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1. Introduction

Linear factor models, starting with the CAPM (Sharpe, 1964; Lintner, 1965) and

its many subsequent generalizations (Fama and French, 1992; Carhart, 1997; Fama and

French, 2015, amongst many others), remain ubiquitous in empirical asset pricing. Their

ease of implementation and interpretation makes the models an especially useful, if im-

perfect, tool for understanding systematic risks and explaining cross-sectional variation

in returns. The advantages of linear models notwithstanding, the simplicity of such mod-

els may mask potentially important non-linear dependencies and pricing. For instance,

prospect theory (Kahneman and Tversky, 1979) and disappointment aversion (Gul, 1991)

both imply that investors care more deeply about losses than gains, and as a result up-

and down-side risks need not be priced the same. Theoretical models involving pref-

erences over higher-order moments (Kimball, 1993) and rare disasters (Wachter, 2013)

similarly suggest that investors price tail risks more dearly than “modal” risks near the

center of the distribution. Capturing such non-linear dependencies and pricing features

requires either the addition of new factors, or new methods.

Rather than adding to the population of Cochrane’s (2011) already large factor-zoo,

we instead propose to refine the way in which we measure the risk exposures to a given

set of existing factors. Drawing on recent developments in high frequency financial econo-

metrics, we increase the information content of a given factor model by measuring the

covariation between an asset and a factor in a granular fashion. To do so, we propose

new measures of dependence designed to locally capture the strength of the covariance

between the return on an asset and a factor across the entire support of the factor. The

resulting new “granular betas” generalize the up- and down-side market betas of Ang,

Chen and Xing (2006) to allow for multiple factors and a more refined look at the inherent

dependencies between an asset and a given set of factors.

These more granular characterizations of systematic risk exposures in turn hold the

promise of more accurate asset price predictions compared to the standard linear factor
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models, which effectively treat the granular beta functions as constants. However, the use

of a function or a set of functions, as opposed to a scalar or a vector, to describe the risk

exposures also complicates the estimation of the compensation for risks, or risk premiums.

To overcome this hurdle, we rely on random field regressions (Cohen and Jones, 1969), in

which we regress the returns on a cross-section of assets on the granular beta functions to

estimate new “risk premium functions.” Our approach naturally extends the traditional

Fama-MacBeth approach for estimating scalar risk premiums in linear factor models to

the new granular setting. We show how these functional regressions may be meaning-

fully implemented empirically based on the use of sieve approximations (Andrews, 1991;

Newey, 1997; Chen, 2007), together with standard OLS procedures for easily estimating

the relevant parameters. This same approach also facilitates the construction of tests

for various economic hypotheses of interest concerning the shape of the risk premium

functions, including, e.g., that the functions are “flat” as implied by traditional linear

factor models.

Implementing the new procedures with U.S. equity return data over the period from

1963 to 2020, we find that the out-of-sample fit of a “granular CAPM” is significantly

better than the standard non-granular and downside versions of the CAPM. We further

trace the improvements to the premium for covariation with the market factor being

especially large in the left most part of its distribution, consistent with the idea that

downside tail risk is priced more dearly by investors. The use of granular factor betas

similarly improves on the out-of-sample performance of the Fama and French (1992) three-

factor model, the Carhart (1997) four-factor model, and the five-factor model of Fama and

French (2015). The improvements in fit again accrue because the shape of the best-fitting

risk premium function for the market factor is significantly different from being flat, as

are the risk premium functions for other factors, most notably the value and momentum

factors. These results in turn translate into distinct “expected return functions” that

illuminate where in the factor space the returns for different stocks and portfolios are

typically earned. Conditioning the estimation of the risk premium functions on various
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economic indicators further points to non-trivial temporal variation in the compensation

for different factor risks and the market’s capacity to bear said risks.

The rest of the paper is organized as follows. We begin in Section 2 by placing

our work in context of the extant literature. Section 3 presents the key ideas and new

estimation and inference procedures. Section 4 discusses our main empirical findings.

Section 5 considers various extensions and applications. Section 6 concludes. More

detailed explanations of the new procedures, along with supportive empirical analyses

and estimation results, are deferred to the Appendix. Additional robustness checks and

empirical results are also provided in an online Supplemental Appendix.

2. Related literature

Our work relates to several strands of the asset pricing literature. The most closely

related papers are perhaps the aforementioned study by Ang et al. (2006) on the downside

CAPM, along with the more recent work by Bollerslev, Patton and Quaedvlieg (2022b),

who refine the up- and down-side betas to also condition on the sign of the return on

the individual assets. In contrast to both of these studies, however, which rely on fixed

thresholds at zero for partitioning the betas, our method allows us to determine where,

in the support of the factors, risk exposures earn greater or lesser compensation, as,

e.g., in the tails versus the center of the distribution. Motivated by that same idea,

the quantile spectral betas proposed by Baruńık and Nevrla (2023) are also explicitly

designed to focus on tail dependencies, and the compensation therefor, across different

return horizons. The importance of allowing for more general non-linear factor structures

has also recently been emphasized by Almeida and Freire (2023), who explicitly caution

that the rejection of linear factor pricing models may stem from a rejection of linearity,

rather than a rejection of the specific set of factors included in the models.

Our empirical finding that the estimated risk premium function for the market factor

does indeed appear especially steep for the most left part of the support, also links our

paper to earlier work on tails and the pricing of tail risks by Bollerslev and Todorov (2011),
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Kelly and Jiang (2014), Farago and Tedongap (2018), Bégin, Dorion and Gauthier (2020),

Beason and Schreindorfer (2022), and Stoja, Polanski and Nguyen (2023), among many

others. Unlike these studies, however, we consider both single and multi-factor models.

Chabi-Yo, Huggenberger and Weigert (2022) and Massacci, Sarno and Trapani (2023)

have also previously considered the pricing of tail risks in the context of multi-factor

models, with the former paper imposing a specific threshold for where the tails begin

and risk prices may differ, and the latter paper estimating a specific threshold. Instead,

our approach deliberately relies on linear measures of risk, in the from of the proposed

granular betas.

By measuring the covariation locally the granular betas can also capture higher-order

moment dependencies not accounted for by regular linear factor models and conventional

betas. The importance of incorporating preferences over higher-order moments when

pricing financial assets, perhaps most notably skewness, have previously been highlighted

by Harvey and Siddique (2000), Dittmar (2002), Backus, Chernov and Martin (2011),

Conrad, Dittmar and Ghysels (2013), Colacito, Ghysels, Meng and Siwasarit (2016),

Ghysels, Plazzi and Valkanov (2016), Langlois (2020), Schneider, Wagner and Zechner

(2020), and Driessen, Ebert and Koëter (2022), among many others.

The way in which we operationalize the granular betas draws directly on develop-

ments in high-frequency financial econometrics, and the interpreted of the measures as

generalizations of the realized betas proposed Barndorff-Nielsen and Shephard (2004),

previously used in empirical work by Andersen, Bollerslev, Diebold and Wu (2006) and

Patton and Verardo (2012), among many others. The granular betas also formally, for

increasingly finer partitions, encompass the jump and continuous betas defined and ana-

lyzed by Todorov and Bollerslev (2010) and Bollerslev, Li and Todorov (2016), and the

multi-factor extensions thereof more formally developed by Aı̈t-Sahalia, Jacod and Xiu

(2023). The granular betas also extend the notion of realized semicovariances in Boller-

slev, Li, Patton and Quaedvlieg (2020), which entail separate covariances for differently

signed returns. However, instead of partitioning the covariance into four additive com-
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ponents, in our main analyses we instead partition the support of each of the systematic

factors into a set of consecutive non-overlapping segments, more closely resembling the

realized partial covariances of Bollerslev, Medeiros, Patton and Quaedvlieg (2022a). As

such, the resulting multi-dimensional betas, and potentially asymmetric realized mea-

sures, are also reminiscent of the realized semivariances of Barndorff-Nielsen, Kinnebrock

and Shephard (2010) and Patton and Sheppard (2015).

At a more general level, our use of finely sampled asset and factor returns for esti-

mating the granular betas combined with more coarsely sample returns for estimating

the risk premium functions also echoes the use of mixed-frequency data in the MIDAS

approach pioneered by Ghysels, Santa-Clara and Valkanov (2006) and Ghysels, Sinko and

Valkanov (2007). However, our reliance on random field regressions and sieve approxi-

mation techniques for quantifying the risk premiums distinguishes our mixed-frequency

estimation scheme from the regression-based approach typically employed in the MIDAS

literature.

Meanwhile, this new estimation approach also naturally links our study to the recent,

and rapidly growing, literature that utilizes methods originally developed in the context of

machine learning for the purpose of asset pricing. For example, Freyberger, Neuhierl and

Weber (2020) utilize adaptive LASSO to help select the characteristics that are important

for explaining the cross-section of expected returns, while Kelly, Pruitt and Su (2019),

Kozak, Nagel and Santosh (2020), and Fan, Ke, Liao and Neuhierl (2023) rely on various

dimension reduction techniques, including LASSO and PCA, to tractably incorporate

the information from potentially hundreds of characteristics. Related, Cai, Fang and

Xu (2022) explore the use of functional-coefficient panel data methods for estimating

the betas in a factor model as non-parametric functions of macroeconomic variables.

In a similar vein, Pelger and Xiong (2022) and Chen, Pelger and Zhu (2024) develop

new inference procedures explicitly allowing for state-dependent factor models and time-

varying loadings. We differ from all of these studies in that we do not attempt to augment

the factor models with additional information stemming from firm characteristics and/or
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other economic state variables. Instead, we seek to enhance the explanatory power of

already well-established linear factor models through the use of more refined measures of

an asset’s covariation with the existing risk factors.

The idea of partitioning the factor space to obtain additional information is also

related to the concepts of random forests and regression trees routinely employed in the

machine learning literature. These techniques have also recently been used by a long

list of empirical studies, including, e.g., Gu, Kelly and Xiu (2020), Bianchi, Büchner and

Tamoni (2021), Bali, Goyal, Huang and Jiang (2022), and Li and Rossi (2022), Aleti,

Bollerslev and Siggaard (2023), to predict stock, bond, and other financial asset returns.

Bryzgalova, Pelger and Zhu (2024) similarly rely on decision trees in their construction

of informative portfolios, or test assets, for the estimation of a stochastic discount factor

(SDF), while Cong, Feng, He and He (2022) use tree-based methods to generate basis

portfolios for spanning the SDF. In contrast to all of these studies, which entail “blind”

data-driven procedures for determining non-linear dynamic dependencies, or combining

assets into “informative” portfolios, our empirical analyses rely on a set of well-established

risk factors. However, instead of traditional linear factor models, we partition the factor

loadings, or betas, into finer granular betas based on the joint empirical distributions

of the assets and the factors, in turn allowing for the estimation of new risk premium

functions and improved return predictions.

Our deliberate use of a small number of factors also sets the paper apart from recent

studies that report significant improvements in out-of-sample forecast performance from

the use of an extensive set of candidate factors and complex “black box” prediction

models estimated by various techniques adopted from machine learning. In addition to

the many studies already cited above, Gu, Kelly and Xiu (2021), Kelly, Malamud and

Zhou (2024), and Didisheim, Ke, Kelly and Malamud (2024), in particular, all tout the

“virtue of complexity” and the advantages of such models. We do not claim that the

more structured approach developed here beat these types of models in terms of forecast

accuracy. Instead, we aim to highlight how new economic insights can be gleaned from

7



the use of more refined risk measures for a few well-established risk factors vis-à-vis

commonly used small-scale linear factor models.

3. Granular betas and risk premium functions

We begin by formally defining and discussing the “granular betas” and some of their

theoretical properties. We then describe how these measures allow for the estimation of

corresponding “risk premium functions.” For simplicity of exposition, we focus our initial

discussion on the simple one-factor case. As discussed further below, the same ideas and

new measures readily extend to multi-factor settings.

3.1. Main ideas and definitions

We denote the excess return on the factor and asset i by X and Yi, respectively.

Consider a set of G partitions of the support of the factor return, say Q1, ..., QG−1, with

Q0 ≡ −∞ and QG ≡ ∞. Let the jth partition be denoted by Gj = (Qj−1, Qj], for

j = 1, 2, ..., G. Define the granular covariance for asset i conditional on the factor return

lying in partition Gj as:

GCov(Yi, X;Gj) = E[(Yi − µi)(X − µx)|X ∈ Gj]. (1)

The granular betas are then simply obtained by normalizing the set of granular covari-

ances with the factor variance:

Gβi(Gj) ≡
GCov(Yi, X;Gj)

σ2
x

. (2)

If the factor X refers to the excess return on the market, the probability weighted sum

of the granular betas naturally equals the traditional CAPM beta:

βi =
G∑
j=1

Gβi(Gj)Pr[X ∈ Gj].
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Hence, in the one-factor setting with X equal to the market, the granular betas may

be interpreted as an additive decomposition of the usual CAPM beta. Moreover, if the

quantiles of the market factor are used to determine a set of equally likely partitions,

so that Pr[X ∈ Gj] = 1/G for all j, the usual CAPM beta is simply obtained as the

equal-weighted average of the granular betas.

To further appreciate what the granular betas estimate, it is instructive to consider

their limit for an increasing number of partitions, or for the width of the partitions

converging to zero, say ∆→ 0:

Gβi((x, x+ ∆]) =
E[(Yi − µi)(X − µx)|x < X ≤ x+ ∆]

σ2
x

→ (E[Yi|X = x]− µi)(x− µx)
σ2
x

≡ Gβ∗i (x). (3)

We will refer to this limiting function as the “granular beta function” in the sequel. The

functional form of Gβ∗i (x) reveals that granular betas are related to the conditional mean

of the test asset given the factor. Analogous to the case with a finite number of partitions,

the law of iterated expectations again implies that for the market factor, the expectation

of this function equals the usual CAPM beta, that is, E[Gβ∗i (X)] = βi.

Of course, it is possible that the compensation earned for exposure to the factor

X may differ across the support of the factor. As a case in point, existing empirical

evidence suggests that market tail risk may be prized more dearly than “normal” risk

associated with realizations of X closer to the center of its distribution. In other words,

the risk premiums associated with the granular beta function Gβ∗i (x) may depend on

x. Specifically, let λ(x) denote the risk premium function that characterizes how the

compensation varies with x across the support of X. The expected return on Yi may

then be expressed as:

E(Yi) =

∫ ∞
−∞

λ(x)Gβ∗i (x)fX(x)dx, (4)

where fX(·) denotes the PDF of X.

9



To help further intuit the meaning of the granular betas and risk premium functions

defined above, suppose that the traditional CAPM holds, so that the conditional mean

of the return on Yi satisfies E[Yi|X] = βiX, where X denotes the excess return on the

market. Substituting this expression into equation (3) shows that the granular beta

function implied by the CAPM is a parabola:

Gβ∗i (x) = βi
(x− µx)2

σ2
x

. (5)

Moreover, as formally shown in Appendix A, for the expected return to be linear in βi,

the λ(x) risk premium function cannot depend on x. In other words, for the traditional

CAPM to hold, the lambda function must be constant across all values of x. We will

refer to this as the lambda function being “flat” in the sequel.

Of course, there is overwhelming empirical evidence to suggest that the traditional

CAMP does not hold empirically, and that the granular beta function with respect to the

market factor therefore does not resemble equation (5). To determine what the granular

betas actually look like empirically, we turn next to their practical estimation.

3.2. Estimating granular betas

Drawing on the theory for realized semicovariances (Bollerslev et al., 2020), we esti-

mate the time t granular beta for asset i with respect to factor X by:

Ĝβi,t,j =
ĜCovi,t,j
σ̂x,t

, (6)

where

ĜCovi,t,j =
t∑

s=t−S+1

(Ys − Ȳt)(Xs − X̄t)1{Xs ∈ Gj}, (7)

σ̂x,t =
t∑

s=t−S+1

(Xs − X̄t)
2, (8)
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and X̄t and Ȳt refer to the sample means of Xt and Yt over the previous S periods.1 This

construction directly mirrors the approach in the burgeoning high-frequency volatility

literature, in which the variance or the covariance over fixed time-intervals is estimated

from the sums of within interval more finely sampled squared or cross-products of returns,

rather than their averages. As such, the realized beta defined by Barndorff-Nielsen and

Shephard (2004) is simply obtain by summing the granular beta estimates defined in

equation (6) over all the G partitions:

β̂i,t =
G∑
j=1

Ĝβi,t,j,

This, of course, also mirrors the previous discussion in Section 3.1 pertaining to the

traditional true latent CAPM beta and the corresponding true latent granular betas.

3.3. Estimating the risk premium function

Our approach for estimating the risk premium function builds directly on the tradi-

tional Fama-MacBeth cross-sectional regression approach for estimating the risk premi-

ums in linear factor pricing models. However, instead of regressing the returns on each

of the assets on their estimated factor loadings (“betas”) to estimate the scalar risk pre-

miums (“lambdas”), we instead regress the asset returns on the granular beta functions

formally defined in equation (3). That is, with a slight abuse of notation, we seek to

estimate the non-linear regression:

Yi,t = αt +

∫ ∞
−∞

λt(x)Gβ∗i,t−1(x)fX,t−1(x)dx+ ei,t, i = 1, 2, ..., N. (9)

This may formally be interpreted as a random field regression (Cohen and Jones, 1969),

in which the scalar asset returns, Yi,t, are regressed on the random functions, Gβ∗i,t−1(·).

The output from this “regression” will in turn provide an estimate for the intercept

1In our empirical analyses discussed below, we rely on rolling windows of S = 1, 200 trading days, or
approximately five years, to estimate a given month’s granular beta.
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parameter αt, and the functional slope coefficient λt(·). In contrast to the estimate for

lambda obtained from the traditional Fama-MacBeth approach, which characterizes the

average compensation for systematic risk, as measured by beta, the estimated lambda

function from (9) describes the compensation for systematic risk earned across the entire

support of the underlying risk factor, as measured by the new granular betas.

Mimicking the theoretical pricing equation in (4), the random field regression in (9)

relies on the granular beta functions defined in (3) that obtain in the limit as the width

of the partitions converge to zero. In practice, of course, with a finite number of return

observations and without the imposition of any additional assumptions, we can only

meaningfully estimate a finite number of granular betas. Correspondingly, we resort to

the feasible estimates for the G granular betas defined in equations (6)-(8), together with

the method of sieves (see Chen, 2007, for a review) for estimating the lambda functions.

Specifically, we estimate λt based on the time-t cross-sectional return regression:

Yi,t = αt +
G∑
j=1

Ĝβi,t−1,jλt(j;G, p) + ei,t, (10)

= αt +
G∑
j=1

Ĝβi,t−1,jLP(2j/G− 1, p)φt + ei,t, i = 1, 2, ..., N,

where φt denotes the vector of coefficients to be estimated, and LP(x, p) refers to the

deterministic 1× (p + 1)-vector of Legendre polynomial transformations that we use for

spanning the lambda function.2 Consistent with economic intuition, the sieve approach

automatically ensures that the estimate for λt(·) defined by LP(2j/G−1, p)φ̂t is smooth.

As discussed further below, the use of a polynomial basis to span λt(·) also facilitates the

imposition and test of specific economic hypotheses, including “flatness” as implied by

the CAPM and other traditional asset pricing models.

2Other polynomials, could, of course, be used as well as. However, the 2j/G − 1 Legendre poly-
nomial transformations that we rely on conveniently put the partitions on the [-1,1] interval. Unlike
standard polynomial functions, the Legendre polynomials are also orthogonal on the [-1,1] interval with
respect to the uniform distribution, rendering regressions with high polynomial orders less susceptible to
multicollinearity; see also Li, Liao and Quaedvlieg (2022) for additional discussion.
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Fixing the polynomial order p, the functional relationship in (10) may be easily es-

timated by OLS. Concretely, let Yt denote the Nt-vector of returns, Ĝβt−1 denote the

Nt × G matrix of stacked granular betas, and LP(p) denote the G × (p + 1) matrix of

polynomial bases. Further define Qt ≡ [ι LP(p)Ĝβt−1], where ι is a vector of ones. The

parameter estimates may then readily be expressed as:

[α̂t φ̂t]
′ = (Q′tQt)

−1Q′tYt. (11)

Moreover, standard errors robust to cross-sectional heteroskedasticity are easily obtained

from the conventional Eicker-Huber-White covariance matrix:

V ar([α̂t φ̂t]
′) = (Q′tQt)

−1Q′tdiag(êtê
′
t)Qt(Q

′
tQt)

−1, (12)

where êt denotes the Nt × 1 vector of residuals from equation (10). Inference concerning

the estimated conditional lambda function also readily follows from the use of the delta

method, and the fact that λ̂t(j;G, p) = LP(2j/G− 1, p)φ̂t.

The theory of sieves formally requires that the polynomial order p grows to infinity

together with the size of the estimation sample (see, e.g., Chen, 2007). In practice, of

course, we will have to chose a specific value of p for the LP(x, p) polynomial. As dis-

cussed further in Section 4.2 below, in our empirical analyses we follow common practice

in the literature and resort to cross-validation techniques for doing so. In addition to help

mitigate possible over-fitting, we also introduce a second hyperparameter, ω. This addi-

tional regularization parameter serves to shrink the unrestricted λ̂t(·) estimates obtained

for a given value of p towards the estimated flat lambda function obtained for p ≡ 0.

Accordingly, our final estimate of λt(·) is constructed as:

λ̂t(j;G, p, ω) = ωλ̂t(j;G, 0) + (1− ω)λ̂t(j, G, p) (13)

where ω = 0 corresponds to no shrinkage, while for ω = 1 the estimate is completely
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shrunk to a flat function. In parallel to our choice of p, in our empirical analyses we rely

on standard cross-validation techniques for choosing the value of ω, as further discussed

in Section 4.2 below.

Analogous to the second-stage regression in the traditional Fama-MacBeth approach

used for estimating the risk premiums in linear factor pricing models, all of the functional

λ̂t(·) estimates discussed above pertain to a single time period t. To obtain a meaningful

estimate of the risk premium function and the compensation earned across the entire

support of the factor, it is natural to average these period-by-period estimates over the

full sample, say t = 1, 2, ..., T :

λ̂(j;G, p, ω) =
1

T

T∑
t=1

λ̂t(j;G, p, ω). (14)

Following standard econometric procedures, robust pointwise standard errors for the re-

sulting λ̂(·) function may readily be constructed based on an estimate of the long-run

covariance matrix (e.g., Newey and West, 1987) for the time series of the individual

period-by-period lambda function estimates.3

3.4. Testing economic restrictions

The sieve approach allows for the meaningful estimation of the individual lambda

functions by succinctly parameterizing the functions using polynomial basis functions,

effectively reducing the dimensionality of the problem. As previously noted, the use of a

polynomial bases to span the lambda functions also conveniently permits the imposition

of various restrictions on the shape of the period-by-period lambda functions.

Specifically, let φt,i denote the coefficient associated with the ith polynomial basis

function in period t, with φt,1 denoting the linear coefficient, φt,2 denoting the quadratic

coefficient, etc. The flatness condition for the lambda function discussed in Section 3.1

above in connection with the implications of the traditional CAPM, corresponding to

3Estimation and inference pertaining to risk premium functions over different sub-samples, including
samples conditioned on specific economic indicators, may be constructed in a similar manner.
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λ(x) = λ̄ for all values of x, may then simply be imposed by fixing φt,i = 0 for all i,

except i = 0.

In a frictionless financial market, without any short-sale or leverage constraints, the

lambda function would naturally also be symmetric around zero, as a short position in

Yi merely switches the sign of the granular beta function (see also the related discussion

in Bollerslev et al., 2022b). Accordingly, we will refer to lambda functions for which

λ(x) = λ(−x) as satisfying a “symmetry” condition in the sequel. Of course, legal

constraints, higher costs association with short selling, and other impediments, may create

limits-to-arbitrage and arbitrage risk (see, e.g., Pontiff, 1996; Schleifer and Vishny, 1997;

Hong and Sraer, 2016), thereby causing λ(x) 6= λ(−x).4 Intuitively, if X is a market

factor, assets that covary more strongly with the market when the market is performing

poorly tend to exacerbate downside risk, while assets that covary less with the market

when the market is performing poorly help mitigate downside risk. As a result, the

latter type of assets may on average demand less of a risk premium causing the lambda

function to be asymmetric (as in Ang et al., 2006). In parallel to the flatness condition,

this symmetry condition can also easily be imposed and tested by restricting the partitions

to be symmetric around zero and fixing φt,i = 0 for all odd integers i (see Appendix B

for additional details).

Meanwhile, when considering the estimate of the risk premium function obtained by

averaging the period-by-period lambda function estimates, as in (14), it is not possible

to directly test for flatness or symmetry based on the φt parameters, as different com-

binations of the polynomial coefficients for the estimated λ̂t(·) functions may result in

non-flat and/or asymmetric average lambda functions λ̂(·), even when the average of the

individually estimated parameters do not.5 Hence, we therefore test the hypotheses of

4See also the recent discussion and extensive literature review in Gârleanu, Panageas and Zheng (2022)
pertaining to the performance of shorting strategies and various economic constraints and mechanisms
that might impede arbitrage.

5For example, when p = 4, similar functions can be obtained with φ2 > 0, φ4 < 0 and φ2 < 0, φ4 > 0,
making it possible that the coefficients are zero on average, while in each single period, and therefore on
average, the lambda function is non-flat.
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interest by directly evaluating the average function estimates at B pre-set fixed points.

That is, we test symmetry by:

H
(Sym)
0 : λ(Unr)(j;G, p, ω)− λ(Sym)(j;G, p̃, ω̃) = 0, ∀ j = 1, ..., B, (15)

where the corresponding unrestricted functional estimate, λ̂(Unr), allow all polynomials in

the period-by-period lambda functions to have non-zero coefficients, while the symmetric

functional estimate, λ̂(Sym), only allows even powers in the individually estimated lambda

functions to have non-zero coefficients. Similarly, we test the stronger flatness condition

by:

H
(Flat)
0 : λ(Unr)(j;G, p, ω)− λ(Flat)(j;G, 0, 0) = 0, ∀ j = 1, ..., B, (16)

where the individual lambda function estimates underlying the averaged flat function

estimate, λ(Flat), only has an intercept.6

3.5. Granular multi-factor models

All of the estimates and hypothesis tests discussed above pertains to a one-factor

setting. The same general ideas and intuition readily extends to the estimation and tests

of granular K-factor models.

Specifically, in a direct extension of the one-factor case, consider the situation in which

the partitions for the kth factor only depends on that same factor. Analogous to equation

(7), the jth granular realized covariance for the kth factor may then similarly be defined

as:

ĜCovi,k,t,j =
t∑

s=t−R+1

(Yi,s − Ȳt)(Xk,s − X̄t,k)1{Xk,s ∈ Gj}. (17)

Stacking the K factors and the jth granular covariances into the (K × 1) vectors Xt =

[X1,t, ..., Xk,t]
′ and ĜCovi,t,j, respectively, the multi-factor granular beta estimates are

6Since the symmetric and flat estimates may rely on different hyperparameters from the unrestricted
estimates, we further optimize these hyperparameters in a separate validation sample from that of the
test sample.
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then simply obtained as:7

Ĝβi,t,j = V̂−1x,tĜCovi,t,j, (18)

where

V̂x,t =
t∑

s=t−R+1

(Xs − X̄t)(Xs − X̄t)
′. (19)

Replacing Ĝβi,t−1,j in the sieve regression defined in (10) above with Ĝβi,t,j, the joint

estimation of the λk,t(·) risk premium functions for each of the K factors, together with

inference and hypotheses testing, proceeds exactly as in the one-factor case.

With a total of G partitions for each of the K factors, the factor-specific partitions

outlined above results in a total of K × G granular betas. More involved multi-factor

specifications in which the factors are jointly partitioned could, of course, be entertained

as well. In an extension of our main empirical analysis based on factor-specific partitions,

Section 5.2 briefly considers such a multi-dimensional approach. However, this extension

comes at the expense of additional notational complexity, and we defer a more detailed

discussion to that section. Instead, we turn next to a discussion of the data and estimation

setup that we rely on throughout our empirical analyses.

4. Granular factor model estimates

4.1. Data and granular beta estimates

Our empirical analyses rely on daily return data from the Center for Research in

Securities Prices (CRSP) database, spanning the period July 1963 to December 2020.

Following standard practice, we consider all stocks with CRSP codes 10 and 11, and

remove all penny stocks with prices less than five dollars to alleviate biases arising from

price discreteness. We further require five years of daily data to estimate the granular

betas. All in all, this leads to a total of 181,804 firm-month observations.

7In parallel to the one-factor case, the granular betas also sum to the usual factor betas when weighted
by the probability of each partition. Mirroring the discussion pertaining the CAPM, in a strict K-factor
model with orthogonal factors, the granular beta functions are also parabolas, with proportionality
coefficients equal to the factor loadings.
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Figure 1: Relative granular betas for hi-tech and utility stocks. The figure shows the average
CAPM, downside, and granular market betas of “Hi-Tech” and “Utilities” stocks relative to the corre-
sponding average betas for all firms in our sample. The ratios are plotted as a function of the quantiles
of the market return, qf .

To illustrate the added flexibility afforded by the new granular betas, Figure 1 plots

the averages of the traditionally estimated CAPM betas for all firms in the “Hi-Tech” and

“Utilities” industries relative to the grand average of the betas for all the stocks in our

sample.8 As the estimated ratios for the traditional betas, labeled “Beta” in the figure,

show, hi-tech firms tend to have betas in excess of the market average, while the betas

of utility stocks tend to be lower. Looking at the dashed lines, labeled “Downside Beta,”

which report the ratios of the average estimates of the up- and down side betas for the

two industries relative to the up- and down-side betas for all stocks, demonstrates that

even though the down-side betas for hi-tech stocks tend to be larger than the down-side

beta for the average stock, the up-side betas for hi-tech stocks are even larger in a relative

sense. By comparison, the up- and down-side betas for utility stocks are both very similar

in a relative sense to the average up- and down-side betas for all stocks. Meanwhile, the

new “Rough” and “Fine” granular beta estimates, corresponding to G = 8 and G = 64 in

the analysis below, respectively, tell a more nuanced story. In particular, while the betas

8The industry definitions are based on the 10-SIC classifications on Ken French’s website.
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for hi-tech firms are generally higher than the betas for most other stocks, in extreme

down markets, when qf is close to zero, hi-tech stocks typically move less with the market

than their traditional CAPM and downside betas would suggest. Conversely, for utility

stocks the more pronounced deviations from the traditional beta estimates occur near

the center of the market return distribution.

4.2. Risk premium function estimates

Turning to the risk premium functions, we focus on the one-factor CAPM, the Fama

and French (1992) three-factor model (FF3), the Carhart (1997) four-factor model (FF3+Mom),

and the Fama and French (2015) five-factor model (FF5). These models have arguably

emerged as the leading factor models in the literature. The returns for all of the factors,

as well as the risk-free rate required to compute the excess returns, are sourced from

Ken French’s website. As a reference, Appendix C reports the traditional annualized

full-sample Fama-MacBeth risk premium estimates obtained for each of the traditional

factor models. For comparison, we also report the estimates obtained by splitting each

of the factors into separate up and down components.

As discussed in Section 3.3, our use of a local polynomial approach for estimating

the lambda functions introduces two additional hyperparameters, p and ω. As noted

in that same section, we rely on standard cross-validation techniques for choosing these

parameters. This approach in turn also dictates our choice of estimation and forecasting

samples. Specifically, we begin by estimating the requisite granular beta functions using

the 1, 200 daily returns up until the start of the month over which the monthly returns

that we use in estimating the lambda functions are measured. For a given ordering of the

assets, we then use the first 60% of assets to estimate the αt and φt parameters in (10)

on a month-by-month basis for a range of different values of the two hyperparameters.

We then use the next 20% of assets as a validation sample to select the polynomial order

and degree of shrinkage based on the average R2 obtained for this collection of assets.

Finally, we use the resulting estimated risk premium functions to price the remaining
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20% of the assets. Accordingly, the results obtained for these remaining 20% of the

stocks effectively constitute an out-of-sample evaluation of the estimated risk premium

functions. Since the order of the assets is arbitrary, we repeat this procedure one hundred

times for different random permutations of assets, and report the averages obtained across

these permutations as our final estimation results.9

We commence our empirical analysis by considering a granular version of the standard

CAPM. The resulting full-sample risk premium function estimates, λ̂(·), are presented

in Figure 2 as a function of the quantiles of the market return qf (ranging from zero

to one). To help illustrate the approach, we report the results obtained for different

degrees of granularity, increasing from G = 1, corresponding to the traditional flat CAPM

benchmark reported as the dashed line in all panels, all the way up to G = 64.

Looking first at the G = 2 case in the left-most panel, the estimates corroborate

existing empirical evidence that the market risk premium tend to be larger when the

market is down (i.e., for the left half of its support). As G increases, the estimated

risk premium function is allowed to take more flexible shapes. However, by G = 16 the

function has seemingly converged, as there appears to be little systematic change in the

general shape when considering larger values of G. Broadly consistent with the up- and

down-side CAPM of Ang et al. (2006), the estimated risk premium function is generally

positive when the market return is below its median, and close to zero when the market

is above its median.

Extending these CAPM-based results, we next consider granular versions of the FF3,

FF3+Mom, and FF5 models. To help streamline the presentation, we focus on the most

flexible G = 64 granular beta models. Figure 3 presents the resulting risk premium

functions estimated over the full sample, along with 95% pointwise confidence intervals.

The top-left panel in the figure corresponds directly to the right-most panel in Figure 2,

with confidence intervals included.

9We have also explored an alternative 10-fold cross-validation scheme stratified by market capitaliza-
tion, in which we use 7 folds for estimation, 2 folds for validation, and 1 fold for evaluation. All of our
key results remain qualitatively similar to the ones reported below.
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Figure 2: Market factor risk premium function estimates. The figure presents the estimated
market risk premium function as a function of the market return quantiles for various functional beta
granularities (G). The dashed lines report the standard Fama-Macbeth CAPM estimate obtained for
G = 1.

The results for the three-factor FF3 model given in the second row of Figure 3 show

that the estimated market risk premium function remains qualitatively the same as in the

CAPM model in the top row: the market risk premium is positive and significant when

the market return is in its left tail, while not significantly different from zero for points

in the support of the market return distribution slightly above its median. The fact that

the estimated function appears smoother is attributable to the selected polynomial order

for the market factor in the FF3 model being lower than in the CAPM, consistent with

a greater need for parsimony in larger models.10

Turning to the estimates for the other factors in the FF3 model, the risk premium

function for SMB exhibits a U-shape. At the same time, however, the confidence intervals

indicate that the function is not significantly different from being flat, a restriction that

we formally test (and do not reject) below. Related, while the size effect was on average

positive and significant up until around 1980 (Banz, 1981; Reinganum, 1981), the size

risk premium has seemingly declined over time, and estimates using standard methods

has also found it to be insignificant with more recent data (Schwert, 2003; Ahn, Min and

Yoon, 2019).

The estimated risk premium function for HML evidence a more pronounced U-shape,

with significant negative premiums when HML is around its median and significantly

positive premiums for realizations in either of its tails. Consistent with many other

10In particular, while the selected polynomial order for the CAPM is eight, in the FF3 it is only three.
The cross-validated optimal polynomial and shrinkage parameters for all the models that we consider
are reported in Table D.2 in Appendix D.
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studies documenting that the value premium has substantially weakened over the years,

and perhaps even disappeared (e.g., Fama and French, 2020), the traditional full-sample

Fama-Macbeth risk premium estimate for HML (reported in Appendix C), which ef-

fectively averages the lambda function over the support of the HML factor, is also not

significantly different from zero. However, the more nuanced picture afforded by the

functional estimate in Figure 3 tells a more complex story.

The third row of Figure 3 shows the estimation results for the FF3+Mom model.

Not surprisingly, the estimated risk premium functions for the first three factors are all

broadly in line with the results for the FF3 model. Meanwhile, the premium function

for the momentum factor appears mildly non-linear. Looking at the bottom row and

the estimates for the FF5 model, shows that the risk premium function for profitability

(RMW) appears roughly flat, while the estimated function for the investment (CMA)

factor is almost a mirror image of the estimate for the market factor: the premium is

negative or zero for the left tail of the factor and positive in the right tail.

In order to corroborate these visual impressions, Table 1 presents the results of our

more formal tests for flatness and symmetry. We test the restrictions separately for each

factor in a given model, as well as jointly across all factors in the model. In accord with

the largest value of G used in the estimation of the granular beta functions, we rely on

64 equally-spaced points on the average (across time) estimated risk premium functions

in implementing the tests, corresponding to B = 64 in equations (15) and (16).

Looking first at Panel A, which considers the null of symmetry as stipulated in (15),

we observe that the p-values for the joint tests reported in the left-most column are all

zero to three decimal places, indicating a strong rejection of the hypothesis. The tests for

each of the factors individually, reported in columns two through seven, reveal that the

strongest evidence against symmetry comes, perhaps not surprisingly, from the market

factor, followed by the momentum and value factors. Tests of risk premium function

symmetry for the remaining three factors, size, profitability, and investment, all fail to

reject the null at conventional levels.
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Table 1: Tests on risk premium functions. The table reports p-values from tests of the restrictions
on the risk premium function in (15) and (16). The tests are implemented using 64 equally-spaced points
on the average (across time) risk premium function estimates. Column 1 reports the results from joint
tests for all of the factors in a given model, while columns 2-7 report the results from testing each of the
factors individually.

Joint MKT SMB HML MOM RMW CMA

Panel A. H0 : λ is symmetric

CAPM 0.000 0.000
FF3 0.000 0.000 1.000 0.089
FF3+Mom 0.000 0.000 0.969 0.100 0.004
FF5 0.000 0.000 0.983 0.000 0.231 0.156

Panel B. H0 : λ is flat

CAPM 0.007 0.007
FF3 0.000 0.000 1.000 0.000
FF3+Mom 0.029 0.000 1.000 0.091 0.076
FF5 0.000 0.000 1.000 0.000 1.000 0.114

Panel B in turn tests the stronger restriction that the risk premium functions are flat,

as stipulated by the null in (16). This restriction is again strongly rejected for all of the

models, with the p-values for the joint tests for the CAPM, FF3 and FF5 models all being

less than one percent, and that for the FF3+Mom model being less than three percent.11

In line with the previous tests of symmetry, these rejections are again predominantly

driven by the estimates for the market, value, and momentum risk premium functions.

Indeed, consistent with the visual impression from the estimates depicted in Figure 3,

neither size, profitability nor investment exhibit any significant evidence against flatness.

Having established that the risk premium function estimates for the different factor

models are statistically different from being simple flat lines, we next seek to assess

11Since the hypothesis that the risk premium function is flat formally encompasses the hypothesis that
the function is symmetric, one would naturally expect this hypothesis to be more strongly rejected by
the data. However, random sampling variation can obviously result in more power to reject the specific
null hypotheses stipulated in (15) compared to (16).
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the improvement, or lack thereof, in out-of-sample (OOS) fit afforded by the new more

flexible granular models. Recall that we always estimate the model parameters and

hyperparameters using the first 60% and 20% of stocks respectively, leaving the remaining

20% of stocks for OOS model evaluation. In addition, to alleviate sensitivity to the specific

stocks that appear in the OOS sample, we re-do that same analysis one hundred times,

randomly permuting the stocks in the different samples.

Table 2 presents the resulting R2 values averaged across the one hundred OOS per-

mutations. To formally compare the benchmark (non-granular) factor models with their

granular counterparts, we use a Diebold and Mariano (1995) (DM) t-test to assess the

significance, with positive values of the test statistics indicating that the granular models

out-perform their traditional non-granular benchmarks. However, since the one hundred

OOS permutations are correlated (some assets randomly appear in more than one test

sample), we cannot simply average the DM test statistics as commonly done in the liter-

ature. Instead, as a (very) conservative approach, Table 2 reports the minimum DM test

statistics obtained across all the one hundred permutations. As the table shows, when

G ≥ 4 the minimum DM test statistic is always at least two, indicating that the granular

factor models provide significant improvements over their non-granular benchmarks.12

Examining the magnitudes of the R2 values in Table 2, further reveals that the gran-

ular CAPM has an OOS R2 that is roughly halfway between the non-granular CAPM

and the non-granular FF3 model (3.8% compared with 3.1% and 4.4%, respectively),

indicating that substantial gains in explanatory power can be achieved by using granular

information, even without exploiting information from additional factors. Further corrob-

orating that same idea, the granular FF3 model out-performs both of the non-granular

FF3+Mom and FF5 models in terms of their OOS R2s (5.3% compared with 5.2% and

5.0%, respectively). In other words, the results in Table 2 show that significant gains in

12For G = 2, the granular CAPM and FF5 models have minimum t-statistics of 1.6 and 1.7, respec-
tively, suggesting only borderline significance. At the same time, however, the median t-statistics for
these two models equal 3.3 and 5.3 respectively, corroborating that they too out-perform their benchmark
non-granular counterparts.
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Table 2: Out-of-sample explanatory power. The table presents the out-of-sample R2s for the
CAPM, FF3, FF3+Mom and FF5 factor models, estimated using standard OLS (G = 1) and granular
betas with an increasing degree of granularity (G > 1). The reported values are averaged across the
one hundred random cross-validation samples. The numbers in parentheses below the R2s report the
minimum Diebold and Mariano (1995) t-statistics across the one hundred random samples for testing
whether the granular models out-perform their non-granular counterparts in the first row.

G CAPM FF3 FF3+Mom FF5

1 3.145 4.447 5.204 5.040

2 3.484 4.966 5.622 5.337
(1.557) (2.383) (2.470) (1.673)

4 3.561 5.019 5.644 5.398
(2.251) (2.911) (2.589) (2.000)

8 3.693 5.143 5.692 5.466
(3.016) (3.449) (3.111) (2.275)

16 3.805 5.236 5.770 5.536
(4.132) (3.594) (3.077) (2.558)

32 3.795 5.282 5.785 5.559
(3.080) (3.765) (2.650) (2.733)

64 3.840 5.275 5.787 5.549
(3.331) (3.782) (2.783) (2.834)

predictive accuracy can be obtained from using the richer information in the new granular

betas and associated risk premium functions.

To help better appreciate how these overall forecast improvements originate, we next

demonstrate how the granular models manifest in differences in expected return functions

for various portfolios.

4.3. Expected return function estimates

Even though the compensation for exposure to the different factor risks are the same

across all assets, as explicated in equation (4) the variations in the magnitude and the

shape of the granular beta functions, Gβ∗i,k(·), interact with the risk premium functions,

λk(·), to generate differences in the implied “expected return functions” across assets.

To illustrate, Figure 4 plots the expected return functions implied by the CAPM, FF3,

FF3+Mom and FF5 granular models as a function of the underlying factor returns av-
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eraged across all of the stocks in our sample (All), together with the implied expected

return functions for the portfolios of technology stocks (HiTech) and utility stocks (Utils)

previously discussed in Figure 1 in the introduction.13

Looking first at the left most column, all three portfolios exhibit roughly similar

average expected return functions in regards to the market factor, although the Utils

curves appear slightly flatter than the other two curves, regardless of which other factors

are included in the model. The pronounced steepness in the curves for especially low

market returns, is consistent with the suggestion by Lu and Murray (2019) that the

CAPM needs to be augmented with an additional factor to capture expected returns

observed during deep market declines, or bear markets.

Even though all three portfolios earn little or no return when HML is near its median,

when the value factor is in its tails the expected returns on utility stocks and most other

stocks are high, while the expected returns on high tech stocks are low. Meanwhile, high

tech stocks generally earn higher returns when the momentum factor is in its left tail, as

do most other stocks, while the expected returns on utility stocks are mostly unaffected

by the momentum factor. Similarly, the expected return on utility stocks appear largely

unaffected by the size factor, while high tech stocks tend to earn higher returns when the

size factor is in the right tail of its distribution, as do most other stocks.

In sum, the expected return functions implied by the granular betas and estimated

risk premium functions clearly differ across different types of stocks. Importantly, these

differences go beyond traditional factor models that restrict the compensation for factor

risk to be the same regardless of the realizations of the factors.

5. Extensions and applications

We begin our additional analyses in this section by investigating whether the estimated

risk premium functions vary systematically with a set of financial economic indicators.

13The Online Supplemental Appendix further details the expected returns for other industry portfolios,
and how said returns may be attributed to the different factors in the CAPM, FF3, FF3+Mom and FF5
granular models.
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We then consider the use of joint partitioning of the factor space within the context

of a multi-factor model. We conclude the section by considering the practical use of

the granular betas in the construction of simple long-short portfolio strategies. For the

sake of brevity, we focus on the workhorse FF3 model throughout all of these additional

analyses.

5.1. Variation in the risk premium functions

Our main empirical analysis and discussion in Section 4 pertain to the estimates of the

risk premium functions obtained by averaging the monthly lambda function estimates over

the full sample. This directly mirrors the risk premium estimates traditionally reported in

the asset pricing literature, which are similarly averaged over longer historical time periods

to help reduce the noise in the estimates. However, risk premiums may be sensitive to

economic conditions and the market’s ability to bear risk (see, e.g., Cochrane, 2017). Our

full-sample risk premium function estimates obviously mask any such dependencies.

To shed further light on this issue, we estimate separate risk premium functions by

averaging the monthly lambda estimates conditional on three commonly used financial

economic indicators: the Chicago Board of Options Exchange’s VIX volatility index, the

Financial Uncertainty index of Jurado, Ludvigson and Ng (2015)), and the UP versus

DOWN market indicator of Cooper, Gutierrez and Hameed (2004).14 Specifically, for the

first two measures, we estimate separate average risk premium functions for months when

the measures are above or below their median values. For the binary UP measure, which

equals unity for 88% of the months in the sample, we simply estimate separate functions

for its UP and DOWN states.15

Using the inference procedures discussed in Section 3.4, we can easily test whether

these conditional risk premium functions are indeed significantly different from one an-

14We retrieve the VIX from the CBOE website. We use the Financial Uncertainty (one-month ahead)
measure retrieved from www.sydneyludvigson.com. The UP measure equals one if the current market
index price is higher than three years ago, and zero otherwise. We compute this index based on the
market factor from Ken French’s website.

15For comparison, the Online Supplemental Appendix also presents additional risk premium function
estimates obtained by splitting the full sample into shorter non-overlapping 20-year periods.
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Figure 5: Risk premium function estimates for different financial market conditions. The
figure presents the estimated risk premium functions for the FF3 model conditional on above and below
median values of the VIX and the Financial Uncertainty index, as well as UP and DOWN market states.
If the two estimated functions are not significantly different from one another at the 5% level, the figure
plots the full-sample estimates.

other. Figure 5 plots the estimated functions for which that null is rejected at the 5%

significance level. When the test for identical conditional risk premium functions do not

reject, we instead plot the full-sample unconditional estimates previously shown in the

second row in Figure 3.

As the first column in the figure shows, the risk premium function for the market

factor varies significantly with both the Financial Uncertainty index and the UP/DOWN

market indicator. In particular, consistent with the idea that the risk bearing capacity

is lower when financial uncertainty is high and during down markets, the corresponding
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risk premium function estimates are both notably higher in those states compared to

their low and up market counterparts. The overall shape of the estimated market risk

premium functions seemingly also change between UP and DOWN markets, indicating

that the high compensation for left tail risk documented in the extant literature is mostly

earned during bear markets.

Looking at the results for the size factor in the second column of the figure, reveals

that while the estimated risk premium functions do not vary significantly with the VIX

or the Financial Uncertainty index, they do differ between UP and DOWN markets.

Indeed, it appears as if the size premium is primarily attributable to higher returns on

small firms in DOWN markets. This more nuanced picture is also broadly consistent with

Souza (2020), who argues that the size premium is highly non-linear and mostly confined

to “bad” economic states.

As previously noted, even though the HML premium as traditionally estimated is not

significantly different from zero over the full sample, the estimated risk premium functions

for the value factor differ significantly when conditioning on the state of each of the three

financial economic indicators. In particular, while the estimated functions are fairly flat

and close to zero when the VIX and Financial Uncertainty are low and the market is in

its UP state, the functions become notably more curved in the high and DOWN states,

with especially pronounced negative deviations from zero in the center of the distribution

of the factor.

These conditional depictions of when and where the factor risk premiums are earned

may also potentially help shed new light on predictability of the equity premium as it

relates to the phases of the business cycle and general economic conditions (see, e.g.,

Adrian, Crump and Vogt, 2019; Moench and Stein, 2021). However, we will not pursue

that line of questioning any further here. Instead, we turn next to a discussion of the

possible use of more refined multi-dimensional partitions.
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5.2. Multi-dimensional partitions

The granular betas considered in our empirical analyses so far all rely on partitions

determined one factor at a time. In a K-factor model one could entertain more refined

partitions based on all K factors jointly. We now consider such an extension of our basic

approach.16

To set out the idea, consider a K-factor model, where the support of each factor is

partitioned into G regions. Denote the jth partition of the kth factor by Gkj . Considering

all possible combinations of such partitions across the K factors, J ≡ (j1, j2, ..., jK) ∈

{1, 2, ..., G}K , results in a total of K × GK granular betas. By comparison, the one-

dimensional partitions “only” generate K × G granular betas. Meanwhile, in parallel

to the one-dimensional granular covariances and betas defined in (6) and (7), the corre-

sponding multi-dimensional measures are readily obtained as:

ĜCov
J
i,t,k =

t∑
s=t−R+1

(Yi,s − Ȳt)(Xk,s − X̄k,t)1{Xs ∈ G1j1 × G
2
j2
× · · · × GKjK},

and

Ĝβ
J
i,t = V̂−1x,tĜCov

J
i,t,

where ĜCov
J
i,t denotes the K × 1 vector of granular covariances across the K factors

for the J multi-dimensional partition. That is, we compute the covariance between the

test asset Yi, and the kth factor Xk, conditioning on the first factor return lying in G1j1 ,

the second factor return lying in G2j2 , and so on up to the Kth factor return lying in

GKjK . Having estimated the multi-dimensional granular betas, mirroring the approach in

Section 4.2, we then estimate risk premium functions for each of the granular betas based

on the use of sieve approximations. Specifically, we use K-dimensional polynomials of

the type P (x, p) = xa1 × xb2× ...× xkK , where the order a+ b+ ...+ k is again determined

by cross-validation.

16Building on the notion of partial covariances of Bollerslev et al. (2022a), one could also consider
partitions based on other variables in addition to the factor(s), including the assets themselves.
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If the factors are strongly correlated and GK is “too large,” there may be partitions

with very few, or no observations. When a given partition has few observations the

estimated granular betas will naturally be less precise, and their explanatory power for

the cross-section of returns will be diminished.17 Of course, if the factors are only weakly

correlated, as is the case in the FF3 model analyzed below, this is less of a concern.

Meanwhile, by explicitly relying on out-of-sample predictions to asses model performance

across a range of values of G, if a given multi-dimensional partition does indeed lead to

“too many” poorly estimated granular betas, this should be revealed empirically in that

step of our estimation procedure.18 Related, since the number of polynomials in the basis

used for spanning the lambda functions increases much more rapidly as a function of the

order in the multi-dimensional case, to help discipline the estimation we consider at most

up to fourth-order polynomials. Moreover, to make the results based on the three-way

partitions, in which we jointly partition the betas according to the market, size and value

factors, directly comparable to the results based on one-way partitions for the same three

factors, we fix the orders of G so that the total number of granular betas that appear on

the right-hand side of the functional regressions used for estimating the corresponding

lambda functions are the same.19

Looking first at Panel A in Table 3 and the reference results for the CAPM, we see

that the out-of-sample R2, which as previously reported in Table 2 increases from 3.1% to

3.8% when allowing for one-way partitions, further increases to 4.8% when we allow for

three-way partitions based on the FF3 factors. In other words, by more finely measuring

the local covariation with the market, we greatly improve on the ability of the CAPM-

based model to explain the cross-sectional variation in the returns. Of course, a more

direct approach would be to simply include the two additional factors and work directly

17This is akin to the problem that arise in Bryzgalova et al. (2024) in the context of the construction
of informative “test assets,” or portfolios.

18As a case in point, we find that five-way partitions of the traditional CAPM betas based on the five
FF5 factors are simply too “noisy” to be useful for out-of-sample forecasting; for additional details see
the Online Supplemental Appendix.

19Recall that G one-way partitions of K factors leads to K×G granular betas, while K-way partitions
leads to K ×GK granular betas.
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Table 3: One-way versus three-way partitions for granular betas. This table presents a compar-
ison of the out-of-sample R2s for the CAPM and the FF3 models obtained using one-way (left panel)
or three-way (right panel) partitions. The order of the polynomials (G) in each row are selected so that
the total number of granular betas (#Gβ) is the same for the one-way and three-way partitions.

One-way partitions Three-way partitions

#Gβ G Opt. order R2 G Opt. order R2

Panel A: CAPM
1 1 0 3.145 1 0 3.145
8 8 6 3.693 2 2,2,2 4.834
64 64 8 3.840 4 2,2,2 4.789

Panel B: FF3
3 1 0 4.447 1 0 4.447
24 8 2,2,2 5.236 2 2,2,2 5.213
192 64 3,6,4 5.275 4 2,2,2 5.220

with the FF3 three-factor model.

However, we already know from our previous results that the FF3 model can also

be further improved by considering one-dimensional partitions, with the R2 increasing

from 4.4% to 5.3%. In contrast to the results for the CAPM, however, looking at the

new results for the FF3 model in Panel B in Table 3, there appears to be no additional

gains available by allowing for three-dimensional partitions. In fact, the average OOS R2

decreases just slightly from 5.3% to 5.2%.

In sum, while the simple one-factor CAPM can be improved by considering multi-

dimensional granular betas based on the market, size and value factors, for larger multi-

factor models the additional estimation error associated with multi-dimensional partitions

seem to outweigh the gains, so that for multi-factor models the simpler granular betas

based on one-dimensional partitions generally result in the best performing models.20

20These same conclusions are also corroborated by the additional empirical results for the FF3+Mom
and FF5 factor models reported in the Online Supplemental Appendix.
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5.3. Long-short granular beta portfolios

To further underscore the practical value of the granular betas, we now consider a

set of simple granular long-short portfolio strategies. Putting the new strategies into

perspective, arguably the oldest of all factor related anomalies, dating back to Black,

Jensen and Scholes (1972), holds that the empirical relationship between conventional

market betas and returns is too flat to be explained by the standard CAPM. Accordingly,

portfolios that “bet against beta” by going long in high-beta stocks, and short in low-

beta stocks, tend to earn positive alphas (see, also Frazzini and Pedersen, 2014). In

the granular beta setting, however, stock selection cannot simply depend on the risk

exposures, but must also take into account the differences in the premiums earned for

the different granular risk exposures. Hence, rather than sorting the stocks based on

their granular betas, we instead sort the stocks based on their predicted expected returns

implied by the granular betas together with the corresponding estimated risk premium

functions.

In particular, averaging across the expected return functions for each of the factors,

we calculate the expected return for month t and stock i as:

K∑
k=1

G∑
j=1

Ĝβt−60:t−1,i,k,jλ̂t−60:t−1(j, G),

where we rely on a 60-month moving average for both the betas and the risk premium

functions. For the sake of brevity, we again focus on the FF3 model, corresponding to

K = 3. In addition to the expected return predictions from the full model, we also

consider portfolios based on the expected return predictions stemming from each of the

three individual factors in turn. Specifically, for stock i and factor k, we calculate:

G∑
j=1

Ĝβt−60:t−1,i,k,jλ̂t−60:t−1(j,G),

where we continue to rely on the lambda functions estimated for the full FF3 model.
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Armed with the estimated expected returns for each of the stocks and months in

the sample, we then construct long-short portfolios, in which the long leg consists of an

equal-weighted portfolio of the 20% of the stocks with the highest expected returns for

a given month, and the short-leg consists of an equal-weighted portfolio of the 20% of

the stocks with the lowest monthly expected returns.21 We consider G = 1, 2 and 64,

representing the traditional FF3 model, the up- and downside version of the FF3 model,

as well as the most flexible granular version of the FF3 model considered in Section 4.2

above.

The resulting portfolio performance is summarized in Table 4. Panel A reports the

annualized mean and standard deviation of the portfolio returns, along with their Sharpe

ratios. We also report the t-statistics for testing whether the Sharpe ratios for the

granular-based portfolios are significantly higher than their G = 1 counterparts based

on the test of Ledoit and Wolf (2008). Panel B in turn provides the corresponding al-

phas for each of the portfolios with respect to the traditional CAPM and the linear FF3,

FF3+Mom and FF5 benchmark models, together with Newey-West robust t-statistics in

parentheses.

As the table shows, the granular beta-based portfolios generally result in significantly

higher Sharpe ratios. Since the portfolios are explicitly constructed to generate higher re-

turns, the higher Sharpe ratios are almost exclusively driven by higher mean returns. The

overall highest average realized returns and Sharpe ratio are, not surprisingly, achieved

by the joint FF3 granular specification that utilizes the granular betas and risk premium

functions for all three factors to jointly predict the expected returns. Looking at the

results for each of the individual factors further shows that stock selection based on the

granular betas and expected return function estimates for the MKT factor offer the largest

(relative) single-factor improvements, followed by the SMB factor. This is consistent with

the visual impression from the earlier Figure 3 and the corresponding tests in Table 1

21For G = 1 and a single factor equal to the market, this naturally reduces to a simple “betting on
beta” type portfolio.
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indicating that the market risk premium function is the furthest from being flat.

These findings are corroborated by the alpha estimates reported in Panel B. For

the G = 1 portfolios based on the standard linear models and factors, only a single of

the sixteen different alphas is significant at the usual 5% level. This, of course, is not

surprising as the standard portfolios are formed based on the same factors that define

the benchmark models. Meanwhile, consistent with the differential pricing of up- and

down-side market risk, the G = 2 portfolios based solely on the MKT factor result

in significant alphas with respect to both the FF3 and FF3-Mom benchmark models.

However, going one step further and more fully exploiting the granular information and

potentially hidden compensation across the support of the different factors not captured

by the traditional linear factor models, the G = 64 Joint and MKT-based portfolios both

result in significant positive alphas with respect to all of the benchmark models.

6. Conclusion

Linear factor models remain the workhorse for understanding risk exposures and risk

premiums in financial markets. In such models, risk exposures are traditionally mea-

sured using simple covariances, or betas, with respect to a given set of factors, with the

risk premiums estimated as linear functions of said exposures. Instead, we propose a

new approach for boosting the information that can be extracted from existing factors,

without the need for any additional data. Drawing on earlier work emphasizing the dif-

ferential pricing of up- and down-side betas, we propose and estimate new local measures

of dependence. These new measures, which we dub granular betas, allow for more re-

fined characterizations of the intrinsic dependencies between an asset and a risk factor.

Exploiting the cross-sectional variation in the resulting granular beta functions, we also

estimate new risk premium functions. These functional estimates generalize the scalar

risk premium estimates from standard factor models and methods, and allow us to precise

where, in the support of the factor space, risk premiums are truly earned. Implementing

the new procedures with a large cross-section of individual U.S. equity returns, we find
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that the fit of traditional factor models can be significantly improved by using our new

more flexible granular measures.

Our new approach opens up many other empirical and theoretical questions. For in-

stance, the more nuanced depiction of risk exposures provided by the granular betas hints

at the opportunity for improved risk management practices by more precisely targeting

specific factor risks of concern. Related, new and “smarter beta” investment strategies

geared toward specific parts of the factor space may also be possible. Our strong empirical

evidence against flatness and symmetry for some of the factor risk premium functions also

naturally calls into question what are the economic mechanisms and/or market frictions

responsible for these differences in compensation? We leave the answer to all of these

tantalizing questions for future research.
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Appendix A. The risk premium function under the CAPM

As discussed in Section 3.1, if the CAPM holds and expected returns satisfy E[Yi,t|Xt] =

βiXt, the granular beta function must be a parabola, as defined in equation (5). To ap-

preciate the implications of this for the risk premium function that obtains under the

CAPM, it is instructive to decompose the function into a “flat” term, and a term that

captures deviations from “flatness,” say λ(x) = µx + λ̈(x). Equating the expected return

on asset i under the CAPM, µi = βiµx, with that implied by our random field regression,

then yields:

µi = α + E[λ(X)Gβ∗i (X)]

= α + µxE[Gβ∗i (X)] + E[λ̈(X)Gβ∗i (X)]

= α + βiµx + βiE

[
λ̈(X)

(
X − µx
σx

)2
]
, (A.1)

where the third line uses the fact that E[Gβ∗i (X)] = βi together with the functional form

for Gβ∗i (x) given in equation (5). Considering a zero-beta asset, it readily follows that

α = 0. Further, under the CAPM we have µi = βiµx ∀ i, and so the third term in

equation (A.1) must equal zero for all i. Since βi may differ from zero, the E[·] term must

therefore be identically equal to zero. Since the squared standardized market return is

weakly positive, this can only hold if λ̈(x) = 0 ∀ x. In other words, under the CAPM,

the intercept α in the regression must be zero, and the lambda function must be flat, and

equal to the expected return on the market for all x, that is λ(x) = µx ∀ x.

Appendix B. Symmetrized quantiles

In order for simple parameter restrictions on the Legendre polynomial terms to be

sufficient to ensure symmetry, we need to rely on partition boundaries that are sym-

metric around zero. If the distributions of the factor returns were known to be sym-

metric, we could simply use quantiles of these returns. If, however, the factor returns

are asymmetrically distributed, as is the case in our empirical analyses, then an al-

ternative set of boundaries are needed. Let G > 1 denote the number of desired

partitions, and assume that G is even, as is the case in our empirical analyses. We

then use the quantiles of the absolute factor returns, defined by q̃τ = Qτ [|Xt|], for

τ = 1/H, 2/H, ..., (H − 1)/H and H ≡ G/2, resulting in the symmetrized G − 1

partition boundaries,
[
−q̃(H−1)/H , ...,−q̃1/H , 0, q̃1/H , q̃(H−1)/H

]
.

40



Appendix C. Traditional risk premium estimates

Table C.1: Annualized Fama-Macbeth risk premium estimates. The table reports the annualized
risk premium estimates obtained for the traditional CAPM, FF3, FF3+Mom and FF5 models over the
full sample (denoted G=1 in the table), along with the corresponding estimates for the up and down
versions of the models (denoted G=2 in the table). Robust t-statistics are reported in parentheses.

G = 1 G = 2
CAPM FF3 FF3+Mom FF5 CAPM FF3 FF3+Mom FF5

MKT 3.765 3.039 3.068 1.940 MKT− 26.662 16.583 25.934 15.194
(1.531) (1.312) (1.327) (0.845) (2.932) (1.757) (2.306) (1.577)

MKT+ -19.167 -9.267 -20.208 -8.613
(-2.417) -(0.900) (-1.703) (-0.814)

SMB 4.249 3.829 4.621 SMB− 6.415 3.362 6.575
(3.227) (3.119) (3.568) (1.288) (0.672) (1.195)

SMB+ 0.821 2.502 1.113
(0.143) (0.403) (0.179)

HML 1.515 0.313 1.865 HML− 5.285 2.735 3.773
(1.050) (0.238) (1.329) (1.016) (0.469) (0.699)

HML+ -2.021 -1.163 0.587
(-0.389) (-0.190) (0.099)

MOM -3.226 MOM− -6.333
(-1.248) (-0.792)

MOM+ -4.601
(-0.628)

RMW 0.148 RMW− -2.409
(0.127) (-0.669)

RMW+ 3.380
(0.863)

CMA 0.701 CMA− 0.789
(0.569) (0.192)

CMA+ 1.925
(0.437)

Constant 6.673 6.030 5.878 7.207 Constant 6.375 5.680 5.721 6.020
(2.889) (2.873) (2.782) (3.235) (2.798) (2.722) (2.704) (2.659)
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Appendix D. Hyperparameters

Table D.2: Hyperparameter selection. The table reports the polynomial orders used for estimating
the risk premium functions for the different models, together with the shrinkage intensities towards the
flat estimates (G = 1). The hyperparameters were determined by 60/20/20 cross-validation, as discussed
in the main text.

G Unrestricted Functional
Order

ω MKT SMB HML MOM RMW CMA ω
CAPM

1 0.28 0 0.63
2 0.57 1 0.56
4 0.70 3 0.70
8 0.76 6 0.75

16 0.82 8 0.76
32 0.86 8 0.76
64 0.93 8 0.75

FF3
1 0.04 0 0 0 0.10
2 0.66 1 1 1 0.66
4 0.78 3 2 3 0.77
8 0.85 2 2 2 0.71

16 0.91 3 4 4 0.76
32 0.97 3 6 4 0.78
64 3 6 4 0.78

FF3+Mom
1 0.07 0 0 0 0 0.20
2 0.72 1 1 1 1 0.72
4 0.83 3 2 3 2 0.82
8 0.89 3 2 2 2 0.80

16 0.94 6 4 3 3 0.82
32 3 6 4 3 0.82
64 2 2 2 3 0.78

FF5
1 0.02 0 0 0 0 0 0.10
2 0.78 1 1 1 0 0 0.72
4 0.86 3 2 3 2 2 0.84
8 2 4 6 2 4 0.86

16 6 2 4 5 5 0.86
32 3 2 3 5 4 0.84
64 3 2 3 5 4 0.84
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