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a b s t r a c t

This paper proposes a new test for jumps in asset prices that is motivated by the literature on variance
swaps. Formally, the test follows by a direct application of Itô’s lemma to the semi-martingale process of
asset prices andderives its power from the impact of jumps on the third andhigher order returnmoments.
Intuitively, the test statistic reflects the cumulative gain of a variance swap replication strategy which is
known to beminimal in the absence of jumps but substantial in the presence of jumps. Simulations show
that the jump test has nice properties and is generally more powerful than the widely used bi-power
variation test. An important feature of our test is that it can be applied – in analytically modified form
– to noisy high frequency data and still retain power. As a by-product of our analysis, we obtain novel
analytical results regarding the impact of noise on bi-power variation. An empirical illustration using IBM
trade data is also included.
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1. Introduction

Discontinuous price changes or ‘‘jumps’’ are believed to be
an essential component of financial asset price dynamics. The
arrival of unanticipated news or liquidity shocks often result
in substantial and instantaneous revisions in the valuation of
financial securities. As emphasized by Aït-Sahalia (2004), relative
to continuous price changeswhich are oftenmodeled as a diffusive
process, jumps have distinctly different implications for the
valuation of derivatives (e.g. Merton (1976a,b)), risk measurement
and management (e.g. Duffie and Pan (2001)), as well as asset
allocation (e.g. Jarrow and Rosenfeld (1984)). The importance of
jumps is also clear from the empirical literature on asset return
modeling where the focus is often on decomposing the total asset
return variation into a continuous diffusive component and a
discontinuous pure jump component.1

In many applications, specific knowledge about the properties
of the jump process may be required and a variety of formal tests
∗ Corresponding author.
E-mail addresses: gjiang@eller.arizona.edu (G.J. Jiang),

roel.ca.oomen@gmail.com (R.C.A. Oomen).
1 See for instance Andersen et al. (2002), Bates (2000), Chernov et al. (2003), Das

(2002), Eraker et al. (2003), Garcia et al. (in press), Ho et al. (1996), Maheu and
McCurdy (2004), Pan (2002) and Schaumburg (2004).
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have been developed for this purpose. For instance, Aït-Sahalia
(2002) exploits the transition density derived from diffusion
processes to test the presence of jumps using discrete financial
data. Carr and Wu (2003) examine the impact of jumps on
option prices and use the decay of time-value with respect to
option maturity to test the existence of jumps. Johannes (2004)
proposes non-parametric tests of jumps in a time-homogeneous
jump diffusion process. Other tests include the parametric particle
filtering approach of Johannes et al. (2006) and the wavelet
approach of Wang (1995). Even though the above mentioned
procedures vary widely from a methodological perspective, a
shared feature is that they are typically designed for the analysis
of low frequency data. Yet, the most natural and direct way to
learn about jumps is by studying high frequency or intra-day
data instead. Such an approach has rapidly gained momentum in
recent years, as it opens up many new and interesting avenues for
exploring the empirical jump process. The earliest contributions to
this stream of literature include Barndorff-Nielsen and Shephard
(2004, 2006) who developed a jump robust measure of integrated
variance called bi-power variation (BPV) that, when compared to
realized variance (RV), can be used to test for jumps over short
time intervals. Exploiting the properties of BPV, Lee and Mykland
(in press) developed an alternative non-parametric test that allows
for identification of the exact timing of the jump. Aït-Sahalia and
Jacod (in press) build on the concept of power variation to derive
a family of jump tests that can be conducted under both the null
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and the alternative hypothesis and may be applied to cases where
jumps have finite or infinite activity. Other approaches include the
threshold technique of Mancini (2006) and the wavelet approach
of Fan and Wang (2007). Tests for jumps in a multivariate setting
have been recently proposed by Bollerslev et al. (2007), Gobbi and
Mancini (2007), and Jacod and Todorov (2007).

This paper contributes to the existing literature by developing a
new jump test that is similar in purpose to the bi-power variation
test of Barndorff-Nielsen and Shephard (2006), but with distinctly
different underlying logic and properties. Intuitively, while the
BPV test learns about jumps by comparing RV to a jump robust
variance measure, our test does so by comparing RV to a jump
sensitive variance measure involving higher order moments of
returns, making it more powerful in many circumstances. Our test
builds on the insight that, in the absence of jumps, the accumulated
difference between the simple return and the log return captures
one half of the integrated variance in the continuous-time limit.
This relation is well known in the finance literature and forms
the basis of a variance swap replication strategy (see Neuberger
(1994)): a short position in a so-called ‘‘log contract’’ plus a
continuously re-balanced long position in the asset underlying
the swap contract. The profit/loss of such replication strategy
will accumulate to a quantity that is proportional to the realized
variance and, as such, allows for perfect replication of the swap
contract. However, with jumps, such a strategy fails and the
replication error is fully determined by the realized jumps. Our
proposed jump test is based on precisely this insight. Specifically,
we compute the accumulated difference between simple returns
and log returns – a quantity we call ‘‘Swap Variance’’ or SwV given
the above interpretation – and compare this to RV. When jumps
are absent the difference will be indistinguishable from zero, but
when jumps are present it will reflect the replication error of the
variance swap which, in turn, lends it power to detect jumps. It is
important to emphasize that the proposed SwV test is fully non-
parametric and its implementation requires no other data than
high frequency observations of the asset price process (specifically,
it does not require the trading of a log contract or data on illiquid
OTC variance swap prices).

Themotivation for exploiting thewealth of high frequency data
for jump detection is undisputed, so are the complications that
arise in practical implementation due to market microstructure
effects present in the data sampled at high frequencies. In the
realized variance literature, the focus has almost exclusively been
on the development of noise robust estimators.2 In a recent paper,
Fan andWang (2007) proposemethods to estimate both integrated
volatility and jump variation from the data containing jumps in the
price and contaminated with the market microstructure noise. To
our knowledge, at present there has been no formal development
of jump tests to specifically dealwith high frequency data observed
with noise. A distinguishing feature of our suggested swap variance
jump test is that it can be applied, in analytically modified form,
to noisy high frequency data. Moreover, we show that the test
retains the power to detect jumps in empirically realistic scenarios.
As a by-product of our analysis, we obtain novel analytical results
regarding the impact of i.i.d. microstructure noise on bi-power
variation. Although not pursued in this paper, these results may
be used to adapt the tests proposed by Barndorff-Nielsen and
Shephard (2006) and Lee and Mykland (in press) to a setting with
noise.

The paper conducts extensive simulations to examine the
performance of the proposed test. Throughout, we compare
2 See for instance, Aït-Sahalia et al. (2005a), Bandi and Russell (2006), Barndorff-
Nielsen et al. (in press), Christensen et al. (in press), Large (2005), Oomen (2005,
2006b), Zhang (2006), Zhang et al. (2005) and Zhou (1996).
results to those of the bi-power variation test because it has
been widely used in literature. Overall, our findings suggest that
the proposed SwV jump test performs well and constitutes a
useful complement to the widely used bi-power variation test. An
empirical implementation, using high frequency IBM trade data
over a 5 year period, is also included and serves to highlight
some of the empirical properties of the swap variance test and to
further expand on the behavior of the bi-power variation test in
the presence of noise.

The remainder of the paper is organized as follows. In Section 2
we develop the swap variance jump test and state its asymptotic
distribution. We discuss the feasible implementation of the test
and report extensive simulation results regarding its size and
power. Section 3 derives an adjusted test statistic that can be
applied to noisy high frequency data. Again, simulations are
performed to examine the performance of the test. Section 4
contains an empirical illustration using IBM trade data, and
Section 5 concludes.

2. Testing for jumps in asset returns: The ‘‘swap variance’’ test

Let yt = ln St , t ≥ 0, be the logarithmic asset price, and
(Ω, F , P) a probability space with information filtration (Ft) =

{Ft : t ≥ 0}. The logarithmic asset price is specified as an Itô
semimartingale relative to (Ft) as follows:

dyt = αtdt + V 1/2
t dWt + Jtdqt (1)

whereαt is the instantaneous drift,Vt is the instantaneous variance
when there is no jump, Jt is a random variable representing jumps
in the asset price,Wt is an (Ft)-standard Brownian motion, and qt
is a (Ft)-counting process with finite instantaneous intensity λt .

The jump diffusion model in Eq. (1) is a very general
representation of the asset return process. Since the demeaned
asset price process is a local martingale, it can be decomposed
into two canonical orthogonal components, namely a purely
continuous martingale and a purely discontinuous martingale (see
Jacod and Shiryaev (2003, Theorem 4.18)). In addition, there are
no functional specifications on the dynamics of αt , Vt , Jt , and qt . In
this sense, our jump test is developed in a model-free setting. We
further note that our test is developed under the null hypothesis
of no jumps. As further elaborated upon below, to our knowledge,
the only tests developed in a model-free framework under
both alternatives (jumps and no jumps) are those proposed by
Aït-Sahalia and Jacod (in press).3

Applying Itô’s lemma to Eq. (1), we obtain the corresponding
dynamics of the price process in levels St :

dSt/St = (αt +
1
2
Vt)dt + V 1/2

t dWt + (exp Jt − 1)dqt . (2)

Combining Eqs. (1) and (2), over the unit time interval, we have:

2
∫ 1

0
(dSt/St − dyt) = V(0,1) + 2

∫ 1

0
(exp Jt − Jt − 1)dqt . (3)

This expression forms the basis for our jump test. In particular,
we introduce a quantity ‘‘SwV’’ – the choice of terminology will
become clear momentarily – defined as the discretized version of
the left-hand side of Eq. (3) based on returns sampled with step
size 1/N over the interval [0, 1], i.e.

SwVN = 2
N∑
i=1

(Ri − ri) (4)
3 Lee andMykland (in press) derive some properties of their jump test under the
alternative of jumps being present, including the probability of spurious detection
of jumps and failure to detect jumps.
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4 This terminology of Swap Variance or SwV is deliberately chosen not to confuse
the quantity with the variance swap contract itself and to be in line with the
terminologies of RV, BPV, IV, QV, etc.
where Ri = Si/N/S(i−1)/N − 1, i.e. the simple return, and ri =

ln Si/N/S(i−1)/N , i.e. the continuously compounded or log return.
Now, by construction, we have that:

plim
N→∞

(SwVN − RVN)

=


0 if no jumps in [0, 1]

2
∫ 1

0
(exp (Jt) − Jt − 1)dqt −

∫ 1

0
J2t dqt

if jumps in [0, 1]

(5)

where realized variance is defined as:

RVN =

N∑
i=1

r2i . (6)

In the above, we use the fact that RVN , converges to the total
variation of the process V(0,1) +

∫ 1
0 J2t dqt as N → ∞ (see Jacod,

1994). Thus, from Eq. (5) it is clear that the difference between
the SwV and RV quantities can be used to detect the presence of
jumps. If the continuous sample path is observed, then we know
with certainty that there are jumps if and only if SwV 6= RV. On the
other hand, if we observe the price process only at discrete time
points, then we can devise a statistical test based on the difference
between SwVandRV to judgewhether or not jumps have occurred.
This is precisely what we do in this paper.

To provide some intuition for the suggested test statistics in
Eq. (5), we point out that Eq. (3) and its discretized counterpart
in Eq. (4) are deeply rooted in the literature on variance swaps
(see e.g. Carr and Madan (1998), Demeterfi et al. (1999), Dupire
(1993) and Neuberger (1994)). A variance swap is a forward
contract on the realized variance of an asset price over a fixed time
horizon. Specifically, a variance swap pays its holder the difference
between an asset’s ex-post realized variance – defined as the
sum of squared returns at a pre-specified frequency (e.g. hourly)
and over a pre-specified horizon (e.g. 3 months) – and the strike
price on the notional value of the contract. Thus, a variance swap
allows investors to manage volatility risk much more directly
and effectively than using for instance a position in a standard
put or call option where volatility exposure is diluted by price
and interest rate exposure. To price and hedge a variance swap,
Neuberger (1994) proposes a replication strategy using the so-
called ‘‘log contract’’: a contract with price equal to the logarithmic
asset price, i.e., ln St . Since at any given time t the delta of such a
contract is equal to ∂ ln St/∂dt = 1/St , a delta-hedging on a short
position of the log contract thus involves taking a long position in
the underlying asset with number of shares equal to 1/St . The pay-
off of a continuously re-balanced delta-hedging strategy for a short
position in two log contracts is equal to:

2
∫ 1

0

(
1
St

dSt − d ln St

)
(7)

where −d ln St measures the instantaneous change in value for
the short position of the log contract, and 1

St
dSt the instantaneous

change in value for the long position in the underlying asset.
From Eq. (3), it is clear that when there are no jumps, this payoff
perfectly replicates the integrated variance V(0,1). Yet, when there
are discontinuities or jumps in the price process, the position will
be subject to a stochastic and unhedgeable replication error, i.e.

P&L due to jumps = 2
∫ 1

0
(exp (Jt) − Jt − 1) dqt .

In practice, rebalancing of the replication portfolio is of course done
at discrete intervals instead of continuously, and the strike of the
variance swap contract is not the latent integrated variance but
its discretized counterpart realized variance. From Eq. (7) we can
see that the previously defined SwV quantity measures the pay-
off of a variance swap replication strategy using a discretely delta-
hedging on a short position in two log contracts. The jump test
developed in this paper is based on the difference between the SwV
and RVquantitieswhich, by the same argument, can be interpreted
as the cumulative replication error of a discretely hedged variance
swap. In the absence of jumps, the replication error is due to
discretization only and will therefore be relatively small. In the
presence of jumps, the replication strategy fails and the difference
between SwV and RV is likely to be large. This logic forms the basis
for our test and hence the terminology ‘‘Swap Variance’’ or SwV.4

Further intuition about the swap variance test – from a
statistical viewpoint – can be gained by considering the following
Taylor series expansion:

SwVN − RVN =
1
3

N∑
i=1

r3i +
1
12

N∑
i=1

r4i + · · · . (8)

From this it is clear that the swap variance test exploits the
impact of jumps on the third and higher order moments of asset
returns. This is in line with a number of other papers in this area,
particularly Aït-Sahalia and Jacod (in press) and Johannes (2004)
(see also Bandi and Nguyen (2003)). Moreover, because SwVN −

RVN =
1
3

∑N
i=1 r̄

3
i where r̄i is between 0 and ri, the difference

between the swap variance and realized variance measures tends
to be positive with positive jumps in the testing interval, and
negative with negative jumps. As such, it is a two-sided test.

As already mentioned above, with discretely sampled data, we
require a distribution theory on the proposed jump test in order
to establish significance. The theorem below provides various
versions of the swap variance jump test statistic as well as their
asymptotic distributions.

Theorem 2.1 (Swap variance jump tests). For the price process
specified in Eq. (1) with the assumptions that (a) the drift αt
is a predictable process of locally bounded variation, and (b) the
instantaneous variance Vt is a well-defined strictly positive càdlàg
semimartingale process of locally bounded variation with

∫ T
0 Vtdt <

+∞, ∀T > 0, and under the null hypothesis of no jumps, i.e. H0 :

λt = 0 for t ∈ [0, T ], we have as N → ∞

(i) the difference test:

N
√

ΩSwV
(SwVN − RVN)

d
−→ N (0, 1) (9)

(ii) the logarithmic test:

V(0,1)N
√

ΩSwV
(ln SwVN − ln RVN)

d
−→ N (0, 1) (10)

(iii) the ratio test:

V(0,1)N
√

ΩSwV

(
1 −

RVN

SwVN

)
d

−→ N (0, 1) (11)

where ΩSwV =
1
9µ6X(0,1), X(a,b) =

∫ b
a V 3

u du, and µp = E(|x|p) for
x ∼ N (0, 1).

Proof. See Appendix A. �
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5 Unreported simulation results show that when that the sample size is
reasonable and the variance process not overly erratic, the performance of the
feasible test is close to that of the infeasible one indicating that asymptotic variance
estimation is not an impediment.
The assumptions imposed on the price process in Theorem 2.1
ensure local boundedness conditions on the drift and diffusion
functions, which are satisfied in all concrete models. The assump-
tions also ensure that integrals of the drift and diffusion functions
are well defined, see, e.g., Jacod and Shiryaev (2003). Further, the
assumptions are similar to those in Barndorff-Nielsen et al. (2005).
As detailed later, feasible implementation of the SwV test makes
use of the multi-power variations developed in Barndorff-Nielsen
and Shephard (2004) and Barndorff-Nielsen et al. (2005). In partic-
ular, we note that Barndorff-Nielsen et al. (2005) has extended ear-
lier results on BPV in Barndorff-Nielsen and Shephard (2004, 2006)
by relaxing the restriction of ‘‘leverage effect’’ on the asset return
process. Thus, the SwV test allows for leverage effect or a contem-
poraneous relation between dyt and dVt . The assumptions on in-
stantaneous variance process are similar to those in Aït-Sahalia
and Jacod (in press), and accommodate stochastic volatilitymodels
commonly specified in the literature including those with jumps.

The three versions of the SwV test mirror those available for
the bi-power variation (BPV) test proposed by Barndorff-Nielsen
and Shephard (2004, 2006). The motivation for considering the
logarithmic- and ratio-type tests is that these are generally found
to have better finite sample properties. While the structure of the
SwV test is very similar to that of the BPV test, the underlying logic
is fundamentally different: the BPV test attempts to detect jumps
by comparing RV to the jump robust bi-power variation quantity
involving the product of contiguous absolute returns, whereas the
SwV test does so by comparing RV to the jump sensitive swap
variance quantity involving cubed returns in the leading term. Put
differently, the BPV test is based on second order moments while
the SwV is based on the third and higher order moments. As a
consequence, the convergence rate of the SwV test is of order
N , compared to

√
N for the BPV tests, and the simulation results

below illustrate that the power of SwV generally dominates that of
the BPV test.

SwV test statistics in Theorem 2.1 are infeasible because
they depend on the latent quantities V(0,1) and X(0,1). Analogous
to the BPV test, feasible versions of the SwV test can be
obtained by replacing these quantities with consistent and jump
robust estimates based on the concept of multi-power variation
developed in Barndorff-Nielsen et al. (2005) and Barndorff-Nielsen
et al. (in press). In particular,V(0,1) can be estimated using bi-power
variation:

BPVN = µ−2
1

N
N − 1

N−1∑
i=1

|riri+1| (12)

whereas estimates of ΩSwV can be obtained using multi-power
variation:

Ω̂
(p)
SwV =

µ6

9

N3µ
−p
6/p

N − p + 1

N−p∑
i=0

p∏
k=1

|ri+k|
6/p (13)

for p ∈ {1, 2, . . .}. Clearly, Ω̂
(4)
SwV and Ω̂

(6)
SwV are the obvious

candidates for the robust estimation of ΩSwV.
To conclude, we point out that the SwV test is developed under

the null hypothesis of no jumps. Expressions of the test statistic
under the alternative are not readily available. When jumps are
realizations of a countable process such as Poisson process, the test
statistic is a function of the realized jumps. Specifically, the BPV
statistic is a function of jump variance, whereas the SwV statistic is
a function of higher ordermoments of jumps. Thus, the distribution
of the test statistic under the alternative is dependent on the jump
process. To our knowledge, the family of tests proposed by Aït-
Sahalia and Jacod (in press) is the only one in the literature that
is developed under both alternatives (i.e. jumps and no jumps).
2.1. Finite sample properties of the SwV jump test

Below, we investigate the finite sample properties of the
proposed SwV jump test using simulations. We compare all our
results with the BPV jump ratio-test of Barndorff-Nielsen and
Shephard (2004, 2006) because this is the natural alternative in the
current setting, i.e.

V(0,1)
√
N

√
ΩBPV

(
1 −

BPVN

RVN

)
d

−→ N (0, 1) (14)

where ΩBPV =
(
π2/4 + π − 5

)
Q(0,1) and Q(a,b) =

∫ b
a V 2

u du.
When implementing jump tests, we concentrate exclusively on
the feasible versions, that is, those evaluated using an asymptotic
variance estimate based on observed returns instead of the latent
variance path.5 To simulate the price process in Eq. (1), we use
an Euler discretization scheme and specify the stochastic variance
(SV) component as the Heston (1993) square-root process, i.e.

dVt = 20 (0.04 − Vt) dt + 0.75
√
VtdW v

t . (15)

The choice of SV parameters is guided by the empirical estimates
available in the literature (e.g. Andersen et al. (2002) and Bakshi
et al. (1997)). Using VIX data, Bakshi et al. (2006) estimate
a mean reversion coefficient of 8 and volatility of volatility
coefficient of 0.43. So the values used in this paper generate
a somewhat less persistent and more erratic variance process.
For simplicity, we set αt = 0 in Eq. (1) because reasonable
specifications of the drift component will not have a discernable
impact on the test performance, particularly at high intra-day
frequencies. In addition, we assume that the Brownian motion
driving the variance process is independent of the one driving the
returns process: the impact of leverage will be investigated in the
robustness analysis below. To gauge the variability of the variance
process, we compute the ratio of maximum over the minimum
volatility attained within the day based on simulated paths. For
the parameter values used here, this ratio is equal to 1.25 and
thus comparable in magnitude to the typical diurnal variation of
volatility (see for instance Engle (2000, Figure 4)). In the robustness
analysis below, we consider alternative variance dynamics where
this ratio is about 3 reflecting a substantiallymore volatile process.

All simulation results reported below are based on 100,000
replications to ensure high accuracy.

2.1.1. Size of the SwV jump test
To examine the size of the SwV test, we simulate the price

process as discussed above, with Jt = 0 for t ∈ [0, 1]. With regard
to the sampling frequency we consider three scenarios, namely
N = {26, 78, 390} corresponding to 15-, 5-, and 1-min data
over a 6.5 h trading day respectively. Table 1 reports the standard
deviation, skewness, and kurtosis of the jump test distributions
under the null hypothesis of no jumps. Fig. 1 contains the QQ plots
for the ratio-test. For comparison, analogous results for BPV test
are also reported.

A number of observations can be made. For small sample sizes
the SwV test distribution is heavy tailed and has a variance greater
than 1. Both findings are not surprising given that the calculation of
the feasible test statistic involves division by integrated sixticity, a
quantity that is difficult to estimate. Based on so few observations,
there is likely to be a substantial amount of measurement error
so that, by Jensen’s inequality, we expect all even moments such
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Fig. 1. QQ-plots of the feasible SwV and BPV jump ratio-test statistics under the null of no jumps.

Table 1
Summary statistics of the SwV and BPV test distribution under the null hypothesis of no jumps

Standard deviation Skewness Kurtosis
diff log ratio diff log ratio diff log ratio

Panel A: SwV test
N = 26 1.77 1.48 1.48 −0.37 −0.11 −0.12 20.23 9.42 9.42
N = 78 1.22 1.16 1.16 −0.01 0.00 −0.00 4.84 3.91 3.91
N = 390 1.04 1.03 1.03 0.00 0.00 −0.00 3.28 3.16 3.16

Panel B: BPV test
N = 26 1.37 1.21 1.12 1.93 1.16 0.61 10.19 5.44 3.58
N = 78 1.11 1.07 1.04 0.94 0.63 0.35 4.59 3.65 3.13
N = 390 1.02 1.01 1.01 0.42 0.29 0.17 3.32 3.15 3.05
as the variance and kurtosis to be overestimated. The log- and
ratio-tests partially alleviate this. When the sample size grows,
both the variance and the kurtosis rapidly converge to values
consistent with the asymptotic standard normal distribution. This
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Fig. 2. Size and power of the feasible SwV jump test.
is confirmed by the QQ plots in Fig. 1. In comparison, the BPV test
shows similar distortions for small sample size, albeit of lesser
magnitude. Consistent with the simulation results of Huang and
Tauchen (2005) for the BPV test, we also find that the logarithmic-
and ratio-versions of the test have better finite sample properties
than the difference test. Importantly, at a one-minute frequency
or above, both the SwV and BPV test distributions are remarkably
close to their asymptotic counterparts. Motivated by this, we
exclusively focus on the ratio tests in the remainder of this paper.

To get a better idea of the magnitude of size distortion in finite
sample, Panel A of Fig. 2 plots the 1% size of the feasible jump ratio-
tests for sampling frequencies between 5 seconds (i.e. N = 4680)
and 5 min (i.e. N = 78). Both tests are somewhat oversized: the
SwV has a larger distortion than the BPV at low frequencies but
also converges more rapidly so that at sampling frequencies of 1
minute and up both tests have similar size properties.

2.1.2. Power of the SwV jump test
To examine the properties of the SwV ratio-test under the

alternative hypothesis we simulate the price process but now
add jumps to the simulated price path. Here, we consider three
different simulation scenarios, namely

(i) A single jump with random sign and fixed size of 50 basis
points (bps), randomly placed in the sample. The sampling
frequency is varied between 5 min (N = 78) and 5 s (N =

4680).
(ii) A single jump with random sign and size varying between

0 and 75 bps, randomly placed in the sample. The sampling
frequency is fixed at one-minute (N = 390).
(iii) A random number of jumps, with random sign and size,
randomly placed in the sample. The sampling frequency is
fixed at one-minute (N = 390), the expectednumber of jumps
is 2 (with a variance of 1), while the jump size |J| = µ(1+ε/4)
where ε is a standard normal random variable and µ is varied
between 0 and 75 bps.

In the presence of jumps, robust estimation of the asymptotic
variance is key: the conventional integrated sixticity estimator
involves sixth powers of returns that makes it upward biased so
that the power of the test can deteriorate substantially. Thus, in our
simulations we implement the feasible jump test using the jump
robust estimator in Eq. (13) with p = 6. A similar issue arises for
the BPV test so we estimate the integrated quarticity using quad-
power variation. Unreported simulation results indicate that (i) if
non-robust estimators are used, the power is virtually zero for both
tests, (ii) using a different robust estimator, e.g. Ω̂(4)

SwV or tri-power
variation for integrated quarticity, makes little difference to the
performance of the tests, (iii) deterioration in power associated
with the feasible test, relative to the infeasible one, is limited and
minimal with realistic sample sizes.

Panels B–D of Fig. 2 plot the power of the feasible SwV ratio
test for the three different jump scenarios described above. As a
benchmark, the corresponding BPV results are added as well. The
results can be summarized as follows. For a single jump with fixed
size (scenario (i), Panel B) the SwV test is uniformlymore powerful
than the BPV test across all sampling frequencies considered. The
difference in performance can be quite substantial. At a low 5-
min frequency the difference in size distortion between the SwV
and BPV test is about 1% but the SwV test has almost 15% more
power, detecting about 1 out of every 3 jumps.When the sampling
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Fig. 3. Distribution of feasible jump ratio-test statistics under null and alternative.
frequency increases, the absolute gain in power of the SwV test
grows and peaks at about 25% at a sampling frequency between
1 and 2 min. Beyond this, the power of both tests rapidly converge
to unity. To further illustrate the above, Fig. 3 plots the distribution
of the SwV and BPV tests in the absence and presence of jumps.
The two-sided nature of the SwV test is evident, taking on negative
values with negative jumps and vice versa. More importantly, the
SwV test ismuchmore sensitive to the presence of jumps than BPV,
with the test statistic taking on larger values and a larger fraction
exceeding the critical value of the test. As already discussed above,
this can be understood by noting from Eq. (8) that the SwV test
primarily uses third order moments that are more sensitive to
jumps than the second order moments exploited by the BPV test.6

Considering the case with a single jump at a fixed sampling
frequency of one-minute (scenario (ii), Panel C), we again find that
the SwV test is uniformly more powerful than the BPV test across
jump sizes. The difference in power between the two tests is often
considerable: with a jump of 40 bps, the power of the SwV test is
65%, compared to 40% for BPV. Evenwith large jumps of 75 bps, the
BPV test misses about 1 in 10 jumps whereas the SwV test detects
virtually each one of them.

Finally, with multiple random jumps (scenario (iii), Panel D)
the power of the SwV test is comparable to that of BPV across
the expected jump size. In simulations, the average number of
jumps is equal to 2. If we further increase this then the BPV test
becomesmore powerful than the SwV test. This can be understood
by observing that in the presence of jumps the power of the SwV
test primarily comes from the leading term in Eq. (5) which is
proportional to

∫ t
0 J3t dqt , compared to

∫ t
0 J2t dqt for the bi-power

variation test. Thus, with multiple jumps of differing sign, the SwV
test loses power because the cubed terms will, at least partially,
offset each other thereby reducing the value of the test statistic. It
is noted, however, that it is widely believed that jumps are a rare
occurrence and thus from a practical viewpoint the scenario with
multiple jumps over relatively short time horizons as considered
here is of limited interest.
s logic, one might be tempted to construct supposedly even
sts using say the sixth order moment. But in doing so one
nd that the variance of the test statistic will include a term
rated variance process raised to the power six. Thus, the feasible
such a test will be extremely challenging and the power gain
terioration in the estimate of the asymptotic variance of the test
2.2. Robustness analysis

To assess the robustness of the SwV test performance, we
consider (i) the ‘‘leverage effect’’ and (ii) alternative variance
dynamics. For leverage, we introduce a correlation of −75%
between Brownian motions driving the variance and return
dynamics, i.e. E(dWtdW v

t ) = −0.75dt in Eqs. (2) and (15). This
level of correlation is in line with empirical estimates and close
to the value used in the simulation study by Huang and Tauchen
(2005). For the alternative variance specification, we follow Lee
and Mykland (in press) and adopt the general SEV-ND model
introduced by Aït-Sahalia (1996) which accommodates stochastic
elasticity of variance and non-linear drift and take parameter
values from Bakshi et al. (2006, Table 2):

dVt = (−0.554 + 21.322Vt − 209.348V 2
t + 0.005V−1

t )dt

+

√
0.017Vt + 53.973V 2.882

t dWt . (16)

Fig. 4 reports the size and power of the feasible SwV jump
test as a function of the sampling frequency. The results are
compared to the benchmark case, i.e. SV process as in Eq. (15)
with no ‘‘leverage effect’’. Confirming the theoretical results in
Theorem 2.1, we find that inclusion of leverage has no noticeable
impact on the size or power of the SwV test. With alternatively
variance dynamics as specified by the SEV-ND model we observe
a substantial deterioration of size and limited deterioration of
power. The specification in Eq. (16) produces sample paths of
the variance process that are much more erratic than those of
the SV model used previously. Because the SwV test requires an
estimate of integrated sixticity, which is very challenging in this
setting, the observed deterioration of performance is perhaps not
that surprising. Importantly, however, at empirically reasonable
sampling frequencies of 1 min or so, the size distortion is less than
2% and the power more than 75%.

3. The SwV jump test in the presence of market microstructure
noise

In practice, an important complication that arises with the
use of high frequency data for the purpose of realized variance
calculation, or indeed jump identification, is the emergence of
market microstructure noise. Niederhoffer and Osborne (1966) is
one of the first studies to recognize that the existence of a bid-ask
spread leads to a negative first order serial correlation in observed
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Fig. 4. Robustness analysis for feasible SwV test.

Fig. 5. QQ-plots of the feasible noise-corrected SwV jump ratio-test statistics with i.i.d. microstructure noise.

Fig. 6. Autocorrelation of IBM returns on different time scales.
returns (see also Roll (1984)). The impact that these and other
microstructure effects have on realized variance has recently been
studied in detail and is now well understood (see for instance
Aït-Sahalia et al. (2005a,b), Bandi and Russell (2006), Barndorff-
Nielsen et al. (in press), Hansen and Lunde (2006), Christensen
et al. (in press), Large (2005), Oomen (2005, 2006b), Zhang (2006),
Zhang et al. (2005) and Zhou (1996)). However, the impact of
market microstructure noise on the BPV jump test is, as pointed
out by Barndorff-Nielsen and Shephard (2006), currently an open
question.7 Also, the recently developed jump tests by Aït-Sahalia
and Jacod (in press) and Lee and Mykland (in press) have not yet
considered for microstructure effects. In this section, we show that
7 See Huang and Tauchen (2005) for some exploratory analysis of this issue.
the SwV test proposed in this paper can be applied, in analytically
modified form, to high frequency data contaminated with i.i.d.
market microstructure noise and still retains good power. As a
by-product of our analysis, we obtain novel analytical results
regarding the impact of i.i.d. noise on bi-power variation. Although
not pursued here, these results may be used to adapt the tests
of Barndorff-Nielsen and Shephard (2006) and Lee and Mykland
(in press) to a setting with noise.

Regarding the noise specification, we consider the case where
the observed price y∗

t can be decomposed into an ‘‘efficient’’ price
component yt and an i.i.d.marketmicrostructure noise component
ε, i.e.

y∗

i/N = yi/N + εi, (17)

for i = 0, 1, . . . ,N and εi ∼ i.i.d. N (0, ω2). Consistent with the
presence of a bid-ask spread, Eq. (17) implies anMA(1) dependence
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8 It is noted that the above results rely on the assumption that the return variance
(and hence the noise ratio γ ) is constant over the interval of interest. It is obvious
from the proof that the results can be generalized to the casewhere the noise ratio is
constant but both return variance andnoise are timevarying. However,when return
variance varies over time and the noise is constant, the impact is more complicated
and the bias correction becomes much more cumbersome.
structure on observed returns:

r∗

i = ri + εi − εi−1,

where r∗

i = y∗

i/N − y∗

(i−1)/N . It is noted that while the i.i.d.
assumption on εi can be restrictive, it is widely used in the
literature and provides a reasonable approximation to reality
in many situations (see Hansen and Lunde (2006) for further
discussion).

Theorem 3.1 (Swap Variance Test in the Presence of i.i.d Market
Microstructure Noise). For the price process specified in Eq. (1) with
assumptions as stated in Theorem 2.1, and in the presence of i.i.d.
market microstructure noise as in Eq. (17) with ω2

� V(0,1), then
under the null hypothesis of no jumps, i.e. H0 : λt = 0 for t ∈ [0, 1],
the following test statistics have approximately zero mean and unit
variance for large but finite N:

(i) the difference test:

SwV∗

N − RV ∗

N√
Ω∗

SwV

(18)

(ii) the logarithmic test:

V ∗

(0,1)√
Ω∗

SwV

(
ln SwV∗

N − ln RV ∗

N

)
(19)

(iii) the ratio test:

V ∗

(0,1)√
Ω∗

SwV

(
1 −

RV ∗

N

SwV∗

N

)
(20)

where V ∗

(0,1) = V(0,1) + 2Nω2, Ω∗

SwV = 4Nω6
+ 12ω4V(0,1) +

8ω2 1
N Q(0,1) +

5
3

1
N2 X(0,1), and SwV∗

N and RV ∗

N are computed using
the contaminated prices y∗.

Proof. See Appendix A. �

In the proof we show that plimN→∞(SwV∗

N − RV ∗

N )/N → ω4

which illustrates that, in the limit, the test statistic diverges. The
more interesting case, however, is as described in Theorem 3.1.
Here N is large but finite – it is explicitly not an asymptotic result
– and the noise has an impact on the test statistic but it does not
dominate it. In particular, considering the Taylor series expansion
of the SwV test in Eq. (8), the impact of noise is primarily on
the second order term involving quadratic returns. Finite sample
adjustment essentially accounts for this. The assumption that the
noise variance ω2 is of smaller magnitude than the integrated
variance V(0,1) allows us to drop a number of terms that are not
important in practice and obtain the relatively compact expression
for Ω∗

SwV. We will show below that, with these adjustments, the
test retains good power to detect jumps in empirically realistic
scenarios.

3.1. Feasible implementation of the SwV∗ test

The critical issue for the implementation of the feasible noise
adjusted SwV jump test is to obtain a good estimate ofΩ∗

SwV, i.e. one
that is robust to jumps and incorporates the impact of market
microstructure noise correctly at the same time. A natural way of
estimating Ω∗

SwV is to estimate each of its components separately,
i.e. ω2, V(0,1), Q(0,1), and X(0,1).

Estimates of the market microstructure noise variance ω2 can
be relatively straightforward to obtain. For instance, Bandi and
Russell (2006) propose RV ∗

N/(2N) as a consistent estimator of the
noise variance. However, in finite sample this estimator can be
severely biased. Thus, in this paper we use the autocovariance-
based noise variance estimator proposed by Oomen (2006b):

ω̂2
= −

1
N − 1

N−1∑
i=1

r∗

i r
∗

i+1. (21)

It is easy to see that this estimator is unbiased with i.i.d. noise
and robust to jumps in the same way that the BPV quantity is
(see Oomen (2006a) for further discussion). Here, returns at the
highest sampling frequency can be used to maximize estimation
accuracy.

Computing robust but accurate estimates of the integrated
variance V(0,1) (and Q(0,1), and X(0,1) alike) is much more
challenging because we need to avoid, or correct for, the impact of
jumps as well as market microstructure noise. In a related context,
Bandi and Russell (2006) suggest the use of realized variance
computed using data at sampled at low frequency to obtain
estimates of the integrated variance free of noise. In principle a
similar approach could be taken here, with the only difference that
since we require robustness to jumps, bi-power variation should
be used instead of realized variance. In this paper we propose an
alternative approach that makesmore efficient use of the available
data. In particular, we first compute the bi-power variation using
noisy data at the highest frequency, i.e. BPV ∗

N to get an estimate of
V(0,1). This estimate is robust to jumps but remains biased as it is
based on noise contaminated returns. In the second step, we then
correct for this bias based on the following result regarding the
impact of i.i.d. market microstructure noise on bi-power variation
quantity.

Proposition 3.2 (Bias Correction for BPV in the Presence of i.i.d
Market Microstructure noise). Under the conditions as specified in
Theorem 3.1, and with constant return variance V over the interval
[0, 1], we have:

E
[
BPV ∗

N

]
= (1 + cb (γ ))E [BPVN ] , (22)

where

cb (γ ) = (1 + γ )

√
1 + γ

1 + 3γ
+ γ

π

2
− 1

+ 2
γ

(1 + λ)
√
2λ + 1

+ 2γπκ (λ) , (23)

with γ = Nω2/V , λ =
γ

1+γ
, κ (λ) =

∫
∞

−∞
x2Φ(x

√
λ)(Φ(x

√
λ) −

1)φ (x) dx, and Φ(·) and φ(·) are the CDF and PDF of the standard
normal respectively. The expectation in Eq. (22) is conditional on V
and γ . BPV ∗

N and BPVN denote bi-power variation computed from
noise contaminated and clean return data respectively.

Proof. See Appendix A. �

In the above, the function cb (γ ) in Eq. (23)measures the impact
of i.i.d. market microstructure noise on BPV and, as such, provides
the bias correction for the bi-power variation calculated from
market microstructure noise contaminated returns.8

For the estimation of Q(0,1) and X(0,1) in a jump-robust and
noise-adjusted fashion, we may take a similar approach and
bias correct quad-power variation and six-power variation. In
particular, under the assumptions specified in Proposition 3.2 it
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Table 2
Properties of the jump statistics with i.i.d. market microstructure noise

Sampling frequency Panel A: Standard statistic Panel B: Noise corrected statistic
Feasible SwV Feasible BPV Infeasible SwV∗ Feasible SwV∗

Size (%) Power (%) Size (%) Power (%) Size (%) Power (%) Size (%) Power (%)

5 s 0.00 8.76 0.00 0.00 2.04 60.60 1.92 58.50
15 s 0.02 32.05 0.00 0.00 1.79 71.62 1.81 70.24
1 min 0.33 41.64 0.16 4.20 1.47 58.17 1.52 55.95
5 min 2.41 23.10 1.81 10.81 1.24 25.32 1.09 19.97
can be shown that when quad-power variation is calculated from
noisy data as an estimate of integrated quarticity its bias is cq (γ ) ≈

5.46648γ 2
+4γ . Similarly, for six-power variation as an estimate of

integrated sixticity the bias is cx (γ ) ≈ 13.2968γ 3
+ 14.4255γ 2

+

6γ . Because, particularly with noisy data, the quality of quarticity
and sixticity estimates may be poor, in this paper we estimate
Q(0,1) and X(0,1) simply as the squared and cubed estimate of
the integrated variance described above. Unreported simulation
results indicate that for reasonable parameter values and sample
sizes this ad hoc approach works well.

3.2. Finite sample properties of the noise adjusted SwV jump test

To gauge the finite sample properties of the noise adjusted
SwV test proposed in Theorem 3.1, with a feasible implementation
relying on noise corrected BPV estimates, we conduct further
simulation experiments. The volatility process is specified as in
Eq. (15). For simplicity, we rule out leverage here since the test
has been shown to be robust to this and the effect of noise will
dominate in any case. The noise variance parameterω2 is set equal
to 0.2

2×78
0.04
252 , corresponding to a noise volatility of about 4.5 bps.

With such noise levels, we expect a 20% bias in realized variance, or
roughly a 45% bias in realized volatility, calculated from 5 minute
returns.

Table 2 reports the size and power for the various jump tests in
the presence of noise. First, consider the scenario where we apply
the unadjusted jump tests to noisy data (panel A). The size of the
SwV test tends to zero as does the power, albeit that at moderate
frequencies the SwV test still has some ability to detect jumps. For
the BPV test both the size and the power rapidly vanish. This can
be understood better from the results presented above. Note from
Eq. (23) that for low sampling frequencies (or small values of
γ ), BPV ‘‘behaves’’ like RV since the slope of cb(γ ) is close to 2.
However, when the sampling frequency increases (and the noise
ratio grows) we have:

lim
N→∞

BPV ∗

N

γ
=

2
√
3

+
π

2
+ 2πκ (1) ≈ 2.2556,

compared to

lim
N→∞

RV ∗

N

γ
= 2.

This illustrates that BPV is slightly more sensitive to i.i.d. market
microstructure noise9 than RV. As a consequence,when computing
the BPV test on noisy data, we see the power disappear because the
statistic diverges (i.e. for largeN wehave RV ∗

N −BPV ∗

N ≈ −0.25γ =

−0.25Nω2/V(0,1)).
9 To mitigate the impact of noise on BPV, Andersen et al. (2007) and Huang and
Tauchen (2005) have suggested to use staggered returns, i.e.

∑
|r∗

t ||r∗

t−2|. Based on
the results presented here it is easy to see that with this construction of BPV, the
bias due to i.i.d. noise is equal to 1 + 2γ , i.e. the same as for RV. This may explain
why the results for the BPV ratio test are better when returns are staggered this
way.
Turning to the performance of the noise adjusted SwV jump
test (panel B of Table 2), we consider both the infeasible and
the feasible version. Three observations can be made. Firstly, the
size and power of the feasible and infeasible versions are quite
close suggesting that the estimation of noise level and integrated
variance quantities based on noise adjusted bi-power variation
works well. Secondly, we detect a modest size distortion when
the sampling frequency is increased. Fig. 5 draws the qq-plots
of the test under the null hypothesis of no jumps at different
sampling frequencies. We see that although the distribution is
close to normal, it has fat tails at low frequency and slightly higher
variance at 5 s frequency explaining the size distortion. Thirdly, the
power of the test grows with an increase of sampling frequency up
to 15 s and then subsequently drops when the sampling frequency
is increased further and the noise starts to dominate.

4. An empirical illustration

As an illustration of our proposed SwV jump test, we conduct a
small scale empirical exercise using high frequency IBM trade data.
Below, we consider the standard SwV jump test, the noise adjusted
SwV jump test, as well as the BPV jump test for comparison. We
start by applying these tests to sparsely sampled data, i.e. data
aggregated to a frequency where the impact of microstructure
noise is limited and the BPV test is still valid. The results here will
provide insights into the performance of SwV relative to BPV. Next,
we apply the jump tests to returns sampled at the highest available
frequency where noise is pervasive. The results here illustrate
the performance of the noise adjusted SwV test compared to its
unadjusted counterpart.

The IBM data used below is extracted from the TAQ database
and consists of all trades that took place on the primary exchange
(NYSE) over the period January 2002 through December 2006. We
also retain all trades executed through NYSE Direct+ (indicated
by sale condition ‘‘E’’). Towards the end of the sample period,
these latter trades constitute 30% of trading volume. We apply the
following filtering rules, (i) remove all trades with a time stamp
before 9:45 am and after 4:00 pm leaving us with a trading day
of 375 minutes, (ii) remove all trades with a non-zero correction
indicator, (iii) remove all trades with a non-empty sale condition
different from ‘‘E’’. The resulting data set contains more than 5
million observations, i.e. an average of 4661 trades per day for 1259
trading days.

4.1. Jump detection using sparsely sampled returns

To mitigate the impact of noise at this stage, we construct the
equivalent of 1 minute returns in trade time, i.e. each day we
sample 376 prices equally spaced in the sequence of trades. The
left panel of Fig. 6 plots the autocorrelation function of returns,
pooled across days. We find significantly negative first order serial
correlation, but the magnitude is relatively small indicating that
the level of noise in this data is limited. For each day, we compute
the three feasible jump ratio-tests (i.e. SwV, SwV∗, and BPV) and
report the jump detection frequencies in Panel A of Table 3.
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Fig. 7. Histogram of BPV ratio-test statistic based on returns of different time scales.

Fig. 8. Jump detection for 1 min IBM data (2002–2006).
Table 3
Jump detections for IBM stock prices (2002–2006, 1259 days)

Panel A: 1 minute returns Panel B: Tick returns
Cutoff = 3 Cutoff = 4 Cutoff = 3 Cutoff = 4

BPV 179 (0.14) 69 (0.05) 27 (0.02) 12 (0.01)
SwV 173 (0.14) 118 (0.09) 242 (0.19) 152 (0.12)
SwV∗ 245 (0.19) 150 (0.12) 493 (0.39) 370 (0.29)

Note. This table reports the number of days (fraction in parenthesis) identified as
having jumps by the respective tests. The critical value or ‘‘cutoff’’ level applies
to the BPV test. Because the SwV test is two-sided we use the corresponding
value given by Φ−1 ((1 + Φ(c))/2) where Φ is the cumulative normal distribution
(i.e. 3.21 and 4.16 respectively).

With a commonly used critical value equal to three (e.g.
Andersen et al. (2007) and Huang and Tauchen (2005)), we find
that the BPV, SwV, SwV∗ tests detect 179, 173, and 245 days as
having a jump in the price process. With a critical value of four
– focusing mainly on the large jumps – we find that the BPV,
SwV, SwV∗ tests detect jumps roughly once a month, once every
two weeks, and once every 8 days respectively. This pattern is
consistent with the simulation results above, where we found that
SwV∗ is more powerful than SwV, and SwV is more powerful than
BPV. Of course, looking at the detection frequency alone is not
sufficient because with spurious detection of jumps a particular
test may appear more powerful than it really is. With this in mind,
consider Fig. 8. In panel A, we plot the (absolute) value of the SwV∗

test statistic as a function of the BPV test statistic for each day in the
sample. If we take the origin to be (3, 3) then the observations in
the first and third quadrants of the graph indicate instances where
both tests detect the presence of jumps. More importantly, the
second (fourth) quadrant contains the instances where only the
SwV∗ (BPV) test detects jumps but the BPV (SwV∗) test does not.
These are days of particular interest because they provide insights
into the relative properties of the competing jump tests.

In Fig. 9 we present a representative sample of such days. First
consider Panel A, i.e. days where only SwV∗ detects a jump. On
2002/12/27 we observe multiple contiguous jumps around the
25th price observation. Such a price path violates the requirement
of the BPV test for jumps to be preceded and succeeded by small
‘‘diffusive’’ returns. As a result, bi-power variation loses robustness
to jumps in this case and the test statistic does not pick up the jump.
The SwV∗ test, on the other hand, picks up the jump: even though
there are multiple jumps, the power does not deteriorate in this
case because they are of the same sign. On 2003/07/10 we observe
a smallish 50 bps jump around the 120th price observation. Again,
the SwV∗ test picks it up while the BPV test does not, reflecting
the difference in power. Next, we consider some examples of days
where the BPV test picks up a jump but SwV∗ does not (Panel B
of Fig. 9). On 2002/02/27 we observe a very volatile price path
with a range of almost 4% but no single clear large jump. Yet, it
is conceivable that a number of small jumps may have occurred
and this is clearly a scenario where the BPV test has an edge
over the SwV test. Recall from the discussion towards the end
of Section 2.1.2 that the SwV test suffers from a deterioration of
power when the cubed jump terms (partially) offset each other. A
similar pattern is observed on 20050318where numerous positive
and negative jumps occur. The SwV∗ test statistic is 0.59 but the
BPV test, not surprisingly, detects the presence of jumps.

Although the level of noise in the 1 min data is limited, we still
observe a difference in jump detection frequencies between the
SwV and SwV∗ tests. Panel B of Fig. 8 plots the (absolute) value
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Fig. 9. Examples of jump detection discrepancies for 1 min IBM data (2002 – 2006).
of the SwV∗ test as a function of the SwV test for each day in
the sample. Interestingly, there are few observations (deep) in the
fourth quadrant suggesting that when SwV detects a jump, SwV∗

does as well. Yet, the reverse is not true. There are numerous days
where the unadjusted test does not detect jumpswhereas the noise
adjusted test does. To illustrate that this is not due to spurious
detection of jumps, we present two representative examples of
two such days in Panel C of Fig. 9. On 2002/10/30 and 2005/10/25
we clearly observe large upward jumps that only thenoise adjusted
test manages to pick up.
Overall, the empirical results are consistent with theoretical
and simulation results and agree with intuition. In particular, the
SwV test appears more powerful than the BPV test in situations
with a single jump or multiple jumps of the same sign due to
its reliance on higher order moments that are more sensitive to
jump than those employed by the BPV test. On the other hand,
in scenarios with many jumps of differing sign the BPV test has
an advantage over the SwV test because the power of the latter
is compromised due to the cubed jump terms that appear in the
leading term partially cancelling out and reducing the value of the
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Fig. 10. Jump detection in tick time using noise adjusted SwV.

Fig. 11. Examples of jump detection discrepancies for IBM tick data (2002–2006).
test statistic. Finally, even at relatively low sampling frequencies
with little noise in the data, the noise adjustment to the SwV test
still appears important to retain power.

4.2. Jump detection using tick-by-tick returns

We now consider returns sampled at the highest sampling
frequency, i.e. every trade. From the autocorrelations in Fig. 6
it is clear that data is contaminated by a substantial amount of
noise as indicated by the highly significant and large negative
first order autocorrelation coefficient. Given the discussion above,
with high noise levels, we expect the BPV test to tend to take on
large negative values. Surprisingly, however, the opposite is true
judging from Fig. 7. Here we plot the histogram of the daily BPV
test statistics for the full sample and find that theminimumvalue is
around5with amean around25. This observation can be explained
as follows. Out of an average of 4661 trade returns per day, 2323 are
zero reflecting flat pricing. Thus, computing bi-power variation on
such data will cause the quantity to be heavily downward biased
because the multiplication of contiguous returns will be zero in
about half the cases. It it therefore quite intuitive that RV ∗

N − BPV ∗

N
tends to be large and positive, and even more so in the presence
of jumps. Because the implementation of the SwV∗ test requires
reliable estimates of bi-power variation, the swap variance test on
such datawon’t performwell either. Therefore, instead of sampling
in trade time, we now sample in ‘‘tick time’’, i.e. we sample all
observations that constitute a price change. From Fig. 6 we can
see that the autocorrelation of tick returns is similar to that of
trade returns, with the only qualitative difference being that the
sign of the second order autocorrelation has flipped (see Griffin
and Oomen (2008) for an explanation of why this happens). More
importantly, we see that – as predicted by our results above – the
BPV test is now taking on large negative values and consequently
its power to detect jumps vanishes.

Turning to the results for the SwV test in Table 3, we observe
that the noise adjusted test identifies almost twice as many
days with jumps as its unadjusted counterpart does. Intuitively,
with high levels of noise in tick data, noise correction becomes
increasingly important and the power gain of the SwV∗ test
increases. Panel A of Fig. 10 draws the cross plot of SwV∗ test
realizations as a function of the SwV test statistic for all days in
the sample. Interestingly, there is not a single observation in the
fourth quadrant indicating that on all days that the SwV test detects
jumps, SwV∗ does so as well. To illustrate that spurious jump
detection is not of prime concern, Fig. 11 presents two examples
of typical days where the SwV∗ test detects a jump and the SwV
test does not. On 2002/07/05 and 2002/10/11, clear jumps can be
observed and only after applying the noise correction does the SwV
test pick it up. Again, the results here indicate the importance of a
noise adjustment when applying the jump test, particularly when
data is sampled at high frequency with noise.

5. Conclusion

This paper develops a new test for the presence of jumps.
The proposed test is easy to implement, is designed for use with
high frequency data, exploits the third and higher order return
moments making it more powerful than the bi-power variation
test inmany circumstances, can be applied in analyticallymodified
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form to microstructure noise contaminated data, and has a nice
interpretation in the context of the literature on variance swaps
- hence the name ‘‘Swap Variance’’ test. Simulations as well as
empirical results show that the test performs well and is able to
detect jumps even when data is sampled at the highest available
frequency where noise is pervasive.

Throughout the paper, we have compared our results to the
widely used bi-power variation test of Barndorff-Nielsen and
Shephard (2004, 2006). Recently, however, a number of alternative
jump tests have been proposed in the literature (e.g. Aït-Sahalia
and Jacod (in press), Lee and Mykland (in press), Mancini (2006)
and Fan and Wang (2007)) and a comprehensive comparison
would be interesting. In particular, it is important to understand
the relative performance of these jump tests when applied to noisy
data as well as in scenarios with finite and infinite activity jumps.
Such an analysis is well beyond the scope of the current paper and
we leave it for future research.
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Appendix. Proofs

Proof of Theorem 2.1. We first show that under the null hypoth-
esis of no jumps in the price path, the difference between the SwV
and the RV converges to zero in probability, i.e.,

plim
N→∞

(SwVN − RVN) = 0. (24)

From the definition of swap variance in Eq. (4), we have

lim
N→∞

SwVN = 2
∫ 1

0
(dSu/Su − dyu) = V(0,1).

This result only requires the application of Itô’s lemma (i.e. see
Eq. (3)). Further, under regularity conditions as specified in Jacod
(1994), it also follows that

plim
N→∞

RVN = V(0,1)

for continuous semimartingales. It is emphasized that the conver-
gence of the SwV measure is non-stochastic and that convergence
of RV only requires the absence of jumps and no restrictions on the
variance process or the correlation between variance and return
processes, such as the leverage effect.

To derive the asymptotic distribution of the SwV test, we use a
Taylor series expansion to obtain:

SwVN − RVN =
1
3

N∑
i=1

r3δ,i +
1
12

N∑
i=1

r4δ,i + · · · (25)

where rδ,j = yjδ − y(j−1)δ . In addition, we derive all asymptotic
properties based on the discretized process since our tests are
built on discretely observed asset prices. Note that the following
Milstein scheme discretization of the process in Eq. (1) with jump
intensity λt = 0 has almost sure (a.s.) convergence to the
continuous sampling path (see Talay (1996)):

rδ,i = µ(i−1)δδ +
√
V(i−1)δ(Wiδ − W(i−1)δ)

+
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

as δ → 0, where µt = αt −
1
2Vt . Note that almost sure

convergence is the notion of convergence used in the strong law
of large numbers, and ensures that

∑N
i=1 f (rδ,i)

a.s.
−→

∫ 1
0 f (dyt)

where f (·) is a continuous and twice differential function, see, e.g.,
Grimmett and Stirzaker (1992).

Examining each of the components, we have the following
properties as δ → 0:

µ(i−1)δδ = O(δ)√
V(i−1)δ(Wiδ − W(i−1)δ) = Op(δ

1/2)

1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ) = Op(δ).

Since the drift term is of the highest order with a deterministic rate
of convergence, for simplicity of notation we assume that µt = 0.
We note that relaxing this assumption does not affect the results,
except making the notations more cumbersome.

First, we determine the convergence rate of the test statistic
based on SwVN − RVN . We start with the term 1

3

∑N
i=1 r

3
δ,i where

based on the discretized process with the assumption of µt = 0,
we have the following expression for r3δ,i:

r3δ,i = (
√
V(i−1)δ(Wiδ − W(i−1)δ))

3

+

(
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

)3

+ 3(
√
V(i−1)δ(Wiδ − W(i−1)δ))

×

(
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

)2

+ 3(
√
V(i−1)δ(Wiδ − W(i−1)δ))

2

×

(
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

)
.

Taking expectation of r3δ,i conditional on F(i−1)δ , the last term has
the slowest convergence rate of Op(δ

2). Further results for the
variance of 1

3

∑N
i=1 r

3
δ,i (see below for details) show that the term

1
3

∑N
i=1 r

3
δ,i has a convergence rate no lower than δ or 1/N . Now

turn to the term 1
12

∑N
i=1 r

4
δ,i where a similar expansion gives:

r4δ,i = (
√
V(i−1)δ(Wiδ − W(i−1)δ))

4

+

(
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

)4

+ 4(
√
V(i−1)δ(Wiδ − W(i−1)δ))

×

(
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

)3

+ 4(
√
V(i−1)δ(Wiδ − W(i−1)δ))

3

×

(
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

)
+ 6(

√
V(i−1)δ(Wiδ − W(i−1)δ))

2

×

(
1
2
V(i−1)δ((Wiδ − W(i−1)δ)

2
− δ)

)2

.
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Taking expectation of r4δ,i conditional on F(i−1)δ , the first term has
the slowest convergence rate of Op(δ

2). Note that we have r2n+3
δ,i =

r3δ,i × r2nδ,i for any odd power terms in Eq. (25), and similarly we
have r2n+4

δ,i = r4δ,i × r2nδ,i for any even power terms in Eq. (25) with
n = 1, 2, . . .. This ensures that all higher order terms have faster
convergence rate. That is, as δ = 1/N → 0, the variance swap test
statistic has a convergence of δ or 1/N .

Next, we derive the asymptotic variance of the variance
swap test statistic after first adjusting for the convergence rate,
that is:

N(SwVN − RVN) =
N
3

N∑
i=1

r3δ,i +
N
12

N∑
i=1

r4δ,i + · · · . (26)

Continuity of the sampling path implies that |rδ,i|
a.s.

−→ 0 as δ → 0,
or for any ε > 0, there is a δ > 0 such that |rδ,i| < ε. As
a matter of fact, from the Milstein scheme discretization of the
process, it is easy to see that |rδ,i| = Op(δ

1/2). It is thus sufficient to
only consider the leading term in Eq. (26). That is, the asymptotic
variance can be derived as follows:

var

[
N
3

N∑
i=1

r3δ,i

]
=

N2

9

N∑
i=1

var[r3δ,i]

+
2N2

9

N∑
j<i

N∑
i

cov[r3δ,i, r
3
δ,j]. (27)

Note that the element of the first term is determined by
E(i−1)δ[(r3δ,i − E(i−1)δ[r3δ,i])

2
], i = 1, . . . ,N . Throughout the

derivation, the conditional expectation is takenwith respect to the
filtration F(i−1)δ with given path for the instantaneous variance
process Vt . Using the fact that E(i−1)δ[r3δ,i] = 3V 2

(i−1)δδ
2

+ op(δ2),
and based on the expansion of (r3δ,i − E(i−1)δ[r3δ,i])

2, the term
with the lowest convergence rate is V 3

(i−1)δ(Wiδ − W(i−1)δ)
6 with

a convergence rate of σ 3. Ignoring higher order terms, we have

N2

9

N∑
i=1

var[r3δ,i] =
N2

9

N∑
i=1

E(i−1)δ[V 3
(i−1)δ(Wiδ − W(i−1)δ)

6
] + op(δ).

Taking limit as N → ∞ or δ → 0, for the price process defined in
Eq. (1) with assumptions listed in the theorem, it follows directly
from Barndorff-Nielsen and Shephard (2004) as well as Barndorff-
Nielsen et al. (2005, Theorem 2.2) that:

plim
δ→0

N2

9

N∑
i=1

var[r3δ,i] =
µ6

9

∫ 1

0
V 3
t dt. (28)

Note that Barndorff-Nielsen and Shephard (2004) propose the
following consistent estimator of integrated power function of
variance that is robust to the presence of jumps for appropriate
integer values of r and s, i.e.

plimδ→0δ
1−(r+s)/2

N−1∑
j=1

|rδ,i|r |rδ,(i+1)|
s
= µrµs

∫ 1

0
V (r+s)/2
t dt (29)

with r, s ≥ 0. Asymptotic properties for realized power variation
such as

∑N
i=1 |rδ,i|r are also thoroughly investigated in Jacod

(2006).
Thus, by setting r + s = 6 we can obtain a consistent estimator

of
∫ 1
0 V 3

t dt . In particular, when r = 6, s = 0, we essentially use the
sixticity as the estimate of this asymptotic variance component.

Now we turn to the second term in Eq. (27) that involves
cov[r3δ,i, r

3
δ,j] where j < i, for i, j = 1, . . . ,N . By the iteration of
expectation,we have cov[r3δ,i, r
3
δ,j] = E(j−1)δ[r3δ,i ·r

3
δ,j]−E(i−1)δ[r3δ,i]×

E(j−1)δ[r3δ,i]. Note again that E(i−1)δ[r3δ,i] = 3V 2
(i−1)δδ

2
+op(δ2), hence

the term E(i−1)δ[r3δ,i] × E(j−1)δ[r3δ,i] is order of δ
4. That is,

E(i−1)δ[r3δ,i] × E(j−1)δ[r3δ,i] = 9V 2
(j−1)δV

2
(i−1)δδ

4
+ op(δ4).

We show that the term is negligible. Applying the double
summation as in Eq. (27) and taking limit as δ → 0 to the above
equation, we have

plimδ→0
2N2

9

N∑
j<i

N∑
i

E(i−1)δ[r3δ,i] × E(j−1)δ[r3δ,i]

= 2
∫ 1

0
V 2
u

(∫ u

0
V 2
t dt

)
du ≤ 2

(∫ 1

0
V 2
t dt

)2

.

Note that from Eq. (29), a consistent estimator of
∫ 1
0 V 2

t dt can be
obtained by setting r + s = 4. Using the fact that |rδ,i| = Op(δ

1/2),

the absolute return term in the consistent estimator of
(∫ 1

0 V 2
t dt

)2
is of order Op(δ

4). In comparison, the absolute return term in the
consistent estimator of Eq. (28) is of order Op(δ

3). Relative to Eq.
(28), the above term is thus negligible.

In addition, by the iteration of expectation we have E(j−1)δ

[r3δ,ir
3
δ,j] = E(j−1)δ[r3δ,jE(i−1)δ[r3δ,i]]. The case with j = i−1 illustrates

the implications of ‘‘leverage effect’’ in the sense that dWtdVt 6= 0.
Specifically, multiplying E(i−1)δ[r3δ,i] to the expansion of r3δ,j, we
need to take into account the correlation between V(i−1)δ −

V(i−2)δ andW(i−1)δ −W(i−2)δ in the expectation. Under assumption
(b) that the instantaneous variance process Vt is a well-defined
semimartingale such as those considered in Aït-Sahalia and Jacod
(in press), we have dWtdVt = Op(dt) when the asset return
process specified in Eq. (1) is correlated with the semimartingale
process of instantaneous variance Vt . Further, we note that with
application of Itô’s lemma to the semimartingale process of Vt , we
have dV 2

t = 2VtdVt + op(δ1/2). Here, again we focus on terms with
the lowest rate of convergence. For example, when j = i − 1 the
term E(i−2)δ[(

√
V(i−1)δ(Wiδ − W(i−1)δ))

3E(i−1)δ[r3δ,i]] has the lowest
convergence rate of δ4 due to the potential ‘‘leverage effect’’. In
general, we have

E(j−1)δ[r3δ,(j−1)E(i−1)δ[r3δ,i]] = 6V 3/2
(j−1)δV

3
(i−1)δOp(δ

4) + op(δ4)

for j < i, with i, j = 1, . . . ,N . Applying the double summation as
in Eq. (27) and taking limit as δ → 0 to the above equation, we
have

plimδ→0
2N2

9

N∑
j<i

N∑
i

E(j−1)δ[r3δ,(j−1)E(i−1)δ[r3δ,i]]

= Op(1)
∫ 1

0
V 3/2
u

(∫ u

0
V 3
t dt

)
du

where
∫ 1
0 V 3/2

u
(∫ u

0 V 3
t dt

)
du ≤

(∫ 1
0 V 3/2

t dt
)

·

(∫ 1
0 V 3

t dt
)
. Based on

the same argument using the continuity property of the process
under the null of no jumps, this term is also negligible. Thus, the
second term in Eq. (27) is negligible. The asymptotic variance of
the swap variance test is given in Eq. (28).

The asymptotic distribution of the logarithmic test can be
derived using the following expansion:

ln SwVN − ln RVN =
SwVN − RVN

SwVN
−

1
2

(
SwVN − RVN

SwVN

)2

+ · · · ,

where the convergence rate of SwVN −RVN ensures that the higher
order terms are negligible. Thus, the logarithmic test has the same
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asymptotic property as SwVN−RVN
SwVN

which is essentially the ratio test.
From the Slutsky’s theorem, it is clear that:

plim
δ→0

SwVN − RVN

SwVN
= 0.

To derive the asymptotic variance of the above ratio test, we
explore the insight of the Hausman (1978) test following the idea
of Huang and Tauchen (2005). Compared to the swap variance,
realized variance only converges to the integrated variance in
probability under the assumption of no jumps and is thus a less
efficient estimator. FollowingHausman (1978), we have that under
the null hypothesis of no jumps and conditional on the volatility
path, SwVN −RVN is asymptotically independent of SwVN . In other
words, the ratio test is asymptotically the ratio of two conditionally
independent randomvariables. As a result, the asymptotic variance
can be derived straightforwardly as var[SwVN − RVN ]/V 2

(0,1), and
thus we have the results in Theorem 2.1. Finally, the asymptotic
distribution of the swap variance test is determined by 1

3

∑N
i=1 r

3
δ,i

which is well-behaved under the assumptions on the asset return
process. The asymptotic normality of the swap variance test
follows directly from the standard results by Lipster and Shiryaev
(see e.g. Shiryaev (1981)) regarding the central limit properties of
the martingale sequences. �

Proof of Theorem 3.1. We start with the observation that:

T ≡ SwVN − RVN =
1
3

N∑
i=1

r3i +
1
12

N∑
i=1

r4i +
1
60

N∑
i=1

r5i

+
1

360

N∑
i=1

r6i + · · · = 2
N∑
i=1

∞∑
k=3

rki
k!

. (30)

Since here we consider the case with noise, we replace ri by ri +

εi − εi−1 where εi ∼i.i.d. N
(
0, ω2

)
.

First we derive the expectation of T . We use the result that for
a standard normal random variable x, we have

E
(
|x|k
)

=
2

1
2 k

√
π

Γ

(
k + 1
2

)
for k > 0,

which can be specialized to:

E
(
x2k
)

=

k∏
m=1

(2m − 1) =
(2k − 1)!

2k−1 (k − 1)!
for k = 1, 2, 3, . . . .

Because the efficient price return is O(N−1/2) compared to the
noise that is O(1), and all uneven integer moments of εi are zero,
we have as N → ∞:

E
(

T

N

)
→ 2

∞∑
k=2

E
(
(εi − εi−1)

2k
)

(2k)!
= 2(eω2

− 1 − ω2) ≈ ω4. (31)

To derive the variance, consider

E
(

T 2

N2

)
= E

(
2

∞∑
k=3

1
N

N∑
i=1

rki
k!

)2

= E
∞∑
k=3

(
1
N

N∑
i=1

2
rki
k!

)2

+ 2E
∞∑
k=3

∞∑
p=k+1

(
1
N

N∑
i=1

2
rki
k!

)(
1
N

N∑
i=1

2
rpi
p!

)
. (32)

Let us start with the first term on the right-hand side:

1
N

N∑
i=1

2
r2ki

(2k)!
→ 2

(2k − 1)!
(
2ω2

)k
(2k)!2k−1 (k − 1)!

=
2ω2k

Γ (k + 1)

for k = 1, 2, . . .
and 0 for uneven powers. As a consequence we have:(
1
N

N∑
i=1

2
r2ki

(2k)!

)2

→
4ω4k

Γ 2 (k + 1)
for k = 1, 2, . . . ,

and so:

∞∑
k=3

(
1
N

N∑
i=1

2
rki
k!

)2

=

∞∑
k=2

(
1
N

N∑
i=1

2
r2ki

(2k)!

)2

→ ω8

+
ω12

9
+

ω16

144
+ · · · ≈ ω8.

With regard to the second term on the right-hand side in Eq. (32),
we note that(

1
N

N∑
i=1

2
r2ki

(2k)!

)(
1
N

N∑
i=1

2
r2pi

(2p)!

)
→

4ω2k+2p

Γ (p + 1) Γ (k + 1)

for k 6= p = 1, 2, . . .

and 0 otherwise (i.e. for uneven powers in either of the terms).
Thus:

2
∞∑
k=3

∞∑
p=k+1

(
1
N

N∑
i=1

2
rki
k!

)(
1
N

N∑
i=1

2
rpi
p!

)

= 2
∞∑
k=2

∞∑
p=k+1

(
1
N

N∑
i=1

2
r2ki

(2k)!

)(
1
N

N∑
i=1

2
r2pi

(2p)!

)

=
2
3
ω10

+
1
6
ω12

+
4
45

ω14
+

1
60

ω16
+ · · · .

Collecting all of the above, we have E (T /N) = ω4
+ O(ω6) and

E
(
T 2/N2

)
= ω8

+O(ω10). As a consequence var (T /N) = O(ω10)

from which it is clear that, in the limit, the expectation of the test
statistic swamps its variance. Because this limiting result is not
particularly useful in practice, we now derive an approximation
to the finite sample mean and variance of the test statistic in the
presence of noise. For notational convenience, we define κ1 =
1
3

∑N
i=1(ri + εi − εi−1)

3 and κ2 =
1
12

∑N
i=1(ri + εi − εi−1)

4.
Explicitly retaining the efficient return in the calculations, we
have:

E(T ) ≈ E(κ2) =
1
12

N∑
i=1

E
(
r4i + 12ω4

+ 12r2i ω
2)

→ Nω4

+ ω2V +
Q
4N

(33)

where we use that
∑

r2i → V , N
3

∑
r4i → Q . Similarly,

E(κ2
1 ) =

1
9
E

N∑
i=1

(ri + εi − εi−1)
6
+

2
9
E

N−1∑
i=1

(ri + εi − εi−1)
3

× (ri+1 + εi+1 − εi)
3 ,

=
1
9
E

N∑
i=1

(
r6i + 30ω2r4i + 180ω4r2i + 120ω6)

−
2
9
E

N−1∑
i=1

(
9ω2r2i r

2
i+1 + 36ω4r2i + 42ω6) ,

→ 4Nω6
+

28
3

ω6
+ 12ω4V + 8ω2Q

N
+

5
3

X
N2

, (34)

where we use that N2

15

∑
r6i → X , and N

∑
r2i r

2
i+1 → Q .
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Turning to the second order terms, we have:

E
(
κ2
2

)
=

1
144

E
N∑
i=1

(ri + εi − εi−1)
8

+
1

144
E
∑
i6=j

(ri + εi − εi−1)
4 (rj + εj − εj−1

)4
.

The first term on the right-hand side can be expressed as:

E
N∑
i=1

(ri + εi − εi−1)
8

= E
N∑
i=1

(
1680ω8

+ 3360ω6r2i

+ 840ω4r4i + 56ω2r6i + r8i
)
,

→ 1680Nω8
+ 3360ω6V + 2520ω4Q

N

+ 840ω2 X
N2

+ O
(
N−3) .

For the second term on the right-hand side, note that for all i 6= j
we have:

E (ri + εi − εi−1)
4 (ri+1 + εi+1 − εi)

4

= E
(
r4i + 6r2i ε

2
i + 6r2i ε

2
i−1 + 6ε2

i ε
2
i−1 + ε4

i + ε4
i−1

)
×
(
r4j + ε4

j + ε4
j−1 + 6r2j ε

2
j + 6r2j ε

2
j−1 + 6ε2

j ε
2
j−1

)
= E

(
Ai,j
)
+ E

(
Bi,i+1

)
I|j−i|=1

where Ai,j = 144ω8
+ 12ω4r4i + 12ω4r4j + 144ω6r2i + 144ω6r2j +

12ω2r4i r
2
j +12ω2r2i r

4
j +144ω4r2i r

2
j +r4i r

4
j , Bi,j = 312ω8

+144ω6r2i +
144ω6r2j + 72ω4r2i r

2
j . Using the fact that 1

N−1

∑
i6=j r

2
i → V ,

1
3

N
N−1

∑
i6=j r

4
i → Q ,

∑
i6=j r

2
i r

2
j =

(∑N
i=1 r

2
i

)2
−
∑N

i=1 r
4
i →

V 2, N
3

∑
i6=j r

2
i r

4
j =

N
3

∑N
i=1 r

2
i
∑N

j=1 r
4
j −

N
3

∑N
i=1 r

6
i → VQ , and

N2

9

∑
i6=j r

4
i r

4
j =

N2

9

(∑N
i=1 r

4
i

)2
−

N2

9

∑N
i=1 r

8
i → Q 2, we have:∑

i6=j

E
(
Ai,j
)

= 144ω8N (N − 1) + 72ω2Q
(
ω2

+ V/N
)

+ 288ω6V (N − 1) + 144ω4V 2
+ 9

Q 2

N2

and∑
i6=j

E
(
Bi,i+1

)
I|j−i|=1 = 624 (N − 1) ω8

+ 576ω6V + 144ω4Q
N

.

Combing all the above, we obtain:

E
(
κ2
2

)
→ N2ω8

+ 15Nω8
+ 2ω6VN −

13
3

ω8

+
76
3

ω6V +
1
2
ω4Q + ω4V 2

+
37
2

ω4Q
N

+
1
2
ω2Q

V
N

+
35
6

ω2 X
N2

+
1
16

Q 2

N2
. (35)

Using Eqs. (31)–(35), we can now approximate the variance of T ,
based on the first two terms in Eq. (30) as:

var(T ) ≈ 15Nω8
+ 2ω6VN −

13
3

ω8
+

76
3

ω6V

+
1
2
ω4Q + ω4V 2

+
37
2

ω4Q
N

+
1
2
ω2Q

V
N

+
35
6

ω2 X
N2

+
1
16

Q 2

N2
+ 4Nω6

+
28
3

ω6

+ 12ω4V + 8ω2Q
N

+
5
3

X
N2

, (36)
where we note that E (ri + εi − εi−1)
3 (rj + εj − εj−1

)4
= 0, for

all i, j so that the cross product κ1 and κ2 can be ignored. To get a
sense for which are the important terms in Eq. (36), we substitute
ω2

= γ V/N noting that in practice, even at the highest available
sampling frequency γ is small and typically less than 1. This gives
us the following expression:

12γ 2 (γ + 3) V 3
+ 24γ VQ + 5X

3N2

+
8γ 2V 2Q + 32γ 3V 4

+
(
Q + 4V 2γ

)2
16N2

+
1
6
γ V

90γ 3V 3
+ 152γ 2V 3

+ 56γ 2V 2
+ 111γ VQ + 35X

N3

−
13
3

γ 4 V
4

N4
.

In the (empirically relevant) scenario where N is large compared
to γ , i.e. γ � N or equivalently ω2

� V , all terms on the second
line are negligible and can thus be ignored. On the first line, the
first term is the larger one because here the integrated variation
quantities are of lower order. Substituting back γ , and retaining
only the first term in the above expression, we have the simplified
variance approximation:

var(T ) ≈ 4Nω6
+ 12ω4V +

8
N

ω2Q +
5
3

X
N2

. (37)

Next, we consider the higher order terms. With a third order
approximation, we need to add the following:

1
3600

E

(
N∑
i=1

(ri + εi − εi−1)
5

)2

,

and

1
180

N∑
i=1

(ri + εi − εi−1)
3

N∑
j=1

(
rj + εj − εj−1

)5
.

With regard to the first term, we note that the contribution of
returns r10 is of order N−5 and summing over a maximum of N2

terms will give a term of order N−3. Substituting ω2
= γ V/N

as above, we see that the noise term ε10
= (γ V/N)5 is also

of order N−5, and so are all the cross-products of r and ε. With
regard to the second term, we note that for |i − j| > 1 we have
E (ri + εi − εi−1)

3 (rj + εj − εj−1
)5

= 0, so this only leaves us with
2 (N − 1) terms on the off-diagonal, each of order N−4. So also this
component is of order N−3. Similar arguments hold for the higher
order terms and can thus all be ignored.

Thus, with large but finite N , and ω2
� V , the mean and

variance of T are accurately approximated by Eqs. (33) and (37)
above. To understand the magnitude of the mean of the statistic,
consider the case with constant volatility (i.e.Q = V 2 and X = V 3)
and note that:

E (T )
√
var (T )

=

(
4γ 2

+ 4γ + 1
)√

64γ 3 + 192γ 2 + 128γ +
80
3

√
V ≈

2 + 3γ
10

√
V .

Because γ is typically less than 1, and V � 1 over short horizons
as considered here, it is evident that the magnitude of the mean of
the statistic is small and negligible for all practical purposes. �

Proof of Proposition 3.2. Under the assumptions specified in the
proposition, we have that ri ∼ i.i.d. N (0, V/N) so that BPV can be
expressed as:

BPV ∗

N =
π

2
V

N − 1

N∑
i=2

∣∣̃rδ,i + √
γ (εi − εi−1)

∣∣ ∣∣̃rδ,i−1

+
√

γ (εi−1 − εi−2)
∣∣ ,
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where r̃i = ri/(V/N)1/2 ∼i.i.d. N (0, 1), εi ∼i.i.d. N (0, 1), and
γ = Nσ 2

ε /V . Consequently, we can write:

E[BPV ∗

N ] = V
π

2
E
∣∣̃r2 +

√
γ (ε2 − ε1)

∣∣ ∣∣̃r1 +
√

γ (ε1 − ε0)
∣∣ .

Conditional on ε1, we define the function:

cb (γ |ε1) ≡
π

2
E
∣∣̃r2 +

√
γ (ε2 − ε1)

∣∣ ∣∣̃r1 +
√

γ (ε1 − ε0)
∣∣

=
π

2
ξ(

√
γ ε1, 1 + γ )ξ(−

√
γ ε1, 1 + γ ),

with

ξ(a, σ 2) ≡ E |x − a| = 2φ (a/σ) σ + 2aΦ (a/σ) − a,

where a is a constant, x ∼i.i.d. N (0, σ 2) and φ (·) and Φ (·)
denote the standard normal density and distribution respectively.
The expression for cb (γ ) is then obtained by integrating ε1 out of
cb (γ |ε1) and subtracting 1, i.e.

cb (γ ) =

∫
∞

−∞

cb (γ |x) φ (x) dx − 1

= (1 + γ )

√
1 + γ

1 + 3γ
+ γ

π

2
− 1 + 2

γ

(1 + λ)
√
2λ + 1

+ 2γπκ (λ)

with λ and κ (λ) as defined in the Proposition. �

References

Aït-Sahalia, Y., 1996. Testing continuous-time models of the spot interest rate.
Review of Financial Studies 9, 385–426.

Aït-Sahalia, Y., 2002. Telling fromdiscrete datawhether the underlying continuous-
time model is a diffusion. Journal of Finance 57, 2075–2112.

Aït-Sahalia, Y., 2004. Disentangling diffusion from jumps. Journal of Financial
Economics 74, 487–528.

Aït-Sahalia, Y., Jacod, J., 2006. Testing for jumps in a discretely observed process,
Annals of Statistics (in press).

Aït-Sahalia, Y.,Mykland, P., Zhang, L., 2005a. Howoften to sample a continuous-time
process in the presence of market microstructure noise. Review of Financial
Studies 18 (2), 351–416.

Aït-Sahalia, Y., Mykland, P., Zhang, L., 2005b. Ultra-high frequency volatility
estimation with dependent microstructure noise, NBER working paper 11380.

Andersen, T.G., Benzoni, L., Lund, J., 2002. An empirical investigation of continuous-
time equity return models. Journal of Finance 57 (3), 1239–1284.

Andersen, T.G., Bollerslev, T., Diebold, F.X., 2007. Roughing it up: Including jump
components in themeasurement,modeling, and forecasting of return volatility.
Review of Economics and Statistics 89 (4), 701–720.

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option
pricing model. Journal of Finance 52 (5), 2003–2049.

Bakshi, G., Ju, N., Ou-Yang, H., 2006. Estimation of continuous-time models with
an application to equity volatility dynamics. Journal of Financial Economics 82,
227–249.

Bandi, F.M., Nguyen, T.H., 2003. On the functional estimation of jump-diffusion
models. Journal of Econometrics 116 (1–2), 293–328.

Bandi, F.M., Russell, J.R., 2006. Separating microstructure noise from volatility.
Journal of Financial Economics 79, 655–692.

Barndorff-Nielsen, O.E., Graversen, S.E., Jacod, J., Podolskij, M., Shephard, N., 2005. A
central limit theorem for realised power and bipower variations of continuous
semimartingales. In: Kabanov, Y., Lipster, R. (Eds.), From Stochastic Analysis to
Mathematical Finance, Festschrift for Albert Shiryaev. Springer, Berlin.

Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N., 2008. Designing
realised kernels to measure the ex-post variation of equity prices in the
presence of noise, Econometrica (in press).

Barndorff-Nielsen, O.E., Shephard, N., 2004. Power and bipower variation with
stochastic volatility and jumps. Journal of Financial Econometrics 2, 1–48. (with
discussion).

Barndorff-Nielsen, O.E., Shephard, N., 2006. Econometrics of testing for jumps in
financial economics using bipower variation. Journal of Financial Econometrics
4, 1–30.

Barndorff-Nielsen, O.E., Shephard, N., Winkel, M., 2006. Limit theorems for
multipower variation in the presence of jumps in financial econometrics.
Stochastic Processes and their Applications 116, 796–806.

Bates, D.S., 2000. Post-87 crash fears in the S&P 500 futures option market. Journal
of Econometrics 94 (1–2), 181–238.

Bollerslev, T., Law, T.H., Tauchen, G., 2007. Risk, jumps, and diversification. Journal
of Econometrics 144 (1), 234–256.
Carr, P., Madan, D., 1998. Towards a theory of volatility trading. In: Jarrow, R.A. (Ed.),
Volatility: NewEstimation Techniques for PricingDerivatives. Risk Publications,
London.

Carr, P., Wu, L., 2003. What type of process underlies options? A simple robust test.
Journal of Finance 58 (6), 2581–2610.

Chernov, M., Gallant, A.R., Ghysels, E., Tauchen, G., 2003. Alternative models for
stock price dynamics. Journal of Econometrics 116, 225–257.

Christensen, K., Podolskij, M., Vetter, M., 2008. Bias-correcting the realized range-
based variance in the presence of market microstructure noise, Finance and
Stochastics (in press).

Das, S.R., 2002. The surprise element: Jumps in interest rates. Journal of
Econometrics 106 (1), 27–65.

Demeterfi, K., Derman, E., Kamal, M., Zou, J., 1999. A guide to volatility and variance
swaps. Journal of Derivatives 6 (4), 9–32. Summer.

Duffie, D., Pan, J., 2001. Analytical value-at-risk with jumps and credit risk. Finance
and Stochastics 5, 155–180.

Dupire, B., 1993. Model art. Risk (September), 118–120.
Engle, R.F., 2000. The econometrics of ultra-high frequency data. Econometrica 68

(1), 1–22.
Eraker, B., Johannes, M., Polson, N., 2003. The impact of jumps in equity index

volatility and returns. Journal of Finance 58, 1269–1300.
Fan, J., Wang, Y., 2007. Multi-scale jump and volatility analysis for high-frequency

financial data. Journal of American Statistical Association 102, 1349–1362.
Garcia, R., Ghysels, E., Renault, E., 2004. The econometrics of option pricing.

In: Aït–Sahalia, Yacine, Hansen, Lars Peter (Eds.), Handbook of Financial
Econometrics, Elsevier-North Holland, Amsterdam (in press).

Gobbi, C., Mancini, C., 2007. Diffusion covariation and co-jumps in bidimensional
asset price processes with stochastic volatility and infinite activity Lévy jumps,
manuscript Università di Firenze.

Griffin, J.E., Oomen, R.C., 2008. Sampling returns for realized variance calculations:
Tick time or transaction time? Econometric Reviews 27 (1–3), 230–253.

Grimmett, G., Stirzaker, D., 1992. Probability and Random Processes, 2nd ed.
Clarendon Press, Oxford, pp. 271–285.

Hansen, P.R., Lunde, A., 2006. Realized variance and market microstructure noise.
Journal of Business and Economic Statistics 24 (2), 127–161.

Hausman, J.A., 1978. Specification tests in econometrics. Econometrica 46,
1251–1271.

Heston, S.L., 1993. A closed form solution for options with stochastic volatility
with applications to bond and currency options. Review of Financial Studies 6,
327–344.

Ho, M.S., Perraudin, W.R., Sørensen, B.E., 1996. A continuous-time arbitrage-pricing
model with stochastic volatility and jumps. Journal of Business and Economic
Statistics 14 (1), 31–43.

Huang, X., Tauchen, G., 2005. The relative contribution of jumps to total price
variance. Journal of Financial Econometrics 3 (4), 456–499.

Jacod, J., 1994. Limit of random measures associated with the increments of a
Brownian semimartingale, manuscript Université de Paris VI.

Jacod, J., 2006. Asymptotic properties of realized power variations and related
functionals of semimartingales, manuscript Université de Paris VI.

Jacod, J., Shiryaev, A.N., 2003. Limit Theorems for Stochastic Processes, 2nd ed.
Spinger-Verlag, Berlin.

Jacod, J., Todorov, V., 2007. Testing for common arrivals of jumps for discretely
observed multidimensional processes, manuscript Université de Paris VI.

Jarrow, R.A., Rosenfeld, E.R., 1984. Jump risks and the intertemporal capital asset
pricing model. Journal of Business 57 (3), 337–351.

Johannes, M., 2004. The statistical and economic role of jumps in continuous-time
interest rate models. Journal of Finance 59 (1), 227–260.

Johannes, M., Polson, N., Stroud, J., 2006. Optimal filtering of jump-diffusions:
Extracting latent states from asset prices, manuscript GSB Columbia University.

Large, J., 2005. Estimating quadratic variation when quoted prices jump by a
constant increment, manuscript University of Oxford, All Souls College.

Lee, S.S., Mykland, P.A., 2007. Jumps in financial markets: A new nonparametric test
and jump dynamics, Review of Financial Studies (in press).

Maheu, J.M., McCurdy, T.H., 2004. News arrival, jump dynamics and volatility
components for individual stock returns. Journal of Finance 59 (2), 755–793.

Mancini, C., 2006. Non parametric threshold estimation for models with stochastic
diffusion coefficient and jumps, manuscript Università di Firenze.

Merton, R., 1976a. Option pricingwhen underlying stock returns are discontinuous.
Journal of Financial Economics 3, 125–144.

Merton, R., 1976b. The impact on option pricing of specification error in the
underlying stock price returns. Journal of Finance 31, 333–350.

Neuberger, A., 1994. The log contract: A new intrument to hedge volatility. Journal
of Portfolio Management (Winter), 74–80.

Niederhoffer, V., Osborne, M.F.M., 1966. Market making and reversal on the stock
exchange. Journal of the American Statistical Association 61 (316), 897–916.

Oomen, R.C., 2005. Properties of bias-corrected realized variance under alternative
sampling schemes. Journal of Financial Econometrics 3 (4), 555–577.

Oomen, R.C., 2006a. Comment on 2005 JBES invited address Realized variance and
market microstructure noise by Peter R. Hansen and Asger Lunde. Journal of
Business and Economic Statistics 24 (2), 195–202.

Oomen, R.C., 2006b. Properties of realized variance under alternative sampling
schemes. Journal of Business and Economic Statistics 24 (2), 219–237.

Pan, J., 2002. The jump-risk premia implicit in options: Evidence from an integrated
time-series study. Journal of Financial Economics 63, 3–50.

Roll, R., 1984. A simple implicit measure of the effective bid-ask spread in an
efficient market. Journal of Finance 39 (4), 1127–1139.

Schaumburg, E., 2004. Estimation of Markov processes with Levy type generators,
manuscript Kellogg School of Management.



370 G.J. Jiang, R.C.A. Oomen / Journal of Econometrics 144 (2008) 352–370
Shiryaev, A.N., 1981. Martingales: Recent developments, results and applications.
International Statistical Review 49, 199–233.

Talay, D., 1996. Probabilistic numerical methods for PDEs: Elements of analysis.
In: Talay, D., Tubaro, L. (Eds.), Probabilistic Methods for Nonlinear PDEs.
Springer, Berlin.

Wang, Y., 1995. Jump and sharp cusp detection by wavelets. Biometrika 82 (2),
385–397.
Zhang, L., 2006. Efficient estimation of stochastic volatility using noisy observations:
A multi-scale approach. Bernoulli 12 (6), 1019–1043.

Zhang, L., Mykland, P.A., Aït-Sahalia, Y., 2005. A tale of two time scales: Determining
integrated volatility with noisy high frequency data. Journal of the American
Statistical Association 100, 1394–1411.

Zhou, B., 1996. High frequency data and volatility in foreign-exchange rates. Journal
of Business and Economic Statistics 14 (1), 45–52.


	Testing for jumps when asset prices are observed with noise -- a ``swap variance'' approach
	Introduction
	Testing for jumps in asset returns: The ``swap variance'' test
	Finite sample properties of the SwV jump test
	Size of the SwV jump test
	Power of the SwV jump test

	Robustness analysis

	The SwV jump test in the presence of market microstructure noise
	Feasible implementation of the  SwV*  test
	Finite sample properties of the noise adjusted SwV jump test

	An empirical illustration
	Jump detection using sparsely sampled returns
	Jump detection using tick-by-tick returns

	Conclusion
	Acknowledgements
	Proofs
	References


