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1 Introduction

Volatility plays a central role in finance and economics, and there has been substantial research

aimed at understanding volatility dynamics. A central obstacle in this effort is the fact that volatil-

ity itself is a latent process, with its dynamics hidden inside those of the observed price process.

However, as now more high-frequency financial data becomes available, we can plausibly think in

terms of continuous time, and our ability to precisely infer features of the volatility dynamics has

considerably improved.

Existing classes of continuous time volatility models generally place quite sharp restrictions on

the specification of volatility dynamics. For instance, the most common way of modeling volatility

in continuous time is through the affine jump-diffusion class, see Duffie et al. (2000); these models

offer significant analytical tractability which facilitates estimation as well as various applications

of the models, e.g., for option pricing. Although quite flexible, the affine jump-diffusion class of

models imposes tight restrictions regarding the direction of volatility jumps and their activity.1

The affine class of models only permits positive volatility jumps with the activity of volatility

jumps further restricted to be of finite variation and commonly of finite activity as well.2 Likewise,

other classes of models that use nonnegative Lévy processes to model volatility dynamics (these

processes are referred to as Lévy subordinators) restrict volatility jumps to be positive and of

finite variation. Finally, the most commonly used volatility model in econometrics, the so-called

exponential-diffusion, precludes any volatility jumps at all.3 These models notwithstanding, actual

volatility jumps can be much more general both in terms of their activity and asymmetry, and

there is no reason to expect the true features to agree with the model-implied versions.

Given the recent availability of very high frequency data, these tight restrictions on both the

direction and the activity level of volatility jumps in the extant models can be put to the test.

In this paper we undertake such specification analysis by studying volatility activity using both

parametric and nonparametric techniques. In Todorov and Tauchen (2011), we used high-frequency

(option-based) VIX index4 data to estimate the activity of volatility jumps and found evidence that

1The activity level is characterized by a set of activity indexes, all taking values in the interval [0, 2], described in
great detail below.

2In most applications, e.g., the double-jump model of Duffie et al. (2000), volatility jumps are modeled via a
non-negative compound Poisson process, which is of finite activity (and thereby has an activity index of zero).

3Another implication of the restrictive modeling of volatility jumps is that the model-implied volatility activity
can only assume two possible values: either 1 (in the case when the driving process is a Lévy subordinator) or 2 (in
the case when diffusion is used in the volatility modeling). The true level of volatility activity, however, can take any
value in the interval [1, 2].

4The (volatility) VIX index is calculated by the Chicago Board of Options Exchange (CBOE) and is based on
close-to-maturity S&P 500 index options. The prices of the options are weighted appropriately to replicate the risk-
neutral future quadratic variation of the underlying S&P 500 index. Details on the calculations are available in the
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the latter are of infinite variation with activity far exceeding that of finite variation typically used

to model volatility jumps to date.5

In this paper we go one step further and answer the question: are the up and down moves in

volatility equally active? In the context of a diffusion model, this is always the case. However,

for jumps the activity of positive and negative moves might differ. One extreme case is of course

when only positive volatility jumps are allowed in which case down jumps have trivially activity of

zero. Here, we show that potential asymmetry in the volatility activity can be detected by utilizing

the difference between power variation constructed from only positive and only negative high-

frequency VIX increments. The relative magnitude of these power variations will be asymptotically

different depending on the degree of asymmetry in the volatility activity. When implementing our

nonparametric test we find evidence that the volatility jump activity is close to being symmetric.

An implication of this result is also that negative volatility jumps are present.

The above nonparametric evidence about the volatility activity is based on the VIX volatility

index, which is an option-based quantity. We next investigate whether these properties of volatility

activity documented in options data can be “seen” with underlying asset price data alone.6 The

presence of positive and negative jumps in volatility, as well as their activity levels are features of

the volatility dynamics that pertain to its unobservable path. Theoretically such features of the

volatility can be inferred by relying solely on high-frequency price data on a fixed time interval.

Such inference will, however, be associated with very slow rates of convergence and will be virtually

infeasible with the frequencies that are available in practice.7 Intuitively, the reason is that volatility

is unobserved and changes in the volatility level are convoluted with the Gaussian shocks and in

addition price jumps.

We adopt an alternative strategy in this paper by specifying a very general parametric volatil-

ity model and estimating it from the price data. The parametric model we propose overcomes

the above-mentioned limitations of existing models regarding volatility activity. In particular,

jumps of arbitrary sign are allowed and their activity is left unrestricted. This is done by using

white paper on the CBOE website.
5An interesting exception is the exponential continuous time GARCH model, recently studied theoretically by

Haug and Czado (2007). Their setup allows for volatility jumps of infinite variation but within the confines of a
particular parametric class of sub-models.

6The link between the activity properties of the VIX index and those of the unobserved latent volatility requires
the volatility risk premia to depend on the same state variables that determine the stochastic volatility. While this
assumption has been maintained in most (if not all) earlier empirical work, its violation would invalidate the link
between the volatility activity and our nonparametric evidence about the VIX. This is another motivation to study
the volatility activity using only underlying price data.

7The well-known presence of market microstructure noise further limits our ability to use “ultra” high-frequencies
such as seconds.
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infinite-variation asymmetric Lévy processes as the driving martingale in an exponential Ornstein-

Uhlenbeck (OU) volatility specification. In such setting we address the question whether the un-

derlying asset data is informative enough to distinguish these model features (and hence limitations

of the extant models).

The parametric structure helps the inference in several directions. First, regarding the volatility

activity, which is associated with the small changes in volatility, the parametric model allows us

to “borrow” information from volatility jumps which are medium-sized and hence “easier” to see

with high-frequency price data. Second, the parametric specification allows us to pool information

across time as opposed to working with fixed span and sampling more frequently. This can lead to

significant increase in the precision of the estimation.8

Of course, the efficiency gains from the parametric specification come with the cost of robust-

ness to potential model mispecification. To alleviate the concerns regarding the effect of model

mispecification about the conclusions regarding asymmetric volatility activity, we do the following.

First, we use a model that is general enough and importantly the different features of the volatil-

ity dynamics are captured by different parameters. In this regard, our modeling strategy follows

Barndorff-Nielsen and Shephard (2001) and specifies the model by parametrizing separately the

memory kernel and the marginal distribution of the volatility process. Further, in our parametric

model separate parameters govern the tail behavior of volatility jumps and the behavior of the small

positive and negative volatility jumps. The latter determines the volatility activity and the possible

presence of asymmetric activity of volatility jumps. Second, we use the high-frequency price data

to efficiently summarize the information about volatility in a robust way. So, in particular, we

do not need to assume any particular model for the price jumps and their intensity as well as the

challenging question of the relation between the shocks in volatility and those in the price level.

More specifically, our estimation method is based on integrating the high-frequency data into

the Realized Laplace transform of volatility proposed by Todorov and Tauchen (2012) to succinctly

summarize the information about volatility in the data. The latter measure provides a nonpara-

metric estimate of the empirical Laplace transform over a day (or any other period of time) and

when aggregated over time can be used to measure the (integrated) joint volatility Laplace trans-

form over different points in time. As well known, the joint Laplace transform preserves all the

information about the volatility process dynamics. Our estimation is then based on minimizing the

distance between the data-based and model-implied integrated joint volatility Laplace transform.

The latter unfortunately is unavailable in closed-form and we evaluate it via simulation.

8All parametric volatility models used to date imply that volatility activity does not change over time.
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Our results from the parametric estimation show that the high-frequency price data alone

contains information about the volatility activity. We find strong evidence against the standard

pure-diffusive log stochastic volatility model. This model appears to be misspecified both for

modeling small and big volatility moves. When a pure-jump specification is used with positive

only jumps, like the non-Gaussian OU model of Barndorff-Nielsen and Shephard (2001) but with

arbitrary jump activity, the fit improves significantly with strong evidence for jumps of infinite

variation. Our best performing model is a pure-jump model with symmetric infinite variation small

jumps and asymmetric big positive and negative jumps. These parametric results are in accordance

with the nonparametric findings based on the VIX index.

The rest of the paper is organized as follows. Section 2 presents the setting in the paper.

Section 3 defines the various notions of volatility activity. Section 4 shows how to use high-frequency

data on the volatility VIX index to make nonparametric inference about asymmetry of the volatility

activity under some assumptions for the risk premium. In Section 5 we introduce our parametric

Lévy-driven stochastic volatility model that allows for the general activity patterns found using the

VIX index data and in Section 6 we present the estimation technique we use for its estimation from

high-frequency price data. Section 7 contains the empirical results from the parametric volatility

estimation. Section 8 concludes. All technical results are given in Sections 9 and 10 at the end of

the paper.

2 Model Setup

Assume we observe at discrete points in time a price process X, defined on some filtered probability

space (Ω,F , (Ft)t≥0,P) that has the following dynamics

dXt = αtdt+
√
VtdWt +

∫
R
δ(t−, x)µ̃(dt, dx), (1)

where αt and Vt are càdlàg processes (and Vt ≥ 0); Wt is a Brownian motion; µ is a homogenous

Poisson measure with compensator (Lévy measure) ν(x)dx; δ(t, x) : R+×R → R is càdlàg in t and

µ̃(ds, dx) = µ(ds, dx)− ν(x)dxds.

Our interest in the paper is the specification of the stochastic process Vt, which we refer to as

stochastic variance, and we will leave the rest of the components in the model, i.e., the drift term

αt and the price jumps unspecified.

Restricting attention to the Markov setting (merely for ease of exposition with an extension

to a multifactor model being trivial), the most typical way to date used to model the volatility

dynamics is by imposing it (or a transformation of it) to follow a Lévy-driven stochastic differential
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equation (SDE)

df(Vt) = f1(Vt)dt+ f2(Vt)dBt + f3(Vt−)dJt, (2)

where Bt is a Brownian motion (having arbitrary dependence with Wt) and Jt is a pure-jump Lévy

martingale (having arbitrary dependence with µ); f, f1, f2, f3 are some functions guaranteeing

the nonnegativity of the process Vt.

For the leading example of the affine jump-diffusion model of Duffie et al. (2000), the functions

in (2) are respectively: f(x) = x, f1(x) = κ(θ − x), f2(x) = σ
√
x and f3(x) = 1 for κ, θ, σ

some parameters. In this model Jt is restricted to positive jumps, necessarily of finite variation

and in most cases even compound Poisson. The non-Gaussian OU model of Barndorff-Nielsen and

Shephard (2001) further restricts f2(x) = 0, i.e., no diffusion. Another well-known volatility model

is the exponential Gaussian OU specification in which f(x) = log(x), f1(x) = −κ log(x), f2(x) = σ

and f3(x) = 0 for κ and σ some parameters.

We will refer to the Lévy process Lt = t+σBt+Jt as the driving Lévy process of the stochastic

volatility. Then, the volatility model in (2) is uniquely identified by the functions f, f1, f2, f3 and

the driving Lévy process. We recall that for a generic Lévy process Lt with finite first moment,

Lévy-Khinchine theorem implies, see e.g., Sato (1999)

E
(
eiuLt

)
= exp

(
iuγ − σ2u2/2 +

∫
R
(eiux − 1− iux)ν(dx)

)
, u ∈ R, (3)

where γ is the drift, σ2 is the variance of the Gaussian part, and ν(dx) is the Lévy measure.

These three quantities identify uniquely the Lévy process and the corresponding infinitely divisible

distribution of the process at a fixed point in time. Therefore, in the following we will identify a

Lévy process, or an infinitely divisible distribution, by its so called characteristic triplet (γ, σ, ν),

see e.g. Sato (1999). We note that the definition of the characteristic triplet is always unique up

to the choice of a truncation function needed to ensure integrals with respect to the counting jump

measure are always well defined. Our implicit choice here is that this truncation function is the

identity (and hence the requirement for the existence of first moment of the Lévy process).

3 Volatility Activity

We next analyze the activity of the different components of the driving martingale of the stochastic

volatility: positive jumps, negative jumps and diffusion. We first state the various notions of

volatility activity and then show in the setting of the volatility specification in (2) how they relate

with the characteristics of the driving Lévy process. Henceforth, for a generic semimartingale
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process Y , we use ∆Ys = Ys−Ys− to denote its jumps.9 We define activity of the positive volatility

jumps pathwise as

RAV = inf

p :∑
s≤T

|∆Vs|p1{∆Vs>0} <∞

 , ∀ T > 0. (4)

Similarly, the activity of negative volatility jumps is defined as

LAV = inf

p :∑
s≤T

|∆Vs|p1{∆Vs<0} <∞

 , ∀ T > 0. (5)

The activity levels RAV and LAV can take in general any value in the range [0, 2), are random

quantities, and depend on T . When Vt follows the Lévy-driven SDE in (2), since the process

Vt is càdlàg (and hence locally bounded), RAV and LAV are equal to RAL and LAL, i.e., the

corresponding activities of the driving Lévy process Lt. Hence, using the Lévy property, we have

RAV ≡ inf
{
p :
∫
R+ x

pν(dx) <∞
}
and LAV ≡ inf

{
p :
∫
R−(−x)pν(dx) <∞

}
which are constant

and do not depend on T .

For the affine jump-diffusion model we further have trivially LAV ≡ 0 as negative jumps are

simply not allowed in this class of models and RAV < 1 as the positive jumps are necessarily of

finite variation. Furthermore, when jumps are of finite activity, as in the popular double-jump

stochastic volatility model of Duffie et al. (2000), we even have RAV ≡ 0.

The overall jump activity of both positive and negative jumps, defined in Ait-Sahalia and Jacod

(2009) as a simple generalization of the Blumenthal-Getoor index, is simply JAV = max{RAV , LAV }.
We should also point out that the jump activities are determined by the “small” jumps, since big

jumps are always of finite number over finite time intervals.

The stochastic volatility models used to date have constrained the volatility jump activities to

be as high as 1 and in most cases to be even exactly zero. It is clear from the above discussion,

however, that the “universe” of available processes to model volatility risk is much wider, and in

Section 5 we will introduce a general volatility model that can allow RAV and LAV to take any

value in the interval (0, 2).

Finally, the overall activity of the volatility process, proposed in Todorov and Tauchen (2010),

is simply defined as

TAV = inf

{
p : plimn→∞

nT∑
i=1

|∆n
i V |p <∞

}
, ∆n

i V = V i
n
− V i−1

n
, ∀ T > 0. (6)

9Ys− denotes the limit from the left of the process which always exists as the realizations of the process have
càdlàg paths.
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In words, TAV is the smallest power for which the power variation of the volatility process does

not explode. The overall activity is determined by the “dominating” component of the volatility

process among the drift, the diffusion and the positive and negative jumps. The components of

volatility order in terms of their activity from least to most active as follows: finite variation jumps,

drift, infinite variation jumps and diffusion. For example when the volatility process contains a

diffusion component, then its activity is always at its highest level of 2. When the volatility model

is of pure-jump type then the volatility activity is determined by RAV and LAV .

4 Nonparametric Evidence on Volatility Activity

We continue with providing nonparametric evidence for the volatility activity. We use the VIX

index quoted by the CBOE for this. We recall that the VIX index which we henceforth denote with

IVt (abbreviation for option implied volatility) is basket of out-of-the-money European-style options

on the S&P 500 index and provides a nonparametric measure for the risk-neutral expected future

quadratic variation, i.e., with our notation in (1) (for X being the underlying S&P 500 index), we

have

IVt = EQ
(∫ t+τ

t
Vsds+

∫ t+τ

t

∫
R
δ2(s−, x)µ(ds, dx)

∣∣∣∣Ft) , (7)

where τ corresponds to 1 calendar month and Q denotes the risk-neutral measure. The risk-

neutral probability measure differs from the statistical one by the risk premia. Assuming multi-

factor structure for Vt, in Theorem 1 of Todorov and Tauchen (2011) we have shown that under

the additional assumption that risk premia is sole function of the state variables that determine

the stochastic variance,10 we have that IVt is some smooth function of the current state of the

multivariate volatility factor. For ease of exposition here we will assume that Vt follows (2), i.e.,

that Vt is Markov process, therefore we have IVt = g (Vt) for g(·) some smooth function. Then,

using again Theorem 1 of Todorov and Tauchen (2011), we have

RAV ≡ RAIV , LAV ≡ LAIV , JAV ≡ JAIV , TAV ≡ TAIV . (8)

This analysis shows that under the above-mentioned assumptions about the volatility risk premia,

we can infer the volatility activity, i.e., the quantities RAV , LAV , JAV and TAV , from the cor-

responding quantities associated with IVt. In Todorov and Tauchen (2011), using high-frequency

data on the VIX index we estimated JAIV ≡ TAIV in the range 1.73 − 1.83, see Table 5 of that

paper. This implies that Vt is pure-jump process of infinite variation. Now, we will go one step

10Parametric models in empirical work to date typically impose the models under statistical and risk-neutral
measure to be of the same class, and further that jump intensity is sole function of Vt, see e.g., Singleton (2006) and
references therein. This implies automatically the above requirement for the risk premia.
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further and will investigate the question where is the activity coming from? In other words, we

will be interested in statistical inference about the relation between RAIV and LAIV . Given the

above mentioned evidence for IV being pure-jump, we will do so in pure-jump setting (and assum-

ing high-frequency data on IV is available). To this end we denote with Yt a generic pure-jump

semimartingale process.11

Our strategy to detect asymmetry in the jump activity of Y will be based on the different

behavior that signed power variation has depending on RAY S LAY . We define the signed p-

power variation as12

V +
T (Y, p) =

nT∑
i=1

|∆n
i Y |p1 (∆n

i Y > 0) , V −
T (Y, p) =

nT∑
i=1

|∆n
i Y |p1 (∆n

i Y < 0) . (9)

We further denote VT (Y, p) = V +
T (Y, p) + V −

T (Y, p) as the total p-th variation. Then we have the

following result.

Theorem 1 Assume that on some filtered probability space (Ω,F , (Ft)t≥0,P) we observe a process

Y at times 0, 1n ,
2
n , ..., T for T fixed and n ↑ ∞, where the process Y has the following dynamics

Yt = Y0 +

∫ t

0
α′
sds+

∫ t

0

∫
R
σs−xµ̃

′(ds, dx), (10)

for α′
s and σs processes with càdlàg paths and µ′(ds, dx) is a homogenous Poisson measure with

compensator ν ′(x)dx of the form

ν ′(x) =
c+

|x|β++1
1{x>0} +

c−

|x|β−+1
1{x<0} + ν

′′
(x), c+ > 0, c− > 0,

|ν ′′
(x)| ≤ A

|x|β′+1
, for |x| ≤ x0 for some x0 > 0 and A > 0, β′ < max{β+, β−}.

(11)

If σs is an Itô semimartingale, with locally bounded coefficients, and σs > 0 for ∀s ∈ [0, T ], and

further max{β+, β−} > 1, we have for any 0 < p < max{β+, β−} as n ↑ ∞

∆1−p/β
n V +

T (Y, p)
P−→ K+(p, β)

∫ T

0
|σs|pds, ∆1−p/β

n V −
T (Y, p)

P−→ K−(p, β)

∫ T

0
|σs|pds, (12)

where we use the shorthand β = max{β+, β−} and further K+(p, β) and K−(p, β) are the p-

th positive and negative moments of stable distribution with Lévy density c+

|x|1+β 1{x>0,β≡β+} +

c−

|x|1+β 1{x>0,β≡β−}.

11We denote it with Yt to avoid confusion with our underlying price process Xt in (1).
12Signed power variation for p = 2 and in the context of jump-diffusions was introduced by Barndorff-Nielsen et al.

(2010) who study its asymptotic properties and use it as a measure of downside risk. Our application here is for
the pure-jump semimartingales, which asymptotically behaves very differently from the jump-diffusion, and further
our only goal is of detecting asymmetry in the volatility activity. We note also that in the context of diffusion, the
constants K±(p, β) in (12) below will be equal to each other, i.e., the diffusion cannot generate asymmetric volatility
activity unlike pure-jump processes.
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We note that ν
′′
(x) in (11) is signed measure and therefore the above assumption accommodates

Lévy measures with exponentially decaying tails like those of the tempered stable process that we

use for our parametric model in Section 5. Implicit in the above theorem is that
∫
R |x|ν ′(x) < ∞

and this assumption can be spared. The above setting covers most models specified via Lévy-

driven SDE-s which is the dominant way of modeling continuous-time processes.13 In this setup

RAY = β+ and LAY = β−. To simplify notation therefore, in what follows (as in the theorem),

we will use the shorthand β = JAY , β
+ = RAY , β

− = RAY .

When β+ > β−, then the constants K+(p, β) and K−(p, β) are determined by the p-th signed

moments of β+-stable spectrally positive process.14 When β+ < β−, then K+(p, β) and K−(p, β)

are determined by the p-th signed moments of β−-stable spectrally negative process. Finally, when

β+ = β−, then K+(p, β) and K−(p, β) are determined by the p-th signed moments of a β-stable

distribution with asymmetry parameter controlled by the ratio of the local scales of the positive

and negative Lévy measure.

We note that K+(p, β) ̸= K−(p, β) either when β+ ̸= β− or when β+ = β− but c+ ̸= c−. Both

cases stem from asymmetry of the driving Lévy measure of Y around zero.

We have K+(p, β) < K−(p, β) when the limiting stable process is spectrally positive and the

opposite when it is spectrally negative. However, the limiting result in (12) is not convenient to use

directly for our inference about the activity asymmetry for two reasons: (1) the limits in (12) are

time-varying (because of σt), and (2) the above limit results involve scaling of the power variations

that include the unknown β. Both these problems can be overcome by looking instead at the ratio
V +
T (Y,p)

V +
T (Y,p)+V −

T (Y,p)
. Its limiting behavior follows directly from Theorem 1,

V +
T (Y, p)

V +
T (Y, p) + V −

T (Y, p)

P−→ K+(p, β)

K+(p, β) +K−(p, β)
, (13)

and can therefore reveal if there is potential asymmetric jump activity of the discretely-observed

process Y .

For example for p = 0.5 and β = 1.5, if the limiting process is spectrally positive (no negative

jumps), the limiting value of the ratio is 0.366. If the limiting process is spectrally negative (no

positive jumps), the limiting value in (13) is 0.634 and finally if the process is symmetric, then its

value is 0.5. More generally, the limit in (13) depends on β and on Figure 1 we plot it for the case

when β+ ̸= β−.15 As seen from the figure, for β = max{β+, β−} approaching two, the limit in

13Examples include the non-Gaussian OU processes of Barndorff-Nielsen and Shephard (2001) as well as the
exponential Lévy-driven OU processes that we introduce in Section 5.

14A spectrally positive jump process is a jump process with positive only jumps and similarly spectrally negative
jump process is a jump process with negative only jumps.

15For the case β+ < β−, the limit in (13) is 1 minus the limit for the case β+ > β−.
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(13) converges to 0.5. That is, the activity asymmetry shrinks. Intuitively, this is because when β

converges to 2, the pure-jump process “converges” to a diffusion. For the latter, the limiting value

of the ratio is 0.5, corresponding to symmetric activity.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

K+(0.5, β)/(K+(0.5, β) + K−(0.5, β))

Figure 1: The Limit K+(0.5,β)
K+(0.5,β)+K−(0.5,β)

as a function of β. Lower line corresponds to β+ > β− and

upper line to β+ < β−.

We calculated the signed power variation ratio in (13) for the 5-minute high-frequency VIX index

data used in Todorov and Tauchen (2011) which covers the period September 2003 till December

2008.16 We set p = 0.5 (other powers produced very similar results). The left panel of Figure 2

shows the resulting series. As seen from the graph, the ratio is surprisingly close to 0.5. Indeed the

sample mean is 0.4862 and the sample median is 0.4819. Moreover, the first-order autocorrelation

of the series is −0.03 and statistically insignificant, further confirming that deviations from the

mean are just estimation error.

To contrast this behavior of the VIX index, we simulated from our exponential OU volatility

model that we introduce in (15)-(16) in the next section (the model allows for asymmetric volatility

activity). Figure 3 corresponds to the case when the driving martingale is spectrally positive,

Figure 4 to the case when it is spectrally negative and Figure 5 to the symmetric driving martingale

case. As seen from the left panels of Figures 3-5, the asymmetric volatility activity can be readily

16We refer to that paper for details and various summary measures of the VIX index data set.
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Figure 2: The data set is 5-minute VIX index spanning the period 2003-2008 for a total of 1,212
days.

captured by our ratio of signed power variations. The mean of V +
T (Y, p)/VT (Y, p) in the simulated

series are respectively 0.385 and 0.634 which are very close to their asymptotic limits (0.366 and

0.634 respectively) and indicate volatility asymmetry. On the other hand, the left panel of Figure 5,

consistent with theory, signals that the activity of the process is symmetric.

To further gauge the magnitude of the deviations from the symmetric limit of 0.5 for the

signed power variation in our VIX data set, we computed in a long Monte Carlo the quantiles

of the daily signed power variation statistic for an expontial OU volatility model with exactly

the same parameters as for Figures 3-5 but with activity parameters set to β+ = β− = 1.73,

which is approximately the estimate for the VIX activity from the data. Since the volatility of

the VIX series is quite persistent, it is approximately constant over a short period of time like a

day, and the distribution of the signed power variation is hence like that of a (locally) stable Lévy

process, and this holds also true for the simulated model. Therefore, the simulated quantiles of

the statistic should provide a reasonable proxy for the actual quantiles provided the VIX data has

locally symmetric jump measure. 17 Comparing the quantiles of the signed power variation in the

simulated and observed data, we see that in approximately only 4% of the days in the VIX data

set, the signed power variation ratio is outside the 0.5− 95.5% quantile range determined from the

17Furthermore, since only the stable part of the Lévy density matters in the limit, see (13) above, in the simulation
the quantiles remained nearly unchanged when changing λ± and c±. This further implies that the quantiles of the
signed power variation are not very sensitive to the assumed parametric model (at least as as far as it is realistically
calibrated to the actual data) in the simulation.
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simulation. This provides further nonparametric evidence that the small volatility changes are of

pure-jump type and approximately symmetric.
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Figure 3: The results are based on a simulated Exp-OU model (15)-(16). The simulated series is
sampled at 5-minutes for a total of 1,212 days mimicking the VIX Index set. The parameters of
the scenario are: β+ = 1.5, c+ = 0.2, λ+ = 3.0, c− = 0, κ = 0.01, which corresponds to spectrally
positive tempered stable marginal of the volatility process. The limiting value of the ratio on the left
panel is 0.366 and the sample mean is 0.385.

While the behavior of V ±
T (Y, p) for p < β reveals the small scale behavior of the jumps and in

particular their activity asymmetry, the behavior of the ratio V +
T (Y, p)/VT (Y, p) for p > β would

reveal the symmetry of the big jumps of the process. Indeed, we have for p > β, see e.g., Theorem

2.2 in Jacod (2008)

V +
T (X, p)

P−→
∑
s≤T

|∆Xs|p1(∆Xs > 0), V −
T (X, p)

P−→
∑
s≤T

|∆Xs|p1(∆Xs < 0). (14)

Of course, we note that for p > β, V +
T (Y, p)/VT (Y, p) will have random limit unlike the case p < β

where the limit is a constant. Nevertheless using the sample mean of this statistic, averaged over

the days in the sample, can provide information for the symmetry of the “big” jumps (for p high

the relative importance of the small jumps in the p-th variation is minimal). We plot on the right

panels of Figures 2-5, the daily ratios for p = 2.5 (which of course is above β). As seen from

the figures, the spectral positivity results in ratio which on average is close to 1 while exactly the

opposite holds for the spectrally negative process. On the other hand for the symmetric martingale

case and the VIX data the ratio is close to 0.5. Of course, the mere fact that V +
T (Y, p)/VT (Y, p) for

13
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Figure 4: The results are based on a simulated Exp-OU model (15)-(16). The simulated series is
sampled at 5-minutes for a total of 1,212 days mimicking the VIX Index set. The parameters of
the scenario are: c+ = 0, β− = 1.5, c− = 0.2, λ− = 3.0, κ = 0.01, which corresponds to spectrally
negative tempered stable marginal of the volatility process. The limiting value of the ratio on the
left panel is 0.634 and the sample mean is 0.615.
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Figure 5: The results are based on a simulated Exp-OU model (15)-(16). The simulated series is
sampled at 5-minutes for a total of 1,212 days mimicking the VIX Index set. The parameters of
the scenario are: β+ = β− = 1.5, c+ = c− = 0.2, λ+ = λ− = 3.0, κ = 0.01, which corresponds to
symmetric tempered stable marginal of the volatility process. The limiting value of the ratio on the
left panel is 0.5 and the sample mean is 0.5.
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the VIX index can take values that are much below 1 is another manifestation of the presence of

negative volatility jumps. At the same time, we stress that the evidence for the symmetry of the

“big” jumps in the VIX index does not automatically translate in symmetric big jumps in Vt as

the presence of risk premia distorts the mapping.18

Based on the nonparametric evidence from the high-frequency VIX index data, we can draw

several conclusions for the volatility process Vt: (1) the process is pure-jump of infinite variation,

(2) volatility activity is approximately symmetric, and (3) negative jumps are present.

5 General Exponential Lévy-Driven Volatility Models

We will next try to find evidence for the volatility activity solely based on the underlying price

data and compare with the above option-based nonparametric evidence. The questions that we

seek to answer are the following. Is there evidence for volatility being of pure-jump type? Are there

negative jumps in volatility? Are the volatility jumps of infinite variation? Is there symmetry in

the volatility activity as our evidence based on the VIX index data would suggest? Is there enough

information in the price data alone to answer the above questions in a statistically affirmative way?

Also, we should bear in mind, the link between the activity of the VIX index and the underlying

stochastic volatility depends on the assumption that risk premia is uniquely identified by the state

variables determining Vt. This has been a standard assumption in earlier empirical work but if it

fails then the evidence from the VIX index of the previous section will have limited implications

for the properties of the stochastic volatility process.

Our strategy to answer the above questions will be to extract from the price data nonpara-

metrically the information about the volatility process and then compare it with that of a general

parametric volatility model. Here we introduce the model and analyze its properties and in the next

section we present the estimation method. As already discussed in the introduction, the popular

affine jump-diffusion volatility model does not allow for negative jumps and further restricts the

activity of positive jumps to be of finite variation. Therefore, it cannot be used for the purposes of

our analysis and we propose an alternative model that makes no restrictions regarding the jumps,

both their sign and activity level. We will introduce the model in the Markov setting, with the

generalization to a multifactor setting being obvious. Our model is given by

Vt = exp (µ+ vt) , dvt = −κdt+ dLt, (15)

where κ > 0 and Lt is a Lévy process. This is simply a general exponential OU process (the

18As discussed above, this is unlike the case of the small jumps which determine the jump activity, for which there
is one-to-one mapping as given in (8).
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generalization being in the driving Lévy process). The exponential transformation allows for neg-

ative jumps in Vt as well as arbitrary volatility activity. The factor vt has a marginal distribution

which is infinitely divisible with characteristic triplet (0, σ, νv) where (recall the definition of the

characteristic triplet in (3))

νv(dx) =

(
c+
e−λ

+x

x1+β+ 1{x>0} + c−
e−λ

−|x|

|x|1+β− 1{x<0}

)
dx, c± ≥ 0, λ± > 0, β± ∈ [0, 2). (16)

We note that vt is an OU martingale. This way of modeling the volatility process is similar

to an approach proposed by Barndorff-Nielsen and Shephard (2001) to model an non-Gaussian

OU volatility by specifying its marginal distribution and then “back out” from it the model for

the driving Lévy process. This approach has the advantage that the parameters controlling the

memory of the volatility process are separated from those controlling its distribution.

In our parametric specification, the distribution of vt is a mixture of normal distribution with

variance σ2 and that of a pure-jump tempered stable martingale (evaluated at time 1) with Lévy

measure νv (Carr et al. (2002) and Rosiński (2007)). The latter is known to be a very flexible

distribution accommodating as special cases many known ones such as the Inverse Gaussian and

the Gamma distribution. A very attractive feature of this parametric model for the jumps is that

over small scales the increments of the volatility Vt behave like those of a stable process but at the

same time unlike the stable process all moments of the volatility increments exist.
Using Barndorff-Nielsen and Shephard (2001) and Sato (1999), we have that Lt is characterized

by the characteristic triplet
(
0,
√
2κσ, νL

)
where19

νL(dx) =

{
β+κc+

e−λ+|x|

|x|1+β+ + λ+κc+
e−λ+|x|

|x|β

}
1{x>0}dx+

{
β−κc−

e−λ−|x|

|x|1+β− + λ−κc−
e−λ−|x|

|x|β

}
1{x<0}dx.

(17)

The jumps in the volatility process Vt are associated with the jumps in the driving Markov process

vt via
∆Vt
Vt−

= e∆vt − 1. (18)

In words, the percentage jumps in volatility are given by e∆vt − 1. Our interest is in the properties

of these jumps and therefore we derive their Lévy measure explicitly. For this, we introduce the

transformation ψ(x) = ex − 1. We denote with νψ(L) the image of the Lévy measure νL (of the

jumps of the driving Lévy process Lt in (15)) under the transform x → ψ(x). It is easy to derive

19The explicit link between νv and νL is νL(x) = −κ(νV (x) + xν′
V (x)) and follows from Theorem 17.5 in Sato

(1999).
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then the following

νψ(L)(dx) =

(
β+κc+

|x+ 1|−λ+−1

| log(x+ 1)|β++1
+ λ+κc+

|x+ 1|−λ+−1

| log(x+ 1)|β+

)
1{x∈(0,+∞)}dx

+

(
β−κc−

|x+ 1|λ−−1

| log(x+ 1)|β−+1
+ λ−κc−

|x+ 1|λ−−1

| log(x+ 1)|β−

)
1{x∈(−1,0)}dx.

(19)

Using the fact that on each (finite) time interval the volatility Vt is bounded,
20 it is easy to see from

(18) that for our general model in (15)-(16), the jump activity indexes are constant and are given by

RAV ≡ β+1{c+>0} and LAV ≡ β−1{c−>0}. In words, the parameters β± completely determine the

volatility jump activity in our model and can take values in the whole possible range of jump activity

[0, 2). Further, the total jump activity is then determined by TAV = max{JAV , 2{σ ̸=0}, 1}, i.e.,
it depends on whether a diffusive component is present in the driving Lévy process Lt or not.

We further note from (19) that the two parameters λ− and λ+ control the behavior of the jump

tails (of ψ(L)), respectively at −1 and +∞. This ensures that our parametric model is flexible

enough, so that it does not allow for a “transfer” of information from the relatively big to small

jumps and vice versa.21 λ− governs the behavior of the “big” negative jumps that can reduce the

volatility to zero, while λ+ controls the big positive jumps. Using the connection between the Lévy

density and the tail probability derived in Rosinski and Samorodnitsky (1993), Theorem 2.1, we

have for our model in (15)-(16) (provided positive jumps are present, which as we will see is the

case of interest empirically)

P (Vt ≥ x) ∼ 1

λ+
x−λ

+

| ln (x) |β++1
, for x ↑ ∞. (20)

Finally, our model (15)-(16) possesses also some analytical tractability. In particular, using the

characteristic function of a tempered stable process, see e.g., Cont and Tankov (2004), Proposition

4.2, we have

log [E(euvt)] = ψ(u), u ≤ λ+, β± ̸= 0, 1, (21)

where

ψ(u) = u2σ2/2 + c+Γ(−β+)
[
(λ+ − u)β

+ − (λ+)β
+
+ uβ+(λ+)β

+−1
]

+ c−Γ(−β−)
[
(λ− + u)β

− − (λ−)β
− − uβ−(λ−)β

−−1
]
.

(22)

20This is because the process is a semimartingale. Note that the bound is not uniform, i.e., it is for each volatility
realization.

21This can be contrasted with more tightly parametrized jump models such as the stable, variance gamma or
compound Poisson processes often used as building blocks in asset pricing models where the jump activity is either
fixed or is a function of the parameter governing the jump tails.
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Thus, moments of the volatility process are known in closed-form. This will be convenient for

the implementation of our simulation-based estimation where we can perform variance-targeting

techniques by restricting the model-implied mean to be within its nonparametric confidence bound

inferred from the data. We will provide details on this in Section 7. The result in (21) reveals an

interesting continuity in β± which is important to bear in mind when interpreting the estimation

results. For σ ≡ 0, Vt is pure-jump process with jump activity JAV = max{β+, β−}. When

max{β+, β−} → 2 and further c± decrease so that c±Γ(−β±) stays constant, then the pure-jump

case “degenerates” to the continuous volatility case.

The result in (21) can be further extended to the case of joint moments of the volatility process

over different points in time. We have for any t, τ ≥ 0 and u, v ≤ λ+

log
[
E(euvt+vvt−τ )

]
= ψ(ue−κτ + v) +

(
1− e−2κτ

)
u2σ2/2

+ c+Γ(−β+)
[
(λ+ − u)β

+

− (λ+ − ue−κτ )β
+

+ uβ+(λ+)β
+−1(1− e−κτ )

]
+ c−Γ(−β−)

[
(λ− + u)β

−
− (λ− + ue−κτ )β

−
− uβ−(λ−)β

−−1(1− e−κτ )
]
.

(23)

The above result implies, in particular, that for τ → ∞, the asymptotic decay of the stochastic

volatility auto-covariance function is exp(−κτ) which is analogous to the standard affine jump-

diffusion volatility models. The behavior for small lags, however, can differ not only from the affine

jump-diffusion class, but also within our model depending on whether the model is pure-jump,

jump-diffusion or pure-diffusion.

The analytical expressions for the moment conditions in (21)-(23) suggest that a simple method

of moments condition can be developed. However, such estimation will be probably inefficient as,

the set of moment conditions are restricted to higher powers (the lowest possible power is 1) and

those will be governed mainly from the parameters determining the volatility tail behavior, i.e.,

λ±. Instead, in the next section we will use method based on the conditional Laplace transform of

volatility which can more efficiently extract the information about the different volatility charac-

teristics that are in the data.

We conclude this section with a brief discussion about the multifactor extension. Given that the

model is very richly parametrized in the one factor setting, it is obvious that we need to impose some

parametric restrictions in order to be able to identify the parametric structure. One parsimonious

multifactor extension that we adopt in the empirical section is to let only the scale parameters σ

and c± of the diffusive and jump part respectively differ across the factors. This way the sum of

the factors has exactly the same distribution as the individual factors with the only change being

in the scales of the diffusion and the jumps.
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6 Parametric Volatility Estimation using High-Frequency Data

We next briefly describe our estimation of the parametric volatility model (15)-(16) using high-

frequency price data. The main challenge is how to extract in an efficient and robust way the

information for the latent volatility process from the discrete price observations. We do this here

by the Realized Laplace transform proposed in Todorov and Tauchen (2012) defined over a day

[t− 1, t] as

Zt(u) =
1

n

nt∑
i=n(t−1)+1

cos
(√

2u
√
nf̂

−1/2
i 1{f̂i ̸=0}∆

n
i X
)
, f̂i =

ĝi
ĝ
,

ĝi =
n

T

T∑
t=1

|∆n
itX|21(|∆n

itX| ≤ 3n−0.49), ĝ =
1

n

n∑
i=1

ĝi, i = 1, ..., nT,

(24)

where it = t− 1 + i− [i/n]n, for i = 1, ..., nT and t = 1, ..., T . As shown in Todorov and Tauchen

(2012), under the restriction of jumps in (1) being of finite variation and additional mild regularity

conditions, we have Zt(u) =
∫ t
t−1 e

−uVsds + Op (1/
√
n) , for u ≥ 0. Therefore, denoting with

L̂V (u, v; k) = 1
T−k

∑T
t=k+1 Zt(u)Zt−k(v), we have for u, v ≥ 0

L̂V (u, v; k) =
1

T − k

T∑
t=k+1

∫ t

t−1
e−uVsds

∫ t−k

t−k−1
e−vVsds+op(1/

√
T ), T ↑ ∞, n ↑ ∞, T/n ↓ 0. (25)

Under standard stationarity and ergodicity conditions, satisfied by our parametric model in (15)-

(16), L̂V (u, v; k) is a consistent and asymptotic normal estimator of

LV (u, v; k) = E
(∫ t

t−1
e−uVsds

∫ t−k

t−k−1
e−vVsds

)
.

We refer to LV (u, v; k) as the integrated joint Laplace transform of volatility. As is well-known, see

e.g., Carrasco et al. (2007), minimizing the distance between the empirical and model-implied joint

Laplace transform of a stochastic process can lead to efficient estimation of the underlying model

for its dynamics. Therefore, we follow Todorov et al. (2011) and estimate our parametric volatility

model via the following minimum distance estimator

ρ̂ = argmin
ρ

mT (ρ)
′ŴmT (ρ), mT (ρ) =

{∫
Rj,k

[
L̂V (u, v; k)− LV (u, v; k|ρ)

]
ω(du, dv)

}
j=1,...,J, k=1,...,K

,

(26)

where ρ denotes the parameter vector; Rj,k ⊂ R2
+ and ω is a weight function on R2

+; Ŵ is an

estimate of the optimal weight matrix defined by the asymptotic variance of the empirical moments

to be matched, i.e., that of
∫
Rj,k

L̂V (u, v; k)ω(du, dv). Consistency and asymptotic normality of our

19



minimum distance estimator follows from classical conditions required for identification and CLT

results for the moment vector. The choice of the regions and weight function follows Todorov et al.

(2011). We set umax = L−1(0.01, 0, ; 0) and use the following regions

R1,k = {(u v) ∈ [0.1umax 0.2umax]
2}, k = 0, 1, 3, 10, 30,

R2,k = {(u v) ∈ [0.3umax 0.5umax]
2}, R3,1 = {(u v) ∈ [0.6umax 0.9umax]

2}, k = 0, 1

R4,k = {(u v) ∈ umax[0.1 0.2]× umax[0.6 0.9]}, R5,k = {(u v) ∈ umax[0.6 0.9]× umax[0.1 0.2]}, k = 0, 1.

Within region, we use the weight function
∑

i δ(ui,vi)e
−0.5(u2i+v

2
i )/c

2
for δx denoting Dirac delta at

the point x, c = 0.50× umax and (ui, vi) being the edges of the regions. This choice of regions and

weight within them provides compromise between efficiency, computational speed and numerical

stability. Monte Carlo work in Todorov et al. (2011) provides evidence that the above choice of

lags and regions of integration Rj,k allows to get very close to the Cramer-Rao efficiency bound

corresponding to the infeasible scenario of direct daily observations of the variance process Vt.

The model implied moments are not known in closed form and we evaluate them via simulation.

Here we provide some details on this rather nontrivial step. A key feature of the parametric model

(15)-(16), that we make use of in the simulation, is that the stationary distribution of the volatility

process is known. Therefore, the simulation is done by generating independent replica of the process

over the interval [0,K] where K is the highest number of lags used in the estimation (here 30).

This way of estimating the moments implied by the model is more efficient than the alternative of

simulating a single very long realization of the volatility process due to the strong persistence of

the volatility process.

We denote Z
L∼ PTS (β, c, λ) (PTS stands for positive-jump tempered stable) for a random

variable with

E
(
eiuZ

)
= exp

(
c

∫
R+

(
eiux − 1− iux

) e−λx
xβ+1

dx

)
, c > 0, λ > 0, β < 2. (27)

This is just the distribution of the positive jump part of L1, for Lt the Lévy process in (15)-(16).

In Section 10 we provide details for the simulation of this process. The simulation of vt for β ≥ 0

is then done in the following way:

1. Simulate v0 from its stationary distribution which is a mixture of normal distribution and

tempered stable distribution:

v0
L∼ σl ×N (0, 1) + Z+

0 − Z−
0 , Z+

0
L∼PTS(β+l , c

+
l , λ

+
l ), Z

−
0

L∼PTS(β−l , c
−
l , λ

−
l ). (28)
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2. Simulate {vt}t∈(0,K] where K is the highest number of lags used in the estimation on the

discrete grid 1
n ,

2
n , ...,K. This is done via the following discretization of the dynamics in (15)

v i
n
≈ e−κ/n

v i−1
n

+
m∑
j=1

eκ
j−1
nm

(
L i−1

n
+ j

nm
− L i−1

n
+ j−1

nm

) , i = 1, ..., nK, (29)

where 

L i−1
n

+ j
nm

− L i−1
n

+ j−1
nm

L∼
√
2κσ√
nm

×N (0, 1) + Z+
1 − Z−

1 + Z+
2 − Z−

2 ,

Z+
1

L∼ PTS

(
β+,

β+κc+

nm
, λ+

)
, Z−

1
L∼ PTS

(
β−,

β−κc−

nm
, λ−

)
Z+
2

L∼ PTS

(
β+ − 1,

λ+κc+

nm
, λ+

)
, Z−

2
L∼ PTS

(
β− − 1,

λ−κc−

nm
, λ−

)
.

(30)

We set m = 1 and we do 10, 000 Monte Carlo replications of {vt}t∈[0,K] on the discrete grid

0, 1n ,
2
n , ...,K.

7 Empirical Results from Parametric Volatility Estimation

We next turn to the results from the estimation of the parametric volatility model. We use 5-minute

level data on the S&P 500 futures index covering the period January 1, 1990, to December 31, 2008

for a total of 4, 750 days. Each day has 80 high-frequency returns. We start with initial analysis of

the data.

7.1 Initial Data Analysis

Using the high-frequency data, we form a non-parametric measure for the daily integrated vari-

ance,
∫ t
t−1 Vsds. We use the Truncated Variance, proposed originally by Mancini (2009), which we

implement here in the following way

TV[t−1,t](α,ϖ) =

nt∑
i=n(t−1)+1

|∆n
i X|21{|∆n

i X|≤αn−ϖ}, α > 0, ϖ ∈ (0, 1/2), (31)

where here we use ϖ = 0.49, i.e., a value very close to 1/2 and we further set α = 3×
√
BV[t−1,t] for

BV[t−1,t] denoting the Bipower Variation of Barndorff-Nielsen and Shephard (2004) over the day

(which is another consistent estimator of the Integrated Variance in the presence of jumps):

BV[t−1,t] =
π

2

nt∑
i=n(t−1)+2

|∆n
i−1X||∆n

i X|. (32)
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Using the Truncated Variance, we estimate the mean of Vt for our data to be 0.8704 with a 95%

confidence interval of [0.6057 1.1350].22 The mean of the total quadratic variation (i.e., including

the contribution from the jumps) in our sample is 1.0021 which implies contribution of price jumps

in total price variation consistent with previous empirical work.

To reduce computational time in the parametric estimation, we implement variance targeting.

We do this by imposing a prior support restriction on the parameter vector that ensures that

the model-implied mean volatility is in the estimated nonparametric 95% confidence interval of

[0.6057 1.1350] (recall E(Vt) is known in closed form in our model).

7.2 Estimation Results

We continue next with presenting the results from the parametric estimation. As well-known, to

capture volatility persistence we need a two-factor volatility structure, see e.g., Andersen et al.

(2002) and Chernov et al. (2003). Therefore, we estimate two-factor extensions of the model (15)-

(16) which differ in the way the volatility (jump) activity is modeled. These specifications are

• Exp-OU diffusion: D: β±i = c±i = λ±i = 0, i = 1, 2.

• Exp-OU positive jumps: RJ: σi = β−i = c−i = λ−i = 0, i = 1, 2 and β+2 = β+1 , c
+
2 = ϕc+1 ,

λ+2 = λ+1 ,.

• Exp-OU symmetric activity finite variation jumps: SJ-FV: σ1 = σ2 = 0, β+1 = β−1 = β+2 =

β−2 , c
+
2 = c−2 = ϕc+1 = ϕc−1 , λ

+
2 = λ+1 , λ

−
2 = λ−1 and β±i < 1 for i = 1, 2.

• Exp-OU symmetric activity jumps: SJ: σ1 = σ2 = 0, β+1 = β−1 = β+2 = β−2 , c
+
2 = c−2 = ϕc+1 =

ϕc−1 , λ
+
2 = λ+1 , λ

−
2 = λ−1 .

In specification D volatility does not contain jumps while in specification RJ volatility moves only

through positive jumps whose activity is unrestricted but negative jumps are absent. In model SJ

there are both positive and negative jumps, with the small ones being symmetric while the big ones

can be asymmetric. Finally, SJ-FV is a restricted version of SJ in which jumps are constrained

to be of finite variation. We recall that all estimated specifications “face” the same moments from

the high-frequency data.

The results from the parametric estimation are given in Table 1. We start our discussion with

the standard diffusive log-volatility model, i.e., our D model specification. The results are given

in the first column of the table. The overall fit of the model is relatively poor as signalled by

22The asymptotic standard error was computed using a Parzen kernel with a lag-length of 70.
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Table 1: Estimation Results for Parametric Volatility Models

Parameter D RJ SJ-FV SJ

µ −0.5968
(0.0672)

−0.9302
(0.0997)

−0.5198
(0.0799)

−0.6986
(0.0699)

κ1 0.0099
(0.0040)

0.0191
(0.0019)

0.0322
(0.0018)

0.0172
(0.0011)

κ2 2.4703
(0.2873)

2.5693
(0.7257)

2.4405
(0.2835)

2.5758
(0.2469)

β+ 1.9259
(0.1833)

0.9787
(0.0397)

1.8958
(0.0468)

c+ 0.0455
(0.0033)

0.1914
(0.0061)

0.0335
(0.0011)

λ+ 1.3201
(0.2718)

1.1148
(0.0464)

2.5894
(0.1315)

β− ≡ β+ ≡ β+

c− ≡ c+ ≡ c+

λ− 1.3354
(0.0958)

3.0836
(0.1964)

σ1 0.7891
(0.3233)

σ2 0.5993
(0.0460)

ϕ 0.7206
(0.0574)

1.5003
(0.0186)

0.7884
(0.0253)

J Test (df) 45.80 (6) 17.74 (4) 72.48 (3) 13.28 (3)

Note: The estimation is based on the minimum-distance estimator in (26) with 11 moment con-
ditions given in Section 6. The optimal weight matrix was computed using Parzen kernel and a
lag-length of 70. Standard errors for the parameter estimates are reported in parentheses.
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the big value of the corresponding J statistics. This model is found to have good performance in

full-parametric estimation based on daily frequency in Chernov et al. (2003). We recall that our

estimation method is based on separating price jumps from volatility nonparametrically using the

high-frequency data and then fitting the parametric volatility model. This robustifies the inference

and sharpens the precision of the estimation compared with estimation based on daily frequency

where the model needs to “separate” stochastic volatility from jumps. When the high-frequency

data is used in an efficient way as we do here, the fit of the diffusive log-volatility model is found

to be relatively poor.

The second column in Table 1 presents next the results for the RJ specification. This model is

similar to the non-Gaussian OU model of Barndorff-Nielsen and Shephard (2001) where volatility is

driven by positive jumps only. The generalization here is that the jump activity is allowed to be in

the interval [0, 2) while in the above mentioned model jumps are restricted to be of finite variation

(i.e., activity always smaller than 1). As we see from the overall fit, theRJ specification outperforms

significantly the pure-diffusive one. Looking at the persistence parameters estimates for the two

models D and RJ, we see that they are quite similar indicating that both models capture the well-

known memory features of volatility. The improved fit of RJ comes with additional 2 parameters

- one which controls the Lévy measure around zero, i.e., the jump activity and another one that

controls the tail of the Lévy measure. The diffusive log-volatility model constrains parametrically

the big and small volatility moves by one parameter, σ, and this parametric link is clearly not

supported by the data. Also, looking at the estimate of the parameter β+, it is interesting to

note that our parametric estimation implies volatility jumps of infinite variation with activity level

similar to that found by nonparametric methods using VIX index data, see Section 4 above.

The third column of Table 1 contains the results for the specification SJ-FV. We recall that in

this specification jumps can be of arbitrary sign, but are restricted to be of finite variation as in the

non-Gaussian OU model of Barndorff-Nielsen and Shephard (2001). As seen from the corresponding

J-test, the fit of the model is poor although it contains more parameters than specification RJ.

This can be associated with the restriction on the jump activity. In the last estimated specification

SJ we remove this restriction and this yields the best fit across all estimated specifications to the

moments from the high-frequency data. As for the specification RJ, the estimated jump activity is

well above 1 indicating volatility jumps of infinite variation, exactly as our nonparametric analysis

using the VIX index indicated.

We recall our discussion in Section 5 that the diffusive specification D can be seen as a limiting

case of SJ (when β± approaches 2). The estimation results here suggest that the preferred model
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is one in which volatility activity is below 2. Comparing the J-test of RJ and SJ specifications we

see that the difference in their performance is not very big. This indicates that our nonparametric

statistics from the high-frequency price data do not penalize heavily for the omission of negative

volatility jumps.

Finally, on Figure 6, we plot the implied Lévy density of the volatility jumps by the parameter

estimates of the SJ specification. As seen from the figure, the positive and negative big jumps are

only mildly asymmetric.
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Figure 6: The figure plots the estimated log Lévy density νψ(L1) + νψ(L2) for the model specification
SJ using the parameter estimates reported in the last column of Table 1.

In conclusion, we point out that even our best performing model specification SJ is formally

rejected by the J-test. This suggests that further improvements are potentially possible. One

possible extension is to relax the connection between the Lévy measures of the two volatility factors.

This could be done with a richer data set more informative about the different behavior of the two

volatility factors over small and large scales. We leave such further extensions and estimation of

the models for future work.
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8 Conclusion

The paper studies asymmetric volatility activity, i.e., the possibility that small up and down moves

in volatility have different intensities. Nonparametric evidence in Todorov and Tauchen (2011)

suggests that volatility is of pure-jump, i.e., evolving only through jumps, and when this is the

case the asymmetric volatility activity maps into asymmetric Lévy density around zero of the

volatility jumps. We show in this paper how asymmetric volatility activity can be detected using

high-frequency VIX index data, under certain assumptions for the volatility risk premium, and our

empirical analysis based on this data suggests approximate symmetry of up and down volatility

moves (with up moves slightly more active). We then look at the same question about the volatility

activity but using only high-frequency price data together with a general parametric volatility model

that overcomes the restrictions on jumps (and in particular their activity) in the extant models. We

show that the price data alone contains information regarding volatility activity and our parametric

evidence is generally supportive of the findings using the VIX index data. The price data also clearly

suggests that small and big volatility moves should be modeled separately.

9 Appendix I: Proof of Theorem 1

We prove only the case β+ > β− and the other cases are analyzed in exactly the same way (the
case β+ = β− and c+ = c− have been already shown in Todorov and Tauchen (2010)). In what
follows C will denote a positive constant that does not depend on n and can change from line to
line.

First, we do a localization similar to that done in Jacod (2008) by assuming that α′
s is bounded

in absolute value and σs is bounded both from below and above by some positive constant. Proving
the result for the general case (when α′

s and σs are only locally bounded) can be done as in Lemma
4.6 of Jacod (2008).

We start with introducing some notation. For some τ > 0, we denote

Yt(τ) =

∫ t

0
α′
sds+

∫ t

0

∫
|x|≤τ

σs−xµ̃
′(ds, dx). (33)

For arbitrary process Z we denote Zt,n = Zt − Z(i−1)∆n
for t ∈ [(i − 1)∆n, i∆n]. With this

notation we can write on an extension of the original probability space

Yt,n(τ) =

∫ t

(i−1)∆n

α′
sds+

∫ t

(i−1)∆n

∫
|x|≤τ

(
σs− − σ(i−1)∆n−

)
xµ̃′(ds, dx) + σ(i−1)∆n−S

+
t,n

+ σ(i−1)∆n−

(
L−
t,n + L3,+

t,n − L1,+
t,n − L2,+

t,n

)
, t ∈ [(i− 1)∆n, i∆n],

(34)

where S+
t , L

1,+
t , L2,+

t , L3,+
t and L−

t are pure-jump Lévy processes with zero drift and Lévy measures

respectively: (1) c+

|x|1+β+
1{x>0} for S+

t , (2) −2ν
′′
(x)1(x : ν

′′
(x) < 0, x ∈ (0, τ ]) for L1,+

t , (3)
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c+

|x|1+β+
1(x > τ) for L2,+

t , (4) |ν ′′
(x)|1(0 < x ≤ τ) for L3,+

t , (5)
(

c−

|x|1+β− + ν
′′
(x)
)
1{x<0} for L−

t .

The processes S+
t , L

1,+
t , L2,+

t and L3,+
t can have dependence between them.

We decompose

∆1−p/β+

n V +
T (Y, p)−K+(p, β+)

nT∑
i=1

|σ(i−1)∆n−|
p = A

(1)
T +A

(2)
T +A

(3)
T +A

(4)
T , (35)

A
(1)
T = ∆1−p/β+

n

nT∑
i=1

(|∆n
i Y |p − |∆n

i Y (τ)|p) 1(∆n
i Y > 0),

A
(2)
T = ∆1−p/β+

n

nT∑
i=1

|∆n
i Y (τ)|p

[
1(∆n

i Y > 0)− 1(σ(i−1)∆n−S
+
i∆n,n

> 0)
]
,

A
(3)
T = ∆1−p/β+

n

nT∑
i=1

{
|∆n

i Y (τ)|p − |σ(i−1)∆n−S
+
i∆n,n

|p
}
1(σ(i−1)∆n−S

+
i∆n,n

> 0),

A
(4)
T = ∆1−p/β+

n

nT∑
i=1

|σ(i−1)∆n−S
+
i∆n,n

|p1(σ(i−1)∆n−S
+
i∆n,n

> 0)−∆nK
+(p, β+)

nT∑
i=1

|σ(i−1)∆n−|
p.

(36)

Since ∆n
∑nT

i=1 |σ(i−1)∆n−|p converges pathwise to
∫ T
0 |σs|pds, to prove the result in (12), it

suffices to prove the asymptotic negligibility of each of the terms A
(j)
T for j = 1, ..., 4.

We start with A
(1)
T . Using the fact that p ∈ (0, 2), the boundedness of the jumps of Y (τ) as

well as of the processes α′
s and σs, we have

|A(1)
T | ≤ C∆1−p/β+

n sup
i=1,...,nT

|∆n
i Y (τ)|

∑
s≤T

(|∆Ys|p + |∆Ys|)1(|∆Ys| > τ) + C

 , (37)

and since
∑

s≤T (|∆Ys|p+|∆Ys|)1(|∆Ys| > τ) is bounded in probability and so is supi=1,...,nT |∆n
i Y (τ)|

(as the jumps of Y (τ) are bounded), we have

A
(1)
T

P−→ 0. (38)

We turn next to A
(2)
T . First, using Burkholder-Davis-Gundy Inequality

E|∆n
i Y (τ)|β++ι ≤ C∆n

∫
|x|≤τ

|x|β++ιν ′(dx) < C∆n, ∀ι > 0. (39)

Second, we have∣∣∣1(∆n
i Y > 0)− 1(σ(i−1)∆n−S

+
i∆n,n

> 0)
∣∣∣ ≤ 1

(
|∆n

i Y − σ(i−1)∆n−S
+
i∆n,n

| > |σ(i−1)∆n−S
+
i∆n,n

|
)
.

Therefore, we can bound |A(2)
T | ≤ |A(2,a)

T |+ |A(2,b)
T | where

A
(2,a)
T = ∆1−p/β+

n

nT∑
i=1

|∆n
i Y (τ)|p1

(
|σ(i−1)∆n−S

+
i∆n,n

| < ∆α
n

)
, (40)
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A
(2,b)
T = ∆1−p/β+

n

nT∑
i=1

|∆n
i Y (τ)|p1

(
|∆n

i Y − σ(i−1)∆n−S
+
i∆n,n

| > ∆α
n

)
, (41)

for some α that satisfies min{1/β−, 1/β′} > α > 1/β+ (this is possible because of the relation

between β± and β′ assumed in the theorem). For A
(2,a)
T , using that the density of the stable law is

bounded, we have by an application of Hölder’s inequality and the bound in (39)

E|A(2,a)
T | ≤ C∆−p/β++p/(β++ι)+(1−p/(β++ι))(α−1/β+)

n , ∀ι > 0. (42)

For A
(2,b)
T we first derive several auxiliary bounds. Using the boundedness of α′

s and Burkholder-
Davis-Gundy inequality, we have

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

α′
sds

∣∣∣∣∣ ≤ C∆n, E
(
|L1,+
i∆n,n

|β′+ι + |L3,+
i∆n,n

|β′+ι
)
≤ C∆n, ∀ι > 0. (43)

Using that σt is an Itô semimartingale (and upon making an additional localization to bound the
coefficients describing the dynamics of σt), we next have

E

∣∣∣∣∣
∫ i∆n

(i−1)∆n

∫
|x|≤τ

(σs− − σ(i−1)∆n−)xµ̃(ds, dx)

∣∣∣∣∣
β++ι

≤ C∆1+β+/2+ι/2
n , 0 < ι < 2− β+. (44)

We also have for arbitrary constant χ > 0 and arbitrary small 0 < ι < 1 (recall that the Lévy

density of L2,+
t is zero around zero)

P
(
|σ(i−1)∆n−L

2,+
i∆n,n

| > χ∆α
n

)
≤ C∆1−ι

n . (45)

Similarly, for 0 < ι < 1/α−max{β−, β′} and arbitrary constant χ > 0, we have

P
(
|σ(i−1)∆n−L

−
i∆n,n

| > χ∆α
n

)
≤ C∆1−α(max{β−,β′}+ι)

n . (46)

Application of Hölder’s inequality, together with the bounds in (39) and (43)-(46), then gives

E|A(2,b)
T | ≤ C∆−p/β++p/(β++ι)+(1−p/(β++ι))(1−α(max{β−,β′}+ι′))

n , ∀ι, ι′ > 0. (47)

From here, upon choosing appropriately α, we have altogether for some η > 0

E|A(2,a)
T |+ E|A(2,b)

T | ≤ C∆η
n, (48)

which implies asymptotic negligibility of A
(2)
T . We next turn to A

(3)
T . We make use of the following

algebraic inequality
||x|p − |y|p| ≤ C|x− y|p + C|x− y||x|p−11{p>1}, (49)

to bound |A(3)
T | ≤ C(A

(3,a)
T +A

(3,b)
T ) where

A
(3,a)
T = ∆1−p/β+

n

nT∑
i=1

|∆n
i Y (τ)− σ(i−1)∆n−S

+
i∆n,n

|p,

A
(3,b)
T = ∆1−p/β+

n

nT∑
i=1

|σ(i−1)∆n−S
+
i∆n,n

|p−1|∆n
i Y (τ)− σ(i−1)∆n−S

+
i∆n,n

|1{p>1}.

(50)
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For A
(3,a)
T , using the bounds in (43)-(46), we have

E|A(3,a)
T | ≤ C∆

(
p

max{β−,β′}
∧

1
∧
p
)
−p/β+−ι

n , ∀ι > 0. (51)

This guarantees asymptotic negligibility of A
(3,a)
T because max{β−, β′} < β+. For A

(3,b)
T , we apply

Hölder’s inequality (with powers p/(p−1) and p for the terms |σ(i−1)∆n−S
+
i∆n,n

|p−1 and |∆n
i Y (τ)−

σ(i−1)∆n−S
+
i∆n,n

| respectively) and use the bounds in (43)-(46), to get

E|A(3,b)
T | ≤ C∆

(
p

max{β−,β′}
∧

1
∧
p
)

1
p
− 1

β+
−ι

n , ∀ι > 0. (52)

We are left with A
(4)
T . Using the definition ofK+(p, β+) in the theorem, we have (note σ(i−1)∆n−

is positive)

E
{
|σ(i−1)∆n−S

+
i∆n,n

|p1
(
σ(i−1)∆n−S

+
i∆n,n

> 0
) ∣∣∣∣F(i−1)∆n

}
= ∆p/β+

n K+(p, β+)|σ(i−1)∆n−|
p.

We also have Ei−1|S+
i∆n,n

|q ≤ C∆
q/β+

n for any q < β+, and together with the boundedness of σs we

have the converges to zero of A
(4)
T by an application of Theorem VIII.2.27 in Jacod and Shiryaev

(2003). �

10 Appendix II: Simulation of Tempered Stable Process

In this section we provide details on the simulation of the increments of a tempered stable process
which is needed in evaluating the model-implied volatility joint Laplace transform in Section 6.
It obviously suffices to consider only the simulation of the process evaluated at time 1 and for

its positive-jump part, i.e., the variable Z
L∼ PTS (β, c, λ) (recall our notation in (27)), and

we do so henceforth. If we denote with Lpts
t a Lévy process with law at time t = 1 given by

PTS (β, c, λ), then to simulate the Lévy process over arbitrary interval t, we just use the fact that

Lpts
t

L∼ PTS (β, c× t, λ).
The simulation is based on the acceptance-rejection algorithm proposed by Baeumer and Meer-

schaert (2009) with the stable distribution used as the proposal density and the exponential dis-
tribution used to temper it appropriately. The method is exact when β < 1 and approximate
when β ≥ 1. Kawai and Masuda (2010) provide evidence that the method is efficient (in terms of
computational time) and the approximation error can be easily controlled without significant loss
of computational time.

The method works very well for small time intervals (which is the case for our application),
because over small time intervals, the leading component of the tempered stable is its stable part

(i.e., one can show with the notation as in the previous paragraph
Lpts
t

t1/β
L−→ S(β, c̃) where S(β, c̃)

is a spectrally positive β-stable distribution with c̃ a scaling parameter which is a function of the
parameters of the original tempered stable process). Hence, the rejection rate of the algorithm
can be kept relatively low. Alternative is the method of Rosiński (2007) based on the shot-noise
decomposition of the Lévy measure which involves simulation of the actual jumps. To achieve
reasonable accuracy, however, this method requires simulation of too many jumps particularly for
β close to 2 which is computationally costly.
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Given the discussion at the beginning of the section, to keep the rejection rates in the simulation
relatively low, for the simulation of the random variables Z+

0 and Z−
0 , we use the fact that the

distributions are infinitely-divisible and we split them into n subincrements (where recall n is the
number of high-frequency subintervals in a unit interval - this is equivalent to viewing Z±

0 as a
Lévy process evaluated at time 1 and simulating its value by summing its n high-frequency sub-
increments).

The simulation of the tempered stable distribution via the acceptance-rejection method of
Baeumer and Meerschaert (2009) is done in the following way depending on the value of β:

• case β < 0

Z =
N∑
j=1

Yj − cλβ−1Γ(1−β), N ∼ Poisson distribution with intensity cλβΓ(−β) and Yj ∼ G(−β, λ),

(53)

where G(a, b) stands for the Gamma distribution with probability density: baxa−1

Γ(a) e−bx1{x>0} for a, b >
0.

• case β = 0

Z
L∼ G(c, λ)− c

λ
, (54)

where G(a, b) stands for the Gamma distribution as defined above.

• case β ∈ (0, 1)

(a) simulate U uniform on [−π
2 ,

π
2 ] andW exponential with mean 1, and set θ = arctan (tan (βπ/2)),

(b) set

V = [−cΓ(−β) cos(βπ/2)]1/β sin(βU + θ)

(cos(U) cos(θ))1/β

[
cos[(1− β)U − θ]

W

](1−β)/β

, (55)

(c) simulate Y exponential with mean 1/λ,

(d) if Y < V , go back to (a), otherwise return Z = V − cΓ(1− β)λβ−1.

• case β = 1: set a tuning parameter a = 5× [−cΓ(−β) cos(βπ/2)]1/β .

(a) simulate U uniform on [−π
2 ,

π
2 ] andW exponential with mean 1, and set θ = arctan (tan (βπ/2)),

(b) set

V = c

{
log
(πc
2

)
+
(π
2
+ U

)
tan(U)− log

( π
2W cos(U)

π
2 + U

)}
, (56)

(c) simulate Y exponential with mean 1/λ,

(d) if Y < V + a, go back to (a), otherwise return Z = V + c (1 + log(λ)).

• case β ∈ (1, 2): set a tuning parameter a = 5× [−cΓ(−β) cos(βπ/2)]1/β .

(a) simulate U uniform on [−π
2 ,

π
2 ] andW exponential with mean 1, and set θ = arctan (tan (βπ/2)),

(b) set

V = [−cΓ(−β) cos(βπ/2)]1/β sin(βU + θ)

(cos(U) cos(θ))1/β

[
cos[(1− β)U − θ]

W

](1−β)/β

, (57)

(c) simulate Y exponential with mean 1/λ,

(d) if Y < V + a, go back to (a), otherwise return Z = V − cΓ(1− β)λβ−1.
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Baeumer and Meerschaert (2009) show that for a ↑ ∞ (a being the tuning parameter in the
last two cases, i.e., when β ≥ 1), the Kolmogorov-Smirnov distance between the generated random
variable and the targeted tempered-stable one converges to zero. Here, we have set the tuning
parameter a in the case β ≥ 1 so that the probability that the stable variable V < −a is negligible.
Numerical experiments, not reported in the paper, showed that for plausible values of λ (close to
the estimates reported in Section 7), the resulting approximation error is very small.
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