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Abstract

I provide a selective review of recent developments in financial econometrics related
to measuring, modeling, forecasting, and pricing “good” and “bad” volatilities based
on realized variation type measures constructed from high-frequency intraday data. An
especially appealing feature of the different measures concerns the ease with which
they may be calculated empirically, merely involving cross-products of signed, or
thresholded, high-frequency returns. I begin by considering univariate semivariation
measures, followed by multivariate semicovariation and semibeta measures, before
briefly discussing even richer partial (co)variation measures. I focus my discussion on
practical uses of the measures emphasizing what I consider to be the most noteworthy
empirical findings to date pertaining to volatility forecasting and asset pricing.
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It is difficult to pinpoint the origin of the research field that we now refer to as financial

econometrics. What is clear, however, is that the rapid growth of the field over the past

three decades has in no small part been fueled by the development of new procedures and
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empirical findings related to the measurement, modeling, forecasting, and pricing of time-

varying financial market volatility. The importance of volatility for the field as a whole is

also underscored by the SoFiE logo, which prominently features the time series plot of a fi-

nancial asset price subject to volatility clustering. Looking at the price path featured in the

logo, it is evident that “large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes” (Mandelbrot, 1963).

The initial research on time-varying volatility in financial markets, and the importance

thereof, were primarily based on parametric GARCH (Engle, 1982; Bollerslev, 1986) and

stochastic volatility type models (Taylor, 1982). However, the advent of high-frequency

intraday data for a host of different assets and instruments, starting in the early 2000s,

spurred somewhat of a paradigm shift, and many of the most influential developments over

the past two decades have involved so-called realized volatility measures constructed from

high-frequency intraday data (Andersen and Bollerslev, 1998; Andersen et al., 2001b;

Barndorff-Nielsen, and Shephard, 2002). Importantly, this approach also helped to embed

the econometric analyses of return volatility within the vast probability and statistics litera-

tures on Itô semimartingales and the theory of quadratic variation, thereby affording a

rigorous justification for the realized volatility concept based on no-arbitrage assumptions

and theoretical in-fill asymptotic arguments relying on the idea of ever finer sampled

returns over fixed time intervals.1 The quadratic variation estimated by the original realized

volatility measures is effectively blind to the signs of the underlying returns. On the other

hand, numerous studies, dating back to Roy (1952) and Markowitz (1959), have argued

that investors primarily care about negative returns and downside risks.2 Correspondingly,

the basic mean–variance tradeoff arguments that underlie many popular asset pricing mod-

els and predictions, the traditional CAPM included, should instead be based on the down-

side portion of the variation only (Hogan and Warren, 1972; Bawa and Lindenberg, 1977).

An extensive body of research in behavioral finance, supported by experimental evidence

and more formal theoretical arguments rooted in prospect theory and loss aversion

(Kahneman and Tversky, 1979), also suggest that up and downside risks are not treated the

same by investors.3 The ubiquitous Value-at-Risk (VaR) and Expected Shortfall measures

used for assessing the risk of an investment portfolio, and the Sortino ratio (Sortino and

van der Meer, 1991) sometimes employed in lieu of the traditional Sharpe ratio for port-

folio performance evaluation, further echo this asymmetric treatment of gains and losses.4

1 The introductory chapter to the collection of seminal volatility papers in Andersen and Bollerslev

(2018) provides a more in depth discussion of the key new concepts and ideas that have helped

shape these developments.

2 The Merriam-Webster dictionary also explicitly defines “risk” as the “possibility of loss or injury,”

as exemplified by “the chance that an investment (such as a stock or commodity) will lose value.”

3 Scenarios in which upside gains and downside losses are not symmetric arise in many other eco-

nomic situations and prediction problems; for additional discussion, see, for example,

Christoffersen and Diebold (1997), Patton and Timmermann (2007), and Babii et al. (2021).

4 A growing recent literature has also sought to relate these measures of downside risks to macro-

economic outcomes; see, for example, Giglio, Kelly, and Pruitt (2016), Adrian, Boyarchenko, and

Giannone (2019), and Carriero, Clark, and Marcellino (2020). Some of the ideas and new empirical

measures that I discus below could possibly be exploited in that context as well.
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Motivated by this line of reasoning and the idea that “good” and “bad” volatilities are

not necessarily created equal, Barndorff-Nielsen, Kinnebrock, and Shephard (2010) first

proposed decomposing the original realized volatility measure into separate up and down-

side realized semivariation measures based on the summation of the squared positive and

negative high-frequency returns, respectively. As I will discuss below, this simple decom-

position has in turn resulted in a number of new and interesting empirical findings pertain-

ing to both volatility forecasting and the differential pricing of the up and downside

realized semivariation measures. Anticipating some of the key findings, higher values of

downside (upside) realized semivariance for the aggregate market portfolio appear to be

associated with higher (lower) future aggregate market volatility, higher (lower) future ag-

gregate market return, while differences in the up minus downside semivariances for indi-

vidual stocks appear to be priced positively in the cross-section.

Of course, most issues in asset pricing finance are inherently multivariate in nature,

entailing non-diversifiable risks and the covariation among multiple assets and/or the co-

variation with specific systematic risk factor(s), or benchmark portfolios. Extending the

realized semivariance concept to a multivariate setting, Bollerslev et al. (2020) first pro-

posed an analogous decomposition of the standard realized covariance matrix into four

additive realized semicovariance components defined by the sum of the cross-products of

the signed pairs of high-frequency returns. In parallel to the findings for the realized semi-

variances, this “look inside” of the quadratic covariation has similarly been used in the con-

structions of improved covariance matrix forecasts.

The semicovariances have also been used in the definition of so-called realized semibetas

(Bollerslev, Patton, and Quaedvlieg, 2021a) and in turn more accurate cross-sectional asset

price predictions. Consistent with the implications from a downside CAPM and the results

based on separately estimated up and downside betas (Ang, Chen, and Xing, 2006), only

the two semibetas associated with downside market risk appear to be priced. However,

counter to the implications from a conventional downside CAPM model, the risk premiums

for two separate downside semibetas associated with “good” and “bad” asset-specific

covariations seemingly differ.

The choice of a zero threshold underlying the definitions of the realized univariate semi-

variation, multivariate semicovariation, and semibeta measures is often motivated by the

idea that investors value gains and losses asymmetrically, and therefore also price and pro-

cess “good” and “bad” volatility differently. However, other economic considerations nat-

urally dictate different definitions of “good” and “bad” returns based on some fixed non-

zero threshold, or some benchmark return. From a purely statistical perspective, the choice

of a zero threshold is also somewhat arbitrary, and a non-zero threshold and/or multiple

thresholds could in principle be used in the definition of more refined decompositions of

the quadratic variation. I will briefly discuss recent results based on this idea and corre-

sponding so-called realized partial (co)variation measures (Bollerslev et al., 2021).

Other measures of asymmetries and non-linear dependencies based on high-frequency

data, including measures of coskewness and cokurtosis (e.g., Neuberger, 2012; Amaya

et al., 2015), have, of course, been proposed and analyzed empirically in the literature.5

5 The SoFiE Presidential Addresses by Engle (2011) and Ghysles (2014) also both explicitly highlight

the importance of allowing for asymmetries and skewness in the calculation of VaR and other

downside risk measures.
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However, many of these measures involving higher order moments can be difficult to accur-

ately estimate in practice. By comparison, the realized semi(co)variation measures, con-

structed from sums of squares and cross-products of signed high-frequency returns, afford a

simple “look inside” the quadratic variation.

Realized bipower variation measures (Barndorff-Nielsen and Shephard, 2004b), specif-

ically designed to be robust to jumps, afford another such look. Along these lines, several

studies have argued for the importance of separately considering the quadratic variation

stemming from price discontinuities, or jumps and cojumps. I will not discuss this extensive

literature on estimating and testing for jumps and co-jumps based on high-frequency-data

at any great length here (see, e.g., Bollerslev, Law, and Tauchen, 2008; Lee and Mykland,

2008; Jacod and Todorov, 2009; Mancini and Gobbi, 2012; Aı̈t-Sahalia and Xiu, 2016; Li,

Todorov, and Tauchen, 2017, among others). However, as I will discuss below, appropri-

ately defined differences between semi(co)variances also consistently estimate jumps and

co-jumps.

Closely related to the above-mentioned studies on jumps, there is a recent and rapidly

growing literature on the pricing of downside tail, or crash risk (including, e.g., Bollerslev

and Todorov, 2011; Kelly and Jiang, 2014; Cremers, Halling, and Weinbaum, 2015;

Bollerslev, Li, and Todorov, 2016; Chabi-Yo, Ruenzi, and Weigert, 2018; Lu and Murray,

2019; Orlowski, Schneider, and Trojani, 2020, among others). However, in contrast to the

realized measures constructed solely from high-frequency data that I focus on here, all of

these studies rely on additional information gleaned from options prices for inferring risk-

neutral distributions, and assessing tail dependencies and the pricing thereof.

Directly paralleling the decompositions of realized volatilities into separate up and

downside variation measures, options implied volatilities may similarly be decomposed

into “good” and “bad” variation through the use of options with different strikes (see, e.g.,

Andersen, Bondarenko, and Gonzalez-Perez, 2015). Going one step further, the variance

risk premium, defined as the difference between the risk-neutral and the actual expected re-

turn variation, may also be separated into up and downside variance risk premiums.6

Consistent with the findings discussed below that most of the volatility persistence can be

traced to “bad” volatility, most of the return predictability inherent in the variance risk pre-

mium (as originally documented by Bollerslev, Tauchen, and Zhou, 2009) seemingly stems

from negative jumps and the downside portion of the premium (see, e.g., Andersen, Fusari,

and Todorov, 2015; Bollerslev, Todorov, and Xu, 2015; Feunou, Jahan-Parvar, and Okou,

2018; Kilic and Shaliastovich, 2019).

To help focus the paper, I will not discuss any of these results based on options-implied

up and downside variation measures any further here. To be clear, however, I think there is

much to be learned from comparing and contrasting the high-frequency-based realized

semi(co)variation measures to the corresponding “good” and “bad” variation measures

implied from options prices. Not only in terms of return predictability, but also in terms of

changes in market-wide perceptions of risks and risk aversion and the underlying economic

mechanisms at work (see, e.g., Bekaert and Engstrom, 2017; Bekaert, Engstrom, and Xu,

2021; Feunou et al., 2020).

6 Further extending this idea, Chabi-Yo and Loundis (2021) provides an options-based approach for

calculating conditional up and downside risk premiums for arbitrary moments.
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The plan for the rest of the paper is as follows. I begin with a discussion of the original

univariate realized semivariation measures in Section 1, followed by multivariate semico-

variation measures in Section 2, before briefly considering newly proposed partial (co)vari-

ation measures in Section 3. I will concentrate my discussion on intuition and what I

consider to be the most important new empirical insights to date pertaining to volatility

forecasting and asset pricing, leaving more technical details and formal theoretical argu-

ments aside.

1 Semivariation Measures

To formally set out the basic ideas, let ps denote the time-s logarithmic price for some asset,

with the underlying price process originating at time 0. Consistent with the absence of arbi-

trage, assume that the price process may be described by an Itô semimartingale of the form,

ps ¼
ðs

0

lsdsþ
ðs

0

rsdWs þ Js; s � 0; (1)

where ls corresponds to the drift, rs defines the diffusive volatility processes, Ws is a stand-

ard Brownian motion, and Js denotes a finite activity pure jump process. For concreteness, I

will refer to the unit time interval ½t; t þ 1� as a day, with the realized measures being

defined at the daily frequency.7 For ease of notation, I will assume that high-frequency

intraday prices pt;ptþ1=K; . . . ;ptþ1 are observed at Kþ 1 equidistant times over the day,

with the corresponding logarithmic discrete-time return over the kth time interval denoted

by rt;k � ptþk=K � ptþðk�1Þ=K. It follows then from the theory of quadratic variation for semi-

martingales that for K!1 (see, e.g., the general discussion in Aı̈t-Sahalia and Jacod,

2014),8

RVt �
XK

k¼1

r2
t;k !

P

ðt

t�1

r2
s dsþ

X
t�1� s� t

ðDJsÞ2; (2)

where DJs captures the jump in the price if a jump occurred at time s, and otherwise equals

zero. In other words, for increasingly finer sampled intraday prices, the realized daily vari-

ance, defined as the summation of the within-day high-frequency squared returns, con-

verges uniformly in probability to the sum of the “continuous” price variation plus the

squared “jump” price increments over the day.9

7 Most of the empirical results in the literature, the illustrations highlighted below included, have

also been based on daily realized measures constructed from high-frequency intraday data.

However, the same measures could, of course, be defined over other non-trivial time intervals,

such as a week or a month.

8 The seminal insight underlying this result and the approximation of the quadratic variation process

of a semimartingale by its approximate quadratic variation, aka the realized volatility in the present

context, is according to Jacod and Protter (2012) attributable to Meyer (1967).

9 The assumption of equidistant prices and intraday returns spanning the same 1=K time interval is

not critical for this result, as long as the span of the longest intraday return-interval converges to

zero; see, for example, the references and discussion of alternative sampling schemes in Hansen

and Lunde (2006).

Bollerslev j Realized Semi(co)variation 223

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/20/2/219/6432504 by guest on 28 M

arch 2022

Deleted Text: 2
Deleted Text: 3
Deleted Text: 4
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: &hx2019;
Deleted Text: e.g., 


Data limitations and market microstructure complications that disrupt the martingale

property of the price path over very fine time intervals invariably put an upper bound on

the practical choice of K, and thus render the continuous limit unattainable in practice. The

“volatility signature plot” (Andersen et al., 2000b) provides an oft-used informal diagnostic

tool to help gauge the sampling frequency at which market microstructure “noise” and

scarcity of observations start to overwhelm the signal, and in turn bias the realized volatility

estimates.10 I will not discuss this deliberate approach for choosing K in practice any fur-

ther here, nor will I discuss any of the other more advanced estimators and adjustment pro-

cedures that have been proposed in the literature to more efficiently estimate the quadratic

variation in the presence of “noise.” Suffice it to say, that the same practical complications

pertain to the semivariation measures that I will discuss next, and that some of these same

“noise robust” procedures might fruitfully be applied in that context as well.11 Meanwhile,

the comprehensive empirical analysis in Liu, Patton, and Sheppard (2015) comparing more

than 400 alternative estimators across numerous asset classes suggests that in practice it is

difficult to beat a simple sub-sampled RV estimator based on 5-min returns.

The realized variation measure in Equation (2) does not differentiate between “good”

and “bad” volatility. In an effort to do so, the realized up and down semivariance measures

first proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010) (BNKS henceforth)

separate the total realized variation into two components associated with the positive and

negative high-frequency returns, say rþt;k and r�t;k, respectively,12

RVþt �
XK

k¼1

ðrþt;kÞ
2; RV�t �

XK

k¼1

ðr�t;kÞ
2: (3)

It follows trivially that RVt ¼ RVþt þ RV�t for all values of K. Meanwhile, maintaining

the basic Itô semimartingale setup and assumptions in Equation (1), in which the order of

the drift is dominated by the diffusive and jump components in the in-fill asymptotic limits,

BNKS show that the separately defined positive and negative semivariance measures con-

verge uniformly in probability to one-half of the integrated variation plus the sum of the

squared positive and negative price jumps, respectively. Hence, to a first-order asymptotic

10 Corsi et al. (2001) and Oomen (2003) have independently proposed a similar procedure for deter-

mining an appropriate sampling frequency.

11 The most prominent ways in which to accommodate “noisy” and scarce high-frequency prices,

without resorting to coarser sampling frequencies and discarding potentially valuable information,

include the two-scale approach of Zhang, Mykland, and Aı̈t-Sahalia (2005), the kernel-based ap-

proach of Barndorff-Nielsen et al. (2008), and the pre-averaging techniques of Jacod et al. (2009).

12 While the basic realized volatility concept, the semivariation measures included, rely on the notion

of ever finer sampled returns over a fixed time interval and asymptotically vanishing drifts, as typ-

ically implemented empirically in the form of daily measures constructed from intraday data, simi-

larly defined measures based on more coarsely sampled data, say monthly measures constructed

from daily returns, are often employed in the finance literature. In this situation, the impact of

price drifts may not be as immaterial. Accordingly the in-fill asymptotic arguments discussed

below may also provide a poorer guide. To help alleviate those concerns, one could rely on mean-

adjusted positive and negative returns.

224 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/20/2/219/6432504 by guest on 28 M

arch 2022

Deleted Text: s
Deleted Text: s
Deleted Text: ute
Deleted Text: , Li, Mykland, Podolskij, and Vetter 


approximation, the difference between the semivariances is entirely determined by the dif-

ference in the signed squared jumps,

SJt � RVþt � RV�t !
P

X
t�1� s� t

ðDJþs Þ
2 � ðDJ�s Þ

2; (4)

where DJþs (DJ�s ) denotes any positive (negative) price jump occurring at time s. A more

refined second-order asymptotic theory would allow for further differentiation between

RVþt and RV�t arising from a non-zero price drift and/or a non-zero correlation between

the innovations to the price and stochastic volatility processes, also commonly referred to

as a “leverage effect.” However, this second-order asymptotic theory involves bias terms

that are difficult to quantify, rendering it of limited practical use (for additional details see

BNKS, Kinnebrock and Podolskij, 2008).13 I will briefly return to this issue in my discus-

sion of the realized semicovariance measures in Section 2.

In addition to “looking inside” the semivariation measures to try and identify where dif-

ferences in RVþt and RV�t might be coming from, it would also be interesting to investigate

potential time-of-day effects. For instance, it is possible that two different intraday price

paths that manifest in the same daily RVþt and RV�t , say one up-down and one down-up,

may have different implications for investor’s risk perception and end-of-day investment

and portfolio rebalancing decisions (see, e.g., the experimental evidence and related discus-

sion in Grosshans and Zeisberger, 2018). As such, semivariation measured over shorter

interday time intervals may afford additional useful information.

Meanwhile, to empirically illustrate the daily semivariation measures, Figure 1 shows

the logarithmic prices for the S&P 500 SPY ETF at 5-min intervals on four different days in

2020. The first panel shows March 3. At 10:00 am that day the Federal Open Market

Committee (FOMC) issued a press release (outside its regularly scheduled announcement

cycle) intended to install confidence and ensure that it was closely monitoring the evolving

pandemic14:

The fundamentals of the U.S. economy remain strong. However, the coronavirus poses evolving

risks to economic activity. In light of these risks and in support of achieving its maximum em-

ployment and price stability goals, the Federal Open Market Committee decided today to lower

the target range for the federal funds rate by 1/2 percentage point, to 1 to 1-1/4 percent. The

Committee is closely monitoring developments and their implications for the economic outlook

and will use its tools and act as appropriate to support the economy.

As the figure shows, the market initially interpreted the statement by the FOMC

very positively, resulting in a 2% jump in the value of the index. However, prices

gradually drifted down over most of the remaining part of the trading day, and as a

result RVþt and RV�t ended up fairly close for the day (52.85% and 45.71%, respectively,

13 The Online Appendix to Bollerslev et al. (2020) also provides a more general second-order multi-

variate convergence result, which encompasses the convergence of the realized semivariances

as a special “diagonal” case.

14 The effect of FOMC announcements on asset prices has been the subject of a growing recent lit-

erature; see, for example, Lucca and Moench (2015); Bollerslev, Li, and Xue (2018); and Cieslak,

Morse, and Vissing-Jorgensen (2019), and the many references therein. I will not discuss this lit-

erature here.
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in annualized volatility unit, implying a total daily realized volatility of

69.88%¼ (52.85%2þ 45.71%2)1=2).15 In contrast, on June 15, as shown in the second top

panel, the S&P 500 steadily rose over most of the trading day. The FED’s long-planned pro-

gram to help facilitate lending to smaller businesses, which finally launched on that day,

may in part account for this increase. At 2:00 pm on that same day, the FED further

announced that it would begin purchasing individual corporate bonds to inject liquidity

into the economy, resulting in an apparent jump in the price at that exact time.

Correspondingly, RVþt far exceeded RV�t for the day (equaling 24.28% and 15.01%, re-

spectively). By comparison, on July 9, as shown in the first panel in the bottom row, RVþt
was less than RV�t (equaling 11.63% and 16.08%, respectively). That day began with

reports of sharply increasing coronavirus cases in many parts of the United States, while a

subsequent report of falling unemployment insurance claims may have helped alleviate

some of the worst fears about the adverse economic consequences of the pandemic. The

final March 17 panel shows another day with exceptionally high overall RVt (78.18% for

the day), yet almost identical RVþt and RV�t (equal to 54.99% and 55.58%, respectively).

The previous day, March 16, was one of the historically worst days for the market, with

the S&P 500 falling by more than 12% (and also one of the highest daily RVt’s on record at

83.71%). The strong positive pre-noon trend on March 17 obviously helped recover some

of those losses.

Figure 1 Intraday S&P 500 index prices. The figure shows the logarithmic prices for the S&P 500 SPY

ETF at 5-min intervals for four different days in 2020.

15 Guided by the aforementioned findings in Liu, Patton, and Sheppard (2015), the realized measures

reported throughout are based on 5-min returns sub-sampled and averaged at a 1-min frequency.
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Looking closer at the price paths for the four deliberately chosen days in Figure 1, the

prolonged intraday return persistence evident for all of the days arguably goes beyond the

notion of gradual jumps put forth by Barndorff-Nielsen et al. (2009) (see also Li et al.,

2017). Nor can the identical signed successive price changes be explained by short-lived

bursts in volatility, as put forth by Christensen, Oomen, and Podolskij (2014) (see also

Bajgrowicz, Scaillet, and Treccani, 2015). Instead, the observed price paths point to more

sustained violations of the basic Itô semimartingale assumption and short-lived price drifts,

possibly associated with more difficult to interpret “soft” news, as also recently discussed

by Bollerslev et al. (2020).16 The occasional occurrence of such periods of extreme return

persistence, or drift-bursts, and the importance thereof for realized volatility estimation,

have also been emphasized by Laurent and Shi (2020) and Christensen, Oomen, and Renò

(2021). Further along these lines, Andersen et al. (2021c) and Laurent, Renò, and Shi

(2021) have both proposed a new family of realized volatility estimators for the integrated

volatility in Equation (2) based on a difference-in-difference type approach explicitly

designed to negate the impact of temporary price drifts. It would be interesting to formally

extend and apply these ideas to the “robust” estimation of semivariation type measures.

For less liquid assets, price staleness, or zero returns, as recently emphasized by Bandi et al.

(2020), will also need to be properly accounted for in the estimation.

1.1 Semivariance-Based Volatility Forecasting

The vast empirical literature on GARCH and other parametric stochastic volatility models

suggests that equity return volatility tends to increase more following negative return

shocks than equally sized positive return shocks. Following Black (1976) and Christie

(1982), this return-volatility asymmetry is commonly referred to as the “leverage effect.”

This common terminology notwithstanding, financial leverage has long since been discred-

ited as the primary explanation for the observed asymmetries, as the effect is too large em-

pirically to be explained solely by changes in leverage. Additionally, the asymmetries also

tend to be much stronger for aggregate equity index portfolio returns than for individual

stock returns, further discrediting an all leveraged-based explanation.17

Expanding on this theme, BNKS in their original empirical investigations of the semivar-

iance measures report that the inclusion of RV�t in a daily asymmetric GJR-GARCH model

(Glosten, Jagannathan, and Runkle, 1993),18

htþ1 ¼ xþ ar2
t þ bht þ dr2

t Iðrt < 0Þ þ cRV�t ; (5)

typically renders d and the traditional daily leverage effect term insignificant. The downside

realized semivariance RV�t is generally also more informative and drives out the signifi-

cance of the total realized variance RVt when both are included in the conditional variance

16 Relatedly, the recent parametric error correction type model developed by Andersen et al. (2021a)

explicitly seeks to link the arrival of new information and price discovery to short-lived price dri

fts and local mispricing.

17 For additional discussion and more recent estimates of the leverage effect based on high-

frequency data see Bollerslev, Litvinova, and Tauchen (2006); Aı̈t-Sahalia, Fan, and Li (2013); Corsi

and Renò (2012); and Kalnina and Xiu (2017).

18 Following Zakoı̈an (1994), the GJR-GARCH models are also sometimes referred to as a threshold

TGARCH model.
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equation. Multiplicative Error Models (Engle, 2002), high-frequency-based volatility

models (Shephard and Sheppard, 2010), or augmented realized GARCH models (Hansen,

Huang, and Shek, 2012) explicitly characterizing the dynamic dependencies in the realized

semivariaton measures, would allow for a more thorough exploration of these features, and

the idea that investors process and interpret “good” versus “bad” news differently (see also

the “good” versus “bad” environment GARCH type of models proposed by Bekaert,

Engstrom, and Ermolov (2015).

Instead of the GARCH-based approach in Equation (5), building on the unified frame-

work of Andersen et al. (2003), most realized volatility-based forecasting procedures now

tend to rely on simple-to-implement reduced form time series models estimated directly on

the realized measures. The heterogeneous autoregressive (HAR) model of Corsi (2009), in

which the future realized volatility depends linearly on past realized volatilities over differ-

ent horizons, has arguably emerged as the most popular such model. This particular formu-

lation is now also routinely used as the benchmark model for volatility forecast

comparisons (see, e.g., Bollerslev et al., 2018).

The HAR model also provides an especially convenient framework for incorporating

the realized semivariation measures (and other explanatory variables) into the construction

of volatility forecasts. In particular, following Patton and Sheppard (2015), the basic HAR

model for forecasting the daily realized volatility as a function of the lagged daily, weekly,

and monthly realized volatilities, is readily extended to a semivariance HAR (SHAR)

model,

RVtþ1 ¼ /0 þ /þDRVþt þ /�DRV�t þ /WRVt:t�4 þ /MRVt:t�22 þ etþ1; (6)

where RVt:t�4 and RVt:t�22 refer to the weekly and monthly realized volatilities defined by

the summation of the daily volatilities over the past 5 and 22 days, respectively. For

/þD ¼ /�D, the model obviously reduces to a conventional symmetric HAR model. To help

alleviate concerns of heteroscedasticity, the HAR and SHAR models are also sometimes

estimated in logarithmic form.

Meanwhile, estimating the SHAR model in Equation (6) with daily realized volatilities

for the S&P 500 SPY ETF from January 2, 2002, to December 31, 2020, for a total of 4532

observations, the estimate for /�D equals 1.127, with a heteroscedasticity robust standard

error of 0.360, while the estimate for /þD equals �0.320, with a standard error of 0.373. In

other words, short-run changes in aggregate market volatility are primarily driven by “bad”

volatility. As such, differentiating between “good” and “bad” volatility also results in more

accurate volatility forecasts, with the R2 from the SHAR model equal to 0.624, compared

with an R2 of 0.594 for the basic HAR model.19 In addition to corroborating Patton and

Sheppard (2015), these results also align with the earlier empirical findings of Chen and

Ghysels (2011), and the more recent analyses in Audrino and Hu (2016) and Baillie et al.

(2019). These same qualitative findings carry over to individual stock return volatilities, al-

though consistent with the “leverage effect” manifesting more strongly at the aggregate

19 Further restricting /þD ¼ �/�D , corresponding to a HAR model with the signed jump variation in

place of RVt, the estimated coefficient for SJt equals �0.483, with a standard error of 0.331. Along

these lines, the recent text-based analysis in Baker et al. (2021) also suggests that stock market

jumps triggered by monetary policy news, which tend to be positive on average, typically lead to

lower future volatility.
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market level, the differences in the estimates for /�D and /þD tend to be more muted for indi-

vidual stocks.20

It would be interesting to further explore the economic mechanisms underlying these

differences. It is possible that “bad” news tend to be released more slowly than “good”

news, thereby resulting in a stronger degree of persistence and predictability. Relatedly, it

may be that negative news simply receive more and prolonged coverage by the financial

news media than positive news. Another possibility is that investors, or market makers,

tend reduce their risk exposures after negative shocks, whether voluntarily or by decree,

which then through a gradual process of portfolio rebalancing induces higher volatility per-

sistence. In any event, regardless of the underlying mechanism, as I will discuss next, these

differences in the way in which “good” and “bad” volatilities impact future changes in total

volatility also naturally translate into differences in the way in which the semivariation

measures are priced, both in the time-series and cross-sectional dimensions.

1.2 Semivariance-Based Asset Pricing

The “leverage effect” and the apparent asymmetry in the relationship between aggregate

equity index return and volatility discussed above may alternatively be interpreted as indir-

ect evidence for a risk-based volatility feedback effect. As elucidated by Pindyck (1982) and

French, Schwert, and Stambaugh (1987),21 if expected returns and expected volatility are

indeed positively related, as in Merton (1973), such a relationship should in turn induce a

negative relation between realized returns and unexpected volatility; see also Campbell and

Hentschel (1992). Meanwhile, estimates based on GARCH-in-mean models, or simple

regressions of returns on lagged measures of volatility and/or surprises therein, often fail to

establish a significant risk-return tradeoff relationship, and sometimes even suggest that

expected returns and volatility are negatively related (see, e.g., Bekaert and Wu, 2000;

Ghysels, Santa-Clara, and Valkanov, 2005; Bollerslev, Litvinova, and Tauchen, 2006;

Rossi and Timmermann, 2015; Theodossiou and Savva, 2016; Hong and Linton, 2020, for

empirical evidence and reviews of this extensive literature). However, if investors rationally

price downside risk more dearly than upside potential, the risk-return tradeoff might natur-

ally manifest differently in “good” versus “bad” volatility measures. The empirical results

discussed in the previous section that improved volatility forecasts may be obtained by dif-

ferentiating between the influence of past “good” and “bad” volatilities also indirectly sup-

ports this conjecture.

To illustrate, Table 1 reports the results from a set of simple return predictability regres-

sions, in which I regress daily, weekly, and monthly S&P 500 returns on a constant andffiffiffiffiffiffiffi
RV
p

, and a constant and
ffiffiffiffiffiffiffiffiffiffi
RVþ
p

and
ffiffiffiffiffiffiffiffiffiffi
RV�
p

. For simplicity, and ease of comparisons, I de-

fine the weekly (monthly) returns as the sum of 5 (21) daily returns divided by 5 (21). The

sample spans the same 2002–2020 time period analyzed above, for a total of 4783 daily

20 As a case in point, the average estimates for /�D and /þD over the identical 2002–2020 sample

period for the “bad covid” stocks and FAANG stocks discussed further in Section 2, equal to 0.621

and �0.008, respectively, with most of the /�D s being strongly statistically significant, and most of

the /þD s insignificant.

21 Robins and Smith (2021) provides a fresh look and empirical re-evaluation of the widely cited

French, Schwert, and Stambaugh (1987) paper with recent data and modern econometric

techniques.
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return observations. All of the regressions are estimated at a daily frequency with overlap-

ping weekly and monthly returns. In addition to Newey–West standard errors accounting

for the serial correlation induced by the overlap (given in parentheses), following Hodrick

(1992) I also report t-statistics (in square brackets) for testing the null hypothesis of no-

predictability based on the rearranged return regressions without any overlap.

Looking at the results, there is a clear pattern in the point estimates. In line with the ex-

tant empirical literature referred to above, the estimated regression coefficients for
ffiffiffiffiffiffiffi
RV
p

are all small and insignificant, underscoring the difficulties in empirically establishing a

traditional risk-return tradeoff relationship. However, differentiating between “good” and

“bad” volatility, the estimated regression coefficients for
ffiffiffiffiffiffiffiffiffiffi
RVþ
p

are all negative, albeit not

statistically significant at conventional levels, while the coefficients associated with
ffiffiffiffiffiffiffiffiffiffi
RV�
p

are all positive, and also statistically significant at the longer monthly return horizon.22

These simple regression-based results also mirror those of the earlier unpublished

study by Breckenfelder and Tédongap (2012), and the time-series regressions reported

therein in which the up minus down realized semivariance measure for the aggregate

market portfolio negatively predicts future market returns. The results are also broadly

consistent with Feunou, Jahan-Parvar, and Tédongap (2013), and the empirically sig-

nificant risk-return tradeoff relationship for the model-based relative downside risk

measure established therein.23 The equilibrium asset pricing model in Farago and

Tédongap (2018), based on a representative investor with generalized disappointment

Table 1 S&P 500 return predictability regressions

Daily Weekly Monthly

ffiffiffiffiffiffiffi
RV
p

0.038 0.003 0.003

(0.056) (0.049) (0.030)

½0:675� ½0:055� ½0:111�ffiffiffiffiffiffiffiffiffiffi
RVþ
p

�0.246 �0.100 �0.051

(0.236) (0.081) (0.036)

½�1:041� ½�1:227� ½�1:439�ffiffiffiffiffiffiffiffiffiffi
RV�
p

0.303 0.106 0.057

(0.248) (0.085) (0.027)

½1:223� ½1:246� ½2:145�

The table reports the results from simple return predictability regressions of daily, weekly (5 days), and

monthly (21 days) S&P 500 SPY returns on a constant and RV, and a constant and RVþ and RV–. The

sample spans 2002–2020, for a total of 4783 daily observations. All of the regressions are estimated at a

daily frequency with overlapping returns. Newey–West standard errors accounting for the serial correlation

in the errors induced by the overlap are reported in parentheses. The square brackets report alternative

Hodrick (1992) t-statistics for testing the null of no predictability.

22 The degree of return predictability afforded by any one of the regressions is invariably very lim-

ited, with R2s close to zero. As such, the “economic significance” of the estimates should be inter-

preted with some caution.

23 The results also echo the earlier empirical findings of Bali, Demirtas, and Levy (2009), and a posi-

tive tradeoff between expected aggregate market returns and VaR, with VaR interpreted as a

measure of downside risk.
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aversion, provides a possible rational for this differential pricing of “good” versus

“bad” volatility at the aggregate market level.

Motivated in part by these empirical findings for the market portfolio, Bollerslev, Li,

and Zhao (2020) look instead at the role of “good” versus “bad” volatility at the indi-

vidual stock level. Focusing on the stock-specific differences in RVþ and RV—and the

signed jump variation defined in Equation (4) scaled by total RV, they find that stocks

with relatively higher (scaled) SJ earn systematically lower future returns than stocks

with relatively lower (scaled) SJ. Also, these cross-sectional differences cannot be

explained by any of the standard controls and/or systematic risk factors traditionally

used for explaining the variation in individual stock returns. Nor can the differences be

explained by high-frequency-based realized skewness and/or kurtosis measures (Amaya

et al., 2015), reinforcing that the semivariation measures are not simply capturing pre-

viously documented skewed or fat tailed distributional deviations from normality.

Further expanding on this, Yu, Mizrach, and Swanson (2020) find that SJ-based sorts

restricted to “smaller sized” jumps result in even larger and more significant cross-

sectional return differences.

It is possible that a systematic risk factor explicitly related to downside aggregate market

volatility, along the lines of the aforementioned study by Farago and Tédongap (2018),

could help explain why investors value individual stocks with relatively high SJ more dearly

than comparable stocks with low SJ, although that has yet to be established. An alternative,

and in my opinion more likely, explanation is that the cross-sectional differences in

future returns associated with differences in firm level “good” versus “bad” volatility

may be linked to behavioral biases and investors’ overreaction to “bad” news coupled with

limits to arbitrage, along the lines of Shleifer and Vishny (1997). Corroborating this thesis,

the differences in returns for stocks with high versus low relative SJ appear stronger for

smaller firm stocks, stocks with higher overall volatility, and less liquid stocks, all of which

arguably pose greater arbitrage risks. I will return to that same theme in my discussion of

the empirical results pertaining to the pricing of the semicovariation measures introduced

next.

2 Multivariate Semicovariation Measures

The univariate realized semivariation measures and empirical results discussed in the previ-

ous section were based on the decomposition of the total variation for a given asset into

“good” versus “bad” volatility for that particular asset. However, most empirical questions

and hypotheses in asset pricing finance are inherently multivariate in nature, entailing

measures of the covariation among multiple assets and considerations of systematic non-

diversifiable risks. Fortunately, the traditional realized volatility measure in Equation (2)

is readily extended to a realized covariance measure by considering the sum of cross-

products of vectors of high-frequency intraday returns (Andersen et al., 2003; Barndorff-

Nielsen and Shephard, 2004a). Following Bollerslev et al. (2020) (henceforth BLPQ) the

realized semivariances defined in Equation (3) may similarly be extended to a multivariate

setting and a decomposition of the realized covariance matrix into four unique additive

realized semicovariance components determined by the signs of the underlying high-

frequency returns.
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To fix ideas, consider the multivariate extension of the generic Itô semimartingale in

Equation (1) to a d-dimensional vector log-price process,

ps ¼ p0 þ
ðs

0

lsdsþ
ðs

0

rsdWs þ Js; s � 0; (7)

where ls is a R
d-valued drift process, Ws is a d-dimensional standard Brownian motion, rs

is a d�d dimensional stochastic volatility matrix, and Js is a finitely active pure-jump pro-

cess.24 For notational simplicity, and in parallel to the discussion and definitions in Section

1, I will assume that intraday prices for all of the d assets are available at K equally spaced

times over the trading day ½t; t þ 1�. Then, in a direct parallel to the seminal result in

Equation (2),

RCOVt �
XK

k¼1

rt;kr0t;k !
P

ðt

t�1

rsr
0
s þ

X
t�1� s� t

JsJ
0
s; (8)

where rt;k ¼ ptþk=K � ptþðk�1Þ=K denotes the logarithmic discrete-time return vector for the

kth time interval on day t. Now, denote the corresponding vectors of signed positive and

negative high-frequency returns by rþt;k and r�t;k, respectively.25 Mirroring the decomposition

of the realized variance into two semivariances in Equation (3), the four realized semicovar-

iance matrices are then simply defined by,

Pt �
XK

k¼1

rþt;k rþ0t;k; Nt �
XK

k¼1

r�t;k r�0t;k; Mþ
t � M�0

t �
XK

k¼1

rþt;k r�0t;k: (9)

Note that by definition RCOVt � Pt þNt þMþ
t þM�

t .

The two “concordant” realized semicovariance matrices (Pt and Nt) comprise the posi-

tive and negative realized semivariances on their diagonals together with scalar realized

covariances constructed from identical-signed positive or negative high-frequency returns

on their off-diagonals. The “discordant” realized semicovariance matrices (Mþ
t and M�

t )

have zeros along their diagonals and scalar realized covariances constructed from

opposite-signed returns on their off-diagonals. Since Pt and Nt are defined as sums of vec-

tor outer-products, these matrices are both positive semidefinite, while Mþ
t (and M�

t ) is

indefinite. In situations where the ordering of the assets is arbitrary, the two discordant

matrices are naturally combined into a single “mixed” matrix Mt �Mþ
t þM�

t . Note that

while the realized variance of a portfolio may be calculated from the realized covariance

matrix of the assets included in the portfolio based on the identity RVt � w0RCOVtw,

where w refers to the vector of portfolio weights, the up and down semivariance measures

for a portfolio are not simply equal to portfolio weighted averages of the semicovariances.

24 This general setup, which also underlies the asymptotic theory in BLPQ, explicitly allows for multi-

variate “leverage effects” in the form of dependence between changes in the price and changes

in volatility, as well as stochastic volatility-of-volatility, volatility jumps and price-volatility co-

jumps.

25 Formally, rþt ;k � rt ;k � Iþt ;k and r�t ;k � rt ;k � I�t ;k , where � denotes the Hadamard (element-by-elem-

ent) product, and Iþt ;k � ½1frt ;k;1>0g; . . . ; 1frt ;k;N>0g�0 and I�t ;k � ½1frt ;k;1 � 0g; . . . ; 1frt ;k;N � 0g�0 ,
respectively.
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In particular, RVþt 6¼ w0ðPt þMþ
t Þw and RV�t 6¼ w0ðNt þM�

t Þw.26 Instead, the realized

semicovariance measures afford an alternative asset-specific “look inside” the quadratic

covariation.

To help further intuit the measures, consider the stylized setting in which the logarithmic

price process in Equation (7) follows a continuous semi-martingale with no drift (ls � 0),

no jumps (Js � 0), constant unit volatility for all of the assets, and instantaneous correlation

q among all of the different pairs of assets, in which case

RCOVt !P Id þ ðJd � IdÞq;

where Id denotes the d� d identity matrix and Jd is a d�d matrix of ones. In this situation,

Pt ; Nt !P
1

2
Id þ ðJd � IdÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
þ qarccosð�qÞ

2p
;

while

Mþ
t ; M�

t !
P ðJd � IdÞ �

qarccosq�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
2p

:

As these limiting values make clear, the more strongly correlated the returns and the

larger the value of q, the larger (respectively, smaller) and closer to 1/2 (respectively, 0) are

the limiting values of the off-diagonal elements in the two concordant (resp. discordant)

semicovariances. Accordingly, one might naturally expect the relative importance of the

concordant semicovariances to increase during times of financial crises and “market

stress,” periods that are typically accompanied by higher overall asset return correlations.

The above stylized diffusive setting does not allow for any differences between Pt and

Nt (or Mþ
t and M�

t ). Nor does it provide for any distinction between the limiting values of

RVþt and RV�t for portfolios constructed from the d assets. Meanwhile, in line with the dis-

cussion pertaining to the realized semivariances in the previous section, and as illustrated

further below, empirically on days with important “directional news,” Pt and Nt can differ

quite dramatically. The more advanced limit theory developed in BLPQ identifies three dis-

tinct channels through which such differences can occur, namely directional “co-jumps,” a

type of “co-drifting,” and a specific form of “dynamic leverage effect.” In parallel to the

results for the semivariances in Equation (4), the first of these channels manifests directly in

the first-order asymptotics, with the difference between the probability limits of Pt and Nt

being entirely determined by identically signed co-jumps. That is,

Pt �Nt !P
X

t�1� s� t

DJþs DJþ0s � DJ�s DJ�0s ; (10)

where DJþs (respectively, DJ�s ) refers to the d-dimensional vector of time-s positive

(respectively, negative) jumps in each of the d assets. As shown in BLPQ, a feasible central

limit theorem further permits the formulation of a formal test (termed the JCSD test) for

significant differences in Pt and Nt due to co-jumps. By comparison, co-drifting and dynam-

ic leverage effects, both of which can cause the diffusive components of Pt and Nt to differ,

26 This also implies that the portfolio weights for the standard minimum variance portfolio will gener-

ally not minimize RV�t . To minimize the “bad” volatility, one could rely on the approximate proce-

dures recently developed by Rigamonti et al. (2021).

Bollerslev j Realized Semi(co)variation 233

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/20/2/219/6432504 by guest on 28 M

arch 2022

Deleted Text: ,
Deleted Text: ,
Deleted Text: . 
Deleted Text: . 
Deleted Text: . 
Deleted Text: . 


formally manifest in second-order bias terms in a non-central limit theorem.27 To aid in

interpreting the magnitude of these diffusive differences, BLPQ provides an additional in-

ference tool (termed the DCSD detection scheme), which under more restrictive regularity

conditions may be justified as an asymptotically valid test.

To empirically illustrate these features, Figure 2 shows the within-day 5-min logarithmic

prices (normalized to zero at the beginning of the day) on June 15, 2020, and July 9, 2020,

for two separate groups of stocks: “bad covid” stocks and the FAANG group of stocks.

The FAANG group of stocks comprises the five tech giants: Facebook (FB), Amazon

(AMZN), Apple (AAPL), Netflix (NFLX), and Alphabet (GOOG). These five stocks cur-

rently account for close to 20% of the total market capitalization of the S&P 500 index.

My definition of the “bad covid” group of stocks follows Bollerslev, Patton, and Zhang

(2021), who rely on hierarchical clustering methods together with a novel cross-validation

approach for determining the optimal number of clusters and cluster groupings for the S&P

100 individual stocks based on their daily realized semicorrelations. The “bad covid” clus-

ter of stocks that I consider here first arose on January 31, 2020, coincident with the World

Health Organization) first declared the coronavirus outbreak a health emergency of inter-

national concern.28 The cluster consists of: Boeing (BA), Occidental Petroleum (OXY),

Raytheon (RTX), Schlumberger (SLG), and Simon Property Group (SPG). These companies

obviously range quite widely in terms of their main lines of business, and do not line up

with conventional industry type classifications. Instead, the grouping reflects commonal-

ities in the way in which the prices of the different stocks respond to new information, as

seen through the lens of the semicovariation measures.

Looking first at June 15, the price paths for the “bad covid” stocks fairly closely mirror

the intraday price path for the S&P 500 SPY ETF on that same day shown in Figure 1.

There is a mostly monotonic increase in the prices for all of the stocks over the earlier part

of day, along with an apparent jump at 2:00 pm when the FED announced its intention to

inject additional liquidity into the economy. By comparison, the price paths for the

FAANG stocks on that same day, shown in the second top panel, evidence much more

muted appreciations. Looking at the bottom two panels for July 9, which as previously

noted saw a sharp rise in new reported coronavirus cases across the United States, the price

paths again show clear within-cluster similarities and across cluster differences. All of the

“bad covid” stocks performed very poorly losing more than 4% on that day, while the

FAANG stocks as a group ended up almost flat for the day.

In line with these observations, the relative importance of the different semicovariance

components also differ quite markedly within and across the two clusters of stocks on each

of the two different days. For instance, while the average Pij normalized by ðRVi 	 RVjÞ1=2

for all of the (i, j) pairs of “bad covid” stocks equals 0.528 on June 15, the similarly nor-

malized Nij and Mij components only amount to 0.279 and �0.028, respectively, implying

27 These terms also set the analysis pertaining to realized semivariances and semicovariances apart

from most other high-frequency econometrics and related in-fill asymptotics, which typically on

standard central limit theorem type arguments; see, for example, Aı̈t-Sahalia and Jacod (2014).

28 In contrast, when clustering the S&P 100 stocks based on their standard realized correlations, a

similar “bad covid” cluster of stocks did not arise until March 18, 2020.
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a total within-cluster average realized correlation of 0.779 for the day.29 By comparison,

the average normalized Nij for the cluster of “bad covid” stocks equals 0.442 on July 9,

compared with 0.235 and �0.097 for the normalized Pij and Mij components. The mixed

semicovariance components, of course, tend to play a relatively more important role for the

between cluster correlations. As a case in point, looking at all of the pairwise combinations

of “bad covid” stocks and FAANG stocks on July 9, the average normalized Mij equals

�0.134, while the normalized Pij and Nij equal 0.197 and 0.365, respectively.

Putting the discussion pertaining to Figure 2 further into perspective, recall that under

the standard Itô semimartingale assumption, to a first-order asymptotic approximation dif-

ferences in the concordant (discordant) semicovariance components are entirely driven by

co-jumps. Empirically, many large-sized jumps tend to be readily associated with precisely

timed news announcements, or “sharp” news. However, aside from the fairly minor-sized

jumps for most of the stocks evident at 2:00 pm on June 15 in response to the FED’s an-

nouncement at that time, co-jumps do not seem to account for the differences in the real-

ized semicovariation measures for either of the 2 days depicted in Figure 2. Instead, echoing

the discussion pertaining to the price paths for the S&P 500 SPY ETF in Figure 1, both of

Figure 2 Intraday individual equity prices. The figure shows the intraday (normalized to zero at the be-

ginning of the day) logarithmic prices at 5-min intervals on June 15, 2020 (top panels) and July 9 (bot-

tom panels) for each of the “bad covid” stocks (left panels) and FAANG stocks (right panels), as

defined in the main text.

29 This particular normalization ensures that the so-defined three realized semicorrelations add up

to the standard realized correlation. Following Bollerslev, Patton, and Quaedvlieg (2020), other nor-

malizations based on the realized semivariances could be employed in the definition of alternative

realized semicorrelation type measures.
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the days shown in Figure 2 seem to be characterized by “soft” and more difficult to inter-

pret news, resulting in distinctly different intraday return persistence for the two different

clusters of stocks, and in turn varying importance of the three different semicovariance

components.30

Further highlighting these differences, Table 2 shows the average values of the previous-

ly defined daily realized semicorrelations for all of 2020 for the 10 unique pairs of stocks in

the “bad covid” and FAANG clusters, along with the 25 unique “bad covid” versus

FAANG stock pairs. As expected, the within-cluster averages of the concordant qPs and

qNs are very close, as are the corresponding cross-cluster averages. Meanwhile, underscor-

ing the different high-frequency dynamic features of the stocks in each of the two clusters,

the average value of the discordant qMs for the between cluster pairs of stocks is much

larger (in an absolute value sense) than the two averages for the within-cluster stock pairs. I

turn next to a discussion of how these differences in the relative importance of the semico-

variance components across stocks and through time may be used in the construction of

improved volatility forecasts.

2.1 Semicovariance-Based Volatility Forecasting

A number of different GARCH and stochastic volatility type models have been proposed in

the literature to account for return-volatility asymmetries in multivariate settings (e.g.,

Kroner and Ng, 1998; McAleer, Hoti, and Chan, 2009; Francq and Zakoı̈an, 2012). To il-

lustrate, let rþt and r�t denote the vector of signed daily positive and negative returns, re-

spectively. A straightforward multivariate generalization of the aforementioned univariate

GJR-GARCH model, in which the conditional covariance matrix Htþ1 responds asymmet-

rically to cross-products of lagged returns depending on the signs of the returns, may then

be expressed as,31

Htþ1 ¼ Xþ aPrþt rþ0t þ aNr�t r�0t þ aMðrþt r�0t þ r�t rþ0t Þ þ bHt:

Directly paralleling the univariate models discussed in Section 1.1, the cross-products of

the daily lagged return vectors in this multivariate model may naturally be replaced by their

respective realized semicovariance components,

Htþ1 ¼ Xþ aPPt þ aNNt þ aMMt þ bHt: (11)

For aP ¼ aN ¼ aM this obviously collapses to a symmetric multivariate realized GARCH

model. However, by allowing aP, aN, and aM to differ, the realized semicovariance-based

model in Equation (11) allows for more refined and potentially more informative intraday

“continuous” as opposed to daily threshold-based multivariate “leverage effects.”

The estimation results in Bollerslev, Patton, and Quaedvlieg (2020) for a cross-section

of individual stocks support this idea, and point to significant improvements in overall

model fit by allowing the impact of the lagged semicovariance components to differ. In line

30 Relatedly, Jiang, Li, and Wang (2021) have recently documented the existence of pervasive under-

reaction to various types of firm-specific news and strong intraday individual stock price drifts fol-

lowing large (in an absolute sense) “news-driven” returns.

31 For illustrative purposes, I assume the a’s and b to be scalar, but richer non-scalar paramateriza-

tions, and models in which the impact of rþt r�0t and r�t rþ0t are not necessarily the same, could, of

course, be, and has been, entertained empirically.
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with existing empirical evidence pertaining to more traditional multivariate asymmetric

GARCH models, the estimates for aN for the realized models in Equation (11) are typically

larger than the estimates for both aP and aM, implying that most of the co-persistence may

be traced to common “bad” intraday news. As such, the asymmetric realized

semicovariance-based models generally also produce more accurate covariance matrix fore-

casts compared with the forecasts from symmetric multivariate realized GARCH models

that restrict all of the a’s to be the same.

Multivariate GARCH models, their realized versions included, can be challenging to im-

plement empirically, especially in large dimensions. Alternatively, and in direct parallel to

the univariate semivariance-based HAR models discussed in Section 1.1, the realized semi-

covariance measures may similarly be used in the formulation of simple-to-implement

multivariate HAR type forecasting models. To illustrate the basic idea, consider the bivari-

ate case and the 3D HAR model originally estimated in BLPQ, in which each of the scalar

semicovariance components are allowed to depend on its own daily, weekly, and monthly

lags, as well as the lags of the other two components. Specifically, for asset pairs (i, j),

Ptþ1;ij

Ntþ1;ij

Mtþ1;ij

2
4

3
5 ¼

/P

/N

/M

2
4

3
5þUD

Pt;ij

Nt;ij

Mt;ij

2
4

3
5þUW

Pt:t�4;ij

Nt:t�4;ij

Mt:t�4;ij

2
4

3
5þUM

Pt:t�21;ij

Nt:t�21;ij

Mt:t�21;ij

2
4

3
5þ

�Ptþ1;ij

�Ntþ1;ij

�Mtþ1;ij

2
64

3
75;

where UD; UW, and UM are 3� 3 parameter matrices. Restricting the U matrices to be sca-

lar, and forcing the intercepts to be the same (/P ¼ /N ¼ /M), the above formulation obvi-

ously collapses to a standard univariate HAR model for RCOVij � Pij þNij þMij.

However, the estimates for a sample of individual stocks reported in BLPQ reveal highly

significant differences in the freely estimated parameters, with the dynamic dependencies in

both Pij and Nij driven almost exclusively by the lagged Nij terms, while the mixed semico-

variances Mij appear to be mostly driven by their own lags. Digging deeper, the

semicovariance-based models generally also assign greater weights to the daily lagged meas-

ures and thus respond faster to new information, compared with traditional multivariate

HAR models for RCOVij. Of course, to ensure that the forecasts for a full covariance ma-

trix based on these element-wise forecasts for the individual covariances are positive defin-

ite, additional parameter restrictions, and/or regularization will have to be imposed.

These gains from the use of the realized semicovariance measures for covariance matrix

forecasting extend to the forecasts of portfolio variances. Consider the decomposition of

Table 2 Average daily realized semicorrelations

q qP qN qM

“Bad Covid” 0.422 0.268 0.290 �0.139

FAANG 0.525 0.315 0.315 �0.103

“Bad Covid” vs. FAANG 0.148 0.196 0.206 �0.254

The table shows the average daily realized semicorrelations for 2020 for the 10 unique pairs of stocks in the

“Bad Covid” and FAANG clusters of stocks, respectively, along with the 25 unique pairs of cross-group corre-

lations. The three realized semicorrelations for stock pair (i, j) are defined as Pij; Nij and Mij divided by

ðRVi 	 RVjÞ1=2.
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the realized variance of a portfolio with portfolio weights w into its portfolio specific semi-

covariance components,

RVt � w0RCOVtw ¼ w0Ptwþw0Ntwþw0Mtw:

As previously noted, these portfolio semicovariance measures differ from the up and

down semivariance measures defined in Equation (3), and in contrast to the latter, which

only require high-frequency returns on the portfolio itself, the semicovariance measures re-

quire high-frequency returns for all of the assets included in the portfolio. BLPQ again find

univariate HAR models for realized portfolio variances that exploit these portfolio specific

semicovariance measures to be both faster, in the sense of assigning larger weights to the

lagged daily realized measures, and more persistent, in the sense of shocks decaying at a

slower rate, than conventional HAR and SHAR models based on lagged portfolio realized

variances and semivariances only.

I will next discuss various findings which suggest that the separate semicovariation com-

ponents underlying this covariance matrix and portfolio variance forecasting results are not

priced the same either.

2.2 Semicovariance-Based Asset Pricing

The basic premise that investors only care about downside systematic risk(s) effectively

implies that only “bad” covolatility should be priced. In the case of aggregate market risk,

only the covariation with negative market returns ought to carry a risk premium, as in the

downside version of the CAPM (Ang, Chen, and Xing, 2006). Meanwhile, market frictions

and/or behavioral biases may cause assets with identical downside covariation to be priced

differently. In particular, consider two assets with the same total downside covariation. If

one of the two assets covaries more strongly with the market when the market is perform-

ing poorly, thereby exacerbating the systematic downside risk, it may naturally be expected

to carry a higher overall risk premium than the other asset, which covaries less strongly

with the market when the market is performing poorly.

To succinctly illustrate this idea, consider Figure 3 adapted from Hogan and Warren

(1974). If investors do not care about “good” volatility, the covariation stemming from the

two states where the market returns are positive (P and Mþ) should not earn any risk pre-

mium. In contrast, any covariation associated with joint negative market and individual

asset returns (N) should be positively compensated, while the mixed covariation stemming

from negative market returns and positive individual asset returns (M�) ought to carry a

negative, and in an absolute value sense lower, risk premium. The decomposition of the

conventional CAPM beta into four realized semibetas proposed by Bollerslev, Patton, and

Quaedvlieg (2021a) is directly motivated by these considerations.

Specifically, omitting the time t subscript for notational convenience, and relying on the

same element-wise notation as above, the four realized semibetas for asset i with respect to

the market portfolio f are simply defined by,

bP
i �

Pfi

RVf
; bN

i �
Nfi

RVf
; bMþ

i �
�Mþ

fi

RVf
; bM�

i �
�M�

fi

RVf
; (12)

where RVf refers to the realized variance of the return on the market. The negative signs for

the two discordant semibetas ensure that all of the realized semibetas are non-negative by
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definition. If the four semibetas move proportionally with each other, as would be the case

in a Gaussian world, they would convey no additional information over and above the con-

ventional realized beta, b � bP þ bN � bMþ
� bM�

(Barndorff-Nielsen and Shephard,

2004a; Andersen et al., 2006). As such, the four semibetas would also necessarily be priced

the same.

To illustrate, consider the same stylized diffusive setting with no drift, no jumps, and

constant volatility discussed in Section 2, for which RCOVt !P Id þ ðJd � IdÞq. Further

denote the probability limit of the standard realized beta by b. It follows that in this

situation,

bP ; bN !P b

2p

�
q�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
þ arccosð�qÞ

�
;

while

bMþ
; bM�

!P b

2p

�
q�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� arccosðqÞ

�
:

Hence, while the relative contribution of the concordant versus discordant semibetas to

the standard beta obviously depends on the strength of the correlation between the asset

and the market, each of the two concordant (discordant) semibetas consistently estimate

the same quantity. In a non-diffusive setting, or non-Gaussian world, however, the prob-

ability limits for all of the semibetas may formally differ. In accordance with the economic

intuition conveyed by Figure 3, they may also be priced differently.

The empirical results reported in Bollerslev, Patton, and Quaedvlieg (2021a) support

this conjecture. Only bN and bM�
appear to be priced in the cross-section of individual

stocks, in the sense that higher values of bN and �bM�
both tend to be associated with

higher realized returns. Meanwhile, the estimated risk premium for bN across a variety of

specifications and different samples of stocks and time periods is typically around double

that of the estimated premium for �bM�
, possibly related to a “betting against beta” type

story (Frazzini and Pedersen, 2014). The hypothesis that the two risk premiums are

Figure 3 Semicovariance pricing. The figure, adapted from Hogan and Warren (1974), shows the signs

of the risk premiums (k’s) associated with the four semicovariance components implied by a mean

semivariance pricing framework.
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numerically the same is also easily rejected statistically.32 By comparison the estimated risk

premium for the traditional realized b is even less than the premium for �bM�
.

On the face of it, the different risk premiums for bN and �bM�
may seem puzzling. In a

frictionless financial market the sign of the covariation with the market can costless be

changed through short positions, so that in order to prevent arbitrage opportunities the two

risk premiums ought to be the same. The downside version of the CAPM also effectively

combines the “good” and “bad” downside semibetas into a single downside beta

bD � bN � bM�
, with a single risk premium. However, as argued by Pontiff (1996) and

Shleifer and Vishny (1997), with legal constraints and charters impeding many institutional

investors from short-selling, and many individual investors simply reluctant to sell short,

this may result in limits-to-arbitrage and accompanying arbitrage risks (see also Hong and

Sraer, 2016). These arbitrage risks may in turn induce a wedge between the pricing of the

N and �M� semicovariation components. Consistent with this reasoning, Bollerslev,

Patton, and Quaedvlieg (2021a) further find that the hypothesis of identical risk premiums

for bN and �bM�
is more strongly rejected for stocks with higher idiosyncratic volatility, a

commonly used proxy for greater impediment to price-correcting arbitrage (see, e.g.,

Stambaugh, Yu, and Yuan, 2015).

I will not pursue this line of reasoning and the pricing of the different semibetas any fur-

ther here. Instead, to merely illustrate the practical calculation of the semibetas, Table 3

reports the averages of the daily realized semibetas for all of 2020 for the same five “bad

covid” and five FAANG stocks discussed in Section 2. All of the betas are calculated with

respect to the S&P 500 market portfolio. As the table shows, the averages of the semibetas

for the “bad covid” stocks all exceed those for the FAANG stocks, indicative of more pro-

nounced non-normal dependencies. It would be interesting to further explore the economic

mechanisms behind these differences, and what explain the variation in semibetas across

stocks and time more generally. The model in Boloorforoosh et al. (2020), explicitly allow-

ing for time-varying betas and beta risk, may prove useful in thinking about these issues.33

In addition to the averages of the individual stocks semibetas, Table 3 also reports the

averages of the 2020 daily realized semibetas for the two equally weighted portfolios

comprise the five “bad covid” and five FAANG stocks, respectively. While the traditional

realized beta of a portfolio, and the up and downside portfolio betas, may be calculated as

the portfolio weighted averages of the respective realized betas for the individual stocks

included in the portfolio, the semibetas of a portfolio are not simply equal to the portfolio

weighted averages of the individual semibetas. Rather, consistent with the idea that port-

folio formation mute the impact of firm-specific jumps and other idiosyncratic risks, there-

by rendering the portfolio returns closer to the returns on the market portfolio compared

with the returns on the individual stocks included in the portfolio, the values of the two

32 The significant premium (respectively, discount) for lower-tail (respectively, upper-tail) asymmetric

dependence estimated by Alcock and Hatherley (2017) and Alcock and Sinagl (2020) also indirect-

ly supports these findings. The findings are also generally in line with Schneider, Wagner, and

Zechner (2020), and the tendency for assets with positive (respectively, negative) coskewness to

offer lower (respectively, higher) returns than predicted by the traditional CAPM.

33 Relatedly, the framework developed in Buraschi, Porchia, and Trojani (2010) for intertemporal port-

folio choice with stochastic second moments may be helpful in thinking about optimal asset allo-

cation decisions and how to hedge against time-varying semicovariances and semibetas.
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portfolio discordant semibetas are both closer to zero than their individual stock averages.

Correspondingly, the two concordant portfolio semibetas are also both smaller than the

averages of the concordant semibetas for the individual stocks. This phenomenon, of

course, is not unique to the semibetas. Many other non-linear features, some of which have

previously been associated with cross-sectional differences in returns, are similarly dimin-

ished through the effects of portfolio diversification.

In addition to their use for more accurate ex-ante return predictions, the realized semi-

betas could also help shed new light on ex-post investment return performance. There is an

extensive literature, dating back to the early work by Treynor and Mazuy (1966) and

Merton and Henriksson (1981), devoted to the question of whether mutual funds and other

investment vehicles are able to “time” the market. This question is typically answered em-

pirically by comparing what effectively amounts to estimates of the up and downside betas

of a fund, with good timing ability manifest by bD < bU and/or changes in bU (bD) posi-

tively (negatively) correlated with the performance of the market. Unfortunately, the

returns for many funds are only available at relatively coarse monthly or quarterly frequen-

cies, hindering direct estimation of dynamically varying fund betas at the horizons over

which the funds might actively be changing their market exposures. Alternatively, the up

and downside betas of a fund may be estimated as the portfolio weighted averages of the up

and downside betas of the individual asset included in the fund’s portfolio, thereby allow-

ing for the calculation of time-varying beta estimates at the same frequency over which

fund holdings are available (see, e.g., Bodnaruk, Chokaev, and Simonov, 2019). Further

decomposing these estimates into separate “good” and “bad” up and downside fund betas,

bU
F ¼

Xd

k¼1

wiðbP
i � bMþ

i Þ � bP
F � bMþ

F ; bD
F ¼

Xd

k¼1

wiðbN
i � bM�

i Þ � bN
F � bM�

F ;

may afford additional insights into where the fund performance is coming from.34 In par-

ticular, it follows that if bP
F > bN

F and bM�

F > bMþ

F , then bD
F < bU

F , which is traditionally

Table 3 Average daily realized semibetas

b bP bN bMþ
bM�

Individual stocks

“Bad Covid” 1.230 0.863 0.874 0.271 0.237

FAANG 1.185 0.681 0.690 0.096 0.089

Portfolios

“Bad Covid” 1.233 0.740 0.769 0.146 0.130

FAANG 1.185 0.622 0.637 0.037 0.036

The top panel shows 2020 average daily realized semibetas with respect to the S&P 500 for the five stocks

included the “Bad Covid” and FAANG clusters of stocks, respectively. The bottom panel shows the average

daily realized semibetas for 2020 for equally weighted portfolios comprise the five stocks in each of the two

clusters.

34 Note, that while bU
F and bD

F are identical to the up and downside fund betas that would obtain

with high-frequency fund returns, if such returns were available, bP
F ; bN

F ; bMþ

F , and bM�

F do not

directly match the four fund semibetas that would be calculated directly with high-frequency fund

returns.
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considered to be indicative of good overall market timing. Appropriately timed variation in

a fund’s semibetas, may, of course, also be commensurate with superior overall market tim-

ing ability.35 Counter to this, however, Bandi and Renò (2021) report that many hedge

funds seemingly have larger betas when market returns are especially low, or what effect-

ively amounts to larger “betas in the tails.”

The semibetas discussed above are all rooted in the standard one-factor CAPM.

However, the same basic idea readily extends to multi-factor pricing models based on fac-

tors for which high-frequency returns are available, whether in the form of ETFs or other

actively traded financial instruments, or in the form of brute force constructed high-

frequency factor returns.36 With a single factor, or approximately uncorrelated factors,

realized semiloadings may naturally be defined by the same expressions as in Equation

(12), with the relevant factor in place of the market factor f. With multiple non-trivially

correlated factors different normalizations may be called for. In parallel to the semibeta

pricing results discussed above, the law-of-one-price coupled with limits-to-arbitrage may

again impose certain restrictions and/or bounds on the values of the risk premiums associ-

ated with the relevant semiloadings.

Along these lines, Aı̈t-Sahalia, Jacod, and Xiu (2021) reports that allowing for separate

risk premiums for the continuous and jump components of the Fama–French risk factors

significantly enhances the explanatory power of second-stage Fama–MacBeth cross-

sectional return regressions compared with the fit afforded by conventional models that

price the two components the same.37 Relatedly, Massacci, Sarno, and Trapani (2021) find

that allowing for different factor structures in endogenously determined up and downside

regimes afford a superior fit compared with traditional factor models that do not condition

on the state of the economy. It would be interesting to further explore the interplay between

these findings and the semiloading idea proposed here, both empirically and theoretically.

The framework developed by Engle and Mistry (2014) for analyzing asymmetric volatility

and skewness in factor returns within the context of an intertemporal capital asset pricing

model may prove useful in guiding such investigations.

3 Partial (Co)Variation Measures

The zero-threshold that underlies the realized semi(co)variation measures, and related vola-

tility forecasting and pricing results, discussed above is firmly rooted in the idea that invest-

ors process and price up and downside risks differently. From a purely statistical

35 Further expanding on this theme and the previous analysis in Artavanis, Eksi, and Kadlec (2019),

“good” and “bad” up and downside fund betas could potentially also help explain mutual fund

flows.

36 Intraday high-frequency versions of the Fama–French size and value factors were first con-

structed by Bollerslev and Zhang (2003), while high-frequency versions of all the five Fama–

French factors and the Carhart momentum factor have been put together by Aı̈t-Sahalia, Kalnina,

and Xiu (2020). High-frequency versions of the more than one hundred factors defined in Jensen,

Kelly, and Pedersen (2021) have also recently been explored by Aleti (2021).

37 The earlier study by Bollerslev, Li, and Todorov (2016) similarly finds that continuous and jump

CAPM betas are not priced the same. The much more extensive empirical analysis of the full

“factor zoo” in Aleti (2021) also further corroborates this differential pricing.

242 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/20/2/219/6432504 by guest on 28 M

arch 2022

Deleted Text: s
Deleted Text: -
Deleted Text: -
Deleted Text: to 
Deleted Text: s
Deleted Text: to 
Deleted Text: -
Deleted Text: -
Deleted Text: -


perspective, however, the choice of a zero threshold may seem somewhat arbitrary. More

elaborate GARCH and other parametric volatility forecasting models involving multiple

non-zero thresholds have also been entertained in the literature (see, e.g., Medeiros and

Veiga, 2009; Cai and Stander, 2019, and the many references therein). Following Bollerslev

et al. (2021), the high-frequency-based realized semi(co)variation measures may similarly

be extended to so-called partial (co)variation measures, by allowing for a non-zero thresh-

old and/or multiple thresholds.

To fix ideas, let fgð	Þ, for g ¼ 1; 2; . . . ;G, denote a partition of the real line into G non-

overlapping intervals, so that the kth intraday return may be expressed as

rt;k � f1ðrt;kÞ þ f2ðrt;kÞ þ 	 	 	 þ fGðrt;kÞ. The basic realized variation measure in Equation (2)

may then alternatively be expressed as the sum of the corresponding G partial variation

measures PV
ðgÞ
t implicitly defined by,

RVt ¼
XK

k¼1

f1ðrt;kÞ2 þ 	 	 	 þ fGðrt;kÞ2 �
XG
g¼1

PV
ðgÞ
t : (13)

The realized semivariation measures in Equation (3) obviously obtained as special cases

by setting G¼2, and f1ðrt;kÞ � rt;k 	 Iðrt;k < 0Þ and f2ðrt;kÞ � rt;k 	 Iðrt;k > 0Þ, respectively.

But, other thresholds may be used in the definition of more refined partial realized variation

measures.

Multivariate realized partial covariation measures may be defined analogously by parti-

tioning the vectors of high-frequency returns. Specifically, let rt;k ¼ f1ðrt;kÞ þ f2ðrt;kÞ þ 	 	 	 þ
fGðrt;kÞ denote an exact decomposition of the kth intradaily return vector into G compo-

nents based on the partition functions fgðxÞ ¼ x
1fcg < x � cgþ1g, where the thresholds

are monotonically increasing cg�1 � cg, with c1 ¼ �1 and cGþ1 ¼ 1. The resulting G2

realized partial covariation measures PCOV
ðg;g0Þ
t are then implicitly defined by,

RCOVt �
XK

k¼1

rt;kr0t;k

¼
XK

k¼1

f1ðrt;kÞf1ðrt;kÞ0 þ f1ðrt;kÞf2ðrt;kÞ0 þ 	 	 	 þ fGðrt;kÞfGðrt;kÞ0

¼
XG
g¼1

XG
g0¼1

PCOV
ðg;g0Þ
t :

(14)

The realized semicovariance measures defined in Equation (9) again obtain as special

cases for a single threshold at zero. In situations when the ordering of the assets is arbitrary,

mirroring the combination of the two discordant semicovariance matrices into a single

“mixed” matrix (Mt �Mþ
t þM�

t ), all of the matched pairs of “mixed” partial covariance

matrices may similarly be combined (i.e., PCOV
ðg;g0Þ
t þ PCOV

ðg0;gÞ
t for g 6¼ g0), resulting in

“only” GðGþ 1Þ=2, as opposed to G2, partial covariance matrices in total.

Rather than relying on time-invariant thresholds in the definition of the partition func-

tions fgð	Þ, one might also naturally consider time-varying thresholds based on the

volatility-standardized intraday returns and the quantiles of said distributions. Doing so

will help avoid certain partitions becoming especially thinly or densely populated during

extended time periods of high or low volatility. The conventional zero threshold, of course,

is typically very close to the median of both the raw and the standardized high-frequency
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return distributions, and as such the semi(co)variation measures still obtain as special cases

of the so-defined partial (co)variation measures.

3.1 Partial (Co)variance-Based Volatility Forecasting

The freedom to choose the number and location of the thresholds in the definition of the

realized partial (co)variance measures affords a great deal of added flexibility compared to

the semi(co)variance measures discussed in Sections 1 and 2.38 Meanwhile, faced with the

oft-observed empirical tradeoff between better in-sample fits of more complicated models

versus better out-of-sample forecast performance of simpler models, it is not clear whether

the use of the richer partial (co)variation measures will necessarily result in superior volatil-

ity forecasting models compared to the semi(co)variance-based forecasting models dis-

cussed in Sections 1.1 and 2.1.

The empirical analyses in Bollerslev et al. (2021) shed a first light on this question.

Using the same sample of stocks and same univariate and multivariate HAR structures ana-

lyzed in BLPQ, the results suggest that it is difficult, although not impossible, to improve

upon the fixed threshold at zero. At the same time, however, when considering only a single

threshold, or G¼ 2, zero clearly emerges as the “hero.” Allowing for multiple thresholds,

G¼3 and partial (co)variance-based models with one threshold close to zero and another

threshold in the left tail of the standardized intraday return distributions typically emerge

as the best performing forecasting models. In other words, “good” and “bad” (co)volatility

and negative (co)jumps all manifest differently in terms of their dynamic dependencies.

The partial covariances defined in Equation (14) rely on simple threshold-based cutoffs

and rectangular-shaped partitions of the total covariation. Alternative partitions based on

ellipsoids, or other geometric shapes, possibly centered at non-zero coordinates, could be

employed in the definition of alternative classes of partial covariation measures. It is pos-

sible that some of these alternative decompositions may be used in the construction of even

better multivariate volatility forecasting models. Given the vast set of decompositions and

related models to potentially consider, I would envision ideas and techniques adapted from

machine learning to be very helpful in terms of disciplining or regularizing the estimation of

such models and further exploring this question.

3.2 Partial (Co)variance-Based Asset Pricing

There is a rapidly growing recent literature on the use of machine learning techniques in

economics and finance. A common finding for many of these studies in the area of asset

pricing finance concerns the importance of allowing for non-linearities and interactions

among predictor variables (e.g., Freyberger, Neuhierl, and Weber, 2020; Gu, Kelly, and

Xiu, 2020). Relatedly, and in parallel to the use of the semicovariances for asset pricing in

the form of the semibetas or semi-factor-loadings discussed in Section 2.2, the partial cova-

riances may similarly be used in the definition of partial betas or partial-factor-loadings

capturing different parts of the systematic risk exposures. This again is reminiscent of the

aforementioned studies by Bollerslev, Li, and Todorov (2016); Aı̈t-Sahalia, Jacod, and Xiu

(2021); and Aleti (2021), and the idea that the continuous and jump components of the sys-

tematic risk factors may be priced differently. However, other partitions of the systematic

38 The freedom to choose the number and location of the thresholds also pose formidable theoretical

challenges in establishing the in-fill asymptotic distributions of the partial (co)variation measures.
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risks different from continuous versus jump variation, or “good” versus “bad” covolatility,

may possibly result in even better asset price predictions. I am currently exploring this idea

in joint ongoing work (Bollerslev, Patton, and Quaedvlieg, 2021b), in which we seek to esti-

mate a full “risk premium surface.”39 Following the discussion above, the law-of-one-price

together with considerations of arbitrage again impose certain restrictions on the surface.

The random field regressions combined with sieve approximations that we rely on for the

estimation affords an especially convenient framework for incorporating such restrictions.

4 Conclusion

Financial markets are inherently forward-looking. The dynamics of financial asset prices

thus encodes potentially valuable information about investors’ expectations and beliefs

about future state variables, as well as preferences and attitudes toward different types of

risks. In particular, as I have argued here, there are both sound economic reasons and ample

empirical evidence to support the thesis that “good” and “bad” volatilities are not created

equal. “Looking inside” the quadratic return variation through the lens of newly developed

simple-to-implement high-frequency-based realized semi(co)variation measures, it is clear

that “bad” (co)volatility is both more informative about future (co)volatility and priced

more dearly by investors than “good” (co)volatility. In addition to these conclusions,

gleaned from the uses of realized semi(co)variance measures in simple reduced form volatil-

ity forecasting models and regression-based return predictions, there are many other intri-

guing questions still left to be explored in regards to the theoretical properties and wider

empirical applications of the new semi and partial (co)variation measures. I look forward

to seeing the fruits from continued financial econometrics research efforts devoted to these

ideas.

Supplementary Data

Supplementary data are available at https://www.datahostingsite.com.
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