
Supplemental Appendix for

Bespoke Realized Volatility:

Tailored Measures of Risk for Volatility Prediction

by Andrew J. Patton and Haozhe Zhang

This version: May 11, 2025

This appendix presents additional details and analyses relevant to the main paper.

S.1. Simulation study

In this section we simulate data to illustrate the ability of the proposed Cubic HAR

model to recover the true coefficients. We assume that high-frequency returns, ri,t, are

i.i.d. N(0,1/M), where M is the number of high-frequency returns each trade day. We com-

bine these high frequency returns to obtain realized variances using time-of-day (TOD)

weights, ωi, as in equation 7 of the main paper, and we use a HAR model to simulate the

time series dynamics of RV.
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where ϵt ∼ N(0, 1). We set β0 = 0, βd = 0.4, βw = 0.3, βm = 0.3, and M = 78. We

impose that ωi follows the empirical TOD weights presented in Figure 4. Then we use

the cubic HAR model with the exact same set-up (hyperparameter grid and estimation

algorithm) to estimate the coefficients on the simulated data. Figure S.1 shows that when

the true data generating process indeed is a linear combination with the TOD weights,

our cubic HAR model will recover the true weights almost perfectly. (As the true weights

in this simulation are not a smooth function of time, the cubic spline model clearly cannot

obtain a perfect fit.) This simulation results give us confidence that the proposed Cubic
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HAR has enough estimation power to recover the optimal weighting scheme for realized

variance forecasting.

Figure S.1: Cubic HAR vs True Weights: Simulated Data

Note: This figure compares the estimated optimal weights (solid line) based on simulated data
based with the true weights (dash-dotted line).
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S.2. Data cleaning details

We use trade data from the NYSE Trade and Quote (TAQ) database. We follow

Barndorff-Nielsen et al. (2009) to clean this data, using the following rules:

1. Keep only entries with time step between 9:30 am to 4:00 pm (when the exchange

is open).

2. Delete entries with zero transaction prices.

3. Retain entries originating from NYSE and NASDAQ only.

4. Delete entries with corrected trades (CORR ̸= 0).

5. Delete entries with unusual sale condition (COND with letter code except for letters

E and F).

6. Use the median price if multiple entries have the same time stamp.

S.3. Alternative target for shrinkage

In the analysis in Section 3.2 of the main paper, we consider shrinkage methods

(Ridge, LASSO and elastic net) that shrink the estimated parameters towards zero. This

is a standard shrinkage target in high-dimensional estimation, but in our application an

interesting alternative target is to shrink the parameters towards the benchmark HAR

parameters. To do this, we re-write the regularized regression models as:
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That is, we split the coefficients on high frequency returns into the HAR coefficients and

a perturbation term to be estimated. Then, instead of regularizing the entire coefficient,

we only penalize the perturbation terms, and shrink these towards zero. That is, the

penalty term becomes:

α(λ∥γ∥1 + (1− λ)∥γ∥2) (S.2)
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Table S.1: Alternative regularized regression models: Shrink towards HAR

GW Losses GW Wins GW t-stat
CubicHAR vs: Total Signif Total Signif Panel

Ridge-Alt 166 44 720 423 -17.3
LASSO-Alt 165 46 721 437 -4.2
Elastic net-Alt 170 46 716 412 -16.4
OLS 54 17 832 564 -6.4
HAR 155 41 731 470 -21.7

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
cubic HAR model against competing models across 886 S&P 500 stocks. A positive panel
GW t-statistic indicates that the competing model out-performs the cubic HAR model, while
a negative t-statstic indicates the opposite. The models labeled “-Alt” shrink the estimated
coefficients towards the HAR model coefficients, rather than towards zero as in Table 2 of the
main paper.

where γ = [γd,γw,γm]. The estimation procedure and hyperparameters grid are identical

to those in the original regularized regression analysis. We compare the cubic HAR model

with these alternative shrinkage estimators in Table S.1. (The OLS and HAR results

are identical to those in Table 2 of the main paper, and are included here for ease of

comparison.) With this alternative target the optimal degree of shrinkage is found to be

large, and the Ridge, LASSO and elastic net models are all shrunk almost all the way

to the benchmark HAR parameters. Given that, it is unsurprising that the cubic HAR

continues to significantly out-perform these alternative regularized models, as shown in

Table S.1, which have performance comparable to the benchmark HAR model.

S.4



S.4. Cubic HAR Model Architecture

Figure S.2: Cubic HAR Model Architecture

Note: This figure illustrates the cubic HAR model architecture. In particular, it shows how we
use miniBatch gradient descent to iteratively solve the optimal parameters (3×K+1) and then
use them to get the cubic spline interpolated weights for constructing final RV forecast. Here
K represents the number of basis points for cubic spline interpolation or the true number of
parameters, and M represents the desired number of points as cubic spline interpolation output.
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S.5. Visualizing the optimal Cubic TOD and Cubic EW weights

This section presents the optimal daily weights for the cubic HAR, cubic TOD and

cubic EW models, which differ in what shapes are estimated or imposed on the weekly

and monthly weights. We observe the cubic TOD and cubic EW daily weights are almost

identical to the cubic HAR weights for daily lags, which shows that restricting the shapes

of weekly and monthly weights has almost zero affect on the estimated daily weights.

Figure S.3: Cubic TOD and Cubic EW weights

Note: This figure compares estimated cubic TOD and cubic EW weights against the cubic HAR
model weights, averaged across the 886 S&P 500 stocks in our sample.
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S.6. Additional tables

Table S.2: Comparisons involving log RV

GW Losses GW Wins GW t-stat
Log Cubic vs: Total Signif Total Signif Panel

Log HAR 148 59 738 563 -7.2
Cubic 812 733 74 29 19.3

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
Cubic HAR model estimated on log RV against competing models across 886 S&P 500 stocks.
The first row compares the model with HAR estimated on log RV. Both models are estimated
using OLS and forecast comparisons are done using MSE. The second row compares forecasts
of RV (non-logged) from the Cubic HAR model presented in Section 2.1 and the Cubic HAR
model estimated on log RV, and then converted to a forecast of RV, using the adjustment in
Clements and Preve (2021). These forecasts are evaluated using QLIKE loss. A positive panel
GW t-statistic indicates that the competing model out-performs the log Cubic HAR model,
while a negative t-statstic indicates the opposite.

Table S.3: HAR vs other models performance on S&P500. MSE loss.

GW Losses GW Wins GW t-stat
HAR vs: Total Signif Total Signif Panel

Fully Flexible 421 169 465 106 0.8
Flexible HAR 726 408 160 11 3.3
Cubic HAR 714 406 172 7 1.9
TOD HAR 653 348 233 62 2.2

Ridge 462 186 424 120 -0.1
LASSO 203 46 683 338 -4.1
Elastic net 434 166 452 136 -2.0
OLS 64 7 822 507 -3.3

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
baseline HAR model against competing models across 886 S&P 500 stocks, using MSE loss. A
positive panel GW t-statistic indicates that the competing model out-performs the HAR model,
while a negative t-statstic indicates the opposite. This table is related to Table 1 of the main
paper, which uses QLIKE loss.
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Table S.4: Cubic HAR vs other models performance on S&P 500. MSE loss.

GW Losses GW Wins GW t-stat
Cubic HAR vs: Total Signif Total Signif Panel

Fully Flexible 151 16 735 383 -0.7
Flexible HAR 411 55 475 90 0.0
TOD HAR 405 69 481 196 -1.0
HAR 172 7 714 406 -1.9

Ridge 171 12 715 349 -1.7
LASSO 66 2 820 542 -5.2
Elastic net 159 8 727 372 -3.4
OLS 23 3 863 664 -3.3

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
cubic HAR model against competing models across 886 S&P 500 stocks, using MSE loss. A
positive panel GW t-statistic indicates that the competing model out-performs the cubic HAR
model, while a negative t-statstic indicates the opposite. This table is related to Table 2 of the
main paper, which uses QLIKE loss.

Table S.5: Multidays Ahead Volatility Forecasting: TOD HAR vs HAR

GW Losses GW Wins GW t-stat
Horizon (days) Total Signif Total Signif Panel

1 206 63 680 458 -18.6
2 253 72 633 349 -12.5
3 257 74 629 314 -10.1
4 264 74 622 293 -13.6
5 270 71 616 298 -11.5
20 253 68 633 345 -6.8
60 345 126 541 255 -0.2

Note: This table reports the individual and panel Giacomini-White (2006) tests results of TOD
HAR model against the HAR model in the S&P500 cross section for longer horizon forecasting.
Negative test statistics indicate the outperformance of the TOD HAR model.
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Table S.6: Direct vs iterated multi-step forecasts

GW Losses GW Wins GW t-stat
Horizon (days) Total Signif Total Signif Panel

Panel A: Direct Cubic HAR vs Iterated HAR
2 207 34 679 356 -12.9
3 259 41 627 290 -14.3
4 280 36 606 284 -9.2
5 258 31 628 274 -18.6
20 243 37 643 387 -25.2
60 159 51 727 576 -71.7

Panel B: Direct HAR vs Iterated HAR
2 350 59 536 184 -6.4
3 410 78 476 152 -1.3
4 383 60 503 165 -5.5
5 356 45 530 186 -7.6
20 198 30 688 405 -29.2
60 133 43 753 626 -100.6

Note: This table compares the forecast accuracy of direct and iterated multi-step-ahead fore-
casts. “Direct” forecasts project h-step-ahead RV onto information available at time t. With
the AR(21) structure embedded in the HAR model, it is also possible to generate “iterated”
forecasts, which come from the model estimated for the one-step-ahead forecast and then iter-
ated out to the horizon of interest, see Ghysels et al. (2019) for applications to volatility. Panel
A compares direct forecasts from the Cubic HAR model with iterated forecasts from the HAR
model, and is directly related to Panel A of Table 3 in the main paper. Similar to that table,
we see here that direct forecasts from Cubic HAR significantly beat iterated forecasts from the
HAR model. Panel B compares direct and iterated forecasts from the HAR model, and shows
that iterated forecasts are worse for all horizons considered.
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S.7. GARCH-X with RV as the target variable

The GARCH-X model in Section 4.2 of the main paper uses, effectively, the daily

squared return as the volatility proxy when evaluating forecast accuracy. Realized vari-

ance is known to be a more accurate volatility proxy (see, e.g., Andersen and Bollerslev

(1998) and Andersen et al. (2003)), and more accurate proxies lead to more powerful

forecast comparisons, (see, e.g., Patton (2011)). Here we consider the estimating and

evaluating the GARCH-X model replacing the squared daily return with 5-minute real-

ized variance. Table S.7 presents results corresponding to Table 8 in the main paper.

We see that GARCH-X based on bespoke RV continues to significantly outperform both

the standard GARCH-X model, and the model use time-of-day (TOD) RV, with panel

GW t-statistics less than -4 for both comparisons. The main difference between Table

S.7 and Table 8 is that the number of individual GW tests that reject the null (listed in

the “Signif” columns of the table) is greater, ranging from 68 to 186 in Table 8 and from

75 to 293 here. This increase in significance is consistent with 5-minute RV being a more

accurate volatility proxy.

Table S.7: Bespoke RV for GARCH-X models, with RV as the target variable

GW Losses GW Wins GW t-stat
Model Total Signif Total Signif Panel

GARCH-X: Basic vs Bespoke 281 75 605 293 -2.6
GARCH-X: TOD vs Bespoke 528 151 358 84 -7.4

In Figure S.4 we plot the cross sectional average optimal weights for the bespoke

GARCH-X model, estimated with 5-minute RV as the volatility proxy. This figure is

similar to Figure 8 in the main paper.
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Figure S.4: Bespoke GARCH-X with RV target variable
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S.8. Visualization of the hyper-parameters for deep learning based models

In this section, we also report visualization of the cross sectional variation in the deep

learning based models.

Figure S.5: Fully flexible model hyperparameters

Note: This figure displays the cross-sectional variation of the optimal hyperparameters for the
fully flexible model.
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Figure S.6: Flexible HAR model hyperparameters

Note: This figure displays the cross-sectional variation of the optimal hyperparameters for the
flexible HAR model.

Figure S.7: Cubic HAR model hyperparameters

Note: This figure displays the cross-sectional variation of the optimal hyperparameters for the
cubic HAR model.
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Figure S.8: Cubic-TOD model hyperparameters

Note: This figure displays the cross-sectional variation of the optimal hyperparameters for the
cubic-TOD model.

Figure S.9: Cubic-EW model hyperparameters

Note: This figure displays the cross-sectional variation of the optimal hyperparameters for the
cubic-EW model.
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