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Motivation

Many important economic decisions are based on a forecasting model that is
known to be good but imperfect.

Why would an imperfect model be retained?

The model and its flaws are well-studied and understood

Institutional impediments to adopting a new model

Competitive environment too fast to change models

Given a good but imperfect model, how can we improve the forecasts it
produces?
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S&P 500 volatility in 2020
On 16 March 2020, volatility hit the highest it had been in over 30 years
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S&P 500 volatility in 2020
Long-range forecasts suggested that volatility would be high for a long time, but ...
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S&P 500 volatility in 2020
Volatility did indeed mean revert faster than predicted by the GARCH model
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Tilting the parameters of a misspecifed model

We draw on info from a state variable that is informative about the
misspecification of the model.

Eg, when the GARCH volatility is very high, we think mean reversion will be
faster than the model implies

For models that are embedded in a decision-making process, such state
variables are often available

We propose estimating the forecasting model by emphasizing observations
that are more similar to the forecast date.

Related: local OLS estimation and local MLE, see Tibshirani and Hastie
(1987), Cleveland and Devlin (1988) and Fan et al. (1998).

Related: exponential smoothing, see Brown (1956) and Muth (1960).

Importantly, we do not alter the model, only its parameters.
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Contributions of this paper

We consider local M estimation of a given parametric model for
out-of-sample forecasting, drawing on past work.

Nests local OLS, local QML, etc.

We theoretically analyze a bias-variance trade-off present in the local
estimation framework, and obtain predictions for when such a method is
likely to work well in practice.

Basline model cannot be too good; state variable cannot be too bad

We apply the method to four distinct forecasting problems, and find
significant improvements over the baseline methods in almost all cases.

We lose where we are predicted to lose...
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Outline

1 Motivation

2 Local estimation and a bias-variance trade-off

3 Applications

GARCH volatility forecasts using daily data

HAR volatility forecasts using high frequency data

VaR and ES forecasts

Yield curve forecasts

4 Conclusion
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Target variable and target functional

Our target variable is Yt+1 and our target functional is g
†
t

Eg: g †t is the mean, a quantile, [VaR,ES], etc.

L is a loss function that elicits the target functional:

g†t = argmin
g∈G

E [L (Yt+1, g) |Ft ]

Ruling out non-elicitable targets

The baseline model is a parametric model for the target functional:

g (Xt , θ) ≡ gt (θ)

which may or may not be correctly specified.
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Estimation of the baseline model

We assume the parameter of the baseline model is obtained via M estimation:

θ̂T = argmin
θ∈Θ

1
T

T∑
t=1

L (Yt , gt−1 (θ))

Under standard conditions this has a well-defined probability limit:

θ̂∗ ≡ argmin
θ∈Θ

E [L (Yt , gt−1 (θ))]

And converges at rate
√
T to a Normal asymptotic distribution:

√
T
(
θ̂T − θ̂∗

)
D−→ N (0,Σ)
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Incorporating information from a state variable

Denote the forecaster’s state variable as St

St must be Ft -measurable, and may or may not be in the baseline model

We consider the estimator:

θ̃h,T (s) = argmin
θ∈Θ

1
T

T∑
t=1

L (Yt , gt−1 (θ))︸ ︷︷ ︸
loss function

× K (s − St−1; hT )︸ ︷︷ ︸
weighting function

where K is the kernel and hT → 0 is a bandwidth parameter.

Under regularity conditions, see e.g. Fan et al. (2009, AoS), the limit is:

θ̃∗ (s) ≡ argmin
θ∈Θ

E [L (Yt , gt−1 (θ)) |St−1 = s]

With hT shrinking at an appropriate rate, the estimator satisfies:

T 1/2−γ
(
θ̃h,T (s)− θ̃∗ (s)

)
= Op (1) for some γ ∈ (0, 1/2)
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The special case of correct specification

If the baseline model is correctly specified, then

∃ θ̂∗ s.t. g†t ≡ argmin
g∈G

E [L (Yt+1, g) |Ft ] = gt(θ̂
∗)

so E
[
L
(
Yt+1, gt(θ̂

∗)
)
|Ft
]
≤ E [L (Yt+1, g) |Ft ] ∀ g ∈ G

and since St ∈ Ft , by the LIE we have

E
[
L
(
Yt+1, gt(θ̂

∗)
)
|St
]
≤ E [L (Yt+1, g) |St ] ∀ g ∈ G (F)

The local estimator satisfies:

E
[
L
(
Yt+1, gT (θ̃∗ (St))

)
|St
]
≤ E [L (Yt+1, gt (θ)) |St ] ∀ θ (♠)

Equations (F) and (♠) can only hold if θ̃∗ (s) = θ̂∗ and is thus flat in s.
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A bias-variance trade-off

Assume that L is differentiable and dim(θ) = 1.

Then a second-order Taylor series expansion yields:

E
[
L
(
YT+1, gT (θ̃h,T (ST ))

)]
︸ ︷︷ ︸

loss using estimated params

≈ E
[
L
(
YT+1, gT (θ̃∗ (ST ))

)]
︸ ︷︷ ︸

loss using pop’n params

+
∂E
[
L
(
YT+1, gT (θ̃∗ (ST ))

)]
∂θ︸ ︷︷ ︸

=0 in E[·] by FOC

(
θ̃h,T (ST )− θ̃∗ (ST )

)

+
1
2

∂2E
[
L
(
YT+1, gT (θ̃∗ (ST ))

)]
∂θ2︸ ︷︷ ︸

≡H̃∗T>0

(
θ̃h,T (ST )− θ̃∗ (ST )

)
2︸ ︷︷ ︸

=Op(T−1+2γ)≥0
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A bias-variance trade-off

And similarly for the usual estimator:

E
[
L
(
YT+1, gT (θ̂T )

)]
︸ ︷︷ ︸
loss using estimated params

≈ E
[
L
(
YT+1, gT (θ̂∗)

)]
︸ ︷︷ ︸
loss using pop’n params

+
∂E
[
L
(
YT+1, gT (θ̂∗)

)]
∂θ︸ ︷︷ ︸

=0 by FOC

(
gT (θ̂T )− gT (θ̂∗)

)

+
1
2

∂2E
[
L
(
YT+1, gT (θ̂∗)

)]
∂θ2︸ ︷︷ ︸

≡Ĥ∗T>0

(
gT (θ̂T )− gT (θ̂∗)

)
2︸ ︷︷ ︸

=Op(T−1)≥0

Note the order of the last term.
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A bias-variance trade-off

Finally, take expectations and consider the difference between the OOS losses:

E
[
L
(
YT+1, gT

(
θ̃h,T (ST )

))
− L

(
YT+1, gT

(
θ̂T

))]
︸ ︷︷ ︸

Actual diff in OOS loss

sign?

≈ E
[
L
(
YT+1, gT

(
θ̃∗ (ST )

))
− L

(
YT+1, gT

(
θ̂∗
))]

︸ ︷︷ ︸
Diff in OOS loss using pop’n params

≤ 0 (bias ↓)

+ Op
(
T−1+2γ)︸ ︷︷ ︸

Estimation error of local estimator

> 0 (variance ↑)

Q: When is the improved fit unlikely to outweigh the increased estimation error?
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Empirical predictions from the bias-variance analysis I

1. Correctly specified models. In this case we know

θ̃∗ (s) = θ̂∗ ∀ s

and so we have

E[ L
(
YT+1, gT

(
θ̃∗(ST )

))
︸ ︷︷ ︸

local estimator loss

− L
(
YT+1, gT (θ̂∗)

)
︸ ︷︷ ︸
usual estimator loss

] = 0

No improvement in fit from using local estimation

Increased local estimation error causes worse OOS performance

F More generally, when the baseline model is “very good” the scope for an
improvement in fit is reduced, and the possibility that any improvements are
more than offset by estimation error is increased.
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Empirical predictions from the bias-variance analysis II

2. Bad state variables. If the scores of the usual estimator are mean
independent of the state variable St :

E

 ∂L
(
Yt+1, gt(θ̂

∗)
)

∂θ

∣∣∣∣∣∣ St
 = E

∂L
(
Yt+1, gt(θ̂

∗)
)

∂θ


Then local estimation’s FOC is satisfied when θ̃∗ (St) = θ̂∗

And so a bad state variable leads to θ̃∗ (s) being flat in s . (Same outcome as
in the correctly-specified case, but from a different source.)

No improvement in fit, and a loss from increased estimation error.

F More generally, when the state variable is only weakly informative the gains
from local estimation are lower, and the possibility that any gains are more
than offset by estimation error is increased.
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A stylized example

Consider a nonlinear AR(1) process with standard Normal marginal
distributions and a Clayton copula linking adjacent realizations:

(Yt ,Yt−1) = CClayton (Φ,Φ;κ)

where Φ is a standard Normal CDF, κ is the Clayton copula parameter.

E.g., see Chen and Fan (2006, JoE ) and Beare (2010, ECMA)

We set κ = 5 which implies first-order autocorrelation of about 0.85, and
consider an estimation sample of T = 1000.

Model is a linear AR(1)

Yt = φ0 + φ1Yt−1 + et
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A stylized example
True conditional mean function is concave
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A stylized example
OLS provides best linear approximation
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A stylized example
Local estimation using lagged Y as state variable is almost perfect
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A stylized example
Local estimation using second lag of Y is (quite) good but not perfect
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A stylized example
Bandwidth selection is important, especially with an imperfect state variable
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Sample period and state variables

Our sample period is Jan 2000 —June 2021, so T ≈ 5000

Estimation sample is 2000-2010

“Training” sample is 2000-2005

“Validation” sample is 2006-2010

Out-of-sample period is 2011-2021

We consider time and four stochastic state variables

1 5-minute realized volatility of S&P 500 index

2 VIX (option-based volatility index)

3 Fed Funds Rate

4 10-year minus 2-year Treasury yield

We also consider 4 bivariate state variables using time & each of the above

Total of 9 state variables
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Kernels and bandwidths

For stochastic state variables we use a Gaussian kernel:

KG (x ; h) = exp
{
− x

2

2h2

}

We consider values for h ranging from 0.01σS to 3σS , where σ2S = V [St ].

For time we use an exponential kernel:

KE (j ;λ) = λj (1− λ) / (1− λm) 1 {j < m} , j ∈ 0, 1, 2, ...

We consider values for λ ranging from 0.98 to 0.9999.

As h→∞ or λ→ 1 local estimation reduces to non-local estimation

We estimate the models on the first half of the estimation sample and find
the optimal bandwidth using the second half. No look-ahead bias.
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Non-local estimation and forecast comparisons

For non-local estimation we consider estimation windows of length
250, 500, 1000 and 2500 observations.

Short estimation windows can be interpreted as a form of local estimation,
where the state variable is time and the kernel is one-sided rectangular.

Despite this, we label these methods as “non local,” and treat them as
part of the set of benchmark methods.

Forecast comparisons:

Giacomini-White (2006, ECMA) tests for pairwise comparisons with
the OOS best non-local method.

Model confidence sets (Hansen et al., 2011, ECMA) to compare all methods
jointly.

Conditional comparisons, using GW (2006) and Li et al. (2021, REStud)
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GARCH forecasts

The GARCH model of Bollerslev (1986) is a very popular model for
forecasting asset return volatility

32,464 Google scholar citations as of this morning

Assuming the conditional mean is zero, the model is:

Yt = σtεt

σ2t = ω + βσ2t−1 + αY 2t−1

The benchmark method estimates the model parameters using QML, which is
equivalent to minimizing the in-sample average QLIKE loss function:

L
(
Y 2t , σ

2
t

)
=
Y 2t
σ2t
− log Y

2
t

σ2t
− 1

The local method minimizes weighted QLIKE loss.

Patton (Duke) Better the Devil You Know Dec 2023 — 26 —



GARCH forecasts
The benchmark non-local method is ranked (equal) last out of 13

Method details Forecast performance
Rank StateVar Bwidth Window AvgLoss GW stat MCS
1∗ time,RV 0.9995,0.34 full 0.320 -10.316 X
2 RV 0.37 full 0.325 -10.395 ×
3 time,VIX 0.995,0.28 full 0.333 -6.195 ×
4 VIX 0.32 full 0.349 -6.001 ×
5 time 0.995 full 0.371 -5.427 ×
6 - - 500 0.375 -4.758 ×
7 - - 250 0.376 -2.817 ×
8 time,10Y-2Y 0.9975,0.25 full 0.380 -3.449 ×
9 time,FFR 0.9975,0.49 full 0.381 -3.855 ×
10 - - 1000 0.382 -4.494 ×
11 FFR 1.81 full 0.400 -1.592 ×
12 - - full 0.402 F ×
=12 10Y-2Y ∞ full 0.402 0.000 ×
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GARCH forecasts
The benchmark non-local method is signif beaten by all but two local methods

Method details Forecast performance
Rank StateVar Bwidth Window AvgLoss GW stat MCS
1∗ time,RV 0.9995,0.34 full 0.320 -10.316 X
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GARCH forecasts
Yield curve variables are poor state variables in this application

Method details Forecast performance
Rank StateVar Bwidth Window AvgLoss GW stat MCS
1∗ time,RV 0.9995,0.34 full 0.320 -10.316 X
2 RV 0.37 full 0.325 -10.395 ×
3 time,VIX 0.995,0.28 full 0.333 -6.195 ×
4 VIX 0.32 full 0.349 -6.001 ×
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GARCH forecasts
The best non-local method is ranked 6th out of 13 (and is quite “local”)

Method details Forecast performance
Rank StateVar Bwidth Window AvgLoss GW stat MCS
1∗ time,RV 0.9995,0.34 full 0.320 -10.316 X
2 RV 0.37 full 0.325 -10.395 ×
3 time,VIX 0.995,0.28 full 0.333 -6.195 ×
4 VIX 0.32 full 0.349 -6.001 ×
5 time 0.995 full 0.371 -5.427 ×
6 - - 500 0.375 -4.758 ×
7 - - 250 0.376 -2.817 ×
8 time,10Y-2Y 0.9975,0.25 full 0.380 -3.449 ×
9 time,FFR 0.9975,0.49 full 0.381 -3.855 ×
10 - - 1000 0.382 -4.494 ×
11 FFR 1.81 full 0.400 -1.592 ×
12 - - full 0.402 F ×
=12 10Y-2Y ∞ full 0.402 0.000 ×
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GARCH forecasts
The best non-local method is not in the MCS

Method details Forecast performance
Rank StateVar Bwidth Window AvgLoss GW stat MCS
1∗ time,RV 0.9995,0.34 full 0.320 -10.316 X
2 RV 0.37 full 0.325 -10.395 ×
3 time,VIX 0.995,0.28 full 0.333 -6.195 ×
4 VIX 0.32 full 0.349 -6.001 ×
5 time 0.995 full 0.371 -5.427 ×
6 - - 500 0.375 -4.758 ×
7 - - 250 0.376 -2.817 ×
8 time,10Y-2Y 0.9975,0.25 full 0.380 -3.449 ×
9 time,FFR 0.9975,0.49 full 0.381 -3.855 ×
10 - - 1000 0.382 -4.494 ×
11 FFR 1.81 full 0.400 -1.592 ×
12 - - full 0.402 F ×
=12 10Y-2Y ∞ full 0.402 0.000 ×

Patton (Duke) Better the Devil You Know Dec 2023 — 27 —



GARCH forecasts
The best local method in the validation sample also performs best out-of-sample

Method details Forecast performance
Rank StateVar Bwidth Window AvgLoss GW stat MCS
1∗ time,RV 0.9995,0.34 full 0.320 -10.316 X
2 RV 0.37 full 0.325 -10.395 ×
3 time,VIX 0.995,0.28 full 0.333 -6.195 ×
4 VIX 0.32 full 0.349 -6.001 ×
5 time 0.995 full 0.371 -5.427 ×
6 - - 500 0.375 -4.758 ×
7 - - 250 0.376 -2.817 ×
8 time,10Y-2Y 0.9975,0.25 full 0.380 -3.449 ×
9 time,FFR 0.9975,0.49 full 0.381 -3.855 ×
10 - - 1000 0.382 -4.494 ×
11 FFR 1.81 full 0.400 -1.592 ×
12 - - full 0.402 F ×
=12 10Y-2Y ∞ full 0.402 0.000 ×
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Local GARCH parameters
RV info enters through the level. Persistence drops for RV>35.
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Sensitivity to choice of bandwidth
Local GARCH forecasts beat non-local forecasts for a range of bandwidths
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HAR forecasts

The HAR model of Corsi (2009) is a popular model for high frequency asset
return volatility:

RVt = β0 + βdRVt−1 + βw
1
5

∑5

j=1
RVt−j + βm

1
22

∑22

j=1
RVt−j + et

We consider estimating this model either via standard OLS (the benchmark)
or local OLS, conditioning on the same state variables as in the GARCH
application.
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HAR forecasts
Best non-local estimator ranked 9th; Best V-sample local estimator beats with t-stat of -2.7

Method details Forecast performance
Rank StateVar Window AvgLoss GW stat MCS
1∗ time,VIX full 0.246 -2.655 X
2 VIX full 0.252 -4.610 ×
3 time full 0.252 -0.291 ×
=3 time,RV full 0.252 -0.291 ×
=3 time,FFR full 0.252 -0.291 ×
=3 time,10Y-2Y full 0.252 -0.291 ×
7 10Y-2Y full 0.253 -1.318 ×
8 RV full 0.253 -0.362 ×
9 - full 0.253 F ×
10 - 500 0.253 0.046 ×
11 FFR full 0.253 0.922 ×
12 - 250 0.255 0.642 ×
13 - 1000 0.300 1.056 ×
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HAR forecasts
Four models “tied” for 3rd place, but really the second state variable is just redundant.

Method details Forecast performance
Rank StateVar Window AvgLoss GW stat MCS
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2 VIX full 0.252 -4.610 ×
3 time full 0.252 -0.291 ×
=3 time,RV full 0.252 -0.291 ×
=3 time,FFR full 0.252 -0.291 ×
=3 time,10Y-2Y full 0.252 -0.291 ×
7 10Y-2Y full 0.253 -1.318 ×
8 RV full 0.253 -0.362 ×
9 - full 0.253 F ×
10 - 500 0.253 0.046 ×
11 FFR full 0.253 0.922 ×
12 - 250 0.255 0.642 ×
13 - 1000 0.300 1.056 ×

Patton (Duke) Better the Devil You Know Dec 2023 — 32 —



HAR and Local HAR volatility forecasts in 2020-21
Local HAR forecasts recover more quickly after the shock of March 2020
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VaR and ES forecasts

Next consider models for forecasting two key quantities in risk management:
Value-at-Risk (VaR) and Expected Shortfall (ES).

For a given probability level α, usually set at 5%, these two measures are:

Yt |Ft−1 ∼ Ft[
VaR†t ,ES

†
t

]
≡

[
F−1t (α) , E

[
Yt |Yt ≤ VaR†t ,Ft−1

] ]
ES is not elicitable, but can be elicited jointly with VaR (Fissler and Ziegel,
2016, AoS). We use the “FZ0” loss function for this purpose:

LFZ 0 (y , v , e;α) = − 1
αe
1 {y ≤ v} (v − y) +

v
e

+ log (−e)− 1

and so [
VaR†t ,ES

†
t

]
= arg min

(v ,e)
E [LFZ 0 (Yt+1, v , e;α) |Ft ]
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VaR and ES forecasts

We consider a simple GARCH model as the baseline model for VaR and ES:

Yt = σtεt

σ2t = ω + βσ2t−1 + αY 2t−1
and so [VaRt ,ESt ] = σt × [a, b]

where a = F−1ε (α)

b = E [εt |εt ≤ a]

We estimate these parameters by minimizing the FZ0 loss function

“Localizing” the (a, b) parameters works poorly (unsurprisingly)

We instead estimate these using the EDF of ε̂t

We localize only the GARCH parameters, keep
(
â, b̂

)
fixed
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VaR and ES forecasts
Benchmark non-local method is ranked 9th; Best local estimator beats with t-stat of -3.2

Method details Forecast performance
Rank StateVar Window AvgLoss GW stat MCS
1∗ time,VIX full -3.869 -3.227 X
2 RV full -3.868 -4.423 X
3 VIX full -3.863 -2.013 X
4 - 1000 -3.861 -0.627 X
5 time full -3.861 -0.593 X
=5 time,RV full -3.861 -0.593 X
=5 time,FFR full -3.861 -0.593 X
=5 time,10Y-2Y full -3.861 -0.593 X
9 - full -3.855 F ×
=9 10Y-2Y full -3.855 0.000 ×
=9 FFR full -3.855 0.000 ×
12 - 500 -3.844 0.581 ×
13 - 250 -3.102 1.517 ×
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VaR and ES forecasts
Ex post best non-local method is ranked 4th, and is also in the MCS

Method details Forecast performance
Rank StateVar Window AvgLoss GW stat MCS
1∗ time,VIX full -3.869 -3.227 X
2 RV full -3.868 -4.423 X
3 VIX full -3.863 -2.013 X
4 - 1000 -3.861 -0.627 X
5 time full -3.861 -0.593 X
=5 time,RV full -3.861 -0.593 X
=5 time,FFR full -3.861 -0.593 X
=5 time,10Y-2Y full -3.861 -0.593 X
9 - full -3.855 F ×
=9 10Y-2Y full -3.855 0.000 ×
=9 FFR full -3.855 0.000 ×
12 - 500 -3.844 0.581 ×
13 - 250 -3.102 1.517 ×

Patton (Duke) Better the Devil You Know Dec 2023 — 36 —



Yield curve forecasts

Finally we consider forecasts of the yield curve using the “dynamic
Nelson-Siegel”model proposed by Diebold and Li (2006, JoE ).

The Nelson and Siegel (1987, J.Bus) model for a term structure of yields:

yt (τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ ut

Parameters can be estimated from the yield curve each day.

When λt is fixed, [β1t , β2t , β3t ] can be estimated by OLS, else by NLLS

Diebold and Li (2006) propose estimating AR(1) processes for
{
β i ,t
}

β i ,t+1 = φ0i + φ1iβ i ,t + εi ,t+1

Inserting the predicted betas into the Nelson-Siegel model provides a
foreacast of the next-period yield curve.
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Yield curve forecasts

We consider local versions of the DNS model, where the AR(1) models are
estimated via local OLS.

We use the same state variable and same bandwidth for all three AR(1)
models, although that could be relaxed.

We consider US govt bonds with maturities of three and six months, and
1 to 10 years, a total of 12 maturities.

We summarize the predictive performance of this model by summing the
squared OOS forecast errors across maturities.

We consider 1-day and 20-day forecast horizons
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Yield curve forecasts, 1-day horizon
Best V-sample local estimator ranked fourth, beats benchmark with t-stat of -12.9. But...

Method details Forecast performance
Rank StateVar Window AvgLoss GW stat MCS
1 - 500 0.157 -9.499 X
2 - 250 0.158 -5.071 X
3 time,VIX full 0.158 -11.618 ×
4∗ time, RV full 0.158 -12.868 ×
5 time,10Y-2Y full 0.158 -14.128 ×
6 time,FFR full 0.158 -10.490 ×
7 time full 0.158 -14.523 ×
8 RV full 0.158 -9.099 ×
9 - 1000 0.158 -1.605 ×
10 FFR full 0.158 -2.721 ×
11 VIX full 0.158 -4.440 ×
12 10Y-2Y full 0.158 -5.881 ×
13 - full 0.158 F ×
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Yield curve forecasts, 1-day horizon
Best non-local estimator ranked *first*. Second-best is also non-local.

Method details Forecast performance
Rank StateVar Window AvgLoss GW stat MCS
1 - 500 0.157 -9.499 X
2 - 250 0.158 -5.071 X
3 time,VIX full 0.158 -11.618 ×
4∗ time, RV full 0.158 -12.868 ×
5 time,10Y-2Y full 0.158 -14.128 ×
6 time,FFR full 0.158 -10.490 ×
7 time full 0.158 -14.523 ×
8 RV full 0.158 -9.099 ×
9 - 1000 0.158 -1.605 ×
10 FFR full 0.158 -2.721 ×
11 VIX full 0.158 -4.440 ×
12 10Y-2Y full 0.158 -5.881 ×
13 - full 0.158 F ×
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Yield curve forecasts, 1-day horizon

Local forecasts are beaten by the non-local forecasts. What’s going on?

The baseline model is “too good” to be helped:

# StateVar Window In-sample R2

1 — full 0.964
2 — 1000 0.964
3 — 500 0.964
4 — 250 0.964
5 RV full 0.964
6 VIX full 0.964
7 FFR full 0.964
8 10Y-2Y full 0.964
9 time full 0.964
10 time,RV full 0.964
11 time,VIX full 0.964
12 time,FFR full 0.964
13 time,10Y-2Y full 0.964
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Yield curve forecasts, 20-day horizon
Benchmark non-local estimator ranked 8th; Best V-sample local estimator beats with t-stat of -6.9

Method details Forecast performance
Rank StateVar Window AvgLoss GW stat MCS
1 time full 0.241 -6.542 X
=1 time,FFR full 0.241 -6.542 X
=1 time,10Y-2Y full 0.241 -6.542 X
4 time,RV full 0.242 -6.304 ×
5∗ time,VIX full 0.244 -6.911 ×
6 VIX full 0.248 -2.399 ×
7 10Y-2Y full 0.250 -0.422 ×
8 - full 0.250 F ×
=8 FFR full 0.250 0.000 ×
10 RV full 0.250 1.095 ×
11 - 500 0.250 0.172 ×
12 - 1000 0.253 1.364 ×
13 - 250 0.262 2.567 ×
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Conditional forecast comparison

All of the above rankings were done unconditionally, using average OOS loss.

But if the forecaster has an idea for a state variable that is useful for tilting
the model parameters, it might also be useful for predicting which model is
likely to outperform in the next period.

We now turn to conditional forecast comparisons, using:

1 Giacomini-White (2005) parametric conditional comparions

2 Li, Liao and Quaedvlieg (2021) nonparametric comparisons

3 Nonparametric kernel smooths of OOS loss

In all cases we compare the benchmark non-local model with the local model
that performed best in the validation sample, and we use as the conditioning
variable the state variable that is used in the local method.

Across all five comparisons this variable is either RV or VIX
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Conditional forecast comparisons
Positive slope implies local method relatively worse when volatility is high

LLocalt+1 − LNon−Localt+1 = β0 + β1
(
St − S̄

)
+ et

Yield curve
GARCH HAR VaR-ES h=1 h=20

β̂0 −0.082 −0.007 −0.014 −0.894 −29.593
(std. err.) (0.008) (0.003) (0.004) (0.069) (4.282)
[t-stat] [−10.316] [−2.655] [−3.227] [−12.868] [−6.911]

β̂1 0.091 0.029 0.035 0.009 0.0716
(std. err.) (0.009) (0.025) (0.017) (0.144) (0.719)
[t-stat] [10.440] [1.182] [2.104] [0.061] [0.010]
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Conditional forecast comparisons: GARCH
Strong outperformance when RV is low, slight underperformance when RV is high
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Conditional forecast comparisons: HAR
Strong outperformance when RV is low, approx equal performance when RV is high
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Conditional forecast comparisons: VaR and ES
Limited power in this application (5% tails are hard to learn about!)
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Conditional forecast comparisons: yield curve (h=1)
Local beats the benchmark across the entire support of RV
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Conditional forecast comparisons: yield curve (h=1)
Local beats the benchmark across almost the entire support of VIX
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Summary

We suggest local estimation to improve the forecasts from a misspecified
forecasting model, without altering the form of the model.

For various reasons, it may be hard to swap the model for a different one.

We theoretically compare OOS forecasts from the local and standard
estimation methods and observe a bias-variance trade-off.

Local methods are more likely to be helpful when the baseline model is
not “too good,” and when the state variable is not “too bad.”

We apply the proposed method to four economic forecasting problems, and
find statistically significant improvements in almost all cases.

The level of vol is useful for risk forecasts, and also for yield curve forecasts.

Downweighting old observations is useful everywhere.
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Appendix
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GARCH-X forecasts
Best non-local method ranked 7th; Best V-sample local method beats with t-stat of -1.8

Method details Forecast performance
Rank Model StateVar Window AvgLoss GW stat MCS
1 GARCH-X time,RV full 0.293 -9.329 X
2 GARCH-X RV full 0.294 -9.382 X
3 GARCH-X time,FFR full 0.309 -5.017 X
4 GARCH-X time,VIX full 0.313 -4.013 X
5 GARCH-X time full 0.313 -4.653 X
6 GARCH time,RV full 0.320 -4.890 ×
7 GARCH-X - 250 0.324 -4.999 ×
8 GARCH RV full 0.325 -4.239 ×
9∗ GARCH-X time,10Y-2Y full 0.329 -1.828 ×
...

...
...

...
...

...
...

...
17 GARCH-X - full 0.359 F ×
...

...
...

...
...

...
...

...
26 GARCH - full 0.402 4.844 ×

Patton (Duke) Better the Devil You Know Dec 2023 — 51 —



HAR-X forecasts
Best non-local method ranked 7th; Best V-sample local method beats with t-stat of -6.8

Method details Forecast performance
Rank Model StateVar Window AvgLoss GW stat MCS
1 HAR-X RV full 0.232 -7.001 X
2∗ HAR-X time,RV full 0.232 -6.843 X
3 HAR-X VIX full 0.236 -6.722 ×
4 HAR-X time,10Y-2Y full 0.241 -6.085 ×
5 HAR-X time,VIX full 0.245 -5.723 ×
6 HAR time,VIX full 0.246 -5.256 ×
7 HAR-X - 250 0.248 -5.576 ×
8 HAR-X time full 0.248 -5.433 ×
9 HAR VIX full 0.252 -4.829 ×
10 HAR time full 0.252 -4.909 ×
...

...
...

...
...

...
...

...
24 HAR-X - full 0.325 F ×
25 HAR-X 10Y-2Y full 0.351 2.564 ×
26 HAR-X FFR full 0.372 3.734 ×
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