
LÉVY PROCESSES, STABLE PROCESSES, AND SUBORDINATORS

STEVEN P. LALLEY

1. DEFINITIONS AND EXAMPLES

Definition 1.1. A continuous–time process {X t = X (t )}t≥0 with values in Rd (or, more
generally, in an abelian topological group G ) is called a Lévy process if (1) its sample paths
are right-continuous and have left limits at every time point t , and (2) it has stationary,
independent increments, that is:

(a) For all 0= t0 < t1 < · · ·< tk , the increments X (t i )−X (t i−1) are independent.
(b) For all 0 ≤ s ≤ t the random variables X (t )− X (s ) and X (t − s )− X (0) have the

same distribution.

The default initial condition is X0 = 0. A subordinator is a real-valued Lévy process with
nondecreasing sample paths. A stable process is a real-valued Lévy process {X t }t≥0 with
initial value X0 = 0 that satisfies the self-similarity property

(1.1) X t /t
1/α D=X1 ∀ t > 0.

The parameter α is called the exponent of the process.

Example 1.1. The most fundamental Lévy processes are the Wiener process and the
Poisson process. The Poisson process is a subordinator, but is not stable; the Wiener
process is stable, with exponent α = 2. Any linear combination of independent Lévy
processes is again a Lévy process, so, for instance, if the Wiener process Wt and the
Poisson process Nt are independent then Wt −Nt is a Lévy process. More important,
linear combinations of independent Poisson processes are Lévy processes: these are
special cases of what are called compound Poisson processes: see sec. 5 below for more.
Similarly, if X t and Yt are independent Lévy processes, then the vector-valued process
(X t , Yt ) is a Lévy process.

Example 1.2. Let {Wt }t≥0 be a standard Wiener process, and let τ(a ) be the first passage
time to the level a > 0, that is,

(1.2) τ(a ) := inf{t : Wt > a }
Then the process {τ(a )}a≥0 is a stable subordinator with exponent α= 1/2. This follows
from the strong Markov property of the Wiener process, which implies that the process
τ(a ) has stationary, independent increments, and the Brownian scaling property. (See
sec. 3 below for a discussion of the strong Markov property.) The fact that τ(s ) is right-
continuous with left limits follows from the continuity of the Wiener path.
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Example 1.3. A d−dimensional Wiener process is an Rd−valued process

W (t ) = (W1(t ), W2(t ), . . . , Wd (t ))

whose component Wi (t ) are independent standard one-dimensional Wiener processes.
Let W (t ) = (X (t ), Y (t )) be a two-dimensional Wiener process, and let τ(s ) be the first-
passage process for the first coordinate, that is, τ(s ) = inf{t : X (t )> s }. Then the process
{C (s )}s≥0 defined by

(1.3) C (s ) := Y (τ(s ))

is a stable process with exponent 1; it is called the Cauchy process, because its incre-
ments have Cauchy distributions.

Exercise 1.1. (A) Prove that the process C (s ) is stable with exponent 1, using the strong
Markov property of the two-dimensional Wiener process and the Brownian scaling prop-
erty. (B) Check that

exp{iθYt − |θ |X t }
is a continuous (complex-valued) martingale that remains bounded up to time τ(s ).
Then use the Optional Sampling theorem for bounded continuous martingales (essen-
tially, the third Wald identity) to show that

(1.4) E exp{iθY (τ(s ))}= exp{−|θ |s }.
This implies that the distribution of C (s ) is the Cauchy distribution.

Exercise 1.2. Let ϕ(λ) be a nondecreasing (or alternatively a continuous) real-valued
function of λ≥ 0 that satisfies ϕ(0) = 1 and the functional equation

ϕ(λ) =ϕ(m−1/α)m ∀m ∈N and∀λ> 0.

Prove that for some constant γ≥ 0,

ϕ(λ) = exp{−γλα}.
HINT: Start by making the substitution f (r ) =ϕ(r 1/α).

Exercise 1.3. (A) Show that if X (t ) is a stable subordinator with exponent α, then for
some constant γ≥ 0,

(1.5) E e−λX (t ) = exp{−γtλα} ∀ t ,λ> 0.

(B) Similarly, show that if X (t ) is a symmetric stable process with exponent α (here sym-
metric means that X (t ) has the same distribution as −X (t )), then for some constant
γ≥ 0,

(1.6) E e iθX (t ) = exp{−γt |θ |α}.
Exercise 1.4. (Bochner) Let Yt = Y (t ) be a stable subordinator of exponent α, and let
Wt =W (t ) be an independent standard Brownian motion. Use the strong Markov prop-
erty (section 3 below) to show that

(1.7) X (t ) :=W (Y (t ))

is a symmetric stable process of exponent 2α.
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2. INFINITELY DIVISIBLE DISTRIBUTIONS AND CHARACTERISTIC FUNCTIONS

Definition 2.1. A probability distribution F on R is said to be infinitely divisible if for
every integer n ≥ 1 there exist independent, identically distributed random variables
{Xn ,i }1≤i≤n whose sum has distribution F :

(2.1)
n
∑

i=1

Xn ,i
D= F.

Proposition 2.1. If {X t }t≥0 is a Lévy process, then for each t > 0 the random variable X t

has an infinitely divisible distribution. Conversely, if F is an infinitely divisible distribu-
tion then there is a Lévy process such that X1 has distribution F .

Proof. The first statement is obvious, because by the definition of a Lévy process the
increments X ((k + 1)t /n )− X (k t /n ) are independent and identically distributed. The
converse is quite a bit trickier, and won’t be needed for any other purpose later in the
course, so I will omit it. �

Proposition 2.2. Let X t = X (t ) be a Lévy process, and for each t ≥ 0 let ϕt (θ ) = E e iθX (t )

be the characteristic function of X (t ). Then there exists a continuous, complex-valued
functionψ(θ ) of θ ∈R such that for all t ≥ 0 and all θ ∈R,

(2.2) ϕt (θ ) = exp{tψ(θ )}.

In particular, the function ϕt (θ ) has no zeros.

Remark 1. In view of Proposition 2.1, it follows that every infinitely divisible character-
istic function ϕ(θ ) has the form ϕ(θ ) = exp{ψ(θ )}, and therefore has no zeros. In fact,
though, the usual proof of the converse half of Proposition 2.1 proceeds by first show-
ing that infinitely divisible characteristic functions have this form, and then using this
to build the Lévy process. For the whole story, see the book Probability by Leo Breiman,
chs. 9 and 14.

Proof of Proposition 2.2. The defining property of a Lévy process — that it has station-
ary, independent increments — implies that for each fixed θ , the characteristic function
ϕt (θ ) satisfies the multiplication rule

ϕt+s (θ ) =ϕt (θ )ϕs (θ ).

Since a Lévy process has right-continuous sample paths, for each fixed argument θ the
function t 7→ϕt (θ ) is right-continuous, and in particular, since ϕ0(θ ) = 1,

lim
t→0+

ϕt (θ ) = 1.

But this and the multiplication rule imply that the mapping t 7→ϕt (θ )must also be left-
continuous.
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The only continuous functions that satisfy the multiplication rule are the exponential
functions e αt and the zero function.1 That ϕt (θ ) is not identically zero (as a function of
t ) follows because t 7→ϕt (θ ) is continuous at t = 0, where ϕ0(θ ) = 1. �

Proposition 2.3. Let X (t ) be a subordinator, and for each t ≥ 0 let ϕt (λ) = E−λX (t ) be the
Laplace transform of X (t ). Then there exists a continuous, nondecreasing, nonnegative
functionψ(λ) such that for all t ≥ 0 and all λ≥ 0,

(2.3) ϕt (λ) = exp{−tψ(λ)}.

The proof is virtually the same as the proof of Proposition 2.2. The function ψ(λ)
associated with a subordinator has an interesting probabilistic interpretation, which will
become at least partly clear in the discussion of Poisson point processes in sec. 5 below.

Proposition 2.2 implies that if X t is a Lévy process then the characteristic function
E e iθXt is continuous in t . This in turn implies that Xs ⇒X t as s → t from the left. (Right-
continuity of sample paths implies the stronger assertion that Xs → X t almost surely as
s → t from the right.) The weak convergence can be strengthened:

Proposition 2.4. If {Xs }s≥0 is a Lévy process then for each t ≥ 0, the sample path Xs is
continuous at s = t .

Remark 2. Take note of how the statement is quantified! For each t , there is a null set on
which the path may fail to be continuous at t . Since there are uncountably many t , these
null sets might add up to something substantial. And indeed for some Lévy processes —
e.g., the Poisson process — they do.

Proof. For each real θ , the process Zθ (s ) := exp{iθXs − sψ(θ )} is a martingale in s (rela-
tive to the natural filtration — see Definition 3.1 below). This is a routine consequence
of the stationary, independent increments property of a Lévy process (exercise). Since
Zθ (s ) is bounded for s ∈ [0, t ], it follows from the martingale convergence theorem that

lim
s→t−

Zθ (s ) =Zθ (t ) almost surely.

This implies that e iθXs → e iθXt almost surely as s → t−, for every fixed θ , and therefore
almost surely for every rational θ . Therefore, Xs → X t . (Explanation: If not, there would
have to be a jump of size 2πk/θ for some integer k , for every rational θ . But this rules
out the possibility of a jump.) �

3. STRONG MARKOV PROPERTY

Definition 3.1. Let {X (t )}t≥0 be a Lévy process. The natural filtration associated to
the process is the filtration F X

t := σ(Xs )s≤t , that is, each σ−algebra F X
t is the smallest

σ−algebra with respect to which all of the random variables X (s ), for s ≤ t , are measur-
able. An admissible filtration {Ft }t≥0 for the process {X (t )}t≥0 is a filtration such that

(a) F X
t ⊆Ft for each t , and

1Exercise! In fact, the only Lebesgue measurable functions f (t ) that satisfy the addition rule f (t + s ) =
f (s )+ f (t ) are the linear functions f (t ) = a +b t : this is a considerably harder exercise.
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(b) eachσ−algebraFt is independent of theσ−algebra

(3.1) G X
t :=σ(X (t + s )−X (t ))s≥0.

For any filtration F= {Ft }t≥0, set

(3.2) F∞ =σ(∪t≥0Ft ),

that is, the smallestσ−algebra containing all events measurable relative to someFt .

The reason for introducing the notion of an admissible filtration is that it allows inclu-
sion of events determined by other independent processes. For instance, if X (t ) and Y (t )
are independent Wiener processes, as in Example 1.3 above, then the natural filtration
F (X ,Y )

t for the vector-valued process (X t , Yt )will be admissible for each of the coordinate
processes.

Definition 3.2. Let F= {Ft }t≥0 be a filtration and let τ be a stopping time relative to F.
(Recall that a nonnegative random variable τ is a stopping time relative to a filtration
F if for every t ≥ 0 the event {τ ≤ t } ∈ Ft .) The stopping field Fτ induced by τ is the
collection of all events A such that for each t ≥ 0,

(3.3) A ∩{τ≤ t } ∈Ft .

Theorem 1. (Strong Markov Property I) Let {X (t )}t≥0 be a Lévy process and F= {Ft } and
admissible filtration. Suppose that τ is a stopping time relative to F. Define the post-τ
process

(3.4) Y (t ) :=X (τ+ t )−X (τ).

Then the process {Y (t )}t≥0 is independent ofFτ and identical in law to {X (t )}t≥0. In de-
tail, for every event A ∈Fτ, all t i , and all Borel sets Bi ,

P(A ∩{Y (t i )∈ Bi ∀ i ≤ k }) = P(A)P{X (t i )∈ Bi ∀ i ≤ k }(3.5)

= P(A)P{Y (t i )∈ Bi ∀ i ≤ k }

Theorem 2. (Strong Markov Property II) Suppose in addition to the hypotheses of Theo-
rem 1 that {X ∗t }t≥0 is identical in law to {X (t )}t≥0 and is independent of the stopping field
Fτ. Define the spliced process

X̃ t :=X t if t <τ and(3.6)

X̃ t :=Xτ+X ∗t−τ if t ≥τ.

Then the process X̃ t is also a version of (identical in law to) X t .

Remark 3. The identity (3.5) is equivalent to the following property: for every k ≥ 1,
every bounded continuous function f :Rk →R, and every event A ∈Fτ,

E 1A f (Yt1 , Yt2 , . . . , Ytk ) = P(A)E f (Yt1 , Yt2 , . . . , Ytk )(3.7)

= P(A)E f (X t1 , X t2 , . . . , X tk )
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This equivalence follows by a standard approximation argument in measure theory (that
in essence asserts that indicator functions of Borel events can be arbitrarily well ap-
proximated in L1 by bounded continuous functions). See Proposition ?? in section ??
below. Moreover, the identity (3.5) implies that the σ−algebras Fτ and F Y

∞ are in-
dependent. This follows from the π− λ theorem, because (a) the collection of events
{Y (t i ) ∈ Bi ∀ i ≤ k } is a π−system; and (b) for any event A ∈Fτ, the collection of events
B for which

P(A ∩ B ) = P(A)P(B )
is a λ−system.

Proof of Theorem 1. The strategy is to first prove the result for discrete stopping times,
and then to deduce the general case by an approximation argument. First consider the
special case where the stopping time takes values in a countable, discrete set S = {s i }i∈N,
with s i < s i+1. (Here discrete means that the set S has no limit points in R, that is,
limn→∞ sn =∞.) If this is the case then for each i the event {τ = s i } ∈ Fs i , and to check
(3.5) it suffices to consider events A =G ∩{τ= s i } where G ∈Fs i . For such events A, the
equality (3.5) follows easily from the hypothesis that the filtration is admissible and the
fact that a Lévy process has stationary, independent increments (check this!). Thus, the
Strong Markov Property I is valid for discrete stopping times, and it follows by the note
above that identity (3.7) holds for discrete stopping times.

Now let τ be an arbitrary stopping time. Approximate τ from above by discrete stop-
ping times τn , for instance by setting τn = the smallest dyadic rational k/2n larger than
τ. Each such τn is a stopping time (check this), and

lim
n→∞

↓τn =τ.

Moreover, if A ∈Fτ then A ∈Fτn for each n . (See Exercise 3.1 below.) Consequently, by
the previous paragraph, the equality (3.7) holds when Y (t i ) is replaced by Yn (t i ), where
Yn (t ) :=X (τn + t )−X (τn ). But by the right-continuity of sample paths,

lim
n→∞

Yn (t ) = Y (t ) a .s .,

and so if f :Rk →R is a bounded continuous function then

lim
n→∞

f (Yn (t1), Yn (t2), . . . , Yn (tk )) = f (Y (t1), Y (t2), . . . , Y (tk ))

Therefore, by the dominated convergence theorem, (3.7) follows from the fact that it
holds when Y is replaced by Yn . �

Exercise 3.1. Prove that if τ and σ are stopping times (relative to the same filtration F)
such thatσ≤τ, thenFσ ⊂Fτ.

Proof of Theorem 2. This is more subtle than Theorem 1, because a straightforward at-
tempt to deduce the general case from the special case of discrete stopping times doesn’t
work. The difficulty is that if one approximates τ from above by τn , as in the proof
of Theorem 1, then the process X ∗t may not be independent of the stopping fields Fτn

(these decrease toFτ as n→∞).
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So we’ll take a different tack, based on the optional sampling formula for martingales.
To prove the theorem, we must show that the finite-dimensional distributions of the
spliced process X̃ t are the same as those of X t . For this, it suffices to show that the joint
characteristic functions agree, that is, for all choices of θj ∈R and all times t j ,

E exp

�

i
k
∑

j=1

θj (X t j+1 −X t j )
�

= E exp

�

i
k
∑

j=1

θj (X̃ t j+1 − X̃ t j )
�

.

To simplify the exposition, I’ll consider only the case k = 1; the general case can be done
in the same manner. So: the objective is to show that for each θ ∈R and each t > 0,

E e iθXt = E e iθ X̃t .

In proving this, we may assume that the stopping time τ satisfies τ ≤ t , because if it
doesn’t we can replace it by the smaller stopping time τ ∧ t . (The stopping field Fτ∧t

is contained in Fτ, so if the process X ∗s is independent of Fτ then it is also indepen-
dent of Fτ∧t .) The stationary, independent increments property implies that the pro-
cess Zθ (s ) := exp{iθXs − sψ(θ )} is a martingale relative to the filtrationFs , and for each
fixed θ this process is bounded for s ≤ t . Consequently, the optional sampling formula
gives

E e iθXτ−τψ(θ ) = 1.

Thus, to complete the proof of (??) it suffices to show that

(3.8) E (exp{iθX ∗(t −τ)− (t −τ)ψ(θ )} |Fτ) = 1.

The proof of (3.8) will also turn on the optional sampling formula, together with the
hypothesis that the process X ∗s is independent of Fτ. Let F ∗s = σ(X ∗r )r≤s be the natural
filtration of X ∗, and set

Gs =σ(F ∗s ∪Fτ).
This is an admissible filtration for the process X ∗, because X ∗ is independent ofFτ. The
random variable t −τ is measurable relative toG0 =Fτ, and so it is (trivially) a stopping
time relative to the filtration Gs . Because the filtration Gs is admissible for the process
X ∗s , the stationary, independent increments property implies that the process

Z ∗θ (s ) := exp{iθX ∗s − sψ(θ )}

is a martingale relative to the filtrationGs , and remains bounded up to time t . Thus, the
optional sampling formula (applied with the stopping time t −τ) implies (3.8). �

4. BLUMENTHAL ZERO-ONE LAW

Theorem 3. (Blumenthal Zero-One Law) Let {X (t )}t≥0 be a Lévy process and {F X
t }t≥0 its

natural filtration. Define theσ−algebra

(4.1) F X
0+ :=

⋂

t>0

F X
t .

ThenF X
0+ is a zero-one field, that is, every event A ∈F X

0+ has probability zero or one.
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Proof. For notational ease, I’ll drop the superscript X from the σ−algebras. Set F∞ =
σ(∪t≥0Ft ). I claim that for any event A ∈F∞,

(4.2) E (1A |F0+) = P(A) a.s.

This will imply the theorem, because for any event A ∈F0+ it is also the case that

E (1A |F0+) = 1A a.s.,

by the filtering property of conditional expectation. To prove (4.2), it is enough to con-
sider cylinder events, that is, events of the form

A =
k
⋂

i=1

{X (t i )∈ Bi } where Bi ∈B1.

Let f :Rk →R be a bounded, continuous function, and set

ξ := f (X (t1), X (t2), . . . , X (tk )) and

ξn := f (X (t1)−X (1/n ), X (t2)−X (1/n ), . . . , X (tk )−X (1/n )).

To prove the identity (4.2) for cylinder events, it is enough (by Exercise 4.1 below) to
prove that for any bounded continuous f :Rk →R,

(4.3) E (ξ |F0+) = Eξ.

Since the process X (t ) has right-continuous paths, ξn → ξ a.s., and the convergence is
bounded, because f was assumed to be bounded. Therefore, by the usual dominated
convergence theorem and the DCT for conditional expectations,

lim
n→∞

Eξn = Eξ and

lim
n→∞

E (ξn |F0+) = E (ξ |F0+) a.s.

Therefore, to prove (4.3) it suffices to show that for each n ,

E (ξn |F0+) = Eξn a.s.

But this follows immediately from the independent increments property, because ξn is
a function of the increments after time 1/n , and so is independent ofF1/n – and hence
also independent ofF0+, since this is contained inF1/n .

�

Exercise 4.1. Complete the proof above by showing that the identity (4.3) implies the
identity 4.2 for all cylinder events.

Corollary 4.1. If X (t ) is a subordinator with continuous sample paths then there is a
constant C ≥ 0 such that X (t ) =C t a.s.

Proof. According to a basic theorem of real analysis (see, for instance, H. ROYDEN, Real
Analysis, chapter 5), every nondecreasing function is differentiable a.e. Hence, in partic-
ular, X (t ) is differentiable in t a.e., with probability one. It follows that X (t ) is differen-
tiable at t = 0 almost surely, and that the derivative is finite a.s. (See the technical note



LÉVY PROCESSES 9

following the proof for further elaboration.) But the derivative

X ′(0) := lim
ε→0+

X (ε)
ε

depends only on the values of the process X (t ) for t in arbitrarily small neighborhoods
of 0, and so it must beF X

0+−measurable. SinceF X
0+ is a zero-one field, by Theorem 3, it

follows that the random variable X ′(0) is constant a.s: thus, X ′(0) =C for some constant
C ≥ 0.

Existence of a finite derivative C may be restated in equivalent geometric terms as
follows: for any δ > 0, the graph of X (t ) must lie entirely in the cone bounded by the
lines of slope C ±δ through the origin, at least for small t > 0. Thus, if we define

T = T1 :=min{t > 0 : X (t )≥ (C +δ)t }
=∞ if there is no such t

then T > 0 (but possibly infinite) with probability one. Note that T is a stopping time, by
path continuity. Moreover, since X (t ) is continuous, by hypothesis, X (T ) = (C +δ)T on
the event T <∞ and X (t )≤C t for all t ≤ T . Now define inductively

Tk+1 =min{t > 0 : X (t +Tk )−X (Tx )≥ (C +δ)t }
=∞ if Tk =∞ or if no such t exists.;

observe that X (Tk ) = (C+δ)Tk on the event Tk <∞, for each k , and so X (t )≤ (C+δ)t for
all t ≤ Tk . By the Strong Markov Property, the increments Tk+1−Tk are i.i.d. and strictly
positive. Hence, by the SLLN, Tk → ∞ almost surely as k → ∞, so X (t ) ≤ (C +δ)t for
all t <∞. The same argument shows that X (t ) ≥ (C −δ)t for all t ≥ 0. Since δ > 0 is
arbitrary, it follows that X (t ) =C t for all t , with probability one. �

Remark 4. The random process X (t ) is actually a function X (t ,ω) of two arguments t ∈
[0,∞) and ω ∈ Ω. Consider only those t ∈ [0, 1]; then X (t ,ω) can be viewed as a single
random variable on the product space [0, 1]×Ω, endowed with the product probability
measure Lebesgue×P . The set of all pairs (t ,ω) for which the derivative X ′(t ) exists is
product measurable (why?). By the differentiation theorem quoted above, for P−a.s. ω
the derivativeX ′(t ) exists for a.e. t ; hence, by Fubini’s theorem, for a.e. t the derivative
X ′(t ) exists at t with P−probability one. But by the stationary independent increments
property, the events

G t := {ω : X (·,ω) differentiable at t }
all have the same probability. Therefore, P(G t ) = 1 for every t , and in particular, for t = 0.

5. LÉVY PROCESSES FROM POISSON POINT PROCESSES

5.1. Compound Poisson Processes.

Definition 5.1. A compound Poisson process X (t ) is a vector-valued process of the form

(5.1) X (t ) =
N (t )
∑

i=1

Yi ,
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where N (t ) is a Poisson counting process of rate λ > 0 and {Yi }i≥1 are independent,
identically distributed random vectors independent of the Poisson process N (t ). The
distribution F of the increments Yi is called the compounding distribution.

Every compound Poisson process is a Lévy process. However, since compound Pois-
son processes have sample paths that are step functions, not all Lévy processes are
compound Poisson processes. But every Lévy process can be approximated arbitrarily
closely by compound Poisson processes plus linear drift. We will show in detail below
how this approximation works for subordinators.

There are simple formulas for the characteristic function and (in case the increments
Yi are nonnegative) the Laplace transform of the random variables X (t ) that constitute
a compound Poisson process. To obtain these, just condition on the number N (t ) of
jumps in the underlying Poisson process, and use the fact that the conditional distribu-
tion of X (t ) given N (t ) = n is the n−fold convolution of the compounding distribution
F . The results are:

(5.2) E e i 〈θ ,X (t )〉 = exp{λtϕF (θ )−λt } where ϕF (θ ) = E e i 〈θ ,Y1〉

and similarly, if the jumps Yi are nonnegative,

(5.3) E e−βX (t ) = exp{λtψF (β )−λt } where ψF (β ) = E e−βY1 .

5.2. Poisson point processes. There is another way of looking at the sums (5.1) that de-
fine a compound Poisson process. Place a point in the first quadrant of the plane at each
point (Ti , Yi ), where Ti is the time of the i th jump of the driving Poisson process N (t ), and
call the resulting random collection of pointsP . Then equation (5.1) is equivalent to

(5.4) X (t ) =
∑

(Ti ,Yi )∈P

Yi 1{Ti ≤ t }

This equation says that X (t ) evolves in time as follows: slide a vertical line to the right at
speed one, and each time it hits a point (Ti , Yi ) add Yi . The random collection of points
(Ti , Yi ) constitutes a Poisson point process (also called a Poisson random measure) in the
plane.

Definition 5.2. Let (X ,B ,µ) be a measure space. A Poisson point process P on (X ,B)
with (σ−finite) intensity measure µ is a collection {N (B )}B∈B of extended nonnegative
integer-valued random variables such that

(A) If µ(B ) =∞ then N (B ) =∞ a.s.
(B) If µ(B )<∞ then N (B )∼Poisson-(µ(B )).
(C) If {Bi }i∈N are pairwise disjoint, then

(C1) the random variables N (Bi ) are independent; and
(C2) N (∪i Bi ) =

∑

i N (Bi ).

Note: Condition (C2) asserts that the assignment B 7→N (B ) =N (B ,ω) is countably ad-
ditive, that is, for each fixedω∈Ω the set function N (B ,ω) is a measure.

Definition 5.3. Let (X ,B ,µ) be a measure space. A random measure on (X ,B) with
intensity µ is a family of [0,∞]−valued random variables {M (B )}B∈B such that
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(A) For eachω∈Ω the set function B 7→M (B ,ω) is a measure on (X ,B), and
(B) E M (B ) =µ(B ) for every B ∈B .

Clearly, a Poisson point process is a random measure. Note that in general the random
variables M (B ) need not be integer-valued; when they are, the random measure M is
called a point process. In the case of a compound Poisson process, the relevant intensity
measure on R2 is

(5.5) µ(d t , d y ) =λd t d F (y )

Note that to each strip Γt := {(s , y ) : s ≤ t } the intensity measure assigns (finite) massλt .
In addition, property (c) implies that the assignment B 7→N (B ) =N (B ,ω) is a measure
for almost everyω. (Exercise: Why?) Since N (B ) is just a count of the number of points in
the Poisson point process inside B , integration against the random measure N amounts
to nothing more than summing over the collection of points P . In particular, (5.4) can
be interpreted as an integral:

(5.6) X (t ) =

∫∫

y 1[0,t ](s )N (d s , d y );

in the case of a compound Poisson process, this integral always reduces to a finite sum.
Now in principle there is no reason that we can’t use equation (5.6) to define a stochastic
process {X (t )} for more general Poisson random measures N on the plane – the only
difficulty is that, since the integral (5.6) is no longer necessarily a finite sum, it might not
be well-defined.

5.3. Subordinators and Poisson Point Processes.

Proposition 5.1. Let N (B ) be a Poisson point process on the first quadrant whose intensity
measure µ(d t , d y ) has the form

(5.7) µ(d t , d y ) = d t ν (d y )

for some Borel measure ν (d y ) on the positive halfline R+, called the Lévy measure. As-
sume that the Lévy measure ν satisfies

(5.8)

∫

(y ∧1)ν (d y )<∞.

Then the (random) integral in (5.6) is well-defined and finite almost surely for each t ≥ 0,
and the process X (t ) defined by (5.6) is a subordinator. Moreover, the Laplace transform
of the random variable X (t ) is given by

(5.9) E e−βX (t ) = exp

¨

t

∫ ∞

0

(e−βy −1)ν (d y )

«

.

Remark 5. Formula (5.9) agrees with equation (5.3) in the special case where ν (d y ) =
λF (d y ), so (5.9) holds for compound Poisson processes.

Before proceeding to the proof, let’s consider an important example:
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Corollary 5.2. For each α∈ (0, 1) the measure

(5.10) ν (d y ) = να(d y ) = y −α−1 d y on (0,∞).
is the Lévy measure of a stable subordinator of exponent α.

Proof. It is easily checked that the measure να defined by (5.10) will satisfy the integra-
bility hypothesis (5.8) if and only if 0 < α < 1. For all such α, Proposition 5.1 asserts
that formula (5.6) defines a subordinator. I will show that this subordinator is a stable
process of exponent α by using the formula (5.9) to evaluate its Laplace transform. (In
particular, we will see that the Laplace transform coincides with (1.5) above).

According to formula (5.9),

log E e−βX (t ) := tψ(β ) = t

∫ ∞

0

(e−βy −1)
d y

y α+1
.

Make the linear substitution x = r y to check that the functionψ satisfies the functional
equationψ(rβ ) = r αψ(β ) for all r,β > 0, and conclude from this by calculus that

ψ(β ) =βαψ(1) =−βα(α−1Γ(1−α)).
Thus, with γ=α−1Γ(1−α),

E e−βX (t ) = exp{−γtβα}.
This implies that X (t ) satisfies the scaling law (1.1), and therefore is a stable subordina-
tor of exponent α. �

Exercise 5.1. (A) Verify that the functional equationψ(rβ ) = r αψ(β ) implies thatψ(β ) =
βαψ(1). (B) Verify that γ=α−1Γ(1−α). (C) How did I guess that y −α−1 d y is the right Lévy
measure to produce a stable subordinator? HINT: Use the scaling law (1.1).

Proof of Proposition 5.1. First, we must show that the integral in (5.6) is well-defined and
finite a.s. Since the intensity measure d t ν (d y ) is concentrated on the first quadrant,
the points of the Poisson point process are all in the first quadrant, with probability one.
Consequently, the integral in (5.6) is a sum whose terms are all nonnegative, and so it is
well-defined, although possibly infinite. To show that it is in fact finite a.s., we break the
sum into two parts:

(5.11) X (t ) =

∫∫

y>1

y 1[0,t ](s )N (d s , d y )+

∫∫

0≤y≤1

y 1[0,t ]N (d s , d y ).

Consider the first integral: The number of points of the Poisson point process P in the
region [0, t ]× (1,∞) is Poisson with mean

∫

y>1
ν (d y ), and this mean is finite, by the hy-

pothesis (5.8). Consequently the first integral in (5.11) has only finitely many terms, with
probability one, and therefore is finite a.s. Now consider the second integral in (5.11). In
general, this integral is a sum with possibly infinitely many terms; to show that it is finite
a.s., it is enough to show that its expectation is finite. For this, observe that

∫∫

0≤y≤1

y 1[0,t ](s )N (d s , d y )≤
∞
∑

k=0

2−k N ([0, t ]× [2−k−1, 2−k ]).
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But

2−k E N ([0, t ]× [2−k−1, 2−k ]) = t

∫

[2−k−1,2−k ]

2−kν (d y )≤ 2t

∫

[2−k−1,2−k ]

y ν (d y ),

and so

E

∫∫

0≤y≤1

y 1[0,t ](s )N (d s , d y )≤ 2t

∫

[0,1]

y ν (d y )<∞,

by hypothesis (5.8). This proves that the random integral in (5.6) is well-defined and
finite a.s. Clearly the integral is nonnegative, and nondecreasing in t . Thus, to show that
the process X (t ) is a subordinator it is enough to prove that X (t ) is right-continuous
in t . This, however, follows directly from the dominated convergence theorem for the
random measure N (B ). (Exercise: Fill in the details here.)

Finally, consider the Laplace transform E e−βX (t ). To see that it has the form (5.9), we
use the fact noted earlier that (5.9) is true in the special case of a compound Poisson
process, and obtain the general case by an approximation argument. The key is that the
random variable X (t )may be approximated from below as follows:

X (t ) = lim
ε→0

Xε(t ) where Xε(t ) =

∫∫

y≥ε

y 1[0,t ](s )N (d s , d y ).

Note that Xε(t ) is obtained from X (t ) by removing all of the jumps of size less than ε.
This makes Xε(t ) a compound Poisson process, with compounding distribution

F (d y ) = 1[ε,∞)ν (d y )/ν ([ε,∞))

and λ= ν ([ε,∞)). Therefore, the Laplace transform of Xε(t ) is given by

E e−βXε (t ) = exp

¨

t

∫ ∞

ε

(e−βy −1)ν (d y )

«

.

Since the random variables Xε(t ) are nonnegative and nonincreasing in ε, it follows that

E e−βX (t ) = lim
ε→0

E e−βXε (t ),

and so the representation (5.9) follows by monotone convergence. �

5.4. Symmetric Lévy Processes and PPPs. In Proposition 5.1, the intensity measure
µ(d t , d y ) = d t ν (d y ) is concentrated entirely on the first quadrant, and so the jumps
of the process X (t ) defined by (5.6) are all positive. It is also possible to build Lévy pro-
cesses with both positive and negative jumps according to the recipe (5.6), but as in
Proposition 5.1 some restrictions on the intensity measure of the Poisson point process
are necessary to ensure that the infinite series produced by (5.6) will converge. Follow-
ing is a condition on the intensity measure appropriate for the construction of symmet-
ric Lévy processes, that is, Lévy processes X (t ) such that for each t the distribution of
X (t ) is the same as that of −X (t ). For the complete story of which intensity measures
can be used to build Lévy processes in general, see J. Bertoin, Lévy Processes, ch. 1.
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Proposition 5.3. Let N (B ) be a Poisson point process on the first quadrant whose intensity
measure µ(d t , d y ) has the form

(5.12) µ(d t , d y ) = d t ν (d y )

for some Borel measure ν (d y ) on the real line. Assume that ν (d y ) is symmetric, that is,
that ν (d y ) = ν (−d y ), and that

(5.13)

∫

(y 2 ∧1)ν (d y )<∞.

Then the (random) integral in (5.6) is well-defined and finite almost surely for each t ≥ 0,
and the process X (t ) defined by (5.6) is a symmetric Lévy process. Moreover, the character-
istic function of X (t ) is given by

(5.14) E e iθX (t ) = exp

¨

t

∫

R

(e iθ y −1)ν (d y )

«

.

Proof. Omitted. See Bertoin, Lévy Processes, ch. 1 for a more general theorem along these
lines. �

Exercise 5.2. Consider the measure ν (d y ) = y −α−1 d y for y ∈ R. For which values of α
does this measure satisfy the hypothesis of Proposition 5.3? Show that for these values,
the corresponding Lévy process is a symmetric stable process.

5.5. Stable Processes and Power Laws. The representation of stable subordinators and
symmetric stable processes by Poisson point processes as given in Corollary 5.2 and Ex-
ercise 5.2 has some important implications about jump data for such processes. Sup-
pose, for instance, that you were able to record the size of successive jumps in a stable-α
subordinator. Of course, the representation of Corollary 5.2 implies that there are infin-
itely many jumps in any finite time interval; however, all but finitely many are of size less
than (say) 1. So consider only the data on jumps of size at least 1. What would such data
look like?

The Poisson point process representation implies that the number M (y , t ) of jumps
of size at least y occurring before time t is Poisson with mean

t G (y ) := t

∫ ∞

y

u−α−1 d u =C t y −α.

This is what physicists call a power law, with exponent α. If you were to plot logG (y )
against log y you would get a straight line with slop −α. If you have enough data from
the corresponding Poisson point process, and you make a similar log/log plot of the
empirical counts, you will also see this straight line. Following is an example for the
stable-1/2 subordinator. I ran 1000 simulations of a simple random walk excursion, that
is, each run followed a simple random walk until the first visit to +1. I recorded the du-
ration L of each excursion. (Note: Roughly half of the excursions had L = 1, for obvious
reasons; the longest excursion had L = 2, 925, 725.) I sorted these in increasing order of
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L, then, for each recorded L, counted N (L) = number of excursions of duration at least L
(thus, for example, N (1) = 1, 000 and N (3) = 503). Here is a plot of log N (L) versus log L:
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This data clearly follows a line of slope −1/2. Next is a similar simulation for the
Cauchy process. To (approximately) simulate the jumps of a Cauchy process, start with
the jumps J of a stable-1/2 process, as constructed (approximately) above, and for each
value J , run an independent simple random walk for J steps, and record the value S of
the endpoint. I did this for the 1,000 jump values plotted in the first figure above. Here
is a log/log plot of the resulting |S|−values:
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This data follows a line of slope −1, just as theory predicts. If you are wondering why
there seem to be only half as many points in this plot as in the previous plot, it is because
I grouped the S− values by their absolute values, and there were only about half as many
distinct |S|−values as S−values. In case you are interested, I have left the MATHEMATICA

notebook on the web page.

5.6. Representation Theorem for Subordinators.
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Theorem 4. Every subordinator Y (t ) has the form Y (t ) = C t + X (t ), where C ≥ 0 is a
nonnegative constant and X (t ) is a subordinator of the form (5.6), where N (d t , d y ) is a
Poisson point process whose intensity measure µ(d t , d y ) = d t ν (d y ) satisfies (5.8).

There is a similar representation for the general one-dimensional Lévy process, called
the Lévy-Khintchine representation. This asserts that in general a Lévy process is of the
form

(5.15) X (t ) =C t +σW (t )+

∫∫

y 1[0,t ](s )N (d s , d y ),

where N is a Poisson point process whose intensity measure satisfies the hypotheses of
Proposition 5.3 and W (t ) is an independent Wiener process.

Proof. (Sketch) Let Y (t ) be a subordinator. Since Y (t ) is nondecreasing in t , it can have
at most countably many jump discontinuities in any finite time interval [0, t ], and at
most finitely many of size ≥ ε. (This is because these jumps cannot add up to∞.) Also,
the locations and sizes of the jumps in disjoint times intervals are independent, by the
independent increments property. In fact, the jumps and increments are jointly inde-
pendent across disjoint time intervals, and so if

X J (t ) :=
∑

jumps up to time t

then the vector-valued process (X (t ), X J (t ))will have stationary, independent increments,
and so itself will be a Lévy process. Consequently, the process Y (t ) := X (t )− X J (t ) is
a subordinator with no jumps. By Corollary 4.1, there is a constant C ≥ 0 such that
Y (t ) =C t .

To complete the proof, it suffices to show that the process X J (t ) has the form (5.6)
for a Poisson point process N that satisfies the hypotheses of Proposition 5.1. Since
X J (t ) is defined to be the sum of the jumps up to time t , it is automatically of the form
(5.6); the only thing to be shown is that the point process N of jumps is a Poisson point
process with an intensity measure that satisfies (5.8). This is (at least for now) left as an
exercise. �

6. APPENDIX: TOOLS FROM MEASURE THEORY

6.1. Measures and continuous functions. Many distributional identities can be inter-
preted as assertions that two finite measures are equal. For instance, in the identity (3.5),
for each fixed set A the right and left sides both (implicitly) define measures on the Borel
subsets Bof Rk . The next proposition gives a useful criterion for determining when two
finite Borel measures are equal.

Proposition 6.1. Let µ and ν be finite Borel measures onRk such that for every bounded,
continuous function f :Rk →R,

(6.1)

∫

f dµ=

∫

f dν .
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Then µ= ν , and (??) holds for every bounded Borel measurable function f :Rk →R.

Proof. It suffices to prove that the identity (??) holds for every function of the form f = 1B

where B ∈Bk , because if it holds for such functions it will then hold for simple functions
f , and consequently for all nonnegative functions by monotone convergence. Thus, we
must show that

(6.2) µ(B ) = ν (B ) ∀ B ∈Bk .

The collection of Borel sets B for which (??) holds is a λ−system, because both µ and
ν are countably additive. Hence, it suffices to prove that (??) holds for all sets B in a
π−system that generates the Borelσ−algebra. One natural choice is the collectionR of
open rectangles with sides parallel to the coordinate axes, that is, sets of the form

R = J1× J2× · · ·× Jk

where each Ji is an open interval inR. To show that (??) holds for B =R , I will show that
there are bounded, continuous functions f n such that f n ↑ 1R pointwise; since (??) holds
for each f = f n , the dominated convergence theorem will then imply that (??) holds
for f = 1R . To approximate the indicator of a rectangle R from below by continuous
functions f n , set

f n (x ) =min(1, n ×distance(x , Rc )).
�

6.2. Poisson Random Measures. To prove that a given collection of random variables
{N (B )}B∈B is a Poisson point process, one must show that for each B such thatµ(B )<∞
the random variable N (B ) has a Poisson distribution. Often it is possible to check this
for sets B of a simple form, e.g., rectangles. The following proposition shows that this is
enough:

Proposition 6.2. Let {N (B )}B∈B be a random measure on (Rk ,Bk )with intensity measure
µ. Let R = Rk be the collection of open rectangles with sides parallel to the coordinate
axes. If

(A) N (B )∼Poisson-(µ(B )) for each B ∈R such that µ(B )<∞, and
(B) N (Bi ) are mutually independent for all pairwise disjoint sequences Bi ∈R ,

then {N (B )}B∈B is a Poisson point process.

Proof. First, it is enough to consider only the case where µ(Rk ) <∞. (Exercise: Check
this. You should recall that the intensity measure µ was assumed to be σ−finite.) So
assume this, and letG be the collection of all Borel sets B for which N (B ) is Poisson with
mean µ(B ). This collection is a monotone class2, because pointwise limits of Poisson
random variables are Poisson. Furthermore, the collection G contains the algebra of all

2A collectionM of sets is a monotone class if it is closed under countable increasing unions and count-
able decreasing intersections, that is,

(1) If A1 ⊂ A2 ⊂ · · · are elements ofM then so is ∪n An ; and
(2) If B1 ⊃ B2 ⊃ · · · are elements ofM then so is ∩n Bn .



18 STEVEN P. LALLEY

finite unions of rectangles Ri ∈R , by hypotheses (A)-(B). Hence, by the Monotone Class
Theorem, G =Bk . This proves that N (B ) is Poisson-µ(B ) for every B ∈B .

To complete the proof we must show that for every sequence Bi of pairwise disjoint
Borel sets the random variables N (Bi ) are mutually independent. For this it suffices to
show that for any m ≥ 2 the random variables {N (Bi )}i≤m are independent. I will do the
case m = 2 and leave the general case m ≥ 3 as an exercise.

Denote byA the collection of all finite unions of rectangles R ∈ R . If A, B ∈ A are
disjoint, then N (A) and N (B ) are clearly independent, by Hypothesis (B). Let A, B ∈ B
be any two disjoint Borel sets: I will show that there exist sequences An , Bn ∈ A such
that

(i) limn→∞µ(An∆A) = 0;
(ii) limn→∞µ(Bn∆B ) = 0; and

(iii) An ∩ Bn = ; for every n ≥ 1.

Since N (An ) and N (Bn ) are independent, for each n , this will imply that N (A) and N (B )
are independent. Recall that any Borel set can be arbitrarily well-approximated by finite
unions of rectangles, so it is easy to find sequences An and Bn such that (i)-(ii) hold. The
tricky bit is to get (iii). But note that if (i) and (ii) hold, then

µ(An ∩ Bn )≤µ(An∆A)+µ(Bn∆B )−→ 0

Thus, if we replace each Bn by Bn \An then (i)- (iii) will all hold. �

Exercise 6.1. Fill in the missing steps of the proof above:

(A) Show that it is enough to consider the case where µ(Rk )<∞.
(B) Show that if Xn⊥Yn ∀n and Xn →X a.s. and Yn → Y a.s., then X⊥Y .
(C) Show how to extend the last part of the argument to m ≥ 3.

UNIVERSITY OF CHICAGO, DEPARTMENT OF STATISTICS, USA


