l),√kn Zn(+, l),

1√
knΔn

Z′n(−, l), 1√
knΔn

Z′n(+, l), 1√
knΔn

Z
′n
(−, l), 1√

knΔn
Z
′n
(+, l)
)

l∈L
L-s−→ (Z(−, l),Z(+, l),Z(−, l),Z(+, l),

Z′(−, l),Z′(+, l),Z′(−, l),Z′(+, l))
l∈L. (13.3.44)

To this aim, we complement the notation Yn and Y ′n of Lemma 13.3.14 by setting

Y
uv

n =
1

m
√
kn

mkn∑

i=1

(
Uui U

v
i − δuv

)
, Y

′u
n =

1

mk
3/2
n

mkn∑

i=1

(mkn − i)Uui .

Then, if (Ŷ , Ŷ ′) is another pair of variables independent from and with the same law
as (Y,Y ′), we obtain the following extension of Lemma 13.3.14:

Lemma 13.3.16 The variables (Yn,Y n,Y ′n,Y
′
n) converge in law to

(
Y,

1

m

(
Y +√m− 1 Ŷ

)
, Y ′, 1

2m

(
(3m− 1)Y ′ + (m− 1)

√
4m− 1 Ŷ ′

))
.
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Proof We can write (Yn,Y n,Y ′n,Y
′
n) as is

∑mkn
i=1 (ζ

n
i , ζ

n

i , ζ
′n
i , ζ

′n
i ), where ζ ni and ζ ′ni

are given by (13.3.30) when i ≤ kn and vanish otherwise, and

ζ
n,uv

i = 1

m
√
kn

(
Uui U

v
i − δuv

)
, ζ

′n,u
i = 1

mk
3/2
n

(mkn − i)Uui .

All those variables are centered and independent when i varies, for each n. We still
have (13.3.31), and also

mkn∑

i=1

E
′( ζ n,uvi ζ

n,ws

i

)= 1

m

(
δuwδvs + δusδvw)

mkn∑

i=1

E
′(ζ n,uvi ζ

n,ws

i

)= 1

m

(
δuwδvs + δusδvw)

mkn∑

i=1

E
′( ζ n,uvi ζ

′n,w
i

)=
mkn∑

i=1

E
′( ζ n,uvi ζ

′n,w
i

)=
mkn∑

i=1

E
′(ζ n,uvi ζ

′n,w
i

)= 0

mkn∑

i=1

E
′( ζ ′n,ui ζ

′n,v
i

)=
mkn∑

i=1

(mkn − i)2
m2k3

n

δuv → m

3
δuv

mkn∑

i=1

E
′(ζ ′n,ui ζ

′n,v
i

)=
kn∑

i=1

(mkn − i)(kn − i)
mk3

n

δuv → 3m− 1

6m
δuv

mkn∑

i=1

E
′(∥∥ζ ni
∥∥4)+

mkn∑

i=1

E
′(∥∥ζ ′ni
∥∥4) ≤ K

kn
→ 0.

Then again the result follows from Theorem 2.2.14, plus a simple calculation of the
variance-covariance. �

Finally, we can reproduce the proof of Lemma 13.3.15, to deduce (13.3.44) from
the previous lemma, and the proof of Theorem 13.3.8 is complete.

13.4 Another Central Limit Theorem Using Approximations
of the Spot Volatility

In this section we consider another Central Limit Theorem related to the local ap-
proximations of the volatility, and which about the processes

V n(G; kn, vn,X)t =
[t/Δn]−kn∑

i=kn+1

G
(
Δni X, ĉ

n
i−kn(kn, vn), ĉ

n
i+1(kn, vn)

)
1{‖Δni X‖>vn},

(13.4.1)
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whereG is a function on R
d ×M+

d×d ×M+
d×d . This was introduced in (9.5.1), and

under appropriate conditions it converges to the following limit;

V (G,X)t =
∑

s≤t
G(ΔXs, cs−, cs). (13.4.2)

Here we have two approximations; one is for the jumps of X, and the typical
rate of convergence is

√
Δn; the other is for the spot volatility, with a typical rate

1/
√
kn. Since we must have knΔn→ 0, the rate for approximating the spot volatility

is always slower than the rate for approximating the jumps. Therefore the rate at
which V n(G; kn, vn,X) converges to V (G) will be the slowest of the two, that is
1/
√
kn.

For practical purposes we need to consider two functionals V n(G; kn, vn,X) and
V n(G;mkn, vn,X) simultaneously, where m ≥ 2 is a fixed integer. On the other
hand, for simplicity we consider only the one-dimensional case d = 1, so we may
also take d ′ = 1 here, and the test function F is also one-dimensional.

13.4.1 Statements of Results

We will have two different CLTs here, depending on the properties of the test func-
tion G. In both cases, for the applications we need to somehow relax the continuity
assumption on G, in the spirit of Remark 9.5.3. Toward this aim, we consider a
subset A of R (recall that X is one-dimensional here) which satisfies

A is open, with a finite complement, and
D := {x : P(∃s > 0 : ΔXs = x) > 0} ⊂A. (13.4.3)

Then ifG satisfies the hypotheses of Theorem 9.5.1 except that the continuity holds

only on A×R+×R+, then we still have V n(G; kn, vn,X) P=⇒ V (G) (since d = 1,
we can identify M+

d×d with R+ here). Note that 0 ∈A necessarily here.
For the first result, we make the following assumptions onG, which is a function

of three variables (x, y, y′); when it is differentiable we write ∂Gi for ∂xG(x, y, y′)
and ∂yG(x, y, y′) and ∂y′G(x,y, y′), when i = 1,2,3 respectively, and similarly
for higher order derivatives when they exist.

• A satisfies (13.4.3) and ε > 0 satisfies [−ε, ε] ⊂A
• G is C1 on A×R

2+, G(0, y, y′)= 0
• ∂1G(x,y, y

′)/x2 is locally bounded on A×R
2+

• |∂jG(x, y, y′)| ≤Kx2 on [−ε, ε] ×R
2+ for j = 2,3.

(13.4.4)

The third condition above implies ∂jG(0, y, y′)= 0 for j = 2,3.
In order to describe the limiting process we take a weakly exhausting sequence

(Tn) of stopping times for the jumps of X, and a very good filtered extension
(Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P) of the same type as the one in Sect. 13.1,
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except that it supports four sequence (Ψn−,Ψn+,Ψ ′n−,Ψ ′n+) of independent stan-
dard normal variables, independent of F . The limiting processes will be combina-
tions of the following two processes

Ut =
√

2
∑

q≥1

(
∂2G(ΔXTq , cTq−, cTq )cTq−Ψq−

+ ∂3G(ΔXTq , cTq−, cTq )cTqΨq−
)

1{Tq≤t}
(13.4.5)

U ′t =
√

2
∑

q≥1

(
∂2G(ΔXTq , cTq−, cTq )cTq−Ψ ′q−

+ ∂3G(ΔXTq , cTq−, cTq )cTpΨq−
)

1{Tq≤t}.

These processes are well defined, and F -conditionally they are purely discontinu-
ous Gaussian martingales, as soon as X satisfies (H-r) and (13.4.4) holds with the
same r , by an application of Proposition 4.1.4, and further they are F -conditionally
independent, with the following (conditional) variances:

Ẽ
(
(Ut )2 |F

)= Ẽ
((
U ′t
)2 |F)

= 2
∑

s≤t

(
c2
s− ∂2G(ΔXs, cs−, cs)2 + c2

s ∂3G(ΔXs, cs−, cs)2
)
.

(13.4.6)

Our first result goes as follows.

Theorem 13.4.1 Assume (K-r) for some r ∈ [0,2), and let G satisfy (13.4.4) for
some ε ≥ 0. We take vn 
 Δ�n for some � ∈ (0, 1

2 ) and kn such that knΔτn→ β ′
for some β ′ ∈ (0,∞) and some τ ∈ (0, 1

2 ). We also assume one of the following two
conditions:

(a) either G(x,y, y′)= 0 when |x| ≤ η, for some η > 0,
(c) or (in addition to �,τ ∈ (0, 1

2 ))

r <
4

3
,

1

4− r ≤� <
1

2r
, τ < 2�(2− r). (13.4.7)

Then, for any t and any integer m≥ 2 we have the following stable convergence in
law of 2-dimensional variables:

(√
kn
(
V n
(
G; kn, vn,X

)
t
− V (G,X)t

)
,
√
kn
(
V n(G;mkn, vn,X)t − V (G,X)t

))

L-s−→
(
Ut ,

1

m

(
Ut +

√
m− 1U ′t

))
. (13.4.8)

Remark 13.4.2 In this situation we typically do not have functional convergence
for the Skorokhod topology, even when the process V (G,X) is replaced by its dis-
cretized version. This is because, if X has a jump at time T , then V n(G; kn,un,X)
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and V n(G;mkn,un,X) have a jump of approximately the same size, at times
([T/Δn] − kn)Δn and ([T/Δn] − mkn)Δn. However, we would obtain the func-
tional convergence, were we taking V n(G; kn, vn,X)t − V (G,X)([t/Δn]−kn)Δn for
the first component, V n(G; kn, vn,X)t+(m−1)knΔn − V (G,X)([t/Δn]−kn)Δn for the
second one.

An analogous joint convergence holds, with any number of integersm. There are
also (much more complicated) versions in the multidimensional case d ≥ 2, or when
τ ≥ 1

2 , or when G is multidimensional.

The second result is relative to the case where, in the previous theorem, the limit
vanishes identically (this is a “degenerate case”, in the spirit of the forthcoming
Chap. 15, but it is more convenient to study this case here). We then need a different
normalization, and also stronger assumptions on the test functionG. Namely, on top
of (13.4.4), we also assume:

• G(x,y, y′) is C2 in (y, y′) on A×R
2+

• ∣∣∂2
j,iG(x, y, y

′)
∣∣≤K|x|2 on [−ε, ε] ×R

2+ for j, i = 2,3
• x ∈A, y > 0 ⇒ G(x,y, y)= ∂2F(x, y, y)= ∂3G(x,y, y)= 0.

(13.4.9)

The limiting processes will now be combinations of the following processes:

U t =
∑

q≥1

c2
Tq

(
∂2

22G(ΔXTq , cTq , cTq )Ψ
2
q− + 2∂2

23G(ΔXTq , cTq , cTq )Ψq−Ψq+

+ ∂2
33G(ΔXTq , cTq , cTq )Ψ

2
q+
)

1{Tq≤t}

U ′t =
1

m2

∑

q≥1

c2
Tq

(
∂2

22G(ΔXTq , cTq , cTq )(Ψq− +
√
m− 1Ψ ′q−)2

+ 2∂2
23G(ΔXTq , cTq , cTq )

(
Ψq− +

√
m− 1Ψ ′q−

)(
Ψq+ +

√
m− 1Ψ ′q+

)

+ ∂2
33G(ΔXTq , cTq , cTq )

(
Ψq+ +

√
m− 1Ψ ′q+

)2)
1{Tq≤t}.

(13.4.10)

These are again well defined, by Proposition 4.1.3 this time. Moreover, although
no longer F -conditional martingale, they have F -conditionally independent incre-
ments, with finite variation, and their (conditional) means are

Ẽ(U t |F)= Bt , Ẽ(U ′t |F)= 1
m
Bt , where

Bt =∑s≤t c2
s

(
∂2

22G(ΔXs, cs, cs)+ ∂2
33(ΔXs, cs, cs)

)
.

(13.4.11)

Theorem 13.4.3 Assume (K-r) for some r ∈ [0,2), and let G satisfy (13.4.4) and
(13.4.9) for some ε ≥ 0. We take vn 
 Δ�n for some � ∈ (0, 1

2 ) and kn such that
knΔ

τ
n→ β ′ for some β ′ ∈ (0,∞) and some τ ∈ (0, 1

2 ). We also assume the following
condition on X, with A as in (13.4.4):

∀t > 0, ΔXt ∈A\{0} ⇒ Δct = 0, (13.4.12)
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and also one of the following two conditions:

(a) either G(x,y, y′)= 0 when |x| ≤ η, for some η > 0,
(c) or (in addition to �,τ ∈ (0, 1

2 ))

r <
4

3
,

1

4− r ≤� <
1

2r
, τ <

(
2�(2− r))∧ ((3− r)� ). (13.4.13)

Then, for any t and any integer m≥ 2 we have the following stable convergence in
law of 2-dimensional variables:

(
knV

n(G; kn, vn,X)t , knV n(G;mkn, vn,X)t
) L-s−→ (U t ,U ′t

)
. (13.4.14)

For the sake of comparison with the previous theorem, it is worth mentioning that
under (13.4.12) we have V (G,X)= 0 identically, so (13.4.14) does not contradicts
(13.4.8).

13.4.2 Proofs

The proofs of both theorems are conducted together and necessitate quite a few
steps.

Step 1. This step is devoted to some preliminaries. First, by localization, we can and
will assume the strengthened assumptions according to which X satisfies (SH-r),
and σ satisfies (SH).

Next, we use the notation (4.3.1): the function Γ is as in (SH-r), and Al = {z :
Γ (z) > 1/l}, and (S(l, q) : q ≥ 1) is the sequence of successive jump times of the
process 1Al\Al−1 ∗ p, and (Sq)q≥1 is a reordering of the double sequence (S(l, j) :
l, j ≥ 1), and i(n, q) is the (random) integer such that Sq ∈ I (n, i(n, q)). We let Pl
be the set of all q such that Sq = S(l′, j) for some j ≥ 1 and some l′ ≤ l.

Similar with (5.1.10), we also write

b(l)t = bt −
∫

Al∩{z:‖δ(t,z)‖≤1}
δ(t, z)λ(dz)

X(l)t = X0 +
∫ t

0
b(l)s ds +

∫ t

0
σs dWs + (δ 1Acl ) � (p− q)t

X′(l) = X−X(l) = (δ 1Al ) � p

X(l)t = X0 +
∫ t

0
b(l)s ds +

∫ t

0
σs dWs.

Ωn(t, l)= the set on which each interval [0, t] ∩ I (n, i)
contains at most one jump of X′(l), and that
|X(l)t+s −X(l)t | ≤ 2/l for all t ∈ [0, t], s ∈ [0,Δn]
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and we complement this by setting (the fixed integer m is as in our theorems):

Ω ′n(t, l)=Ωn(t, l)∩
(∩q∈Pl {Sq < t −mknΔn or Sq > t}

)
. (13.4.15)

We also denote by (G(l)t ) the smallest filtration containing (Ft ) and such that the
restriction of p to Al × R+ is G(l)0 -measurable. We recall that, by our standard es-

timates, E(|Δni X(l)|2 | G(l)(i−1)Δn
)≤KlΔn for any i, including random indices, pro-

vided they are G(l)0 -measurable. In particular, this yields

q ∈Pl ⇒ Δni(n,q)X(l) = OP(
√
Δn ). (13.4.16)

We can apply Theorem 13.3.8 with the sequence of stopping times Tq = T ′q = Sq .

Since τ < 1
2 we are in the case β = 0, and d = d ′ = 1 yields that the process At of

(13.3.9) is At = ct . We then obtain the following stable convergence in law (in
principle for any finite sub-family, but since this convergence is for the product
topology it also holds for the whole sequence):

√
kn
(
ĉ n
i(n,q)−kn(kn, vn)− cSq−, ĉ ni(n,q)+1(kn, vn)− cSq ,
ĉ ni(n,q)−mkn(mkn, vn)− cSq−, ĉ ni(n,q)+1(mkn, vn)− cSq

)
q≥1

L-s−→√
2
(
cTp−Ψp−, cTpΨp+, 1

m
cTp−
(
Ψp− +

√
m− 1Ψ ′q−

)
,

1
m
cTp(Ψp+ +

√
m− 1Ψ ′q+)

)
q≥1

(13.4.17)

Step 2. This step is devoted to proving an auxiliary result which is somehow similar
to Lemma 13.3.10, with a precise estimate.

Lemma 13.4.4 Under (SH-r) for X and (SH) for σ , and as soon as

� ≥ 1

4− r , τ ≤ 2(2− r)�, (13.4.18)

we have for j = 1, . . . , kn + 1:

E
(∣∣̂c ni (kn, vn)− c(i−j)Δn

∣∣2 |F(i−1)Δn

)≤ K
kn
. (13.4.19)

Proof We will write below ĉ ni (kn, vn;X) to emphasize the dependency on the
process X, and recall that ĉ ni (kn;X)) is the estimator with no truncation (or,
vn = ∞). We use the decomposition (13.2.17) for X, and we recall the follow-
ing estimates, following from Corollary 2.1.9 (as (13.2.23)), and for q ≥ 2 and any
j = 1, . . . , kn + 1 and v ∈ (0, 1

2 ):

E
(∣∣Δni X

∣∣q |F(i−1)Δn

)≤KqΔn, E
(∣∣Δni X

′∣∣q |F(i−1)Δn

)≤KqΔq/2n

E
(∣∣Δni X

′ − σ(i−jΔni W
∣∣q |F(i−1)Δn

)≤KqΔq/2+1
n kn (13.4.20)
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E

(∣∣∣∣
Δni X

′′

Δvn

∧
1

∣∣∣∣
q

|F(i−1)Δn

)
≤KqΔ(1−rv)n .

First, ĉ ni (kn;W)= 1
knΔn

∑kn−1
i=0 (Δ

n
i W)

2, so a simple calculation shows E((̂c ni (kn;
W) − 1)2 | F(i−1)Δn) = 2/kn. Next, the second part of (13.4.20) and Hólder’s in-
equality yield, for any θ > 0:

E
((
ĉ ni
(
kn;X′

)− c(i−j)Δn ĉ ni (kn;W)
)2 |F(i−1)Δn

)≤KθΔ1−θ
n .

Third, for all x, y ∈R, v > 0, q,w > 0 we have

∣∣|x + y|21{|x+y|≤v} − x2
∣∣q ≤ K

((|y| ∧ v)2q + |x|q(|y| ∧ v)q + |x|
q(2+w)

vqw

)
.

We apply this with x = Δni X′ and y = Δni X′′ and v = vn and w such that w(1−
2�)≥ 2: using Hölder’s inequality and (13.4.20) again, we deduce

E
(∣∣(Δni X

)2
1{|Δni X|≤un} −

(
Δni X

′)2∣∣q |F(i−1)Δn

)≤KqΔ1+(2q−r)�
n ,

if q = 1,2. By successive conditioning, we deduce

E
((
ĉ ni (kn, vn;X)− ĉ ni

(
kn;X′

))2 |F(i−1)Δn

)≤K
(
Δ2(2−r)�
n + Δ

(4−r)�−1
n

kn

)
.

Putting all these estimates together, and taking advantage of (13.4.18) for the choice
of θ and of the boundedness of c, we obtain (13.4.19). �

Step 3. In this step we fix l. We prove the result for the process X′(l), whereas we
still keep the spot volatility estimators to be those constructed on the basis of X.
That is, in this step V n(G; kn, vn,X′(l)) denotes the process defined by (13.4.1)
with ĉ ni (kn, vn) as above, but with Δni X substituted with Δni X

′(l). The limiting

processes, when associated with X′(l), are denoted as U(l), U ′(l), U(l) and U ′(l):
they are given by (13.4.5) and (13.4.10), except that the sum on q is taken for q ∈Pl
instead of q ≥ 1.

Observing that Δni X
′(l) �= 0 only when i = i(n, q) for some q ∈ Pl , we see that

on the set Ω ′n(t, l), and for w = 1 or w =m, we have

V n
(
G;wkn, vn,X′(l)

)
t
− V (G,X′(l))

t
=
∑

q∈Pl
ζ (l,w)nq 1{Sq≤t},

ζ(l,w)nq =
(
G
(
ΔXSq , ĉ

n
i(n,q)−kn(wkn, vn), ĉ

n
i(n,q)+1(wkn, vn)

)

−G(ΔXSq , cSq−, cSq )
)
1{|ΔXSq |>vn} −G(ΔXSq , cSq−, cSq )1{|ΔXSq |≤vn}.

(13.4.21)
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With the same notation as in (13.4.5) or (13.4.10), we also write

ζq =
√

2
(
∂2G(ΔXSq , cSq−, cSq )cSq−Ψq− + ∂3G(ΔXTq , cSq−, cSq )cSqΨq−

)

ζ ′q =
√

2
(
∂2G(ΔXSq , cSq−, cSq )cSq−Ψ ′q− + ∂3G(ΔXSq , cSq−, cSq )cSqΨq−

)

ζ q = c2
Sq

(
∂2

22G(ΔXSq , cSq , cSq )Ψ
2
q− + 2∂2

23G(ΔXSq , cSq , cSq )Ψq−Ψq+
)

+ ∂2
33G(ΔXSq , cSq , cSq )Ψ

2
q+

ζ
′
q =

1

m2

(
∂2

22G(ΔXSq , cSq , cSq )
(
Ψq− +

√
m− 1Ψ ′q−

)2

+ 2∂2
23G(ΔXSq , cSq , cSq )

(
Ψq− +

√
m− 1Ψ ′q−

)(
Ψq+ +

√
m− 1Ψ ′q+

)

+ ∂2
33G(ΔXSq , cSq , cSq )

(
Ψq+ +

√
m− 1Ψ ′q+

)2)
.

(13.4.22)

We have (13.4.16) and P(Ω ′n(t, l))→ 1 as n→∞, hence for proving Theo-
rem 13.4.1 it is enough to show the following stable convergence

(√
kn ζ(l,1)

n
q,
√
kn ζ(l,m)

n
q

)
q∈Pl

L-s−→
(
ζq,

1

m

(
ζq +

√
m− 1 ζ ′q

))

q∈Pl
, (13.4.23)

whereas for Theorem 13.4.3 it is enough to show

(
knζ(l,1)

n
q, knζ(l,m)

n
q

)
q∈Pl

L-s−→ ( ζ q, ζ ′q
)
q∈Pl , (13.4.24)

For the first of these two claims, recalling (13.4.3) and (13.4.4) and using a Taylor
expansion for the function G, we obtain for any q , and as n→∞:

ζ(l,w)ni = O
(
v2
n

)+ (∂2G(ΔXSq , cSq−, cSq )
(
ĉ ni(n,q)−kn(wkn, vn)− cSq−

)

+ ∂3G(ΔXSq , cSq , cSq )
(
ĉ ni(n,q)+1(wkn, vn)− cSq

))
1{|ΔXSp |>vn}

+ o
(∣∣̂c ni(n,q)(wkn,vn)−kn − cSq−

∣∣+ ∣∣̂c ni(n,q)+1(wkn, vn)− cSq
∣∣).

Since τ < 4� , with the help of (13.4.16) and (13.4.17) one deduces (13.4.23).
For the second claim, by (13.4.9) and (13.4.12), we have V (G,X) ≡ 0 and

cTq− = cTq , hence ∂iG(ΔXTq , cSq−, cSq ) = 0 for i = 2,3 and all q . Then we have
to resort upon a second order Taylor’s expansion, which gives

ζ(w)ni = O
(
v2
n

)+ 1

2

(
∂2

22G(ΔXSq , cSq−, cSq )
(
ĉ ni(n,q)−kn(wkn, vn)− cSq−

)2

+ 2∂2
23G(ΔXSq , cSq−, cSq )

(
ĉ ni(n,q)−kn(wkn, vn)− cSq−

)

× (ĉ ni(n,q)+1(wkn, vn)− cSq
)
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+ ∂2
33G(ΔXSq , cSq , cSq )

(
ĉ ni(n,q)+1(wkn, vn)− cSq

)2)1{|ΔXSp |>vn}

+ o
(|̂c ni(n,q)(wkn,vn)−kn − cSq−|2 + |̂c ni(n,q)+1(wkn, vn)− cSq |2

)

By τ < 2� and (13.4.16) and (13.4.17) we now deduce (13.4.24). This completes
the proof of both theorems, for the process X′(l).

Step 4. The previous step yields the convergences (13.4.8) or (13.4.14) when we
substitute X with X′(l), without modifying ĉ ni (kn, vn). Moreover, by the assump-

tions (13.4.4) or (13.4.9) on G it is straightforward to check that U(l) u.c.p.=⇒ U
and U ′(l) u.c.p.=⇒ U ′ in case of Theorem 13.4.1 and U(l) u.c.p.=⇒ U and U ′(l) u.c.p.=⇒ U ′

in case of Theorem 13.4.3, on the extended space, and as l → ∞. Thus, ob-
serving that V (G,X) − V (G,X′(l)) = V (G,X(l)) (which is identically 0 in
case of Theorem 13.4.3), and with the notation V n(w, l) = V (G;wkn, vn,X) −
V (G;wkn, vn,X′(l))−V (G,X(l)) and κ = 1

2 in case of Theorem 13.4.1 and κ = 1
in case of Theorem 13.4.3, by Proposition 2.2.2 it remains to show the following
property

lim
l→∞ lim sup

n→∞
P
(
kκn

∣∣V n(w, l)t
∣∣> ρ
)= 0

for all t, ρ > 0 and for w = 1 and w = m. The proof is of course the same when
w = 1 and when w =m, so we will prove this for w = 1 only.

Below we fix t . We will specify, in restriction to the setΩ ′n(t, l), a decomposition
of V n(1, l)t as a sum

∑6
j=1A(j, l)n for suitable variables A(j, l)n. Then, since

P(Ω ′n(t, l))→ 1 as n→∞, it will be enough to prove that, for all ρ > 0 and j =
1,2,3,4,5,6,

lim
l→∞ lim sup

n→∞
P
(
kκn

∣∣A(j, l)n
∣∣> ρ
)= 0. (13.4.25)

Step 5. For simplicity, we write ĉ ni instead of ĉ ni (kn, vn). A simple calculation shows

that indeed we have V n(1, l)t =∑6
j=1A(j, l)n on Ω ′n(t, l), provided we define

A(j, l)n as follows: First, for j = 1,2 we set

An(1, l)=−
∑

s∈J (n,t)
G
(
ΔX(l)s, cs−, cs

)
, where

J (n, y)= (0, knΔn] ∪
(([t/Δn] − kn

)
Δn, t
]

An(2, l)=
∑

q∈Pl :Sq≤t
η(l)nq, where

η(l)nq =G
(
ΔXSq +Δni(n,q)X(l), ĉ ni(n,q)−kn , ĉ ni(n,q)+1

)
1{|ΔXSq+Δni(n,q)X(l)|>vn}

−G(Δni(n,q)X(l), ĉ ni(n,q)−kn , ĉ ni(n,q)+1

)
1{|Δn

i(n,q)
X(l)|>vn}

−G(ΔXSq , ĉ ni(n,q)−kn , ĉ ni(n,q)+1

)
1{|ΔXSq |>vn}.
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Secondly, for j = 3,4,5,6,7 we set An(j, l)=∑[t/Δn]−kni=kn+1 ζ(j, l)ni , where

ζ(3, l)ni = −
∑

s∈I (n,i)
G
(
ΔX(l)s, c(i−1)Δn, ciΔn

)
1{ΔX(l)s |≤vn}

ζ(4, l)ni =
∑

s∈I (n,i)

(
G
(
ΔX(l)s, c(i−1)Δn, ciΔn

)−G(ΔX(l)s, cs−, cs
))

ζ(5, l)ni =G
(
Δni X(l), c(i−1)Δn, ciΔn

)
1{|Δn

i(n,q)
X(l)|>vn}

−
∑

s∈I (n,i)
G
(
ΔX(l)s, c(i−1)Δn, ciΔn

)
1{ΔX(l)s |>vn})

ζ(6, l)ni =
(
G
(
Δni X(l), ĉ

n
i−kn, ĉ

n
i+1

)−G(Δni X(l), c(i−1)Δn, ciΔn
))

× 1{vn<|Δni(n,q)X(l)|≤2/l}.

Step 6. In this step we treat the easy cases j = 1,2,3. Since eventually l goes to
∞ in (13.4.25), it is no restriction below to assume that 2

l
< ε, where ε > 0 is the

number occurring in (13.4.4).
We have |G(x,y, y′)| ≤ KA|x|3 when |y|, |y′| ≤ A, whereas (SH) for X

yields E(|Δni X(l)|q) ≤ Kl,qΔn for all q ≥ 2, thus E(|A(1, l)t |) ≤ KknΔn. Since

kn
√
Δn → 0 (because τ < 1

2 ), we deduce knA(1, l)n
P−→ 0 as n→∞, for any

fixed l: hence (13.4.25) holds for j = 1 and κ = 1.
(13.4.4) and the boundedness in probability of both sequences ĉ ni(n,q)−kn and

ĉ n
i(n,q)+1 and Δn

i(n,q)
X(l)

P−→ 0 yield that, for each q , we have η(l, q)n =
OP(|Δni(n,q)X(l)|) (argue separately in the two cases ΔXSq = 0 and ΔXSq �= 0)

Hence (13.4.16) gives us knA(2, l)n
P−→ 0 as n→ ∞, for any fixed l: hence

(13.4.25) holds for j = 2 and κ = 1.
Finally, using again |G(x,y, y′)| ≤KA|x|3 when |y|, |y′| ≤A, we can write

E
(∣∣A(3, l)n

∣∣)≤Kv3−r
n E

(
∑

s≤t
|ΔXs |r

)
≤Ktv3−r

n .

Hence (13.4.25) for j = 3 holds when κ = 1
2 as soon as τ < 2(3−r)� (hence under

(13.4.7)), and when κ = 1 as soon as τ < (3− r)� (hence under (13.4.13)).

Step 7. This step is devoted to proving (13.4.25) for j = 4 and κ = 1. We have
|ζ(4, l)ni | ≤K(ζ(−, l)ni + ζ(+, l)ni , where

ζ(−, l)ni =
∑

s∈I (n,i)

∣∣ΔX(l)s
∣∣2 |cs− − c(i−1)Δn |

ζ(+, l)ni =
∑

s∈I (n,i)

∣∣ΔX(l)s
∣∣2|ciΔn − cc|.
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Recall that E(|cT+u − cT | | FT )≤K√u for all u > 0 and all finite stopping times
T . On the one hand, we may write

E
(∣∣ζ(−, l)ni

∣∣) = E

(∫

I (n,i)

∫

Acl

δ(s, z)2|cs− − c(i−1)Δn | p(ds, dz)

≤ E

(∫

I (n,i)

|cs− − c(i−1)Δn |ds
∫

Acl

Γ (z)2 λ(dz) ≤ KΔ
3/2
n .

On the other hand, by successive conditioning we obtain

E
(∣∣ζ(+, l)ni

∣∣) = E

(
∑

q≥1

|ΔXSq |2 (ciΔn − cSq |1{Sq∈I (n,i)}
)

≤ K√ΔnE
(
∑

s∈I (n,i)
|ΔXs |2

)
≤ KΔ

3/2
n .

Putting these two estimates together, we get E(|A(4, l)n|) ≤ Kt√Δn and, since
kn
√
Δn→ 0, we conclude (13.4.25) when j = 4 and κ = 1.

Step 8. Here we consider the case j = 5. We choose a number u ∈ (1, 1
2r� ∧ 1

2� ),
which is possible because� < 1/2r . We write ln = [1/vun] (the integer part), so for
all n large enough we have 1/ln < vn < 1/l. We then set

A′n =Aln ∩ (Al)c, Y n = (δ(s, z)1A′n
) ∗ p

b(l, n)t = b(l)t −
∫

A′n
δ(t, z)λ(dz)

Y
n

t =X(l)t − Ynt =X0 +
∫ t

0
b(l, n)s ds +

∫ t

0
σs dWs + (δ1(A′n)c ) ∗ (p− q)t

Nnt = p
([0, t] ×A′n

)
, H(n, i)=

{∣∣Δni Y
n∣∣≤ un

2

}
∩ {Δni Nn ≤ 1

}
.

First, Nn is a Poisson process with parameter λ(A′n)≤Klrn. Hence

P
(
Δni N

n ≥ 2
) ≤ KΔ2−2ru�

n ≤ KΔn ρn, where ρn→ 0. (13.4.26)

Second, Δnlrn ≤K and |b(l, n)t | ≤Kl(r−1)+
n and Lemma 2.1.5 and 2.1.7 yield

w ≥ r ⇒ E
(∣∣Δni Y

n∣∣w | G(ln)(i−1)Δn

)≤Kw
(
Δ
w/2
n +Δ1+u�(w−r)

n

)
. (13.4.27)

We apply this with w large enough and use Markov’s inequality to get P(|Δni Y
n|>

vn/2)≤KΔ2
n. Therefore ifΩ ′′n (t)=∩1≤i≤[t/Δn]H(n, i), this property and (13.4.27)

imply P(Ω ′′n (t))→ 1.
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Next, on the set H(n, i), we have |Δni Y
n| ≤ vn/2 and |Δni Y n| ≤ 1/l, and also

|ΔX(l)s | ≤ vn for all s ∈ I (n, i) except, whenΔni N
n = 1, for a single value of s for

which ΔX(l)s =Δni Y n (whose absolute value may be smaller or greater than vn).
In other words, on H(n, i) we have

ζ(5, l)ni =
(
G
(
Δni Y

n +Δni Y n, c(i−1)Δn, ciΔn
)

1{|Δni Y n+Δni Y
n|>vn}

−G(Δni Y n, c(i−1)Δn, ciΔn
)

1{|Δni Y n|>vn}
)

1{|Δni Y n|≤1/m, |Δni Y
n|≤vn/2}.

The following estimate, for v ∈ (0,1) and y, z ∈ (0,A] for some A, and also |x| ≤ 1
and |x′| ≤ v/2, follows from (13.4.4):

∣∣G
(
x + x′, y, z)1{|x+x′|>v} −G(x,y, z)1{|x|>v}

∣∣≤K(x2|x′| + (|x| ∧ v)3).
Therefore, on the set H(n, i) again, we have

|ζ(5, l)ni | ≤K
(∣∣Δni Y

n
∣∣2∣∣Δni Y

n∣∣+ (∣∣Δni Y n
∣∣∧ vn
)3)

and by (2.1.42) applied to δ 1A′n and r = 0 we get E((|Δni Y n|∧un)3)≤KΔ1+(3−r)�
n .

Applying (13.4.27) with w = 2 and the Cauchy-Schwarz inequality to obtain
E(|Δni Y

n| | G(ln)(i−1)Δn
) ≤ K√Δn. We also have |Δni Y n| ≤ Δni ((Γ 1A′n) ∗ p), which

is G(ln)0 -measurable. Then by successive conditioning and (2.1.41), we obtain

E
(∣∣Δni Y

n|2Δni Y n
∣∣)≤K√ΔnE

(∣∣((Γ 1A′n) ∗ p
)∣∣2)≤KΔn

(√
Δn +Δ1−2u�

n

)
.

We then deduce from the previous estimates that

E
(∣∣A(5, l)n

∣∣1Ω ′′n (t)
) ≤ Kt

(√
Δn +Δ1−2u�

n +Δ(3−r)�n

)
.

Since P(Ω ′′n (t))→ 1, we deduce that (13.4.25) holds for j = 6 and κ = 1.

Step 9. In this step we consider j = 6. For q = 1,2 we introduce the notation

η(l, q)ni =
∣∣Δni X(l)

∣∣2 1{|Δni X(l)|>vn}
(∣∣̂c ni+1 − ciΔn

∣∣q + ∣∣̂c ni−kn − c(i−1)Δn

∣∣q).

(SH) and the inequality |x + y|2 1{|x+y|>vn} ≤ K(x2 + |y|2+w/vwn ) for all w > 0
imply, by our usual estimates, that

E
(
Δni X(l)

2 1{|Δni X(l)|>vn} |F(i−1)Δn

)≤Δn(KlΔn +Kφl),

where φl =
∫
Acl
Γ (z)2 λ(dz) → 0 as l → ∞. Then, since Δni X(l) is FiΔn -

measurable and ĉ ni−kn − c(i−1)Δn is F(i−1)Δn -measurable, by successive condition-
ing and Lemma 13.4.4 and summing up on i, we obtain

E
(
η(l, q)ni

)≤ Δn

k
q/2
n

(KlΔn +Kφl). (13.4.28)
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We now single out the two situations of Theorems 13.4.1 and 13.4.3. For the first
theorem, and since 2/l < ε, we have |ζ(6, l)ni | ≤Kη(l,1)ni . Hence (13.4.28) yields

E
(|A(6, l)n|

)≤ t√
kn
(KlΔn +Kφl),

which gives (13.4.25) for j = 6 and κ = 1/2.
In the situation of Theorem 13.4.3 this estimate is not sufficient. However, we

can now use (13.4.9) and (13.4.9) and do a Taylor expansion for G around the point
(Δni X(l), ciΔn, ciΔn), to get

∣∣ζ(6, l)ni
∣∣≤K(η(l,2)ni + η(l)ni

)
, with η(l)ni =

∣∣Δni X(l)
∣∣2 |ciΔn − c(i−1)Δn |2.

In order to evaluate the expectation of η(l)ni we prove an elementary auxiliary result.
Let U and V be two Itô semimartingales satisfying (SH), and with no common
jumps and U0 = V0 = 0. Then Itô’s formula yields

U2
t V

2
t =Mt +

∫ t

0

(
asU

2
s + a′sUsVs + a′′s V 2

s

)
ds,

where M is a martingale and a, a′, a′′ are suitable processes, and also E(U2
t ) +

E(V 2
t ) ≤ α t , where the number α and the processes a, a′, a′′ are bounded by a

constant depending only on the bounds on the characteristics of U and V . Taking
the expectation above, we get E(U2

t V
2
t )≤ α′t2, where again α′ only depends on the

bounds on the characteristics ofU and V . Applying this toUt =X(l)t−X(l)(i−1)Δn
and V = ct −c(i−1)Δn for t ≥ (i−1)Δn, we deduce that E(η(l)ni )≤KlΔ2

n. This and
(13.4.28) with q = 2 yield

E
(∣∣A(6, l)n

∣∣)≤ t

kn
(KlΔn +KlΔnkn +Kφl),

which gives (13.4.25) for j = 6 and κ = 1.

Step 10. So far, we have proved Theorems 13.4.1 and 13.4.3 in case (b). If we
consider case (a) of these theorems, as soon as l is large enough for having
G(x,y, y′) = 0 whenever |x| ≤ 2/l, we see that A(j, l)n = 0 for j = 1,3,4,5,6
on the set Ω ′n(t, l), so we only need to show (13.4.25) when j = 2, and this was
done in Step 6, without requiring (13.4.7) or (13.4.13). So the proof of both theo-
rems is complete.

13.5 Application to Volatility

1) First, we come back to the problem of estimating, in the d = 1 dimensional case,
the quantity

A(p)t =
∫ t

0
|σs |p ds.
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In Chap. 11 we used the multipower variations given by (11.4.3), but instead we can
use the truncated multipower variations, with vn is as in (13.0.2):

D(X;p,k;vn−,Δn)t =
[t/Δn]−k+1∑

i=1

k∏

j=1

∣∣Δni+j−1X
∣∣p/k 1{|Δni+j−1X|≤vn},

which of course includes the truncated power variation

D(X;p;vn−,Δn)t :=D(X;p,1;vn−,Δn)t =
[t/Δn]∑

i=1

∣∣Δni X
∣∣p 1{|Δni X|≤vn}.

(13.5.1)
Then, referring to Example 13.2.2, we obtain exactly the same result as in Theo-
rem 11.4.1, with different requirements: in both cases we assume (K-r) for some
r ∈ [0,1), and the CLT holds for the multipower variations if k > p/r , whereas
for the truncated multipower variations the value of k is arbitrary (and in particular
may be k = 1), but we need � ≥ (p − 2)/2(p − r). More precisely, the analogue
of Theorem 11.4.1 becomes (with the same proof, note that in Theorem 11.4.1 the
property (11.4.1), implying ΩWt =Ω a.s., was assumed):

Theorem 13.5.1 Let p ≥ 1 and letX is a (possibly discontinuous) one-dimensional
Itô semimartingale satisfying (K’-p) when p = 1 and (K-r) for some r ∈ [0,1] when
p > 1. Then for each t > 0 the random variables

√
m2p (Δ

1−p/2
n D(X;p;vn−,Δn)t −mp A(p)t )√

(m2p −m2
p)Δ

2−p
n D(X;2p;vn−,Δn)t

(13.5.2)

converge stably in law to a limit which is N (0,1) and independent of F , in restric-
tion to the set ΩWt = {A(p)t > 0} (which is Ω when (K’-1) holds), provided either
X is continuous, or

r = 1 ⇒ p = 1, r < 1 ⇒ p ≥ r

2− r , � ≥ p− 1

2(p− r) .

We state the result only for the truncated uni-power variations, but a result for
the truncated multi-powers is available, and in fact formally takes exactly the same
form as in Theorem 11.4.1, with exactly the same assumptions (with everywhere p
substituted with p/k).

A common feature with (non-truncated) multipower variations is that we need the
jumps of X to be summable, and even a bit more, as expressed by (K-r) for some
r ≤ 1. This seems unavoidable, although quite restrictive, and if this assumption
fails the results are simply not true in general, see the already mentioned papers by
Vetter [93] for multipowers and Mancini [75] for truncated powers.
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So far and, say, for p ≥ 2 (the relevant case in practice), we have a whole family
of estimators for A(p)t enjoying an associated Central Limit Theorem:

Â(p, k)n = 1

(mp/k)k
Δ

1−p/2
n D(X;p,k;vn−,Δn)t , k ≥ 1,

p− 1

2(p− r) ≤� < 1
2

Â′(p, k)n = 1

(mp/k)k
Δ

1−p/2
n D(X;p,k,Δn)t , k >

p

2

(and of course vn = αΔ�n ). Then we can compare these estimators on several
grounds:

From the viewpoint of the assumptions needed for the CLT: When p > 2, all esti-
mators need (K-r) (for Â(p, k)n) or (K’-r) (for Â(p, k)n), for some r < 1. So the
truncated uni-powers is what requires less assumptions, but only marginally.

On the other hand, when p = 2, we still need (K-r) or (K’-r), for Â(2, k)n or
Â′(2, k)n, except for Â(2,1)n; by virtue of Theorem 13.2.4, in this case we only
need (H-r), again for some r < 1. This is of course significantly less demanding.

From the “feasibility” viewpoint: Â(p, k)n needs to specify the truncation level vn,
with � in ( p−k

2(p−kr ,
1
2 ): so a more precise prior knowledge of the value of r is re-

quired. Furthermore, these are asymptotic results, but for finite samples the chosen
value of vn, hence of the constant α in (13.0.2) as well, play a fundamental role.
Therefore in practice the usage of truncated powers needs some preliminary “esti-
mation” of the proper cut-off level vn, in connection with the “average” value of
the volatility σt on the interval of interest. These drawbacks do not exist for non-
truncated multi-powers.

From the viewpoint of the asymptotic variance of the estimator: here the asymptotic
variance is the same for Â(p, k)n and for Â′(p, k)n, for any fixed k ≥ 1. Now, this
asymptotic behavior is hidden in a result like the convergence of (13.5.2). However
we also know that, after normalization by the same factor 1/

√
Δn, the asymptotic

variances of Â(p, k)n and Â′(p, k)n are v(p, k)A(2p)t , where

v(p, k) = M(p,k)

(mp/k)2k
,

where M(p,k) is given by (11.4.5), with of course M(p,1) = m2p − m2
p , hence

v(p,1)= (m2p −m2
p)/m

2
p . So the “best” from this viewpoint consists in taking the

integer k which minimizes v(p, k), with of course p fixed. In this direction, one
may show for example that v(2, k) increases from 2 to π2, as k increases from 1
to ∞. Note that v(2,1)= 2 is the Cramer-Rao bound for the variance of unbiased
estimators of a for an i.i.d. sample of N (0, a)-distributed variables.

A consequence of these facts is that one should choose k as small as possible, and
thus the truncated power (13.5.1) is better (asymptotically) than the multipower.
However the gain is relatively slight: for example when p = 2 we have v(2,1) =
2 and v(2,2) = (π−2)(π+6)

4 , which is approximately 2.61, so the ratio of the two
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asymptotic standard deviations is approximately 1.27, bigger than but close to 1. In
practice, this has to be weighted against the feasibility issues mentioned above.

2) Next, we turn to the multidimensional case d ≥ 2, and suppose that we want to
estimate the following integral

C
jk
t =

∫ t

0
c
jk
s ds.

According to Theorem 13.2.4, we may use the estimator Ĉn(vn−,X)jkt . The asso-
ciated standardized CLT again easily follows, upon taking the following estimator
for the F -conditional variance

H
n,jk
t =

[t/Δn]−1∑

i=1

((
Δni X

j
)2 (
Δni+1X

k
)2 +Δni Xj Δni Xk Δni+1X

j Δni+1X
k
)

1{‖Δni X‖≤vn,‖Δni+1X‖≤vn},

Theorem 13.5.2 If X is a (possibly discontinuous) Itô semimartingale satisfy-
ing (H-r) for some r ∈ [0,1), for each t > 0 the random variables

Ĉn(vn−,X)jkt −Cjkt√
H
n,jk
t

converge stably in law to a limit which is N (0,1) and independent of F , in re-
striction to the set {C11

t > 0,C22
t > 0}, provided either X is continuous or � ∈

[ 1
4−2r ,

1
2 ).

The estimators Ĉn(vn−,X)jkt have to be compared with the two distinct bipower
estimators constructed in (8.5.3) and (8.5.4) (with l = 1), which take the following
forms with the present notation:

4

π

[t/Δn]−1∑

i=1

(∣∣Δni X
j +Δni Xk

∣∣ ∣∣Δni+1X
j +Δni+1X

k
∣∣

− ∣∣Δni Xj
∣∣ ∣∣Δni+1X

j
∣∣− ∣∣Δni Xk

∣∣ ∣∣Δni+1X
k
∣∣)

8

π

[t/Δn]−1∑

i=1

(∣∣Δni X
j +Δni Xk

∣∣ ∣∣Δni+1X
j +Δni+1X

k
∣∣

− ∣∣Δni Xj −Δni Xk
∣∣ ∣∣Δni+1X

j −Δni+1X
k
∣∣).

Here again, one may show that these two estimators satisfy a CLT similar to
the above. Their asymptotic variances are bigger than the asymptotic variance of
Ĉn(vn−,X)jkt , but again they do not suffer the drawback of having to choose the
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truncation level vn. However one needs (K-r) for some r < 1, instead of (H-r), for
a CLT to hold for those bipower estimators.
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Part V
Various Extensions

This last part is concerned with partial answers to some of the problems which have
been omitted so far. First we consider the situation where the discretization scheme
is not regular. Second, and back to regular discretization, we study some degenerate
situations where the rate of convergence is not the standard one of 1/

√
Δn.

Finally we study a case which is clearly motivated by applications, and in par-
ticular financial applications, even more than the previous results: this is when the
process is subject to some kind of measurement error. The error can be “additive”,
which typically occurs in many physical applications, or it can have a more complex
structure, as occurring in finance under the name “microstructure noise”, and it is
more difficult to analyze.



Chapter 14
Irregular Discretization Schemes

In practice, the observation times at stage n are quite often not regularly spaced.
A reason can be that some data are missing. More important, the observations may
be more frequent during some periods of time, or when the observed process is in
some regions of space, or when it is “more active”. Or, the observations may occur
randomly, for example according to the arrival times of a Poisson or Poisson-like
process, with an intensity which in turn may depend on time or on the process itself.

The aim of this chapter is to study what happens to our laws of large numbers
and central limit theorems when we relax the assumption of regularly spaced obser-
vations.

We know by Theorem 3.3.1 that the law of large numbers for non-normalized
functionals holds for completely general discretization schemes. On the other hand,
the associated central limit theorem is so far unproved, except when the discretiza-
tion scheme is irregular but not random, and in addition under very strong assump-
tions on the asymptotic behavior of the sampling times. So we omit this topic here.

Henceforth we consider only the normalized functionals for one or several incre-
ments, truncated or not. Consequently, we suppose in the whole chapter that X is
an Itô semimartingale on the filtered probability space (Ω,F , (Ft )t≥0,P), with the
Grigelionis decomposition

Xt =X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + (δ1{‖δ‖≤1}) � (p− q)t + (δ1{‖δ‖>1}) � pt .

(14.0.1)
The first question which arises is how to normalize the increments in order to ob-

tain some limit theorems. As we will see, in addition to finding the proper normal-
ization, solving this problem requires some structure on the discretization scheme,
and explaining these additional assumptions is the object of the first section below.

An important comment should be made here: the underlying process X can be,
and will be, multidimensional. But, at each stage n all its components are observed
at the same times T (n, i). This is natural in some applications, when for example
one observes the position of a randomly moving object, so all 3 components are
measured simultaneously. For other applications it is an over-simplifying hypothe-
sis: for example if X is the vector of the prices of 3 (or 300) different assets, then
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typically the observation times are not equidistant, but they are also different for dif-
ferent assets. The treatment of a vector-valued semimartingale whose components
are observed at different times is much more difficult than when the observations are
simultaneous, see for example Hayashi and Yoshida [44, 46], and this topic will not
be considered at all in the sequel.

14.1 Restricted Discretization Schemes

Let us recall that a random discretization scheme is a double sequence (T (n, i) : i ≥
0, n≥ 1) of finite stopping times, increasing in i, with T (n,0)= 0 and

∀n≥ 1 : T (n, i) <∞ ⇒ T (n, i) < T (n, i + 1), lim
i→∞T (n, i)=∞

∀t > 0 : πnt := sup
i≥1

(
T (n, i)∧ t − T (n, i − 1)∧ t) P−→ 0.

(14.1.1)

We use the notation (3.1.1), that is

Δ(n, i) = T (n, i)− T (n, i − 1), Nn(t) =
∑

i≥1

1{T (n,i)≤t}

Tn(t) = T
(
n,Nn(t)

)
, I (n, i)= (T (n, i − 1), T (n, i)

]
.

In the regular case we have seen before that V ′n(f,X) converges. The expression
for V ′n(f,X) exhibits two normalizing factors: One inside the test function because
we use f (Δni X/

√
Δn ), and one outside, which is Δn. The inside normalization

is here to ensure that Δni X/
√
Δn is approximately σ(i−1)ΔnU

n
i for some N (0, Id ′)

random variable Uni independent of F(i−1)Δn . In particular a summand is typically
neither vanishing nor exploding, and thus the external normalization is the inverse
of the number of summands, up to the factor t . In the irregular case, neither one of
these two kinds of normalization stays valid, and here we discuss the first—inside—
one.

A natural substitute of f (Δni /
√
Δn ) is f (Δni X/

√
Δ(n, i) ). However, the vari-

ableΔni X/
√
Δ(n, i) is close to Uni as before only ifΔ(n, i), or equivalently T (n, i),

is FT (n,i−1) measurable. This property is called the strong predictability condition
of the sampling scheme.

The strong predictability condition accommodates all deterministic schemes, of
course, but otherwise is very restrictive. In particular it rules out two interesting
situations:

(i) When T (n, i)= inf(t > T (n, i − 1) :Xt −XT (n,i−1) ∈ An) for some Borel set
An: for example when d = 1 with An = {−1/n,1/n}.

(ii) When for each n the T (n, i)’s are random and independent of X; for example
they form a Poisson process with parameter n, or a renewal process.
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Although case (i) describes what happens in some specific applied situations, we
will not treat it at all: An interested reader can consult the papers [33] or [34] of
Fukasawa for example. Rather, we will consider an extension of case (ii), in which
the observation time T (n, i) may depend on FT (n,i−1) and also on some extraneous
random input.

The setting is as follows: we have the space (Ω,F , (Ft )t≥0,P) on which the pro-
cess X is defined and satisfies (14.0.1), and to accommodate the extra randomness
without changing too much the notation we suppose that P is defined on a σ -field G
which is bigger than F .

Definition 14.1.1 a) A restricted pre-discretization scheme is a double sequence
(T (n, i) : i ≥ 0, n≥ 1) with T (n,0)= 0 and

T (n, i) = T (n, i − 1)+ θnT (n,i−1) ε(n, i) (14.1.2)

where
1) The variables ε(n, i) are (0,∞)-valued, and they generate a σ -field H which

is contained in G and independent of F .
2) For each n≥ 1 the sequence (ε(n, i) : i ≥ 1) is i.i.d. with

q > 0 ⇒ m′q(n) = E
(
ε(n, i)q

)
< ∞, m′1(n) = 1, (14.1.3)

3) Each θn = (θnt )t≥0 is an (Fnt )-adapted càdlàg process, where (Fnt ) is the
smallest filtration containing (Ft ) and for which all T (n, i) for i ≥ 1 are stopping
times, and further neither θnt nor θnt− vanish.

b) A restricted (random) discretization scheme is a restricted pre-discretization
scheme which satisfies (14.1.1).

The last condition in (14.1.3) is innocuous: if it were not satisfied we could re-
place θn by θn/m′1(n). The condition that all moments of ε(n, i) are finite is here
for convenience and could be relaxed, but it seems a mild condition from a practical
viewpoint. Likewise, the càdlàg property of θn could be replaced by progressive
measurability, although the assumption infs≤t θns > 0 for all t and n (which is im-
plied by (2) above) is important, as we shall see.

Note that no assumption is made as to relations between the sequences (ε(n, i) :
i ≥ 1) for different values of n: this is irrelevant to our analysis.

Every deterministic scheme is a restricted scheme: take ε(n, i) ≡ 1 and θnt =
Δ(n, i) for T (n, i − 1) ≤ t < T (n, i) for example. Any scheme such that each se-
quence (T (n, i))i≥1 forms a renewal process independent of (X,W, p) and with
inter-arrival times having all moments, is also a restricted scheme. But restricted
schemes are indeed much more general than that, since by (14.1.3) Δ(n, i) may
depend on the whole past FnT (n,i−1) before time T (n, i − 1). Moreover the strong
predictability condition, as stated before Definition 14.1.1, is not necessarily satis-
fied by a restricted scheme. However the general schemes described in (i) above are
still not restricted schemes in general.
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Remark 14.1.2 We have seen in the previous chapters that, for some applications, it
is useful to consider several time steps at once: for example, in the regular setting,
one compares variables like V n(f,X)t computed for the time step Δn, with the
same computed with the time step 2Δn.

Here we have to be careful: doing this in an irregular scheme setting amounts to
comparing the scheme (T (n, i) : i ≥ 0)with the scheme (T (n,2i) : i ≥ 1). However,
if (T (n, i)) is a restricted scheme, the new scheme (T (n,2i)) is usually no longer a
restricted scheme in the mathematical sense stated above. That is, the notion defined
above is not preserved by a thinning of data.

Restricted pre-discretization schemes are easy to construct, via (14.1.2), and
starting with the processes θn and the variables ε(n, i). The first part of (14.1.1)
is automatically satisfied because T (n, k)≥ (infs≤t θns ) Snk on the set {T (n, k)≤ t},
where Snk =

∑k
i=1 ε(n, i), and because Snk →∞ as k→∞ for any fixed n. In con-

trast, the property πnt
P−→ 0 is not a completely trivial matter, and no necessary and

sufficient condition for this is known.
In the sequel, we need to assume πnt

P−→ 0, of course, and also to prescribe a
rate of convergence to 0 for the mesh πnt : for this, we suppose that this rate is deter-
ministic, and the same for all times t . This is of course a further serious restriction,
which is mathematically expressed in the following assumption:

Assumption 14.1.3 (or (D)) There is a sequence of positive numbers rn→∞ and
a càdlàg (Ft )-adapted process θ such that neither θt nor θt− vanish and

rn θ
n u.c.p.=⇒ θ . (14.1.4)

Moreover for all p > 0 we have m′p(n)→ m′p <∞ as n→∞ (this is of course
always true for p = 1 with m′1 = 1, and also for p = 0 with m′0 = 1).

A regular discretization scheme obviously satisfies (D) with rn = 1/Δn and
θt = 1 (take ε(n, i)= 1).

Remark 14.1.4 The fact that all moments of ε(n, i) converge as n→∞ could be
weakened: for each result below the convergence of moments of suitable orders
would be enough. Assuming the convergence for all moments seems, however, in-
nocuous for applications.

A key property of restricted schemes satisfying (D) concerns the following in-
creasing processes, where p ≥ 0:

H(p)nt =
Nn(t)∑

i=1

Δ(n, i)p. (14.1.5)

These are, as are many other processes to be seen later, partial sums of a triangular
array for the stopping rules (Nn(t) : t ≥ 0), exactly as in (2.2.28), and with ζ ni =
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Δ(n, i)p in the present case. Of course, we have the basic relation (2.2.30), that
is T (n, i) = inf(t : Nn(t) ≥ i). However in order to obtain limit theorems for such
triangular arrays, quite often we also need the property (2.2.29): namely there is a
discrete-time filtration (Gni )i≥0, such that ζ ni is Gni measurable and

n≥ 1, t ≥ 0 ⇒ Nn(t) is a
(
Gni
)
-stopping time. (14.1.6)

If this holds, we also recall that each T (n, i) is a predictable stopping time with
respect to the continuous-time filtration (Fnt )t≥0 defined by Fnt = GnNn(t), and that

FnT (n,i) = Gni and FnT (n,i)− = Gni−1 when i ≥ 1. As we see just below, (14.1.6) holds
if we take

Gni = FnT (n,i)
∨
σ
(
ε(n, i + 1)

) (
hence FnT (n,i) ⊂ Gni ⊂FnT (n,i+1)

)
. (14.1.7)

The next lemma provides some insight about the “average” behavior of restricted
discretization schemes, as defined above, over any time interval [0, t]. It turns out
also to be a key technical result for the proofs of the LLN and CLT given later.

Lemma 14.1.5 a) For any restricted pre-discretization scheme the choice (14.1.7)
for Gni yields (14.1.6), and in this case we have Fnt ⊂Fnt , and for each n the space

(Ω,G, (Fnt )t≥0,P) is a very good filtered extension of (Ω,F , (Ft )t≥0,P).
b) Any restricted pre-discretization scheme satisfying (D) is a discretization

scheme, that is, it satisfies (14.1.1). Moreover for all t ≥ 0 and p ≥ 0 we have

r
p−1
n H(p)nt

P−→ m′p
∫ t

0
(θs)

p−1 ds (14.1.8)

and also

η > 0 ⇒ r1−η
n πnt

P−→ 0, (14.1.9)

1

rn
Nn(t)

P−→
∫ t

0

1

θs
ds. (14.1.10)

Remark 14.1.6 Although (14.1.10) is simply (14.1.8) for p = 0, we state it sepa-
rately because it gives some insight to the meaning of the “rate” rn: this is approxi-
mately the number of observations up to time t , divided by a positive (random) quan-
tity (increasing with t , of course), namely

∫ t
0

1
θs
ds. According to (14.1.10), 1/rn is

also “almost” the rate at which πnt goes to 0. The property of (Ω,G, (Fnt )t≥0,P)

being a very good filtered extension of (Ω,F , (Ft )t≥0,P) is not used for the LLN,
but is a crucial property for the CLT.

Proof 1) We begin with (a). Since θn is adapted to the filtration (Fnt ), it follows
from (14.1.2) that T (n, i + 1) is Gni measurable, as well as T (n, i). Since {Nn(t)=
i} = {T (n, i) ≤ t < T (n, i + 1)}, we deduce that Nn(t) is a (Gni )-stopping time,

hence (14.1.6) holds. The inclusion Fnt ⊂Fnt follows.
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It remains to prove the “very good” property of the extension. Using the σ -field
H of Definition 14.1.1, we define a new filtration by setting F ′t = ∩s>t (H

∨
Fs).

Each T (n, i) is an (F ′t )-stopping time (immediate, by induction on i), so Fnt ⊂F ′t .
Moreover Gni ⊂F ′

T (n,i)
by (14.1.7) and what precedes, so since T (n,Nn(t))≤ t we

further deduce that Fnt ⊂F ′t .
It is then enough to show that any bounded (Ft )-martingale M is also a mar-

tingale relative to (F ′t ). Since M is right-continuous and bounded, this amounts to
showing that

E
(
(Mr+t+s −Mr+t )1A

) = 0 (14.1.11)

for all r, s, t > 0 and A ∈Fr ⊗H. By a monotone class argument it is even enough
to show (14.1.11) when A = A′ ∩ A′′, with A′ ∈ Fr and A′′ ∈ H. But then, due
to the independence of F and H, the left side of (14.1.11) is P(A′′)E((Mr+t+s −
Mr+t )1A′), which vanishes becauseM is an (Ft )-martingale. So the result is proved.

2) Next, we start proving (b) by showing that (14.1.8) for all p > 0 implies
(14.1.9). Under (14.1.8),M(p)nt+1 = sups≤t+1 r

p−1
n ΔH(p)ns tends to 0 in probabil-

ity as n→∞, and rp−1
n (H(p)nt+1 −H(p)nt )

P−→m′p
∫ t+1
t
(θs)

p−1ds > 0. This last
property yields P(T (n,Nn(t)+1)≤ t+1)→ 1, whereas if T (n,Nn(t)+1)≤ t+1
we have rp−1

n (πnt )
p ≤M(p)nt+1. Then (14.1.9) with η= 1/p follows.

3) In this step we show that by localization, and for proving (14.1.8), we may
assume

1

C
≤ θt ≤ C,

1

C
≤ rnθnt ≤ C (14.1.12)

identically, for some constant C > 1. This is different from our usual localization
procedure, but may be easily seen as follows. For C > 1 set SC = inf(t : θt ≤ 1

C
or

θt ≥ C) and SnC = inf(t : rnθnt ≤ 1
C

or rnθnt ≥ C), and also

θ(C)t =
{
θt if t < SC
θSC− if t ≥ SC θ(C)nt =

{
θnt if t < SnC
θn
SnC− if t ≥ SnC.

Consider the restricted discretization scheme associated by (14.1.2) with θ(C)n and
the same ε(n, i) as before. This new scheme satisfies (14.1.12) and (D) with the
same sequence rn. Moreover the associated processesH(C,p)n (by (14.1.5)) satisfy
H(C,p)nt = H(p)nt if t < SnC , whereas the limiting variables in (14.1.8) are the
same for θ and θ(C) if t ≤ SS .

Therefore if (14.1.8) holds for the schemes associated with all C, it will then
hold for the original scheme, provided P(SC < t)→ 0 and lim supn P(S

n
C ≤ t)→ 0

as C→∞. These properties are satisfied because θt and θt− do not vanish (hence
SC→∞ as C→∞), and because of (14.1.4).

4) In all the sequel we suppose that (14.1.12) holds, and in this step we undertake
a further reduction of the problem. Namely we show that, for any a priori given
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number γ > 0, we can assume

ε(n, i) ≤ r
γ
n . (14.1.13)

To see this we consider a new scheme with the same processes θn and the new
auxiliary variables ε′(n, i)= ε(n, i)∧ rγn , which satisfy (14.1.13). This new scheme
also satisfies (D) because

m′p(n)−E
(
ε′(n, i)p

) = E
((
ε(n, i)p − rpγn

)
1{ε(n,i)>rpγn }

) ≤ m′2p(n)

r
2pγ
n

→ 0

for all p (note that E(ε′(n, i)) < 1 in general, but this will have no consequences).
We also set Snk =

∑k
j=1 ε(n, j) and Rnt = inf(k : Snk ≥ trn). In view of the second set

of inequalities in (14.1.12), and for any sequence kn of integers, it is clear that the
variables H(p)nt for the original scheme and for the new scheme are equal outside
the setΩn,t on which either RnCt > kn or sup1≤i≤kn ε(n, i) > r

γ
n . Since the variables

(ε(n, i) : i ≥ 1) are independent with E(ε(n, i))= 1 and E(ε(n, i)2)≤K , we have
for all k ∈N

∗ and x > 0:

E
((
Snk − k

)2) ≤ Kk, P

(
sup

1≤i≤k
ε(n, i) > x

)
≤ k

m′2/γ (n)
x2/γ

≤ K
k

x2/γ
.

We take kn = [Ctrn] + [rn] + 2, so RnCt > kn implies Snkn − kn ≤ −rn. Thus, upon

taking x = rγn above, we get

P(Ωn,t ) ≤ Kkn

r2
n

→ 0.

Therefore if (14.1.8) holds for the new scheme it also holds for the original scheme.
In other words, we can and will assume both (14.1.12) and (14.1.13) in what follows.

5) Now we apply the results of Sect. 2.2.4 to the arrays and sums

ζ(p,L)ni = r
p−1
n LT (n,i−1)Δ(n, i)

p, Z(p,L)nt =
Nn(t)+1∑

i=1

ζ(p,L)ni

ζ ′(p,L)ni = E
(
ζ(p,L)ni |FnT (n,i−1)

)
, Z′(p,L)nt =

Nn(t)+1∑

i=1

ζ ′(p,L)ni ,

where L is an arbitrary bounded and nonnegative càdlàg process, adapted to the
filtration (Ft ). The sums above are of the form (2.2.28), with the summand ζ(p,L)ni
being FnT (n,i)-measurable and stopping rules Nn(t)+1 which are stopping times for
the discrete filtrations (FT (n,i))i≥0. Moreover if p ≤ 1/γ , and in view of (14.1.12)
and (14.1.13), we have |ζ(p,L)ni | ≤K . Therefore, for all p ≤ 1/γ Lemma 2.2.11
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yields

Z′′(p,L)nt :=
Nn(t)+1∑

i=1

(
ζ(p,L)ni

)2 u.c.p.=⇒ 0 ⇒ Z(p,L)n −Z′(p,L)n u.c.p.=⇒ 0.

(14.1.14)

Note also that, since πns
P−→ 0 for all s, we have π ′nt = sup(Δ(n, i) : 1 ≤ i ≤

Nn(t)+ 1)
P−→ 0 as well.

First take p = 1. Since π ′nt
P−→ 0 we see that Z(1,L)nt is a Riemann sum approx-

imation of the integral
∫ t

0 Ls ds. Since L is càdlàg, we deduce that Z(1,L)nt
u.c.p.=⇒

∫ t
0 Ls ds. FurthermoreZ′′(1,L)nt ≤Z(1,L2)nt π

′n
t , soZ′′(1,L)n u.c.p.=⇒ 0 and (14.1.14)

yields

1

rn

Nn(t)+1∑

i=1

LT (n,i−1) rnθ
n
T (n,i−1)

u.c.p.=⇒
∫ t

0
Ls ds

because ζ ′(1,L)ni = LT (n,i−1)θ
n
T (n,i−1). Since rnθn ≥ 1/C we deduce that the

sequence of variables 1
rn

∑N ′n(t)
i=1 LT (n,i−1) is bounded in probability, and using

(14.1.4) we end up with

1

rn

Nn(t)+1∑

i=1

LT (n,i−1) θT (n,i−1)
u.c.p.=⇒
∫ t

0
Ls ds . (14.1.15)

Next we take p < 1/γ and observe that ζ ′(p,1)ni = rp−1
n (θnT (n,i−1))

pm′p(n).
Then, by (14.1.4) and m′p(n)→ m′p , and applying (14.1.15) with L = θp−1, we
obtain

Z′(p,1)nt
u.c.p.=⇒ m′p

∫ t

0
(θs)

p−1 ds.

Now (14.1.12) and (14.1.13) yieldΔ(n, i)≤K/r1−γ
n , henceZ′′(p,1)nt ≤ K

r
1+γ−2pγ
n

×
Z(1,1)nt , which goes to 0 as soon as p < 1+γ

2γ . In this case, another application of
(14.1.14) gives

Z(p,1)nt
u.c.p.=⇒ m′p

∫ t

0
(θs)

p−1 ds.

Observing that Z(p,1)nt is in fact rp−1
n H(p)ns taken at time s = T (n,Nn(t)+ 1),

which converges in probability to t , we deduce (14.1.8).
In other words, when p < 1+γ

2γ we have proved (14.1.8) when (14.1.13) holds,
hence also for the original scheme. Since γ is arbitrarily small, we deduce (14.1.8)
for all p ≥ 0. �
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14.2 Law of Large Numbers for Normalized Functionals

As said before, the inside normalization of the increment Δni X should be
√
Δ(n, i).

We still have a problem with the outside normalization. A natural approach consists
in normalizing each summand with the length Δ(n, i) of the relevant interval, that
is to consider functionals of the form

V ′n(f,X)t =
Nn(t)∑

i=1

Δ(n, i) f
(
Δni X/

√
Δ(n, i)

)
.

In a sense, this is the most straightforward generalization of the formula (3.4.2),
and this is the normalization introduced by Barndorff-Nielsen and Shephard in [9].
Likewise, one can consider a function F on (Rd)k and set, as in (8.1.2):

V ′n(F,X)t =
Nn(t)−k+1∑

i=1

Δ(n, i)F

(
Δni X√
Δ(n, i)

, . . . ,
Δni+k−1X√

Δ(n, i + k− 1)

)
. (14.2.1)

Another possibility of outside normalization, when (D) holds, would be

V ′n(F,p,X)t = rp−1
n

Nn(t)−k+1∑

i=1

Δ(n, i)p F

(
Δni X√
Δ(n, i)

, . . . ,
Δni+k−1X√

Δ(n, i + k − 1)

)

(14.2.2)
and clearly V ′n(F,X)= V ′n(F,1,X).

Finally, it is also possible to consider truncated functionals. The truncation is as
in (9.0.3), page 248, so it naturally depends on the length of the interval. That is, the
truncation level for the ith interval is

v(n, i) = αΔ(n, i)� for some α > 0,� ∈
(

0,
1

2

)
. (14.2.3)

With this notation, the extension of (9.2.1), page 251, takes the following form

V ′n(F, vn−,X)t =
Nn(t)−k+1∑

i=1

Δ(n, i)F

(
Δni X√
Δ(n, i)

, . . . ,
Δni+k−1X√

Δ(n, i + k − 1)

)

×
k−1∏

l=0

1{‖Δni+lX‖≤vn(n,i+l)} (14.2.4)

and also the analogue of (14.2.2):

V ′n(F,p, vn−,X)t = rp−1
n

Nn(t)−k+1∑

i=1

Δ(n, i)pF

(
Δni X√
Δ(n, i)

, . . . ,
Δni+k−1X√
Δ(n, i+k−1)

)

×
k−1∏

l=0

1{‖Δni+lX‖≤vn(n,i+l)}. (14.2.5)
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The results are analogous to Theorems 8.4.1 and 9.2.1, and need (H-r), or Assump-
tion 6.1.1, which we recall:

Assumption (H-r) X has the form (14.0.1), with bt locally bounded and σt càdlàg.
Moreover ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn)
is a localizing sequence of stopping times and each function Γn on E satisfies∫
Γn(z)

rλ(dz) <∞.

Theorem 14.2.1 Assume that X satisfies (H-r) for some r ∈ (0,2]. Let p ≥ 0, and
assume that we have a restricted discretization scheme satisfying (D).

a) Let F be a continuous function on (Rd)k , which is of polynomial growth when
X is continuous and which satisfies the following property when X jumps:

∣∣F(x1, . . . , xk)
∣∣ ≤

k∏

j=1

Ψ
(‖xj‖
)(

1+ ‖xj‖2) (14.2.6)

where Ψ is a continuous function on [0,∞) that goes to 0 at infinity. Then

V ′n(F,p,X)t
u.c.p.=⇒ V ′(F,p,X)t := m′p

∫ t

0
ρk⊗cs (F ) (θs)

p−1 ds. (14.2.7)

b) Let F be a continuous function on (Rd)k which satisfies for some q ≥ 0:

∣∣F(x1, . . . , xk)
∣∣ ≤ K

k∏

j=1

(
1+ ‖xj‖q

)
. (14.2.8)

Then

V ′n(F,p, vn−,X) u.c.p.=⇒ V ′(F,p,X) (14.2.9)

when X is continuous, and when X jumps and either q ≤ 2 or

q > 2, r < 2, � ≥ q − 2

2(q − r) .

Proof 1) The proof is as for Theorems 8.4.1 and 9.2.1. By localization, we
can assume (SH-r) (that is, (H-r) with further bt and σt and Xt bounded, and
‖δ(ω, t, z)‖ ≤ Γ (z) with Γ bounded and

∫
Γ (z)rλ(dz) <∞). Also, exactly as

in the proof of Lemma 14.1.5, we can assume that the properties (14.1.12) and
(14.1.13) hold, the latter for a γ ∈ (0, 1

2 ) as small as needed (the choice depends on
k and on the test function F ). Note that (14.1.12) and (14.1.13) imply that for all n
large enough we have identically

πnt ≤ r
γ−1
n ≤ 1√

rn
. (14.2.10)
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A further localization based on the boundedness of θ and on (14.1.8) allows us to
assume that for some constants Cp depending on p we have identically

r
p−1
n H(p)nt ≤ Cp t. (14.2.11)

In the course of the proof, we heavily use the following property, deduced from
(14.1.8) and which holds for every càdlàg process L:

r
p−1
n

Nn(t)∑

i=1

LT (n,i−1) Δ(n, i)
p u.c.p.=⇒ m′p

∫ t

0
Ls θ

1−p
s ds. (14.2.12)

2) A second simplification of the problem arises as follows. We slightly modify
the processes of interest, by setting

V ′n(F,p,X)t = rp−1
n

Nn(t)∑

i=1

Δ(n, i)p F

(
Δni X√
Δ(n, i)

, . . . ,
Δni+k−1X√

Δ(n, i + k − 1)

)
,

(14.2.13)
that is V ′n(F,p,X)t = V ′n(F,p,X)T (n,Nn(t)+k−1), and analogously we set V ′n(F,
p, vn−,X)t = V ′n(F,p, vn−,X)T (n,Nn(t)+k−1). The reason for this is that the stop-
ping rule Nn(t) in this new formula becomes a (Gni )i≥0-stopping time, whereas
Nn(t)− k + 1 is not, unless k = 1. Then, we claim that it is enough to prove that,
for each t ,

V ′n(F,p,X)t
P−→ V ′(F,p,X)t , or V ′n(F,p, vn−,X)t P−→ V ′(F,p,X)t ,

(14.2.14)
under the appropriate assumptions.

Indeed, when F ≥ 0, these properties imply the convergence in the u.c.p. sense,
by the criterion (2.2.16). Since F is the difference of two nonnegative functions hav-
ing the same continuity and growth properties as F itself, we deduce that (14.2.14)
implies the u.c.p. convergence without restriction on the sign of F .

Moreover, the properties of our sampling scheme imply that the difference
T (n,Nn(t)+ k − 1)− t goes to 0 in probability, locally uniformly in t . Therefore

V ′n(F,p,X) u.c.p.=⇒ V ′(F,p,X), for example, implies V ′n(F,p,X) u.c.p.=⇒ V ′(F,p,X)
as well. This shows that it is enough to prove the first or the second part of (14.2.14),
respectively, for any given t , instead of (14.2.7) or (14.2.9).

3) We introduce some notation, somewhat analogous to those of the proof of
Theorem 8.4.1, see pages 243–244:

βni,j = σT (n,i−1)
Δni+j−1W√
Δ(n, i + j − 1)

,

ζ ni = F
(
βni,1, . . . , β

n
i,k

)
, ζ ′′ni = ρk⊗cT (n,i−1)

(F ),

χni = F
(

Δni X√
Δ(n, i)

, . . . ,
Δni+k−1X√

Δ(n, i + k− 1)

)
− ζ ni .
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(Warning: unlike in Theorem 8.4.1, there is no outside normalization in ζ ni , ζ ′′ni and
χni ), and also

an(t) = r
p−1
n E

(
Nn(t)∑

i=1

Δ(n, i)p
∣∣χni
∣∣
)
.

Under our assumptions, the process ρk⊗ct (F ) is càdlàg. Thus (14.2.12) yields

r
p−1
n

Nn(t)∑

i=1

Δ(n, i)p ζ ′′ni
u.c.p.=⇒ V ′(F,p,X).

Moreover the properties of restricted discretization schemes imply that E(ζ ni |Gni−1)=
ζ ′′ni , with Gni given by (14.1.7). Then the first part of (14.2.14) will follow if we
prove the next two properties:

an(t) → 0 (14.2.15)

Gnt := r
p−1
n

Nn(t)∑

i=1

Δ(n, i)p ζ ′ni
P−→ 0, where ζ ′ni = ζ ni − ζ ′′ni . (14.2.16)

4) In this step we prove (14.2.15) when X is discontinuous. To this end, we first
use the fact that Nn(t) is a (Gni )i≥0-stopping time, to get

an(t) ≤ r
p−1
n E

(
Nn(t)∑

i=1

Δ(n, i)p E
(∣∣χni
∣∣ | Gni−1

)
)
. (14.2.17)

We replace the variables γ ni and the numbers γ ′n of (8.4.8) by

γ ni = sup
s∈[T (n,i−1),T (n,i+k)]

‖σs − σT (n,i−1)‖2

γ ′n =
∫

{z:Γ (z)≤r−1/8
n }

Γ (z)2 λ(dz).

Once more, the properties of restricted schemes and our usual estimates yield that
(8.4.20), page 243, can be replaced by the following:

E

(∥∥βni,j
∥∥2 + ‖Δni+j−1X‖2

Δ(n, i + j − 1)
| Gni+j−2

)
≤K

E

(∥∥∥∥
Δni+j−1X√

Δ(n, i + j − 1)
− βni,j

∥∥∥∥
2∧

1 | Gni+j−2

)

≤KE
(
r
−1/8
n + γ ′n + γ ni | Gni+j−2

)
on the set

{
T (n, i + j − 1)≤ t}

(14.2.18)
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(we use here (14.2.10) and the fact that Δ(n, i)≤ 1/
√
rn if T (n, i − 1)≤ t). Then,

in view of (14.2.17) and since F satisfies (14.2.6), we can use (8.4.21), page 243, to
deduce, as for (8.4.22), page 243), that for all ε ∈ (0,1) and A> 3 we have

an(t) ≤ K E
(
L(A,ε)nt+1

)
, (14.2.19)

as soon as k/
√
rn < 1 (so T (n, i+ k− 1)≤ t + 1 if i ≤Nn(t), recall (14.2.10)), and

where

L(A,ε)nt+1 = rp−1
n

(
H(p)nt+1

(
θA(ε)+Ψ (A)+ A

2k

ε2

(
r
−1/8
n + γ ′n

))

+ A
2k

ε2

Nn(t+1)∑

i=1

Δ(n, i)p γ ni

)
.

If η > 0 and if (Sq)q≥1 denote the successive jump times of σt with size bigger
than η, for all n large enough we have γ ni ≤ 2η for all i ≤ Nn(t + 1) such that
|T (n, i) − Sq | > (k + 1)πnt for all q ≥ 1, and otherwise γ ni ≤ K . Hence for all n

large enough
∑Nn(t+1)
i=1 Δ(n, i)pγ ni ≤ 2ηH(p)nt+1 +KQt(πnt )p , where Qt denotes

the number of Sq smaller than t + 1. Therefore, using (14.2.10), we get

L(A,ε)nt+1 ≤
(
θA(ε)+Ψ (A)+ A

2k

ε2

(
2η+ r−1/8

n + γ ′n
))
r
p−1
n H(p)nt

+ KA
2k

ε2
Qtr

pγ/2−1
n .

In view of (14.2.11) and if γ is such that pγ/2< 1, the lim sup (as n→∞) of the

right side above is smaller than a(A, ε, η)=K(θA(ε)+Ψ (A)+ 2ηA2k

ε2 ). Moreover,
again by (14.2.11) and the boundedness of σ and the very definition of L(A,ε)nt+1,
we have L(A,ε)nt ≤ KA,ε(t + 1). Hence, by virtue of (14.2.19) we deduce
that lim supn an(t) ≤ Ka(A,ε, η). Since limε→0 limA→∞ limη→0 a(A, ε, η) = 0,
(14.2.15) follows.

5) Next, we prove (14.2.15) when X is continuous. In this case (14.2.18) can be
strengthened as follows, for any q ≥ 2:

E

(∥∥βni,j
∥∥q + ‖Δni+j−1X‖q

Δ(n, i + j − 1)q:2
| Gni+j−2

)
≤ Kq

E

(∥∥∥∥
Δni+j−1X√

Δ(n, i + j − 1)
− βni,j

∥∥∥∥
2

| Gni+j−2

)

≤Kq
(

1√
rn
+E
(
γ ni | Gni+j−2

))
on the set

{
T (n, i + j − 1)≤ t}.

(14.2.20)
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Since now F has polynomial growth, we have, similar to (8.4.18),

∣∣F(x1 + y1, . . . , xk + yk)− F(x1, . . . , xk)
∣∣

≤ θA(ε)+ KA
q

ε2

k∑

j=1

‖yj‖2 + K

Aq

k∏

j=1

(‖xj‖2q + ‖yj‖2q)

for some q ≥ 2. Then (14.2.19) holds with

L(A,ε)nt+1 = rp−1
n

(
H(p)nt+1

(
θA(ε)+ Aq

ε2√rn +
1

Aq

)
+ A

q

ε2

Nn(t+1)∑

i=1

Δ(n, i)p γ ni

)

when k/
√
rn < 1. The proof of (14.2.15) is then analogous to the discontinuous

case.

6) For the claim (a) it remains to prove (14.2.16). Here again we have to be
careful: ζ ′ni satisfies E(ζ ′ni | Gni−1) = 0, but is only Gni+k−1-measurable. With t

fixed, we write uni = rp−1
n Δ(n, i)p ζ ′ni 1{T (n,i)≤t}. Then uni is Gni+k−1-measurable

and E(unj | Gni+k−1)= 0 if j ≥ i + k. Therefore, since Gnt =
∑Nn(t)
i=1 uni , we have

E
((
Gnt
)2) ≤ E

(
∑

1≤i,j≤Nn(t),|i−j |<k
uni u

n
j

)

+ 2E

(
∑

1≤i<i+k≤j≤Nn(t)
uni E
(
unj | Gni+k−1

)
)

≤ kE
(
Nn(t)∑

i=1

(
uni
)2
)
= kE

(
Nn(t)∑

i=1

E
((
uni
)2 | Gni−1

)
)
.

In view of the definition of uni , we deduce

E
((
Gnt
)2) ≤ kE

(
r

2p−2
n

∑

i≥1

Δ(n, i)2p E
(∣∣ζ ni
∣∣2 | Gni−1

)
1{T (n,i)≤t}

)

≤ KE
(
r

2p−2
n H(2p)nt

)

where we have used the property E(|ζ ni |2 | Gni−1) ≤ K for the last inequality. By
(14.2.11) applied with 2p, the above goes to 0 as n→∞. This shows (14.2.16).

7) Finally we prove (b), which amounts to the second part of (14.2.14). For this,
we basically reproduce the proof of Theorem 9.2.1, pages 252–254. Using (a) for
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the bounded continuous function Fm given by

Fm(x1, . . . , xk)= F(x1, . . . , xk)

k∏

j=1

ψ ′m(xj ),

(that is, (9.2.8)) we see that it is enough to show

lim
m→∞ lim sup

n→∞
E
(∣∣V ′n(F, vn−,X)t − V ′n(Fm,X)t

∣∣) = 0. (14.2.21)

In the proof of Theorem 9.2.1, we replace everywhere vn by v(n, i), hence un by
u(n, i)= 1/αΔ(n, i)1/2−� . Thus for any m≥ 1 and t > 0 we have m≤ u(n, i) for
all i such that T (n, i) ≤ t , as soon as n is bigger than some (random) integer nm,t .
It follows that (14.2.21) amounts to

lim
m→∞ lim sup

n→∞
E
(
U
n,m,j
t

) = 0, (14.2.22)

where now (with q as in (14.2.8), we can assume q ≥ 2):

U
n,m,j
t = r

p−1
n

Nn(t)∑

i=1

Δ(n, i)p ζ(j,m)ni

ζ(j,m)ni =
j−1∏

l=1

Zni+l−1

k∏

l=j+1

Zni+l−1 Z(m)
n
i+j−1,

Zni = 1+
( ‖Δni X′‖√

Δ(n, i)

)q
+
( ‖Δni X′′‖√

Δ(n, i)

∧
u(n, i)

)q

Z(m)ni =
1

m

( ‖Δni X′‖√
Δ(n, i)

)q+1

+
( ‖Δni X′′‖√

Δ(n, i)

∧
u(n, i)

)q
.

Applying (14.2.20) and (2.1.45) we get, as in (9.2.12) and (9.2.13), page 253,
and for all s > 0:

E

( ‖Δni X′‖s
Δ(n, i)s/2

| Gni−1

)
≤ Ks

E

( ‖Δni X′′‖2

Δ(n, i)2�

∧
1 | Gni−1

)
≤ KΔ(n, i)1−r� φn

where φn→ 0 as n→∞. Then, as for (9.2.14), we get

E
(
Zni | Gni−1

) ≤ K
(
1+ κΔ(n, i)wφn

)
,

E
(
Z(m)ni | Gni−1

) ≤ K
m
+ κKΔ(n, i)wφn.

where w =�(q − r)+ 1− q
2
.
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Then under the conditions of (b), we end up with the following, instead of (9.2.15):

E
(
ζ(j,m)ni | Gni−1

) ≤ KΔ(n, i)

(
1

m
+ φn
)
.

Then E(U
n,m,j
t ) ≤ K(φn + 1/m)E(rp−1

n H(p)nt ), which by (14.2.11) is smaller
than Kt(φn + 1/m). Then we obtain (14.2.22), and this finishes the proof. �

14.3 Central Limit Theorem for Normalized Functionals

14.3.1 The Results

Here we give a central limit theorem associated with Theorem 14.2.1. Although it is
possible to give a CLT when the test function F depends on k successive increments,
we restrict our attention to the case where a single increment is involved, the result
for k ≥ 2 being much more difficult to prove. That is, we have a function f on R

d

and a real p ≥ 0, and we are looking for the limiting behavior of the processes

V
′n
(f,p,X) = √

rn
(
V ′n(f,p,X)− V ′(f,p,X))

V
′n
(f,p, vn−,X) = √

rn
(
V ′n(f,p, vn−,X)− V ′(f,p,X)

)
,

where V ′(f,p,X) is given by (14.2.7). The assumptions on X will be the same as
in Theorems 11.2.1 or 13.2.1; that is, one of these:

Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}

where M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and 〈M,M〉t =∫ t
0 as ds and the compensator of

∑
s≤t 1{‖Δσs‖>1} is

∫ t
0 ãs ds, with the following

properties: the processes b̃, σ̃ , ã and a are progressively measurable, the processes
b̃, a and ã are locally bounded, and the processes σ̃ and b are càdlàg or càglàd.

Assumption (K-r) (for r ∈ [0,1)) We have (K) except for the càdlàg or càglàd
property of b, and ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where
(τn) is a localizing sequence of stopping times and the Borel functions Γn on E sat-
isfy
∫
Γn(z)

rλ(dz) <∞. Moreover the process b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz)

is càdlàg or càglàd.

Assumption (K’) We have (K) and both processes ct and ct− take their values
in M++

d×d .
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Assumption (K’-r) We have (K-r) and both processes ct and ct− take their values
in M++

d×d .

Concerning the discretization scheme, Assumption (D) is not enough. The limit-
ing process θt of the intensities rnθnt is a kind of “volatility” of the inter-observation
times, so we need it to satisfy the same properties as σt in (K), for example. More-
over, the rate in the CLT will be 1/

√
rn, because the number of observations up to

time t is Nn(t), whose order of magnitude is rn. However, in the genuine irregular
case we also have an intrinsic variability in the sampling times which might over-
come the “statistical” variability, and we want to avoid this. Taking care of all of
these problems leads us to impose the following assumption:

Assumption 14.3.1 (or (E)) The discretization scheme is a restricted scheme satis-
fying (D) and also

√
rn
(
rn θ

n − θ) u.c.p.=⇒ 0,
√
rn
(
m′p(n) −m′p

) → 0 (14.3.1)

for all p ≥ 0. Furthermore the process θt is an Itô semimartingale relative to the
filtration (Ft ), and it satisfies the same properties as σt does in Assumption (K).

Now we turn to the test function f , which is q-dimensional. As in Chap. 11, see
(11.2.6), we have an integer q ′ ∈ {0, . . . , q} and, when q ′ < q , a subset B of (Rd)k

which is a finite union of affine hyperplanes, and we suppose that

j ≤ q ′ ⇒ x �→ f j (x) is C1 on
(
R
d
)k

j > q ′ ⇒ x �→ f j (x) is continuous on
(
R
d
)k and C1 outside B.

(14.3.2)

We denote by d(z,B) the distance between z ∈ R
d and B , and we reproduce the

conditions (11.2.7)–(11.2.10) (with p′′ instead of p, because here p is already used
in the definition of V ′n(f,p,X), and k = 1):

∥∥f (x)
∥∥ ≤ K

(
1+ ‖x‖p′′) (14.3.3)

∣∣∇f j (x)∣∣≤
{
K
(
1+ ‖x‖p′′) if j ≤ q ′

K
(
1+ ‖x‖p′′)(1+ 1

d(x,B)1−w
)

if j > q ′ and x ∈ Bc (14.3.4)

x ∈ Bc, ‖y‖ ≤ 1
∧ d(x,B)

2
, j > q ′

⇒ ∣∣∇f j (x+y)−∇f j (x)∣∣≤K ‖y‖
(

1+ 1

d(x,B)2−w

)(
1+‖x‖p′′) (14.3.5)

∥∥f (x + y)− f (x)∥∥ ≤ K
(‖y‖s + ‖y‖s′)(1+ ‖x‖p′). (14.3.6)

Recall that 0<w ≤ 1 and 0< s ≤ s′ and p′′,p′ ≥ 0.
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Before stating the result, it is perhaps worthwhile to recall that we have a basic
filtered space (Ω,F , (Ft )t≥0,P) on which X is defined, and also a σ -field G which
is bigger than F and on which the probability measure P is also well defined. How-
ever, the stable convergence in law proved below is relative to the σ -field F . This is
in accordance with the standing notation of this book, see for example (2.2.8).

Theorem 14.3.2 Suppose that we have a restricted discretization scheme satisfy-
ing (E) (Assumption 14.3.1). Suppose also that the test function f is continuous,
globally even, with the property (14.3.2), and satisfies at least (14.3.3) and (14.3.4).

(i) Assume further any one of the following five sets of hypotheses:

(a) We have q ′ = q and (K) and X is continuous.
(b) We have (K’) and (14.3.5) and X is continuous.
(c) We have q ′ = q and (K-1), and f and ∇f are bounded.
(d) We have q ′ = q and (K-r) for some r < 1 and (14.3.6) with r ≤ s ≤ s′ < 1 and

p′ ≤ 2.
(e) We have (K’-r) for some r ∈ (0,1), and (14.3.5) and (14.3.6) with r ≤ s ≤ s′ < 1

and p′ ≤ 2.

Then, for any p ≥ 0, the q-dimensional processes V
′n
(f,p,X) converges stably in

law (relative to F ) to a limiting process V
′
(f,p,X) which is a continuous process

defined on a very good filtered extension (Ω̃, F̃, (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P),
and conditionally on F is a continuous centered Gaussian martingale with inde-
pendent increments satisfying

Ẽ
(
V
′(
f i,p,X

)
t
V
′(
f j ,p,X

) |F)=
∫ t

0
R̂cs
(
p;f i, f j ) (θs)2p−1 ds,

where R̂a(p;g,h) is defined for any two real-valued functions g and h by

R̂a(p;g,h)=m′2p ρa(gh)−
(
2m′p+1m

′
p −
(
m′p
)2
m′2
)
ρa(g)ρa(h). (14.3.7)

(ii) The same is true of the (truncated) processes V
′n
(f,p, vn−,X), provided we

have either (a) or (b) above, or any one of the following two sets of hypotheses:

(f) We have q ′ = q and (K-r) for some r ∈ (0,1], and (14.3.6) with r ≤ s ≤ 1≤ s′,
and

r = 1 ⇒ s = s′ = 1

r < 1 ⇒ s ≥ r

2− r , � ≥ s′ − 1

2(s′ − r) .
(14.3.8)

(g) We have (K’-r) with some r ∈ (0,1], and (14.3.5) and (14.3.6) with r ≤ s ≤ 1≤
s′, as well as (14.3.8).
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14.3.2 Preliminaries

In this subsection we perform our usual localization procedure and we eliminate the
jumps: this means that we reduce the problem to proving (i) of the theorem in cases
(a) and (b).

1) First, by the localization lemma, we can replace (K), (K’), (K-r) or (K’-r), ac-
cording to the case, by (SK), (SK’), (SK-r) or (SK-r) (for which the processes Xt ,
bt , b̃t , σt , σ̃t , at , a′t , and also c−1

t in cases of (SK’) and (SK’-r), are bounded, and all
‖δ(ω, t, z)‖ ≤ Γ (z) with Γ bounded and

∫
Γ (z)rλ(dz <∞). By the same token,

recalling that (E) implies that θt has a decomposition similar to the decomposition
of σt in Assumption (K), we can assume that the coefficients of this decomposition
satisfy the same boundedness hypotheses: we then say that we have (SE).

Next, exactly as in Lemma 14.1.5 we can assume that

1

c
≤ θt ≤ c,

1

c
≤ rnθ

n
t ≤ c (14.3.9)

for some constant c > 1 and, in view of (14.3.1), that

√
rn
∣∣rnθnt − θt

∣∣ ≤ c. (14.3.10)

Again as in the proof of Lemma 14.1.5, one may also assume that for some γ ∈
(0, 1

8 ∧ 1
8p ] (which, apart from those bounds, is not specified now, but will only

depend on the test function f ), we have

ε(n, i) ≤ r
γ
n , hence rn Δ(n, i) ≤ C r

γ
n ≤ C r

1
8∧ 1

8p
n . (14.3.11)

Finally, exactly as in the proof of Theorem 14.2.1 we may assume

Nn(t) ≤ C t rn, u ∈U ⇒ H(u)nt ≤ Ku t r
1−u
n , (14.3.12)

for any given finite set U : this is the same as (14.2.11) for p = 0 and all p ∈U , and
below we need U to contain 3/2, 2, 3 and p+ 1 (in fact, using Hölder’s inequality,
one might prove that if the above holds for U = {u0}, then it holds for U = [0, u0],
but we do not need this refinement here).

2) The next step consists in eliminating the jumps, for claim (i). Since we have at
least (SK-1) we may write, as in (5.3.13):

X =X′ +X′′ where X′t =X0 +
∫ t

0
b′s ds +

∫ t

0
σs dWs , X′′ = δ ∗ p,

where b′t = bt −
∫
{z:‖δ(t,z)‖≤1} δ(t, z)λ(dz) is bounded. The elimination of jumps

amounts to the following, analogous to Lemma 11.2.4:
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Lemma 14.3.3 Under the assumptions of Theorem 14.3.2-(i), plus the reinforced
assumptions of Step 1 above, we have

√
rn
(
V ′n(f,p,X)− V ′n(f,p,X′)) u.c.p.=⇒ 0.

Proof We follow the proof of Lemma 5.3.13, page 150. It suffices to show that

ηni = rp−1/2
n Δ(n, i)p

(
f
(
Δni X/

√
Δ(n, i)

)− f (Δni X′/
√
Δ(n, i)

))

satisfies

E

(
Nn(t)∑

i=1

‖ηi‖
)
→ 0. (14.3.13)

Below we use the notation

αni = 1+ ‖Δ
n
i X‖2

Δ(n, i)
, α′ni = 1+ ‖Δ

n
i X

′‖2

Δ(n, i)
, α′ni = ‖Δni X′′‖√

Δ(n, i)
.

In case (c), f is C1 with bounded derivatives. In cases (d) and (e) we have (14.3.6)
with p′ ≤ 2 and s = r ≤ s′ < 1, hence

∥∥ηni
∥∥≤
{
Kr

p−1/2
n Δ(n, i)p (1∧ αni ) in case (c)

Kr
p−1/2
n Δ(n, i)p ((αni )

r + (αni )s
′
)αni in cases (d), (e).

Next, we recall the σ -fields Gni of (14.1.6). Observing that conditionally on Gni−1
the incrementΔni X

′′ is independent ofΔ(n, i) (since the latter is Gni−1-measurable),
we can apply (2.1.47) with p = r = 1 and q = 1/2 to the increment Δni X

′′, with
FT (n,i−1) replaced by Gni−1. This gives us that under (SK-1), and for some sequence
φn→ 0,

E
(
1∧ αni | Gni−1

) ≤ K
√
Δ(n, i)φn. (14.3.14)

In the same way using (2.1.40) and (2.1.44), we get that under (SK-r) and r≤ s′<1:

E
(
αni + α′ni | Gni−1

) ≤ K, E
((
αni
)s′ | Gni−1

) ≤ KΔ(n, i)1−s′/2.

Since E(Δ(n, i)v | FnT (n,i−1)) ≤ Kv/rvn for all v ≥ 0 by (14.3.9) and m′v(n) ≤ Kv ,
we can use (14.1.7) to get that E(‖ηni ‖ | Gni−1)≤Kφn/rn, where φn is as in (14.3.14)

in case (c) and φn = 1/r(1−s
′)/2

n in cases (d,e). Then the left side of (14.3.13)
is smaller than KφnE(Nn(t)), which by (14.3.12) is smaller than Ktφn. Thus
(14.3.13) follows because in all cases φn→ 0. �

3) In this step we show that, under our strengthened assumptions, (ii) follows
from (i). To this end, we essentially reproduce the proof of Theorem 13.2.1,
pages 384–386.
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Suppose first that X is continuous, so E(‖Δni X‖m | Gni−1) ≤ KmΔ(n, i)m/2 for
all m> 0. Since � < 1/2, Markov’s inequality yields

P
(∥∥Δni X

∥∥> αΔ(n, i)� | Gni−1

) ≤ KΔ(n, i)2.

Hence the set Ωnt = {‖Δni X‖ ≤ αΔ(n, i)� : i = 1,2, . . . ,Nn(t)} satisfies

P
((
Ωnt
)c) ≤ E

(
Nn(t)∑

i=1

1{‖Δni X‖>αΔ(n,i)� }

)
≤ KE

(
Nn(t)∑

i=1

Δ(n, i)2

)

= KE
(
H(2)nt

) ≤ K
rn

by (14.3.12). Since on the set Ωnt we have V ′n(f,p, vn−,X)s = V ′n(f,p,X)s for
all s ≤ t , we deduce (ii) from (i).

Next we consider the discontinuous case, so (SK-1) holds. Assuming (i), what
precedes shows that (ii) holds true for the continuous process X′ =X− δ ∗ p (which
has the same volatility σt as X), hence it remains to prove that

1√
rn

(
V ′n(f,p, vn−,X)− V ′n

(
f,p, vn−,X′

)) u.c.p.=⇒ 0.

We modify (13.2.20) (with k = 1, so the index j is absent)) as follows:

ηni = f

(
Δni X√
Δ(n, i)

)
1{‖Δni X‖≤v(n,i)} − f

(
Δni X√
Δ(n, i)

)
.

The proof of Lemma 13.2.6, page 384, works with obvious changes of notation.
This gives us, by taking m= 1 in this lemma, and under (SH-r) for some r ≤ 1 and
(14.3.6) for some p′ ≥ 0 and r ≤ s ≤ 1≤ s′:

E
(∥∥ηni
∥∥m | Gni−1

)≤ (Δ(n, i) 2−r
2 +Δ(n, i)(1−r�)−s′ 1−2�

2
)
φn

where φn is a sequence of non random numbers going to 0; note that θ does not
appear here because we assume r ≤ 1, and there is no condition on � (other than
being inside (0,1/2), of course) because here k = 1. Then if (14.3.8) holds, we have

E
(∥∥ηni
∥∥ | Gni−1

) ≤ K
√
Δ(n, i + j)φn. (14.3.15)

Now, if Ant = rp−1/2
n

∑Nn(t)
i=1 Δ(n, i)p‖ηni ‖, we have

sup
s≤t

∣∣∣∣
1√
rn

(
V ′n(f,p, vn−,X)s − V ′n

(
f,p, vn−,X′

)
s

)∣∣∣∣ ≤ Ant .

Thus it remains to prove that Ant
P−→ 0 for all t > 0. For this, we can use the fact

that T (n, i) is Gni−1-measurable and (14.3.15) to get
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E
(
Ant
) ≤ rp−1/2

n

∑

i≥1

E
(
Δ(n, i)p

∥∥ηni
∥∥1{T (n,i)≤t}

)

≤ Kφn rp−1/2
n E

(
H(p+ 1/2)nt

) ≤ Kt φn,

where the last inequality comes from (14.3.12). Since φn→ 0, the result is proved.

14.3.3 The Scheme of the Proof when X is Continuous

In view of the preliminaries above, it remains to prove (i) in cases (a) and (b), and
under the strengthened assumptions. Thus below X is continuous, and we are in
the setting of Sect. 5.3.3, page 151, that is (MA is the set of all d × d ′ matrices
such that ‖α‖ ≤ A, and M′

A the set of all α ∈MA such that αα∗ is invertible and
‖(αα∗)−1‖ ≤A):

(a) q ′ = q, (SK), f is C1 and ∇F has polynomial growth, σt ∈MA

(b) q ′ < q, (SK’), f satisfies (14.3.3), (14.3.4), (14.3.5), σt ∈M′
A.

(14.3.16)

We then set

σni = σT (n,i), cni = cT (n,i), θ
n

i = rnθnT (n,i)
wni =

Δni W√
Δ(n, i)

, βni = σni−1w
n
i .

Let us also introduce the variables

χni = rp−1/2
n Δ(n, i)p

(
f
(
Xni
)− f (βni

))

χ ′ni = E
(
χni | Gni−1

)
, χ ′′ni = χni − χ ′ni

ζ ni = rp−1/2
n Δ(n, i)p f

(
βni
)−√rn m′p(n)Δ(n, i)

(
θ
n

i−1

)p−1
ρcni−1

(f ),

and the processes

Ynt =
Nn(t)∑

i=1

ζ ni , An(0)t =
Nn(t)∑

i=1

χ ′′ni , An(1)t =
Nn(t)∑

i=1

χ ′ni ,

An(2)t =√rn
(
m′p(n)

Nn(t)∑

i=1

Δ(n, i)
(
θ
n

i−1

)p−1
ρci−1(f )−m′p

∫ t

0
ρcs (f ) (θs)

p−1 ds

)
.

We see that V
′n
(f,p,X)= Yn +An(0)+An(1)+An(2), and the claim (i) will

follow from the next two lemmas:
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Lemma 14.3.4 Under the assumptions (14.3.16) and (14.3.9)–(14.3.12) the pro-
cesses Yn converge stably in law to V

′
(f,p,X).

Lemma 14.3.5 Under the assumptions (14.3.16) and (14.3.9)–(14.3.12) we have
for j = 0,1,2:

An(j)
u.c.p.=⇒ 0. (14.3.17)

14.3.4 Proof of Lemma 14.3.4

Step 1) The proof is based on the general criterion for stable convergence of trian-
gular arrays, given by Theorem 2.2.15. The discrete-time filtrations which we have
to consider are not the (Gni ), as defined by (14.1.7), but (FnT (n,i))i∈N, with respect to
which the stopping rules Nn(t) are not stopping times. To overcome this difficulty,
instead of Yn we consider the following processes

Y ′nt =
Nn(t)+1∑

i=1

ζ ni ,

and use the fact that Nn(t) + 1 is an (FnT (n,i))-stopping time. This is in the same
spirit as the replacement of V ′n(F,p,X) by V ′n(F,p,X) in the proof of Theo-

rem 14.2.1 and, exactly as in that proof, the property Y ′n L-s=⇒ V
′
(f,p,X) implies

Yn
L-s=⇒ V

′
(f,p,X).

Observe that ζ ni is FnT (n,i) measurable, and

E
(
ζ ni | Gni−1

) = r
p−1/2
n

(
Δ(n, i)p −m′p(n)Δ(n, i)

(
θnT (n,i−1)

)p−1)
ρcni−1

(f ),

and since E(Δ(n, i)q | FT (n,i−1)) = m′q(n)(θnT (n,i−1))
q and m′1(n) = 1, we de-

duce E(ζ ni | FnT (n,i−1)) = 0. Moreover, by Lemma 14.1.5 we have (2.2.39) with

(Ωn,Gn, (F
n

t ),Pn)= (Ω,G, (Fnt ),P). Therefore, by virtue of Theorem 2.2.15, it is
enough to prove the following three properties:

Nn(t)+1∑

i=1

E
(∥∥ζ ni
∥∥4 |FnT (n,i−1)

) P−→ 0 (14.3.18)

Nn(t)+1∑

i=1

E
(
ζ
n,l
i ζ

n,r
i |FnT (n,i−1)

) P−→
∫ t

0
R̂
(
p;f l, f r) (θs)2p−1 ds (14.3.19)

Nn(t)+1∑

i=1

E
(
ζ ni Δ

n
i N |FnT (n,i−1)

) P−→ 0 (14.3.20)

for all t > 0 and N =Wj for some j = 1, . . . , d ′ or when N belongs to the set N
of all bounded (Ft )-martingales which are orthogonal to W .
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Step 2) Because f is of polynomial growth and ct is bounded, and upon using
(14.3.9) and (14.3.11), we see that

∥∥ζ ni
∥∥ ≤ K

(
r
p−1/2
n Δ(n, i)

(
1+ ∥∥wni

∥∥v)+√rnΔ(n, i)
) ≤ K

r
1/2−pγ
n

(
1+ ∥∥wni

∥∥v)

for some v ≥ 0, hence the left side of (14.3.18) is smaller than K(Nn(t) +
1)/r2−4pγ

n , which by (14.3.12) is smaller than Kt/r1−4pγ
n . Since 1> 4pγ we de-

duce the property (14.3.18).
Next, (14.3.20) holds if each summand vanishes, and this is true if we have

E(ζ ni Δ
n
i N | Gni−1)= 0. Observe that, since N is an (Ft )-martingale,

E
(
ζ ni Δ

n
i N | Gni

) = r
p−1/2
n Δ(n, i)p E

(
f
(
βni
)
Δni N | Gni−1

)
.

Now, the conditional expectation E(f (βni )Δ
n
i N | Gni−1) vanishes when N ∈N by

exactly the same argument as for 4.2.10, page 108. When N =Wj , this conditional
expectation is simply

√
Δ(n, i)E(f (U)Uj ), where U is a standard d ′-dimensional

Gaussian random vector. Since f is globally even, this expectation vanishes, and
thus (14.3.20) holds in all cases.

Step 3) Now we turn to (14.3.19). First, we have

E
(
ζ
n,l
i ζ

n,r
i | Gni−1

) = r2p−1
n Δ(n, i)2p ρcni−1

(
f lf r
)

− 2rpn m
′
p(n)Δ(n, i)

p+1 ( θni−1

)p−1
ρcni−1

(
f r
)

+ rn m′p(n)2Δ(n, i)2
(
θ
n

i−1

)2p−2
ρcni−1

(
f l
)
ρcni−1

(
f r
)
.

This yields

E
(
ζ
n,l
i ζ

n,r
i |FnT (n,i−1)

)= 1

rn

(
θ
n

i−1

)2p(
m′2p(n)ρcni−1

(
f lf r
)

− (2m′p(n)m′p+1(n)−m′p(n)2m′2(n)
)
ρcni−1

(
f r
))
.

(14.3.21)

Now, (14.1.10) yields, for any càdlàg process Z:

1

rn

Nn(t)+1∑

i=1

ZT (n,i−1)
P−→
∫ t

0

Zs

θs
ds,

from which we deduce that if Zn
u.c.p.=⇒ Z, then

1

rn

Nn(t)+1∑

i=1

ZnT (n,i−1)
P−→
∫ t

0

Zs

θs
ds.
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In view of (14.3.21), the above applied with Znt = (rnθnt )2p(m′2p(n)ρct (f lf r ) −
(2m′p(n)m′p+1(n) − m′p(n)2m′2(n)ρct (f l)ρct (f r )), which converges in the u.c.p.

sense to Zt = (θt )2p R̂ct (p;f l, f r), due to (14.3.1) and (14.3.7).

14.3.5 Proof of Lemma 14.3.5

For Lemma 14.3.5 we can and will assume that f is one-dimensional.

The case j = 2. The proof of (14.3.17) for j = 2 exhibits some significant differ-
ences with Lemma 11.2.7. We set

Zs = ρcs (f ), Z′s = (θs)
p−1Zs

An(3)t =m′p
√
rn

(
Nn(t)∑

i=1

Z′T (n,i−1) Δ(n, i)−
∫ t

0
Z′s ds
)

An(4)t =
(
m′p(n)−m′p

)√
rn

Nn(t)∑

i=1

Z′T (n,i−1) Δ(n, i)

An(5)t =m′p(n)
√
rn

Nn(t)∑

i=1

ZT (n,i−1)
((
θ
n

i−1

)p−1 − (θT (n,i−1))
p−1)Δ(n, i).

Then An(2)=An(3)+An(4)+An(5), and it is enough to prove (14.3.17) for j =
3,4,5.

Since
∑Nn(t)
i=1 Δ(n, i) ≤ t and Zt and θt are (uniformly) bounded, (14.3.17) for

j = 4 and j = 5 follow from (14.3.1).
Exactly as in Part B of Sect. 5.3.3 (pages 153–154), the functionψ(α)= ραα∗(f )

is C∞b on the set M=MA in case (a) and M=M′
A in case (b). The function ψ

defined on [1/C,C]×M by ψ(x,α)= xp−1ψ(α) is also C∞b , so with the notation
Vt = (θt , σt ) we have, instead of (5.3.27),

∣∣ψ(Vt )
∣∣+ ∥∥∇ψ(Vt )

∥∥ ≤ K
∣∣ψ(Vt )−ψ(Vs)

∣∣ ≤ K ‖Vt − Vs‖
∣∣ψ(Vt )−ψ(Vs)−∇ψ(Vs)(Vt − Vs)

∣∣ ≤ Ψ
(‖Vt − Vs‖

) ‖Vt − Vs‖
for some constant K and some increasing function Ψ on R+, continuous and null
at 0. ThenZ′t =ψ(Vt ) andAn(3)nt =m′p(−ηnt −

∑Nn(t)
i=1 (η

n
i +η′ni )), where (recalling

I (n, i)= (T (n, i − 1), T (n, i)]):

ηnt =
√
rn

∫ t

T (n,Nn(t))

Zs ds
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ηni =
√
rn ∇ψ(VT (n,(i−1))

∫

I (n,i)

(Vu − VT (n,i−1)) du

η′ni =
√
rn

∫

I (n,i)

(
ψ(Vu)−ψ(VT (n,i−1))−∇ψ(VT (n,i−1))(Vu − VT (n,i−1))

)
du.

Our assumptions (SK) and (SE) imply that the process Vt is an (Ft )-Itô semi-
martingale whose “integrands” satisfy the same boundedness as those of σt in (SK).
So exactly as on page 154 we obtain

∣∣E
(
ηni | Gni−1

)∣∣ ≤ K
√
rn Δ(n, i)

2, E
(∣∣ηni
∣∣2 | Gni−1

) ≤ KrnΔ(n, i)
3.

Following the same proof of Sect. 5.3.3, and with the notation H(q)n of (14.1.5),
we then get

E

(
sup
s≤t

∣∣∣∣∣

Nn(s)∑

i=1

ηni

∣∣∣∣∣

2)
≤ KrnE

(
H(3)nt +

(
H(2)nt

)2) ≤ Kt

rn
, (14.3.22)

where the last inequality comes from (14.3.12). We also obtain, for some nonnega-
tive function Ψ which is continuous and vanishes at 0, that for all ε > 0

E
(∣∣η′ni
∣∣ | Gni−1

) ≤ K
√
rn

(
Ψ (ε)Δ(n, i)3/2 + Δ(n, i)

2

ε

)
.

This yields by (14.3.12) again:

E

(
Nn(t)∑

i=1

∣∣η′ni
∣∣
)
≤ K√rn

(
Ψ (ε)E

(
H(3/2)nt

)+ 1

ε
E
((
H(2)nt

)))

≤ Kt
(
Ψ (ε)+ 1

ε
√
rn

)
.

Here, ε > 0 is arbitrary and Ψ (ε)→ 0 as ε→ 0. So, letting first n→∞ and then
ε→ 0, we deduce from this and (14.3.22) and |ηnt | ≤K/r1/4

n (which follows from
(14.3.11)), that (14.3.17) holds for j = 3, hence also for j = 2.

The case j = 0. We start with a notation similar to (5.3.30), except that we use Θni
instead of θni which in this chapter is used in the description of the sampling scheme:

Θni =
Δni X√
Δ(n, i)

− βni .

By the properties of restricted schemes and (SK) we get as for (5.3.31):

l > 0 ⇒ E
(∥∥βni
∥∥l | Gni−1

) ≤ Kl, E
(∥∥Θni
∥∥l | Gni−1

) ≤ Kl Δ(n, i)
(l/2)∧1.

(14.3.23)
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We have (11.2.19) (page 315) with some p′′ ≥ 1 (instead of p), hence in view of the
previous estimates we have

E

(
Nn(t)∑

i=1

∣∣χni
∣∣2
)
≤ K r2p−1

n E

((
φ′C(ε)2 +

1

C2

)
H(2p)nt +

C2p′′

ε2
H(p+ 1)nt

)

≤ Kt
(
φ′C(ε)2 +

1

C2
+ C

2p′′

rn ε2

)
,

where the last inequality follows from (14.3.12). Then, taking first C large and then
ε small, then n large, we deduce that E(

∑Nn(t)
i=1 |χni |2)→ 0. Since the χ ′′ni are mar-

tingale increments relative to the filtration (Gni )i∈N, the convergence An(0)
u.c.p.=⇒ 0

follows.

The case j = 1. Here we reproduce the proof of (5.3.25), pages 154–160, with a
vanishing limit.

1) We have Θni = 1√
Δ(n,i)

∑4
j=1 ζ(j)

n
i , where

ζ(1)ni = Δ(n, i + j − 1) bT (n,i−1)

ζ(2)ni =
∫

I (n,i)

(
σ̃T (n,i−1)(Ws −WT (n,i−1))

)
dWs

ζ(3)ni =
∫

I (n,i)

(
M ′
s −M ′

T (n,i−1)

)
dWs

ζ(4)ni =
∫

I (n,i)

(bs − bT (n,i−1)) ds +
∫

I (n,i)

(∫ s

T (n,i−1)
b̃′u du
)
dWs

+
∫

I (n,i)

(∫ s

T (n,i−1)
(̃σu − σ̃T (n,i−1)) dWu

)
dWs.

We set Ani = {‖Θni ‖> d(βni ,B)/2} (with the convention B = ∅ when f is C1 ev-
erywhere, as in case (a)). Then, upon substituting θni with Θni , we have the decom-
position (5.3.32), hence also (5.3.33): that is, An(1)=∑7

r=1D
n(r), where now

Dn(r)t =
Nn(t)∑

i=1

δ(r)ni , where δ(r)ni = E
(
δ′(r)ni | Gi−1

)
and

δ′(r)ni = rp−1/2
n Δ(n, i)p−1/2∇f (βni

)
ζ(r)ni for r = 1,2,3,4

δ′(5)ni =−rp−1/2
n Δ(n, i)p ∇f (βni

)
Θni 1Ani

δ′(6)ni = rp−1/2
n Δ(n, i)p

(∇f (βni + uni Θni
)−∇f (βni

))
Θni 1(Ani )c

δ′(7)ni = rp−1/2
n Δ(n, i)p

(
f
(
βni +Θni

)− f (βni
))

1Ani

and uni is some [0,1]-valued random variable (we use vector notation above).
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2) Next, we replace (5.3.35) by

αni =Δ(n, i)3/2 +E

(∫

I (n,i)

(‖bs − bT (n,i−1)‖2 + ‖σ̃s − σ̃T (n,i−1)‖2)ds |Gni−1

)
,

(14.3.24)
and (5.3.36) and (5.3.37) become, for all l ≥ 2:

E
(∥∥ζ(1)ni

∥∥l + ∥∥ζ(2)ni
∥∥l | Gni−1

) ≤ Kl Δ(n, i)
l

E
(∥∥ζ(4)ni

∥∥l | Gni−1

) ≤ Kl Δ(n, i)
l−1 αni

E
(∥∥ζ(3)ni

∥∥l | Gni−1

) ≤ Kl Δ(n, i)
l/2+(1∧(l/2)).

We also use the same notation

γ ni =
{

1 if w = 1
φB
(
βni,j

)
if w < 1, φB(x)= 1+ 1

d(x,B)
,

as in (5.3.38), where w is as in (14.3.4) and (14.3.5) in case (b), and w = 1 in
case (a).

At this stage, we reproduce the proof of Lemma 5.3.15, with the conditional
expectations relative to Gni− instead of ordinary expectations. This gives us, for any
sequence of variables Φni satisfying

s > 0 ⇒ sup
n,i

E
(∣∣Φni
∣∣r | Gni−1

)
< ∞,

the following estimates:

r = 1,2,3, l < 2 ⇒ E
(∣∣Φni
∣∣s ∥∥ζ(r)ni

∥∥l (γ ni
)m | Gni−1

) ≤ Ks,l,m Δ(n, i)
l

u ∈
(

0, (1−m)∧ l
2

)
⇒ E
(∣∣Φni
∣∣s ∥∥ζ(4)ni

∥∥l (γ ni
)m | Gni−1

)

≤ Ks,l,m,u Δ(n, i + j)l−u (αni )u ≤ Ks,l,m,uΔ(n, i)
l .

(14.3.25)

3) Note that, when r = 1,2,3, by exactly the same argument as in Step 5 of the
proof of Lemma 11.2.7, we see that indeed δ(r)ni = 0 for all i, due to the fact that

f is globally even. So it remains to prove Dn(r)
u.c.p.=⇒ 0 for r = 4,5,6,7. This is

Lemma 5.3.16, page 158, whose proof is followed below with the relevant modifi-
cations.

We first have to state the analogue of (5.3.46). Letting v ∈ (0,1/2), we set

L(v)nt = rp−1/2
n

Nn(t)∑

i=1

Δ(n, i)p+1/2−v (αni
)v
.

By Hölder’s inequality, and if L′nt = E(
∑Nn(t)
i=1 αni ), we get

E
(
L(u)nt
) ≤ r

p−1/2
n

(
L′nt
)v
(
E

(
H

(
2p+ 1− 2v

2(1− v)
)n

t

))1−v
≤ Kt1−v

(
L′nt
)v
,
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where the last inequality follows from (14.3.12). Since Nn(t) is a (Gni )-stopping
time, we have

L′nt = E

(
H(3/2)nt +

∫ T (n,Nn(t))

0

(‖bs − bT (n,Nn(s))‖2 +‖σ̂s − σ̂T (n,Nn(s))‖2)ds
)
.

The variable whose expectation is taken in the right side above goes pointwise to
0 (use (14.3.12) and the càdlàg or càglàd properties of b′ and σ̃ ) and is bounded,
hence L′nt → 0, and we deduce

E
(
L(v)nt
) → 0 . (14.3.26)

Next, the property (5.3.21) is valid here, hence (5.3.48) as well. Then (14.3.25)
applied with l = 1 and m= 1−w and some v ∈ (0,1/2) yields

E

(
Nn(t)∑

i=1

∣∣δ(4)ni
∣∣
)
≤ E

(
Nn(t)∑

i=1

∣∣δ′(4)ni
∣∣
)
≤ K E

(
L(v)nt
)

with the notation of the previous step. Hence (14.3.26) yields Dn(4)
u.c.p.=⇒ 0.

In case (a) we have Dn(5) = Dn(7) = 0 (as in Lemma 5.3.16, page 158), and

now we prove Dn(6)
u.c.p.=⇒ 0 in case (a). We can reproduce the corresponding proof

in Lemma 5.3.16, with Θni instead of θni , and using (14.3.23). Instead of (5.3.49)
we end up, for all C > 1 and ε ∈ (0,1) and for some p′′ ≥ 1, with

E
(∣∣δ′(6)ni

∣∣ | Gni−1

)≤Krp−1/2
n E

(
Δ(n, i)p+1/2

(
φ′C(ε)+

1

C
+ C

p′′

ε

√
Δ(n, i)

))

Then, since

E

(
sup
s≤t
∣∣Dn(6)s

∣∣
)
≤ E

(
Nn(t)∑

i=1

∣∣δ(6)ni
∣∣
)
≤ E

(
Nn(t)∑

i=1

∣∣δ′(6)ni
∣∣
)

(using again the property of Nn(t) to be a (Gni )-stopping time), we deduce

E

(
sup
s≤t
∣∣Dn(6)s

∣∣
)
≤ Krp−1/2

n

(
φ′C(ε)+

1

C

)
E
(
H(p+ 1/2)nt

)

+Krp−1/2
n

Cp
′′

ε
E
(
H(p+ 1)nt

)

≤ Kt
(
φ′C(ε)+

1

C
+ Cp

′′

ε
√
rn

)
,

where the last inequality follows from (14.3.12). Taking C large, and then ε small,

then n large, gives Dn(6)
u.c.p.=⇒ 0.



458 14 Irregular Discretization Schemes

Next we turn to case (b). Again we reproduce the corresponding proof in
Lemma 5.3.16, and instead of the estimate E(|δ′(j)ni |) ≤ KΔ1+w/4

n which is ob-
tained in that proof, the same argument (based on (14.3.25) here) gives

E
(∣∣δ′(j)ni

∣∣ | Gni−1

) ≤ K r
p−1/2
n Δ(n, i)p+1+w/4.

Hence, just as above, we deduce

E

(
sup
s≤t
∣∣Dn(j)s

∣∣
)
≤ Kr

p−1/2
n E

(
H(p+ 1/2+w/4)nt

) ≤ Kt

r
w/4
n

.

Therefore D
n(j)

u.c.p.=⇒ 0 for j = 5,6,7 in case (b), completing the proof of
Lemma 14.3.5, hence of Part (i) of our theorem.

14.4 Application to Volatility

We are still interested here in the estimation of the volatility, but now in the con-
text of an irregular discretization scheme, and more specifically when we have a
restricted discretization scheme which satisfies at least Assumption (D), that is As-
sumption 14.1.3. As said before, this setting is not very realistic for a multivariate
process, hence we consider only the case where d = d ′ = 1 below: for a more re-
alistic situation in the multivariate case, when the sampling times are different for
different components, see Hayashi and Yoshida ([44] and [46]).

We again want to estimate

A(q)t =
∫ t

0
|σs |q ds

for some q > 0, typically q = 2. The laws of large numbers of Sect. 14.2 provide a
whole family of estimators, based on power or multipower variations, truncated or
not. For simplicity, and also because of the asymptotic comparison between power
and multipower variations made in the previous chapter, we consider below estima-
tors based only on a single increment in each summand.

However, we have another parameter coming in naturally, that is the power p ≥ 0
which affects the length of the successive intervals Δ(n, i). That is, in accordance
with (14.2.2) and (14.2.4), applied with k = 1 and F(x)= |x|q , we can set

D(X;p,q)nt =
Nn(t)∑

i=1

Δ(n, i)p−q/2
∣∣Δni X
∣∣q

and, with the notation v(n, i)= αΔ(n, i)� of (14.2.3) with α > 0 and � ∈ (0, 1
2 ),

we have the truncated versions:

D(X;p,q, vn−)nt =
Nn(t)∑

i=1

Δ(n, i)p−q/2
∣∣Δni X
∣∣q 1{‖Δni X‖≤v(n,i)}. (14.4.1)
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First, an application of Theorem 14.2.1 gives us

r
p−1
n D(X;p,q)n u.c.p.=⇒ mq m

′
p A(p,q), where A(p,q)t =

∫ t

0
|σs |q (θs)p−1 ds.

(14.4.2)
Here, we assume (D) about the discretization scheme, and (H-2) for X, and when
X has jumps this is true only when q < 2. Similarly if we assume (H-r) for some
r ∈ [0,2] and either q ≤ 2 or q > 2 and 1 < r < 2 and � ≥ q(−2

2(q−r) , or q > 2 and
r ≤ 1 (without condition on � , other than being in (0,1/2)), we also have

r
p−1
n D(X;p,q, vn−)n u.c.p.=⇒ mq m

′
p A(p,q). (14.4.3)

Second, the associated central limit theorem 14.3.2 gives us

√
rn
(
r
p−1
n D(X;p,q)n −mqm′pA(p,q)

)

L-s=⇒
√
m2qm

′
2p −m2

q

(
2m′p+1m

′
p −
(
m′p
)2
m′2
)∫ t

0
|σs |q (θs)p−1/2 dBs (14.4.4)

where the stable convergence in law is relative to the σ -field F , and B is a Wiener
process on a very good filtered extension, independent of F (use (14.3.7) to identify
the limit). For this, we need Assumption (E) on the discretization scheme, and (K)
if q > 1 and (K’) if q ≤ 1 when X is continuous; in the discontinuous case we need
q < 1 and (K’-q). The truncated version D(X;p,q, vn−)n also satisfies (14.4.4)
under relaxed conditions in the discontinuous case:

q > 1 ⇒ (K-r) for some r < 1 and with� ≥ q−1
2(q−r)

q = 1 ⇒ (K’-1)

q < 1 ⇒ (K’-r) for some r ≤ 2q
1+q .

These results, as such, are still far from being applicable. First, we are usually not
interested in estimating A(p,q)t , but rather A(q)t . Recalling m′1 = 1, this is easily
done by taking p = 1, that is (14.4.1) and (14.4.2) yield

D(X;1, q)n u.c.p.=⇒ mq A(q), D(X;1, q, vn−)n u.c.p.=⇒ mq A(q)

under the conditions stated above.
Next, to be practically feasible, the associated CLT requires an estimation of the

asymptotic variance. This asymptotic variance is (m2q − m2
q)m

′
2A(2,2q)t , which

can be estimated by rn
m2q−m2

q

m2q
D(X;2,2q)nt or by rn

m2q−m2
q

m2q
D(X;2,2q, vn−)nt .

This leads to the following result:

Theorem 14.4.1 Let q > 0 and letX be a (possibly discontinuous) one-dimensional
Itô semimartingale satisfying (K’-r) when q ≤ 1 and (K-r) otherwise, for some
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r ∈ [0,1]. Assume also (E) for the discretization scheme. Then for each t > 0 the
random variables

√
m2q (D(X;1, q;vn−)nt −mq A(q)t )√
(m2q −m2

q)D(X;2,2q, vn−)nt
converge stably in law to a limit which is N (0,1) and independent of F , in restric-
tion to the set ΩWt = {A(q)t > 0} (which is Ω when (K’-1) holds), provided either
X is continuous, or we have

r = 1 ⇒ q = 1, r < 1 ⇒ q ≥ r

2− r , � ≥ q − 1

2(q − r)
(in addition to 0 <� < 1

2 ). If X is continuous, we have the same results with the
non-truncated versions D(X;1, q)nt and D(X;2,2q)nt .

In practice the time stepsΔ(n, i) are observed, and thus the quantitiesD(X;p,q,
vn−)nt are computable from the data set. On the other hand, neither the “rate” rn,
nor the moments m′p , are known to the statistician (in general). So for example not
only (14.4.2) and (14.4.3) do not provide estimators for interesting quantities when
p �= 1, but they are not even “statistics” in the usual sense because rn is unknown. In
contrast, when p = 1, the previous theorem allows us to find confidence intervals for
A(q)t , for example, on the basis of completely observable quantities. In this sense,
the previous theorem is quite remarkable (and even “too good” in a sense, because
it gives an answer, regardless of whether the required assumption (E) is satisfied or
not).
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Chapter 15
Higher Order Limit Theorems

The Central Limit Theorems expounded in the previous chapters are sometimes
“degenerate”, in the sense that the limit vanishes identically. This of course happens
when the test function is for example a constant. But, apart from such trivial cases,
this may occur in a variety of interesting situations, in connection with the properties
of the underlying process X itself.

This chapter is concerned with examples of such situations, and indeed only very
few of them. The typology of degenerate cases is vast, and very few have been
considered so far in the literature.

In the whole chapter we assume that we have a regular discretization scheme
and that the d-dimensional semimartingale X, defined on the filtered space
(Ω,F , (Ft )t≥0,P), has the Grigelionis decomposition

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt , (15.0.1)

where W is a d ′-dimensional Wiener process and p is a Poisson measure with com-
pensator q(dt, dz)= dt ⊗ λ(dz), and c= σσ�. Moreover μ is the jump measure of
X, and ν its compensator.

We will analyze the behavior of the following functionals

V n(F,X)t =
[t/Δn]−k+1∑

i=1

F
(
Δni X, . . . ,Δ

n
i+k−1X

)

V ′n(F,X)t = Δn

[t/Δn]−k+1∑

i=1

F
(
Δni X/

√
Δn, . . . ,Δ

n
i+k−1X/

√
Δn
)
,

where the test function F on (Rd)k presents some degeneracy, in connection with
the properties of X itself.
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15.1 Examples of Degenerate Situations

1) In all the previous chapters, the limit of the normalized functionals V ′n(F,X) is
always a process which, apart from F itself, depends only on the process ct . More-
over all the limits in the CLTs, for both normalized and non-normalized functionals,
involve this process ct and actually vanish identically when ct does.

In other words, when in (15.0.1) the continuous martingale part
∫ t

0 σs dWs is
absent, then none of the previous results has any significant content, apart form the
first LLN given in Theorem 3.3.1.

In some cases, this is irremediable. Suppose for example that we have a “pure
jump” process

Xt = X0 +
∑

p≥1

ΔXSp1{Sp≤t}

for a sequence Sp of stopping times increasing strictly to infinity, and consider
V n(f,X) (take k = 1 and f a function on R

d ). Then for all t > 0, and all n large
enough (depending on t) we have

s ≤ t ⇒ V n(f,X)z =
∑

p≥
f (ΔXSp)1{Sp≤Δn[s/Δn]} = f ∗μΔn[s/Δn].

So, assuming for example Δn = 1/n, we see that V n(f,X)t is actually equal to
V (f,X)1 = f ∗ μ1 for all n large: the LLN is obvious, and there is no non-trivial
associated CLT.

In other cases we do have some kind of CLT, and we give below an example.

Example 15.1.1 We suppose that X is a standard symmetrical (one-dimensio-
nal) stable process with index α ∈ (0,2). This is the Lévy process with charac-
teristic function E(eiuXt ) = exp−t |u|α . We consider the normalized functionals
V ′n(f,X)1, and with f of the form f (x)= |x|p for some p > 0. We also consider
below a generic variable U having the same law as X1.

For each n, the variables f (Δni X/
√
Δn ) are i.i.d., with the same law as

f (UΔ
1/α−1/2
n )=Δp(1/α−1/2)

n |U |p , because for all s, t ≥ 0 the variable Xt+s −Xt
has the same law as s1/αU . If moreover p < α the variable |U |p has a finite mean,
say m′p . In this case, and since V ′n(f,X)t is the sum of [t/Δn] variables as above,
the usual law of large numbers readily gives

Δ
p( 1

2− 1
α
)

n V ′n(f,X)1
u.c.p.=⇒ m′p t. (15.1.1)

By the way, this suggests that the normalized functionals, with the inside normaliz-
ing factor 1/

√
Δn, is not the proper one; one should rather use here

V ′′n(f,X)t = Δn

[t/Δn]∑

i=1

f
(
Δni X/Δ

1/α
n

)

and then (15.1.1) would read as V ′′n(f,X)1
u.c.p.=⇒ m′pt .
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In other words, in this situation the LLN of Theorem 3.4.1 is degenerate, and

should be replaced by (15.1.1), with the normalizing factor Δ
p( 1

2− 1
α
)

n going to infin-
ity. The usual Donsker’s theorem also yields an associated CLT, under the additional
assumption that 2p < α. It reads as follows:

1√
Δn

(
Δ
p( 1

2− 1
α
)

n V ′n(f,X)1 − m′p t
) L=⇒ (m′2p −m′2p

)
B,

where B is a standard Wiener process. And it turns out that this is even a stable con-
vergence in law, with B being defined on an extension of the space and independent
of F .

When p ≥ α the situation is quite different, because then m′p =∞. However, in
this case the law of |U |p belongs to the domain of attraction of a stable distribution
with index α/p. Hence a result like (15.1.1) simply cannot hold, even with another
normalization. What happens is that, when p > α,

Δ
p/2−1
n V ′n(f,X)1

L=⇒ Z (15.1.2)

where Z is a stable subordinator (that is, an increasing Lévy process which is also a
stable process) with index α/p. When p = α the situation is more complicated, and
the normalizing factor involves a logarithmic term log(1/Δn). Moreover, the con-
vergence in (15.1.2) also holds stably in law, with Z being defined on an extension
of the space and again being independent of F .

This shows in particular that the “first order” limit theorem with a non-trivial
limit is a CLT-type result, since we have a (stable) convergence in law, but not in
probability.

This simple example shows the need of a theory for semimartingales with no
continuous martingale part. But nothing more will be said about this here.

2) We come back to the situation where ct in (15.0.1) is not identically vanishing.
Suppose that d = 2 with X continuous, but that the rank of the matrix ct is always
0 or 1, and consider the normalized functionals V ′n(F,X) with k = 2 and

F(x, y) = ((x1)2 + (y1)2)((x2)2 + (y2)2)− (x1x2 + y1y2)2

= (x1y2)2 + (x2y1)2 − 2x1x2y1y2,

which is the determinant of the 2× 2 matrix xx∗ + yy∗. Then if a ∈M+
2×2 we have

ρ2⊗
a (F )= 3 det(a), with our standing notation ρa =N (0, a). Hence our assumption

on ct yields, by Theorem 8.4.1, that V ′n(F,X) u.c.p.=⇒ 0.
If further σt is itself an Itô semimartingale, and more precisely if (K), that is

Assumption 4.4.3, holds, we can apply Theorem 11.2.1. However, a (tedious) com-
putation shows that the number Ra(F,F ) defined by (11.2.4) vanishes as soon as
det(a)= 0. Therefore, not only the limit of V ′n(F,X) vanishes, but also the limit in
the associated CLT.
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In this setting, one could show 1
Δn
V ′n(F,X) converges stably in law (but not in

probability) to a non-trivial limit, under some additional assumptions, and in par-
ticular the assumption that the volatility σ̃ of the process σt in its decomposition
(5.3.2) is itself an Itô semimartingale, and σt is continuous.

We will not pursue here how to find a substitute of the CLT of Theorem 11.2.1
for the normalized functionals in the degenerate case, mainly because it is largely
an open problem for the time being. We will however study in the next section a
degenerate case for the functionals V n(F,X) when X jumps.

15.2 Functionals of Non-normalized Increments

1) We consider below a situation where Theorem 11.1.2 gives a degenerate result.
For further use, we recall in some detail the notation of this theorem. First the as-
sumption on the process X is (H), that is:

Assumption (H) In (15.0.1), bt is locally bounded and σt is càdlàg, and ‖δ(ω, t, z)‖
∧ 1≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where (τn) is a localizing sequence of
stopping times and each function Γn satisfies

∫
Γn(z)

2λ(dz) <∞.

Next, the first and second partial derivatives of the q-dimensional test function
F are globally denoted as ∇F and ∇2F , and we define the following R

q -valued
functions on R

d :

fj (x)= F(0, . . . ,0, x,0, . . . ,0)
∂if(l);j (x)= ∂F

∂xil
(0, . . . ,0, x,0, . . . ,0)

∂2
i,i′f(l,l′);j (x)= ∂2F

∂xil ∂x
i′
l′
(0, . . . ,0, x,0, . . . ,0)

⎫
⎪⎪⎬

⎪⎪⎭
with x at the j th place. (15.2.1)

Next, let K− = {−k + 1,−k + 2, . . . ,−1} and K+ = {1,2, . . . , k − 1} and
K=K− ∪K+. We choose an arbitrary weakly exhausting sequence (Tn)n≥1 for the

jumps of X, and a very good filtered extension (Ω̃, F̃, (F̃t )t≥0, P̃)

of (Ω,F , (Ft )t≥0,P) on which are defined some F̃Tn -measurable variables
((Ψn,j )j∈K,Ψn−,Ψn+, κn) for n ≥ 1. Those variables are, conditionally on F , all
independent and with the following laws:

• Ψn,j ,Ψn−,Ψn− are d ′-dimensional, N (0, Id ′),

• κn is uniform on [0,1].
Finally, we define the d-dimensional random variables

Rn,j =
⎧
⎨

⎩

σTn−Ψn,j if j ∈K−√
κn σTn−Ψn− +

√
1− κn σTnΨn+ if j = 0

σTnΨn,j if j ∈K+.



15.2 Functionals of Non-normalized Increments 465

Theorem 11.1.2 says that, if F is C2 with F(0) = 0 and ∇F(0) = 0 and
‖∇2F(x)‖ = o(‖x‖) as x→ 0, and with the notation

V (F,X)t =
∞∑

n=1

(
k∑

j=1

k∑

l=1

d∑

i=1

∂if(l);j (ΔXTn)Rin,l−j

)
1{Tn≤t}, (15.2.2)

for each t we have

1√
Δn

(
V n(F,X)t −

k∑

j=1

fj � μt

)
L-s−→ V (F,X)t .

When k = 1 (so F = f ) we also have 1√
Δn
(V n(f,X)t − f � μΔn[t/Δn]) L-s=⇒

V (f,X).

2) It may happen that the limit V (F,X) is identically 0. This occurs in some “triv-
ial” situations, when σt = 0 identically or ΔXt = 0 identically, and more gen-
erally if σt = σt− = 0 whenever ΔXt �= 0. It also happen when the multipliers
∂if(l);j (ΔXTn) in (15.2.2) vanish identically, and this can occur in some non-trivial
situations, as Theorem 15.2.4 below shows.

With the notation (15.2.1), an assumption implying degeneracy is

1≤ j, l ≤ k, 1≤ i ≤ d, ⇒
∑

s≥0

∥∥∂if(l);j (ΔXs)
∥∥ = 0. (15.2.3)

Under (15.2.3) the limit V (F,X) in (15.2.2) vanishes, and one may look for another
normalization, for which a non-trivial limit exists. It turns out that it is possible,
under some more smoothness of the function F .

The limiting process can be constructed as follows, using the same ingredients
Rn as above:

Ṽ (F,X)t = 1

2

∞∑

n=1

(
k∑

j,l,l′=1

d∑

i,i′=1

∂2
i,i′f(l,l′),j (ΔXTn)R

i
n,l−j R

i′
n,l′−j

)
1{Tn≤t}.

(15.2.4)
The same proof as for Proposition 11.1.1, page 299, except that we use Proposi-
tion 4.1.3, page 101, instead of Proposition 4.1.4 (because the productsRin,l−j R

i′
n,l′−j

are no longer F -conditionally centered), shows that this process is well defined as
soon as ‖∂2

i,i′f(l,l′),j‖ ≤K‖x‖2 when ‖x‖ ≤ 1 for all l, l′, j ≤ k and i, i′ ≤ d . Note

that, conditionally on F , the process Ṽ (F,X) has again independent increments
and is of finite variation, but neither centered nor Gaussian. Its F -conditional law,
again, does not depend upon the chosen exhausting sequence (Tn). Computing the
F -conditional variance is possible but not extremely useful. The F -conditional
mean, however, is useful, and it takes the form
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Ẽ
(
Ṽ (F,X)t |F

)=1

2

∑

s≤t

d∑

i,i′=1

k∑

j,l=1

∂2
i,i′f(l,l),l(ΔXs)

×
(
cii

′
s−
(

1{j>l} + 1

2
1{j=l}
)
+ cii′s
(

1{j<l} + 1

2
1{j=l}
))
.

(15.2.5)

Note that the r th component of this process is increasing (in t) as soon as the r th
component F r is a convex function of each of its k arguments.

It turns out that the degeneracy condition (15.2.3) is not enough to have a “higher
order” CLT, and we need an additional condition on the behavior of F near 0. So
we begin with a simple result, in which we simply assume that F vanishes on a
neighborhood of 0:

Theorem 15.2.1 Assume (H), and let F be a C2 function from (Rd)k into R
q which

vanishes on a neighborhood of 0 and satisfies the “degeneracy condition” (15.2.3).
Then for each t , we have the following stable convergence in law:

1

Δn

(
V n(F,X)t −

k∑

j=1

fj � μt

)
L-s−→ Ṽ (F,X)t (15.2.6)

where Ṽ (F,X)t is defined by (15.2.4).

When k = 1, one could also prove the “functional” stable convergence in
(15.2.6), whereas this functional convergence does not hold when k ≥ 2 in gen-
eral. Note that in the above situation all summands in (15.2.4) vanish except finitely
many of them.

Of course, this result is interesting only when, in addition to (15.2.3), we do not
have

1≤ j, l ≤ k, 1≤ i, i′ ≤ d, ⇒
∑

s≥0

∥∥∂2
i,i′f(l,l),j (ΔXs)

∥∥ = 0,

otherwise Ṽ (F,X)t = 0 identically. In this case, assuming that F is C3 and still
vanishing in a neighborhood of 0, we can derive a “third order” CLT of the same
type, with rate 1/Δ3/2

n and involving the third derivatives of F . And if this is also
with a vanishing limit we can go further to get a CLT with rate 1/Δ2

n. Once the
above theorem established, this is a boring but easy task.

Remark 15.2.2 The condition (15.2.3) is rather extreme, an more typical is the situ-
ation where the set

Ωt = ∩1≤j,l≤k, 1≤i,i′≤d

{
∑

s≤t

∥∥∂if(l),j (ΔXs)
∥∥= 0

}
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satisfies 0< P(Ωt ) < 1. Then, by combining Theorems 11.1.2, page 301, and 15.2.1
and using the properties of the stable convergence in law, we easily obtain

• 1√
Δn

(
V n(F,X)t −∑k

j=1 fj � μt
) L-s−→ V (F,X)t in restriction to (Ωt )c

• 1
Δn

(
V n(F,X)t −∑k

j=1 fj � μt
) L-s−→ Ṽ (F,X)t in restriction to Ωt .

(15.2.7)

This is justified in the same way as in Corollary 3.3.4 for example: the first part of
(15.2.7) always holds, and we easily construct another semimartingaleX′ satisfying
(H), such thatX′s =Xs for all s ≤ t on the setΩt , and which satisfies (15.2.3) identi-
cally for the function F , thus obtaining the second part by applying Theorem 15.2.1
to X′.

Remark 15.2.3 Another problem arises with the conditions of the previous theo-
rem. In applications, one may start with a C2 function F satisfying (15.2.3) but
not vanishing on a neighborhood of 0 in (Rd)k . The latter property is obtained by
multiplying F by a function G which vanishes around 0 and equals 1 outside an-
other neighborhood of 0: for example G(z) = ψε(z), where as usual ψε is defined
by (3.3.16).

If we take G to be C2, like G = ψε , the problem is that in general the product
FG does not satisfies (15.2.3). Another possibility consists in simply “truncating”
F , by taking for example Fε to be

either Fε(x1, . . . , xk)= F(x1, . . . , xk)1{‖(x1,...,xk)‖>ε}
or Fε(x1, . . . , xk)= F(x1, . . . , xk)

(
1−∏kj=1 1{‖xj ‖≤ε}

) (15.2.8)

for some ε > 0 (and where z = (x1, . . . , xk) in the last formula). Doing so, we
loose the C2 property. However, as the proof of the theorem will show, the only
requirement is really that F be twice continuously differentiable at each point of
a set D ⊂ (Rd)k , with the following property: for almost all ω, it contains the
point (0, . . . ,0,ΔXs(ω),0, . . . ,0) for all s > 0 and any position for ΔXs between
1 and k.

Thus if ε > 0 is such that almost surely we have ‖ΔXs‖ �= ε for all s > 0, we
deduce that if F is C2 and satisfies (15.2.3), then (15.2.6) holds for Fε for any one of
the two versions in (15.2.8). Moreover this property of ε is satisfied for Lebesgue-
almost all values in (0,∞).

3) When F does not vanish in a neighborhood of 0, things are much more com-
plicated. To understand why, and since the rate will still be 1/Δn, we can consider
for a moment the case where X is continuous: in this case we want 1

Δn
V n(F,X)

to converge, because μ= 0; when F is globally homogeneous of degree p, that is
to say that F(az) = apF(z) for all a ∈ R and z ∈ (Rd)k , we have 1

Δn
V n(F,X)=

Δ
p/2−2
n V ′n(F,X); these processes converge to 0 when p > 4, to

∫ t
0 ρ

k⊗F
cs

(F )ds

when p = 4, and do not converge in general if p < 4.
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Coming back to the case with jumps, we see that, instead of F(z) = o(‖z‖3),
we need either F(z) = o(‖z‖4) (as z→ 0), or F(z) = O(‖z‖4) and in this second
case we need further F to behave as an homogeneous function of degree 4 near the
origin. Even under these stronger assumptions, it is not known in general whether a
CLT holds with the rate 1/Δn. Thus, instead of a “general” result, we simply give a
result in a very special case.

Namely, on the one hand we suppose that X is 2-dimensional (d = 2), with the
following special structure:

ΔX1
t ΔX

2
t = 0 identically. (15.2.9)

In other words, the two components X1 and X2 never jump at the same times. On
the other hand, we take for F a 2-dimensional function on (R2)k with the following
components (below, a vector x in R

2 has components x1 and x2, and x1, . . . , xk all
belong to R

2):

Fj (x1, . . . , xk)=
{
f (x1) if j = 1
f (x1 + · · · + xk) if j = 2

where f (x)= (x1 x2)2.
(15.2.10)

This function is C2 with F(z)= O(‖z‖4) as z→ 0, and it is also globally homoge-
neous with degree 4. We obviously have

∂1f (x)= 2x1
(
x2
)2
, ∂2f (x)= 2

(
x1
)2
x2

∂2
11f (x)= 2

(
x2
)2
, ∂2

22f (x)= 2
(
x1
)2
, ∂2

12f (x)= 4x1x2,

(15.2.11)

and the functions associated with F in (15.2.1) become

f 1
1 = f 2

j = f, ∂if
1
(1);1 = ∂if 2

(l);j = ∂if, ∂2
i,i′f

1
(1,1);1 = ∂2

i,i′f
2
(l,l′);j = ∂2

ii′f,
(15.2.12)

with all other functions f 1
j , ∂if 1

(l);j and ∂2
i,i′f

1
(l,l′);j being 0.

Under (15.2.9), the function F satisfies the degeneracy condition (15.2.3), and
also fj ∗μ= 0 identically.

Theorem 15.2.4 Assume (H) with d = 2 and the condition (15.2.9). Let F be the
function defined by (15.2.10). Then for each t , we have the following stable conver-
gence in law

1

Δn
V n(F,X)t

L-s−→ Ṽ (F,X)t +C(F)t , (15.2.13)

where Ṽ (F,X)t is defined by (15.2.4) and C(F) is the following 2-dimensional
process:

C(F)
j
t =
{
Ht if j = 1
k2Ht if j = 2,

where Ht =
∫ t

0

(
c11
s c

22
s + 2

(
c12
s

)2)
ds.

(15.2.14)
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A simple calculation, based on (15.2.5), (15.2.11) and (15.2.12), plus the prop-
erty (15.2.9), shows that the F -conditional expectation of Ṽ (F j ,X)t is

Ẽ
(
Ṽ
(
Fj ,X

)
t
|F) =

{
H ′t if j = 1
k2H ′t if j = 2,

where

(15.2.15)

H ′t =
1

2

∑

s≤t

((
ΔX1

s

)2(
c11
s− + c11

s

)+ (ΔX2
s

)2(
c22
s− + c22

s

))
.

Remark 15.2.5 The same result holds if we assume that F has the form (15.2.10)
on a neighborhood of the origin only, provided it also satisfies (15.2.3). But then we
do not necessarily have fj ∗μ= 0, and in (15.2.13) the left side should then be the
same as in (15.2.6).

Remark 15.2.6 If in (15.2.10) we take f (x)= |x1x2|p with p > 2 instead of p = 2,

we are in a case of degeneracy for the above result, that is 1
Δn
V n(F,X)t

P−→ 0.

When p is an integer we do have a CLT with the rate 1/Δp/2n , and otherwise the
precise behavior of V n(F,X) is unknown.

Proof of Theorem 15.2.1 The whole proof is copied from the proof of Theo-
rem 11.1.2, which we will use freely below: see pages 302–304.

To begin with, by localization we can replace (H) by the strengthened assumption
(SH). Next, we use the notation Am, b(m), X(m), X′(m) given by (11.1.15), and
Ωn(T ,m) of (11.1.16), so (11.1.17) holds. The exhausting sequence for the jumps of
X is (Sp), defined before (11.1.15) (or equivalently by (4.3.1)), and Pm denotes the
set of all indices p such that Sp = S(m′, j) for some j ≥ 1 and some m′ ≤m, and
i(n,p) is the unique integer with (i(n,p)− 1)Δn < Sp ≤ i(n,p)Δn, and L(n,p)
and R(n,p, j) are given by (11.1.18). We also set

Ṽ n(F,X)t = 1

Δn

(
V n(F,X)t −

k∑

j=1

fj ∗μXt
)
.

With ζ(j)np being as before (11.1.22), we set

Zn(m)t =
∑

p∈Pm: Sp≤t
ζ np , where ζ np =

1

Δn

k∑

j=1

ζ(j)np.

Then, similar to (11.1.22), we obtain

Ṽ n(F,X)t = Ṽ n
(
F,X(m)

)
t
+Zn(m)t on the set Ωn(t,m). (15.2.16)

To evaluate ζ(j)np we use a Taylor expansion. Here, in view of (15.2.3), we need
a Taylor’s expansion up to the second order, around the point (0, . . . ,0,ΔXSp ,0,
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. . . ,0), with ΔXSp at the j th place (this is the only occurrence of the C2 prop-
erty of F , and it explains why the extension of the theorem, as mentioned in Re-
mark 15.2.3, is true). Using the tightness of the sequences R(n,p, j), which follows
from (11.1.19), we obtain

1

Δn
ζ(j)np−

1

2

k∑

l,l′=1

d∑

i,i′=1

∂2
i,i′f(l,l′),j (ΔXSp)R(n,p, l− j)i R

(
n,p, l′ − j)i′ P−→ 0.

Then the convergence (11.1.19) again yields that (ζ np )p≥1 converges stably in law
to (ζp)p≥1, where the q-dimensional variables ζp are defined on the extended space
by

ζp = 1

2

k∑

j,l,l′=1

d∑

i,i′=1

∂2
i,i′f(l,l′),j (ΔXSp)R

i
p,l−j R

i′
p,l′−j .

Since the set {Sp : p ∈Pm} ∩ [0, t] is finite, we deduce that, as n→∞:

Zn(m)
L-s=⇒ Ṽ

(
F,X′(m)

)
, (15.2.17)

where Ṽ (F,X′(m)) is associated with the process X′(m) by (15.2.4).
Now we use the hypothesis that F(z) = 0 if ‖z‖ ≤ ε for some ε > 0. We

then choose m > 1/ε. First, since ‖ΔX(m)s‖ ≤ 1
m

by construction, we have
Ṽ (F,X(m))= Ṽ (F,X) and fj ∗μX(m) = 0. Second, recalling ‖Δni X(m)‖ ≤ 2

m
for

all i ≤ [t/Δn] on the set Ωn(t,m) by its very definition, we deduce that on this set
we have V n(F,X(m))t = 0, hence also Ṽ n(F,X(m))t = 0. Combining these facts
with (15.2.16) and the property P(Ωn(t,m))→ 1 as n→∞ allows us to deduce
(15.2.6) from (15.2.17). �

Proof of Theorem 15.2.4 Step 1) As for the previous theorem we may assume
(SH), and the previous proof works in exactly the same way down to (15.2.17), with
further Ṽ n(F,X) = 1

Δn
V n(F,X) and Ṽ n(F,X(m)) = 1

Δn
V n(F,X(m)), because

F ∗μ≡ 0 here.
(15.2.12) implies that the nth summand in the right side of (15.2.4) for

Ṽ (F,X(m))t is smaller than K‖ΔX(m)s‖2∑k
l=−k ‖Rn,l‖2. Now, we have

Ṽ (F,X)− Ṽ (F,X′(m)) = Ṽ (F,X(m)) and E(‖Rn,l‖2 | F) ≤ K by (SH), so we
deduce

Ẽ

(
sup
s≤t
∥∥Ṽ (F,X)s − Ṽ

(
F,X′(m)

)
s

∥∥
)
≤ KE

(
∑

s≤t

∥∥ΔX(m)s
∥∥2
)

≤ t
∫

Acm

Γ (z)2λ(dz),

which goes to 0 as m→∞. Hence

Ṽ
(
F,X′(m)

) u.c.p.=⇒ Ṽ (F,X). (15.2.18)
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At this stage, combining (15.2.16), (15.2.17), (15.2.18), plus the property
P(Ωn(t,m))→ 1 as n→∞, we deduce from Proposition 2.2.4, page 52, that it
remains to show that, for all η > 0, we have for j = 1,2:

lim
m→∞ lim sup

n→∞
P

(∣∣∣∣
1

Δn
V n
(
Fj ,X(m)

)
t
−C(F)jt

∣∣∣∣> η
)
= 0. (15.2.19)

Note that when k = 1 we have F 2 = F 1 and C(F)2 = C(F)1, so it is indeed enough
to show this for j = 2. So below we forget about F 1 and simply write F = F 2 and
also C(F)= C(F)2.

Step 2) We can write X(m)=X′(m)+X′′(m), where

X
′
(m)t =X0 +

∫ t

0
b(m)s ds +

∫ t

0
σs dWs, X

′′
(m)= (δ 1Acm) ∗ (p− q).

Since F = F 2 is homogeneous of degree 4, we have V n(F,X
′
(m)) = Δn V ′n(F,

X
′
(m)). Moreover, with the usual notation ρa = N (0, a), we easily check that

ρk⊗cs (F )= k2(c11
s c

22
s +2(c12

s )
2). Hence, sinceX

′
(m) is continuous and satisfies (H),

we deduce from Theorem 8.4.1 that, as n→∞,

1

Δn
V n
(
F,X

′
(m)
) u.c.p.=⇒ C(F).

Thus, instead of (15.2.19) (for j = 2), it suffices to prove

lim
m→∞ lim sup

n→∞
E

(
1

Δn

∣∣V n
(
F,X(m)

)
t
− V n(F,X′(m))

t

∣∣
)
= 0.

For any process we write

Δ′ni Y = Y(i+k−1)Δn − Y(i−1)Δn

(this is our usual increment Δni Y , but with the discretization step kΔn and a start-
ing time (i − 1)Δn which is not necessarily a multiple of kΔn). Then, recall-
ing (15.2.10) for j = 2 and the function f (x) = (x1x2)2, we have V n(F,Y )t =∑[t/Δn]−k+1
i=1 f (Δ′ni Y ) and thus

1

Δn

∣∣V n
(
F,X(m)

)
t
− V n(F,X′(m))

t

∣∣ ≤
[t/Δn]∑

i=1

ζ(m)ni ,

where

ζ(m)ni =
1

Δn

∣∣ f
(
Δ′ni X(m)

)− f (Δ′ni X′(m)
)∣∣.
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Therefore we are left to prove

lim
m→∞ lim sup

n→∞
E

([t/Δn]∑

i=1

ζ(m)ni

)
= 0. (15.2.20)

Step 3) The form of f implies that for each ε > 0 there is a constant Kε with

∣∣f (x + y)− f (x)∣∣ ≤ ε‖x‖4 +Kε‖x‖2 ‖y‖2 +Kεf (y).

Hence

ζ(m)ni ≤ εU(m)ni +Kε U ′(m)ni +Kε U ′′(m)ni , where

U(m)ni =
1

Δn

∥∥Δ′ni X
′
(m)
∥∥4

U ′(m)ni =
1

Δn

∥∥Δ′ni X
′
(m)
∥∥2 ∥∥Δ′ni X

′′
(m)
∥∥2

U ′′(m)ni =
1

Δn
f
(
Δ′ni X

′′
(m)
)
. (15.2.21)

Below, φm denotes a sequence which may change from line to line, but always
goes to 0 as m→∞. Recalling that σt is bounded and ‖b(m)t‖ ≤Km, we obtain
from (2.1.44), and for all q > 0:

E

(
sup
s≤kΔn

∥∥X′(m)(i−1)Δn+s −X′(m)(i−1)Δn

∥∥q
)
≤KqΔq/2n +Kqmq Δqn

E

(
sup
s≤kΔn

∥∥X′′(m)(i−1)Δn+s −X′′(m)(i−1)Δn

∥∥q
)
≤KqΔ(q/2)∧1

n φm.
(15.2.22)

This yields

E
(
U(m)ni

) ≤ KΔn +Km4Δ3
n. (15.2.23)

Step 4) In this step we study U ′(m)ni . We apply Itô’s formula to the pair of processes

(X
′
(m),X

′′
(m)), between the times S = (i − 1)Δn and S′ = S + kΔn, to obtain

ΔnU
′(m)ni =M ′(n,m, i)S′ +

∫ S′

S

H ′m
(
X
′
(m)s −X′(m)S,X′′(m)s −X′′(m)S

)
s
ds,

where

H ′m(x, y)s = 2‖y‖2
2∑

j=1

b(m)
j
s x
j + ‖y‖2

2∑

j=1

c
jj
s + ‖x‖2

∫

Acm

∥∥δ(s, z)
∥∥2 λ(dz),

(15.2.24)
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and M ′(n,m, i) is a locally square-integrable martingale vanishing on [0, S], and
whose predictable bracket is

∫ S′

S

H
′
m

(
X
′
(m)s −X′(m)S,X′′(m)s −X′′(m)S

)
s
ds

for a (random) function H
′
m(x, y)s which is a polynomial in (x, y) with bounded

(random) coefficients, exactly as Hm(x, y)s . By virtue of (15.2.22) we deduce that
E(H

′
m(x, y)s)≤K , hence M ′(m,n, i) is indeed a martingale, and thus

E
(
U ′(m)ni

)= 1

δn

∫ S′

S

E
(
H ′m
(
X
′
(m)s −X′(m)S,X′′(m)s −X′′(m)S

)
s

)
ds.

The definition (15.2.24) gives |H ′m(x, y)s | ≤ K(m‖y‖2 ‖x‖ + ‖y‖2 + φm‖x‖2)

because again ‖b(m)t‖ ≤ Km and ‖ct‖ ≤ K , and also ‖δ(t, z)‖ ≤ Γ (z). Then
(15.2.22) and Hölder’s inequality yield

E
(
U ′(m)ni

) ≤ KΔn
(
mΔ

1/4
n + φm

)
(15.2.25)

(recall that φm changes from line to line).

Step 5) In the last step we study U ′′(m)ni . We use again Itô’s formula to get

ΔnU
′′(m)ni = M ′′(n,m, i)S′ +

∫ S′

S

H ′′m
(
X
′′
(m)s −X′′(m)S

)
s
ds,

where, for the same reason as in Step 4, M ′′(n,m, i) is a martingale, and

H ′′m(x)s =
∫

Acm

(
f
(
x + δ(s, z))− f (x)−∇f (x)δ(s, z)) λ(dz).

Now, (15.2.9) implies that δ1δ2 vanishes p almost everywhere, hence q almost every-
where as well (because it is a predictable function). This implies that, for P(dω)⊗ds
almost all (ω, s), we have

∫ |δ(ω, s, z)1|u|δ(ω, s, z)2|v λ(dz)= 0 for any u,v > 0.
Coming back to the specific form of f and its derivatives given by (15.2.11), we see
that in fact H ′′m is also

H ′′m(x)s =
∫

Acm

((
x1)2(δ(t, z)2

)2 + (x2)2(δ(t, z)1
)2)
λ(dz),

and thus 0≤H ′′m(x)≤ φm ‖x‖2. At this stage, (15.2.22) allows us to deduce

E
(
U ′(m)ni

)= 1

δn

∫ S′

S

E
(
H ′′m
(
X
′′
(m)s −X′′(m)S

)
s

)
ds ≤ KΔn φm. (15.2.26)
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Now, we plug (15.2.23), (15.2.25) and (15.2.26) into (15.2.21) to get

E

([t/Δn]∑

i=1

ζ(m)ni

)
≤ t
(
Kε
(
1+m4Δ2

n

)+Kε mΔ1/4
n +Kε φm

)
.

This is true for all ε > 0. Hence, letting first n→∞, then m→∞, then ε→ 0, we
obtain (15.2.20). This completes the proof. �

15.3 Applications

A natural application of the previous results, and especially of Theorem 15.2.4,
concerns testing procedures for deciding whether two components of a given pro-
cess have jumps at the same time, or not. This is clearly a 2-dimensional problem,
since in the multidimensional situation one can perform the tests for any pair of
components. So below we assume that X = (X1,X2) is 2-dimensional. We also
assume (H).

In contrast with the construction of test statistics for deciding whether one com-
ponent has jumps or not, where the same test statistics may be used for testing both
null hypotheses of “jumps” and “no jumps”, here we need two different test statis-
tics for the two possible null hypotheses. More specifically, these two hypotheses
are

Ω
cj
t =
{
ω : s �→X1

s (ω) and s �→X2
s (ω) have common jumps on [0, t]}

Ω
dj
t = {ω : both s �→X1

s (ω) and s �→X2
s (ω) have jumps, but they have

no common jump, on [0, t]}.
Note that the time t > 0 is fixed here. The union of these two disjoint sets is not Ω ,
but their global complement is

Ωcct = {ω : both s �→X1
s (ω) and s �→X2

s (ω) are continuous on [0, t]}.
All three sets above may have a positive probability. However, before testing for
common jumps we should of course be (reasonably) sure in advance that both com-
ponents have jumps on the interval of interest.

We consider the function f (x)= (x1x2)2 on R
2 and the functionG on (Rd)k for

some integer k ≥ 2, defined by G(x1, . . . , xk)= f (x1 + · · · + xk) (so G= F 2, with
the notation (15.2.10)). Then we introduce the following two statistics (below, t > 0
is fixed):

T (k)n = V n(G,X)t

V n(f,X)t
, T ′n = V n(f,X)t .

The motivation for these test statistics is the following result.
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Theorem 15.3.1 Assume (H).
(a) We have

T (k)n
P−→ k in restriction to the set Ωcjt , (15.3.1)

and

T (k)n
L-s−→ T (k) := Dt + k2Ht

D′t +Ht
in restriction to the set Ωdjt , (15.3.2)

where Ht is given by (15.2.14) and where Dt and D′t are two variables defined on

an extension of the space, and conditionally on F and on being in Ωdjt the pair

(Dt ,D
′
t ) admit a density, hence T (k) �= 1 almost surely on Ωdjt .

(b) We have

T ′n
P−→
{
f � μt > 0 in restriction to the set Ωcjt
0 in restriction to the set Ωdjt .

In fact (b) and the first claim of (a) need no assumption except that X is a semi-
martingale, plus the propertyΔXt = 0 a.s. for (15.3.1). In contrast, (15.3.2) requires
the full force of (H).

Proof (b) is easily deduced from our previous results: indeed Theorem 3.4.1,

page 81, yields that V n(f,X)t
P−→ f ∗ μt as soon as ΔXt = 0 a.s., and f ∗ μt

is positive onΩcjt and vanishes onΩdjt . By Theorem 8.2.1, page 230, we also know

that V n(G,X)t
P−→ kf ∗μt , so (15.3.1) follows.

Now we turn to (15.3.2). Suppose first that X1 and X2 have no common jumps at
all, that is (15.2.9) holds. The function F of (15.2.11) has the components F 2 =G
and F 1(x1, . . . , xk) = f (x1), hence V n(F 2,X)t = V n(G,X)t , and V n(F 1,X)t =
V n(f,X)t−(k−1)Δn . A look at the proof of Theorem 15.2.4 shows that the con-
vergence (15.2.13) also holds if we replace V n(F 1,X)t by V n(F 1,X)t+(k−1)Δn =
V n(f,X)t . Therefore we have

(
1

Δn
V n(f,X)t ,

1

Δn
V n(F,X)t

)
L-s−→ (Ṽ (F 1,X

)
t
+Ct , Ṽ

(
F 2,X

)
t
+ k2Ct

)
.

(15.3.3)
At this point, (15.3.2) follows easily, upon setting Dt = Ṽ (F 2,X)t and D′t =
Ṽ (F 1,X)t . The fact that the pair (Dt ,D′t ) admits a density, F -conditionally, is a
consequence of the definition (15.2.4) and of the property that ∂2

i,i′f
r
(l,l′);j vanishes

identically when r = 1 if l + l′ + j ≥ 4, whereas it does not when r = 2. The last
claim that T (k) �= 1 a.s. then follows.

Finally, it may happen that 0< P(Ω
dj
t ) < 1. In this case, we proceed exactly as in

Theorem 3.5.1, page 94: we replace the definitions of us and vs given before (3.5.11)
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by

us = λ
({
z : δ(s, z)1δ(s, z)2 �= 0

})
, vs =

∫

{‖δ(s,z)‖≤1}
∥∥δ(s, z)

∥∥2 λ(dz),

and the rest of the proof is the same. �

This theorem suggests that T (k)n is a test statistic which allows us to test the
null hypothesis Ωcjt that there are common jumps on the interval [0, t], whereas T ′n
is useful for the other null hypothesis Ωdjt that all jumps are “disjoint”. Of course,
exactly as in Chap. 11, in order to be able to construct a test with a prescribed
(asymptotic) level, we need Central Limit Theorems for both T (k)n and T ′n, under
the relevant null hypotheses.

The CLT for T (k)n is in the “non-degenerate” case and uses Theorem 11.1.2.
More precisely, exactly as for Proposition 11.4.2, page 332, we have:

Proposition 15.3.2 Assume (H). With the above notation, we have

(
1√
Δn

(
V n(f,X)t − f ∗μt

)
,

1√
Δn

(
V n(G,X)t − kf ∗μt

)
)

L-s−→ (Zt ,Z′t
)

where the pair (Zt ,Z′t ) (defined by (11.1.7) as (V (F 1,X)t ,V (F
2,X)t ) with F

given by (15.2.11)) is defined on an extension of the space and is F -conditionally
centered, and Gaussian ifX and σ do not jump together, and with the F -conditional
variance-covariance given by

E
(
(Zt )

2 |F) = H ′′t
E
(
Zt Z

′
t |F
) = kH ′′t

E
((
Z′t
)2 |F) = 2k3 + k

3
H ′′t ,

where

H ′′t = 2
∑

s≤t

(
ΔX1

s

)2(
ΔX2

s

)2((
ΔX2

s

)2(
c11
s− + c11

s

)+ 2ΔX1
s ΔX

2
s

(
c12
s− + c12

s

)

+ (ΔX1
s

)2(
c22
s− + c11

s

))
.

At this point, it remains to use again the “delta method”, to obtain the following
theorem, which in turn can be used to derive a concrete test when the null hypothesis
is “common jumps”:

Theorem 15.3.3 Assume (H). In restriction to the set Ωcjt the sequence
1√
Δn
(T (k)n − k) converges stably in law to a variable T (k) which, conditionally
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on F , is centered with variance

Ẽ
((
T (k)
)2 |F) = k(k − 1)(2k − 1)H ′′t

3(f ∗μt)2
and is Gaussian conditionally on F if further the processes X and σ have no com-
mon jumps.

For the other null hypothesis of “disjoint jumps”, we need a result saying at which
rate T ′n goes to 0 on the set Ωdjt . This is essentially the same as for (15.3.2), and
even simpler because we only have to worry about the single degenerate functional
V n(f,X). In fact, it follows from (15.3.3) and also (15.2.5) that:

Theorem 15.3.4 Assume (H). In restriction to the set Ωdjt the sequence 1
Δn
T ′n con-

verges stably in law to a variable T ′ which, conditionally on F , is positive with
mean Ẽ(T ′ |F)=Ht , as given by (15.2.15).
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Chapter 16
Semimartingales Contaminated by Noise

Our last chapter is, even more than the others, motivated by applications. The setting
can be sketchily described as follows: our process of interest is the semimartingale
X, and as in most of what precedes it is sampled at regularly spaced observation
times, with a “small” time step Δn. However, the observations are not totally accu-
rate, but are contaminated with some kind of noise. That is, if an observation takes
place at time t , instead of Xt we actually observe a variable of the form

Zt = Xt + χt (16.0.1)

where χt is a “measurement error,” or “noise.” Then the question arises of what
happens to functionals like V n(f,X) or V ′n(f,X) if we substitute X with Z. Or,
from a more applied viewpoint, and assuming that X is an Itô semimartingale, can
we still estimate, say, the integrated volatility, and how could we do so?

The answer, of course, depends fundamentally on the properties of χt . At one
end of the spectrum, the process χt may itself be a semimartingale. Then Z is a
semimartingale and the previous theory applies to it: We can for example estimate
the integrated volatility of the sum Z =X + χ , but there is no way to estimate the
integrated volatility ofX itself. At the other end of the spectrum, we have a standard
“additive white noise”, meaning that the variables χt are i.i.d. centered and globally
independent of X. Then the behavior of the functionals V n(f,Z) or V ′n(f,Z) is
typically dominated by the noise and, nevertheless, it is possible consistently to
estimate the integrated volatility of X (and there is a vast literature on this central
topic).

These two cases are by far not the only cases encountered in practice. We often
have a significant rounding noise due to the fact that the observed values of Xt
are recorded with a limited number of decimal points. For example, in financial
applications, prices are given in cents, so for a stock at the average price of $20
the rounding error is about 0.05% of the value: when the price is observed every
second, one thus observes that it typically does not change for a few seconds in a
row; if we use an Itô semimartingale model, this effect is due, in particular, to the
rounding. In the case of a “pure rounding noise” when the observed value Zt is the
biggest multiple of a given rounding level a > 0 smaller than or equal to Xt (that is
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Zt = a[Xt/a]), there is again no way to estimate the integrated volatility of X. On
the other hand when the level a is “small”, that is a = an goes to 0 as Δn→ 0, this
estimation becomes (theoretically) possible.

We devote the first section below to a precise description of the type of noise
which will be considered, and this does not include “pure rounding,” unfortunately:
this case is so far very poorly understood, and is excluded here, although we al-
low for some kind of rounding below, because rounding is an everywhere present
feature.

16.1 Structure of the Noise and the Pre-averaging Scheme

16.1.1 Structure of the Noise

The formulation (16.0.1) does not really fit reality, since the noise exists only when
we observe something: that is, instead of observing XiΔn we observe XiΔn + χni
where χni is the noise at time iΔn. However, it does no harm to suppose that χt is
actually defined for all times, although it is immaterial outside the set of observation
times.

Another preliminary remark should also be made: in (16.0.1) the “level” of noise
does not depend on the sampling frequency 1/Δn. But in some applications it nat-
urally does. For example a physicist may increase the sampling frequency together
with the accuracy of measurement. Perhaps more to the point, the statistician does
some asymptotic estimation by pretending that Δn goes to 0, but in practice Δn is
maybe small but given; then if the (fixed) level of noise is also small, a rather natu-
ral asymptotic setting to consider is that Δn→ 0 and simultaneously the noise level
shrinks to 0. A shrinking noise is somewhat difficult to model in a realistic way, ex-
cept in one situation: namely, the noise depends on n through a multiplicative factor
going to 0. This is what we will do below.

Now we come to the description of the noise. Basically, χt should be, condition-
ally on the whole process X, a family of independent, centered random variables.
This implies that the variables χt are (unconditionally) centered. However we em-
phasize the fact that, again unconditionally, they are not necessarily mutually inde-
pendent, nor independent of X. This can be formalized in different ways, and here
we use the following convenient method.

We have first a filtered probability space (Ω(0),F (0), (F (0)t )t≥0,P
(0)), on which

our basic d-dimensional semimartingale X is defined. Second, for each time t we
have a transition probability Qt(ω(0), dz) from (Ω(0),F (0)t ) into R

d . We endow
the space Ω(1) = (Rd)[0,∞) with the product Borel σ -field F (1) and the “canoni-
cal process” (χt : t ≥ 0) and the canonical filtration F (1)t = ∩s>tσ (χr : r ≤ s), and
the probability Q(ω(0), dω(1)) which is the product ⊗t≥0 Qt(ω

(0), .). We then de-
fine a filtered probability space (Ω,F , (Ft )t≥0,P) and a (bigger) filtration (Ht ) as
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follows:

Ω = Ω(0) ×Ω(1), F = F (0) ⊗F (1)

Ft = ∩s>t (F (0)s ⊗F (1)s ) Ht = F (0) ⊗F (1)t
P(dω(0), dω(1))= P

(0)(dω(0)) Q(ω(0), dω(1)).

⎫
⎪⎬

⎪⎭
(16.1.1)

Any variable or process defined on either Ω(0) or Ω(1) is considered in the usual
way as a variable or a process on Ω . Since ω(0) �→ Q(ω(0),A) is F (0)t mea-
surable if A ∈ σ(χs : s ∈ [0, t)), by (2.1.28) and (2.1.29) the filtered extension
(Ω,F , (Ft )t≥0,P) of (Ω(0),F (0), (F (0)t )t≥0,P

(0)) is very good, and X is a semi-
martingale on the extension with the same characteristics as on the original space,
and also the same Grigelionis form when it is an Itô semimartingale.

The (non-normalized) error process is the canonical process χ defined above,
with components denoted (χjt )1≤j≤d . By construction, the variables χt are mutually
independent, conditionally on F (0), but we need more:

Assumption 16.1.1 (or (N)): For each q > 0 the process
∫
Qt(ω

(0), dz)‖z‖q is

locally bounded on the space (Ω(0),F (0), (F (0)t ),P(0)), and we have
∫
Qt
(
ω(0), dz

)
z = 0. (16.1.2)

The second and third conditional moments will be explicitly used below, and are
denoted as:

Υ
ij
t

(
ω(0)
)=
∫
Qt
(
ω(0), dz

)
zizj

Υ
′ijk
t

(
ω(0)
)=
∫
Qt
(
ω(0), dz

)
zizj zk.

(16.1.3)

Finally, the (potentially) observed process at stage n is the following process:

Znt = Xt + (Δn)η χt , where η ≥ 0. (16.1.4)

Once more, the most useful case is when η = 0, so Zn = Z =X + χ . When η > 0
we have a shrinking noise with shrinking factor un = (Δn)η . For the shrinking fac-
tor one could use any sequence un > 0, but the relative behavior of Δn and un is
fundamental here, so assuming un =Δηn is a significant simplification.

Remark 16.1.2 The local boundedness of the all moments of the noise is not a se-
rious practical restriction. It would be possible to require local boundedness for the
moments up to order q only, with q depending on the specific results one wants to
prove.

On the other hand, the conditional centering property (16.1.2) is quite restrictive,
see Example 16.1.4, but cannot be dispensed with. It could be replaced by the fact
that Yt =

∫
Qt(ω

(0), dz) z is a semimartingale but, in this case, and when η = 0 in
(16.1.4), it would be impossible to disentangle X from X+ Y .
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Example 16.1.3 Additive noise: This is when the χt are (unconditionally) mutually
independent and independent of X. It means that Qt(ω(0), dz) =Qt(dz) does not
depend on ω(0). In most cases with additive noise we have that Qt =Q does not
depend on t either, so Υ ijt = Υ ij and Υ ′ijkt = Υ ′ijk are just numbers. This case
is by far the most frequent case considered in the literature, probably because it is
the easiest to handle, and also because it corresponds to the common idea about
“measurement errors”. However, this type of noise does not properly account for
the so-called “microstructure noise” in mathematical finance: in this application,
the rounding noise explained below is probably dominant.

Example 16.1.4 Pure rounding noise: Letting α > 0 be the rounding level, we
observe Zt = α[Xt/α], say (rounding from below). Then conditionally on F (0)
the variables χt = α[Xt/α] − Xt are independent (because they are indeed F (0)-
measurable) and with bounded moments. However (16.1.2) fails, since χt is F (0)
measurable andQt is the Dirac mass sitting at χt . Hence pure rounding is excluded
in what follows.

This is of course not surprising. If for example X = σW with σ > 0 and W a
Brownian motion, we will see later that the discrete observation of Z when Δn→ 0
allows us to recover σ , under Assumption 16.1.1. However if Z is the rounded
version of X, the σ -field generated by the variables Zt is the σ -field generated by
the upcrossings and downcrossings by X of all levels kα for k ∈ Z. So even if the
whole path of the noisy process Z were known over some finite interval [0, t], one
could not infer the value of σ .

Example 16.1.5 Additive noise plus rounding: Here we again fix a rounding level
α > 0. For each t we consider two variables Lt and Ut , where Ut is uniform over
[0,1] and Lt is Z-valued centered with moments of all order bounded in t , and
Lt ,Ut are mutually independent and independent of X. We observe the process

Zt = α
(
Lt + [Ut +Xt/α]

)
.

This fits our general model. Assumption (N) holds here, and more precisely
Qt(ω

(0), dz) is the law of α(Lt + [Xt(ω(0))/α + Ut ]) (checking (16.1.2), which
amounts to E([u+Ut ])= u, is straightforward). This model amounts to having an
additive noise of the form Lt + αUt , followed by rounding.

This also accommodate shrinking noise: indeed the normalized noise Δηn χt fol-
lows a model of the same type, with Δηn α instead of α.

16.1.2 The Pre-averaging Scheme

Recall that our aim is to obtain estimators for quantities connected with X, and we
are not a priori interested by the noise. For example, consider the caseX = σW and
a non-shrinking additive noise with law independent of time. We want to estimate
c= σ 2.
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The first (and wrong) idea is to use the approximate quadratic variation of
the noisy process, that is

∑[t/Δn]
i=1 (Δni Z)

2. The ith summand here has the same
law as (σ

√
ΔnU + χ − χ ′)2, where U,χ,χ ′ are independent, U is N (0,1) and

χ and χ ′ have the same law as all χt ’s. Hence (Δni Z)
2 is approximately the

same as (χ − χ ′)2 in law when n is large, and the summands are independent as
soon as they are separated by more than one time step. So it is easy to see that

Δn
∑[t/Δn]
i=1 (Δni Z)

2 P−→ 2tΥ (here, according to (16.1.3), Υ is the second moment
of the noise, so E((χ − χ ′)2) = 2Υ ). In other words, the approximate quadratic
variation explodes, and once properly normalized its limit depends on the noise but
not on the quantity of interest σ .

Another simple idea consists in taking the average of kn successive values, say
YiΔn = 1

kn

∑kn−1
j=0 Z(i+j)Δn , and then take

∑[t/Δn]−kn
i=0 (Y(i+kn)Δn −YiΔn)2. Since the

χt are i.i.d. centered, the variable YiΔn is close to the average 1
kn

∑kn−1
j=0 X(i+j)Δn

when kn is large, and thus the above sum is close to the variable 1
k2
n
V (Φ,2kn,X)t ,

where V n(Φ,2kn,X) is given by (8.1.9) and with Φ(y) = 4(
∫ 1

1/2 y(t) dt −∫ 1/2
0 y(t) dt)2: so we may hope to obtain, after proper normalization, an approx-

imation of c.
The second idea works in our more general setting, due to the fact that condi-

tionally on X the variables χt are independent and centered, although with a law
depending on t and on the process X. Taking the plain average as above may not
be the best idea, so we introduce a “weighted average” below, which includes the
previous one and is called “pre-averaging”. It is also another name for the so-called
“kernel methods”, although there are some slight differences (mainly about the treat-
ment of the first few and last few data in the time interval of interest). As one will
see, the pre-averaging scheme is also a special case of the “average functions” in-
troduced in Chap. 12, see (12.0.3).

We need two ingredients:

• a sequence of integers kn satisfying

kn = 1

θ Δ
η′
n

(
1+ o
(
Δ
(1−η′)/2
n

))
where θ > 0, η′ ∈ (0,1), (16.1.5)

and we write un = knΔn;
• a real-valued (weight) function g on [0,1], satisfying

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,

g(0)= g(1)= 0,
∫ 1

0
g(s)2 ds > 0.

(16.1.6)

The sequence kn is fixed throughout, the weight function g will sometimes vary,
but always satisfies (16.1.6). Note that g can be written as in (12.0.4) for a signed
measure G on [0,1], which has no atom and mass G([0,1]) = 0, but here we re-
quire some additional smoothness. This leads us to use and generalize the notation
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(12.2.1) for p > 0 and any function h on [0,1]:

Λ(h,p)=
∫ 1

0

∣∣h(s)
∣∣p ds, Λ(h)=Λ(h,2)=

∫ 1

0
h(s)2 ds. (16.1.7)

It is convenient to extend g to the whole of R by setting g(s) = 0 if s /∈ [0,1].
We associate with g the following numbers, where p ∈ (0,∞) and i ∈ Z:

gni = g(i/kn), g′ni = gni − gni−1,

Λn(g,p) =
kn∑

i=1

∣∣gni
∣∣p, Λ′n(g,p)n =

kn∑

i=1

∣∣g′ni
∣∣p (16.1.8)

(g′ni is not g′(i/kn) for the derivative g′ of g, which in general is not a weight func-
tion anyway. In fact, g′ni is “close” to g′(i/kn)/kn, at least when g′ is everywhere
continuous). (16.1.6) yields, as n→∞,

Λn(g,p)= knΛ(g,p)+O(1), Λ′n(g,p)= k1−p
n Λ
(
g′,p
)+O
(
k
−p
n

)
.

(16.1.9)
If U = (Ut )t≥0 is a q-dimensional process, we rewrite the notation (12.1.10) and

extend it as follows, for i ≥ 1 (recall that gn0 = gnkn = 0, hence
∑kn
j=1 g

′n
j = 0):

U(g)ni =
kn−1∑

j=1

gnj Δ
n
i+j−1U =−

kn∑

j=1

g′nj U(i+j−2)Δn

=−
kn∑

j=1

g′nj (U(i+j−2)Δn −U(i−1)Δn)

Û(g)
n,lm
i =

kn∑

j=1

(
g′nj
)2
Δni+j−1U

l Δni+j−1U
m.

(16.1.10)

The variables U(g)ni are q-dimensional, and Û (g)ni = (Û(g)n,lmi )1≤l,m≤q is M+
q×q -

valued. We also recall the notation (8.1.7) and (8.1.8), which are

t ∈ [0,1] �→ Y(n, i)t = Y(i−1)Δn+tun − Y(i−1)Δn

Y (n, i)
(n)
t = Y(n, i)[knt]/kn .

(16.1.11)

Now we can define some of the processes of interest for us. We consider a con-
tinuous function f on R

d and the function Φ =Φf,g on D
d
1 defined by

Φ(x) = f
(
Ψ (x)
)
, where Ψ (x) = −

∫ 1

0
x(s) g′(s) ds, (16.1.12)

which is the same as in (12.0.3). Taking into account the last equality in the first
line of (16.1.10), plus (16.1.11), one readily checks that Ψ (U(n, i)(n)) = U(g)ni .
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Therefore the processes V n(Φ,kn,U) and V ′n(Φ, kn,U) of (8.1.9) and (8.1.11)
take the form:

V n(Φ,kn,U)t =
[t/Δn]−kn+1∑

i=1

f
(
U(g)ni

)

V ′n(Φ, kn,U)t = Δn

[t/Δn]−kn+1∑

i=1

f
(
U(g)ni /

√
un
)
,

(16.1.13)

and when we plug in the noisy process, then U = Zn =X+Δηnχ .

Remark 16.1.6 It is possible to introduce different weight functions for each com-
ponent of the process. Up to more cumbersome notation, the mathematical treatment
and results would be the same.

Example 16.1.7 The simplest weight function is g(s)= 2(s∧ (1− s)) for s ∈ [0,1].
Then Λ(g,p)= 1

2(p+1) and Λ(g′,p)= 2p and also, when kn = 2k′n is even,

U(g)ni =
1

k′n
(U(i+k′n−1)Δn + · · · +U(i+2k′n−2)Δn)

− 1

k′n
(U(i−1)Δn + · · · +U(i+k′n−2)Δn)

Û(g)
n,lm
i = 4

k′2n

2k′n∑

j=1

Δni+j−1U
lΔni+j−1U

m.

In this case, U(g)ni is simply the difference between two successive (non-
overlapping) averages of k′n values of U .

16.2 Law of Large Numbers for General (Noisy)
Semimartingales

Throughout the rest of the chapter, we have a regular discretization and the integers
kn satisfy (16.1.5) and the weight function g satisfies (16.1.6), and Φ is associated
by (16.1.12), and further the setting (16.1.1) is in force.

Here we consider an arbitrary d-dimensional semimartingale. Recalling the noisy
process Zn of (16.1.4), we give a law of large numbers for V n(Φ,kn,Zn) of
(16.1.13).

Theorem 16.2.1 Let X be a d-dimensional semimartingale with jump measure μ,
and assume (N) for the noise. Let f be a continuous function on R

d satisfying
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f (x)= o(‖x‖p) as x→ 0 for some p ≥ 2. Let Zn = X + (Δn)ηχ with η ≥ 0 and
take kn satisfying (16.1.5) with η′ > 0 and also

η′ ≥ 2
1− pη
2+ p . (16.2.1)

Then, for each t > 0, we have the following:

1

kn
V n
(
Φ,kn,Z

n
)
t

P−→ Φ ∗μt−, where Φ(z)=
∫ 1

0
f
(
zg(s)
)
ds. (16.2.2)

When there is no noise (that is, Zn =X), this result is Theorem 8.3.1, except that
here we additionally assume that kn behaves like a power of 1/Δn, plus the structure
(16.1.12) for Φ: indeed in this case the definitions (8.3.1) and (16.2.2) for Φ agree,
and we can take η arbitrarily large and so (16.2.1) is satisfied. And of course, as in
Theorem 8.3.1, the convergence (16.2.2) does not hold for the Skorokhod topology.

When (16.2.1) fails, one does not know the precise behavior of the processes
V n(Φ,kn,Z

n), but presumably the noise “dominates”.

Remark 16.2.2 The condition (16.2.1) means that kn goes fast enough to ∞, the
rate depending on the behavior of f at 0 and also on the rate with which the noise
shrinks: the faster it shrinks, the slower kn needs to increase. Two extreme cases are
worth emphasizing:

• When η ≥ 1
2 , that is the noise shrinks fast enough, (16.2.1) is fulfilled for all

p ≥ 2, as soon as η′ > 0. In other words, and as anticipated, a very small noise
has no influence.

• When η = 0, that is the noise is not shrinking, the condition becomes η′ ≥ 2
2+p ,

which is satisfied for all p ≥ 2 when η′ ≥ 1
2 .

Observe also that the right side of (16.2.1) decreases when p increases, and is never
bigger than 1

2 when p ≥ 2.

Before giving the proof, we introduce a strengthened version of Assumption (N):

Assumption 16.2.3 (or (SN)): We have (N), and for all q > 0 we also have
supω(0),t

∫
Qt(ω

(0), dz)‖z‖q <∞.

We also give estimates on the noise, which hold under (SN) and will be of con-
stant use. Recalling the filtration (Ht ) defined in (16.1.1), and since |g′nj | ≤K/kn,

and conditionally on F (0) the χt ’s are independent and centered, we deduce from
the Burkholder-Davis-Gundy and Hölder’s inequalities that, for all p > 0,

E
(∥∥χ(g)ni

∥∥p |H(i−1)Δn

)≤Kp k−p/2n , E
(∥∥χ̂ (g)ni

∥∥p |H(i−1)Δn

)≤Kp k−pn
(16.2.3)

(here, χ(g)ni and χ̂ (g)ni are associated with the noise process χ by (16.1.10)).
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Proof of Theorem 16.2.1 1) We essentially copy the proof of Theorem 8.3.1 (see
pages 235–237), to which we make constant reference. By localization it is no re-
striction to assume (SN). Below, we heavily use the notation (16.1.11), (16.1.12),
and also Φ(U(n, i)(n))= f (U(g)ni ) and Z

n
(g)ni =X(g)ni + (Δn)η χ(g)ni .

Before starting, we observe that (16.2.3) yields for any q ≥ 0:

E

(
sup

1≤i≤[t/Δn]

∥∥χ(g)ni
∥∥q
)
≤ E

([t/Δn]∑

i=1

∥∥χ(g)ni
∥∥q
)
≤KtΔqη′/2−1

n . (16.2.4)

2) For any ε > 0 we have the functions ψε and ψ ′ε = 1 − ψε of (3.3.16), in
which ψε(x) = ψ(‖x‖/ε) and ψ is C∞ on R with 1[1,∞) ≤ ψ ≤ 1[1/2,∞). We set
Φε(x) = (fψε)(Ψ (x)) and Φ ′ε(x) = (fψ ′ε)(Ψ (x)) for x ∈ D

d
1 (warning: they are

not the same as in the proof of Theorem 8.3.1; here, Ψ is given by (16.1.12)). We
also associate Φε and Φ

′
ε with Φε and Φ ′ε by (16.2.2), and we still have (8.3.10),

that is Φε ∗μt− P−→Φ ∗μt− as ε→ 0. Therefore we are left to prove the following
two properties:

ε ∈ (0,1] ⇒ 1

kn
V n
(
Φε, kn,Z

n
)
t

P−→ Φε ∗μt−, (16.2.5)

ζ > 0 ⇒ lim
ε→0

lim sup
n

P

(
1

kn

∣∣V n
(
Φ ′ε, kn,Zn

)
t

∣∣> ζ
)
= 0. (16.2.6)

3) Here, following the proof of Lemma 8.3.4, we show (16.2.5). In this step,
ε ∈ (0,1] is fixed and A= sup(|g′(s)|). The successive jump times of X with size
bigger than ε/8A are S1, S2, . . . , and we set Qt =∑q≥1 1{Sq<t} and X′t = Xt −∑
q≥1:Sq≤t ΔXSq .
Since X′ has no jump bigger than ε/8A, the set Ω ′nt , on which ‖X′v − X′w‖ ≤

ε/4A for all v,w ∈ [0, t] with |v−w| ≤ 2un, satisfiesΩ ′nt →Ω as n→∞. In view
of (16.1.11) and X′(g)ni = Ψ (X′(n, i)(n)) and |g′| ≤A, we deduce

∥∥X′(g)ni
∥∥ ≤ ε

4
on Ω ′nt , if i ≤ [t/Δn]. (16.2.7)

Now, we modify the definition of α(n, q, j) and Ant in the proof of Lemma 8.3.4
as follows:

α(n, q, j) = (fψε)
(
X′(g)ni(n,q)+1−j + gnjΔXSq + (Δn)η χ(g)ni(n,q)+1−j

)
,

Ant =
⎧
⎨

⎩

1
kn
(fψε)(X(g)

n
t/Δn

+ (Δn)η χ(g)nt/Δn) if t/Δn is an integer
and SQt+1 = t

0 otherwise,

and we still set ζ nq = 1
kn

∑kn∧i(n,q)
j=1 α(n, q, j). By (16.2.4) and (16.2.7) and Ω ′nt →

Ω we see that the set Ωnt = Ω ′nt ∩ {sup1≤i≤[t/Δn] ‖(Δn)ηχ(g)ni ‖ ≤ ε
4 } satisfies
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P(Ωnt )→ 1 and also that, since (fψε)(x)= 0 when ‖x‖ ≤ ε/2,

1

kn
V n
(
Φε, kn,Z

n
)
t
=

Qt∑

q=1

ζ nq +Ant on the set Ωnt .

As in Lemma 8.3.4 we have ζ ′nq := 1
kn

∑kn
j=1 f (g

n
j ΔXSq )→ Φε(ΔXSq ) by Rie-

mann approximation. Hence, using P(Ωnt )→ 1, it remains to prove that

Ant 1Ωnt → 0, q ≤Qt ⇒
(
ζ nq − ζ ′nq

)
1Ωnt

P−→ 0. (16.2.8)

As seen before, we have ‖X′(g)ni +(Δn)η χ(g)ni ‖ ≤ ε/2 onΩnt if i ≤ [t/Δn], and

also X′(g)ni(n,q)+1−j + (Δn)η χ(g)ni(n,q)+1−j
P−→ 0 for all q ≤Qt and j ≥ 0 (use

(16.2.4) again and the continuity ofX′ at each time Sq ). Then, since f is continuous
and thus locally bounded, we immediately deduce the first part of (16.2.8), and

also α(n, q, j)− f (gnj ΔXSq )
P−→ 0 and |α(n, q, j)| ≤K for all q, j , which in turn

implies the second part of (16.2.8).

4) Finally we prove (16.2.6). Our assumption on f yields |f (x)| ≤ φ(‖x‖)2 ‖x‖p
for some increasing continuous function φ satisfying φ(0) = 0. By singling out
the two cases ‖y‖ ≤ 2‖x‖ and ‖y‖ > 2‖x‖ and since ψ ′ε(x) = 0 when ‖x‖ ≥ ε,
we see that |(fψ ′ε)(x + y)| ≤Kφ(ε)(φ(3‖x‖)‖x‖p +‖y‖p). Therefore, if f̃ (x)=
φ(3‖x‖)‖x‖p and Φ̃(x)= f̃ (Ψ (x)), we deduce

∣∣V n
(
Φ ′ε, kn,Zn

)
t

∣∣≤Kφ(ε)
(
V n(Φ̃, kn,X)t +Δpηn

[t/Δn]∑

i=1

∥∥χ(g)ni
∥∥p
)
.

On the one hand, the function f̃ is continuous and is o(‖x‖2) as x→ 0, so Theo-
rem 8.3.1 yields that 1

kn
V n(Φ̃, kn,X)t converges in probability to a finite limit. On

the other hand (16.2.4) yields Δ
pη
n

kn
E(
∑[t/Δn]
i=1 ‖χ(g)ni ‖p) ≤ Kt as soon as (16.2.1)

holds. Since φ(ε)→ 0 as ε→ 0, we deduce (16.2.6). �

16.3 Central Limit Theorem for Functionals of Non-normalized
Increments

We now consider the central limit theorem associated with Theorem 16.2.1, when
X is an Itô semimartingale with Grigelionis decomposition

Xt =X0+
∫ t

0
bs ds+

∫ t

0
σs dWs+(δ1{‖δ‖≤1})�(p−q)t+(δ1{‖δ‖>1})�pt . (16.3.1)

(W is a d ′-dimensional Wiener process and p is a Poisson measure with compensator
q(dt, dz)= dt ⊗ λ(dz), and c= σσ�.) The noise is as before, and the noisy process
is still Zn =X+Δηnχ , as in (16.1.4). Recall the following assumption (H-r):



16.3 Central Limit Theorem for Functionals of Non-normalized Increments 489

Assumption (H-r) In (16.3.1), bt is locally bounded and σt is càdlàg, and
‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) if t ≤ τn(ω), where (τn) is a localizing sequence of stop-
ping times and each function Γn satisfies

∫
Γn(z)

rλ(dz) <∞.

Below, we always assume at least (H) = (H-2).

16.3.1 The Results

Just as Theorem 16.2.1 is an extension of Theorem 8.3.1 (page 234), with the same
limit, we find here a result very similar to Theorem 12.1.2. As usual we give a
multidimensional version, with q weight functions gj satisfying (16.1.6), and q
functions f j on R

d , and the functions Ψ j and Φj associated by (16.1.12). We
cannot do any better than in Theorem 12.1.2, and thus we suppose that all functions
f j are C2 and are linear combinations of positively homogeneous functions on R

d

with an homogeneity degree bigger than 3: recall that h is positively homogeneous
with degree p if

x ∈R
d, λ > 0 ⇒ f j (λx)= λp f j (x).

Recall the notation un = knΔn. We are interested in the following q-dimensional
variables with components:

Yn
(
Zn
)j
t
= 1√

un

(
1

kn
V n
(
Φj , kn,Z

n
)
t
−
∑

s<t

∫ 1

0
f j
(
gj (u)ΔXs

)
du

)
. (16.3.2)

The results depends on how fast kn goes to ∞; if it is fast enough we have the
same limit as without noise, otherwise there is an additional term. To describe the
limit we need to recall and extend the notation (12.1.3)–(12.1.6). We set for x ∈R

d

and t ∈ [0,1] and j, j ′ = 1, . . . , q and i, i′ = 1, . . . , d , and with (gj )′ denoting the
derivative of gj , which is defined almost everywhere:

h−(x, t)ji =
∫ t

0
∂if

j
(
gj (s + 1− t)x)gj (s) ds

h′−(x, t)
j
i =
∫ t

0
∂if

j
(
gj (s + 1− t)x) (gj )′(s) ds

h+(x, t)ji =
∫ 1

t

∂if
j
(
gj (s − t)x)gj (s) ds

h′−(x, t)
j
i =
∫ 1

t

∂if
j
(
gj (s − t)x) (gj )(s) ds

(16.3.3)

H−(x)jj
′

ii′ =
∫ 1

0
h−(x, t)ji h−(x, t)

j ′
i′ dt
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H ′−(x)
jj ′
ii′ =
∫ 1

0
h′−(x, t)

j
i h
′−(x, t)

j ′
i′ dt

H+(x)jj
′

ii′ =
∫ 1

0
h+(x, t)ji h+(x, t)

j ′
i′ dt

H ′+(x)
jj ′
ii′ =
∫ 1

0
h′+(x, t)

j
i h
′+(x, t)

j ′
i′ dt.

For i, i′ fixed, the functions H±ii′ and H ′±ii′ on R
d are M+

d×q -valued, and are

o(‖x‖4) as x→ 0 because ∂if j (x) = o(‖x‖2) by the fact that each f j is a linear
combination of positively homogeneous functions with degree bigger than 3. Re-
calling c= σσ ∗ and assuming that the conditional variance process Υ in (16.1.3) is
càdlàg, we associate the M+

q×q -valued processes ξs , ξ ′s , Ξt and Ξ ′t defined, compo-
nent by component, as follows (this extends (12.1.4)):

ξ
jj ′
s =

d∑

i,i′=1

(
cii

′
s−H−(ΔXs)

jj ′
ii′ + cii

′
s H+(ΔXs)

jj ′
ii′
)
, Ξt =

∑

s≤t
ξs

ξ
′jj ′
s =

d∑

i,i′=1

(
Υ ii

′
s−H ′−(ΔXs)

jj ′
ii′ +Υ ii

′
s H

′+(ΔXs)
jj ′
ii′
)
, Ξ ′t =

∑

s≤t
ξ ′s .

(16.3.4)

The following characterizes the two q-dimensional processes Y(X) and Y
′
(χ):

Y(X) and Y
′
(χ) are defined on a very good filtered extension

(Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P) and, conditionally on F ,
they are two independent purely discontinuous centered Gaussian
martingales with

Ẽ
(
Y (X)

j
t Y (X)

i′
t |F
)=Ξjj ′t , Ẽ

(
Y
′
(χ)

j
t Y

′
(χ)i

′
t |F
)=Ξ ′jj ′t .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Note that Y (X) is exactly as in (12.1.5).
Furthermore, we can “realize” the pair (Y (X),Y

′
(χ)) as

Y (X)t =
∑

n≥1: Tn≤t
αTnΨn, Y

′
(χ)t =

∑

n≥1: Tn≤t
α′TnΨ

′
n (16.3.5)

where αt and α′t are optional q × q-dimensional square-roots of the processes ξt
and ξ ′t , and (Tn) is a weakly exhausting sequence for the jumps of X, and (Ψn,Ψ ′n :
n ≥ 1) are independent N (0, Iq) variables on an auxiliary space (Ω ′,F ′,P′), and
(Ω̃, F̃ , (F̃t )t≥0, P̃) is the product extension:

Ω̃ = Ω ×Ω ′, F̃ = F ⊗F ′, P̃ = P⊗ P
′

(F̃t ) is the smallest filtration containing (Ft ) and such that
Ψn and Ψ ′n are F̃Tn measurable for all n.

⎫
⎬

⎭
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Finally, we need an assumption which connects the exponents η and η′ occurring
in (16.1.4) and (16.1.5):

η+ η′ ≥ 1

2
, and we set θ ′ =

{
θ if η+ η′ = 1/2
0 if η+ η′ > 1/2.

(16.3.6)

The notation θ ′ is introduced for unifying the results below. Recall that η′ > 0, so
necessarily θ ′ = 0 when η ≥ 1

2 , that is when the noise shrinks fast enough.

Theorem 16.3.1 Assume (H) = (H-2) for X and (N) for the noise. We let kn sat-
isfy (16.1.5) and Zn = X + (Δn)ηχ , with (16.3.6). When θ ′ = θ > 0, assume fur-
ther that the process Υ admits a càdlàg d × d-dimensional square-root υt (that is,
Υt = υt υ∗), and let f be a q-dimensional C2 function on R

d whose components
are linear combinations of positively homogeneous functions with degree (strictly)
bigger than 3. Then for each t ≥ 0 the variables Yn(Zn)t of (16.3.2) converge stably
in law to the following limit:

Yn
(
Zn
)
t

L-s−→ Y (X)t + θ ′ Y ′(χ)t .

When θ ′ = 0 the limit is Y (X)t , the same as in Theorem 12.1.2, without noise.
So at this point the reader may wonder why we insist on having a result also when
θ ′ = θ > 0, since the case θ ′ = 0 is simpler to state (and much simpler to prove).
The reason is that the rate of convergence of V n(Φ,kn,Zn)t , which reflects the rate
of convergence of the estimators for jumps which we might construct, is

√
knΔn:

this sequence goes to 0, but it should do so as fast as possible (as a function of Δn)
for better estimators. This leads us to take η′ as small as possible, that is η′ = 1

2 − η
(= 1

2 when the noise is not shrinking), and to investigate what happens in this lim-
iting case.

Remark 16.3.2 When θ ′ = θ > 0, the limit Y
′′ = Y (X)+ θ ′ Y ′(χ) is, conditionally

on F , a purely discontinuous Gaussian martingale with

E
(
Y
j

t Y
j ′
t |F
) = Ξ

jj ′
t + θ ′2Ξ ′jj ′t . (16.3.7)

It can be realized as Y t =∑n≥1, Tn≤t α
′′
Tn
Φ ′′n , where (Φ ′′n) is a sequence like (Φ ′n)

above, and where α′′t is a q×q-dimensional optional square root of the process ξt +
θ ′2 ξ ′t . We prefer the formulation Y(X)+ θ ′ Y ′(χ), which emphasizes the respective
importance of the limit Y (X) due to X itself and the limit Y

′
(χ) due to the noise,

and the role of the constant θ introduced in (16.1.5).

Remark 16.3.3 The behavior of f near 0 is the same as in Theorem 12.1.2,
page 343, and in accordance with all usual CLTs for functionals of non-normalized
increments.



492 16 Semimartingales Contaminated by Noise

Remark 16.3.4 In the most interesting case of a non-shrinking noise η = 0, the
cutoff level for η′ is 1/2, and if η′ < 1/2 nothing is known, but probably (as in
Theorem 16.2.1 when (16.2.1) fails) the noise is the leading term.

16.3.2 A Local Stable Convergence Result

This subsection is, even more than usual, very technical. It aims towards a stable
convergence result, joint for the Brownian motion and the noise, and it extends
Proposition 5.1.1 (page 127) in two directions, in addition to incorporating the noise:
it is “local” in time, right before or after a given stopping time, and it is for the
conditional laws knowing the past.

This needs some preparation. For some integer J ≥ 1 and each j between 1 and
J we have numbers (h(j)nr , h

′(j)nr : 1 ≤ r ≤ kn) and piecewise Lipschitz (hence
bounded) functions hj and h′j on [0,1] such that for some finite integer N :

∣∣∣∣h(j)
n
r − hj

(
r

kn

)∣∣∣∣+
∣∣∣∣h
′(j)nr − h′j

(
r

kn

)∣∣∣∣≤
⎧
⎨

⎩

K always
K/kn for all r , except

at most N of them.
(16.3.8)

For example if the gj ’s are weight functions satisfying (16.1.6) the terms h(j)nr =
(gj )nr and h′(j)nr = kn(gj )′nr , together with hj = gj and h′j = (gj )′, satisfy this;
but we will also encounter other situations, where h′j is not the derivative of hj .
Associated with this, we consider the following variables:

W̃ (j)ni =
kn∑

r=1

h(j)nrΔ
n
i+r−1W, χ̃(j)ni =

kn∑

r=1

h′(j)nr χ(i+r−2)Δn .

Note that in the example above, and by virtue of (16.1.10), we have W̃ (j)ni =
W(gj )ni and χ̃ (j)ni =−knχ(gj )ni .

We will be interested in the limits of some functionals of the above variables,
but before stating the problem we introduce some processes which are analogous to
L(gj ) in (12.2.8). We consider an auxiliary filtered space (Ω ′,F ′, (F ′t )t≥0,P

′) sup-
porting two independent Brownian motions W̌ and W̌ ′, with respective dimensions
d ′ and d , and we define two J × d ′ and J × d-dimensional processes indexed by
R+, and with components

L
jl
t =

∫ t+1

t

hj (s − t) dW̌ l
s , L

′j l
t =

∫ t+1

t

h′j (s − t) dW̌ ′l
s . (16.3.9)

We also use the following notation:

S(dx, dy) = the law on D
Jd ′+Jd of the pair

(
L,L′
)
. (16.3.10)
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Lemma 16.3.5 The (Jd ′ + Jd)-dimensional process (L,L′) is Gaussian cen-
tered and stationary, L and L′ are independent, and the variables (Lt ,L′t ) and
(Lt+s ,L′t+s) are independent if s ≥ 1. Moreover (L,L′) has a continuous version,
and for all p > 0 we have

E
′(‖Lt‖p

) ≤ Kp, E
′(∥∥L′t
∥∥p) ≤ Kp. (16.3.11)

Proof All claims are simple, except (16.3.11) and the stationarity and the existence
of a continuous version. For those properties it is enough to consider separately
L and L′ (by independence) and, both having the same structure, it is enough to
consider, say, the process L. If t, s ≥ 0 we have

E
′(Ljlt L

j ′l′
t+s
)=
{∫ t+1

t+s h
j (r − t)hj ′(r − t − s) dr if s < 1, l = l′

0 otherwise.

The integral on the right is also
∫ 1
s
hj (r)hj

′
(r − s) dr , which does not depend on t ,

and this proves the stationarity. Moreover we also deduce when s ∈ [0,1]:

as := E
′((Ljlt+s −Ljlt

)2)= 2
∫ s

0

(
hj (r)
)2
dr + 2

∫ 1

s

hj (r)
(
hj (r)− hj (r − s))dr.

The piecewise Lipschitz property of hj implies that |hj (r)− hj (r − s)| ≤ Ks for
all r except on a finite union of intervals with length 2s, hence, since we also
have |hj | ≤ K , we get as ≤ Ks. Since Ljlt+s − Ljlt is Gaussian centered, we de-

duce E
′((Ljlt+s − Ljlt )4) = 3a2

s ≤ Ks2, and by Kolmogorov’s criterion the process
Ljl admits a continuous version. Finally (16.3.11) follows from the stationarity and
from the fact that the process is Gaussian. �

Next, we fix a sequence of—possibly random—integers in ≥ 1, and we consider
the càdlàg processes Ln and L′n indexed by R+, with components:

1≤ j ≤ J, 1≤ l ≤ d ′ �→ L
n,jl
t = 1√

un
W̃ (j)

n,l
in+[knt]

1≤ j ≤ J, 1≤ l ≤ d �→ L
′n,j l
t = 1√

kn
χ̃(j)

n,l
in+[knt].

⎫
⎬

⎭ (16.3.12)

The sequence in does not show in the notation, but those processes clearly depend
on it. For the next statement, let us recall that if T is an (Ft )-stopping time, then for
each ω(0) ∈Ω(0) the variable T (ω(0), .) on Ω(1) is an (F (1)t )-stopping time.

Lemma 16.3.6 Assume (SN) and, in the above setting, that Tn = (in − 1)Δn is a
stopping time relative to the filtration (Ft ). Then for all p ≥ 1 and s, t ≥ 0 and ω(0)

we have, with the notation Q=Q(ω(0), .):

E
(∥∥Lnt
∥∥p |FTn

) ≤ Kp

E
(∥∥Lnt+s −Lnt

∥∥p |FTn
)≤Kp

(
s ∨ 1

kn

)p/2 (16.3.13)
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EQ

(∥∥L′nt
∥∥p |F (1)

Tn(ω(0),.)

)≤Kp
EQ

(∥∥L′nt+s −L′nt
∥∥p |F (1)

Tn(ω(0),.)

)≤Kp
(
s ∨ 1

kn

)p/2
.

(16.3.14)

Note that we cannot replace (s ∨ 1
kn
)p/2 by sp/2: otherwise this would imply the

continuity of the paths of Ln and L′n, which are in fact piecewise constant and thus
discontinuous.

Proof We begin with (16.3.14). By hypothesis, ω(1) �→ Tn(ω
(0),ω(1)) is an (F (1)t )-

stopping time taking its values in {iΔn : i ∈ N}. Therefore, although t �→ χt is not
measurable, the quantities χTn+iΔn for i ≥ 1 are (measurable) random variables.
With the convention that h′(j)nl = 0 when l < 1 or l > kn, we see that

L
′n,j l
t = 1√

kn

∑

i≥0

δ
n,j
i (t)χlTn+iΔn, where δn,ji (t)= h′(j)ni+1−[knt].

The variables χTn+iΔn for i = 0,1, . . . are mutually independent, and independent
of F (1)Tn , centered, with bounded moments of any order. Then we deduce from the
Burkholder-Gundy inequality for p > 1 that

EQ

(∥∥L′nt
∥∥p |F (1)Tn

)≤Kp EQ

((
1

kn

∑

i≥0

∥∥δni (t)
∥∥2 ‖χTn+iΔn‖2

)p/2
|F (1)Tn
)

EQ

(∥∥L′nt+s −L′nt
∥∥p |F (1)Tn

)

≤Kp EQ

((
1

kn

∑

i≥0

∥∥δni (t + s)− δni (t)
∥∥2 ‖χTn+iΔn‖2

)p/2
|F (1)Tn
)
.

(16.3.15)
The condition (16.3.8) implies ‖δni (t)‖ ≤K , and δni (t)= 0 for all i except those

in a (random and F (1)Tn measurable) set An of cardinality not bigger than kn. Hence
the first part of (16.3.14), Hölder’s inequality and (SN) give

EQ

(∥∥L′nt
∥∥p |F (1)Tn

)≤Kp EQ

(
1

kn

∑

i∈An

∥∥δni (t)
∥∥p ‖χTn+iΔn‖p |F (1)Tn

)
≤Kp,

thus giving the first parts of (16.3.14).
From (16.3.8) again, αni (t, s) = ‖δni (t + s) − δni (t)‖ vanishes for all i out-

side an F (1)Tn measurable) set An of cardinality not bigger than 2kn, and is al-
ways smaller than some constant K . Moreover there is a subset A′n ⊂ An with
card(An\A′n) ≤ 2N , such that αni (t, s) ≤K/kn + ‖h′((i + 1− [kn(t + s)])/kn)−
h′((i + 1 − [knt])/kn)‖ (where h′ is the function with components h′j ), for all
i ∈ A′n. Finally, the piecewise Lipschitz property of all h′j yields that ‖h′((i + 1−
[kn(t+ s)])/kn)−h′((i+1−[knt])/kn)‖ ≤K(s∨ 1

kn
) for all i in a subset A′′n ⊂A′n

such that card(A′n\A′′n)≤ (C + 1)(1+ [kns]), where C ≥ 1 is the number of subin-
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tervals of [0,1] on which h′ is Lipschitz. Therefore αni (t, s)≤K(s + 1
kn
) if i ∈ A′′n

and αni (t, s)≤K if i ∈ Bn =An\A′′n, hence (16.3.15) yields

EQ

(∥∥L′nt+s −L′nt
∥∥p |F (1)

Tn(ω(0),.)

)

≤Kp
(
s + 1

kn

)p/2
EQ

((
1

kn

∑

i∈A′′n
‖χTn+iΔn‖2

)p/2
|F (1)Tn
)

+Kp EQ

((
1

kn

∑

i∈Bn
‖χTn+iΔn‖2

)p/2
|F (1)Tn
)
.

The first term on the right is smaller than Kp(s + 1
kn
)p/2 because card(A′′n) ≤ 2kn

and by (SN) and Hölder’s inequality. The second term satisfies the same inequality,
because card(Bn) ≤ K(1+ kns). Since s + 1

kn
≤ 2(s ∨ 1

kn
), we deduce the second

part of (16.3.14).
The proof of (16.3.13) is similar: we argue under P, we use the independence of

the increments Δni W for i ≥ in from FTn , and the normalization by 1/
√
un is easily

seen to be the proper one because the moments of Δni W behave like Δp/2n . �

As with (L,L′), each process (Ln,L′n) may be viewed as a D
Jd ′+Jd -valued

random variable. We need a family of semi-norms on this space, depending on n
and on some “time horizon” m ∈N, and defined as follows:

‖x‖(n,m) =
∥∥x(0)
∥∥+ 1

kn

mkn−1∑

j=1

∥∥x(j/kn)
∥∥+ ∥∥x(m)∥∥.

Then, we are given a sequence (fn) of functions on D
Jd ′+Jd which satisfies for

some m ∈N and w ≥ 0, and for all n≥ 1 and all A> 0:
∣∣fn(x)

∣∣ ≤ K
(
1+ ‖x‖w(n,m)

)

lim
ε→0

sup
(∣∣fn(x)− fn(y)

∣∣ : ‖x‖(n,m) ≤A, ‖x − y‖(n,m) ≤ ε,n≥ 1
)= 0.

(16.3.16)
(Note that these conditions imply that each fn(x) depends on x only through its
restriction to the interval [0,m].)

In the next result, we write fn(x, y) where x, y are respectively in D
Jd ′ and D

Jd .
We also use the following convention: if x ∈ D

Jd ′ and y ∈ D
Jd and if α and β are

d× d ′ and d× d matrices, then αx ∈D
Jd and βy ∈D

Jd are defined, component by
component, by

(αx)(t)j l =
d ′∑

r=1

αlrx(t)jr , (βy)(t)j l =
d ′∑

r=1

βlry(t)jr . (16.3.17)

For example υsnL
′n below is the Jd-dimensional process with the (j, l)th compo-

nent given by t �→∑d
r=1 υsn(ω)

lrL
′n,jr
t (ω).
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Lemma 16.3.7 Assume (SN) and that the process Υ of (16.1.3) admits a càdlàg
adapted square-root υt , and also that Tn = (in − 1)Δn is a stopping time. Finally,
assume that the sequence (fn) satisfies (16.3.16) with some m ∈ N and converges
pointwise to a limit f , and that Tn→ T with T finite-valued, and that we are in
either one of the following two cases (recall un = knΔn):

(1) T > 0 and Tn ≤ (T − (m+ 1)un)+ for all n,
in which case we set υ(T ) = υT− and F(T ) =FT−

(2) Tn ≥ T ∀n, in which case we set υ(T ) = υT and F(T ) =FT .
(16.3.18)

Then for every bounded random variable Z, and if S(dx, dy) is given by (16.3.10),
we have

E
(
Zfn
(
Ln,L′n

) |FTn
) P−→ E

(
Z

∫
f (x,υ(T )y) S(dx, dy) |F(T )

)
. (16.3.19)

This can be interpreted as a kind of “stable convergence in law” for the pair
(Ln,L′n), under the conditional expectations.

Proof Step 1) We start with an auxiliary result. As in the previous lemma, we
fix ω(0) ∈ Ω(0) and consider the probability space (Ω(1),F (1),Q), where Q =
Q(ω(0), .). Our aim in this step is to show that under Q,

L′n L=⇒ υ(T )
(
ω(0)
)
L′, (16.3.20)

(functional convergence in law), where we use the notation (16.3.17).
We begin with the finite-dimensional convergence. Let 0 ≤ t1 < · · · < tr . By

(16.3.12) and (16.1.10) the rJd-dimensional variable Yn = (L′nti : 1≤ i ≤ r) is

Yn =
∑

w≥1

ynw, where yn,ij lw = an,ijw χl(in+w−2)Δn

and an,ijw =
{

1√
kn
h′(j)nw−[knti ] if 1+ [knti] ≤w ≤ kn + [knti]

0 otherwise.

By (SN), and under Q, the variables ynw are independent when w varies and satisfy
(use the consequence |h′(j)ni | ≤K of (16.3.8)):

EQ

(
ynw
) = 0, EQ

(∥∥ynw
∥∥4)≤Kk−2

n ,
∑

w≥1

EQ

(∥∥ynw
∥∥4) → 0,

∑

w≥1

EQ

(
yn,ij lw yn,i

′j ′l′
w

) = 1

kn

∑

m≥1

Υ ll
′

(in+m−2)Δn

(
ω(0)
)
a
n,ij
m a

n,i′j ′
m .

On the one hand υ(in+w−1)Δn(ω
(0)) converges uniformly in w ≤ kn + [trkn] to

υ(T )(ω
(0)) by (16.3.18). On the other hand, (16.3.8) and a Riemann approximation
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yield for i ≤ i′:
∑

w≥1

an,ijw an,i
′j ′

w → ci,j,i
′,j ′ :=

∫ ti+1

ti′∧(ti+1)
h′j (s − ti ) h′j ′(s − ti′) ds.

Hence
∑

w≥1

EQ

(
yn,ij lw yn,i

′j ′l′
w

)→ cij l,i
′j ′l′ := ci,j,i′,j ′ (υ(T )υ∗(T )

)ll′(
ω(0)
)
. (16.3.21)

Then Theorem 2.2.14 yields that Yn converges in law under Q to a centered Gaus-
sian variable with covariance matrix ( cij l,i

′j ′l′). In view of (16.3.9), this matrix is
the covariance of the centered Gaussian vector (υ(T )(ω(0))L′ti : 1 ≤ i ≤ r), and the
finite-dimensional convergence in (16.3.20) is proved.

To obtain the functional convergence in (16.3.20) it remains to prove that the pro-
cesses L′n are C-tight, and for this we use a special case of Kolmogorov’s criterion,
see Ibragimov and Has’minski [49], as already explained in (12.1.32) for example:
namely, a sequence of processes V n indexed by R+ is C-tight as soon as

t ≥ 0, v ∈ (0,1] ⇒ E
(∣∣V nt+v − V nt

∣∣p) ≤ Kvp/2 (16.3.22)

for some p > 2. Of course, as seen in Step 1, this fails for L′n because other-
wise those processes would be continuous. However the C-tightness of the se-
quence (L′n)’s is implied by the C-tightness of the sequence (L

′n
) of the “linearized

versions”, defined as follows: L
′n

is continuous, coincides with L′n on the grid
Gn = {j/kn : j ∈N} and each of its components is affine between successive points
of the grid. Now, (16.3.14) yields (16.3.22) for L

′n
. So the sequence L

′n
is C-tight,

and so also is the sequence L′n, hence completing the proof of (16.3.20).

Step 2) Here we essentially do the same job for the processes Ln, proving that

Ln
L=⇒ L. (16.3.23)

For this, we see that if 0 ≤ t1 < · · · < tr the variables Yn = (Lnti : 1 ≤ i ≤ r) still
satisfy Yn =∑w≥1 y

n
w , but now

yn,ij lw = an,ijw Δnin+w−1W
l, where

an,ijw =
{

1√
un
h(j)nw−[knti ] if 1+ [knti] ≤w ≤ kn + [knti]

0 otherwise.

Then the proof of (16.3.23), both for the finite-dimensional convergence and the C-
tightness, is exactly the same as for (16.3.20) (when i ≤ i′, the right side of (16.3.21)
is replaced by δll′

∫ ti+1
ti′∧(ti+1) h

j (s− ti )hj ′(s− ti′) dv, which is the covariance matrix
of (Lti : 1≤ i ≤ r)).
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Step 3) We prove again an auxiliary result, which is more or less classical and holds
in a much more general context and under weaker conditions, but we stick to our set-
ting of the convergence of processes. For each n let Yn be a q-dimensional processes

satisfying Yn
L=⇒ Y , where Y is a continuous process. Let also gn be a sequence of

functions on D
q which satisfies

∣∣gn(x)
∣∣ ≤ K

lim
ε→0

sup
(∣∣gn(x)− gn(y)

∣∣ : ‖x‖(n,m) ≤A, ‖x − y‖(n,m) ≤ ε,n≥ 1
)= 0

(16.3.24)
(the same as (16.3.16) with w = 0, except that the space is Dq ). Then we have

E(gn(Y
n))−E(gn(Y ))→ 0

gn→ g pointwise

}
⇒ E
(
gn
(
Yn
))→ E

(
g(Y )
)
. (16.3.25)

For proving this we use the Skorokhod representation theorem, see for example
(2.2.19); namely, there are processes Y ′n and Y ′, all defined on the same probability
space, with the same laws as Yn and Y (so E(gn(Y

′n))= E(gn(Y
n)), and the same

for Y,Y ′), and such that Y ′n→ Y ′ a.s. Now, if yn→ y in the Skorokhod space, we
have ‖yn − y‖(n,m)→ 0 if y is continuous, and gn(yn)− gn(y)→ 0 follows from
(16.3.24). Therefore gn(Y ′n)− gn(Y ′)→ 0 a.s., and

E
(
gn
(
Yn
))−E

(
gn(Y )
) = E

(
gn
(
Y ′n
))−E

(
gn
(
Y ′
)) → 0

by the dominated convergence theorem, because |gn| ≤K .
When gn→ 0 pointwise, we have E(gn(Y ))→ E(g(Y )) by the dominated con-

vergence theorem, hence (16.3.25) follows from the above.

Step 4) In this step we start the proof of (16.3.19) by showing that it is enough to
prove it under the additional assumption that |fn| ≤ K identically. We denote by
Ψn(fn,Z) and Ψ (f,Z) the left and right sides of (16.3.19). For each A > 1 we
consider the functions ξA(z) = A ∧ ((−A) ∨ z) and ξ ′A(z) = z − ξA(z) on R, and
we observe that the functions ξA ◦ fn satisfy (16.3.16) and converge pointwise to
ξA ◦ f . So in this step we suppose that

Ψn(ξA ◦ fn,Z) P−→ Ψ (ξA ◦ f,Z) ∀A> 0,

and to prove the result, that is Ψn(fn,Z)
P−→ Ψ (f,Z), it is then enough to show

that

lim
A→∞ sup

n
E
(∣∣Ψn
(
ξ ′A ◦ fn,Z

)∣∣)= 0, lim
A→∞ E

(∣∣Ψ
(
ξ ′A ◦ f,Z

)∣∣)= 0. (16.3.26)

The second property of (16.3.16) and Hölder’s inequality yield

∣∣fn(x)
∣∣≤K
(

1+ ∥∥x(0)∥∥w + 1

kn

mkn−1∑

j=1

∥∥x(j/kn)
∥∥w + ∥∥x(m)∥∥w

)
. (16.3.27)
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Since fn(x)→ f (x), by passing to the limit we deduce

∣∣f (x)
∣∣≤K
(

1+ ∥∥x(0)∥∥w +
∫ m

0

∥∥x(s)
∥∥w ds + ∥∥x(m)∥∥w

)
. (16.3.28)

Recalling that Z is bounded and the definition of Ψn(fn,Z), we have

E
(∣∣Ψn
(
ξ ′A ◦ fn,Z

)∣∣)≤KE
(∣∣ξ ′A ◦ fn

(
Ln,L′n

)∣∣)≤ K
A

E
(∣∣fn
(
Ln,L′n

)∣∣).

Combining this with (16.3.27) and Lemma 16.3.6, we readily obtain the first part of
(16.3.26). In the same way, we have with L̂= (L,L′):

E
(∣∣Ψ
(
ξ ′A ◦ f,Z

)∣∣) ≤ K
A

E

(∫ ∣∣f (x,υ(T )y)
∣∣2 S(dx, dy)

)

≤ K
A

(
1+E

′(‖L̂0‖w
)+
∫ m

0
E
′(‖L̂s‖w

)
ds +E

′(‖L̂m‖w
)
)
,

where the second inequality comes from (16.3.28) and the boundedness of the
variable υ(T ) and the definition of the measure S(dx, dy). Then (16.3.11) gives
E(|Ψ (ξ ′A ◦ f,Z)|)≤K/A, hence the second part of (16.3.26) holds as well.

Step 5) In view of what precedes we may and will assume further on that |fn| ≤K .
In this step we show that it is enough to prove

Ψn(fn,1)
P−→ Ψ (f,1). (16.3.29)

Indeed, assume this, and take an arbitrary bounded variable Z. We consider the
càdlàg version of the bounded martingale Zt = E(Z |Ft ).

Suppose first that we are in Case (1). Then T is a predictable time and
the variable Ψ (f,1) is FT− measurable, and so is fn(Ln,L′n) in restriction to
the set Ωn = {T > (m + 1)un}. We deduce Ψ (f,Z) = ZT−Ψ (f,1), and also
Ψn(fn,Z) = Ψ (fn,ZT−) on Ωn because ZT− = E(Z | FT−). We also obviously

have Ψn(fn,ZTn)= Ψn(fn,1)ZTn P−→ Ψ (f,1)ZT− by (16.3.29) and ZTn→ZT−.

So it remains to observe thatΩn→Ω , and that Ψn(fn,ZTn)−Ψn(fn,ZT−) P−→ 0,
which follows from the fact that E(|Ψn(fn,ZTn) − Ψn(fn,ZT−)|) ≤ KE(|ZTn −
ZT−|) (because |fn| ≤ K), whereas E(|ZTn − ZT−|)→ 0 by ZTn → ZT− again,
and also by the boundedness of the sequence ZTn .

Suppose now that we are in Case (2). Then Ψ (f,Z) = ZT Ψ (f,1) and
Ψn(fn,ZT ) = ZT Ψn(fn,1). Moreover if T ′′n = Tn + (m + 1)un (those are again
stopping times), fn(Ln,L′n) is FT ′′n measurable, so Ψn(fn,Z) = Ψf (fn,ZT ′′n ).
Since T ′′n → T and T ′′n > T , we have ZT ′′n → ZT , and the same argument as above

shows that Ψn(fn,ZT ′′n )−Ψn(fn,ZT )
P−→ 0. The result follows.
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Step 6) We are now ready to prove the convergence (16.3.29). We set for y ∈D
Jd :

hn
ω(0)
(y)= f (Ln(ω(0)), y)

Anj
(
ω(0)
)=

⎧
⎪⎨

⎪⎩

∫
hn
ω(0)
(L′n(ω(1)))Q(ω(0), dω(1)), if j = 1

∫
hn
ω(0)
(υTn(ω

(0))y) S(dx, dy), if j = 2
∫
hn
ω(0)
(υ(T )(ω

(0))y) S(dx, dy), if j = 3.

We also define the following function of the d × d matrix β:

F(β)=
∫
f (x,βy)S(dx, dy), Fn(β)=

∫
E
(
fn
(
Ln,βy

))
S(dx, dy).

These are related to our quantities of interest as follows: using the F (0)-conditional
independence of the χt ’s for the first relation below, we have

Ψn(fn,1) = E
(
An1 |FTn

)
, Ψ (f,1) = F(υ(T )).

We will apply (16.3.25) several times:
1) First, with Yn = Ln and the functions gn(x)= fn(x,βny), which converge point-
wise to g(x, y) = f (x,βy) if βn→ β and satisfy (16.3.24); taking (16.3.23) into
consideration, this gives E(fn(Ln,βny))→ E

′(f (x,βy)). Then, due to the defini-
tion of S (which is indeed a product S(dx, dy)= S1(dx)S2(dy)), we deduce

βn → β ⇒ Fn(βn) → F(β).

2) Second, with Yn = L′n and gn = hn(ω(0)); taking (16.3.20) into consideration, this

gives An1(ω
(0))−An3(ω(0))→ 0.

3) Third, with Yn = υTn(ω(0))L′, which converges to Y = υ(T )(ω(0))L′, and gn =
hn
(ω(0))

; we then get E
′(gn(υTn(ω(0))L′)) − E

′(gn(υ(T )(ω(0))L′)), which is also

An2(ω
(0))−An3(ω(0))→ 0.

Putting all these together, and recalling that all variables under consideration
here are uniformly bounded, we deduce on the one hand that Fn(υTn)→ Ψ (f,1),

and on the other hand that Ψn(fn,1)−E(An2 |FTn)
P−→ 0. It remains to observe that

indeed E(An2 |FTn)= Fn(υTn), which follows from the fact that (WTn+t −WTn)t≥0
is independent of FTn : the proof is thus complete. �

The previous result gives the behavior of W(g) and χ(g) for a weight function
g, but not the behavior of χ̂ (g). For this, we have the following result:

Lemma 16.3.8 Let g be a weight function, and assume (SN) and that Υt is càdlàg.
If in is a random integer satisfying the condition of Lemma 16.3.7 for some m ∈N,
and with Υ(T ) equal to ΥT− or ΥT , according to the case of (16.3.18), and with the
notation Λ(g′) of (16.1.7), for any ω(0) we have, with Q=Q(ω(0), .):

sup
t∈[0,m]

∣∣kn χ̂(g)n,lmin+[knt] − 2Λ
(
g′
)
Υ lm(T )

∣∣ Q−→ 0. (16.3.30)
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Proof 1) We argue under the probability Q = Q(ω(0), .). We also fix the indices
l,m. We make the convention g′nr = 0 if r < 1 or r > kn, and set Tn = (in − 1)Δn.
We also set

ζ ni = χlTn+iΔnχmTn+iΔn −Υ lmTn+iΔn
ζ ′ni = χlTn+iΔnχmTn+(i−1)Δn + χlTn+(i−1)Δnχ

m
Tn+iΔn

δni (t)= kn
(
g′ni−[knt]

)2
.

Observe that

kn χ̂(g)
n,lm
in+[knt] − 2Λ

(
g′
)
Υ lm(T ) =

5∑

j=1

An(j)t ,

where

An(1)t =
∑

i≥0

δni (t) ζ
n
i , An(2)t =

∑

i≥0

δni+1(t) ζ
n
i

An(3)t =−
∑

i≥0

δn2i (t) ζ
′n
2i , An(4)t =−

∑

i≥0

δn2i+1(t) ζ
′n
2i+1

An(5)t = kn
kn∑

r=1

(
g′nr
)2(
Υ lmTn+([knt]+r)Δn + Υ lmTn+([knt]+r−1)Δn

)− 2Λ(g′)Υ lm(T ) .

2) Recalling that Tn ≤ (T − (m + 1)un)+ in case (1) and Tn ≥ T in case (2),
and Tn→ T always, we see that Υ lmTn+([knt]+r−j)Δn) converges to Υ lm(T ) for j = 0,1,
uniformly in t ∈ [0,m]. Therefore it readily follows from knΛn(g

′,2)→ Λ(g′),
recall (16.1.9), that

sup
t∈[0,m]

∣∣An(j)t
∣∣ Q−→ 0 (16.3.31)

when j = 5 (in this case, it is even a “sure” convergence, since An(j)t only de-
pends on ω through ω(0), which here is fixed). It thus remains to prove this for
j = 1,2,3,4. Under Q the variables ζ ni are independent centered with bounded
moments of all order, and the same holds for the two sequences ζ ′n2i and ζ ′n2i+1 (but
not for the “full” sequence ζ ′ni , of course). The argument for proving (16.3.31) is
based on the above properties and on the form of δni (t), so it works in the same way
for j = 1,2,3,4 and we only consider the case j = 1 below.

Using these properties, we can apply Burkholder-Gundy and Hölder’s inequal-
ities, plus the fact that δni (t) = 0 is always smaller than K/kn and vanishes when
i ≤ [knt] or i > [knt] + kn, to get for p ≥ 2:

EQ

((
An(1)t

)p) ≤ EQ

((
∑

i≥1

∣∣δni (t)
∣∣2∣∣ζ ni
∣∣2
)p/2)

≤ Kp

k
p/2
n

. (16.3.32)
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Hence An(1)t
Q−→ 0, and it remains to prove that the sequence An(1) is C-tight.

For this, we observe that (16.3.32) a fortiori implies EQ(|An(1)t+s −An(1)t |p)≤
Kp/k

p/2
n , hence by the same argument as in Step 3 of the previous proof we deduce

the C-tightness. This completes the proof. �

We can now combine the previous two results, at least when we consider weight
functions g1, . . . , gq . That is, we look for the joint behavior of the three processes

1≤ j ≤ q, 1≤ l ≤ d ′ �→ L
n,jl
t = 1√

un
W(gj )

n,l
in+[knt]

1≤ j ≤ q, 1≤ l ≤ d �→ L
′n,j l
t = √

kn χ(g
j )
n,l
in+[knt]

1≤ j ≤ q, 1≤ l,m≤ d �→ L̂
n,j lm
t = kn χ̂(g

j )
n,lm
in+[knt].

⎫
⎪⎪⎬

⎪⎪⎭
(16.3.33)

The first two processes above are the same as in (16.3.12), upon choosing J = q and
hj = gj , h(j)ni = (gj )ni , h′j = (gj )′, h′(j)ni = kn(gj )′ni (which all satisfy (16.3.8)).

We will also multiply the Brownian motion by the volatility, and use the notation
(16.3.17). We assume that Υt has a càdlàg square-root υt , and also (16.3.18) for the
sequences in and Tn = (in − 1)Δn. Then in case 1 we set Υ(T ) = ΥT− as above and
also σ(T ) = σT−, and in case 2 we set Υ(T ) = ΥT and σ(T ) = σT . Finally, in view of

(16.3.30), we consider the following “constant” element z0 ∈D
qd2

defined by

1≤ j ≤ q, 1≤ l,m≤ d, t ≥ 0 �→ (
Λ
(
g′
)
Υ(T )
)
(t)j lm =Λ((gj )′)Υ lm(T ).

(16.3.34)

Lemma 16.3.9 In the previous setting, and under the assumptions of Lemma 16.3.7
plus (SH), and if the sequence of functions fn on D

qd+qd+qd2
satisfies (16.3.16) and

converges pointwise to some limit f , and with S(dx, dy) as defined in (16.3.10), we
have for any bounded random variable Z:

E
(
Zfn
(
σTnL

n,L′n, L̂n
) |FTn

)

P−→ E

(
Z

∫
f
(
σ(T )x,υ(T )y,2Λ

(
g′
)
Υ(T )
)
S(dx, dy) |F(T )

)
. (16.3.35)

Proof First, exactly as in Step 4 of the proof of Lemma 16.3.7, one can show that it
is enough to consider the case where |fn| ≤K identically, for some constant K (we
additionally use the facts that Υ is bounded under (SN) and that E(‖L̂nt ‖p) ≤ Kp
for all t , which in turn readily follows from (16.2.3)).

If α is a d × d ′ matrix we define the following functions on D
qd2 ×D

qd ′ ×D
qd :

Gn(α; z, x, y) = fn(αx, y, z), G(α; z, x, y) = f (αx, y, z).

Observe that by (16.3.16) we have for all A> 0:

lim
ε→0

sup
(∣∣Gn
(
α′; z′, x, y)−Gn(α; z, x, y)

∣∣ :
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n≥ 1, ‖α − α′‖ + ‖z− z′‖(n,m) ≤ ε,
‖x‖(n,m) + ‖y‖(n,m) + ‖z‖(n,m) + ‖α‖ ≤A

) = 0.

First, Lemma 16.3.7 yields that the two sequences Ln and L′n are tight, so the

above property ofGn yieldsGn(αn; zn,Ln,L′n)−Gn(α; z,Ln,L′n) P−→ 0 if αn→
α and ‖z− z′‖(n,m)→ 0. Second, the same lemma yields

Fn(α, z) := E
(
ZGn
(
α; z,Ln,L′n) |FTn

)

P−→ F(α, z) := E

(
Z

∫
G(α; z, x,υ(T )y)S(dx, dy) |F(T )

)

and thus

αn→ α, ‖z− z′‖(n,m)→ 0 ⇒ Fn(αn, zn)
P−→ F(α, z). (16.3.36)

Third, let Φ ′n = E(Zfn(σTnL
n,L′n,2Λ(g′)ΥTn) | FTn) and Φn be the left side of

(16.3.35). In view of the assumptions (16.3.16) and (16.3.18), of |fn| ≤ K and of
the convergences (16.3.30) and ΥTn→ Γ(T ), we see that E(|Φn −Φ ′n|)→ 0, so

Φn −Φ ′n P−→ 0. (16.3.37)

Now since σTn and ΥTn are FTn measurable, Φ ′n = Fn(σTn,2Λ(g′)ΥTn). By
virtue of σTn → σ(T ) and ΥTn → Υ(T ), (16.3.36) yields that Φ ′n converges to
F(σ(T ),2Λ(g′)Υ(T )), which is the right side of (16.3.35). Then we conclude by
(16.3.37). �

16.3.3 A Global Stable Convergence Result

This subsection, with almost the same title as Sect. 12.1.2, is devoted to proving a
result analogous to Proposition 12.1.6, but in a noisy setting. We constantly refer to
that proposition and its proof, and thus will use freely the notation of Sect. 12.1.2,
for example (12.1.11)–(12.1.17), pages 344–345, to begin with.

We will assume below the strengthened assumption (SH) = (SH-2), where (SH-
r) is (H-r) plus the facts that bt and σt and Xt are bounded and ‖δ(ω, t, z)‖ ≤ Γ (z)
with Γ bounded and

∫
Γ (z)rλ(dz) <∞. As for notation, we recall only that i(n,p)

is the unique integer with i(n,p)Δn < Sp ≤ (i(n,p)+ 1)Δn, where the Sp’s are a
reordering of the successive jump times S(m,q) of 1Am ∗ p whenm,q ≥ 1 vary, and
where Am = {z : Γ (z) ≥ 1/m}. Then instead of the variables R(n,p) of (12.1.16)
we use the following ones:

R′′(n,p)j = 1

kn
√
un

i(n,p)∑

l=(i(n,p)−kn+1)∨1

(
f j
(
X
(
gj
)n
l
+ (Δn)η χ

(
gj
)n
i

)

− f j
(
gj
(
i(n,p)− l + 1

kn

)
ΔXSp

))
.
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Then, with Ψp , Ψ ′p , αTp and α′Tp as in (16.3.5) (so Rp is as in (12.1.17)), we set

Rp = αTp Ψp, R′p = α′Tp Ψ
′
p, R′′p = Rp + θ ′R′p. (16.3.38)

Our aim in this subsection is the following result:

Proposition 16.3.10 Assume (SH), (SN) and the hypotheses of Theorem 16.3.1
about f and η′, and that Υ has a càdlàg square-root if θ ′ = θ > 0. Then the se-
quence (R′′(n,p))p≥1 converges stably in law to (R′′p)p≥1.

As usual, it is enough to prove that for any finite integer P we have

(
R′′(n,p)

)
1≤p≤P

L-s−→ (R′′p
)

1≤p≤P .

Below we fix P and consider the smallest integer m such that for any p = 1, . . . ,P
we have Sp = S(m′, j) for some m′ ≤ m and some j ≥ 1. Recall that gj (l/kn) is
denoted by (gj )nl , and (gj )′nl = gj (l/kn)− gj ((l − 1)/kn), and that χni = χiΔn .

We use the notation (12.1.19)–(12.1.21), complemented with

h′−(x, j, l)nr =
r∑

u=1

∂lf
j

(
gj
(
u+ kn − r

kn

)
x

) (
gj
)′n
u

h′+(x, j, l)nr =
kn∑

u=1+r
∂lf

j

(
gj
(
u− r
kn

)
x

) (
gj
)′n
u

z
′n,j lv
p− (x)= 1√

kn

kn∑

r=1

h′−(x, j, l)nr χv(i(n,p)−kn+r−1)Δn

z
′n,j lv
p+ (x)= 1√

kn

kn−1∑

r=1

h′+(x, j, l)nr χv(i(n,p)+r−1)Δn .

(16.3.39)

Finally (Gt ) is the smallest filtration which contains (Ft ) and such that Sp is G0

measurable for all p ≥ 1, so the variables i(n,p) are G0 measurable, and W is
a (Gt )-Brownian motion, and the representation (12.1.13) for X(m) is the same
relative to three filtrations (F (0)t ) and (Ft ) and (Gt ).

Observe that |h′±(x, j, i)nr | ≤Kx for any x, with x �→Kx being locally bounded.
Thus we have estimates similar to (16.2.3), for all q,A > 0 (we argue under each
probability Q(ω(0), .)):

‖x‖ ≤A, q ≥ 1 ⇒ E
(∥∥z′np±(x)

∥∥q)≤Kq,A. (16.3.40)

Lemma 16.3.11 Under the assumptions of Proposition 16.3.10, for each p ≤ P we
have
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R′′(n,p)j − (zn,jp−(ΔXSp)+ zn,jp+(ΔXSp)
)

+ Δ
η−1/2
n

kn

(
z
′n,j
p− (ΔXSp)+ z′n,jp+ (ΔXSp)

) P−→ 0. (16.3.41)

Proof The proof is as in Lemma 12.1.7, with the following changes. We substitute
R(n,p) with R′′(n,p), and (12.1.23) becomes

Bnl =
d∑

v=1

∂vf
j

(
gj
(
i(n,p)− l + 1

kn

)
ΔXSp

)(
X(m)
(
gj
)n,v
l
+ (Δn)η χ

(
gj
)n,v
l

)
,

and (12.1.24) is replaced by the following:

∣∣B ′nl
∣∣ ≤ K(∥∥X(m)(gj )n

l

∥∥2 + ∥∥X(m)(gj )n
l

∥∥2+w

+ ((Δn)η
∥∥χ
(
gj
)n
l

∥∥)2 + ((Δn)η
∥∥χ
(
gj
)n
l

∥∥)2+w).

Then instead of (12.1.25), the variable 1
kn
√
un

∑i(n,p)

l=i(n,p)−kn+1B
n
l equals

z
n,j
p−(ΔXSp)+ zn,jp+(ΔXSp)−

Δ
η−1/2
n

kn

(
z
′n,j
p− (ΔXSp)+ z′n,jp+ (ΔXSp)

)+B ′′n

with the same B ′′n as in (12.1.25). Therefore, since we have (12.1.26), it remains to
prove that

1

kn
√
un

i(n,p)∑

l=i(n,p)−kn+1

((
(Δn)

η
∥∥χ
(
gj
)n
l

∥∥)2 + ((Δn)η
∥∥χ
(
gj
)n
l

∥∥)2+w) P−→ 0.

(16.3.42)
We can use (16.2.3) to obtain that the expectation of the left side of (16.3.42) is
smaller than KΔ2η

n /kn
√
un, so (16.3.42) follows from η+ η′ ≥ 1/2. �

Now we extend Lemma 12.1.9 to the quadruple (znp−, znp+, z′np−, z′np+). Recall
that znp± are processes indexed by R

d , and the same is true of z′np±. We de-
scribe the joint limit on an auxiliary space (Ω ′,F ′,P′) which supports the d ′-
dimensional Brownian motions W(p−) and W(p+), and also another independent
family (W ′(p−),W ′(p+)) of standard d-dimensional Brownian motions, all inde-
pendent. Then the limits z± of znp± are described by (12.1.30), and we set

z
′j lv
p− (x)=

∫ 1

0
h′−(x, t)

j
l dW

′(p−)vt , z
jlv
p+(x)=

∫ 1

0
h′+(x, t)

j
l dW

′(p+)vt .

All those are still independent centered Gaussian, with paths in C′ =C(Rd ,Rqdd),
defined on (Ω ′,F ′,P′), and we take the product extension (see e.g. (4.1.16)). We
begin with a “finite-dimensional” version of the result, namely:
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Lemma 16.3.12 Assume (SH), (SN), and that Υt admits a càdlàg adapted square-
root υt . Then for any family x1, . . . , xN in R

d we have
(
znp−(xi), znp+(xi), z′np−(xi), z′np+(xi)

)
1≤p≤P,1≤i≤N

L-s−→ (zp−(xi), zp+(xi), υSp−z′p−(xi), υSpzp+(xi)
)

1≤p≤P,1≤i≤N .

Proof 1) We write L
n

p− for the Nqdd ′-dimensional variable with components

L
n,ij lv

p− = zn,j lvp− (xi), and likewise for L
n

p+, L
′n
p− and L

′n
p+, the last two variables be-

ing Nqdd-dimensional. Accordingly, we set L
ijlv

p± = zjlvp±(xi) and L
′ij lv
p± = z′j lvp± (xi);

then the limits of L
n

± will be L±, and with the notation (16.3.17) the limits of L
′n
p−

and L
′n
p+ will be υSp−L

′
p− and υSpL

′
p+.

We need to show that, for all bounded F measurable variables Z and bounded
Lipschitz functions Fp− and Fp+ on R

Nqdd ′+Nqdd , and with

Ynp± = Fp±
(
L
n

p±,L
n

p±
)
,

then

E

(
Z

P∏

p=1

Ynp− Ynp+

)
→ Ẽ

(
Z

P∏

p=1

Fp−(Lp−, υSp−Lp−)Fp+(Lp+, υSpLp+)
)
.

(16.3.43)
2) In this step we explain how the variables L

n

p± and L
′n
p± are connected with

the processes studied in Lemma 16.3.7. The index j in that lemma, denoted here
by J , will be the triple J = (ij l), so J =Nqd . When considering L

n

p− and L
′n
p−,

the functions and sequences showing in (16.3.8) are, with the notation (12.1.3),
(12.1.19), (16.3.3) and (16.3.39):

hJ (t)= h−(xi, t)jl
h′J (t)= h′−(xi, t)jl
h(J )nr = h−(xi, j, l)nr 1{1,...,kn−1}(r)

h′(J )nr = kn h′−(xi, j, l)nr 1{1,...,kn}(r).

In view of the properties (16.1.6) of the weight functions gj and the fact that f is
C2, checking that (16.3.8) holds is a simple matter. Now, recall that the processes
Ln and L′n of (16.3.12) depend also on a sequence in of integers. Then we have:

in = i(n,p)− kn + 1 ⇒ Ln0 = Lnp−, L′n0 = L′np−.

In the same way, when we consider L
n

p+ and L
′n
p+, we take

hJ (t)= h+(xi, t)jl
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h′J (t)= h′+(xi, t)jl
h(J )nr = h+(xi, j, l)nr 1{1,...,kn−1}(r)

h′(J )nr = kn h′+(xi, j, l)nr 1{0,...,kn−1}(r),

and we get

in = i(n,p)+ 1 ⇒ Ln0 = Lnp+, L′n0 = L′np+.
Now, with S±(dx, dy) denoting the law on R

Nqd ′×R
Nqd of the pair (Lp±,L

′
p±),

we set

Yp− =
∫
Fp−(x,υSp−y)S−(dx, dy), Yp+ =

∫
Fp+(x,υSpy)S+(dx, dy).

Then with the notation of Lemma 16.3.7, and if we take in = i(n,p)−kn+1, we see
that Yp− =

∫
f (x,υSp−y)S(dx, dy) with the function f (x, y)= Fp−(x(0), y(0)),

and likewise for Yp+ when in = i(n,p)+ 1.
At this stage, we use Lemma 16.3.7 with the filtration (Gt ), with respect to which

Tn = (i(n,p)− kn)+Δn (resp. Tn = i(n,p)Δn) are stopping times and case 1 (resp.
2) of (16.3.18) holds. Since Fp− and Fp+ are bounded Lipschitz, this lemma applied
with fn(x, y)= Fp±(x(0), y(0)) yields that for all bounded variables Z,

E
(
ZYnp− | G(i(n,p)−kn)Δn

) P−→ E(Z Yp− | GSp−)
E
(
ZYnp+ | Gi(n,p)Δn

) P−→ E(Z Yp+ | GSp ).
(16.3.44)

Using the Gi(n,p)Δn measurability of (L
n

p−,L
′n
p−) and the GSp measurability of Yp−,

we have

E
(
ZYnp− Ynp+ | G(i(n,p)−kn)Δn

)= E
(
Ynp−E

(
ZYnp+| Gi(n,p)Δn

)| G(i(n,p)−kn)Δn
)

E(Z Yp− Yp+ | GSp−)= E
(
Yp−E(ZYp+ | GSp ) | GSp−

)
.

Since all variables are bounded, the convergence in (16.3.44) also takes place in L
1.

Then if we use the second convergence with Z, and then the first convergence with
E(ZYp+ | GSp ) instead of Z, we readily deduce from the above that

E
(
ZYnp− Ynp+ | G(i(n,p)−kn)Δn

) L
1−→ E(Z Yp− Yp+ | GSp−). (16.3.45)

3) We are now ready to prove (16.3.43). On the set {SP − SP−1 > 3un}, which
converges to Ω , the variables Ynp± for p ≤ P − 1 are G(i(n,P )−kn)Δn measurable.
Hence the left side of (16.3.43) is equal to

E

(
P−1∏

p=1

(
Ynp−Ynp+

)
E
(
ZYnP− Y

n
P+ | G(i(n,P )−kn)Δn

)
)
+Rn,
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where the remainder term Rn satisfies |Rn| ≤KP(SP − SP−1 ≤ 3un). Then if Z′ =
E(Z Yp− Yp+ | GSp−), we deduce from (16.3.45) and Rn→ 0 that

E

(
Z

P∏

p=1

(
Ynp− Ynp+

)
)
−E

(
Z′
P−1∏

p=1

(
Ynp− Ynp+

)
)
→ 0.

Now we observe that the right side of (16.3.43) is equal to

E

(
Z

P∏

p=1

(Yp− Yp+)
)
= E

(
Z′
P−1∏

p=1

(Yp− Yp+)
)
.

Therefore if we have (16.3.43) for P − 1 and all bounded Z, we deduce that it holds
for P as well. Since it trivially holds for P = 0, it is proved by induction for all P . �

The functional version is as follows:

Lemma 16.3.13 Assume (SH), (SN), and that Υt admits a càdlàg (F (0)t )-adapted
square-root υt . Then

(
znp−, znp+, z′np−, z′np+

)
1≤p≤P

L-s−→ (zp−, zp+, υSp−z′p−, υSpz′p+
)

1≤p≤P (16.3.46)

for the product topology on (C(Rd ,Rqdd
′
) × C(Rd,Rqdd

′
) × C(Rd ,Rqdd) ×

C(Rd,Rqdd))P .

Proof Let Zn and Z be the left and right sides of (16.3.46). They can be considered
as taking values in C=C(Rd ,R2Pqdd ′+2Pqdd), and we need to prove that

E
(
ZF
(
Zn
)) → Ẽ

(
ZF(Z)

)
, (16.3.47)

where Z is bounded F measurable and F is bounded continuous on C for the local
uniform topology. It is of course enough to show this when Z ≥ 0 and E(Z)= 1, in
which case (16.3.47) amounts to

EP′
(
F
(
Zn
)) → E

P̃′
(
F(Z)
)
, (16.3.48)

for all continuous bounded F , where P
′ and P̃

′ are the probability measures admit-
ting the Radon-Nikodym density Z with respect to P and P̃.

Now, (16.3.48) is the convergence in law Zn L=⇒ Z under P
′, and the previ-

ous lemma shows that we have the finite-dimensional convergence in law under P′.
Therefore, in order to get (16.3.48) it only remains to prove the C-tightness of the
sequence Zn, which is a property of each of their components. In other words it
remains to show that any given component of Zn forms a C-tight sequence under
P
′, for any measure P

′ absolutely continuous with respect to P, and this property is
clearly implied by the C-tightness under P.
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The C-tightness of each component zn,j lrp± has been proved in Lemma 12.1.9. For

the components z′n,j lrp− and z′n,j lrp+ it is proved in exactly the same way: it is enough
to show that they satisfy (12.1.32) for some v > 0 and v′ > d .

This is simple: we have ‖h′−(x, j, l)n − h′−(x′, j, l)n‖ ≤ KA‖x − x′‖ if ‖x‖,
‖x′‖ ≤ A by our assumptions on f and gj , and the Burkholder-Davis-Gundy in-
equality yields for v ≥ 1:

E
(∣∣z′n,j lmp− (x)− z′n,j lmp−

(
x′
)∣∣v)

≤ K

k
v/2
n

E

((
kn∑

r=1

∣∣h′−(x, j, l)nr − h′−
(
x′, j, l

)n
r

∣∣2 ∣∣χm(i(n,p)−kn+r−1)Δn

∣∣2
)v/2)

≤ KA,v‖x − x
′‖v

kn
E

(
kn∑

r=1

∣∣χm(i(n,p)−kn+r−1)Δn

∣∣v
)

≤KA,v‖x − x′‖v, (16.3.49)

where the second inequality uses Hölder’s inequality, and the last one comes from
(SN) and the fact that (i(n,p)− kn− 1)Δn is a stopping time for the filtration (Ht )
of (16.1.1), hence the variables χm

(i(n,p)−kn+r−1)Δn
for r ≥ 1 are H(i(n,p)−kn−1)Δn -

conditionally independent with bounded moments of all orders. The same estimate
(16.3.49) holds for z′np+, hence we get (12.1.32), upon choosing v = v′ > d . �

Proof of Proposition 16.3.10 First, observe that the estimates (16.3.40) and
(16.3.49) require no assumption on Υt other than being bounded, and they imply
that the processes x �→ z′np−(x) are C-tight, and the same for z′np+. Therefore the
variables z′np±(ΔXSp) are bounded in probability. Under (16.3.6) with θ ′ = 0 we

have Δη−1/2
n /kn → 0, and thus the last term on the left of (16.3.41) goes to 0

in probability. In other words we have (12.1.22), and our proposition reduces to
Proposition 12.1.6.

It remains to consider the case where θ ′ = θ > 0. In this case Δη+1/2
n → θ , so

(16.3.41) implies

R′′(n,p)j − ( zn,jp−(ΔXSp)+ zn,jp+(ΔXSp)
)+ θ (z′n,jp− (ΔXSp)+ z′n,jp+ (ΔXSp)

) P−→0.

Now we can use Lemma 12.1.8 (this is where, again, one uses the fact that the f j ’s
are linear combination of positively homogeneous functions) to deduce

R′′(n,p)j −
(

d∑

l=1

d ′∑

v=1

(
σ lvSp− z

n,j lv
p− (ΔXSp)+ σSp zn,j lvp+ (ΔXSp)

)
)

+ θ (z′n,jp− (ΔXSp)+ z′n,jp+ (ΔXSp)
) P−→ 0.
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The same argument as in the proof of Proposition 12.1.6 allows us to deduce
from (16.3.46), instead of (12.1.33), that

(
R′′(n,p)j

)
j,p

L-s−→
(

d∑

l=1

d ′∑

v=1

(
σ lvSp− z

jlv
p−(ΔXSp)+ σSp zjlvp+(ΔXSp)

)

− θ
d∑

l=1

d∑

v=1

(
υlvSp−z

′j lv
p− (ΔXSp)+ υlvSpz′j lvp+ (ΔXSp)

)
)

j,p

,

where p ranges from 1 to P . It is straightforward to check that the right side above
has the same F -conditional law as the family (R′′jp )p,j , as defined by (16.3.38), and
this completes the proof. �

16.3.4 Proof of Theorem 16.3.1

The proof is the same as for Theorem 12.1.2, whose notation is used, and we mainly
emphasize the few changes to be made. The time t is fixed throughout.

By localization we can assume (SH) and (SN). Recalling (16.3.2), we replace
(12.1.35) by

Yn
(
Zn
)
t
= Yn(X(m)+ (Δn)η χ

)
t
+Zn(m)t on the set Ωn(t,m), (16.3.50)

where Zn(m)t =∑p∈Pm: Sp≤t ζ
n
p , and ζ np = (ζ n,jp )1≤j≤q is given by

ζ
n,j
p = 1√

un

(
1

kn

i(n,p)∑

l=(i(n,p)−kn+1)∨1

(
f j
(
X
(
gj
)n
l
+ (Δn)ηχ

(
gj
)n
l

)

− f j (X(m)(gj )n
l
+ (Δn)ηχ

(
gj
)n
l

))−
∫ 1

0
f j
(
gj (u)ΔXSp

)
du

)
.

Hence, again on the setΩn(t,m), we have ζ n,jp −R′′(n,p)j = γ (j,p)n+γ ′(j,p)n,
where

γ (j,p)n = − 1

kn
√
un

i(n,p)∑

l=(i(n,p)−kn+1)∨1

f j
(
X(m)
(
gj
)n
l
+ (Δn)ηχ

(
gj
)n
l

)

γ ′(j,p)n = − 1√
un

∫ 1

0

(
f j
(
gj (u)ΔXSp

)− f j (gj (kn
(
1+ [u/kn]

)
ΔXSp
)))
du.

That γ ′(j,p)n
P−→ 0 is explicitly proved in Theorem 12.1.2. On the other hand,

∣∣f j
(
X(m)
(
gj
)n
l
+ (Δn)ηχ

(
gj
)n
l

)∣∣ ≤ K
(∥∥X(m)

(
gj
)n
l

∥∥2 + (Δn)η
∥∥χ
(
gj
)n
l

∥∥2)
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on the set Ωn(t,m) ∩ {Sp ≤ t}. In view of (12.1.15) and (12.1.26) and (16.2.3) we

deduce that γ (j,p)n
P−→ 0, hence ζ n,jp − R′′(n,p)j P−→ 0. Then for each m, t

fixed, it follows from Proposition 16.3.10 that

Zn(m)t
L-s−→ Y

(
X′(m)

)
t
+ θ ′ Y ′(m,χ)t , (16.3.51)

where Y(X′(m)) is associated with the process X′(m) by (12.1.6), and Y
′
(m,χ)

is as Y
′
(χ) in (16.3.5), except that the sum is extended over the stopping times

Sp (instead of Tn) for p ∈ Pm only. Since obviously Y (X′(m))t → Y (X)t and

Y
′
(m,χ)t → Y

′
(χ)t in probability as m→∞, we are left to prove that for all

η > 0 we have

lim
m→∞ lim sup

n→∞
P
(∣∣Yn
(
X(m)+ (Δn)η χ

)
t

∣∣> η
) = 0.

Since we have (12.1.36), it is thus enough to prove the following, for each j :

lim
m→∞ lim sup

n→∞
E

(
1

kn
√
un

[t/Δn]∑

i=1

∣∣f j
(
X(m)
(
gj
)n
i

+ (Δn)η χ
(
gj
)n
i

)− f j (X(m)(gj )n
i

)∣∣
)
= 0. (16.3.52)

For proving (16.3.52) we can assume d = 1, so we omit the index j . Recall that
f is C2 with ∇f (x)= o(‖x‖2) and f (x)= o(‖x‖3) as x→ 0, and f and ∇f are
of polynomial growth with powers p′ +1 and p′, for some p′ > 2. Then, by singling
out the cases ‖y‖ ≤ ‖x‖ and ‖y‖> ‖x‖, we deduce that for some function φ such
that φ(s)→ 0 as s→ 0, we have for all ε ∈ (0,1):
∣∣f (x + y)− f (x)∣∣

≤ K

(
‖y‖
(
φ(ε)‖x‖2 + ‖x‖

3

ε
+ ‖x‖p′

)
+ φ(ε)‖y‖3 + ‖y‖

4

ε
+ ‖y‖p′+1

)
.

By the representation (12.1.12) for X(m)(g)ni and (2.1.44) and (SH), we have

E
(∥∥X(m)(g)ni

∥∥2) ≤ Kun

q > 2 ⇒ E
(∥∥X(m)(g)ni

∥∥q) ≤ Kqun ρm, with ρm→ 0.

Since p′ > 0, by combining these estimates and (16.2.3) and doing successive con-
ditioning, we deduce that

E
(∣∣f
(
X(m)(g)ni + (Δn)η χ(g)ni

)− f (X(m)(g)ni
)∣∣)

≤ Kφ(ε)

(
unΔ

η
n√
kn
+ Δ

3η
n

k
3/2
n

)
+ K
ε

(
unΔ

η
nρm√
kn

+ Δ
4η
n

k2
n

)
.
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The expectation in (16.3.52) is then smaller than

K t

((
φ(ε)+ ρm

ε

)
Δ
η+η′−1/2
n + φ(ε)Δ3η+5η′/2−3/2

n + 1

ε
Δ

4η+4η′−3/2
n

)
.

The powers of Δn appearing above are all nonnegative under (16.3.6). Then, letting
first n→∞, then m→∞, then ε→ 0, we deduce (16.3.52), and the proof is
complete.

16.4 Laws of Large Numbers for Normalized Functionals
and Truncated Functionals

16.4.1 Statement of Results

Here we turn to the normalized functionals V ′n(Φ, kn,Zn), as given by (16.1.13) for
the processes Zn =X+ (Δn)η χ . Here,Φ is associated with some function f on R

d

and some weight function g by (16.1.12). As a matter of fact, functionals depending
only on the averagesZn(g)ni are not enough, and we need functionals that depend on
Ẑn(g)ni as well, see (16.1.10). Therefore we will consider the following functionals,

where g is a weight function and f a function on R
d ×R

d2
:

V ′n(f, g, kn,Y )t = Δn

[t/Δn]−kn+1∑

i=1

f

(
Y (g)ni√
un
,
Ŷ (g)ni

un

)
.

Our aim is to extend Theorem 8.4.2 to the noisy case, and we suppose that X is an
Itô semimartingale, with the Grigelionis decomposition (16.3.1).

It is convenient to extend the notation ρa where a ∈M+
d×d , which comes in

under the form ρcs in our LLNs. Namely, if a′ is another matrix in M+
d×d , and

recalling (16.1.7), we use the notation:

ρg;a,a′(dx, dy) = the law of two independent variables with respective laws

N
(
0,Λ(g)a

)
and N

(
0,Λ
(
g′
)
a′
)
.

Theorem 16.4.1 Assume that X satisfies (H) and that the noise satisfies (N) with a
square-root υt of Υt which is càdlàg, and Zn =X+ (Δn)η χ , and let g be a weight
function. Let f be a continuous function on R

d ×R
d2

satisfying:
∣∣f (x, y)

∣∣ ≤ K
(
1+ ‖x‖p + ‖y‖p/2) (16.4.1)

for some p ≥ 0 with further p < 2 when X has jumps. Then, if kn satisfies (16.1.5)
and (16.3.6) holds, we have

V ′n
(
f,g, kn,Z

n
)
t

u.c.p.=⇒
∫ t

0
ds

∫
f
(
x + θ ′ y,2θ ′2Λ(g′)Υs

)
ρg,cs ,Υs (dx, dy).

(16.4.2)
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As in Theorem 16.3.1, we have two different limits according to whether θ ′ = 0
or θ ′ = θ > 0 in (16.3.6). When θ ′ = 0 the limit is exactly the same as in Theo-
rem 8.4.2, as a simple calculation shows. However, as for Theorem 16.3.1 the rate
in the associated CLT is

√
un, so for practical purposes we need to have kn, hence

η′, as small as possible: this is why again the case η′ = 1−2η
2 is of importance.

Unless θ ′ = 0, the limit above is a complicated function of cs and Υs , whereas
in practice one wants some information on cs , and more rarely on Υs to get some
idea about the size of the noise. This seems a very arduous task in general, but it is
tractable in the one-dimensional case, as we will see in the next section.

When X jumps, the growth condition on f in Theorem 16.4.1 is quite stringent,
although it is (almost) the same as in Theorem 8.4.2. To remove these restrictions,
we may use a truncation procedure, as in Chap. 9. We need in fact two truncation
levels, one for the variablesZ(g)ni and another one for the variables Ẑ(g)ni , which do
not have the same order of magnitude. These truncation levels have a form similar
to (9.0.3):

vn = α u�n , v′n = α′Δ1−η′−� ′
n for some α,α′ > 0, � ∈

(
0,

1

2

)
, � ′ > 0.

(16.4.3)
The choice of vn is as in (9.0.3) with Δn substituted with un, and this is motivated
by the fact that the typical order of magnitude of Zn(g)ni under (16.3.6) is

√
un

when X is continuous. As for v′n, the number� ′ is of course not arbitrary: its range
will be specified in the next theorem. Then we introduce the downwards truncated
functionals by

V ′n(f, g, vn−, kn,Y )t

=Δn
[t/Δn]−kn+1∑

i=1

f

(
Y(g)ni√
un
,
Ŷ (g)ni

un

)
1{‖Y(g)ni ‖≤vn} 1{‖Ŷ (g)ni ‖≤v′n}. (16.4.4)

Theorem 16.4.2 Assume that X satisfies (H-r) (that is, Assumption 6.1.1) for some
r ∈ [0,2] and that the noise satisfies (N) with a square-root υt of Υt which is càdlàg,
and Zn = X + (Δn)η χ , and let g be a weight function. Let f be a continuous
function on R

d ×R
d2 satisfying (16.4.1). Then, if kn satisfies (16.1.5) and (16.3.6)

holds, we have

V ′n
(
f,g, vn−, kn,Zn

)
t

u.c.p.=⇒
∫ t

0
ds

∫
f
(
x + θ ′ y,2θ ′2Λ(g′)Υs

)
ρg,cs ,Υs (dx, dy)

(16.4.5)
in the following two cases:

(a) X is continuous;
(b) X may be discontinuous and either p ≤ 2 or

p > 2, r < 2, � ≥ p− 2

2(p− r) , �
′ < 2

p− 2
. (16.4.6)
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When the function f (x, y) does not depend on y, there is of course no reason
to truncate the second argument, and the second indicator function in (16.4.4) can
be dropped. Note also that the conditions on (p, r,�) above are exactly those of
Theorem 9.2.1.

16.4.2 The Proofs

As usual, by localization we may assume (SN) and (SH), or (SH-r) for Theo-
rem 16.4.2. We then have the decomposition X = X′ + X′′ as in (8.4.6), with
X′′ = δ ∗ (p− q). We unify the different cases by putting:

w =
{

0 if X is continuous
1 otherwise

(16.4.7)

and introduce some new notation:

β
n

i =
1√
un
σ(i−1)Δn W(g)

n
i , β̂ni =

Δ
2η
n

un
χ̂(g)ni

β
′n
i =

1√
un
X(g)ni − βni , β̂ ′ni =

1

un
Ẑn(g)ni − β̂ni

ξnt = sup
s:|t−s|≤un

‖σt − σs‖2, ξ ′nt (ρ)=
∫

{‖δ(t,z)‖≤uρn }
∥∥δ(t, z)

∥∥2λ(dz).

Some of the estimates below were already proved before and are recalled for con-
venience, and some will be used in the next sections only. Below, Γ is the function
occurring in (SH).

Lemma 16.4.3 Under (SH) and (SN) and (16.3.6), and with the notation (16.4.7),
we have for some ρ ∈ (0,1) and all q > 0:

E
(∥∥βni
∥∥q |F(i−1)Δn

) ≤ Kq (16.4.8)

E

((‖Zn(g)ni ‖√
un

)q
|F(i−1)Δn

)

≤Kq
(

1+ w

u
(q/2−1)+
n

(∫
Γ (z)q∨2λ(dz)

)(q/2)∧1)
≤Kq
(

1+ w

u
(q/2−1)+
n

)

(16.4.9)

E
(∥∥β ′ni
∥∥2 ∧ 1 |F(i−1)Δn

)

≤ Kun +Kwuρn +
K

un
E

(∫ (i−1)Δn+un

(i−1)Δn

(
ξns +wξ ′ns (ρ)

)
ds |F(i−1)Δn

)

(16.4.10)
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E

((‖Ẑn(g)ni ‖
un

)q
|F(i−1)Δn

)
≤Kq
(
Δ

2qη′
n +Δ(2η+2η′−1)q

n +wΔq∧1+2qη′−q
n

)

(16.4.11)

E
(∥∥β̂ ′ni
∥∥q |F(i−1)Δn

)≤Kq
(
Δ

2qη′
n +wΔq∧1+2qη′−q

n

)
. (16.4.12)

Proof Recalling (12.1.12) (page 344), which we apply with U = X′ and U = X′′
and gn given by (12.1.11) and thus satisfying |gn(s)| ≤K , and by (SH), we deduce
exactly as for (8.4.9), (8.4.10) and (8.4.11) (page 240) that for all q > 0 and for
some ρ ∈ (0,1) we have (16.4.8), and also

E
(∥∥X′(g)ni

∥∥q |F(i−1)Δn

)≤Kquq/2n

E
(∥∥X′′(g)ni

∥∥q |F(i−1)Δn

)≤Kq
(
u
q/2
n +
(
un

∫
Γ (z)q∨2λ(dz)

)(q/2)∧1)

E

(∥∥∥∥
X′(g)ni√
un

− βni
∥∥∥∥
q

|F(i−1)Δn

)

≤Kquq/2n + Kq
un

E

(∫ (i−1)Δn+un

(i−1)Δn
‖σs − σ(i−1)Δn‖2 ds |F(i−1)Δn

)

E

(‖X′′(g)ni ‖2

un
∧ 1 |F(i−1)Δn

)

≤Kuρn +
K

un
E

(∫ (i−1)Δn+un

(i−1)Δn
ξ ′ns (ρ) ds |F(i−1)Δn

)
.

These estimates, plus ξns + ξ ′ns (ρ)≤K and (16.2.3) and the property (Δn)η/
√
un ≤

K/
√
kn which is implied by (16.3.6), yield (16.4.9) and (16.4.10).

Next,

E
(∥∥Δni X

∥∥q |F(i−1)Δn

) ≤ Kq
(
Δ
q/2
n +wΔ(q/2)∧1

n

)
(16.4.13)

for all q > 0. Then by Hölder’s inequality and |g′ni | ≤K/kn we deduce

E

((‖X̂(g)ni ‖
un

)q
|F(i−1)Δn

)

≤ Kq

(knun)q

(
Δ
q
n +wΔq∧1

n

)≤Kq
(
Δ

2qη′
n +wΔq∧1+2qη′−q

n

)
. (16.4.14)

This, together with 16.2.3) and Ẑn(g)ni ≤ K(X̂(g)ni + Δ2η
n χ̂(g)

n
i ), and Δ2η

n ≤
Kknun, yield (16.4.11).
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Finally, we have β̂ ′ni = 1
un
X̂(g)ni + ani + a′ni , where

a
n,lm
i = Δ

η
n

un

[kn/2]∑

j=1

(
g′n2j
)2(
Δni+2j−1X

lΔni+2j−1χ
m +Δni+2j−1χ

lΔni+2j−1X
m
)

a
′n,lm
i = Δ

η
n

un

[(kn−1)/2]∑

j=0

(
g′n2j+1

)2(
Δni+2jX

lΔni+2jχ
m +Δni+2jχ

lΔni+2jX
m
)
.

The j th summand in ani is a martingale increment, relative to the filtration
(H(i+2j−1)Δn)j≥0. Then by the Burkholder-Davis-Gundy and Hölder inequalities,
plus (SN) and (16.4.13), we get

E
(∥∥ani
∥∥q |F(i−1)Δn

) ≤ Kq
(
Δ
(η+5η′/2−1/2)q
n +wΔ(η+5η′/2−1)q+(q/2)∧1

n

)

for q ≥ 1, hence also for q ∈ (0,1) by Hölder’s inequality again. The same holds for
a′ni . Then, upon using (16.4.14) and η+ 5η′/2− 1/2≥ 2η′, we obtain (16.4.12). �

For further reference, we need slightly more general results than what is strictly
needed for Theorems 16.4.1 and 16.4.2. We have integers mn ≥ 0 and ln ≥ kn, with
possibly mn random, such that the variables Rn =mnΔn are stopping times, hence
R′n =Rn + lnΔn as well, and we consider three cases, where t > 0 is a real number
and R a stopping time:

case (1): mn = 0, ln = [t/Δn] ∨ kn
case (2): Rn→R and R′n ≤R for all n
case (3): R′n→R and Rn ≥R for all n.

(16.4.15)

We need the following process, which is càdlàg under the assumptions of the two
theorems:

γt =
∫
f
(
x + θ ′y,2θ ′2Λ(g′)Υt

)
ρg,ct ,Υt (dx, dy), (16.4.16)

and we associate the variable

γ̂ =
⎧
⎨

⎩

1
t

∫ t
0 γs ds in case (1)

γR− in case (2)
γR in case (3)

(16.4.17)

Lemma 16.4.4 Under the assumptions of Theorem 16.4.1, and if ln/kn→∞, we
have

1

ln Δn

(
V ′n
(
f,g, kn,Z

n
)
R′n
− V ′n(f,g, kn,Zn

)
Rn

) P−→ γ̂ .



16.4 LLN for Normalized Functionals and Truncated Functionals 517

Proof 1) We can assume (SH) and (SN). In a first step we prove that, under (16.3.6),
and with the additional notation β̃ni = (Δn)

η√
un
χ(g)ni , we have

Hnt := E

(
1

ln

mn+ln∑

i=mn+1

∣∣∣∣f
(
Zn(g)ni√
un

,
Ẑn(g)ni

un

)
− f (βni + β̃ni , β̂ni

)∣∣∣∣

)
→ 0. (16.4.18)

We let p′ = 2 if w = 1 and p′ = 2p if w = 0, where p is the exponent appearing in
the assumption (16.4.1). This assumption and the continuity of f yield

∣∣f
(
x + x′, y + y′)− f (x, y)∣∣

≤ψA(ε)+K
(
Ap ‖x′‖2 ∧ 1

ε2
+ A

p ‖y′‖
ε

+ ‖x + x
′‖p′ + ‖y + y′‖p′/2
Ap

′−p

)
.

for all ε ∈ (0,1], A≥ 1, x, x′ ∈R
d and y, y′ ∈R

d2
, and where each ψA is a contin-

uous increasing function ψA null at 0. We apply this with x = βni + β̃ni , x′ = β ′ni ,
y = β̂ni and y′ = β̂ ′ni and use (16.2.3), (16.4.9), (16.4.10), (16.4.11) and (16.4.12)
plus the fact that p′ = 2 when w = 1 and the property (Δn)η/

√
un→ 0, to get

Hnt ≤ ψA(ε)+K
(
Apu

ρ
n

ε2
+ A

p

ε2
E

(
1

R′n −Rn
∫ R′n

Rn

(
ξns + ξ ′ns (ρ)

)
ds

)

+ A
p Δ

2η′
n

ε
+ 1

Ap
′−p

)
.

We have η′ > 0 and ρ > 0, and also ξns + ξ ′ns (ρ) ≤ K , whereas ξnt → 0 and
ξ ′nt (ρ)→ 0 for almost all t . Therefore lim supn H

n
t ≤ψA(ε)+K/Ap′−p . By choos-

ing first A large, and then ε small, we obtain (16.4.18).

2) If ζ ni = f (βni + β̃ni , β̂ni ), we deduce from (16.4.18) that it remains to prove

1

ln

ln∑

i=1

ζ nmn+i
P−→ γ̂ . (16.4.19)

Set ζ ′ni = E(ζ ni |F(i−1)Δn) and ζ ′′ni = ζ ni − ζ ′ni . Since (mn+ i − 1)Δn is a stopping
time for each i ≥ 1 and ζ nmn+i is F(mn+i+kn−1)Δn measurable, we have

E

((
1

ln

ln∑

i=1

ζ ′′nmn+i

)2)
≤ 2

l2n

ln∑

i=1

kn−1∑

j=0

∣∣E
(
ζ nmn+i ζ

n
mn+i+j

)∣∣≤ 2kn
l2n

ln+kn∑

i=1

E
(∣∣ζ nmn+i

∣∣2).

(16.2.3), (16.4.1) and (16.4.8), plus (Δn)η ≤ K√knun, yield E(|ζ ni |2) ≤ K and
|ζ ′ni | ≤ K . In particular the right side above goes to 0 because kn/ ln→ 0, and in-
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stead of (16.4.19) it is then enough to prove

1

ln

ln∑

i=1

ζ ′nmn+i
P−→ γ̂ . (16.4.20)

With γ nt = ζ ′ni for (i − 1)Δn ≤ t < iΔn, the left side of (16.4.20) is

1

R′n −Rn
∫ R′n

Rn

γ ns ds =
∫ 1

0
γ nRn+s(R′n−Rn) ds.

In case (1) we have γ̂ = ∫ 1
0 γst ds and Rn = 0 and R′n→ t . Since γs is càdlàg and

|γ ns | ≤K and |γs | ≤K , and by using the dominated convergence theorem, we see
that, for obtaining (16.4.20), it is enough to prove the following:

s ∈ (0,1) ⇒ γ nRn+s(R′n−Rn)
P−→
⎧
⎨

⎩

γ(st)− in case (1)
γR− in case (2)
γR in case (3)

(16.4.21)

3) Below we fix s ∈ [0,1), and we consider the (random) sequence in of integers,
defined by in = i if (i − 1)Δn ≤ Rn + s(R′n − Rn) < iΔn, so Tn = (in − 1)Δn
satisfies (16.3.18)-(1) with T = st in case (1) and T =R in case (2), and (16.3.18)-
(2) with T =R in case (3), and m= 0 in all three cases. So we apply Lemma 16.3.9
with this sequence in and with Z = 1, J = 1, h(1)ni = gni and h′(1)ni = kng′ni , so
(16.3.8) holds with h(1) = g and h′(1) = g′. With the notation (16.3.33) we have
σTnL

n
0 = βnin and L′n0 =

√
kn χ(g)

n
in

and L̂n0 = knχ̂(g)nin . We also take the functions

fn on D
d ′+d+d2

defined by

fn(x, y, z) = f

(
x(0)− Δ

η
n√
knun

y(0),
Δ

2η
n

knun
z(0)

)
,

They satisfy (16.3.16) with some w ≥ 0 and m = 0 by (16.4.1), and converge
pointwise to a limit denoted by F here, and which is F(x, y, z) = f (x(0) −
θ ′y(0), θ ′2z(0)). Moreover, with the notation (16.3.34) forΛ(g′)Υ(T ) and (16.3.10)
for S(dx, dy), we have

γ nRn+s(R′n−Rn) = ζ ′nin = E
(
fn
(
σTnL

n,L′n, L̂n
) |FTn

)

γ(T ) =
∫
F
(
σ(T )x, y,2Λ

(
g′
)
Υ(T )t
)
S(dx, dy),

(for the second part above, we use the fact that the image of the measure S by the
mapping (x, y) �→ (σ(T )x(0), υ(T )y(0)) is ρg;c(T ),Υ(T ) . Then (16.4.21) follows from
Lemma 16.3.9. �

Proof of Theorem 16.4.1 In the setting of the previous lemma, case (1), we have
Rn = 0 and R′n = [t/Δn]Δn. Therefore we have V ′n(f, g, kn,Zn)Rn = 0 and
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V ′n(f, g, kn,Zn)R′n = V ′n(f, g, kn,Zn)t . Hence Lemma 16.4.4 yields that the con-
vergences (16.4.2), under the appropriate conditions, in probability for any fixed t .
The limit being continuous, they also hold uniformly in t ∈ [0,N] for any N , when
f ≥ 0. Then by difference the local uniform convergence holds for f taking positive
and negative values. �

Lemma 16.4.5 In the setting of Lemma 16.4.4, and under the assumptions of The-
orem 16.4.2 and ln/kn→∞, we have

1

ln Δn

(
V ′n
(
f,g, vn−, kn,Zn

)
R′n
− V ′n(f,g, vn−, kn,Zn

)
Rn

) P−→ γ̂ . (16.4.22)

Proof 1) We may assume (SH-r) and (SN), and also p ≥ 2. We set

Un(h) = 1

ln Δn

(
V ′n
(
h,g, kn,Z

n
)
R′n
− V ′n(h,g, kn,Zn

)
Rn

)

U ′n(h) =
1

ln Δn

(
V ′n
(
h,g, vn−, kn,Zn

)
R′n
− V ′n(h,g, vn−, kn,Zn

)
Rn

)

for any function h. We basically reproduce the proof of Theorem 9.2.1. We use the
function ψ ′ε of (3.3.16) (the same notation is used when the argument is in R

d or in

R
d2

), with ε =M an integer. Instead of (9.2.8) we set

fM(x, y) = f (x, y)ψ ′M(x)ψ ′M2(y),

which is a continuous bounded function, so for each M Theorem 16.4.1 yields

Un(fM)
P−→ γ̂ (M) as n→∞, where γ̂ (M) is associated by (16.4.16) and (16.4.17)

with the function fM . Moreover fM → f pointwise and |fM(x, y)| ≤ K(1 +
‖x‖p + ‖y‖p/2) uniformly in M , so γ̂ (M)→ γ̂ as M →∞. Therefore we are
left to prove that

lim
M→∞ lim sup

n→∞
E
(∣∣U ′n(f )−Un(fM)

∣∣) = 0.

2) We set vn = vn/√un and v′n = v′n/un, which both go to ∞, so vn ≥M and
v′n ≥M2 for all n bigger than some nM . Hence if n < nM , (16.4.1) implies

∣∣f (x, y)1{‖x‖≤vn,‖y‖≤v′n} − fM(x, y)
∣∣

≤ K
(‖x‖p 1{M2 <‖x‖≤vn} + ‖y‖

p/2 1{M2
2 <‖y‖≤v′n}

)
,

and thus

∣∣U ′n(f )−Un(fM)
∣∣ ≤ K

ln

ln∑

i=1

ζ(M)nmn+i , (16.4.23)
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where, with the notation A
n

i = ‖Zn(g)ni ‖/
√
un and Âni = ‖Ẑn(g)ni ‖/un,

ζ(M)ni =
(
A
n

i

)p
1{M2 <A

n
i ≤vn} +

(
Âni
)p/2

1{M2
2 <Â

n
i ≤v′n}

. (16.4.24)

3) Exactly as for (9.2.13) (page 254), since X′′(g)ni =
∫ (i−1)Δn+un
(i−1)Δn

gn(s − (i −
1)Δn)dX′′s with |gn(s)| ≤ K , we deduce from (SH-r) and (2.1.45) that for some
sequence φn→ 0:

E
(∥∥X′′(g)ni /u

�
n

∥∥2 ∧ 1 |F(i−1)Δn

) ≤ Ku1−r�
n φn.

Moreover E(‖X′(g)ni ‖q) ≤ Kquq/2n and E(‖χ(g)ni ‖q) ≤ K/kq/2n for all q > 0.
Then, recalling Zn(g)ni = X′(g)ni + X′′(g)ni + (Δn)ηχ(g)ni , and as in the proof of
Theorem 9.2.1,

E
((
A
n

i

)p 1{M2 <A
n
i ≤vn} |F(i−1)Δn

)

≤ K
M

E

((‖X′(g)ni ‖√
un

)p+1

+
(
Δ
η
n ‖χ(g)ni ‖√

un

)p+1)

+wKvpnE
((‖X′′(g)ni ‖

u�n

)2

∧ 1 |F(i−1)Δn

)

≤ K
M
+ K

M

(
Δ
η
n

kn
√
Δn

)p+1

+wK vpn u1−r�
n φn

≤K
(

1

M
+wup(�−1/2)+1−r�

n φn

)
,

where we have used (16.3.6) for the last inequality.
On the other hand,

0≤ z≤ z1 + z2 + z3 ⇒ zp/21{M2
2 <z≤v′n}

≤K
(
z
p/2+1
1

M2
+ z

p/2+1
2

M2
+ v′p/2−1

n z3

)
.

Since ‖Ẑn(g)ni ‖ ≤ K(‖X̂′(g)ni ‖ + w‖X̂′′(g)ni ‖ + Δ2η
n ‖χ̂(g)ni ‖), by using (16.2.3)

and Δ2η
n ≤ Kknun, plus (16.4.14) (once with q = p/2 + 1 and w = 0, once with

q = 1), we get

E
((
Âni
)p 1{M2

2 <Â
n
i ≤v′n}

|F(i−1)Δn

)

≤ K

M2
E

((‖X̂′(g)ni ‖
un

)p/2+1

+
(
Δ

2η
n ‖χ̂(g)ni ‖
un

)p/2+1)

+wKv′p/2−1
n E

(‖X̂′′(g)ni ‖
un

|F(i−1)Δn

)
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≤ K

M2

(
Δ
(p+2)η′
n + 1

)+wK v′p/2−1
n Δ2η′

n ≤ K

(
1

M2
+wΔ1−(p/2−1)� ′

n

)
.

If we combine these estimates with (16.4.24), we obtain

E
(
ζ(M)ni |F(i−1)Δn

) ≤ K

(
1

M
+wup(�−1/2)+1−r�

n φn +wΔ1−(p/2−1)� ′
n

)
.

Then in view of (16.4.23) plus the fact that (mn + i − 1)Δn is a stopping time for
each i ≥ 1, we see that

lim sup
n

E
(∣∣U ′n(f )−Un(fM)

∣∣) ≤ K/M

for all p when w = 0, whereas when w = 1 this holds provided p(� − 1/2)+ 1−
r� ≥ 0 and 1− (p/2− 1)� ′ > 0: these conditions are satisfied when p = 2, and
under (16.4.6) otherwise. This ends the proof. �

Proof of Theorem 16.4.2 In the setting of the previous lemma, case (1), we now have
V ′n(f, g, vn−, kn,Zn)Rn = 0 and V ′n(f, g, vn−, kn,Zn)R′n = V ′n(f, g, vn−, kn,
Zn)t , so this lemma yields the convergences (16.4.5) for any fixed t . We conclude
the local uniform convergence as for Theorem 16.4.1. �

16.5 Laws of Large Numbers and Central Limit Theorems
for Integral Power Functionals

16.5.1 The Laws of Large Numbers

In this section we suppose that X is an Itô semimartingale with dimension d = 1,
and in (16.3.1) it is no restriction to suppose that the dimension of W is d ′ = 1 as
well. Recall that ct = σ 2

t in this case, and the noise is of course one-dimensional as
well.

Our aim is to infer the value
∫ t

0 c
p
s ds for some p, or perhaps of

∫ t
0 c
p
s Υ

q
s ds. In

contrast with the no-noise case, the theorems of the previous section do not a priori
provide estimators for these quantities. However, if we take for f a polynomial, the
limit in the right side of (16.4.2) is a linear combination of the variables

∫ t
0 c
p
s Υ

q
s ds

for various (integer) values of p and q . Therefore an appropriate choice of the poly-
nomial f may result in a limit which is exactly

∫ t
0 c
p
s ds or

∫ t
0 c
p
s Υ

q
s ds, but of course

only when p and q are integers.
This is what we do in this section, through a rather complicated procedure which

can probably be extended to the multi-dimensional case, although the extension does
not seem totally straightforward! As of this writing, such an extension has not been
done.
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To this end, for each integer p ≥ 1 we introduce the numbers ζp,l for l = 0, . . . , p
which are the solutions of the following triangular system of linear equations (Cqp =

p!
q!(p−q)! are the binomial coefficients):

ζp,0 = 1,
j∑

l=0

2l m2j−2l C
2p−2j
2p−2l ζp,l = 0, j = 1,2, . . . , p.

(16.5.1)

These could be explicitly computed, and for example

ζp,1 =−1

2
C2

2p, ζp,2 = 3

4
C4

2p, ζp,3 =−15

8
C6

2p.

When q is also an integer, we define the functions fp,q and fp on R
2 by

fp,q(x, z)=
p∑

l=0

ζp,l |x|2p−2l |z|q+l , fp = fp,0. (16.5.2)

Theorem 16.5.1 Assume d = 1 and (N) with Υt càdlàg, and Zn = X + (Δn)η χ ,
and let kn satisfy (16.1.5) and (16.3.6). Let p,q ∈N.

(a) If X is continuous and satisfies (H), we have

V ′n
(
fp,q, g, kn,Z

n
)
t

u.c.p.=⇒ m2p 2q θ ′2q Λ(g)p Λ
(
g′
)q
∫ t

0
c
p
s Υ

q
s ds.

(b) Assume (H-r) for some r ∈ [0,2], and (16.4.3). Then if X is continuous, or if
X jumps and either p+ q ≤ 1 or

p+ q > 1, r < 2, � ≥ p+ q − 1

2p+ 2q − r , �
′ < 1

p+ q − 1
, (16.5.3)

we have

V ′n
(
fp,q, g, vn−, kn,Zn

)
t

u.c.p.=⇒ m2p 2q θ ′2q Λ(g)p Λ
(
g′
)q
∫ t

0
c
p
s Υ

q
s ds.

In particular, when q = 0, and under the above conditions, we have

V ′n
(
fp,g, kn,Z

n
)
t

u.c.p.=⇒ m2p Λ(g)
p

∫ t

0
c
p
s ds, (16.5.4)

V ′n
(
fp,g, vn−, kn,Zn

)
t

u.c.p.=⇒ m2p Λ(g)
p

∫ t

0
c
p
s ds. (16.5.5)

When q > 0 this is useful when θ ′ > 0, otherwise the limits vanish, whereas
when q = 0 and θ ′ = 0 one would rather use the fact that

V ′n
(
f,g, kn,Z

n
)
t

u.c.p.=⇒ m2p Λ(g)
p

∫ t

0
c
p
s ds
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if we simply take f (x) = |x|2p (this is then true even if p is not an integer). Note
that θ ′ > 0 implies η < 1

2 , because η′ > 0. In fact, when η ≥ 1
2 the noise is too small

to be disentangled from the process X itself, and is in fact “negligible”.

Proof The function fp,q satisfies (16.4.1) with 2p + 2q instead of p. Hence by
virtue of Theorem 16.4.1 and 16.4.2 it is enough to prove that

∫
fp,q
(
x + θ ′ y,2θ ′2Λ(g′)Υs

)
ρg,cs ,Υs (dx, dy)

=m2p 2q θ ′2q Λ(g)p Λ
(
g′
)q
c
p
s Υ

q
s . (16.5.6)

In view of (16.5.2), the left side above is equal to

p∑

l=0

ζp,l

p−l∑

j=0

C
2j
2p−2l m2j m2p−2l−2j Λ(g)

j Λ
(
g′
)q+p−j2q+l θ ′2q+2p−2j c

j
s Υ

q+p−j
s

=
p∑

j=0

m2j 2q Λ(g)j Λ
(
g′
)q+p−j

θ ′2q+2p−2j c
j
s Υ

q+p−j
s

×
p−j∑

l=0

2l ζp,l C
2j
2p−2l m2p−2l−2j .

The last sum above vanishes for j = 0, . . . , p − 1 and equals 1 for j = p, by
(16.5.1), and (16.5.6) follows. �

The particular case p+q = 1 of the previous theorem is worth a special mention,
given in the following corollary, for which we use the fact that ζ1,1 =−1/2:

Corollary 16.5.2 Assume d = 1 and (H) and (N) with Υt càdlàg. Let Zn = X +
(Δn)

η χ , and let kn satisfy (16.1.5) and (16.3.6). Recalling the notation (16.1.10)
for Zn(g)ni and Ẑn(g)ni , we have

1

kn

[t/Δn]−kn+1∑

i=1

((
Zn(g)ni

)2 − 1

2
Ẑn(g)ni

)
1{|Zn(g)ni |≤vn, Ẑn(g)ni ≤v′n}

u.c.p.=⇒ Λ(g)

∫ t

0
cs ds

1

kn

[t/Δn]−kn+1∑

i=1

Ẑn(g)ni 1{|Zn(g)ni )|≤vn, Ẑn(g)ni ≤v′n}
u.c.p.=⇒ 2θ ′2Λ

(
g′
)∫ t

0
Υs ds
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and also, when further X is continuous,

1

kn

[t/Δn]−kn+1∑

i=1

((
Zn(g)ni

)2 − 1

2
Ẑn(g)ni

)
u.c.p.=⇒ Λ(g)

∫ t

0
cs ds (16.5.7)

1

kn

[t/Δn]−kn+1∑

i=1

Ẑn(g)ni
u.c.p.=⇒ 2θ ′2Λ

(
g′
)∫ t

0
Υs ds.

Next, when X is discontinuous and p ≥ 2, it is possible to specify the behav-
ior of the non-truncated functionals V ′n(fp, g, kn,Zn), even when X is not an Itô
semimartingale:

Theorem 16.5.3 Let X be an arbitrary one-dimensional semimartingale, and as-
sume (N) and Zn = X + (Δn)η χ . Let kn satisfy (16.1.5) and p ≥ 2 be an integer,
such that

η′ > 2
1− 2pη

1+ 2p
. (16.5.8)

Then for all t ≥ 0 we have, with the notationΛ(g,2p)= ∫ 1
0 g(s)

2p ds, and recalling
(16.5.2) for fp:

u
p−1
n V ′n

(
fp,g, kn,Z

n
)
t

P−→ Λ(g,2p)
∑

s<t

|ΔXs |2p. (16.5.9)

Proof 1) By localization we can assume (SN). We write hq(x) = |x|q for all real
q > 0, and hp,l(x, z)= |x|2p−2l |z|l . We have fp =∑p

l=0 ζp,lhp,l and hp,0 =H 2p ,
hence

V ′n
(
fp,g, kn,Z

n
) = V ′n

(
h2p, g, kn,Z

n
)+

p∑

l=1

ζp,lV
′n(hp,l, g, kn,Zn

)
.

(16.5.10)
First, V ′n(h2p, g, kn,Z

n)= Δn
u
p
n
V n(Φ, kn,Z

n), where Φ is associated with x �→
|x|2p by (16.1.12), so in (16.2.2) we have Φ(z) = |z|2pΛ(g,2p). Thus, since
(16.5.8) for p implies (16.2.1) for some q ∈ [2,2p), so h2p(x)= o(‖x‖q) as x→ 0,
we deduce from Theorem 16.2.1 that

u
p−1
n V ′n

(
h2p, g, kn,Z

n
)
t

P−→ Λ(g,2p)
∑

s<t

|ΔXs |2p. (16.5.11)

We are thus left to prove that up−1
n V ′n(hp,l, g, kn,Zn)t

P−→ 0 for l = 1, . . . , p.

2) For further reference, we prove a more general result. Namely, we look for
conditions implying, for some given α ≥ 0:

l = 1, . . . , p ⇒ u
p−1−α
n V ′n

(
hp,l, g, kn,Z

n
)
t

P−→ 0. (16.5.12)
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For any q ≥ 1, we set U(q)nt = Δn
u
q
n

∑[t/Δn]−kn+1
i=1 |Ẑn(g)ni |q . If r ∈ (0,1) and 1 ≤

l < p, Hölder’s inequality yields

u
p−1−α
n V ′n

(
hp,l, g, kn,Z

n
)
t

≤ (u
p−l
1−r−1
n V ′n

(
h2 p−l1−r

, kn,Z
n
)
t

)1−r (
u
l−α
r
−1

n U(l/r)nt
)r
.

Exactly as for (16.5.11), we deduce from Theorem 16.2.1 that the variables
u
q−1
n V ′n(h2q, kn,Z

n)t converge in probability to a finite limit, as soon as q ≥ 1
and η′ > (1− 2qη)/(1+ q). When q = p−l

1−r , the latter condition amounts to η′(p−
l + r − 1) > 1− r − 2(p− l)η. On the other hand, we have V ′n(hp,p, g, kn,Zn)=
U(p)n. Therefore the property (16.5.12) will hold if we have

u
l−α
r
−1

n U(l/r)nt
P−→ 0 (16.5.13)

for some r satisfying

if l = p : r = 1
if 1≤ l ≤ p− 1 : 0< r < 1, η′ > 1−r−2(p−l)η

1−r+p−l .
(16.5.14)

On the one hand we have Ẑn(g)ni ≤ 2X̂(g)ni + 2Δ2η
n χ̂(g)

n
i . On the other

hand, X̂(g)ni ≤ K

k2
n

∑kn
j=1(Δ

n
i+j−1X)

2 because |g′ni | ≤ K/kn, hence |X̂(g)ni |q ≤
K

k
q+1
n

∑kn
j=1(Δ

n
i+j−1X)

2q when q ≥ 1. It follows thatU(q)n ≤K(U ′(q)n+U ′′(q)n),
where

U ′(q)nt =
Δn

k
q
n u

q
n

[t/Δn]∑

i=1

∣∣Δni X
∣∣2q, U ′′(q)nt =

Δ
1+2qη
n

u
q
n

[t/Δn]−kn+1∑

i=1

∣∣χ̂ (g)ni
∣∣q .

As soon as q ≥ 1 the sequence
∑[t/Δn]
i=1 |Δni X|2q converges in probability to a

finite limit by Theorem 3.3.1, whereas (SN) and (16.2.3) imply E(U ′′(q)nt ) ≤
KtΔ

2qη
n /k

q
nu
q
n . Therefore (16.5.13) holds provided k1+l/r

n u
α/r
n and k1+l/r

n u
α/r
n ×

Δ
1−2ηl/r
n go to ∞, which amounts to

η′(l + α + r) > α ∨ (α − 2ηl + r). (16.5.15)

Hence we will have (16.5.12) as soon as for each l = 1, . . . , p we can find r , such
that both (16.5.14) and (16.5.15) are true. A tedious but straightforward calculation
shows that this is the case if

η′ > 1+ α − 2pη

1+ α+ p
∨ α

1+ α . (16.5.16)

In particular, when α = 0 this reduces to (16.5.8), hence the theorem is proved. �
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For statistical reasons, we also need approximations for the processes Ξt and Ξ ′t
showing in (16.3.4), at least when the test functions f j which are used to construct
those processes, through (12.1.3) and (16.3.3), are even polynomials. The associated
functions H± and H ′± are then even polynomials as well. In other words, we want
to approximate the following processes, for any integer p ≥ 1:

Ξ−(p)t =
∑

s≤t
cs−|ΔXs |2p, Ξ+(p)t =

∑

s≤t
cs |ΔXs |2p

Ξ ′−(p)t =
∑

s≤t
Υs−|ΔXs |2p, Ξ ′+(p)t =

∑

s≤t
Υs |ΔXs |2p,

(16.5.17)

when Υt is càdlàg for the last two ones, of course. This is accomplished by a method
analogous to what is done in Theorems 9.5.1 and 16.5.1: we start with a choice of
truncation levels vn and v′n, as in (16.4.3), plus another sequence k′n of integers
satisfying

k′n/kn → ∞, k′nΔn → 0. (16.5.18)

Then we set, for a given weight function g:

Ξn+(p,g)t = 1

knk′nun

[t/Δn]−k′n−kn+1∑

i=1

∣∣Zn(g)ni
∣∣2p 1{|Zn(g)ni |>vn}

×
k′n∑

j=1

((
Zn(g)ni+j

)2 − 1

2
Ẑn(g)ni+j

)
1{|Zn(g)ni+j |≤vn, Ẑn(g)ni+j≤v′n}

Ξn−(p,g)t = 1

knk′nun

[t/Δn]−kn+1∑

i=kn+k′n

∣∣Zn(g)ni
∣∣2p 1{|Zn(g)ni |>vn}

×
kn+k′n−1∑

j=kn

((
Zn(g)ni−j

)2 − 1

2
Ẑn(g)ni−j

)
1{|Zn(g)ni−j |≤vn, Ẑn(g)ni−j≤v′n}

(16.5.19)

Ξ ′n+(p,g)t = 1

knk′nun

[t/Δn]−k′n−kn+1∑

i=1

∣∣Zn(g)ni
∣∣2p 1{|Zn(g)ni |>vn}

×
k′n∑

j=1

Ẑn(g)ni+j 1{|Zn(g)ni+j |≤vn, Ẑn(g)ni+j≤v′n}

Ξ ′n−(p,g)t = 1

knk′nun

[t/Δn]−kn+1∑

i=kn+k′n

∣∣Zn(g)ni
∣∣2p 1{|Zn(g)ni |>vn}

×
kn+k′n−1∑

j=kn
Ẑn(g)ni−j 1{|Zn(g)ni−j |≤vn, Ẑn(g)ni−j≤v′n}.
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Theorem 16.5.4 Assume d = 1 and (H) and (N) with Υt càdlàg, and Zn = X +
(Δn)

η χ , and (16.3.6) and (16.5.18). Then for any p > 1 we have

Ξn+(p,g)t
P−→ Λ(g)Λ(g,2p)Ξ+(p)t

Ξ ′n+(p,g)t
P−→ 2θ ′2Λ

(
g′
)
Λ(g,2p)Ξ ′+(p)t

Ξn−(p,g)t
P−→ Λ(g)Λ(g,2p)Ξ−(p)t

Ξ ′n−(p,g)t
P−→ 2θ ′2Λ

(
g′
)
Λ(g,2p)Ξ ′−(p)t .

Remark 16.5.5 We could dispense with the truncation from below in this re-
sult. That is, the theorem remains true if in (16.5.19) we replace everywhere
(Zn(g)ni )

2p 1{|Zn(g)ni |>vn} by (Zn(g)ni )
2p . The proof is exactly the same.

We do not need here p to be an integer, the result holds for any real p > 1.

Proof Step 1) By localization, we may assume (SH) and (SN). We only prove
the statements about Ξn−(p,g) and Ξ ′n−(p,g), the others being similar. To
unify the proof we write Ξn−(p,g) = Ξ(1)n and Ξ ′n−(p,g) = Ξ(2)n, and also
Λ(g)Λ(g,2p)Ξ−(p)= Ξ(1) and 2θ ′2Λ(g′)Λ(g,2p)Ξ ′−(p)= Ξ(2). We intro-
duce some notation, where m= 1 or m= 2:

ρ(1)ni =
((
Zn(g)ni

)2 − 1

2
Ẑn(g)ni

)
1{|Zn(g)ni |≤vn, Ẑn(g)ni ≤v′n}

ρ(2)ni = Ẑn(g)ni 1{|Zn(g)ni |≤vn, Ẑn(g)ni ≤v′n}

ηni =
∣∣Zn(g)ni

∣∣2p 1{|Zn(g)ni |>vn}

ζ(m)ni =
1

k′nun

(kn+k′n−1)∧(i−1)∑

j=kn
ρ(m)ni−j .

Then we have

Ξ(m)nt =
1

kn

[t/Δn]−kn+1∑

i=kn+k′n
ζ(m)ni η

n
i .

Step 2) In this step we use the notation of Step 2 of the proof of Theorem 9.5.1,
with r = 2: We pick ε > 0 and denote by (Sq)q≥1 the successive jump times of
the Poisson process 1{Γ>ε/2} ∗ p, where Γ is the dominating function occurring in
(SH), and S0 = 0. Then i(n, q) is the random integer such that (i(n, q)− 1)Δn <
Sq ≤ i(n, q)Δn, and (Gt ) is the smallest filtration containing (Ft ) and such that all
Sq are G0 measurable. We also denote by Ωnt the set on which all Sq ≤ t satisfy
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Sq−1 + 3(kn + k′n) < Sq < t − 3(kn + k′n), so that P(Ωnt )→ 1. We set

X(ε)t = Xt −
∑

q:Sq≤t
ΔXSq ,

which is a (Gt )-semimartingale satisfying (SH).
The aim of this step is to prove the analogue of (9.5.5), namely that, for all q ≥ 1,

ζ(m)ni(n,q)
P−→ ζ ∗(m)q, where

ζ ∗(1)q =Λ(g)cSq−, ζ ∗(2)q = 2θ ′2Λ(g′)ΥSq−.
(16.5.20)

Fix a > 0, and take n large enough for having (kn + k′n)Δn < a. The integers mn =
i(n, q)∨[a/Δn]−k′n and ln = k′n satisfy the conditions before and in (16.4.15), case
(2) with R = Sq ∨ a, and relative to the filtration (Gt ). The variable γ̂ of (16.4.17) is
Λ(g)cT− if f = f2 (notation (16.5.2)) and 2θ ′2Λ(g′)ΥT− if f = f0,1. In restriction
to {a < Sq ≤ t} ∩Ωnt , and since on this set we have mn = i(n, q)− k′n, we see that
the variable ζ(m)ni(n,q) equals the left side of (16.4.22) for f = f2 if m= 1 and for
f = f0,1 if m= 2, computed with X(ε) instead of X. Hence Lemma 16.4.5 applied
with (Gt ) and X(ε), plus P(Ωnt )→ 1, yield (16.5.20) in restriction to {a < Sq ≤ t}.
Since a, t > 0 are arbitrary, (16.5.20) holds.

Step 3) Now we give some estimates. If we combine (16.4.9) and (16.4.11) for X
and the filtration (Ft ), and for X(ε) and the filtration (Gt ) plus the fact that i(n, q)
is G0 measurable, we obtain for m= 1,2 and all i ≥ 1 and j = 1, . . . , kn + k′n:

E
(∣∣ρ(m)ni

∣∣)≤Kun, E
(∣∣ρ(m)n

(i(n,q)−j)+
∣∣1{Sq≤t}∩Ωnt

)≤Kun, (16.5.21)

where for the latter we also use the fact that on {Sq ≤ t} ∩ Ωnt the variables
ρ(m)n

(i(n,q)−j)+ are the same for the processes X and X(ε) if 1 ≤ j ≤ kn + k′n.
Therefore

E
(∣∣ζ(m)ni

∣∣)≤K, E
(∣∣ζ(m)n

(i(n,q)−j)+
∣∣1{Sq≤t}∩Ωnt

)≤K. (16.5.22)

Next, on the set {Sq ≤ t} ∩Ωnt we have for i(n, q)− kn + 1≤ i ≤ i(n, q):

ζ(m)ni − ζ(m)ni(n,q)

= 1

k′nun

(i(n,q)−i+kn+k′n−1∑

j=kn+k′n
ρ(m)ni(n,q)−j −

i(n,q)−i+kn−1∑

j=kn
ρ(m)ni(n,q)−j

)
,

and each sum above has at most kn summands. Therefore (16.5.21) yields

E
(∣∣ζ(m)ni − ζ(m)ni(n,q)

∣∣1{Sq≤t}∩Ωnt
) ≤ Kkn/k

′
n.
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Since kn/k′n→ 0 and P(Ωnt )→ 1, we then deduce from (16.1.9) and (16.5.20) that

1

kn

i(n,q)∑

i=i(n,q)−kn+1

ζ(m)ni

∣∣gni(n,q)−i+1

∣∣2p P−→ Λ(g,2p)ζ ∗(m)q . (16.5.23)

Our last estimates are about ηni and η(ε)ni = (Zn(ε)(g)ni )2p 1{|Zn(ε)(g)ni |>vn}, where

Zn(ε) = X(ε) + (Δn)ηχ , and they readily follow from (16.4.9), upon using (Gt )
and X(ε) instead of (Ft ) and X (so Γ is replaced by Γ 1{Γ≤ε/2}) for the second
estimate:

E
(
ηni |F(i−1)Δn

)≤Kun, E
(
η(ε)ni | G(i−1)Δn

)≤K(upn + unε2p−2).
(16.5.24)

Step 4) For m= 1,2 and with the notation (16.5.20), we set

Ξ(m,ε)t =
∑

q≥1

ζ ∗(m)q |ΔXSp |2p 1{Sq≤t}

B(m,ε)nt =
1

kn

[t/Δn]−kn+1∑

i=kn+k′n
ζ(m)ni η(ε)

n
i

Ξ(m,ε)nt =Ξ(m)nt −B(m,ε)nt .
Observing that ζ(m)ni is F(i−1)Δn measurable, by successive conditioning we de-
duce from (16.5.22) and (16.5.24):

E
(∣∣B(m,ε)nt

∣∣) ≤ K t
(
u
p−1
n + ε2p−2).

Hence, since p > 1,

lim
ε→0

lim sup
n→∞

E
(∣∣B(m,ε)nt

∣∣) = 0.

Since cs and Υs are bounded, by the Lebesgue theorem and the definition of Ξ(m)t
we get Ξ(m,ε)t → Ξ(m)t , as ε→ 0. Therefore it remains to prove that, for m =
1,2 and ε fixed and n→∞,

Ξ(m,ε)nt
P−→ Ξ(m,ε)t . (16.5.25)

Step 5) In restriction to the set Ωnt , we have

Ξ(m,ε)nt =
∑

q≥1

ξ(m)nq 1{Sq≤t}, where

ξ(m)nq =
1

kn

i(n,q)∑

i=i(n,q)−kn+1

ζ(m)ni
(
ηni − η(ε)ni

)
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because ηni = η(ε)ni when i is not between i(n, q) − kn + 1 and i(n, q) for some

q . Hence (16.5.25) will follow if we prove ξ(m)nq
P−→Λ(g,2p)̂ζ (m)q |ΔXSq |2p . In

view of (16.5.23), it thus remains to show

ξ ′(m)nq :=
1

kn

i(n,q)∑

i=i(n,q)−kn+1

ζ(m)ni
(
ηni − η(ε)ni −

∣∣gni(n,q)−i+1ΔXSq
∣∣2p) P−→ 0.

(16.5.26)
When i(n, q) − kn + 1 ≤ i ≤ i(n, q), and on the set {Sq ≤ t} ∩ Ωnt , we have

Zn(g)ni = Z(ε)n(g)ni + wni , where wni = gni(n,q)+1−iΔXSq . For any x, y ∈ R we
have the estimate

∣∣|x + y|2p 1{|x+y|>vn} − |x|2p 1{|x|>vn} − |y|2p
∣∣

≤K(vn|y|2p−1 + |x|2p + |y|2p−1 |x|).

We apply this with x = Z(ε)n(g)ni and y = wni , which is uniformly bounded, and
we use (16.4.9) for X(ε) and the filtration (Gt ), to get for i as above:

E
(∣∣ηni − η(ε)ni −

∣∣wni
∣∣2p∣∣ | G(i−1)Δn

)
1{Sq≤t}∩Ωnt ≤ K(vn +√un ).

Since ζ(m)ni is G(i−1)Δn measurable for i as above, by successive conditioning we
deduce from the above and from (16.5.22) that

E
(∣∣ξ ′(m)ni

∣∣1{Sq≤t}∩Ωnt
) ≤ K(vn +√un ),

and (16.5.26) follows because P(Ωnt )→ 1 and un→ 0 and vn→ 0. �

16.5.2 Central Limit Theorems: The Results

Our next task is to exhibit the Central Limit Theorems associated with the Laws
of Large Numbers proved in the previous subsection. One could of course look for
a CLT associated with Theorem 16.4.1, but this is probably quite complicated and
so far not proved, and also of dubious practical relevance. So we concentrate on
the one-dimensional case for X and test functions like fp in (16.5.2) for p an inte-
ger. Even in this case, we only consider the CLTs associated with the convergence
(16.5.4) when X is continuous, and with the convergence (16.5.9).

In the whole section we suppose that X is an Itô semimartingale, written as in
(16.3.1), and with d = d ′ = 1. We are given a family g = (gj )1≤j≤q of weight
functions, and a family f = (f j )1≤j≤q of functions on R × R, each component
being f j = fpj , as given by (16.5.2) for some integer pj ≥ 1.

The first, simplest, result is the CLT associated with Theorem 16.5.3: in this
case, our processes of interest are the q-dimensional processes defined component
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by component by

Y
n,j

t = 1√
un

(
u
pj−1
n V ′n

(
fpj , g

j , kn,Z
n
)
t
−Λ(gj ,2pj

) ∑

s≤t
|ΔXs |2pj

)
.

(16.5.27)
The result is exactly the same as the result of Theorem 16.3.1 for the following test
functions:

h= (hj )1≤j≤q, hj (x)= h2pj (x)= x2pj . (16.5.28)

This means that the functionals V ′n(f, g, kn,Zn) behave exactly alike when the
test function is f = fp and when it is f = h2p , as far as the LLN and CLT are
concerned: among all summands like (Zn(g)ni )

2p−2l (Ẑn(g)ni )
l , only those with l =

0 really matter when the process X has jumps.

Theorem 16.5.6 Let X be a one-dimensional Itô semimartingale satisfying (H),
and assume that the noise satisfies (N) with Υt càdlàg, and that Zn =X+ (Δn)ηχ .
Assume that (16.1.5) and (16.3.6) hold and, for all j = 1, . . . , q ,

pj ≥ 2, η′ >
3− 4pjη

3+ 2pj

∨ 1

3
. (16.5.29)

Then for each t > 0 the q-dimensional variables Y
n

t defined by (16.5.27) converge

stably in law to the variable Y (X)t + θ ′ Y ′(χ)t , associated as in Theorem 16.3.1
with the test function h= (hj ) of (16.5.28).

When the noise is not shrinking (η = 0) the second condition in (16.5.29)
amounts to η′ > 3

7 when pj = 2 for at least one j , and to η′ > 1
3 when pj ≥ 3

for all j .
Conditionally on F , the two q-dimensional processes Y(X) and Y

′
(χ) are inde-

pendent and centered Gaussian, with conditional covariances Ξt and Ξ ′t given by

(12.1.4) and (16.3.4). Here the functions Hjj
′

± and H ′jj
′

± involved in the definition
of Ξt and Ξ ′t are

H±(x)jj
′ = c(pj ,pj ′ , x)α(pj ,pj ′)jj ′ , H ′±(x)jj

′ = c(pj ,pj ′ , x)α′(pj ,pj ′)jj ′ ,

where c(p,p′, x)= 4pp′ x2p+2p′−2 and where and α(pj ,pj ′)jj
′

and α′(pj ,pj ′)jj
′

are constants, easily computable in terms of the functions gj and gj
′

and their first
derivatives. So with the notation (16.5.17) and Y

′′ = Y (X)+ θ ′Y ′(χ) we have

Ẽ
(
Y
′′j
t Y

′′j ′
t |F) = 4pjpj ′

(
α(pj ,pj ′)

jj ′(Ξ−(pj + pj ′ − 2)+Ξ+(pj + pj ′ − 2)
)

+ α′(pj ,pj ′)jj ′
(
Ξ ′−(pj + pj ′ − 2)+Ξ ′+(pj + pj ′ − 2)

))
.

Therefore Theorem 16.5.4 provides an estimator for this conditional covariance.
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The proof of this theorem is rather simple, and we give it right away:

Proof We recall the decomposition (16.5.10), and observe that hpj ,0 in that decom-

position is the function hj = h2pj of (16.5.28). Therefore we have u
pj−1
n V ′n(hj , gj ,

kn,Z
n) = 1

kn
V n(Φj , gj , kn,Z

n), where Φj is associated with hj by (16.1.12).

Since each hj is positively homogeneous with degree 2pj > 3, we see that Theo-
rem 16.5.6 reduces to Theorem 16.3.1, provided we have (16.5.12) with α = 1/2,
for each pj and weight function gj . This property has been proved under the con-
dition (16.5.16), which amounts to (16.5.29). �

Now we turn to the CLT associated with (16.5.4), when X is continuous. The
setting is as before, but we are now interested in the process Y

′n
with components

Y
′n,j
t = 1√

un

(
V ′n
(
fpj , g

j , kn,Z
n
)
t
−m2pj Λ

(
gj
)pj
∫ t

0
c
pj
s ds

)
. (16.5.30)

Of course, this is a CLT for the same processes V ′n(fpj , gj , kn,Zn) which occur
in (16.5.27), but with different normalization and centering: so this is possible only
when the limit in Theorem 16.5.6 is trivial, that is when X is continuous.

For a description of the limit, we use the processes

L
(
gj
)
t
=
∫ t+1

t

gj (s − t) dWs, L′
(
gj
)
t
=
∫ t+1

t

(
gj
)′
(s − t) dW ′

s

associated with two independent one-dimensional Brownian motions W and W
′

defined on an auxiliary space (Ω ′,F ′, (F ′t )t≥0,P
′) (those are the same as in (16.3.9)

with hj = gj and h′j = (gj )′ and d = d ′ = 1). The processes L = (L(gj ))1≤j≤q
and L′ = (L′(gj ))1≤j≤q are independent, stationary, centered, Gaussian, with the
covariance structure

E
′(L
(
gj
)
t
L
(
gl
)
s

) =
∫ (t+1)∧(s+1)

t∨s
gj (u− t) gl(u− s) du

E
′(L′
(
gj
)
t
L′
(
gl
)
s

) =
∫ (t+1)∧(s+1)

t∨s
(
gj
)′
(u− t) (gl)′(u− s) du.

(16.5.31)

Next, we set (the stationarity of (L,L′) implies that the first expression below
does not depend on s):

μ
(
v, v′
)j = E

′(f j
(
vL
(
gj
)
s
+ v′L′(gj )

s
,2v′2Λ

((
gj
)′)))

μ′
(
v, v′; s, s′)j l = E

′(f j
(
vL
(
gj
)
s
+ v′L′(gj )

s
,2v′2Λ

((
gj
)′))

× f l(vL(gl)
s′ + v′L′

(
gl
)
s′ ,2v

′2Λ
((
gl
)′)))

R
(
v, v′
)j l =
∫ 2

0

(
μ′
(
v, v′;1, s)j l −μ(v, v′)jμ(v, v′)l)ds.

(16.5.32)



16.5 LLN and CLT for Integral Power Functionals 533

The matrix (R(v, v′)jl : 1 ≤ j, l ≤ q) is symmetric nonnegative. We will see more
explicit forms for those quantities at the end of this subsection. When v′ = 0, we
recover the covariance Rjla as given by (12.2.9) (with d = d ′ = 1), namely

R(v,0)jl = R
jl

v2 .

Finally, before stating the result, we recall Assumption (K), or 4.4.3:

Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}, (16.5.33)

where

• M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and an angle bracket
of the form 〈M,M〉t =

∫ t
0 as ds

• the compensator of
∑
s≤t 1{‖Δσs‖>1} has the form

∫ t
0 ãs ds.

Moreover, the processes b̃, a and ã are locally bounded, and the processes σ̃ and b
are càdlàg or càglàd.

Theorem 16.5.7 Let X be a one-dimensional continuous Itô semimartingale sat-
isfying (K), and assume that the noise satisfies (N) with Υt càdlàg, and we set
υt = √Υt . We also assume that Zn = X + (Δn)ηχ , and we let kn satisfy (16.1.5)
and with (16.3.6) and

η′ > 1

3
. (16.5.34)

Then the q-dimensional processes Y
′n

of (16.5.30) converge stably in law to a
process Y

′
defined on a very good extension (Ω̃, F̃, (F̃t )t≥0, P̃) of the space

(Ω,F , (Ft )t≥0,P), and which conditionally on F is a continuous centered Gaus-
sian process with independent increments satisfying

Ẽ
(
Y
′j
t Y

′l
t |F
) =
∫ t

0
R
(
σs, θ

′υs
)j l
ds. (16.5.35)

Remark 16.5.8 As previously, when θ ′ = 0, that is η + η′ > 1
2 , the limit above is

exactly the same as in Theorem 12.2.1. However, even when there is no noise, we
need the extra condition (16.5.34); this is not really restrictive for applications (it
is implied by (16.3.6) when the noise is not shrinking, for example). This extra
condition is needed because we have the correcting terms Ẑn(gj )ni , which are of
course superfluous when there is no noise, and indeed potentially harmful in this
case: one could show that this correcting term introduces a bias when η′ = 1

3 , and
changes the rate of convergence when η′ < 1

3 .
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For concrete applications, one also needs an estimator for the (conditional)
variance-covariance in (16.5.35). For this we may use the explicit form of f j and
expand the polynomials in (16.5.32). We thus obtain that R(v, v′)jl is a polynomial
in (v, v′). First, using (16.5.2) with qj = 0 allows us to deduce from (16.5.1) (as in
the proof of Theorem 16.5.1) and from (16.5.31) that μ(v, v′)j does not depend on
v′ and is

μ
(
v, v′
)j = m2pj Λ

(
gj
)pj v2pj .

Next, we have

μ′
(
v, v′; s, s′)jj ′ =

pj+pj ′∑

w=0

a
(
w; s, s′)jj ′ v2w v

′2pj+2pj ′−2w
, where

μ′
(
v, v′; s, s′)jj ′ =

pj+pj ′∑

w=0

a
(
w; s, s′)jj ′ v2w v

′2pj+2pj ′−2w
, with

a
(
w; s, s′)jj ′ =

pj∑

l=0

pj ′∑

l′=0

(2pj ′−2l′)∧(2w)∑

w′=(2w−2pj−2l)+

ζpj ,lζpj ′ ,l′ C
2w−w′
2pj−2l C

w′
2pj ′−2l′ 2

l+l′Λ
((
gj
)′)l
Λ
((
gj

′)′)l′

E
′(L
(
gj
)2w−w′
s

L
(
gj

′)w′
s′
)
E
′(L′
(
gj
)2pj−2w+w′
s

L′
(
gj

′)2pj ′−w′
s′

)
.

Finally,

R
(
v, v′
)jj ′ =

pj+pj ′∑

w=0

Ajj
′

w v2w v
′2pj+2pj ′−2w

, where

Ajj
′

w =
∫ 2

0
a(w;1, s)jj ′ ds + 2m2pjm2pj ′ Λ

(
gj
)pj Λ
(
gj

′)pj ′ 1{w=pj+pj ′ }.

Therefore we deduce from Theorem 16.5.1 that:

Proposition 16.5.9 Assume (H) with d = 1 and X continuous, and (N), and Zn =
X+ (Δn)ηχ , and kn satisfying (16.1.5) and (16.3.6). Let g be a weight function and

f (x, z) =
pj+pj ′∑

w=0

A′jj ′w

pj+pj ′∑

l=0

ζpj+pj ′ ,l |x|2w−2l |z|pj+pj ′−w+l

where A′jj ′w = Ajj
′

w /
(
m2w 2pj+pj ′−w Λ(g)w Λ

(
g′
)pj+pj ′−w).
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Then we have, with the notation (16.4.3) and (16.4.4) for the second claim:

V
′n(
f,g, kn,Z

n
)
t

u.c.p.=⇒
∫ t

0
R
(
σs, θ

′υs
)jj ′

ds,

V
′n(
f,g, vn−, kn,Zn

)
t

u.c.p.=⇒
∫ t

0
R
(
σs, θ

′υs
)jj ′

ds.

Moreover the latter also holds when X is discontinuous, provided we have (16.5.3)
with pj + pj ′ instead of p+ q .

Remark 16.5.10 The previous proposition gives the behavior of the estimators of
the conditional covariance (16.5.35), even when X has jumps, under appropriate
conditions. This is useful in some testing questions, for example for testing whether
there are jumps or not. Under the statistical hypothesis that there is no jump, one
uses the CLT of Theorem 16.5.7, and it is also necessary to determine the behavior
of the test statistics under the alternative hypothesis that there are jumps.

However, we do not give a CLT for the LLN (16.5.5) which would allow one to
estimate

∫ t
0 c
p
s ds when there are jumps by the means of the truncated functionals.

Such a CLT is so far unknown.

The subsequent subsections are devoted to the proof of Theorem 16.5.7.

16.5.3 Some Estimates

By localization we can assume (SN), and also the strengthened assumption (SK),
according to which one can rewrite the equation for σ as

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt,

where now M (which is not necessarily the same as in (K) is a square-integrable
martingale with bounded jumps and 〈M,M〉t =

∫ t
0 as ds, and b̃t , σ̃t , at are bounded.

We then have for all s, t ≥ 0 and p ≥ 2:

E

(
sup
r∈[0,s]

|σt+r − σt |p |Ft
)
≤ Kp s. (16.5.36)

Next, we introduce some notation. Recalling the number ζp,l of (16.5.1), with
any process Y and weight function g and integer p ≥ 1 we associate the variables

φ(g,p,Y )ni =
p∑

l=0

ζp,l
(
Y(g)ni /

√
un
)2p−2l (

Ŷ (g)ni /un
)l
. (16.5.37)
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These are such that

V ′n
(
f j , gj , kn,Y

)
t
= Δn

[t/Δn]−kn+1∑

i=1

φ
(
gj ,pj ,Y

)n
i
.

We also set for all integers i ≥ 1 and 0≤ j ≤ i − 1:

κ(g)ni,j = σ(i−j−1)ΔnW(g)
n
i +Δηn χ(g)ni

φ(g,p)ni,j =
p∑

l=0

ζp,l
(
κ(g)ni,j /

√
un
)2p−2l (

Δ2η
n χ̂(g)

n
i /un
)l
.

(16.5.38)

With any process Y , we associate the variables

Γ (Y )ni = sup
t∈[(i−1)Δn,iΔn+un]

‖Yt − Y(i−1)Δn‖

Γ ′(Y )ni =
(
E
((
Γ (Y )ni

)4 |F(i−1)Δn

))1/4
.

(16.5.39)

The rest of the subsection is devoted to various technical results. The first one is
about the (conditional) moments of the noise, and more specifically of the associ-
ated variables χ(g)ni and χ̂ (g)ni . These moments will be expressed in terms of the
following variables, whose notation is similar to Ŷ (g)ni in (16.1.10) (recall d = 1):

Υ̂ (g)ni =
kn∑

j=1

(
g′nj
)2
Υi+j−2. (16.5.40)

For random variables Uγ and Vγ indexed by a parameter γ (for example γ = (n, i)
just below), with Vγ > 0, we write Uγ = Ou(Vγ ) if the family Uγ /Vγ is bounded
in probability.

Lemma 16.5.11 Assume (SN) and let v and r be integers with v + r ≥ 1. Recall
that mp is the p absolute moment of N (0,1), and (Ht ) is the filtration defined in
(16.1.1). Then we have the following estimates, uniform in i ≥ 1, as n→∞:

a) If v is even,

E
((
χ(g)ni

)v (
χ̂ (g)ni

)r |H(i−1)Δn

)

= mv2
r
(
Υ̂ (g)ni

)r+v/2 +Ou

(
1

k
r+1+v/2
n

)
(16.5.41)

= mv 2r

k
r+v/2
n

Λ
(
g′
)r+v/2

(Υ(i−1)Δn)
r+v/2

+Ou

(
1

k
r+v/2
n

(
1

kn
+ Γ (Υ )ni

))
, (16.5.42)
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b) If v is odd, and recalling Υ ′t in (16.1.3),

E
((
χ(g)ni

)v (
χ̂(g)ni

)r |H(i−1)Δn

)

= 6r + v− 1

6kr+v/2+1/2
n

Λ
(
g′
)r+v/2−3/2

∫ 1

0
g′(s)3ds (Υ(i−1)Δn)

r+v/2−3/2Υ ′(i−1)Δn

+Ou

(
1

k
r+v/2+1/2
n

(
1

kn
+ Γ (Υ )ni + Γ

(
Υ ′
)n
i

))
(16.5.43)

=Ou

(
1

k
r+v/2+1/2
n

)
. (16.5.44)

Proof Step 1) Recalling the notation (16.1.8), we have
∣∣Υ̂ (g)ni −Λ′n(g,2)Υ(i−1)Δn

∣∣≤Λ′n(g,2)Γ (Υ )ni ,
so (16.5.42) follows from (16.5.41) and (16.3.7) and the fact that Υt is bounded.
Since Υ ′t is also bounded, (16.5.44) follows from (16.5.43). Hence it is enough to
prove (16.5.41) and (16.5.43).

Step 2) We write χnj = χiΔn . Using the definition (16.1.10), we see that the product
(χ(g)ni )

v(χ̂(g)ni )
r is the sum of all the terms of the form

Φ(J, s)n = (−1)v+s
v∏

l=1

g′njl χ
n
i+jl−2

s∏

l=1

(
g′n
j ′l
χn
i+j ′l+j ′′l −2

)2

×
r∏

l=s+1

2
(
g′n
j ′l

)2
χn
i+j ′l−1χ

n
i+j ′′l −2, (16.5.45)

extended over all s ∈ {0, . . . , r} and J = (j1, . . . , jv, j
′
1, . . . , j

′
r , j

′′
1 , . . . , j

′′
s ) in the

set J n
s = {1, . . . , kn}v+r × {0,1}s . We denote by I (J ) the set of all distinct indices

j of the form jl for 1 ≤ l ≤ v, or j ′l + j ′′l for 1≤ l ≤ s, or j ′l + 1 or j ′l for s + 1 ≤
l ≤ r . For any given s, we also denote by D(u, s)n the class of all J ∈ J n

s such
that #I (J )= u and that each index appears at least twice. Note that D(u, s)n = ∅ if
u > r + v/2, because in (16.5.45) χnj appears for v + 2r times, for various values
of j .

By the F (0)-conditional independence of the χt ’s and (16.1.2), plus |g′nj | ≤K/kn
and (SN), we obtain that |E(Φ(J, s)n | H(i−1)Δn)| is smaller than K/kv+2r

n , and

vanishes if J ∈ J n
s \ ∪r+[v/2]u=1 D(u, s)n. Hence

E
((
χ(g)ni

)v(
χ̂(g)ni

)r |H(i−1)Δn

) =
r+[v/2]∑

u=1

Φ
n

u, where

Φ
n

u =
r∑

s=0

Φ(u, s)n, Φ(u, s)n =
∑

J∈D(u,s)n
E
(
Φ(J, s)n | Gni

)
.
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Moreover #D(u, s)n ≤Kkun , so |Φnu| ≤Kku−v−2r
n ≤KKk−r−1−v/2

n if u≤ r − 1+
v/2. We deduce that it is enough to prove that Φ

n

u equals the right side of (16.5.41)
for u= r+v/2 when v is even, and the right side of (16.5.43) for u= r+v/2−1/2
when v is odd.

Step 3) In this step we prove that Φ
n

u equals the right side of (16.5.41) when v is
even and u= r + v/2. By definition of D(u, s)n, if J ∈D(u, s)n there is an integer
w such that the variable Φ(J, s)n is the product of v+s+r−w2 terms, of three types,
all for different indices j for χnj :

(1) s −w+ v/2 terms as (g′nj χ
n
i+j−2)

2 or (g′nj χ
n
i+j−1)

2,

(2) w terms as −2(g′nj )3g
′n
j+1(χ

n
i+j−2χ

n
i+j−1)

2,

(3) r−s−w
2 terms as 4(g′nj )4(χ

n
i+j−2χ

n
i+j−1)

2.

When s < r the number of those terms is not bigger than r + v
2 − 1

2 , hence than
r + v

2 − 1 because it is an integer and v is even. Since the indices range from 1 to

kn we thus have #D(u, s)n ≤ Kkr+v/2−1
n (this improves upon the bound given in

Step 2), and we deduce

s < r ⇒ ∣∣Φ(u, s)n
∣∣ ≤ K/k

r+v/2+1
n . (16.5.46)

It thus remains to prove that Φ(u, r)n is equal to the right side of (16.5.41).
If J ∈ D(u, r)n then Φ(J, r)n contains only terms of type (1). In fact D(u, r)n

contains exactly the families J ∈ J n
r for which I (J ) is the pairwise disjoint union

J1∪J2∪J3, where J1 is the set of all distinct j1, . . . , jv (there are v/2 of them, each
one appearing twice), and J2 = {j ′l + j ′′l : 1≤ l ≤ r, j ′′l = 0} and J3 = {j ′l + j ′′l : 1≤
l ≤ r, j ′′l = 1} have distinct indices. With this notation, we have (with u terms all
together in the products):

E
(
Φ(J, r)n |H(i−1)Δn

)=
∏

j∈J1∪J2

(
g′nj
)2
Υ n(i+j−2)Δn

∏

j∈J3

(
g′nj−1

)2
Υ n(i+j−2)Δn .

(16.5.47)
Observe that when J ranges through D(u, r)r , so kn ≥ u, then I (J ) ranges

trough the set Lnu of all subsets of {1, . . . , kn} having u points. If L ∈ Lnu we use
the notation

w(L) = the number of all J ∈D(u, r)n such that I (J )= L.

This number does not depend on n, and can be evaluated as follows: we fix L. There
are Cru many ways of choosing the two complementary subsets J1 and J2 ∪ J3 of
L. Next, with J1 given, there are (v/2)! (v− 1)(v− 3) · · ·3 · 1 ways of choosing the
indices jl so that j1, . . . , jv contains v/2 paired distinct indices which are the indices
in J1, and we recall that (v− 1)(v− 3) · · ·3 · 1=mv (if v = 0 then J1 is empty and
there is m0 = 1 ways again of choosing J1). Finally with J2 ∪ J3 fixed, there are
2r r! ways of choosing the indices j ′l + j ′′l , all different, when the smallest index in
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J2 ∪ J3 is bigger than 1, and 2r−1 r! ways if this smallest index is 1. Summarizing,
and with L′nu denoting the subset of all L ∈ Lnu such that 1 /∈ L, we get

L ∈ Lnu ⇒ w(L)≤mv 2r u!, L ∈ L′nu ⇒ w(L)=mv 2r u!. (16.5.48)

Now we come back to Φ(J, r)n. The property (16.1.6) yields |g′nj − g′nj−1| ≤
K/k2

n, except for j belonging to the set Qn of indices for which g′ fails to exist or
to be Lipschitz on the interval [(j − 1)/kn, jkn], so #Qn ≤K . Since Υ is bounded,
we thus have

E
(
Φ(J, r)n |H(i−1)Δn

)

=
{∏

j∈I (J )(g′nj )2Υ(i+j−2)Δn) +Ou(k−2u−1
n ) ifQn ∩ I (J )= ∅

Ou(k−2u
n ) always.

Since #D(u, r)n ≤ Kkun and supn #Qn <∞, the number of J ∈ D(u, r)n such
that Qn ∩ I (J ) �= ∅ is smaller than Kku−1

n , and we also have #(Lnu\L′nu ) ≤ ku−1
n .

Hence we deduce from the above that

Φ(u, r)n =
∑

L∈L′nu
w(L)
∏

j∈L

(
g′nj
)2
Υ(i+j−2)Δn +Ou

(
1

ku+1
n

)
. (16.5.49)

On the other hand (16.1.6) and (16.5.40) yield

(
Υ̂ (g)ni

)u = u!
∑

L∈Lnu

∏

j∈L

(
g′nj
)2
Υ(i+j−2)Δn +Ou

(
1

ku+1
n

)

= u!
∑

L∈L′nu

∏

j∈L

(
g′nj
)2
Υ(i+j−2)Δn +Ou

(
1

ku+1
n

)
. (16.5.50)

Therefore by (16.5.48), and comparing (16.5.49) and (16.5.50), we deduce that
Φ(u, r)n is equal tomr2r (Υ̂ (g)ni )

u+Ou(1/ku+1
n ). So the proof of (16.5.41) is com-

plete.

Step 4) Finally we prove thatΦ
n

u equals the right side of (16.5.43) when v is odd and
u= r+v/2−1/2. If J ∈D(u, s)n, there is a number w′ in {0,1} and a nonnegative
integer w as in Step 4, such that Φ(J, s)n is the product of v+s+r−w−1

2 terms, all for
different indices j for χnj , with s −w+w′ + v−3

2 terms of type 1, w terms of type

2, r−s−w−2w′
2 terms of type 3, and 1−w′ and w′ terms respectively of the types (4)

and (5) described below:

(4) terms as (g′nj χ
n
i+j−2)

3 or (g′nj )2g
′n
j+1(χ

n
i+j−1)

3,

(5) terms as −2(g′nj )4g′nj+1(χ
n
i+j−2)

3(χni+j−1)
2,

or as −2(g′nj )3(g
′n
j+1)

2(χni+j−2)
2(χni+j−1)

3,
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the whole product being multiplied by −1. It follows that #D(u, s)n ≤ K/
k
(v+r+s−1)/2
n and E(|Φ(J, s)n| |H(i−1)Δn)≤K/kv+2r

n still holds. Hence, instead of

(16.5.46) we get |Φ(u, s)n| ≤ K/kr+v/2+1+(r−s−1)/2
n , and it thus enough to prove

that Φ(u, r)n is equal to the right side of (16.5.43).
If J ∈D(u, r)n then Φ(J,n) has u− 1 terms of type (1) and one of type (4) (one

has w =w′ = 0). Therefore,D(u, r)n contains exactly the families J ∈ J n
u with the

following properties: there is some p ∈ {1, . . . , v} such that either jp = jp′ = jp′′
for p,p′,p′′ distinct (case (a), with v ≥ 3, and we set (l, l′) = (jp,0) ), or jp =
j ′q + j ′′q for some q ∈ {1, . . . , r} (case (b), with r ≥ 1, and we set (l, l′)= (j ′q, j ′′q ) );
moreover I (J ) is the pairwise disjoint union J ′0 ∪ J ′1 ∪ J ′2 ∪ J ′3, where J ′0 = {l + l′}
and J ′1 is like in J1 in Step 3, except that v/2 is substituted with v/2− 1/2 and jp
is omitted in case (b), and with v/2− 3/2 and jp, jp′ , jp′′ omitted in case (a), and
with J ′2 and J ′3 are like J1 and J2 except that r is substituted with r − 1 and j ′q + j ′′q
is omitted in case (b). Therefore, instead of (16.5.47) we have

E
(
Φ(J, r)n |H(i−1)Δn

)=− (g′nl
)2
g′nl+l′ Υ

′
(i+l+l′−2)Δn

×
∏

j∈J ′1∪J ′2

(
g′nj
)2
Υ(i+j−2)Δn

∏

j∈J ′3

(
g′nj−1

)2
Υ(i+j−2)Δn .

(16.5.51)

Now if j ∈ {1, . . . , kn} we denote by Lnm,u−1 the set of all L ∈ Lnu−1 which do
not contain m, and for such an L we set

w′(L, j)= the number of J ∈D(u, r)n for which l = j and J ′1 ∪ J ′2 ∪ J ′3 = L.

Then by the same argument as for (16.5.48) we obtain

L ∈ Lnj,u−1 ⇒ w′(L, j)≤mv+1 2r (u− 1)! 6r + v− 1

6

L ∈ L′nj,u−1, j �= 1, 1 /∈ L ⇒ w′(L, j)=mv+1 2r (u− 1)! 6r + v − 1

6
.

Below, we denote by Rn a quantity changing from line to line, but which is
similar to the last term in (16.5.43) with A = 1, that is Ou( 1

ku+1
n

( 1
kn
+ Γ (Υ,1)ni +

Γ (Υ ′,1)ni )). We also set Υ
n

i = Υ ′(i−1)Δn
(Υ(i−1)Δn)

u−1. Coming back to Φ(u, r)n,
we deduce from (16.5.51) and from the properties of g that

E
(
Φ(J, r)n |H(i−1)Δn

)

=
{
−Υ ni
∏
j∈J ′1∪J ′2∪J ′3(g

′n
j )

2 +Rn/kun ifQn ∩ I (J )= ∅
Rn/k

u−1
n otherwise.
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Then, exactly as for (16.5.49), we deduce

Φ(u, r)n = −Υ ni
kn∑

j=1

(
g′nj
)3 ∑

L∈Lnm,u−1

w′(L,m)
∏

l∈L

(
g′nl
)2 +Rn

= −mv+1 2r (u− 1)! 6r + v− 1

6
Υ
n

i

kn∑

j=1

(
g′nj
)3 ∑

L∈Lnu−1

∏

l∈L

(
g′nl
)2 +Rn

= −mv+1 2r
6r + v − 1

6
Υ
n

i

kn∑

j=1

(
g′nj
)3
(
kn∑

l=1

(
g′nl
)2
)u−1

+Rn.

Finally we have (16.1.9) and also
∑kn
j=1(g

′n
j )

3 = k−2
n

∫ 1
0 g

′(s)3 ds+ O(k−3
n ). Then

Φ(u, r)n is equal to the right side of (16.5.43). �

Now we apply the previous lemma to the variables φ(g,p)ni,r of (16.5.38). We
use below the notation (16.5.39), and also

β(g)ni,r =
1√
un
σ(i−r−1)ΔnW(g)

n
i

Ψ (g,p)ni,r = E
(
φ(g,p)ni,r |H(i−1)Δn

)− (β(g)ni,r
)2p
.

(16.5.52)

Lemma 16.5.12 Assume (SN) and σt bounded. Then

∣∣E
(
Ψ (g,p)ni,r |F(i−1)Δn

)∣∣≤ K
kn
+ KΔ

η+η′−1/2
n√
kn

(
Γ ′(Υ )ni + Γ ′

(
Υ ′
)n
i

)
, (16.5.53)

E
(∣∣Ψ (g,p)ni,r

∣∣2 |F(i−1)Δn

) ≤ K/kn. (16.5.54)

Proof The index i is fixed, and for simplicity we write ρn =Δ2η
n /un, and also

An(u, v)= E
((
χ(g)ni

)u (
χ̂ (g)ni

)v |H(i−1)Δn

)
.

In view of (16.5.38) and since β(g)ni,r is H(i−1)Δn measurable, we have

Ψ (g,p)ni,r =
p∑

l=0

ζp,l

2p−2l∑

w=0

Cw2p−2l

(
β(g)ni,r

)w
ρ
p−w/2
n An(2p−2l−w, l)−(β(g)ni

)2p
.

By (16.5.1) and a change of the order of summation, we easily get

p∑

l=0

p−l∑

u=0

C2u
2p−2l ζp,l 2l m2p−2l−2u

(
β(g)ni,r

)2u (
ρnΥ̂ (g)

n
i,r

)p−v = (β(g)ni,r
)2p
,
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hence Ψ (g,p)ni = Bn +B ′n, where

Bn =
p∑

l=0

p−l∑

u=0

C2u
2p−2l ζp,l

(
β(g)ni,r

)2u
ρ
p−u
n

× (An(2p− 2l − 2u, l)− 2l m2pj−2l−2u
(
Υ̂ (g)ni,r

)p−u)

B ′n =
p∑

l=0

p−l−1∑

u=0

C2u+1
2p−2l ζp,l

(
β(g)ni,r

)2u+1
ρ
p−u−1/2
n An(2p− 2l − 2u− 1, l).

It is then enough to show that both Bn and B ′n satisfy (16.5.53) and (16.5.54).
For this we apply Lemma 16.5.13. First, (16.5.41) yields

Bn =
p∑

u=0

(
β(g)ni,r

)2uOu
(
ρ
p−u
n /k

p+1−u
n

) =
p∑

u=0

(
β(g)ni,r

)2uOu(1/kn),

where the last estimate comes from the fact that ρn/kn ≤ K . Since we have
E((β(g)ni,r )

q |F(i−1)Δn)≤Kq by (16.4.8), we obtain E(|Bn|q |F(i−1)Δn)≤Kq/kqn
for all q > 0 and the two results are proved for Bn.

Now we turn to B ′n. The same argument, now based on (16.5.44), shows that
(16.5.54) is satisfied. For (16.5.53) we use (16.5.43), which yields B ′n = Bn + B ′n,
where Bn =∑p

u=0 γ
2u+1
n αni for some F(i−1)Δn measurable variables αni , and

B
′
n =

p−1∑

u=0

(
β(g)ni,r

)2u+1 Ou

(
ρ
p−u−1/2
n

k
p−u
n

(
1

kn
+ Γ (Υ )ni + Γ

(
Υ ′
)n
i

))
.

Again, the same argument, plus the Cauchy-Schwarz inequality and the property

that ρn/kn ≤ KΔ2η+2η′−1
n ≤ K , imply that E(|B ′n| | F(i−1)Δn) is smaller than the

right side of (16.5.53). Finally, E((β(g)ni,r )
q | F(i−1)Δn) = 0 for all odd integers q

because, conditionally on F(i−1)Δn the variable W(g)ni,r has a law which is sym-

metrical about 0. Hence E(Bn |F(i−1)Δn)= 0, and this finishes the proof. �

In the next lemma, we compare φ(g,p,Zn)n,ji and φ(g,p)ni .

Lemma 16.5.13 Assume (SH) with X continuous, and (SN) and η+ η′ ≥ 1
2 . Then

for all q > 0 we have

E
(∣∣φ
(
g,p,Zn

)n
i

∣∣q + ∣∣φ(g,p)ni,0
∣∣q |F(i−1)Δn

) ≤ Kq (16.5.55)

E
(∣∣φ
(
g,p,Zn

)n,j
i
− φ(g,p)ni,0

∣∣2 |F(i−1)Δn

)≤K(un +
(
Γ ′(σ )ni

)2 +Δ4η′
n

)
.

(16.5.56)
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Proof First, (16.4.9), (16.4.11), (16.2.3) and Δ2η
n ≤Kknun yield for all q > 0:

E
(∣∣Zn(g)ni /

√
un
∣∣q |F(i−1)Δn

)+E
(∣∣Ẑn(g)ni /un

∣∣q |F(i−1)Δn

) ≤ Kq

E
(∣∣κ(g)ni /

√
un
∣∣q |F(i−1)Δn

)+E
(∣∣Δ2η

n χ̂(g)
n
i /un
∣∣q |F(i−1)Δn

) ≤ Kq

(16.5.57)

because w = 0 here. Next, (16.4.12) gives

E
(∣∣Ẑn(g)ni /un −Δ2η

n χ̂(g)ni /un
∣∣q |F(i−1)Δn

) ≤ KΔ
2qη′
n .

Moreover we know that, with gn(s) = ∑kn
j=1 g

n
j 1((j−1)Δn,jΔn](s) (hence

|gn(s)|≤K),

Zn(g)ni − κ(g)ni,0 =
∫ (i−1)Δn+un

(i−1)Δn
gn
(
s − (i − 1)Δn

)(
bs ds + (σs − σ(i−1)Δn) dWs

)
.

Then we deduce from (2.1.33), (2.1.34) and the boundedness of bt and σt that

E
(∣∣(Zn(g)ni,0 − κ(g)ni

)
/
√
un
∣∣4 |F(i−1)Δn

)≤Kq u2
n

(
u2
n +
(
Γ ′(σ )ni

)4)
.

These estimates and Hölder’s inequality give for l = 0, . . . , p:

E

(∣∣∣∣

(
Zn(g)ni√
un

)2p−2l ( Ẑn(g)ni
un

)l∣∣∣∣
q

|F(i−1)Δn

)
≤ Kp

E

(∣∣∣∣

(
Zn(gj )ni√

un

)2p−2l ( Ẑn(g)ni
un

)l
−
(
κ(g)ni√
un

)2p−2l (Δ2η
n χ(g)

n
i

un

)l∣∣∣∣
2

|F(i−1)Δn

)

≤ K
(
un +
(
Γ ′(σ )ni

)2 +Δ4η′
n

)

in view of (16.5.37) and (16.5.38), we deduce (16.5.55) and (16.5.56). �

Unfortunately, (16.5.56) is still not enough for us, and we need a more sophisti-
cated estimate, which uses the full force of (SK).

Lemma 16.5.14 Assume (SK), (SN) and η+ η′ ≥ 1
2 . Then

∣∣E
(
φ
(
g,p,Zn

)n
i
− φ(g,p)ni,0 |F(i−1)Δn

)∣∣≤K√un δni , where

δni =
√
un +Δη

′/2
n +Δ2η′−1/2

n + Γ ′(b)ni + Γ ′(̃σ )ni + Γ ′(Υ )ni . (16.5.58)

Proof 1) In view of (16.5.37) and (16.5.38), it is enough to prove that for l =
0, . . . , p,

∣∣E
((
Zn(g)ni

)2p−2l(
Ẑn(g)ni

)l − (κ(g)ni,0
)2p−2l(

Δ2η
n χ̂(g)

n
i

)l |F(i−1)Δn

)∣∣

≤ Ku
p+1/2
n δni .
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We fix i and l and use the simplifying notation S = (i − 1)Δn. It is enough to show
that, for r = 1,2,3,

∣∣E
(
Fnr |FS

)∣∣ ≤ Ku
p+1/2
n δni , (16.5.59)

where

Fnr =

⎧
⎪⎪⎨

⎪⎪⎩

(κni,0)
2p−2l ((Ẑn(g)ni )

l − (Δ2η
n χ̂(g)

n
i )
l) if r = 1

(Δ
2η
n χ̂(g)

n
i )
l((Zn(g)ni )

2p−2l − (κ(g)ni )2p−2l ) if r = 2

((Zn(g)ni )
2p−2l − (κ(g)ni,0)2p−2l )((Ẑn(g)ni )

l − (Δ2η
n χ̂(g)

n
i )
l) if r = 3.

When r = 1,3 we have Fnr = 0 if l = 0, and |E(F nr | FS)| ≤ KupnΔ2η′
n if l ≥ 1

(apply (16.4.12) with w = 0 and (16.5.57) and the Cauchy-Schwarz inequality),
hence (16.5.59) holds.

2) It remains to consider the case r = 2, with l < p because Fn2 = 0 when
l = p. Recalling (16.5.33), we have Zn(g)ni = κ(g)ni,0 + λn, where λn = X(g)ni −
σ(i−1)ΔnW(g)

n
i , hence

Fn2 =
2p−2l∑

u=1

Cu2p−2l G
n
u, Gnu =

(
Δ2η
n χ̂(g)

n
i

)l (
κ(g)ni,0

)2p−2l−u
(λn)

u,

and we prove (16.5.59) separately for each Gnu. First, we have λn = ξn + ξ ′n, where

ξn =
∫ S+un

S

gn(s − S)
(
(bs − bS) ds +

(∫ s

S

(̃
br dr + (̃σr − σ̃S) dWr

)
)
dWs

)
,

ξ ′n =
∫ S+un

S

gn(s − S)
(
bS ds + σ̃S(Ws −WS)dWs + (Ms −MS)dWs

)
,

with gn as in the previous proof. Then for q ≥ 1 and since |gn(s)| ≤ K and
bt , b̃t , σ̃t , at are bounded, where 〈M,M〉t =

∫ t
0 as ds, we have for q ≥ 2:

E
(|ξn|q |FS

) ≤ Kqu
q
n

(
u
q/2
n + (Γ ′(b)ni

)2 + (Γ ′(̃σ )ni
)2)

E
(|ξ ′n|q |FS

) ≤ Kqu
q/2+1
n , E

(|λn|q |FS
) ≤ Kqu

q/2+1
n .

(16.5.60)

3) Next we prove that, for u an odd integer,

E
((
W(g)ni

)u
ξ ′n |FS

) = 0. (16.5.61)

We prove this separately for each of the three terms constituting ξ ′n. Since x �→ xu

is an odd function, this is obvious for the term involving bS , and also for the term
involving σ̃ ni (in both cases the corresponding variable whose conditional expecta-
tion is taken is an odd function of the path of s �→WS+s −WS and is integrable).
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For the term involving M , we have (W(g)ni )
u = Y + ∫ S+un

S
γs dWs for some FS

measurable variable Y and a process γ adapted to the filtration (FWt ) generated by
the Brownian motion. Since this term is a martingale increment we are left to prove
E(US+un |FS)= 0, where

Ut =
(∫ t

S

γs dWs

)(∫ S+un

S

gn(s − S)(Ms −MS)dWs
)
.

Itô’s formula yields Ut =M ′
t +
∫ t
S
gn(s − S)γs(Ms −MS)ds for t ≥ S, where M ′

is a martingale with M ′
S = 0, so it is enough to prove that

E
(
γt (Mt −MS) |FS

)= 0.

For any fixed t ≥ T we again have γt = Y ′t +
∫ t
S
γ ′s dWs where Y ′t is FS measurable.

Hence the above follows from the orthogonality ofW andM , and we have (16.5.61).

4) At this stage, we use the form of Gnu as a product of three terms at the re-
spective powers l, r = 2p − 2l − u and u. Hölder’s inequality with the respec-
tive exponents l′, r ′, u′ with 1

l′ + 1
r ′ + 1

u′ = 1 and (16.5.57) and (16.5.60) yield

E(|Gnu| | FS) ≤ Kup+u
′′

n , where u′′ = (u/2) ∧ (1/u′). When u ≥ 2 we can choose
u′′ = 1/u′ = 1− ε, hence (16.5.59) holds for Gnu when u≥ 2.

It remains to study Gn1 , which is the sum G′n +G′′n, where

G′n =
(
Δ2η
n χ̂(g)

n
i

)l (
κ(g)ni,0

)2p−2l−1
ξn

G′′n =
(
Δ2η
n χ̂(g)

n
i

)l (
κ(g)ni,0

)2p−2l−1
ξ ′n.

By (16.5.57) and (16.5.60) and Hölder’s inequality as above, we get E(|G′n| |FS)≤
Ku

p+1/2
n δni . Finally G′′n =

∑2p−2l−1
w=0 Cw2p−2l−1a

n
w , where

anw =
(
Δ2η
n χ̂(g)

n
i

)l (
σSW

n

i

)2p−2l−1−w (
Δηnχ(g)

n
i

)w
ξ ′n.

By successive conditioning, (16.5.44), (16.5.57) and (16.5.60) yield that E(|anw| |
FS)) ≤ Kup+1/2

n Δ
η′/2
n when w is odd. When w is even, the same argument with

(16.5.42), plus (16.5.61) and the fact that p− 2l − 1−w is then odd yields
∣∣E
(
anw |FS

)∣∣ ≤ Ku
p+1/2
n

(
Δηn + Γ ′(Υ )ni

)
.

If we put together all these estimates, we deduce that Gn1 also satisfies (16.5.59),
and this finishes the proof. �

Our last result is about asymptotically negligible arrays, and more specifically
those which satisfy

0≤ δni ≤K, ΔnE

([t/Δn]∑

i=1

δni

)
→ 0 ∀t > 0. (16.5.62)
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Lemma 16.5.15 a) If an array (δni ) satisfies (16.5.62) then for any q > 0 the array
(|δni |q) also satisfies (16.5.62).

b) If Y is a càdlàg bounded process, then the two arrays (Γ (Y )ni ) and (Γ ′(Y )ni )
satisfy (16.5.62).

Proof a) If q > 1, we have
∑[t/Δn]
i=1 |δni |q ≤ K

∑[t/Δn]
i=1 δni , so (|δni |q) satisfies

(16.5.62). When q < 1 we have by a repeated use of Hölder’s inequality:

(
ΔnE

([t/Δn]∑

i=1

δni

))1/q

≤ Δ1/q
n E

(([t/Δn]∑

i=1

δni

)1/q)

≤ Δ1/q
n E

(
Δ

1−1/q
n

[t/Δn]∑

i=1

δni

)
.

Then again (|δni |q) satisfies (16.5.62).
b) Let δni = Γ (Y )ni . If ε > 0, let N(ε)t be the number of jumps of Y with size

bigger than ε on the interval [0, t], and let v(ε, t, η) be the supremum of |Ys − Yr |
over all pairs (r, s) with s ≤ r ≤ s + η and s ≤ t and such that N(ε)s −N(ε)r = 0.
Since Y is bounded,

ΔnE

([t/Δn]∑

i=1

δni

)
≤ E
(
t v(ε, t + 1,2un)+ (Kt)∧

(
K unN(ε)t+1

))

as soon as 2un ≤ 1. Since lim supn→∞ v(ε, t + 1,2un)≤ ε, Fatou’s lemma implies
that the lim sup of the left side above is smaller than Ktε, so (16.5.62) holds
because ε is arbitrarily small.

By (a), the array (Γ (Y )ni )
4 satisfies (16.5.62). Since E((Γ ′(Y )ni )4) =

E((Γ (Y )ni )
4), we deduce that the array (Γ ′(Y )ni )4 also satisfies (16.5.62), and an-

other application of (a) implies that Γ ′(Y )ni satisfies (16.5.62) as well. �

16.5.4 Proof of Theorem 16.5.7

At this stage, the proof is analogous to the proof of Theorem 12.2.1, under the
simplest assumption (a) of this theorem because we have (K) and the test function
f is a polynomial. As before, we may assume (SK) and (SN).

Step 1) To begin with, and in view of the specific form of f and of (16.5.37),
(16.5.38) and (16.5.52), we have the decomposition

Y
′n(
Zn
) =

4∑

l=1

H(l)n, where
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H(1)n,jt = Δn√
un

[t/Δn]−kn+1∑

i=1

(
φ
(
gj ,pj

)n
i,0 −E

(
φ
(
gj ,pj

)n
i,0 |F(i−1)Δn

))

H(2)n,jt = Δn√
un

[t/Δn]−kn+1∑

i=1

(
φ
(
gj ,pj ,Z

n
)n
i
− φ(gj ,pj

)n
i,0

)

H(3)n,jt = Δn√
un

[t/Δn]−kn+1∑

i=1

E
(
Ψ
(
gj ,pj

)n
i,0 |F(i−1)Δn

)

H(4)nt =
1√
un

(
Δn

[t/Δn]−kn+1∑

i=1

E
(∣∣βn,ji

∣∣2pj |F(i−1)Δn

)

−m2pj Λ
(
gj
)pj
∫ t

0
c
pj
s ds

)
.

Then the theorem will follow from the next two lemmas:

Lemma 16.5.16 Under (SK) and (SN) and η′ > 1
3 the processes H(1)n converge

stably in law to the process Y
′

described in Theorem 16.5.7, page 533.

Lemma 16.5.17 Under (SK) and (SN) and if η′ > 1
3 and η + η′ ≥ 1

2 we have

H(l)n
u.c.p.=⇒ 0 for l = 2,3,4.

Step 2)

Proof of Lemma 16.5.17 We begin with H(2)n
u.c.p.=⇒ 0, and we set

ζ ni =
Δn√
un

(
φ
(
gj ,pj ,Z

n
)n,j
i
− φ(gj ,pj

)n
i,0

)

ζ ′ni = E
(
ζ ni |F(i−1)Δn

)
, ζ ′′ni = ζ ni − ζ ′ni .

Thus the result follows if the two arrays (ζ ′ni ) and (ζ ′′ni ) are asymptotically neg-
ligible. For (ζ ′ni ) this is easy: indeed (16.5.58) yields E(‖ζ ′ni ‖) ≤ KΔnE(δni ), so

Lemma 16.5.15 and our assumptions on b, σ̃ ,Υ yield that
∑[t/Δn]
i=1 E(‖ζ ′ni ‖)→ 0

as soon as η′ > 1
5 .

For (ζ ′′ni )we operate as in Step 3 of Sect. 12.2.3. We observe that
∑[t/Δn]−kn+1
i=1 ×

ζ ′′ni =∑kn−1
r=0 H(2, r)

n
t where, with the notation ln(r, t)= [([t/Δn]−r)/kn]−1, we

takeH(2, r)nt =
∑ln(r,t)
i=0 ζ ′′nikn+r+1. The variables ζ ′′nikn+r+1 are martingale increments

for the discrete time filtration (F((i+1)kn+r)Δn)i≥0. Therefore by Doob’s inequality

E

(
sup
s≤t

∥∥∥∥∥

[s/Δn]−kn+1∑

i=0

ζ ′′ni

∥∥∥∥∥

2)
≤ 4E

(
ln(r,t)∑

i=0

∥∥ζ nikn+r+1

∥∥2
)
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≤ KΔ
2
n

un

ln(r,t)∑

i=0

(
un +E

((
Γ ′(σ )nikn+r+1

)2)+Δ4η′
n

)

≤ K t Δ
2
n

un

(
1+ Δ

4η′
n

un

)
(16.5.63)

where the second inequality comes from (16.5.56) and the last one from (16.5.36)
and ln(r, t)≤Kt/un. Taking the square-root and summing up over r yields

E

(
sup
s≤t

∥∥∥∥∥

[s/Δn]−kn+1∑

i=0

ζ ′′ni

∥∥∥∥∥

)
≤ K

√
t
(√
un +Δ2η′

n

)
. (16.5.64)

This finishes the proof of Lemma 16.5.17 for l = 2. �

Second, we observe that H(3)n
u.c.p.=⇒ 0 is an immediate consequence of (16.5.53)

and Lemma 16.5.15, and the assumptions η′ > 1
3 and 2η+ 2η′ ≥ 1.

Finally, we observe that the variable β(gj )ni is nothing else than the variable

β
n,j

i defined in (12.2.12). Therefore with the notation (12.2.15) and the func-
tion f j (x) = |x|2pj (instead of the function f j associated with pj by (16.5.2)),

we see that H(4)n,jt = H(3)n,jt + H(6)n,jt . Therefore H(4)n
u.c.p.=⇒ 0 follows from

Lemma 12.2.4.

Step 3) (block splitting) We rewrite H(1)n as

H(1)nt =
[t/Δn]−kn+1∑

i=1

ζ ni , where

ζ
′n,j
i = Δn√

un
ψ
(
gj
)n
i,0, ζ

′′n,j
i = E

(
ζ
′n,j
i |F(i−1)Δn

)
, ζ

n,j
i = ζ ′n,ji − ζ ′′n,ji .

The variables ζ ni are not martingale differences. So to prove Lemma 16.5.16, and
for the very same reason of forcing the martingale property, we do as in the proof
of Theorem 12.2.1: we fix an integer m ≥ 1, and we divide the summands in the
definition of H(1)n into blocks of sizes mkn and kn.

The lth big block, of size mkn, contains the indices between I (m,n, l) = (l −
1)(m+ 1)kn + 1 and I (m,n, l)+mkn − 1. The number of such blocks before time
t is ln(m, t)= [[t/Δn]−1

(m+1)kn
]. These big blocks are separated by small blocks of size kn,

and the “real” time corresponding to the beginning of the lth big block is t (m,n, l)=
(I (m,n, l)− 1)Δn. Then we introduce the following q-dimensional variables and
processes:

ζ(m)ni =
mkn−1∑

r=0

ζ nI (m,n,i)+r , Z(m)nt =
ln(m,t)∑

i=1

δ(m)ni .
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We end this step by proving that H
n
(1)−Z(m)n is asymptotically negligible:

Lemma 16.5.18 Under (SK) and (SN) and η+ η′ ≥ 1
2 we have for all t > 0:

lim
m→∞ lim sup

n→∞
E

(
sup
s≤t
∥∥Hn(1)s −Zn(m)s

∥∥
)
= 0.

Proof The proof is exactly the same as for Lemma 12.2.5, the only difference being
that the inequality E(‖ζ ni ‖2)≤KΔ2

n/un is now implied by (16.5.57). �

Step 4) As for Theorem 12.2.1, we modify the process Z(m) in such a way that each
summand involves the volatility at the beginning of the corresponding large block.
Set

η
n,j
i,r =

Δn√
un

(
φ
(
gj ,pj

)n
i,r
−E
(
φ
(
gj ,pj

)n
i,r
|F(i−r−1)Δn

))

η
′n,j
i,r =

Δn√
un

(
E
(
φ
(
gj ,pj

)n
i,r
|F(i−r−1)Δn

)−E
(
φ
(
gj ,pj

)n
i,r
|F(i−1)Δn

))

η(m)ni =
mkn−1∑

r=0

ηni+r,r , η(m)′ni =
mkn−1∑

r=0

η′ni+r,r

Mn(m)t =
ln(m,t)∑

i=1

η(m)nI (m,n,i), M ′n(m)t =
ln(m,t)∑

i=1

η(m)′nI (m,n,i).

(16.5.65)

Lemma 16.5.19 Under (SK) and (SN) and η+ η′ ≥ 1
2 we have

lim
n→∞ E

(
sup
s≤t
∥∥Zn(m)s −Mn(m)s −M ′n(m)s

∥∥
)
= 0.

Proof Here again, the proof is the same as for Lemma 12.2.6, with the following
changes: we substitute Mn(m) with Mn(m) +M ′n(m) and, instead of (12.2.29),
we use (16.5.36) and (16.5.57). Then we obtain the better estimate E(‖θni ‖2) ≤
KmΔ2

n =Kmu2
n/k

2
n (this is because the test function is polynomial here). �

Lemma 16.5.20 Under (SK) and (SN) and η+ η′ ≥ 1
2 we have

lim
n→∞ E

(
sup
s≤t
∥∥M ′n(m)s

∥∥
)
= 0.

Proof The variables η(m)′ni are martingale increments relative to the discrete

time filtration Gni = Ft (m,n,i+1). Then it is enough to prove that
∑ln(m,t)
i=1 E×

(‖η(m)′nI (m,n,i)‖2)→ 0 as n→∞ by Doob’s inequality, and for this it suffices to
show that

E
(∥∥η(m)′ni

∥∥2) ≤ Km2Δn (16.5.66)
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because ln(m, t)≤ t/un and Δn/un→ 0. Now we observe that

η
′n,j
i,r =

Δn√
un

(
E
(
Ψ
(
gj ,pj

)n
i,r
|F(i−r−1)Δn

)−E
(
Ψ
(
gj ,pj

)n
i,r
|F(i−1)Δn

))
,

because W(gj )ni is independent of F(i−1)Δn . Then (16.5.54) yields that E(|Ψ (gj ,
pj )ni,r |2)≤K/kn. Since there are mkn summands in η(m)′ni , (16.5.66) follows. �

Step 5) At this stage we prove a CLT for the processes Mn(m), for each fixed m.
We use the notation (16.5.32) and we set

γ (m)
j
t =mμ

(
σt , θ

′υt
)j
, γ ′(m)jj

′
t =
∫ m

0
ds

∫ m

0
ds′μ′
(
σt , θ

′υt ; s, s′
)jj ′
.

Lemma 16.5.21 Under (SK) and (SN) and η + η′ ≥ 1
2 , and for each m ≥ 1, the

processes Mn(m) converge stably in law to a limit Y
′
(m) defined on a very good

extension (Ω̃, F̃, (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P), and which conditionally on F
is a continuous centered Gaussian process with independent increments with

Ẽ
(
M(m)

j
t M(m)

l
t |F
) = 1

m+ 1

∫ t

0

(
γ ′(m)jj

′
s − γ (m)js γ (m)j

′
s

)
ds.

Proof Once more, the proof is analogous to the proof of Lemma 12.2.7, whose
notation is used. We will apply Theorem 2.2.15 to the array (η(m)ni ), with Nn(t)=
[t/un(m + 1)] and T (n, i) = t (m,n, i + 1) and the discrete-time filtration Gni =
Ft (m,n,i+1). We have E(η(m)ni | Gni−1)= 0, and also (12.2.31) by applying (16.5.57),
hence it remains to prove

ln(m,t)∑

i=1

E
(
η(m)

n,j

I (m,n,i) η(m)
n,j ′
I (m,n,i) | Gni−1

)

P−→ 1

m+ 1

∫ t

0

(
γ ′(m)jj

′
s − γ (m)js γ (m)j

′
s

)
ds (16.5.67)

and also, for any bounded martingale N ,

ln(m,t)∑

i=1

E
(
η(m)nI (m,n,i) (Nt(m,n,i+1) −Nt(m,n,i)) | Gni−1

) P−→ 0. (16.5.68)

1) We start by proving (16.5.67), in a similar fashion as in the proof of Theo-
rem 16.4.1. The integer m≥ 1 is fixed, and we set

ζ
′′n,j
i = 1

kn

mkn−1∑

r=0

φ
(
gj ,pj

)n
i+r,r ,
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ζ
n,j
i = E

(
ζ
′′n,j
i |F(i−1)Δn

)
, ζ

′n,jj ′
i = E

(
ζ
′′n,j
i ζ

′′n,j ′
i |F(i−1)Δn

)
,

t (m,n, i)≤ t < t (n,m, i + 1) ⇒ γ
′n,jj ′
t = ζ ′n,jj ′i , γ

n,j
t = ζ n,ji ζ

n,j ′
i .

The convergence (16.5.67) amounts to

un

ln(m,t)∑

i=1

(
ζ
′n,jj ′
i − ζ n,ji ζ

n,j ′
i

) P−→ 1

m+ 1

∫ t

0

(
γ ′(m)jj

′
s − γ (m)js γ (m)j

′
s

)
ds.

Exactly as for (16.4.20), and because un ln(m, t)→ t
m+1 , this will be satisfied as

soon as, for all t , we have

γ
n,j
t

P−→ γ (m)
j
t , γ

′n,jj ′
t

P−→ γ ′(m)jj
′

t . (16.5.69)

We fix t and we apply Lemma 16.3.9 with the sequence in = i+1 if (i−1)Δn ≤
t < iΔn (so Tn = (in − 1)Δn satisfies (2) of (16.3.18) with T = t), and with Z = 1.
With the notation (16.3.33) we have ζ ′′n,jin

= Fjn (σTnLn,j ,L′n,j , L̂n,j ), where Fjn is
the function on D

q ×D
q ×D

q defined by

F
j
n (x, y, z) = 1

kn

mkn−1∑

r=0

f j
(
x

(
r

kn

)j
− Δ

η
n√
knun

y

(
r

kn

)
,
Δ

2η
n

knun
z

(
r

kn

))
.

The functions Fjn and Fjn F
j ′
n satisfy (16.3.16) with m+ 1 instead of m, and they

converge pointwise to Fj and FjF j
′
, where

Fj (x, y, z) =
∫ m

0
f j
(
x(s)− θ ′y(s), θ ′2z(s))ds.

At this stage, we deduce (16.5.69) from (16.3.35) with Z = 1 (so the conditional
expectation in the right side disappears), plus the fact that under Sg the laws of
(y(s) : s ≥ 0) and (−y(s) : s ≥ 0) are the same, and the result is proved.

2) The proof of (16.5.68) is more complicated than in Lemma 12.2.7, because of
the noise. For any process Y we write Dni (Y ) = Yt(m,n,i+1) − Yt(m,n,i). In view of
the definition (16.5.65) of η(m)ni , and since we only consider bounded martingales
N which thus satisfy E(D(N)ni | Gni−1)= 0, it is enough to prove that for any weight
function g and any integer p ≥ 1 we have

ln(m,t)∑

i=1

E
(
ζ nI (m,n,i) D(N)

n
i | Gni−1

) P−→ 0, where ζ ni =
Δn√
un

mkn−1∑

r=0

φ(g,p)ni+r,r .

(16.5.70)
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By (16.5.57) we have E(|φ(g,p)ni |2) ≤ K , hence E(|ζ ni |2) ≤ Kun and, if N is a
square-integrable martingale, the Cauchy-Schwarz and Doob inequalities yield:

ln(m,t)∑

i=1

E
(∣∣ζ nI (m,n,i)D

n
i (N)
∣∣) ≤
(
ln(m,t)∑

i=1

E
(∣∣ζ nI (m,n,i)

∣∣2)
ln(m,t)∑

i=1

E
(∣∣Dni (N)

∣∣2)
)1/2

≤ K
√
E
(
N2
t

)
. (16.5.71)

With the notation (16.5.52) and ζ ′ni = Δn√
un

∑mkn−1
r=0 Ψ (g,p)ni+r,r , the same argument

and (16.5.54) also yield

ln(m,t)∑

i=1

E
(∣∣ζ ′nI (m,n,i)D

n
i (N)
∣∣) ≤ K

kn

√
E
(
N2
t

)
. (16.5.72)

By virtue of (16.5.71), the set of all square-integrable martingales N satisfying
(16.5.70) is closed under L2-convergence. Suppose now that (16.5.68) holds when
N belongs to the set of N (0) of all bounded (F (0)t )-martingales, and whenN belongs
to the set N (1) of all martingales having N∞ = h(χt1 , . . . , χtw ), where h is a Borel
bounded function on R

w and t1 < · · ·< tw and w ≥ 1. Since N (0) ∪N (1) is total in
the set N of all bounded (Ft )-martingales for the L

2-convergence, we deduce that
(16.5.70), hence (16.5.68) as well, holds for all N ∈N .

It thus remains to prove (16.5.70) forN ∈N (i), i = 0,1. We start withN ∈N (0),
in which case D(N)ni is H∞ measurable. Therefore E(ζ nI (m,n,i) D(N)

n
i | Gni−1) is

equal to

E
(
ζ ′nI (m,n,i) D(N)

n
i | Gni−1

)+E

(
mkn−1∑

r=0

(
β(g)nI (m,n,i)+r

)2p
D(N)ni | Gni−1

)
,

with again the notation (16.5.52). We have seen in the proof of Lemma 12.2.5 that
the last conditional expectation above vanishes: so in view of (16.5.72) we have the
following inequality, which implies the result:

E

(
ln(m,t)∑

i=1

∣∣E
(
ζ nI (m,n,i) D(N)

n
i | Gni−1

)∣∣
)
≤ K

kn

√
E
(
N2
t

)
. (16.5.73)

Finally, let N ∈N (1) be associated with h and w and the ti ’s. In view of (16.1.1)
it is easy to check that N takes the following form (by convention t0 = 0 and tw+1 =
∞):

tl ≤ t < tl+1 ⇒ Nt = M(l;Zt1, . . . ,Ztl )t
for l = 0, . . . ,w, and where M(l; z1, . . . , zl) is a version of the martingale

M(l; z1, . . . , zl)t = E
(0)

(∫ w∏

r=l+1

Qtr (dzr)h(z1, . . . , zl, zl+1, . . . , zw) |F (0)t
)
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(with obvious conventions when l = 0 and l =w). Each M(l; z1, . . . , zl) is in N (0)

and those martingales are bounded uniformly in (l; z1, . . . , zl,ω
(0), t), so if we apply

(16.5.73) for these martingales we obtain for each l:

E

(
∑

i≥1: tl≤t (m,n,i)<t(m,n,i+1)<tl+1

∣∣E
(
ζ nI (mn,i) D(N)

n
i | Gni−1

)∣∣
)
≤ K

kn
.

Furthermore, each summand on the left side of (16.5.71) is smaller than K
√
un

because E(|ζ ni |2)≤Kun. Therefore

E

(
ln(m,t)∑

i=1

∣∣E
(
ζ nI (m,n,i) D(N)

n
i | Gni−1

)∣∣
)
≤ Kw

(
1

kn
+√un

)
,

and we deduce (16.5.70). This finishes the proof of our lemma. �

Step 6) We are now ready to prove Lemma 16.5.16, and this will end the proof of
Theorem 16.5.7.

Proof of Lemma 16.5.16 If we combine Lemmas 16.5.18, 16.5.19 and 16.5.20 with
the general criterion of Proposition 2.2.4, we see that the only thing left to prove

is the stable convergence in law Y
′
(m)

L-s=⇒ Y
′
, as m→∞. For this, and as in the

proof of Lemma 12.2.3, we only need to show that

1

m+ 1

∫ t

0

(
γ ′(m)jj

′
s − γ (m)js γ (m)j

′
s

)
ds→

∫ t

0
R
(
σt , θ

′υt
)jj ′

ds (16.5.74)

for all t . Recall once more that the process (L,L′) is stationary, and the vari-
ables (Lt ,L′t ) and (Ls,L′s) are independent if |s − t | ≥ 1, so μ′(v, v′; s, s′)jj ′ =
μ(v, v′)j μ(v, v′)j ′ when |s − s′| ≥ 1, and μ′(v, v′; s, s′)jj ′t = μ′(v, v′;1, s′ + 1−
s)jj

′
for all s, s′ ≥ 0 with s′ + 1− s ≥ 0. Then if m≥ 2 and μj = μ(σt , θ ′υt )j and

μ′(s, s′)jj ′ = μ′(σt , θ ′υt ; s, s′) we have

γ ′(m)jj
′

t − γ (m)jt γ (m)j
′
t =

∫ m

0
ds

∫ m

0
μ′
(
s, s′
)jj ′

ds′ −m2μj μj
′

=
∫ m

0
ds

∫ m∧(s+1)

(s−1)+

(
μ′
(
1, s′ + 1− s)jj ′ −μjμj ′)ds′

= (m− 1)
∫ 2

0

(
μ′
(
1, s′
)jj ′ −μjμj ′)ds′

+
∫ 1

0
ds

∫ 2

1−s
(
μ′
(
1, s′ + 1− s)jj ′ −μjμj ′)ds′.

Since μ(σt , θ ′υt )j and μ′(σt , θ ′υt ; s, s′) are bounded, (16.5.74) follows. �
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16.6 The Quadratic Variation

Finally we give a central limit theorem for the quadratic variation, again in the one-
dimensional case only. When X is continuous the approximation of the quadratic
variation is given by (16.5.7), in which we see the necessity of a “de-biasing” term.
We will do the same when, possibly, there are jumps.

We assume that X is an Itô semimartingale X written as (16.3.1), and we take
d ′ = 1 as well, and we want to estimate the brackets [X,X]. We fix a weight function
g. The observed process at stage n is again Zn =X+ (Δn)η χ , and the approximate
quadratic variation is V

′n
(f1, g, kn,Z

n), which below is written as

Unt =
1

kn

[t/Δn]−kn+1∑

i=1

((
Zn(g)ni

)2 − 1

2
Ẑn(g)ni

)
. (16.6.1)

Theorem 16.6.1 Under (H) and (N), and if η + η′ ≥ 1
2 , we have Unt

P−→
Λ(g) [X,X]t for any fixed t .

In the continuous case this is (16.5.7), and in the general case it is easy to prove.
In fact for us it will be a consequence of the following associated Central Limit
Theorem (albeit under slightly stronger conditions on η′ than necessary). This CLT
is about the normalized difference

U
n

t =
1√
un

(
Unt −Λ(g) [X,X]t

)
. (16.6.2)

The limit will of course be a mixture of the limit for the “jump part” as given
in Theorem 16.5.6 (although the condition p ≥ 2 is not satisfied, since here p = 1)
and the limit for the “continuous part”, as given in Theorem 16.5.7. So on the one
hand we define the processesΞ andΞ ′ by (16.3.4) (they are one-dimensional here),
where

H−(x)= 4x2
∫ 1

0
dt

(∫ t

0
g(s + 1− t) g(s) ds

)2

H+(x)= 4x2
∫ 1

0
dt

(∫ t

0
g(s − t) g(s) ds

)2

H ′−(x)= 4x2
∫ 1

0
dt

(∫ t

0
g(s + 1− t) g′(s) ds

)2

H ′+(x)= 4x2
∫ 1

0
dt

(∫ t

0
g(s − t) g′(s) ds

)2

.

(16.6.3)

On the other hand we have R(v, v′) as given by (16.5.32), with j = l = 1 here.
Then we can define three processes Y (X), Y

′
(χ) and Y

′′
on a very good exten-

sion (Ω̃, F̃ , (F̃t )t≥0, P̃) of (Ω,F , (Ft )t≥0,P), which conditionally on F are inde-
pendent, centered Gaussian with independent increments, the first two ones being
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purely discontinuous and the last one being continuous, and with (conditional) vari-
ances (where as usual υt =√Υt )

Ẽ
((
Y (X)t

)2 |F)=Ξt, Ẽ
((
Y
′
(χ)t
)2 |F)=Ξ ′t

Ẽ
((
Y
′′
t

)2 |F)=
∫ t

0
R(σs, θ

′υs) ds.
(16.6.4)

Theorem 16.6.2 Assume (H) and (N) with Υt càdlàg and let kn satisfy (16.1.5),
with further (16.3.6) and (16.5.34). Then for each t the variables U

n

t of (16.6.2)
converges stably in law to the variable Y (X)t + θ ′Y ′(χ)t +Y ′′t , as described above.

When further X is continuous, the processes U
n

converge stably (in the func-
tional sense) to the process Y

′′
.

The second claim is a particular case of Theorem 16.5.7, except that (K) is not
needed here, exactly as in Chap. 5 (and Y

′′
here is the same as Y

′
in Theorem 16.5.7).

As said before, we will prove only the second theorem, which implies the first one
under the extra assumption (16.5.35).

Remark 16.6.3 Although we will not do it here, we could prove a similar result
for the cross quadratic variation [Xj ,Xl] between any two components Xj and Xl ,
when X is multi-dimensional. Then (16.6.1) would be substituted with

U
n,jl
t = 1

kn

[t/Δn]−kn+1∑

i=1

(
Zn(g)

n,j
i Zn(g)

n,l
i − 1

2
Ẑn(g)

n,j l
i

)
,

and (16.6.2) with

U
n,jl

t = 1√
un

(
U
n,jl
t −Λ(g)[Xj ,Xl]

t

)
.

One even has the multi-dimensional stable convergence in law for the variables

(U
n,jl

t ,1≤ j, l ≤ d). The proof is basically the same.

Proof of Theorem 16.6.2 The proof is done through several steps, and as usual we
may assume (SH) and (SN). As a rule, we omit to mention the weight function g.
In contrast, we will vary the process X in the course of the proof: so we mention
it explicitly by writing Un(X) and U

n
(X) (warning: those processes also depend

on the noise, of course). Analogously, for the limit we write Y (X) and Y
′
(X,χ)

(despite the notation, the process Y
′
(χ), related to the noise, is in fact dependent on

Υt but not on the noise per se, and it depends on X as well through its jumps), and
Y
′′
(X) (which depends on X through σt ). Finally the three conditional variances in

(16.6.4) will be denoted by Ξ(X) and Ξ ′(X), and also Ξ ′′(X) for the third one.

Step 1) In this step we prove the result when the process X has locally finitely many
jumps, and when σ is piecewise constant. More specifically, we fix some integer
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m ≥ 1 and use our customary notation Am = {z : Γ (z) > 1/m}, where Γ is the
function appearing in (SH), and S(m, j) for the successive jump times of the process
1Am ∗ p. According to (2.1.48), (GAmt ) is the smallest filtration containing (Ft ) and

such that the restriction of the measure p to the set R+ ×Am is GAm0 -measurable.
Then, in addition to (SH), we suppose the following:

Γ (z)≤ 1/m ⇒ δ(ω, t, z)= 0

σs =∑q≥1 σTq1[Tq ,Tq+1)(t)

}
(16.6.5)

for some m ≥ 1 and where 0 = T0 < T1 < · · · is a sequence of random times, in-
creasing to infinity, and such that each Tq is GAm0 -measurable.

1) We set X′′t =
∑
s≤t ΔXs and X′t = Xt − X′′t = X0 +

∫ t
0 b
′
s ds +

∫ t
0 σs dWs ,

where b′s = bs −
∫
δ(t, x)1{|δ(y,z)|≤1} λ(dz). With the notation of the proof of Theo-

rem 16.3.1 (or Theorem 12.1.2), the process X(m) of (12.1.13) is equal to X′, and
it is a continuous (Gt )-Itô semimartingale. Similar to (16.3.50), we have

U
n
(X)t = U

n(
X′
)
t
+ Ynt −

1

2
Y ′nt

on the set Ωn(t,m), where Ynt =
∑
p∈Pm:Sp≤t ζ̂

n
p and Y ′nt =

∑
p∈Pm:Sp≤t ζ̂

′n
p , and

where ζ̂ np is as ζ np after (16.3.50) with f j (x)= x2 (so the last term in the definition

of ζ̂ np is −Λ(g)|ΔXSp |2) and

ζ̂ ′np = Λ′n(g,2)
kn
√
un

(
(ΔXSp)

2 + 2ΔXSp Δ
n
i(n,p)

(
X′ +Δηnχ

))
.

We have |Λ′n(g,2)| ≤K/kn, and as soon as η′ > 1
5 we obtain E(|̂ζ ′np |) P−→ 0 by the

estimates already used (recall that the jumps of X are bounded). Therefore Y ′nt
P−→

0, whereas exactly as in (16.3.51) we have

Ynt
L-s−→ Y (X)t + θ ′ Y ′(X,χ)t . (16.6.6)

2) Next we prove that U
n
(X′) L-s=⇒ Y

′′
(X). Since X′ is driven by W only and

since W is a (GAmt -Brownian motion, we can argue relatively to the filtration (gAmt )

instead of (Ft ), and also conditionally on GAm9 : in other words, the times Tr can be
considered as being non-random.

The property U
n
(X′) L-s=⇒ Y

′′
(X) is Theorem 16.5.7 for p = 1, except that here

we do not assume (SK), but only (SH). However a look at the proof of this theorem
shows that (SK) instead of (SH) is used in the proof of Lemma 16.5.17 only, in
three places: to prove the asymptotic negligibility of the array (ζ ′ni ) of this lemma
(for which (16.5.58) is used), for the asymptotic negligibility of the arrays (ζ ′′ni )
of the same lemma (because one deduces (16.5.64) from (16.5.63)), and for the
proof in the case l = 4. For the latter occurrence, this is as in Lemma 12.2.4 (case
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l = 6) and the Itô semimartingale property of σ can be replaced by the fact that σt
is piecewise constant (the result is then much simpler to prove).

In the present situation, (16.5.58) may fail. However because of (16.6.5), and
with again the notation of the proof of Lemma 16.5.17, we indeed have ζ ni = 0 for
all i except those for which iΔn ∈ [Tr − un,Tr ] for some r , whereas E(|ζ ni |t)≤K
by (16.5.55). It follows that

E

([t/Δn]−kn+1∑

i=1

∣∣ζ ni
∣∣ | GAm0

)
≤ K

Δn√
un
rt kn ≤ Krt

√
un,

where rt = sup(r : Tr ≤ t). Then we deduce the asymptotic negligibility of the ar-
ray (ζ ni ) without using the decomposition ζ ni = ζ ′ni + ζ ′′ni . This ends the proof of

U
n
(X′) L-s=⇒ Y

′′
(X).

3) So far we haveU
n
(X′) L-s=⇒ Y

′′
(X) and (16.6.6). However, by exactly the same

kind of argument as in Theorem 4.2.1 one may show the joint stable convergence
in law (the formal argument is rather tedious to develop, but the idea is exactly the
same as in the afore-mentioned proposition). This implies that for all t we have

U
n
(X)t

L-s−→ Y(X)t + θ ′ Y ′(X,χ)t + Y ′′(X)t .
Step 2) From now on, we suppose that X satisfies (SH), but not (16.6.5) any longer.
In this step we construct an approximation of X satisfying (16.6.5).

Since Γ is bounded, we recall the decomposition

Xt =X0 +
∫ t

0
b′s ds +

∫ t

0
σs dWs + (δ 1(Am)c ) ∗ (p− q)+ (δ 1Am) ∗ (p− q)t ,

where b′t = bt +
∫
{|δ(t,z)|>1} δ(t, z)λ(dz). We let 0 = T (m)0 < T (m)1 < · · · be the

successive times in the set F(m)= {i/2m : i ∈N} ∪ {S(m, i) : i ≥ 1}, and we set

σ(m)t = σT (m)i if T (m)i ≤ t < T (m)i+1.

Since σ is càdlàg bounded and F(m) increases as m increases, we have

ε(m)t := E

(∫ t

0

∣∣σ(m)s − σs
∣∣2 ds
)
→ 0 as m→∞ (16.6.7)

for all t . Then, for any m≥ 1 we set

X(m)t =X0 +
∫ t

0
b′s ds +

∫ t

0
σ(m)s dWs + (δ1Am) ∗ (p− q)t . (16.6.8)

By construction X(m) satisfies (16.6.5), so Step 1 gives us

U
n(
X(m)
)
t

L-s−→ Y
(
X(m)
)
t
+ θ ′ Y ′(X(m),χ)

t
+ Y ′′(X(m))

t
(16.6.9)
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for any t and m ≥ 1, and the convergence even holds in the functional sense when
X (hence X(m)) is continuous.

Step 3) Now we consider the F -conditional variances (16.6.4). In view of their
definitions in (16.3.4) and of the fact that the functions in (16.6.3) are of the form
a±x2 and a′±x2, and with the notation Dm = {(ω, t) : p(ω, {t} × {z : 0 < Γ (z) ≤
1/m})= 0}, we have

Ξ
(
X(m)
)
t
=
∑

s≤t

(
a−σ(m)2s− + a+σ(m)2s

)
(ΔXs)

21Dm(s)

Ξ ′
(
X(m)
)
t
=
∑

s≤t

(
a′−Υs− + a′+Υs

)
(ΔXs)

21Dm(s)

(because ΔX(m)s equals ΔXs when s ∈Dm and vanishes otherwise), and similar
formulas for Ξ(X) and Ξ ′(X), with σ(m) andDm substituted with σ andΩ ×R+.
Now,Dm increases toΩ×R+ and

∑
s≤t |ΔXs |2 <∞ and |σ(m)| ≤K and Υ ≤K ;

moreover, for all s ∈Dm such that ΔXs �= 0 we have σ(m)s = σs and σ(m)s− →
σs− by construction. Then by the dominated convergence theorem we obtain, as
m→∞:

Ξ
(
X(m)
) u.c.p.=⇒ Ξ(X), Ξ ′

(
X(m)
) u.c.p.=⇒ Ξ ′(X).

Next, we recall that Ξ ′′(X)t =
∫ t

0 R(σs, θ
′υs) ds, whereas the function R of

(16.5.32) is continuous. Hence (16.6.7) yields Ξ ′′(X(m)) u.c.p.=⇒ Ξ ′′(X) as m→∞.
Putting this together with the previous convergence, we deduce

(
Ξ
(
X(m)
)
,Ξ ′
(
X(m)
)
,Ξ ′′
(
X(m)
)) u.c.p.=⇒ (Ξ(X),Ξ ′(X),Ξ ′′(X)). (16.6.10)

Conditionally on F , the three processes Y(X(m)), Y
′
(X(m),χ) and Y

′′
(X(m))

are centered Gaussian with independent increments and respective covariances
Ξ(X(m))t , Ξ ′(X(m))t and Ξ ′′(X(m))t at time t , and they are F -conditionally
independent. Then it follows from (16.6.10) that

Y
(
X(m)
)+ θ ′Y ′(X(m),χ)+ Y ′′(X(m))

L-s=⇒ Y (X)+ θ ′Y ′(X,χ)+ Y ′′(X)
as m→∞. Hence, in view of (16.6.9), the theorem will be proved if we show the
following: for all t, η > 0 we have

lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∣∣Un
(
X(m)
)
s
−Un(X)s

∣∣> η
)
= 0 (16.6.11)

when X is continuous, a case referred to as case C, whereas in the general case
where X may be discontinuous, referred as case D, it is enough to show

lim
m→∞ lim sup

n→∞
P
(∣∣Un
(
X(m)
)
t
−Un(X)t

∣∣> η
)= 0. (16.6.12)
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Step 4) Recall that we usually omit g, writing for example X
n

i =X(g)ni . We have

un
(
φ
(
g,2,Zn

)n
i
− φ(g,2,X(m)+ (Δn)η χ

)n
i

)

= (Xni
)2 − (X(m)ni

)2 + 2(Δn)
η χni
(
X
n

i −X(m)ni
)− 1

2
vni

where

vni =
kn∑

j=1

(
g′nj
)2((

Δni+j−1X
)2 − (Δni+j−1X(m)

)2

+ 2(Δn)
η Δni+j−1χ

(
Δni+j−1X−Δni+j−1X(m)

))
.

Therefore

U
n
(X)t −Un

(
X(m)
)
t
= G1(m)nt +G2(m)nt −

1

2
V nt ,

where

V nt =
1

kn
√
un

[t/Δn]−kn+1∑

i=1

vni

G1(m)nt =
1√
un

(
1

kn

[t/Δn]−kn+1∑

i=1

((
X
n

i

)2 − (X(m)ni
)2)

−Λ(g)([X,X]t −
[
X(m),X(m)

]
t

))

G2(m)nt =
2Δηn
kn
√
un

[t/Δn]−kn+1∑

i=1

χni
(
X
n

i −X(m)ni
)
.

Since E(|Δni X|2) + E
′(|Δni X(m)|2) ≤ KΔn and |g′nj | ≤ K/kn and E(|Δni χ |2) ≤

K , we have E(|vni |) ≤ K(Δn + Δη+1/2
n )/kn. We deduce that E(sups≤t |V ns |) ≤

Kt(Δ
(5η′−1)/2
n +Δ(5η′+2η−2)/2

n ), which goes to 0 because η+η′ ≥ 1/2 and η′ > 1/3.
Therefore, instead of (16.6.11), we are left to prove for l = 1,2, and according the
case C (continuous) or D (possibly discontinuous):

C: lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∣∣Gl(m)ns

∣∣> η
)
= 0

D: lim
m→∞ lim sup

n→∞
P
(∣∣Gl(m)nt

∣∣> η
)= 0.

(16.6.13)

Step 5) We begin proving (16.6.13) for l = 2. We split the sum in the definition of
G2(m)nt into two parts: G3(m)nt is the sum over those i’s for which the fractional
part of i/2kn is in [0,1/2), and G4(m)nt which is the sum when the fractional part
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is in [1/2,1). It enough to show (16.6.13) for l = 3 and l = 4, and we do it for l = 3
only. We have

G3(m)nt =
Jn(t)+1∑

j=0

ζ(m, r)ni ,

ζ(m)nj =
2Δηn
kn
√
un

(2jkn+kn−1)∧([t/Δn]−kn+1)∑

i=(2jkn)∨1

χni
(
X
n

i −X(m)ni
)
,

where Jn(t) is the integer part of ([t/Δn]−kn)/2kn (all ζ(m)nj have at most kn sum-
mands). Note that ζ(m)nj is Fn2(j+1)kn

measurable, and by successive conditioning
E(ζ(m)nj |Fn2jkn)= 0. Therefore by a martingale argument (16.6.13) will follow, if
we prove

lim
m→∞ lim sup

n→∞
E

(
Jn(t)∑

j=0

∣∣ζ(m)nj
∣∣2
)
= 0. (16.6.14)

Recalling (16.6.7), we set

ε(m)ni = ε(m)iΔn+un − ε(m)iΔn, εm =
∫

{z:Γ (z)≤1/m}
Γ (z)2 λ(dz).

Then (16.6.7) and (16.6.11), together with (16.2.3) and our usual estimates for Itô
semimartingales applied to X−X(m) (as for (16.4.9)) and successive conditioning,
yield

E
((
χni
)2 (

X
n

i −X(m)ni
)2) ≤ K

kn

(
ε(m)ni + un εm

)
,

and so the expectation in (16.6.14) is smaller thanKΔ2η+2η′−1
n (ε(m)t+ tεm). Hence

(16.6.14) holds by (16.6.7) and 2η+ 2η′ ≥ 1 and the property εm→ 0 as m→∞.

Step 6) Now we turn to the case l = 1 in (16.6.13). We write G1(m)nt =G5(m)nt +
G6(m)nt where, with gn as in the proof of Lemma 16.5.13 and A(m) = [X,X] −
[X(m),X(m)],

G5(m)nt =
[t/Δn]−kn+1∑

i=1

ϑ(m)ni

ϑ(m)ni =
1

kn
√
un

(
(
X
n

i

)2 − (X(m)ni
)2 −
∫ iΔn+un

iΔn

gn(s − iΔn)2 dA(m)s
)

G6(m)nt =
1√
un

(
1

kn

[t/Δn]−kn+1∑

i=1

∫ iΔn+un

iΔn

gn(s − iΔn)2 dA(m)s −Λ(g)A(m)t
)
.
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In this step we prove that G6(m)n satisfies (16.6.13). A simple calculation shows

G6(m)nt =
1√
un

∫ t

0

(
Λn(g,2)

kn
−Λ(g)

)
dA(m)s + v(m, r)nt ,

where the remainder term v(m, r)nt satisfies, with A′(m) being the variation process
of A(m):

∣∣v(m)nt
∣∣ ≤ K√

un

(
A′(m)un +

(
A′(m)t −A′(m)t−2un

))
.

In the continuous case C we have A′(m)s+un − A′(m)s ≤ Kun, hence
sups≤t |v(m)ns | ≤ K√un. In the discontinuous case D this fails, but we have

E(A′(m)s+un − A′(m)s) ≤ Kun, so v(m)nt
P−→ 0 as n→∞. Then if we apply

(16.1.9) we obtain (16.6.13) for l = 6.

Step 7) It remains to prove (16.6.13) for l = 5. For this we use Itô’s formula, to get,
with the notation Yn,it = ∫ t

iΔn
gn(s − iΔn)dYs for any semimartingale Y , and for

t ≥ iΔn:

(
X
n

i

)2 −
∫ iΔn+un

iΔn

gn(s − iΔn)2 d[X,X]s = 2
∫ iΔn+un

iΔn

Xn,is gn(s − iΔn)dXs,

and a similar expression for (X(m)
n

i )
2. Therefore, recalling that X#(m)t := Xt −

X(m)t =
∫ t

0 (σs − σ(m)s) dWs + (δ 1(Am)c ) ∗ (p− q)t , we see that

ϑ(m)ni =
2

kn
√
un

5∑

j=1

η(m, j)ni ,

where, with the notation I (n, i)= (iΔn, iΔn + un],

η(m,1)ni =
∫

I (n,i)

X#(m)n,is gn(s − iΔn)b′s ds

η(m,2)ni =
∫

I (n,i)

X#(m)n,is gn(s − iΔn)σs dWs

η(m,3)ni =
∫

I (n,i)

X(m)n,is gn(s − iΔn)
(
σs − σ(m)s

)
dWs

η(m,4)ni =
∫

I (n,i)

∫

(Am)c
X
n,i
s− gn(s − iΔn) δ(s, z) (p− q)(ds, dz)

η(m,5)ni =
∫

I (n,i)

∫

Am

X#(m)
n,i
s− gn(s − iΔn) δ(s, z) (p− q)(ds, dz).
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We also set

a(m, j, q)nt = E

([t/Δn]−kn+1∑

i=1

∣∣η(m, j)ni
∣∣q
)
.

Since for j = 2,3,4,5 the variables η(m, j)ni are F(i+kn)Δn measurable and satisfy
E(η(m, j)ni | F(i−1)Δn)= 0, we see that (16.6.13) for l = 5 will follow if we prove
that for all t > 0:

j = 1 ⇒ lim
m→∞ lim sup

n→∞
1

kn
√
un
a(m, j,1)nt = 0

j = 2,3,4,5 ⇒ lim
m→∞ lim sup

n→∞
1

k2
nun

a(m, j,2)nt = 0.

(16.6.15)

Below, we use the notation ε(m)ni and εm of Step 4. Our usual estimates yield for
s ∈ I (n, i) and p ≥ 2:

E

(
sup
t≤s
∣∣X#(m)

n,i
t

∣∣2
)
≤ K
(
ε(m)ni + unεm

)

E

(
sup
t≤s
∣∣X(m)n,it

∣∣p
)
+E

(
sup
t≤s
∣∣Xn,it
∣∣p
)
≤ Kpun

and since
∫
Am
|δ(s, z)|2λ(dz) ≤ ∫ Γ (z)2λ(dz) <∞ and |gn| ≤ K and ε(m)ni ≤ K

and εm ≤K , it follows that

j = 1 ⇒ E
(∣∣η(m, j)ni

∣∣)≤Kun
(√
ε(m)ni +

√
un εm
)

j = 2,3,4,5 ⇒ E
(∣∣η(m, j)ni

∣∣2)≤Kun
(√
ε(m)ni + un

)
.

By Hölder’s inequality

([t/Δn]−kn+1∑

i=1

√
ε(m)ni

)2

≤ t

Δn

[t/Δn]−kn+1∑

i=1

ε(m)ni ≤
knt

Δn
ε(m)t .

Therefore

a(m,1,1)nt ≤Kkn
√
un
(√
t ε(m)t + t√εm

)

and, for j = 2,3,4,5,

a(m, j,2)nt ≤Kkn
√
un
(√
t ε(m)t + t√un

)
.

Since ε(m)t → 0 and εm→ 0 as m→∞ and η′ ≥ 1
3 , we deduce (16.6.15), and the

proof is complete. �
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The question of noisy observations has long been considered in statistics. Histor-
ically, for financial data (with which this chapter is really concerned), researchers
have considered first the case where the noise is additive i.i.d. centered, and quite
often Gaussian, see for example Bandi and Russell [7], Aït-Sahalia, Mykland and
Zhang [3]. Various methods have been proposed in this case, like the “two-scales”
method of Zhang, Mykland and Aït-Sahalia [96], the “multi-scale” approach of
Zhang [97], the “kernel” approach of Barndorff-Nielsen, Hansen, Lunde and Shep-
hard [13], or Podolskij and Vetter [80].

Now, as explained in the chapter itself, additive noise is often not adequate to
model the reality of financial data. Round-off errors are prevalent, and in the case of
a shrinking noise this has been studied by Delattre and Jacod [26] in the diffusion
setting and by Rosenbaum [86] in a more realistic framework. A fundamental paper
about the possible structure of the noise is [69] by Li and Mykland.

The pre-averaging method has been introduced in the continuous case by Jacod,
Li, Mykland, Podolskij and Vetter [61] and by Podolskij and Vetter [81] when there
are jumps, and the account given here closely follows Jacod, Podolskij and Vetter
[63], except that in this book we also allow for a shrinking noise. This approach is
in a sense another name for the so-called realized kernels approach of [13]. Finally,
the paper [14] of Barndorff-Nielsen, Hansen, Lunde and Shephard mixes the multi-
variate non-synchronous observation times with a noise which may be more general
than an additive noise.



Appendix

In the Appendix we prove the results left unproved in Chap. 2, plus a few others.
For clarity, we re-state the results before their proofs.

A.1 Estimates for Itô Semimartingales

Here we prove the lemmas of Sect. 2.1.5. The first one is essentially contained in
Protter and Talay [82], although the setting here is more general, and the proof
somewhat simpler. Recall that δ is a d-dimensional predictable function, and we
associate with it and with q ≥ 0 the variables

δ̂(q, a)t,s = 1

s

∫ t+s

t

du

∫

{‖δ(u,z)‖≤a}
∥∥δ(u, z)

∥∥q λ(dz), δ̂(q)= δ̂(q,∞)

δ̂′(q)t,s = δ̂(q,1)+ 1

s

∫ t+s

t

du

∫

{‖δ(u,z)‖>1}
∥∥δ(u, z)

∥∥λ(dz) (A.1)

δ̂′′(q)t,s = δ̂(q,1)+ 1

s

∫ t+s

t

λ
({
z : ∥∥δ(u, z)∥∥> 1

})
du.

Lemma 2.1.5 Suppose that
∫ t

0 ds
∫ ‖δ(s, z)‖2λ(dz) <∞ for all t . Then the process

Y = δ � (p− q) is a locally square integrable martingale, and for all finite stopping
times T and s > 0 and p ∈ [1,2] we have

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤Kp s E

(
δ̂(p)T ,s |FT

)
(A.2)

and also for p ≥ 2:

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤Kp
(
sE
(
δ̂(p)T ,s |FT

)+ sp/2E( δ̂(2)p/2T ,s |FT
))
.

(A.3)
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Proof 1) Upon arguing component by component, we can assume that the dimen-
sion is d = 1. The fact that Y is a locally square-integrable martingale has already
been mentioned in (2.1.31) for example. The finite stopping time T is fixed, and for
all w ≥ 0 we introduce the increasing processes

Z(w)= (|δ|w 1(T ,∞)
) ∗ p, Z̃(w)= (|δ|w 1(T ,∞)

) ∗ q,

which are [0,∞]-valued, and Z̃(w)T+s = sδ̂(w)T ,s .
By the Burkholder-Davis-Gundy inequality (2.1.32) we have when p ≥ 1:

E

(
sup

0≤u≤s
|YT+u − YT |p |FT

)
≤ Kq E

(
Z(2)p/2T+s |FT

)
. (A.4)

2) Suppose p ∈ [1,2]. Then (x2 + y2)p/2 ≤ xp + yp for all x, y ≥ 0, and thus
Z(2)p/2 ≤ Z(p). Moreover, q being the predictable compensator of p, we have

E(Z(w)T+s | FT )= E(Z̃(w)T+s | FT ), those variables being finite or infinite, and
(A.2) follows.

3) From now on we assume p > 2. In view of (A.4), we need to prove that

E
(
Z(2)p/2T+s |FT

) ≤ Kp E
(
Z̃(p)T+s + Z̃(2)p/2T+s |FT

)
. (A.5)

Set Sn = inf(t : Z̃(2)t + Z̃(p)t ≥ n), which satisfies Sn ≥ T . Suppose that we have
shown

E
(
Z(2)p/2(T+s)∧Sn |FT

)≤Kp E
(
Z̃(p)(T+s)∧Sn + Z̃(2)p/q(T+s)∧Sn |FT

)
(A.6)

for all n. Let S = limn Sn and B = {P(S ≤ T + s | FT )= 0}. As n→∞, the right
side of (A.6) increases to the right side of (A.5), which is infinite on Bc. On the set
B , we have S > T + s almost surely, so the left side of (A.6) increases a.s. to the
left side of (A.5) on this set: thus (A.3) holds on B , and also (trivially) on Bc .

We are thus left to proving (A.6) for any given n. Upon stopping all processes at
time Sn, this amounts to proving (A.5) under the additional assumption that

Z̃(p)∞ ≤ K, Z̃(2)∞ ≤ K,

and by Hölder’s inequality we also have Z̃(w)∞ ≤ Kw for all w ∈ [2,p]. For
those w’s, the process Z̃(w) is the predictable compensator of Z(w), and M(w)=
Z(w)− Z̃(w) is a martingale with quadratic variation Z(2w), and the Burkholder-
Davis-Gundy inequality yields for r ≥ 1:

E
(∣∣M(w)T+s

∣∣r |FT
) ≤ Kr E

(
Z(2w)r/2T+s |FT

)
.

Then, writing Z(w)=M(w)+ Z̃(w), we get for q ≤w ≤ p and r ≥ 1:

E
(
Z(w)rT+s |FT

) ≤ Kr E
(
Z̃(w)rT+s +Z(2w)r/2T+s |FT

)
. (A.7)
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4) We have 2n < p ≤ 2n+1 for some integer n ≥ 1. Applying (A.7) repeatedly,
we deduce that

E
(
Z(2)T+s

)p/2 |FT ) ≤ Kp E
(
Z̃(2)p/2T+s +Z(4)p/4T+s |FT

)

≤ Kp E
(
Z̃(2)p/2T+s + Z̃(4)p/4T+s +Z(8)p/8T+s |FT

)

≤ · · · (repeat the argument)

≤ Kp E
(

n∑

j=1

Z̃
(
2j
)p/2j
T+s +Z

(
2n+1)p/2n+1

T+s |FT
)
. (A.8)

Now, by the definition of Z̃(w) and Hölder’s inequality, we have

Z̃
(
2j
)
T+s ≤ Z̃(2)(p−2j )/(p−2)

T+s Z̃(p)
(2j−2)/(p−2)
T+s ,

for j = 1, . . . , n, and another application of Hölder’s inequality yields

E
(
Z̃
(
2j
)p/2j
T+s |FT

)

≤ E
(
Z̃(2)p/2T+s |FT

)2(p−2j )/2j (p−2)
E
(
Z̃(p)T+s |FT

)p(2j−2)/2j (p−2)

≤ E
(
Z̃(2)p/2T+s |FT

)+E
(
Z̃(p)T+s |FT

)
,

where the last inequality comes from xuyv ≤ x + y when x, y,u, v ≥ 0 and u +
v = 1. On the other hand since p/2n+1 ≤ 1 we have Z(2n+1)p/2

n+1 ≤ Z(p), hence
E(Z(2n)p/2

n |FT )≤ E(Z̃(p) |FT ). Plugging all these in (A.8) gives us (A.5), and
the proof is finished. �

Lemma 2.1.7 a) If
∫ t

0 λ({z : δ(r, z) �= 0}) dr <∞ for all t , the process Y = δ � p has
finitely many jumps on any finite interval.

b) Suppose that
∫ t

0 ds
∫ ‖δ(s, z)‖λ(dz) <∞ for all t . Then the process Y = δ � p

is of locally integrable variation, and for all finite stopping times T and s > 0 and
p ∈ (0,1] we have

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤ Kp s E

(
δ̂(p)T ,s |FT

)
, (A.9)

and also for p ≥ 1

E

(
sup

0≤u≤s
‖YT+u − YT ‖p |FT

)
≤Kp
(
s E
(
δ̂(p)T ,s |FT

)+ sp E( δ̂(1)p |FT
))
.

(A.10)

Proof We still can assume that δ is one-dimensional.
a) The assumption amounts to saying that the continuous increasing process

1{δ �=0} � q is finite-valued, hence locally integrable, thus 1{δ �=0} �p is also finite-valued
and the result follows.
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b) By hypothesis |δ| � q is finite-valued, and being continuous it is also locally
integrable. Then |δ| � p is also locally integrable, and thus Y is of locally integrable
variation.

We use the notation of the previous proof, and the left sides of (A.9) and (A.10)
are smaller than E(Z(1)pT+s | FT ). When p ∈ (0,1] we have Z(1)p ≤ Z(p), hence
(A.9) follows. When p > 1, the proof of (A.10) is exactly the same as in the previous
lemma for (A.3), except thatZ(2) and p/2 are substituted with Z(1) and p. We have
2n < p ≤ 2n+1 for some integer n≥ 0, and (A.8) is replaced by

E
((
Z(1)T+s

)p |FT
) ≤ Kp E

(
n∑

j=0

Z̃
(
2j
)p/2j
T+s +Z

(
2n+1)p/2n+1

T+s |FT
)
.

The rest of the proof goes in the same way. �

Next, we prove Lemmas 2.1.6 and 2.1.8 and Corollary 2.1.9.

Lemma 2.1.6 Let r ∈ [1,2]. There exists a constant K > 0 depending on r, d ,
such that for all q ∈ [0,1/r] and s ∈ [0,1], all finite stopping times T , and all
d-dimensional processes Y = δ � (p− q), we have

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)r
|FT
)

≤Ks1−qr
E
(
δ̂
(
r, s

q
2
)
T ,s
+ s q(r−1)

2 δ̂′(r)T ,s |FT
)
, (A.11)

where δ̂(r, a) and δ̂′(r) are associated with δ by (A.1).

Proof 1) Again we argue in the one-dimensional case. The stopping time T , the
numbers r, q and the time s ∈ (0,1] are fixed throughout, and we use the simplifying
notation

γ (a)= E
(
δ̂(r, a)T ,s |FT

)
, γ ′ = E

(
δ̂′(r) |FT

)
.

The set Ωs = {γ ′ <∞} is FT measurable, and outside this set there is nothing to
prove.

We put δ′(ω,u, z) = δ(ω,u, z)1Ωs (ω)1(T (ω),T (ω)+s)(u). The function δ′ is pre-
dictable and by definition ofΩs and r ≤ 2 it satisfies (|δ′|2 ∧ |δ′|) ∗ q

t
<∞ for all t .

We deduce that for any ε ∈ (0,1] the following processes are well defined:

N(ε)= 1{|δ′|>ε}�p, M(ε)= (δ′1{|δ′|≤ε}
)
�(p−q), B(ε)=−(δ′1{|δ′|>ε}

)
�q,

and they vanish at all times t ≤ T , and on the set Ωs we have

N(ε)T+s = 0, u ∈ [0, s] ⇒ YT+u − YT = M(ε)T+u +B(ε)T+u.
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Therefore, since (|x + y| ∧ 1)r ≤K(|x|r + |y|) because r > 1, we have on Ωs :

sup
u≤s

( |YT+u − YT |
sq

∧
1

)r

≤K
(

1{N(ε)T+s>0} + s−qr sup
u≤s
∣∣M(ε)T+u

∣∣r + s−q sup
u≤s
∣∣B(ε)T+u

∣∣
)
. (A.12)

2) In the second step we give a few simple estimates. First, N(ε) is non-
decreasing and integer-valued, with compensator 1{|δ′|>ε} � q, hence

P
(
N(ε)T+s > 0 |FT

)

≤ E
(
N(ε)T+s |FT

)= E
(
(1{|δ′|>ε}) � qT+s |FT

)≤ s ε−rγ ′, (A.13)

the last inequality coming from 1{|δ′|>ε} ≤ ε−r (|δ′|r 1{|δ′|≤1} + |δ′|1{|δ′|>1}). Second,
(A.2) yields

E

(
sup
u≤s
∣∣M(ε)T+u

∣∣r |FT
)
≤ Ks γ (ε). (A.14)

Third, |δ′| ≤ ε1−r (|δ′|r 1{|δ′|≤1} + |δ′|1{|δ′|>1}), because r ≥ 1, hence

E

(
sup
u≤s
∣∣B(ε)T+u

∣∣ |FT
)
≤ s ε1−r γ ′. (A.15)

3) We can now turn to the proof itself. By (A.12) and the estimates (A.13), (A.14)
and (A.15), and with ε = sq/2, we see that on the set Ωs the left side of (A.11) is
smaller than

Ks1−qr (γ
(
sq/2
)+ (sq(r−1)/2 + sqr/2γ ′)),

which completes the proof. �

Lemma 2.1.8 Let r ∈ (0,1]. There exists a constant K > 0 depending on r, d ,
such that for all q ∈ [0,1/r] and s ∈ [0,1], all finite stopping times T , and all
d-dimensional processes Y = δ � p, we have

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)r
|FT
)

≤Ks1−qr
E
(
δ̂
(
r, s

q
2
)
T ,s
+ s rq2 δ̂′′(r)T ,s |FT

)
, (A.16)

where δ̂(r, a) and δ̂′′(r) are associated with δ by (A.1).

Proof The proof is similar—and slightly simpler—than for the previous lemma, to
which we borrow the notation, and in particular γ (a), whereas we set

γ ′′ = E
(
δ̂′′(r) |FT

)
, Ωs =

{
γ ′′ <∞},

and again it suffices to prove the result on the set Ωs .
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We define δ′ andN(ε) as in the previous proof, and we setA(ε)= (δ′1{|δ′|≤ε})�p,
which is well defined on the set Ωs , and instead of (A.12) we have

N(ε)T+s = 0, u ∈ [0, s] ⇒ YT+u − YT = A(ε)T+u,

which yields on Ωs :

sup
u≤s

( |YT+u − YT |
sq

∧
1

)r
≤ 1{N(ε)T+s>0} + s−qr sup

u≤s
|A(ε)T+u|r . (A.17)

Observing that 1{|δ′|>ε} ≤ ε−r |δ′|r 1{|δ′|≤1} + 1{|δ′|>1}, we replace (A.13) by

P
(
N(ε)T+s > 0 |FT

) ≤ s ε−r γ ′′.

Moreover, (A.9) implies

E

(
sup
u≤s
∣∣A(ε)T+u

∣∣r |FT
)
≤ Ksγ (ε)s .

These estimates and (A.17) yield, upon taking ε = sq/2, that the left side of (A.16)
is smaller on Ωs than Ks1−qr (sqr/2δ̂′ + δ̂(sq/2)), hence (A.16) holds. �

Corollary 2.1.9 Assume that the d-dimensional predictable function δ satisfy
‖δ(ω, t, z)‖ ≤ Γ (z) for some measurable function Γ on E, and let p > 0, r ∈ (0,2]
and q ∈ [0,1/r).

a) If r ∈ (1,2] and
∫
(Γ (z)r ∧ Γ (z))λ(dz) <∞, the process Y = δ ∗ (p − q)

satisfies

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)p
|FT
)
≤
{
Ksp(1−qr)/r φ(s) if p ≤ r
Ks1−qr φ(s) if p ≥ r (A.18)

for all s ∈ (0,1] and all finite stopping times T , where K and φ depend on r,p, q ,
Γ and λ, and φ(s)→ 0 as s→ 0 when q > 0, and supφ <∞ when q = 0.

b) If r ∈ (0,1] and
∫
(Γ (z)r ∨ Γ (z))λ(dz) <∞, the process Y = δ ∗ (p − q)

satisfies

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)p
|FT
)
≤Ks1−qr φ(s) if p > 1, q <

p− 1

p− r .
(A.19)

for all s ∈ (0,1] and all finite stopping times T , with K and φ as in (a).
c) If r ∈ (0,1] and

∫
(Γ (z)r ∧ 1) λ(dz) <∞, the process Y = δ ∗ p satisfies

E

(
sup
u≤s

(‖YT+u − YT ‖
sq

∧
1

)p
|FT
)
≤
{
Ksp(1−qr)/r φ(s) if p ≤ r
Ks1−qr φ(s) if p ≥ r. (A.20)

for all s ∈ (0,1] and all finite stopping times T , with K and φ as in (a).
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Proof Despite the name “corollary”, this result does not follow stricto sensu from
the two previous lemmas, for the following reason: assuming ‖δ(ω, t, z)‖ ≤ Γ (z),
we have δ̂(q)t,s ≤

∫
Γ (z)q λ(dz), but with the notation

δ̃(q, a)=
∫

{z:Γ (z)≤a}
Γ (z)q λ(dz), δ̃′(q)= δ̃(q,1)+

∫
Γ (z)1{Γ (z)>1} λ(dz)

δ̃′′(q)= δ̃(q,1)+ λ({z : Γ (z) > 1
})
,

the inequalities δ̂(q, a)t,s ≤ δ̃(q, a) or δ̂′(q)t,s ≤ δ̃′(q) or δ̂′′(q)t,s ≤ δ̃′′(q) may fail.
However, we can replace N(ε), M(ε) and B(ε) in the proof of Lemma 2.1.6 by

N(ε)= 1{Γ>ε} ∗ p, M(ε)= (δ1{Γ≤ε}) ∗ (p− q), B(ε)= (δ1{Γ>ε}) ∗ q.

These processes are well defined if δ̃′(r) < ∞ for some r ∈ [1,2], and in this
case we have (A.12), because ‖δ(ω, t, z)‖ ≤ Γ (z). Moreover, the estimates (A.13),
(A.14) and (A.15) hold if we substitute γ ′ and γ (ε)with δ̃′(r) and δ̂(r, ε). Therefore,
we have (A.11) with δ̃(r, sq/2) and δ̃′(r) instead of δ̂(r, sq/2) and δ̂′(r). In exactly
the same way, (A.16) holds when r ∈ [0,1] with δ̃′′(r) instead of δ̂′′(r).

These new versions of (A.11) and (A.16) give (A.18) and (A.20) when p = r ,
upon taking φ(s) = δ̃(r, sq/2)+ sq(r−1)/2 in the first case, and φ(s) = δ̃(r, sq/2)+
sqr/2 in the second case. Now, (A.18) and (A.20) for p < r follow by Hölder’s
inequality, and for p > r from the fact that the left sides when p > r is smaller than
the left side for p = r .

It remains to prove (b), and this can be done separately for Y = δ ∗ p and for
Y = δ ∗ q. The case Y = δ ∗ p reduces to (A.20) applied when p > r , because here
r ≤ 1 < p. For Y = δ ∗ q one observes that ‖Yt+s − Yt‖ ≤ Ks: the result follows,

upon taking φ(s)= sp−pq−1+qr , which goes to 0 as s→ 0 (when p ≥ r) if and only
if p > 1 and q < p−1

p−r . �

Finally we prove Proposition 2.1.10. Recall that A is a measurable subset of
E. We denote by HA the σ -field generated by the restriction of the measure p to
R+ ×A, and by HW the σ -field generated by the process W , and we set

(
GAt
)= the smallest filtration containing (Ft ) and with HA ⊂ GA0

(A.21)(
GA,Wt

)= the smallest filtration containing (Ft ) and with HA∪HW⊂GA,W0

Proposition 2.1.10 In the above setting, we have:
a) The process W is a Brownian motion relative to the filtration (GAt ), and

(2.1.34) holds if σ is (Ft )-optional and T is a stopping time relative to the filtration
(GAt ) and the conditional expectations are taken relative to GAT .

b) The restriction p′ of p to the set R+ ×Ac is a Poisson random measure with

respect to the filtration (GA,Wt ), and its Lévy measure λ′ is the restriction of λ to Ac .
Moreover if δ is (Ft )-predictable and satisfies δ(ω, t, z) = 0 for all (ω, t, z) with
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z ∈ A, Lemmas 2.1.5, 2.1.6, 2.1.7 and 2.1.8 hold if T is a stopping time relative to
the filtration (GA,Wt ) and the conditional expectations are taken relative to GA,WT .

Proof a) Since W and p are independent, the process W is still a Brownian motion
with respect to the filtration (GAt ). Since σt is (Ft )-optional, it is a fortiori (GAt )-
optional, and the stochastic integral

∫ t
0 σs dWs is the same, relative to both filtrations.

The result follows.
b) The first claim follows from the independence of p′ and the σ -field HA ∪HW ,

and both the (Ft ) and (GA,Wt ) compensators of p′ are equal to the restriction q′
of q to R+ × Ac. Now, if δ is (Ft )-predictable and satisfies δ(ω, t, z) = 0 when
z ∈A, we have δ ∗ (p− q)= δ ∗ (p′ − q′) as soon as any one of these two stochastic
integrals exists, because they have the same jumps and are purely discontinuous
local martingales vanishing at 0. This is all relative to (Ft ), however by virtue of
Exercice 9.4, p. 294, of [52], the stochastic integral δ ∗ (p′ − q′) is the same, relative

to (Ft ) and to (GA,Wt ). And, obviously, δ∗μ= δ∗μ′ as soon as any one of these two
(ordinary) integrals exists, and in this case δ ∗ μ′ does not depend on the filtration.
Applying Lemmas 2.1.5, 2.1.6, 2.1.7 or 2.1.8 for the filtration (GA,Wt ) gives the last
claim. �

A.2 Convergence of Processes

Here we prove the convergence results of Sect. 2.2.2. First we study the processes
having the decomposition (2.2.20), that is, we prove Propositions 2.2.1, 2.2.2 and
2.2.4. Recall that we have d-dimensional processes Xn and X with, for each m≥ 1,
the decompositions

Xn = X(m)n +X′(m)n. (A.22)

Proposition 2.2.1 Let Xn and X be defined on the same probability space. For

Xn
P=⇒X it is enough that there are decompositions (A.22) and also X =X(m)+

X′(m), with the following properties:

∀m≥ 1, X(m)n
P=⇒ X(m), as n→∞

X(m)
u.c.p.=⇒ X, as m→∞,

∀η, t > 0, lim
m→∞ lim sup

n→∞
P

(
sup
s≤t
∥∥X′(m)ns

∥∥> η
)
= 0. (A.23)

Proof We will denote δU and δS two distances on the space D
d which are com-

patible with the local uniform topology and the Skorokhod topology, respectively.
Among all possible choices, we can choose them in such a way that δS(x, y) ≤
δS(x, z)+ δU (z, y) for all x, y, z ∈D

d (this is in line with the property (2.2.9)), and
also such that δU (x, y)≤ 1/n when x(t)= y(t) for all t ≤ n. For example δU = δlu
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and δS = δ′, as defined in (VI.1.2) and Remark VI.1.27 of [57], provides such a
choice.

With this notation, and using (A.22), we can rewrite the three hypotheses above
as

∀m≥ 1, δS
(
X(m)n,X(m)

) P−→ 0, as n→∞
δu
(
X(m),X

) P−→ 0, as m→∞, (A.24)

∀η > 0, lim
m→∞ lim sup

n→∞
P
(
δU
(
Xn,X(m)n

)
> η
) = 0. (A.25)

The properties of δU and δS give

δS
(
Xn,X

) ≤ δS
(
X(m)n,X(m)

)+ δU
(
X(m),X

)+ δU
(
Xn,X(m)n

)
.

Therefore for all η > 0, the number P(δS(Xn,X) > 3η) is not bigger than

P
(
δS
(
X(m)n,X(m)

)
> η
)+ P
(
δU
(
X(m),X

)
> η
)+ P
(
δU
(
Xn,X(m)n

)
> η
)
.

By choosing first m large, and then N large, this quantity can be made arbitrarily
small, uniformly in n≥N . Hence P(δS(X

n,X) > 3η)→ 0 as n→∞. �

Proposition 2.2.2 For Xn
L=⇒X it is enough that there are decompositions (A.22)

satisfying (A.23) and

∀m≥ 1, X(m)n
L=⇒ X(m), as n→∞

for some limiting processes X(m), which in turn satisfy

X(m)
L=⇒ X, as m→∞.

Proof The notation is as in the previous proof. As mentioned after (2.2.2), it suffices
to check the convergence of the integrals of any bounded Lipschitz function. Hence
here we only need to prove that E(f (Xn))→ E(f (X) for any bounded function f
on D

d which is Lipschitz for the distance δS . The assumptions imply (A.24), (A.25),
and

∀m≥ 1, E
(
f
(
X(m)n

)) → E
(
f
(
X(m)
))

as n→∞,
E
(
f
(
X(m)
)) → E

(
f (X)
)

as m→∞.

}
(A.26)

The Lipschitz property of f , plus δS ≤ δU , yield
∣∣f
(
Xn
)− f (X(m)n)∣∣ ≤ δU

(
Xn,X(m)n

)∧K
where K is twice the bound of f . Therefore |E(f (Xn))− E(f (X))| is not bigger
than

∣∣E
(
f
(
X(m)n

))−E
(
f
(
X(m)
))∣∣+E

(
δU
(
Xn,X(m)n

)∧K)
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+ ∣∣E(f (X(m)))−E
(
f (X)
)∣∣.

Exactly as in the previous proof, this quantity may be made as small as one wishes
for all n large enough, by (A.25) and (A.26), and the result follows. �

Proposition 2.2.4 For Xn
L-s=⇒X it is enough that there are decompositions (A.22)

satisfying (A.23), and

∀m≥ 1, X(m)n
L-s=⇒ X(m), as n→∞

for some limiting processes X(m), which in turn satisfy

X(m)
L-s=⇒ X, as m→∞.

Proof Recall that here X and X(m) are defined on their own extensions (Ω̃, F̃ , P̃)
and (Ω̃m,Fm, P̃m) of the space (Ω,F ,P). As to the processes Xn and X(m)n, they
are defined on an extension (Ωn,Fn,Pn) of the same space (Ω,F ,P). We need to
prove that En(Yf (Xn))→ Ẽ(Yf (X)) for any function f as in the previous proof,
and any F measurable variable Y which is bounded by 1. The assumptions imply
(A.24), (A.25), and

∀m≥ 1, En

(
Yf
(
X(m)n

)) → Ẽm

(
Yf
(
X(m)
))

as n→∞
Ẽm

(
Yf
(
X(m)
)) → Ẽ

(
Yf (X)

)
as m→∞.

Then the proof goes exactly as in the previous proposition. �

Now we turn to the “martingale” results.

Proposition 2.2.5 Let (Mn) be a sequence of local martingales on the filtered

space (Ω,F , (Ft )t≥0,P), with Mn
0 = 0. We have Mn u.c.p.=⇒ 0 as soon as one of the

following two conditions holds:

(i) each Mn admits an angle bracket and 〈Mn,Mn〉t P−→ 0 for all t > 0,

(ii) we have |ΔMn
s | ≤K for a constant K , and [Mn,Mn]t P−→ 0 for all t > 0.

Proof We first prove the result under (i). SinceMn
0 = 0, our assumption implies the

existence of a localizing sequence (Tn) of stopping times such that E((Mn
T∧Tn)

2)=
E(〈Mn,Mn〉T∧Tn) for any finite stopping time T , and by Fatou’s lemma and the
monotone convergence theorem we have E((Mn

T )
2) ≤ E(〈Mn,Mn〉T ). That is,

(Mn)2 is Lenglart-dominated by 〈Mn,Mn〉, and the first part of (2.1.49) yields

P

(
sup
s≤t
(
Mn
s

)2 ≥ ε
)
≤ η

ε
+ P
(〈
Mn,Mn

〉
t
≥ η)

for all t, ε, η > 0. Choosing first η small and then n large, we see that for all ε > 0
the left side above goes to 0 as n→∞, and the result follows.
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Next, we suppose that we have (ii), which implies that 〈Mn,Mn〉 exists, so by

what precedes it is enough to prove that 〈Mn,Mn〉t P−→ 0. The process 〈Mn,Mn〉
is Lenglart-dominated by the process [Mn,Mn], which is adapted increasing with
jumps smaller than K2. Hence the second part of (2.1.49) yields

P
(〈
Mn,Mn

〉
t
≥ ε) ≤ η

ε
+ 1

ε
E
(
K2 ∧ [Mn,Mn

]
t

)+ P
([
Mn,Mn

]
t
≥ η)

for all t, ε, η > 0. The second term on the right side above goes to 0 as n→∞ by the
dominated convergence theorem and (ii), as well as the third term. Then obviously
P(〈Mn,Mn〉t ≥ ε)→ 0, and we have the result. �

Remark A.1 This proposition is stated when all local martingales are on the same
filtered space (Ω,F , (Ft )t≥0,P), but this is not necessary. Each process Mn can
be a local martingale on a filtered space (Ωn,Fn, (Fnt )t≥0,Pn) depending on n: the
results are not modified (we apply Lenglart’s inequality on each filtered space). This
slight extension will be used later.

In the next result, μ is the jump measure of a càdlàg d-dimensional process,
hence E =R

d , or it is a Poisson random measure on R+ ×E for E a Polish space,
and ν is its compensator.

Proposition 2.2.6 Let (δn) be a sequence of predictable functions onΩ ×R+ ×E,
each δn satisfying (2.1.16). Then

(
(δn)

2 ∧ |δn|
)
� νt

P−→ 0 ∀t > 0 ⇒ δn � (μ− ν) u.c.p.=⇒ 0. (A.27)

Proof Mn = δn ∗ (μ− ν) can be written as Mn =M ′n +M ′′n, where

M ′n = (δn 1{|δn|≤1}) � (μ− ν), M ′′n = (δn 1{|δ|>1}) � (μ− ν).
First, M ′n is a local martingale with bounded jumps, so its angle bracket exists and
it turns out to be (see e.g. [57]):

〈
M ′n,M ′n〉

t
= (δ2

n 1{|δn|≤1}
)
� νt −

∑

s≤t

(∫
δn(s, x)1{|δn(s,x)|≤1}ν

({s}, dx)
)2

,

which is smaller than (δ2
n 1{|δn|≤1})�νt , so our assumption yields 〈M ′n,M ′n〉t P−→ 0,

hence M ′n u.c.p.=⇒ 0 follows from the previous proposition.
Second, the process M ′′n is of finite variation, and by the properties of the

predictable compensators it is Lenglart-dominated by the increasing predictable
process Bn = 2(|x|1{|x|>1}) � νM

n
. Then the first part of (2.1.49) yields for all

t, η, ε > 0:

P

(
sup
s≤t
∣∣M ′′n

s

∣∣≥ ε
)
≤ η

ε
+ P
(
Bnt ≥ η

)
.
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The last term above goes to 0 as n→∞ by the assumption in (A.27), hence

M ′′n u.c.p.=⇒ 0. This finishes the proof. �

Proposition 2.2.7 Let X be a semimartingale and (Hn) a sequence of predictable
processes satisfying |Hn| ≤ H ′ for some predictable and locally bounded process
H ′. If outside a null set we have Hnt →Ht for all t , where H is another predictable
process, then we have

∫ t

0
Hns dXs

u.c.p.=⇒
∫ t

0
Hs dXs.

Proof Using the decomposition (2.1.10), we can writeX =X0+A+M , whereA is
a process of locally finite variation andM is a local martingale with bounded jumps.

Obviously,
∫ t

0 H
n
s dAs

u.c.p.=⇒ ∫ t0 Hs dAs by the “ordinary” Lebesgue dominated con-
vergence theorem, so it remains to prove that

Nn
u.c.p.=⇒ 0, where Nnt =

∫ t

0
Hns dMs −

∫ t

0
Hs dMs =

∫ t

0

(
Hns −Hs

)
dMs.

Since M has bounded jumps, 〈M,M〉 exists, as well as the angle bracket of Nn,
which indeed is

〈
Nn,Nn

〉
t
=
∫ t

0

(
Hns −Hs

)2
d〈M,M〉s .

This goes to 0 a.s. by the ordinary Lebesgue theorem again, and we conclude by
Proposition 2.2.5. �

Proposition 2.2.8 Let X be a semimartingale and H be a càglàd adapted process.
For each n let (T (n, i) : i ≥ 0) be a sequence of stopping times, which strictly in-
creases to +∞, and with T (n,0)= 0, and such that sup(T (n, i+ 1)∧ t −T (n, i)∧
t : i ≥ 0) goes to 0 in probability for all t as n→∞. Then we have

∑

i≥1, T (n,i)≤t
HT (n,i−1)(XT (n,i) −XT (n,i−1))

P=⇒
∫ t

0
Hs dXs (A.28)

(convergence for the Skorokhod topology). If furtherX is continuous the same holds
also when H is adapted càdlàg.

Proof (a) We first suppose H càglàg adapted, so H ′t = sups≤t ‖Hs‖ is a lo-
cally bounded predictable process. Moreover the processes Hn defined by Hnt =
HT (n,i−1) if T (n, i − 1) < t ≤ T (n, i) and Hn0 =H0 are predictable, with ‖Hn‖ ≤
H ′, and converge pointwise to H as n→∞. Then Proposition 2.2.7 yields that

Ynt :=
∫ t

0 H
n
s dXs

u.c.p.=⇒ Yt :=
∫ t

0 Hs dXs .
Below we use the notation (2.2.12) with t (n, i) = T (n, i) and the process Yn,

thus giving rise to the “discretized process” Yn,(n)t = YnT (n,i) if T (n, i) ≤ t <
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T (n, i + 1). The left side of (A.28) is Yn,(n)t . Then (2.2.13) and the subsequences
principle (2.2.17) give us the convergence (A.28).

(b) Now suppose that X is continuous and H is adapted càdlàg. The process
H ′ is no longer predictable and locally bounded, but its left limit process H ′− is.
Moreover we have ‖Hn‖ ≤H ′−, and Hn→H− pointwise, so what precedes yields
that the left side of (A.28) converges in the u.c.p. sense to

∫ t
0 Hs−dXs . We conclude

by observing that, since X is continuous, the integral
∫ t

0 Hs dXs is actually well
defined and coincides with

∫ t
0 Hs−dXs . �

A.3 Triangular Arrays

Here we prove Lemmas 2.2.10 and 2.2.11. We have a one-dimensional triangular
array (ζ ni ) and the stopping rules Nn(t), and a discrete-time filtration (Gni )i∈N, with
the following basic assumption:

• n≥ 1, i ≥ 1 ⇒ ζ ni is Gni measurable

• n≥ 1, t ≥ 0 ⇒ Nn(t) is a (Gni )-stopping time.

We also recall the following property, stated in (2.2.31), and which plays an impor-
tant role: assuming that the ζ ni ’s are either all integrable or all nonnegative, then,

with Fnt = Gn
Nn(t)

,

the
(
Fnt
)
-compensator of Snt =

Nn(t)∑

i=1

ζ ni is S′nt =
Nn(t)∑

i=1

E
(
ζ ni | Gni−1

)
. (A.29)

Lemma 2.2.10 The array (ζ ni ) is AN as soon as the array (E(|ζ ni | | Gni−1)) is AN.

Proof Without restriction we can assume ζ ni ≥ 0. We use the notation (A.29), which
implies that Sn is Lenglart-dominated by the predictable increasing process S′n. The
first part of (2.1.49) yields

P
(
Snt ≥ ε

) ≤ η

ε
+ P
(
S′nt ≥ η

)

for all t, ε, η > 0. By (a) we have S′nt
P−→ 0, so we deduce from the above that

Snt
P−→ 0, which is the result. �

Lemma 2.2.11 Let (ζ ni ) be a triangular array such that each ζ ni is square-
integrable. Then the array (ζ ni − E(ζ ni | Gni−1)) is AN under each of the following
three conditions:

(a) The array (E(|ζ ni |2 | Gni−1)) is AN .

(b) The sequence of variables (
∑Nn(t)
i=1 E(|ζ ni |2 1{|ζ ni |>1} | Gni−1))n≥1 is bounded

in probability for each t > 0, and the array (|ζ ni |2) is AN.
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(c) We have |ζ ni | ≤K for a constant K , and the array (|ζ ni |2) is AN.
In particular if (ζ ni ) is a “martingale difference” array, that is E(ζ ni | Gni−1)= 0 for
all i, n≥ 1, then either one of the above conditions imply that it is AN.

Proof We set ζ ′ni = ζ ni − E(ζ ni | Gni−1). The process Mn
t =
∑Nn(t)
i=1 ζ ′ni is a (Fnt )-

locally square-integrable martingale, with brackets given by

[
Mn,Mn

]
t
=

Nn(t)∑

i=1

∣∣ζ ′ni
∣∣2,

〈
Mn,Mn

〉
t
=

Nn(t)∑

i=1

E
(∣∣ζ ′ni
∣∣2 | Gni−1

) ≤ Ant =
Nn(t)∑

i=1

E
(∣∣ζ ni
∣∣2 | Gni−1

)

(the form of the angle bracket comes from (A.29)). Then we have 〈Mn,Mn〉t P−→ 0
under (a), and also under (c) by the same proof as for Proposition 2.2.5 under (ii),
so this proposition and Remark A.1 yield the result.

It remains to prove the result under (b), which we assume below. For any a ≥ 1,
set

ζ ni (a−)= ζ ni 1{|ζ ni |≤a}, ζ ′ni (a−)= ζ ni (a−)−E
(
ζ ni (a−) | Gni−1

)

ζ ni (a+)= ζ ni 1{|ζ ni |>a}, ζ ni (a+)= ζ ni (a+)−E
(
ζ ni (a+) | Gni−1

)

Ant (a)=
Nn(t)∑

i=1

E
(∣∣ζ ni (a+)

∣∣ | Gni−1

)
, Bnt =

Nn(t)∑

i=1

E
(∣∣ζ ni
∣∣2 1{|ζ ni |>1} | Gni−1

)
.

For each fixed a the array (ζ ni (a−)) satisfies (c) (with K = a), hence what precedes
yields that the array (ζ ′ni (a−)) is AN. Since ζ ′ni = ζ ′ni (a−) + ζ ′ni (a+), it is thus
enough to prove

lim
a→∞ sup

n
P

(
sup
s≤t

∣∣∣∣∣

Nn(s)∑

i=1

ζ ′ni (a+)
∣∣∣∣∣> ε
)
= 0 (A.30)

for all t, ε > 0. Observe that if s ≤ t ,
∣∣∣∣∣

Nn(s)∑

i=1

ζ ′ni (a+)
∣∣∣∣∣ ≤

Nn(t)∑

i=1

(∣∣ζ ni (a+)
∣∣+E
(∣∣ζ ni (a+)

∣∣ | Gni−1

))
,

which is Lenglart-dominated by the predictable increasing process 2Ant (a). Hence
by the first part of (2.1.49),

P

(
sup
s≤t

∣∣∣∣∣

Nn(s)∑

i=1

ζ ′ni (a+)
∣∣∣∣∣> ε
)
≤ ε

η
+ P
(
2Ant (a)≥ η

)
. (A.31)
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Now, we have Ant (a) ≤ Bnt /a and by hypothesis the sequence (Bnt )n≥1 is bounded
in probability, from which we deduce that P(2Ant (a)≥ η)≤ P(Bnt ≥ aη/2), which
for each η > 0 goes to 0 as a→∞, uniformly in n. Then (A.30) readily follows
from (A.31). �

A.4 Processes of Finite Variation

This subsection is devoted to proving Proposition 3.1.2 of Chap. 3, to which we
refer for the notation.

Proposition 3.1.2 Suppose that the one-dimensional processX is of finite variation,
and let f (x)= x. Then for any random discretization scheme we have

V n(f,X)
P=⇒ Var(X), V n(f,X)t −Var(X)Tn(t)

u.c.p.=⇒ 0

V nint (f,X)
P=⇒ Var(X), V nint (f,X)

u.c.p.=⇒ Var(X).

}
(A.32)

Proof 1) This result is a pathwise result, which holds when X and the T (n, i)’s are
non-random, and then the extension as convergence in probability to the case when
X is random and the subdivision scheme satisfies (3.2.1) becomes straightforward.
So henceforth we suppose that X and T (n, i) are non-random. There are two in-
creasing right-continuous functions A and A′, null at 0, such that X−X0 =A−A′
and Y =Var(X)=A+A′.

Since V n(f,X)t = V nint (f,X)Tn(t) is the discretized version of V nint (f,X), the
last claim in (A.32) implies the first three ones (use (2.2.14)). So below we fix t > 0,
and we are left to prove that, if for short we write V n = V nint (f,X) in this proof,

sup
s≤t
∣∣V ns − Ys

∣∣ → 0. (A.33)

When Yt = 0 the left side above vanishes and there is nothing to prove. Hence below
we assume Yt > 0.

2) Since t is fixed we clearly can assume t = T (n,Nn(t)) for each n. We consider
the probability measurem on (0, t]whose repartition function is s �→ Ys/Yt , and Em

is the expectation with respect to m. The set (0, t] is endowed with the Borel σ -field
G, and also for each n with the σ -field Gn generated by the intervals I (n, i) for
i = 1, . . . ,Nn(t).

Let Z be a Borel bounded function on (0, t]. We set Us =
∫ s

0 Z(r) dYr and, for
each n≥ 1, we define the function Zn on (0, t] by

s ∈ I (n, i), i ≤Nn(t) ⇒ Zn(s) = Δni U

Δni Y
(A.34)

(with the convention 0/0= 0). If Δni Y > 0 we have

Em(Zn1I (n,i))= Δ
n
i U

Δni Y
m
(
I (n, i)

) = 1

Yt
Δni U =

1

Yt

∫

I (n,i)

ZrdYr = Em(Z1I (n,i)),
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whereas Em(Zn1I (n,i)) = Em(Z1I (n,i)) = 0 if Δni Y = 0. Hence by the definition
of Gn,

Zn = Em(Z | Gn). (A.35)

3) In this step we prove that, for any Z as above, we have

Zn
L

1(m)−→ Z. (A.36)

We have Δni U = Z(T (n, i − 1))Δni Y+ O(w(Z, εn)), where

w(Z, θ)= sup
(∣∣Z(s + r)−Z(s)∣∣ : 0≤ s ≤ s + r ≤ t, r ≤ θ)

and εn = sup(Δ(n, i) : 1 ≤ i ≤ Nn(t)). If Z is continuous we have w(Z,εn)→ 0,
hence (A.34) implies that Zn(s)→Z(s) for all s, and (A.36) follows.

Suppose now that Z is Borel, bounded. One can find a sequence (Zp : p ≥ 1)
of continuous functions converging to Z in L

1(m). For each p, the sequence Zpn
associated with Zp by (A.34) converges to Zp in L

1(m), from what precedes. On
the other hand, (A.35) yields

En

(|Zn −Z|
) ≤ Em

(∣∣Zpn −Zp
∣∣)+ 2Em

(∣∣Zp −Z∣∣)

because the conditional expectation is a contraction on L
1(m). Therefore (A.36)

follows.

4) We turn back to the situation at hand. There is a Borel function Z taking
only the values ±1, such that As =

∫ s
0 Z(r)

+dYr and A′s =
∫ s

0 Z(r)
−dYr , and we

associate the function Zn by (A.34), so that αn = Em(||Zn| − 1|)→ 0 by (A.36).
Observing that V nTn(s) = Em(|Zn|1(0,Tn(s)]) and YTn(s) =m((0, Tn(s)]), we see that

sup
s≤t
∣∣V nTn(s) − YTn(s)

∣∣ ≤ αn → 0. (A.37)

Let now η > 0 and S1, . . . , Sq the q successive times in (0, t] at which
X has a jump of size bigger than η (we may have q = 0), and X′s = Xs −∑
r=1 qΔXSr 1{Sr≤s} and Y ′ = Var(X′), and finally w′(θ) = sup(|X′s+r − X′s | +

Y ′s+r − Y ′s : 0 ≤ s ≤ s + r ≤ t, r ≤ θ). Recalling the mesh εn of the subdivision at
stage n over [0, t], as defined in Step 3 above, and since |ΔX′s | + ΔY ′s ≤ 2η, we
have lim supn w

′(εn)≤ 3η. In view of the definitions of V n = V nint (f,X) and of Y ,
we have for s ∈ (0, t], and with S0 = 0:

inf
1≤r≤q(Sr − Sr−1) > εn ⇒ ∣∣∣∣V ns − V nTn(s)

∣∣− (Ys − YTn(s))
∣∣ ≤ w′(εn)

(the condition on the left above implies that each interval I (n, i) included into (0, t]
contains at most one time Sr ). Therefore we deduce from (A.37) that

lim sup
n

sup
s≤t
∣∣V ns − Ys

∣∣ ≤ 3η.

Since η > 0 is arbitrarily small, we have (A.33). �
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A.5 Some Results on Lévy Processes

In this last part, we prove some (classical) results about Lévy processes. We recall
that Σ(p,X)t =∑s≤t ‖ΔXs‖p .

Lemma A.2 Let X be a d-dimensional Lévy process, with Lévy measure F , and
p ∈ [0,2). Then

a) If
∫
(‖x‖p ∧ 1)F (dx) <∞ we have Σ(p,X)t <∞ a.s. for all t ≥ 0.

b) If
∫
(‖x‖p ∧ 1)F (dx)=∞ we have Σ(p,X)t =∞ a.s. for all t > 0.

Proof (a) follows from general results about semimartingales, proved in Chap. 2.
So we suppose now that

∫
(‖x‖p ∧ 1)F (dx) =∞. Recalling that the jump mea-

sure μ of X is a Poisson random measure with (deterministic) intensity measure
ν(ds, dx)= ds ⊗ F(dx), for any nonnegative function f on R+ ×R

d we have

E
(
e−
∫
f dμ
) = exp−

∫ (
1− e−λf )dν

(by the form of the “Laplace functional” of a Poisson random measure). Applying
this to the function f (s, x) = λ(‖x‖p ∧ 1)1(0,t](s) and observing that

∫
f dμ =∑

s≤t (‖ΔXs‖p ∧ 1), we obtain

E
(
e−
∑
s≤t (‖ΔXs‖p∧1)) = exp

(
−t
∫ (

1− e−‖x‖p∧1)F(dx)
)
. (A.38)

Our assumption implies that
∫
(1− e−(‖x‖p∧1))F (dx)=∞. Therefore the left side

of (A.38) vanishes, hence the result. �



Assumptions on the Process X

We list below the various assumptions which are made on the process X, at one
time or another. They are listed in alphabetical order, except that a “strengthened”
assumption is stated right after its non-strengthened version. They all suppose that
X is an Itô semimartingale with Grigelionis form

Xt =X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + (δ1{‖δ‖≤1}) � (p− q)t + (δ1{‖δ‖>1}) � pt .

Some involve a number r , always in [0,2]. We also set ct = σtσ ∗t .

Assumption (H) The same as (H-2) below.

Assumption (SH) The same as (SH-2) below.

Assumption (H-r) (for r ∈ [0,2]) The process b is locally bounded, the process σ
is càdlàg. and there is a localizing sequence (τn) of stopping times and, for each n,
a deterministic nonnegative function Γn on E satisfying

∫
Γn(z)

rλ(dz) <∞ (with
the convention 00 = 0) and such that ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with
t ≤ τn(ω).

Assumption (SH-r) (for r ∈ [0,2]) We have (H-r), and there are a constant A and
a nonnegative function Γ on E, such that

∥∥bt (ω)
∥∥≤A, ∥∥σt (ω)

∥∥≤A, ∥∥Xt(ω)
∥∥≤A

∥∥δ(ω, t, z)
∥∥≤ Γ (z), Γ (z)≤A, ∫ Γ (z)rλ(dz)≤A.

Assumption (K) We have (H) and

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs +Mt +

∑

s≤t
Δσs 1{‖Δσs‖>1}
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584 Assumptions on the Process X

where M is a local martingale with ‖ΔMt‖ ≤ 1, orthogonal to W , and 〈M,M〉t =∫ t
0 as ds and the compensator of

∑
s≤t 1{‖Δσs‖>1} is

∫ t
0 ãs ds, with the following

properties: the processes b̃, σ̃ , ã and a are progressively measurable, the processes
b̃, a and ã are locally bounded, and the processes σ̃ and b are càdlàg or càglàd.

Assumption (SK) We have (K), (SH-2), and there is a constant A such that
∥∥b̃t (ω)

∥∥+ ∥∥σ̃t (ω)
∥∥+ ãt (ω)+

∥∥at (ω)
∥∥ ≤ A.

Assumption (K-r) (for r ∈ [0,1]) We have (K) except for the càdlàg or càglàd
property of b, and ‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω), where
(τn) is a localizing sequence of stopping times and the Borel functions Γn on E sat-
isfy
∫
Γn(z)

rλ(dz) <∞. Moreover the process b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz)

is càdlàg or càglàd.

Assumption (SK-r) (for r ∈ [0,1]) We have (K-r), (SH-r) and there is a constant
A such that

∥∥b̃t (ω)
∥∥+ ∥∥σ̃t (ω)

∥∥+ ãt (ω)+
∥∥at (ω)

∥∥ ≤ A.

Assumption (K’) We have (K) and both processes ct and ct− take their values in
the set M++

d×d of all symmetric positive definite d × d matrices.

Assumption (SK’) We have (SK) and (K’) and the process c−1
t is bounded.

Assumption (K’-r) (for r ∈ [0,1]) We have (K-r) and both processes ct and ct−
take their values in the set M++

d×d of all symmetric positive definite d × d matrices.

Assumption (SK’-r) (for r ∈ [0,1]) We have (SK-r) and (K’) and the process c−1
t

is bounded.

Assumption (K-r) (for r ∈ [0,1]) The process X satisfies (K-r), and the process σ
satisfies (H).

Assumption (Q) Either X is continuous and
∫ t

0 (‖bs‖2 + ‖cs‖2) ds <∞ for all
t > 0, or X has jumps and then it satisfies (H).

Assumption (SQ) Either X is continuous and
∫ t

0 (‖bs‖2 + ‖cs‖2) ds ≤A for some
constant A, or X has jumps and then it satisfies (SH).
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Index of Functionals

Increments and discretized processes

Δni X =XT (n,i) −XT (n,i−1), I (n, i)= (T (n, i − 1), T (n, i)
]

Nn(t)=
∑

i≥1

1{T (n,i)≤t}

X
(n)
t =
∑

i≥0

XT (n,i) 1{T (n,i)≤t<T (n,i+1)}

Non-normalized functionals
f a function on R

d :

V n(f,X)t =
[t/Δn]∑

i=1

f
(
Δni X
)

p. 65

V nint (f,X)t =
∑

i≥1

f
(
Xt∧(iΔn) −Xt∧(i−1)Δn

)
p. 65

V n(f, vn+,X)t =
[t/Δn]∑

i=1

f
(
Δni X
)

1{‖Δni X‖>vn} p. 248

V n(f, vn−,X)t =
[t/Δn]∑

i=1

f
(
Δni X
)

1{‖Δni X‖≤vn} p. 248

F a function on (Rd)k :

V n(F,X)t =
[t/Δn]−k+1∑

i=1

F
(
Δni X,Δ

n
i+1X, . . . ,Δ

n
i+k−1X

)
p. 227

Vn(F,X)t =
[Nn(t)/k]∑

i=1

F
(
Δnik−k+1X, . . . ,Δ

n
ikX
)

p. 227
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Φ a function on the Skorokhod space D
d
1 :

V n(Φ,kn,X)t =
[t/Δn]−kn+1∑

i=1

Φ
(
X(n, i)(n)

)
p. 229

F a function on Ω ×R+ ×R
d :

V n,l(F,X)t =
Nn(t)∑

i=1

F
(
ω,T (n, i − 1),Δni X

)
p. 219

V n,r (F,X)t =
Nn(t)∑

i=1

F
(
ω,T (n, i),Δni X

)
p. 219

V n(F,X)t =
[t/Δn]∑

i=1

F
(
ω, (i − 1)Δn,Δ

n
i X
)

p. 273

F a function on R
d ×R

d :

V n
(
F(X),X

)
t
=
[t/Δn]∑

i=1

F
(
X(i−1)Δn,Δ

n
i X
)

p. 279

Normalized functionals (for regular schemes)
f a function on R

d :

V ′n(f,X)t =Δn
[t/Δn]∑

i=1

f

(
Δni X√
Δn

)
p. 80

V ′n(f, vn−,X)t =Δn
[t/Δn]∑

i=1

f

(
Δni X√
Δn

)
1{‖Δni X‖≤vn} p. 251

F a function on (Rd)k :

V ′n(F,X)t =Δn
[t/Δn]−k+1∑

i=1

F

(
Δni X√
Δn
,
Δni+1X√
Δn

, . . . ,
Δni+k−1X√

Δn

)
p. 227

V ′n(F,X)t =Δn
[t/kΔn]∑

i=1

F
(
Δnik−k+1X/

√
Δn, . . . ,Δ

n
ikX/
√
Δn
)

p. 227

V ′n(F, vn−,X)t =Δn
[t/Δn]−k+1∑

i=1

F

(
Δni X√
Δn
, . . . ,

Δni+k−1X√
Δn

)

×1∩k−1
l=0 {‖Δni+lX‖≤vn} p. 251
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Φ a function on the Skorokhod space D
d
1 :

V ′n(Φ, kn,X)t =Δn
[t/Δn]−kn+1∑

i=1

Φ

(
1√
un
X(n, i)(n)

)
p. 230

F a function on Ω ×R+ ×R
d :

V ′n(F,X)t =Δn
[t/Δn]∑

i=1

F

(
ω,τ(n, i),

Δni X√
Δn

)
p. 216

V ′n(F,X)t =Δn
[t/Δn]∑

i=1

F

(
ω, (i − 1)Δn,

Δni X√
Δn

)
p. 216

F a function on R
d ×R

d :

V ′n(F (X),X)t =Δn
[t/Δn]∑

i=1

F

(
X(i−1)Δn,

Δni X√
Δn

)
p. 283

Integrated error processes (for regular schemes, f on R
d )

Ṽ n(f,X)t =
∫ Δn[t/Δn]

0

(
f
(
X(n)s
)− f (Xs)

)
ds p. 187

Ṽ n(f,p,X)t =
∫ Δn[t/Δn]

0

∣∣f
(
X(n)s
)− f (Xs)

∣∣p ds p. 187

Local estimators for the volatility

ĉ ni (kn)
jl = 1

knΔn

kn−1∑

m=0

Δni+mX
j Δni+mX

l p. 255

ĉ ni (kn, vn)
jl = 1

knΔn

kn−1∑

m=0

Δni+mX
j Δni+mX

l 1{‖Δni+mX‖≤vn} p. 255

ĉ n(kn, t−)= ĉ ni−kn(kn)
ĉ n(kn, t)= ĉ ni+1(kn)

ĉ n(kn, vn, t−)= ĉ ni−kn(kn, vn)
ĉ n(kn, vn, t)= ĉ ni+1(kn, vn)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

if t ∈ I (n, i) p. 256

V n(G; kn, vn,X)t =
[t/Δn]−kn∑

i=kn+1

1{‖Δni X‖>vn}

×G(Δni X, ĉ ni−kn(kn, vn), ĉ ni+1(kn, vn)
)
1{‖Δni X‖>vn} p. 265
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Symbols
Ani , 155, 323
A(p)t the integrated pth power of the

volatility, 177, 244, 329
B (or BX) the first characteristic of the

semimartingale X, 31
bt (or b) the drift of the Itô semimartingale X,

35, 37
b′t (or b′) the “true” drift of X under (K-1), 146
b̃t (or b̃) the drift of the volatility, 116
C (or CX) the second characteristic of the

semimartingale X, 31
ct = σt σ ∗t (or c= σσ ∗) the diffusion

coefficient of the Itô
semimartingale X, 35

D(X) the set of jump times of the càdlàg
process X, 26

Ft the Lévy measure of the Itô
semimartingale X, 35

h±(x, t), 342, 489
H±(x), 342, 489, 554
h′±(x, t), 489
H ′±(x), 489, 554
I(X), 67
L(g)t , 357
L(n,p), 302
MA, 152
M′

A, 152
Qt(ω

(0), dz) (or Qt ) the conditional law of the
noise, 480

R(n,p, j), 302
R±(n,p), 121
R
jl
a , 357
Rn, 126, 275, 372
Rn,j , 298
Rp±, 121
S(dx, dy), 492

S(m, j), 108
S±(n,p), 121
Sp a weakly exhausting sequence for the

jumps of X, 108
I (n, i)= (T (n, i), T (n, i − 1)], or

((i − 1)Δn, iΔn] for a regular
scheme, 64

U(g)ni , 344

U
n
(g), 105

vn = αΔ�n , 248, 371
W the standard (usually d ′-dimensional)

Brownian motion, 37
w(n,p), 108
X(n, i), 229, 339
X(n, i)(n), 229, 339
Xc the continuous (local) martingale part of

the semimartingale X, 25
〈X,Y 〉 the predictable covariation of the

semimartingales X and Y , 26
[X,X] the quadratic variation of the

semimartingale X, 26
[X,Y ] the quadratic covariation of the

semimartingales X and Y , 27
yz,t , 234
Znt (or Zn) in Chapter 16, the observed noisy

process, 481

1A ∗μ, δ ∗μ the integral process of 1A or δ
with respect to the random
measure μ, 30

Δ(n, i)= T (n, i)− T (n, i − 1), 64
ΔX the jump process of the càdlàg process X,

26
Δni X =XT (n,i) −XT (n,i−1), or

XiΔn −X(i−1)Δn for a regular
scheme, 64
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Ω(0), 480
Ω(1), 480
Ωn(T ,m), 123, 302
Ω
(c)
t , 94

Ω
(d)
t , 94

Υ
ij
t , Υ ′ijkt , conditional moments of the noise,

481
%t , 342, 490
%′t , 490
βni , 105
χt (or χ ) the noise, 479
δ(ω, t, z) (or δ) the jump coefficient of the Itô

semimartingale X, 37
δ ∗ (μ− ν) the (stochastic) integral process of

δ with respect to the (compensated)
random measure μ− ν, 31

δ ∗μ the (ordinary) integral process of δ with
respect to the random measure μ, 30

κ(n,p), 108
GAt , 44
GA,Wt , 44
K, K±, 298, 464
N (0, c) the centered Gaussian measure on R

d

with variance-covariance matrix c, 9
P the predictable σ -field, 25
μ (or μX) the third characteristic of the

semimartingale X, 31
μX the jump measure of the càdlàg process X,

30
∇f the gradient of the function f on R

d , 147
Φ(z), 234
ρg;a,a′ (dx, dy), 512
∂if the first ith partial derivative of the

function f on R
d , 28

∂2
ij f the second (i, j)th partial derivative of

the function f on R
d , 28

φB , 151
ψε and ψ ′ε , 77
ρ(p,x), 191
ρc the centered Gaussian measure on R

d with
variance-covariance matrix c, 9

ρc(f ) the integral of f with respect to ρc , 9
ρk⊗c the kth-fold tensor product of ρc , 238
σt (or σ ) the volatility of the Itô

semimartingale X, 37
p the Poisson random measure, 34
q the intensity measure of the Poisson random

measure p, 35
ζ(Y,Y ′)nt , 163
x# the sup norm of a function x on R+, 230
σ̃t (or σ̃ ) the volatility of the volatility, 116
γ̃α(f ), 135
γ α(f, g), 135

P=⇒ convergence in probability for the
Skorokhod topology, 49

L-s=⇒ stable convergence in law for the
Skorokhod topology, 49

L=⇒ convergence in law for the Skorokhod
topology, 49

a.s.=⇒ almost sure convergence for the
Skorokhod topology, 50

u.c.p.=⇒ convergence in probability for the local
uniform topology, 50

Sk−→ convergence for the Skorokhod topology,
49

P−→ convergence in probability, 47
L-s−→ stable convergence in law, 47
Lf -s−→ finite-dimensional stable convergence in

law, 50
Lf−→ finite-dimensional convergence in law, 50
L−→ convergence in law, 47

a.s.−→ almost sure convergence, 50

A
Adapted (to a filtration), 23
Additive noise, 479, 482
Additive noise plus rounding, 482
Affine hyperplane, 148
Angle bracket, 28
Approximate quadratic variation, 6, 13, 160,

483, 554
Approximate total variation, 66
Assumption (D), 432
Assumption (E), 445
Assumption (H), 115, 126, 238, 273, 297, 339,

464, 583
Assumption (H-r), 188, 248, 371, 438, 489,

583
Assumption (K), 116, 145, 284, 310, 356, 378,

444, 533, 583
Assumption (K’), 116, 146, 285, 311, 356,

379, 444, 584
Assumption (K-r), 145, 285, 310, 356, 378,

444, 584
Assumption (K-r), 388, 584
Assumption (K’-r), 146, 285, 311, 356, 379,

445, 584
Assumption (N), 481
Assumption (Q), 161, 584
Assumption (SH), 117, 129, 583
Assumption (SH-r), 192, 583
Assumption (SK), 149, 287, 584
Assumption (SK’), 150, 287, 584
Assumption (SK-r), 149, 287, 584
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Assumption (SK’-r), 150, 287, 584
Assumption (SN), 486
Assumption (SQ), 163, 584
Asymptotic variance, 424
Asymptotically negligible, 55

B
Block splitting, 364
Blumenthal-Getoor index, 67
Brownian motion (or, Wiener process), 9, 16
Burkholder-Davis-Gundy inequalities, 39

C
C-tightness criterion, 351, 497
Càdlàg, or “right-continuous with left limits”,

23
Centered Gaussian process with independent

increments, 98
Characteristic triplet (of a Lévy process), 33
Characteristics (of a semimartingale), 31
Compensator, or predictable compensator, of a

process with locally integrable
variation, 27

Compensator, or predictable compensator, of a
random measure, 30

Compound Poisson process, 9, 16, 34
Consistent, weakly consistent, 94, 224
Continuous local martingale part of a

semimartingale, 7, 25
Contrast functions, 223
Convergence determining, 91
Convergence in law, 45

D
Degeneracy assumption, 465
Detection of jumps, 93, 179, 332
Diffusion coefficient, 3
Discretization grid, 63
Discretization scheme, 63, 64
Dominated convergence theorem for stochastic

integrals, 27, 52
Donsker’s theorem, 10, 14
Doob-Meyer decomposition, 26, 27
Drift coefficient, 3, 33
Driving Poisson measure, 256
Dubins’ theorem, 38

E
Euler (approximation, or scheme), 4, 179, 181
Exhausting sequence of stopping times, 100
Extended multipower (for a test function), 228
Extension of a probability space, 36

F
Filtered extension of a probability space, 36
Filtered probability space, 23
Filtration, 23

G
Gaussian part of a Lévy process, 33
Generalized Itô’s formula, 68
Globally even function on (Rd )k , 135
Grigelionis decomposition of an Itô

semimartingale, 38

I
(Ft )-independent increments, 33
Integrated volatility, 92, 244
Interpolated functional, 65, 80
Itô semimartingale, 35
Itô’s formula, 28, 32
Itô’s formula (generalized), 68

J
Joint Central Limit Theorem, 173, 325, 332
Jump measure (of the process X, denoted μ

or μX), 30

K
Kolmogorov’s continuity criterion, 351, 497

L
Lenglart-dominated, 45, 141, 574, 577
Lévy measure (of a Lévy process), 33
Lévy measure (of a Poisson random measure),

34
Lévy process,(Ft )-Lévy process, 33, 71, 117,

581
Lévy-Itô decomposition of a semimartingale,

32
Lévy-Khintchine formula, 33
Local approximation (for the volatility), 248,

254, 255
Local characteristics (of a semimartingale), 31
Local martingale, 24
Local uniform topology, 10
Localization (procedure), 84, 118
Localizing sequence of stopping times, 24
Locally bounded (process), 24
Locally integrable (increasing process), 27

M
Martingale difference array, 56
Martingale measure, 31
Maximum likelihood estimator, 226
Minimum contrast estimator, 223, 291
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Monte Carlo technique, Monte Carlo
simulation, 4, 180

Moving average function, 340
Multipower (for a test function), 228
Multipower variation, 228, 313, 329

N
Non-normalized functional, 64
Normalized functional, 80
Normalized increments, 79

O
Orthogonal (local martingales), 24

P
p-summable jumps, 67, 146
P-UT property, or “predictably uniformly

tight”, 182
Parametric statistical problem, 5, 222, 290
Poisson random measure, 34
(Ft )-Poisson random measure, 34
Polarization identity, 27, 257
Polish space (= metric, complete and

separable), 34
Polynomial growth (of a function), 17, 106
Positively homogeneous function, 80, 341
Positively homogeneous function on (Rd )k ,

228
Power function, 12
Pre-averaging scheme, 483
Predictable characteristics (of a

semimartingale), 31
Predictable (function on Ω ×R+ ×E), 31
Predictable (process), 25
Process of finite variation, 23, 579
Product extension of a probability space, 36
Product filtered extension of a probability

space, 36
Product form (for a test function), 228
Progressively measurable, 26
Proportion of jumps, 270
Pure rounding noise, 479, 482
Purely discontinuous (local martingale), 24

Q
Quadratic covariation variation, 27
Quadratic variation, 26

R
Random discretization scheme, 64
Random measure, 30
Realized quadratic variation, 13
Realized volatility, 13
Regular discretization scheme, 64, 80, 217
Restricted discretization scheme, 431
Restricted pre-discretization scheme, 431
Riemann approximation, 5
Rounding noise, 479

S
Semimartingale, 23
Separable (for a σ -field), 47
Simple (integrand), 25
Skorokhod representation theorem, 51
Skorokhod space, 49, 229
Skorokhod topology, 6, 49
Special semimartingale, 29
Spot volatility, 92
Stable convergence in law, 7, 11, 46, 48
Stationary increments, 33
Stochastic integral with respect to a martingale

measure, 31
Stochastic integral with respect to a

semimartingale, 25
Stopping rule, 53
Strong predictability (for a discretization

scheme), 430
Subsequence principle, 10, 50
Symmetrical function on (Rd )k , 228, 298

T
Triangular array, 53
Truncated functional, 248
Truncated multipower variation, 381, 423
Truncated realized quadratic variation, 382

V
Very good (filtered extension), 36
Volatility, stochastic volatility, 6, 7, 92, 176,

269, 422, 458

W
Weak consistency, 223
Weakly exhausting sequence of stopping

times, 100, 302
Weighted average, 483
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