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A QuotationA Quotation

Problems involving dependent pairs of variables 
have been studied most intensively in the case ofhave been studied most intensively in the case of 
bivariate Normal distributions… This is due 
primarily to the importance of [this case] but 
perhaps also to the fact that they exhibit only a 
particularly simple form of dependence…

- E. L. Lehmann (1966).
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What is a copula?What is a copula?

It is a function (not a number)

It links (or couples) marginal distributions 
together to form a joint distribution

It contains all of the information in the joint 
distribution not captured in the marginaldistribution not captured in the marginal 
distributions
→ that is, all of the dependence information.→ that is, all of the dependence information.



Deriving a copulaDeriving a copula

Suppose X ~ F , Y ~ G and (X,Y) ~ H.pp , ( , )
Let  U ≡ F(X) and  V ≡ G(Y) . 

(Aside: Then (Pearson, 1933) U~Unif(0,1) and 
V U if(0 1) U d V th b bilit i t lV~Unif(0,1). U and V are the probability integral 
transforms of X and Y. )

Let (U,V) ~ C. By standard theory on the ( , ) y y
distribution of transformations of random variables 
we obtain:
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Deriving a copula (cont’d)Deriving a copula (cont d)

f(X)-1 0
c( F(X) , G(Y) ) = h(X,Y) · 

h( )

f(X) 1 0

0      g(Y)-1

c( F(X) , G(Y) ) =                            ,   or
h(X,Y) 

f(X) · g(Y)



Deriving a copula (cont’d)Deriving a copula (cont d)

f(X)-1 0
c( F(X) , G(Y) ) = h(X,Y) · 

h( )

f(X) 1 0

0      g(Y)-1

c( F(X) , G(Y) ) =                            ,   or
h(X,Y) 

f(X) · g(Y)

h(X,Y) = f(X) · g(Y) · c( F(X) , G(Y) )

Joint 
density

Marginal 
densities

Copula 
densitydensity densities density



Defining the copula

**

Defining the copula

Definition: A 2-dimensional copula is a function 
C:[0,1]×[0,1]→[0,1] with the following 
properties:

1 C(0 ) C( 0) 0 d C( 1) C(1 ) f1. C(0,w) = C(w,0) = 0, and C(w,1)=C(1,w)=w, for 
every w∈[0,1]

2 V ([u u ]×[v v ]) ≡ Pr[u ≤ U ≤ u ∩ v ≤ V ≤ v ]2. VC([u1,u2]×[v1,v2]) ≡ Pr[u1 ≤ U ≤ u2 ∩ v1 ≤ V ≤ v2] 
= C(u2,v2) - C(u2,v1) - C(u1,v2) + C(u1,v1) ≥ 0
for all u1,v1,u2,v2 ∈ [0,1] s.t. u1≤u2 and v1≤v2.

Alternative definition: if U~Unif(0,1) and 
V~Unif(0,1), then C is any function satisfying ( , ), y y g
the properties of being a joint cdf of (U,V); it is 
a multivariate cdf with Unif(0,1) margins.



Sklar’s theoremSklar s theorem

Sklar (1959) showed that we may decomposeSklar (1959) showed that we may decompose 
the distribution of (X,Y) into three parts:

H( x , y ) =  C( F(x) , G(y) )  ∀ x,y ∈ ℜ
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Sklar (1959) showed that we may decomposeSklar (1959) showed that we may decompose 
the distribution of (X,Y) into three parts:

H( x , y ) ⇔ C( F(x) , G(y) )  ∀ x,y ∈ ℜ

Joint dist’n 
of X and Yof X and Y

Marginal 
Copula of 
X and Y

Marginal 
dist’n of Y

g
dist’n of X

X and Y



Why should economists care about copulas?Why should economists care about copulas?

Because economists care about dependence.p

There are two main places in economics where 
knowledge of the copula would be useful…



I When the joint distribution is requiredI.  When the joint distribution is required

There are a number of situations where theThere are a number of situations where the 
first couple of moments are not enough:

1. Pricing options with more than one underlying 
asset (Rosenberg, 2000) 

2. Calculating the Value-at-Risk of a portfolio of 
assets (Hull and White, 1998)

3. Multivariate density forecasting (Diebold, Hahn 
and Tay, 1999)

4. Quantile regression



II When linear correlation isn’t enoughII.  When linear correlation isn t enough

Linear correlation is a nice, simple measure ofLinear correlation is a nice, simple measure of 
dependence, but it’s not always sufficient:

1 Asymmetric equity correlations: stock returns1. Asymmetric equity correlations: stock returns 
seem more dependent on down days than on up days 
(Erb, Harvey and Viskanta, 1994)

2. Financial contagion: international markets seem 
more dependent in crash states than during ‘normal’ 
states

3. Asset pricing when you don’t believe that investors 
have quadratic utility or that returns are multivariatehave quadratic utility or that returns are multivariate 
normally distributed, as is assumed in the CAPM



Visualizing copulasVisualizing copulas

Copulas themselves aren’t that nice to look atCopulas themselves aren’t that nice to look at

One way of looking at them is to use them toOne way of looking at them is to use them to 
couple two standard normal margins, and then 
examine the resulting joint distribution.g j

C( F(x) , G(y) ) ⇒ H( x , y )( ( ) , (y) ) ( , y )

ResultingCopula of Resulting 
joint dist’nN(0,1)Copula of 

interest



Bivariate normal distributionBivariate normal distribution
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Clayton’s (1978) copulaClayton s (1978) copula
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Gumbel’s (1960) copulaGumbel s (1960) copula
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Joe-Clayton (1997) copulaJoe Clayton (1997) copula
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Student’s t copulaStudent s t3 copula
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Mixture of Normal copulasMixture of Normal copulas
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All of these distributions have N(0,1) 
marginal distributions and ρ=0 50marginal distributions and ρ=0.50

Gaussian Clayton Gumbel Joe-Clayton
ρ 0.50 0.50 0.50 0.50
ρs 0.4878 0.4664 0.4755 0.4512

Gaussian Clayton Gumbel Joe Clayton

τ 0.3370 0.3273 0.3272 0.3151
β 0.3333 0.3333 0.3311 0.2972
τU 0.0000 0.0000 0.4126 0.3707
τL 0.0000 0.5000 0.0000 0.2288
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Goodness-of-fit testingGoodness of fit testing

(X,Y) ~ H = C( F(X) , G(Y) )

We need to ensure that the marginal distribution 
models are well specified before modelling the

(X,Y)  H  C( F(X) , G(Y) )

models are well specified before modelling the 
copula

Evaluation of univariate density models

Recall that the copula can be defined as the joint 
distribution of two i i d Unif(0 1) randomdistribution of two i.i.d. Unif(0,1) random 
variables

So the evaluation of copula models is a special 
f h l bl f lcase of the more general problem of evaluating 

multivariate density models



Goodness-of-fit testingGoodness of fit testing

No single best method of evaluating densityNo single best method of evaluating density 
models has yet emerged – we will employ two 
different methods:

1. Diebold, et al. (1998) and (1999): Test 
(separately) whether U F (X |I ) and V(separately) whether Ut ≡ Ft(Xt|It-1) and Vt ≡
Gt(Yt|It-1) are i.i.d. and Unif(0,1)

2. Break the density model into multiple interval 
(or region) models and evaluate these

E t i f k b Ch i t ff (1998) d→ Extension of work by Christoffersen (1998) and 
Engle and Manganelli (1999).



1 Diebold et al (1998) and (1999)1.  Diebold, et al. (1998) and (1999)

U F (X |I ) and V G (Y |I ) i i d Unif(0 1)

Employ two tests: one for the i.i.d. property, 

Ut ≡ Ft(Xt|It-1) and Vt ≡ Gt(Yt|It-1) ~ i.i.d. Unif(0,1) 

and one for the Unif(0,1) property.

i.i.d. : regress (ut-ubar)k and (vt-vbar)k on 20 d eg ess (ut uba ) a d ( t ba ) o 0
lags of each, for k = 1,2,3,4. Use LM test that 
all coefficients are zero.

Unif(0,1): Use Kolmogorov-Smirnov test that      
{ut} and {vt} are not significantly different from t t
Unif(0,1).



2 ‘Hit’ tests2.  Hit  tests

Christoffersen (1998) and Engle and ManganelliChristoffersen (1998) and Engle and Manganelli 
(1999) both proposed looking at the sequence 
of ‘hits’ to determine the adequacy of an 
i t l f t (lik V R( ) f t)interval forecast (like a VaR(q) forecast)

Let Hitt ≡ 1{xt<VaRt(0.05)}, t = 1,2,…,T.t { t t( )}

If the forecast is good, the sequence of hits 
should be i i d Bernoulli(0 05)should be i.i.d. Bernoulli(0.05).

We can thus test the accuracy of an interval 
forecast by testingforecast by testing 

H0: Hitt ~i.i.d. Bernoulli(0.05).



Multivariate Hit testsMultivariate Hit tests

In the bivariate case a hit would be defined as theIn the bivariate case, a hit would be defined as the 
observation (xt , yt) lying in some region, R, of the 
support of the distribution:

Hitt ≡ 1{(xt , yt) ∈ R}, t = 1,2,…,T.

Unlike univariate interval forecasts the probabilityUnlike univariate interval forecasts, the probability 
of a hit will not be constant: it depends on the 
amount of copula probability mass in that region.

In our case if the model is accurate we will find:

Hitit ≡ 1{(xt , yt) ∈ Ri} ~ i.n.i.d. Bernoulli(pit)Hitit ≡ 1{(xt , yt) ∈ R}  i.n.i.d. Bernoulli(pit)

where pit is given by the copula at time t : Ct(⋅,⋅|It-1)
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Individual region hit testsIndividual region hit tests

We model the hits in a logistic regression g g
framework:

H0: the model is correctly specified 
⇒ Hit ~ Bernoulli(p ) for t = 1 2 T⇒ Hitit ~ Bernoulli(pit), for t = 1,2,…,T.

H1: the model is not correctly specified               
⇒ Hitit ~ Bernoulli(πit), for t = 1,2,…,T, where

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β⋅Λ=βπ=π

it

it
iititiitiit p

pZp Z 1ln),,( /

where Λ(x)=(1+e-x)-1 is the logistic function, Zit
contains anything thought to influence the probability 
of a hit β is the parameter vector to be estimatedof a hit, βi is the parameter vector to be estimated.

Thus the test becomes H0: βi = 0  vs. H1: βi ≠ 0. 



Testing multiple region forecasts at onceTesting multiple region forecasts at once

Define Hit 1{(x y ) Ri} where Ri Rj ∅Define Hitit ≡ 1{(xt , yt) ∈ Ri}, where Ri∩Rj=∅
and ∪i=0

K Ri = S, then define a new random 
variable:

∑
=

⋅≡
K

i
itt HitiM

0

Mt is a multinomial random variable

Let P = [p p p ] where p isLet Pt = [p0t , p1t , … , pKt ], where pit is
Pr[Hitit=1] implied by model.

Then Mt ~ Multinomial (Pt) if the model is 
correctly specified
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Multiple region hit testsMultiple region hit tests

H0: the model is correctly specified 0 y p
⇒ Mt ~ Multinomial(Pit), for t = 1,2,…,T.

H1: the model is not correctly specified               
M M lti i l(Π ) f t 1 2 T h⇒ Mit ~ Multinomial(Πt), for t = 1,2,…,T, where

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−β⋅Λ=βπ=π it

ttt
pZP Z 1ln),,( 1

/
111 ⎟

⎠
⎜
⎝

ββ
it

ttt p
)( 1111

K2,...,j for  
p

p
ZP Z

j

i jt
jjt

j

ittjjt =⎟
⎟
⎞

⎜
⎜
⎛ −

−β⋅Λ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π−=βπ=π ∑∑ =

−

,
1

ln1),,( 1/
1

p jti
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⎝
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⎜
⎝ =1

∑
=
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K

j
jtt

1
0 1

Again, the test reduces to H0: β = 0  vs. H1: β ≠ 0. 

=j 1



Difference from previous ‘hit’ tests

**

Difference from previous hit  tests

Christoffersen (1998) proposed modelling theChristoffersen (1998) proposed modelling the 
sequence of this as a first-order Markov chain, as a 
test of the i.i.d. assumption

ff l ll f h h d l d d→ Difficult to allow for higher order serial dependence
→ Doesn’t include exogenous variables that may 

influence the probability of a hitp y

Engle and Manganelli (1999) model the hits in a 
linear probability model.linear probability model.
→ Easy to include more lags or exogenous regressors
→ Simple to estimate and draw inference from
→ BUT normal distribution may not be a good 

approximation to a Bernoulli random variable…
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Copulas in EconomicsCopulas in Economics

The original theory of copulas was developed forThe original theory of copulas was developed for 
the i.i.d. case. But we can extend it:

H( xt , yt ) = C ( F (xt) , G (yt) ) - i.i.d.

Ht( xt , yt) = Ct( Ft(xt) , Gt(yt) ) - i.n.i.d.

Ht( xt , yt|It-1) = Ct( Ft(xt|It-1) , Gt(yt|It-1) |It-1 ) 
where It=σ(zt+1 xt, yt, zt, xt 1, yt 1…). - d.n.i.d.where It σ(zt+1, xt, yt, zt, xt-1, yt-1…).   d.n.i.d.



Applying copulas to FX modellingApplying copulas to FX modelling

As an application we will model the jointAs an application we will model the joint 
distribution of the DM-USD and Yen-USD 
exchange rates, allowing for time-variation in 
th diti l di t ib tithe conditional distribution. 

→ The two most heavily traded exchange rates
→ The DM-USD and Yen-USD exchange rates made 

up 29% and 18% of total foreign exchange 
trading in 1996 (Melvin, 2000). Next largest weretrading in 1996 (Melvin, 2000). Next largest were 
DM-FFr and GBP-USD with 6% and 5% 
respectively. (AUD-USD was 8th largest at 2%).

→ Provide an application where time variation in 
dependence is likely to be significant



The dataThe data
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Why a time-varying copula?Why a time varying copula?

We have substantial evidence of time variationWe have substantial evidence of time variation 
in the conditional volatility of exchange rates 
(Bollerslev, 1987, Engle et al. 1990, Andersen et 
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Why a time-varying copula?Why a time varying copula?

It then seems natural to allow for time variationIt then seems natural to allow for time variation 
in the conditional dependence also…



The modelThe model

We will exploit the knowledge we have on modellingWe will exploit the knowledge we have on modelling
individual exchange rates, and then work on 
modelling the copula…

Let It = σ(xt, yt, xt-1, yt-1,…)
^ ^ ^ ^Ct( Ft(xt|It-1) , Gt(yt|It-1) |It-1 ) ⇒ Ht( xt , yt |It-1) 

AR-t GARCH
Normal copula 

vs.
Model for the 

joint
Joe-Clayton copula

joint 
distribution



The model (cont’d)The model (cont d)

The marginal distributions:The marginal distributions:

XX t1txxt − ε+φ+μ=
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Two models for the copulaTwo models for the copula

We consider two possible models for the copula:
the Normal copula, and the Joe-Clayton copula.

C(u,v|ρ) = ∫ ∫
− −Φ Φ

⎬
⎫

⎨
⎧ +ρ−−)u( )v(

2

221 1

dtds)tst2s(exp1
C(u,v|ρ)   

C(u,v|κ,γ) = 1-(1-((1-(1-u)κ)-γ+(1-(1-v)κ)-γ-1)-1/γ)1/κ

∫ ∫∞− ∞− ⎭
⎬

⎩
⎨ ρ−ρ−π

22 )1(2
p

12

C(u,v|κ,γ)  1 (1 ((1 (1 u) ) +(1 (1 v) ) 1) )

where U F (X |I ) and V G (Y |I )where   Ut ≡ Ft(Xt|It-1)  and Vt ≡ Gt(Yt|It-1) 



22

Comparing the two copula models
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Normal copula Joe-Clayton copula
One parameter: ρ Two parameters: κ , γOne parameter: ρ Two parameters: κ , γ

Symmetric tail behaviour Asymmetric tail behaviour

Parameter maps to linear     Parameters map to upper p
correlation

p pp
and lower tail dependence

Positive and negative 
d d

Positive dependence only
dependence

p y

Zero tail dependence Non-zero tail dependence



Upper and lower tail dependence

**

Upper and lower tail dependence

As the name suggests it measures dependenceAs the name suggests, it measures dependence 
in the tails, or the extreme values, of the dist’n. 
[Recall  Ut ≡ Ft(Xt|It-1) and Vt ≡ Gt(Yt|It-1) .][ t t( t| t-1) t t( t| t-1) ]

]qV|qUPr[lim
0q

L
+→

≤≤=τ ]qV|qUPr[lim
1q

U >>=τ
−→

]qVPr[
]qVqUPr[lim     

0q

0q

+→

→

≤
≤∩≤

=
]qVPr[

]qVqUPr[lim     
1q

1q

>
>∩>

=
−→

→

q
)q,q(Clim     

]qV[

0q +→
=

q1
)q,q(Cq21lim     

]q[

1q −
+−

=
−→q



Time-varying copulas and dependenceTime varying copulas and dependence

We attempt to capture time varyingWe attempt to capture time-varying 
dependence by allowing the parameters of the 
copulas to evolve over time, in a similar fashion p ,
to a GARCH model for heteroscedasticity.



Time-varying Joe-Clayton copulaTime varying Joe Clayton copula

The parameters of the Joe Clayton copula areThe parameters of the Joe-Clayton copula are 
strictly increasing functions of the upper and 
lower tail dependence measures (Joe, 1997):p ( , )

τL(γ) = 2-1/γ ⇔ γ(τL)  = -[log2(τL)]-1

U( ) 2 21/ ( U) [l (2 U)] 1τU(κ) = 2-21/κ ⇔ κ(τU) =  [log2(2-τU)]-1

As κ and γ are not easily interpretable we willAs κ and γ are not easily interpretable, we will 
instead model τt

U and τt
L, and then obtain κt

and γt by the above expressions.γt y p



Time-varying Joe-Clayton copulaTime varying Joe Clayton copula

Joe Clayton copula:Joe-Clayton copula:
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Time-varying Joe-Clayton copula

**

Time varying Joe Clayton copula

On the choice of forcing variable in the JoeOn the choice of forcing variable in the Joe-
Clayton copula: ∑ = −− −

10

110
1

j jtjt vu

Under perfect positive dependence, all points      
(ut , vt) lie on the main diagonal of the copula ( t , t) g p
support, while under independence they are 
scattered all over the support

Thus, average distance from the point to the main 
diagonal is an approximate measure of how ‘close’ 
the last ten observations were to being perfectlythe last ten observations were to being perfectly 
dependent.



Time-varying Joe-Clayton copula
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Time varying Joe Clayton copula
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Time-varying normal copulaTime varying normal copula

Normal copula:
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The best existing alternativesThe best existing alternatives

An alternative to the model just presented may 
be an AR-BEKK model for the mean and 
variance, with some residual distribution 
assumption:p

1. AR-BEKK with bivariate Normal residuals: 
1. Passes LM tests of dynamic specificationy p
2. Fails (miserably!) K-S and hit tests of density 

specification of margins and copula

2 AR BEKK ith bi i t St d t’ t id l2. AR-BEKK with bivariate Student’s t residuals:
1. Passes LM tests
2. Passes K-S tests
3. Fails Yen marginal density hit test, and fails copula hit 

test



EstimationEstimation

Two stage maximum likelihood was employed:Two-stage maximum likelihood was employed:

(X,Y) ~ h(θ) = f(x;ϕ) ⋅ g(y;γ) ⋅ c( F(x;ϕ), G(y;γ); κ)

LLH(θ) = LLF(ϕ) + LLG(γ) + LLC(ϕ , γ , κ)
n
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Results for the marginal distributionsResults for the marginal distributions

DM Margin Yen MarginDM Margin Yen Margin

Coeff Std Error Coeff Std Error

μ 0.0276* 0.0111 0.0144 0.0111μ 0.0276 0.0111 0.0144 0.0111

φ1 0.0142 0.0200 -0.0043 0.0195

φ 0 0664* 0 0183φ10 0.0664* 0.0183

ω 0.0039 0.0030 0.0059 0.0034

β 0.9485* 0.0161 0.9453* 0.0161

α 0.0448* 0.0126 0.0458* 0.0125

ν 5.8073* 0.6383 4.3817* 0.3800



Specification tests of marginal distributions

**

Specification tests of marginal distributions

Both margins pass the LM and K-S tests for 
correct dynamic specification and correct 
density specification

Hit tests: 
Break unit interval into five regions: 
0 10% 25% 75% 90% d 10 , 10% , 25% , 75% , 90% and 1.

Include as regressors: a constant (to capture 
bias in probability of a hit) and three variables p y )
counting number of hits in past day, week and 
month (to capture serial dependence in hits)
Results: DM margin passes all regions and theResults: DM margin passes all regions and the 
joint test, Yen margin fails lower tail region but 
passes the joint test
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Constant dependence copulasConstant dependence copulas

1 Normal copula: ρ = 0 4560 (0 0167)^1. Normal copula: ρ = 0.4560 (0.0167)
a) Implied residual correlation: 0.4141

2. Joe-Clayton copula:  
κ = 1.3356 (0.0348) ⇒ τU(κ) = 0.3197 

0 4202 (0 0384) L( ) 0 1921

^

^

^

^γ = 0.4202 (0.0384)  ⇒ τL(γ) = 0.1921

a) Implied residual correlation: 0.4267

^ ^

b) Test for significance of asymmetry:
H0: τU(κ) = τL(γ) vs.   H1: τU(κ) ≠ τL(γ)^ ^ ^ ^

Test stat (p-value) = 2.9197 (0.0035)

⇒ Reject H0, i.e. asymmetry is significant.



Time-varying normal copulaTime varying normal copula

ω β αωρ βρ αρ

Coeff 0.0015 2.0684* 0.1212

Std Error 0 0052 0 0160 0 0250Std Error 0.0052 0.0160 0.0250

These parameters are difficult to interpret on 
their own, as they enter into the logistic 
transformationtransformation.

Can more easily see the results in a graphCan more easily see the results in a graph…



Time-varying normal copulaTime varying normal copula
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Time-varying Joe-Clayton copulaTime varying Joe Clayton copula

β βωU βU αU ωL βL αL

Coeff -2.0621 4.4548 -.9192 -1.3444 4.1406 -6.5119

s.e. 0.2056 0.2938 0.8966 0.5876 0.5880 3.1394

Again interpretation of the parameter estimates 
directly is difficult – look at graph of time pathdirectly is difficult look at graph of time path 
of parameters



Tail dependence in the Joe-Clayton copulaTail dependence in the Joe Clayton copula
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Conditional correlation estimatesConditional correlation estimates
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Evaluation and comparison of modelsEvaluation and comparison of models

h l l l l d ffThe estimation results clearly imply quite different 
dependence structures - we need some way of 
comparing the different models’ fitcomparing the different models  fit.

Unfortunately, many standard means of comparing 
fit t li bl / l t hfit are not applicable/relevant here:
a) R2 has little or no meaning
b) LR type tests difficult as the models are non nestedb) LR-type tests difficult as the models are non-nested

We will use the tests introduced earlier (LM, K-S 
and Hit tests)



LM and K-S testsLM and K S tests

All 4 copula models pass the LM and K-S tests 
for goodness-of-fitfor goodness of fit.

We turn now to the ‘hit’ tests for hopefully aWe turn now to the hit  tests for hopefully a 
more powerful test.



Hit test specificationHit test specification

Zt contains a constant, and a count of the 
number of hits in the last day, one week and 
one month.

We use a standard LR test to test the null 
hypothesis that β = 0. 



Hit regionsHit regions
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Hit test results 5

46
2

Hit test results
3 71

Region Constant Constant Time-varying Time-varying Region
Normal Joe-Clayton

y g
Normal

y g
Joe-Clayton

1 9.4482 7.3304 7.4209 6.6815

2 4.1361 9.8002* 2.2563 16.0750*

3 6.4374 6.1412 6.4108 6.5137

4 1.9063 1.8627 1.4813 1.4595

5 8.2495 6.7740 7.9588 3.3560

6 2.8800 6.9902 0.9284 3.1363

7 6.5945 8.4697 0.6086 3.2932

Individual 5% critical value: 9.49, Joint  5% critical value: 41.3371.

ALL 37.8395 46.1668* 26.9924 41.4195*



Hit test resultsHit test results

The two normal copulas pass all tests

The two Joe-Clayton copulas both fail in the 
extreme upper tail region

An unexpected result, as the Joe-Clayton copula 
is more flexible in the tails than the Normal
Casts some doubt on the previous finding ofCasts some doubt on the previous finding of 
asymmetric dependence



A structural break? – The euroA structural break? The euro

Did the introduction of the euro on Jan 1 1999Did the introduction of the euro on Jan 1, 1999 
significantly change the conditional joint 
distribution of these exchange rates?g

We expand the information set now to include an 
indicator variable as to whether the data cameindicator variable as to whether the data came 
from the pre-euro or post-euro period

Th d l t ll d t hThe model parameters are allowed to change 
over the two periods, though the functional forms 
are assumed to be the sameare assumed to be the same



Results for the marginal distributions, 
with structural breakwith structural break

DM Margin Yen Margin
Coeff Std Error Coeff Std Error

μ1 0.0128 0.0120 0.0144 0.0111

μ2 0.0982* 0.0268

φ1 0.0111 0.0200 -0.0043 0.0195

φ10 0.0664* 0.0183

ω1 0.0037 0.0029 0.0059 0.0034

ω2 0.0053 0.0038

β 0.9485* 0.0160 0.9453* 0.0161

α 0.0446* 0.0125 0.0458* 0.0125

ν 5.6860* 0.6180 4.3817* 0.3800



Specification tests of marginal distributions, 
with structural break

**

with structural break

Multinomial test of marginal models with break:  

Full Sample Pre-Euro Post-Euro

DM Yen DM Yen DM Yen

Test stat 14.29 35.05 16.26 25.89 13.10 21.43

p-value 0.58 0.17 0.43 0.06 0.67 0.17



Constant copulas with structural breakConstant copulas with structural break

1 Normal copula:ρ1 = 0 5435 (0 0146)1. Normal copula:ρ = 0.5435 (0.0146)
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U(κ) = 0.0001 τ2

L(γ) = 0.0018

a) Implied residual correlation: 0.4983 down to 0.0781



Constant copulas with structural breakConstant copulas with structural break

1 Normal copula:ρ1 = 0 5435 (0 0146)1. Normal copula:ρ = 0.5435 (0.0146)
ρ2 = 0.0855 (0.0508)

2 J Cl t l2. Joe-Clayton copula:  
τ1

U(κ) = 0.3964 τ1
L(γ) = 0.2542

τ U(κ) = 0 0001 τ L(γ) = 0 0018τ2
U(κ) = 0.0001 τ2

L(γ) = 0.0018

a) Implied residual correlation: 0.4983 down to 0.0781
b) Test for significance of asymmetry:b) Test for significance of asymmetry:

H0: τi
U(κ) = τi

L(γ) vs.   H1: τi
U(κ) ≠ τi

L(γ)  for i=1,2

T t t t ( l ) 3 13 (0 0017) d 0 03 (0 9785)Test stats (p-values) = 3.13 (0.0017) and –0.03 (0.9785) 

⇒ Asymmetry is significant for DM/Yen, but not for Euro/Yen



Time-varying copulas with structural breakTime varying copulas with structural break

Allowed all parameters of copula to change and 
then inspected resulting parameter time pathsthen inspected resulting parameter time paths.

Dependence appeared very near constant in theDependence appeared very near constant in the 
post-euro sample, and so constancy was 
imposed to reduce number of parameters 

destimated



Time-varying conditional correlationTime varying conditional correlation 
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Time-varying conditional tail dependence

0 7
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ConclusionsConclusions

METHODS:METHODS:

We’ve shown how copula theory may be used to 
develop flexible models for time-varying 
conditional joint distributions

We’ve also discussed a means of evaluating 
multivariate density models – the logistic ‘hit’ testmultivariate density models the logistic hit test 
and multinomial test



ConclusionsConclusions

EMPIRICAL RESULTS:EMPIRICAL RESULTS:

Time variation in the dependence structure 
b t th DM USD d Y USDbetween the DM-USD and Yen-USD seems 
significant

A t i th d d t t f dAsymmetry in the dependence structure was found 
to be important – dependence was greater during 
appreciations of the USD (depreciations of both pp ( p
the Yen and DM) than during depreciations of the 
USD (appreciations of both the Yen and DM)



ConclusionsConclusions

EMPIRICAL RESULTS (cont’d):EMPIRICAL RESULTS (cont’d):

Substantial evidence of a structural break in the 
joint distribution was found:
i. DM-USD unconditional drift and variance increased
ii Yen-USD margin did not changeii. Yen-USD margin did not change
iii. Large decrease in conditional dependence following 

the introduction of the euro

Conditional dependence measures (like correlation) 
implied by the models differ depending on the 
copula used



Potential future workPotential future work

For me:For me:
1. Two-stage estimation
2. The case of unequal amounts of data (Yen-USD 

d E USD h )and Euro-USD exchange rates)
3. Applications to economic models (portfolio 

allocation decisions, and possibly contagion), p y g )

For someone else:
1 Different forms of time variation in dependence –1. Different forms of time variation in dependence –

eg Markov switching
2. Extensions to higher dimensions
3. The search for the ‘best fitting’ FX copula, stock 

market copula, etc…


