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Abstract

Standard realized volatility (RV) measures estimate the latent volatility of an asset price

using high frequency data with no reference to how or where the estimate will subse-

quently be used. This paper presents methods for “tailoring” the estimate of volatility to

the application in which it will be used. For example, if the volatility measure will be used

in a specific parametric forecasting model, it may be possible to exploit that information

and construct a better measure of volatility. We use methods from machine learning to

estimate optimal “bespoke” RVs for heterogeneous autoregressive (HAR) and GARCH-X

forecasting applications. We apply the methods to 886 U.S. stock returns and find that

bespoke RVs significantly improve out-of-sample forecast performance. We find that,

across a variety of volatility models, the bespoke RV places more weight on data from the

end of the trade day, and that the optimal bespoke weights can be well-approximated by

a simple parametric function.
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1. Introduction

Discussing the empirical success of models based on high-frequency measures of volatil-

ity, Andersen et al. (2003) make the point that “[t]he essence of forecasting is quantifi-

cation of the mapping from the past and present into the future. Hence, quite generally,

superior estimates of present conditions translate into superior forecasts of the future.”

In the subsequent two decades a large literature on high frequency financial econometrics

has emerged, containing many studies confirming that using more accurate measures of

volatility in a forecasting model indeed leads to better predictions.

Advances in the financial econometrics literature in the last two decades have produced

measures of volatility that are more efficient (e.g. Ait-Sahalia et al., 2005; Bandi and

Russell, 2008), robust to micro-structure noise (e.g. Zhang et al., 2005; Barndorff-Nielsen

et al., 2008; Jacod et al., 2009), and robust to jumps in the price process (e.g. Barndorff-

Nielsen and Shephard, 2004; Mancini, 2009; Andersen et al., 2012). These advances

share the feature that they seek an improved measure of volatility for later use in a

variety of unknown applications. We consider the construction of a volatility measure

from a different perspective: Can a volatility measure be improved by tailoring it for its

eventual use in a volatility forecasting model?

The distinction between an “all purpose” estimator of volatility and one that is tailored

to a specific application mimics the distinction between supervised and unsupervised

machine learning algorithms. In unsupervised learning, data are analyzed without the

use of an outcome measure. This is analogous to the above-mentioned volatility measures,

where we seek a good (somehow defined) measure of volatility that works in a variety

of unknown future applications. In supervised learning the algorithm is tailored to the

problem at hand. This paper focuses on the case that we know that the resulting measure

will be used in a specific forecasting model, to predict a specific asset’s volatility, with

a specific forecast horizon. We exploit that information to obtain a “bespoke” measure

of volatility for that application. In so doing, we may obtain a worse general-purpose

estimator of volatility, but it is hoped that it is a better measure of volatility for the

specific purpose of volatility prediction.
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To make this idea concrete, consider the widely-used heterogeneous autoregressive

(HAR) model of Corsi (2009):

RVt = β0 + βdRVt−1 + βw
1

4

∑5

j=2
RVt−j + βm

1

16

∑21

j=6
RVt−j + et (1)

where RVt−j ≡
∑M

i=1
r2i,t−j (2)

and ri,t−j is the ith high frequency return on day t − j. In standard applications, RVt

is constructed as the sum of squared five-minute returns over day t, as in equation (2),

which for stocks on the New York Stock Exchange means the sum ofM = 78 such returns.

Realized volatility can be shown to be consistent as the sampling interval shrinks to zero

(Jacod, 2018), it is fully efficient under some regularity conditions (jacod1998asymptotic;

Jacod, 2008), and works well in a variety of empirical applications (Liu et al., 2015).

We study whether we can obtain better forecasts by altering the construction of realized

volatility from that in equation (2) to exploit the knowledge that it will subsequently be

used in the model in equation (1).1

We exploit recent advances in the estimation of deep neural networks (DNNs) to

flexibly construct “bespoke” measures of volatility for use in a forecasting model. We

find that being completely flexible in the construction leads to poor out-of-sample forecast

performance, even when the tuning parameters of the estimation algorithm are carefully

selected. However after imposing some economically motivated structure on the tailoring

we obtain forecasts that significantly outperform benchmark forecasts.

Our empirical analysis uses high frequency data on all stocks that were ever a con-

stituent of the S&P 500 index over the period January 1995 to December 2019, a total

of 886 securities. In our main analysis we take the HAR model of Corsi (2009) as the

predictive model, and in Section 4 we further consider the GARCH-X model (Engle,

2002) and refinements of the HAR model, such as the “continuous HAR” of Andersen

et al. (2007) and the “semi HAR” of Patton and Sheppard (2015). In all cases we find

1Importantly, we only consider tailoring the terms on the right-hand-side of equations like (1); we
leave the target variable as standard RV, with the motivation that it is a good measure of the unknown
true volatility.
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significant improvements in out-of-sample forecast performance when using RVs tailored

to the application.

We investigate the sources of the predictive gains from using bespoke RVs and find

two primary channels. First, we find that models using bespoke RVs place greater weight

on more recent lags than those using standard RVs. As more recent data tends to be

more useful for prediction, this makes models using bespoke RVs more responsive to news.

Second, we find that the weights attached to intra-daily returns in the bespoke RV are

different from flat (as they are for standard RV) and also different from a “time-of-day”

pattern motivated by measurement error considerations. Instead, the weights are low

at the start of the trade day, consistent with measurement error considerations, increase

slowly until the middle of the day, and then sharply increase over the last two hours of

the trade day. This pattern is consistent with an information channel: returns from the

latter part of the day is closest to the returns that forms part of the target variable,

and thus are particularly valuable for forecasting. We find evidence in support of this

explanation via multi-step-ahead forecasts.

We consider an extension and a simplification of our main “bespoke RV” approach.

Firstly, we extend the model to allow the bespoke weights to depend on the sign and size

of the high frequency return, as well as the time of day. For this purpose we consider

the model proposed in Chen and Ghysels (2011), as well as a more direct extension of

our “one-dimensional” bespoke RV. We find that the benchmark HAR model of Corsi

(2009) is significantly beaten by the model of Chen and Ghysels (2011), but both are

significantly beaten by our bespoke RV HAR model. The “two-dimensional bespoke

RV” extension yields the best performance of all models considered, but it does not

significantly outperform the one-dimensional bespoke RV, revealing that the optimal

function of high frequency returns is not different from the simple quadratic, as used in

our main analysis.

Finally, we consider a simplification of our proposed approach, where we impose the

quadratic function for high frequency returns, and approximate the optimal bespoke

weights using a simple parametric function. The resulting model has only seven param-
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eters, is very easy to estimate, and has forecast performance comparable to the best,

computationally demanding, model.

Our work is related to the enormous literature on using high frequency data for

volatility forecasting, as reviewed in Bollerslev et al. (1994), Poon and Granger (2003)

and Andersen et al. (2006). It is also linked to the growing literature in applying machine

learning methods in econometrics (e.g. Chernozhukov et al., 2015; Mullainathan and

Spiess, 2017; Athey and Imbens, 2019) and finance (Gu et al., 2020; Freyberger et al.,

2020; Bianchi et al., 2021; Patton and Weller, 2022). Within this growing machine

learning in economics literature, our work is particularly related to applications of these

methods for volatility forecasting (e.g. Bucci, 2020; Filipović and Khalilzadeh, 2021; Li

and Tang, 2021; Reisenhofer et al., 2022; Christensen et al., 2023). Our study of high-

frequency returns for predicting lower-frequency volatility also links our analysis to the

“mixed data sampling” (MIDAS) models introduced by Ghysels et al. (2004), and used

for volatility forecasting by Ghysels et al. (2006).

The rest of the paper is structured as follows: Section 2 introduces the bespoke RVs

models in detail and draws connections to standard RV estimation and the standard

HAR model. Section 3 presents the results on the out-of-sample forecasting performance

of the competing models when applied to 886 U.S. equities. Section 4 presents results

using alternative forecasting models, demonstrating the generalizability of bespoke RVs.

Section 5 concludes. A supplemental appendix contains additional details and results.

2. Constructing bespoke realized volatilities

The standard realized variance estimator, given in equation (2), can be shown (An-

dersen et al., 2001; Barndorff-Nielsen and Shephard, 2002; Andersen et al., 2003) to be

consistent for the true latent quadratic variation of an asset price process.2 This measure

has also been found to be useful for forecasting future volatility, as it is a more accu-

rate measure of current volatility than squared daily returns, as used in ARCH/GARCH

models (Engle, 1982; Bollerslev, 1986).

2Extensions of standard RV that are robust to market microstructure effects and/or jumps are dis-
cussed in the introduction.
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A key feature of the usual RV is that it is an equal-weighted sum of the high frequency

squared returns. In constructing our “bespoke RVs” we will relax this assumption and

estimate the optimal weight attached to each high frequency return. When using five-

minute returns on stocks traded on the New York Stock Exchange, we have 78 such

returns to consider.

2.1. Bespoke RVs for HAR models

The HAR model can be interpreted as a autoregression of order 21 with parameter

constraints to reduce the number of free parameters from 21 to three (plus the inter-

cept). In the most flexible bespoke RV forecast, we relax both the equal weights in the

construction of RV and the HAR parameter constraints on the AR(21) process to obtain:

RVt = β0 +
∑21

j=1
R̃V t−j(γj) + et (3)

where R̃V t−j(γj) ≡ γi,jr
2
i,t−j (4)

This simple-looking model is very flexible, with a total of 1 + 21 × 78 = 1, 639 free

parameters. Being linear, it is possible to estimate this model via standard OLS, however

with the sample sizes available in practice OLS unsurprisingly performs very poorly.

Instead, we treat this model as a single-layer neural network model and estimate it using

methods from machine learning. We describe the estimation method in detail in the

Section 2.3.

We next consider a hybrid between the fully flexible model in equation (3) and the

restrictive standard HAR: we impose the constraint that the “daily,” “weekly,” and

“monthly” lags in the model satisfy the parameter equality constraints in the HAR

structure, but we allow each of these terms to be flexible functions of the underlying

high-frequency returns:

RVt = β0 + R̃V t−1(γd) +
1

4

∑5

j=2
R̃V t−j(γw) +

1

16

∑21

j=6
R̃V t−j(γm) + et (5)

This model has “only” 1 + 3 × 78 = 235 parameters and is thus much more parsimo-
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nious than the fully flexible specification. Nevertheless, this remains a large number of

parameters, and we consider a variety of methods for regularizing them in estimation.

The final bespoke RV we consider is one that imposes some smoothness on the weights

attached to the high frequency returns. Research on the empirical characteristics of intra-

daily asset returns (see, e.g., Wood et al., 1985; Harris, 1986; Andersen and Bollerslev,

1998) shows that market conditions vary over the trade day, but generally smoothly. We

impose this smoothness by using a cubic spline (see Judd, 1998, for further details on

this interpolation method) for the intra-day weights:

RVt = β0 + R̃V t−1(g(cd, τ)) +
1

4

∑5

j=2
R̃V t−j(g(cw, τ)) +

1

16

∑21

j=6
R̃V t−j(g(cm, τ)) + et (6)

where g(c, τ) returns a 78× 1 vector of weights based on a cubic spline with knots given

by τ . With knots every hour or half-hour, the parameter vector c is of length 7 or 13,

leading to a total of either 22 or 40 free parameters.3

2.2. A time-of-day adjusted RV

We consider one additional estimator, lying in between standard RV and bespoke RV,

motivated by two well-known features of volatility. Firstly, volatility has a prounounced

diurnal pattern, with volatility being highest at the open and close of the trade day, and

lowest around the middle, see Andersen and Bollerslev (1997, 1998) for example. Figure

1 confirms this pattern for the SPY in our sample period. Secondly, the estimation error

in sample variance is increasing with the level of the variance. For example, in a simple

i.i.d. setting, the asymptotic variance of the sample variance is proportional to the true

variance squared:
√
T (σ̂2

T − σ2)
d−−→ N(0, 2σ4)

Combining the diurnal pattern in volatility with the fact that the accuracy of volatility

changes with its level suggests a simple alternative to standard RV: a “time-of-day”

adjusted RV, where we use the inverse of the average levels of volatility as weights:

3In Appendix S.1 we verify that the cubic spline approach is able to capture a hypothetical time-of-day
pattern in predictability.
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Figure 1: Time-of-day effect on SPY

Note: This figure illustrates the time-of-day pattern for the SPY exchange traded fund from
1995 to 2019. The black dots are the average 5-min sample intraday volatility (annualized) and
the dashed red line is the best fitting line.

RV TOD
t =

∑M

i=1
ωir

2
i,t (7)

where ω−1
i =

1

T

∑T

t=1
r2i,t (8)

To avoid contaminating our out-of-sample comparisons, we estimate the RV TOD
t weights,

ωi, using only the training sample.

Using RV TOD
t in the familiar HAR specification yields:

RVt = β0 + βdRV
TOD
t−1 + βw

1

4

∑5

j=2
RV TOD

t−j + βm
1

16

∑21

j=6
RV TOD

t−j + et (9)

Note that RV TOD
t is not a bespoke RV; it is not customized for a specific forecasting

model, rather it is a simple alternative to equal-weighting intra-daily returns, motivated

by measurement error considerations. We consider this volatility measure as another

benchmark that our proposed bespoke RVs must beat in order to be considered a success.

Figure 2 summarizes the models that will be considered in our out-of-sample analysis

in the next section. These range from the benchmark HAR model using standard RV
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Figure 2: Forecasting models, from simplest to most complex

Note: This figure illustrates the relationship among the five models considered in the out-of-
sample analysis.

as a predictor variable as the simplest specification, to the “fully flexible” model that

imposes the fewest constraints.

2.3. Estimation of bespoke RVs

The specifications in equations (3) and (5) are both linear and could easily be esti-

mated via OLS, but this is unlikely to result in good out of sample performance (and

we demonstrate this empirically below) as the model is severely over-parameterized. The

specification in equation (6) is nonlinear, and requires a numerical optimization method.

We estimate all of these models using the gradient descent approach, described below,

designed for training deep neural networks. Such models are very flexible and users of

these models are aware of the need for methods to tame the over-fitting problem. As is

common in the machine learning literature, we split our sample period into “training,”

“validation,” and “testing” samples to estimate the models, select the hyperparameters,

and compute out-of-sample forecasts.

2.3.1. Stochastic gradient descent methods

We adopt the mini-Batch stochastic gradient descent algorithm (Robbins and Monro,

1951; Bilmes et al., 1997) with a gradually decreasing of learning rate. See Goodfellow

et al. (2016) for an accessible discussion of this optimization method and related methods.

We estimate the parameters using the following algorithm:

1. Initialize the model with HAR model coefficients estimated on the training sample.4

4We also considered using many random starting and then ensembling the resulting estimates, as is
common in the machine learning literature, and the results are qualitatively the same.
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2. For each combination of hyperparameters, described below, estimate the model in

the training sample.

3. Evaluate predictive performance on validation sample, and select the hyperparam-

eters that lead to the best forecasting performance.

4. Fix the hyperparameters at their optimal values, and estimate the model parameters

on the entire in-sample data (training and validation samples combined).

5. Evaluate the predictions on the testing sample (the out-of-sample period).

There are a total of five hyperparameters in the optimization algorithm for the “fully flexi-

ble” and “flexible HAR” methods, and six for the “cubic HAR” method: LearningRate ∈

{0.1, 0.01} controls the step size of each mini-Batch gradient update in the optimization

algorithm. BatchSize ∈ {512, 2048} controls how many observations we use to compute

the gradient direction for each update in the optimization algorithm. NumberofEpochs ∈

{50, 100, 250} controls the number of times that the algorithm works through the training

data set to compute the gradients for the update. StepSize ∈ {0.1, 0.5} controls how

frequently we reduce the learning rate (if at all). The numbers are as a fraction of the

number of epochs. For example, if the step size is 0.1 and the the number of epochs is 100,

then we reduce the learning rate by gamma (described below) after every 0.1× 100 = 10

epochs. Gamma ∈ {0.1, 0.25, 1} controls how much to reduce the learning rate. For

example, if the learning rate is 0.1 and gamma is 0.25, then when it is time to reduce

learning rate, the updated learning rate will be 0.1× 0.25 = 0.025. NumNodes ∈ {7, 13}

controls how flexible the spline function is. We tune the hyperparameters separately for

each stock in our analysis. Section S.8 in the supplemental appendix reports summary

statistics on how the optimal hyperparameters vary across stocks.

In estimating the cubic spline model, we need to implement a cubic spline layer, similar

to the linear and convolution layers in PyTorch, the Python package we use for estimation,

where the layer can initialize values for the base points (K) and generate cubic spline

interpolations for the final desired number of points (M). The parameters for the cubic

spline layer are simply the K initialized base points. We then use the standard back-

propagation and mini-Batch stochastic gradient descent framework, where we gradually
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find the optimal parameter values by iterating through all the batches and epochs.

In Figure S.2 we present the model architecture for the cubic spline model. (The

architecture for the other two models is simliar, but without the second and third layers.)

We initialize cubic spline interpolating nodes for daily, weekly and monthly lags sepa-

rately, and then use the cubic spline layer to generate the initial bespoke weights. Then

we combine the initial bespoke weights with the lagged high frequency returns squares

and use a linear layer with a constant to construct the forecast. After this, we optimize

the interpolating nodes and the constant term through the miniBatch gradient descent

and reach the optimal bespoke weights for the cubic HAR model.

2.3.2. Regularized regression methods

In addition to the stochastic gradient descent methods described above, we also con-

sider more familiar regularization methods for the “flexible HAR” model in equation (5),

which has 235 free parameters. Denoting the usual, non-penalized, objective function as

LT (β), we consider the penalized loss:

L̄T (β;α, λ) = LT (β) + α(λ∥β∥1 + (1− λ)∥β∥2)

This formulation allows us to nest four standard shrinkage methods: No penalty

(α = 0), ridge regression (λ = 0, α ≥ 0), LASSO (λ = 1, α ≥ 0), and elastic net

(λ ∈ [0, 1], α ≥ 0). We consider the following values for these hyperparameters: α ∈

{0, 0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 10, 50, 100, 1000} and λ ∈ {0, 0.25, 0.5, 0.75, 1}.

3. Out-of-sample forecast performance of bespoke realized volatilities

3.1. Data description

Our empirical analysis is based on high frequency stock prices from the Trades and

Quotes (TAQ) database, spanning the period from January 1995 to December 2019, a

total of 6,293 days. We include every stock that was ever a constituent of the S&P

500 index during this period, and we follow Barndorff-Nielsen et al. (2009) for the data

cleaning process (see Appendix S.2 for details), retaining only stocks with at least 2,000
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observations in the sample period. This yields a total of 886 stocks for our analysis.

Following Liu et al. (2015), we use five-minute sampling for all realized measures.

We follow common practice in the machine learning literature (see, e.g., Christensen

et al., 2023) and split the available sample period for a given stock into a training sample

(first 60% of data), a validation sample for choosing hyperparameters (next 20%), and

a test sample for out-of-sample comparisons (final 20%). The first 80% of the sample is

the full in-sample period. For models that do not involve any hyperparameters search we

simply estimate the models on the in-sample period and evaluate on the test sample. For

models that involve hyperparameters, we estimate the models on the training sample,

and select the hyperparameters based on the validation sample performance. We then we

re-estimate the models using the optimal hyperparameters on the full in-sample period,

and evaluate on the out-of-sample period.

3.2. Optimal weights for bespoke RVs

This section presents the optimal bespoke RV weights across the three degrees of

tailoring that we consider (fully flexible, flexible HAR, and cubic HAR). In Figure 3 we

present the bespoke weights implied by the “fully flexible” model, averaged across all

886 stocks in our sample, and for comparison we also present the weights implied by the

standard HAR (which appear as a step function) and the TOD-HAR (which appear as

an inverse-U layered on a step function).

The weights for the fully-flexible bespoke RV are similar to the weights for standard

RV for daily lags 7 to 21, while they are lower for the first daily lag, and slightly above

for lags 2 through 6. For all lags, the estimated weights appear to have non-negligible

estimation error, which is unsurprising given that each of these 1,638 weights are freely

estimated. Foreshadowing our forecast comparison results, the estimation error in these

weights make the fully flexible model perform significantly worse than the benchmark

HAR forecasts out of sample.

Figure 4 presents the optimal bespoke weights for the “flexible HAR” model, which

imposes that RVs lagged 2 through 5 periods share the same “weekly” weight function,

and the RVs lagged 6 through 21 share the same “monthly” weight function, while the
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Figure 3: Cross-sectional average optimal fully flexible weights

Note: This figure depicts the cross-sectional average optimal weights implied by the “fully
flexible” model, along with the equal-weighting scheme and the time-of-day weighting scheme.
The x-axis runs from the most-recent high-frequency return to least recent, and each of the 21
days is marked by a gray or white region.

first lag gets its own “daily” weight function. We find the daily lag weights, despite still

being somewhat noisy, clearly display an up-weighting the end of day information. The

weekly and monthly lags weights roughly display a flat shape with slight down-weighting

at the beginning of the trade day.

Finally, we present the bespoke RV weights when we impose smoothness across the

trade day using a cubic spline. Figure 5 presents the optimal bespoke weights for the

daily, weekly and monthly weights in the cross section of S&P500. The most prominent

feature of the optimal weights is the strong increase in weights in the daily lag towards

the end of the trade day. We investigate the source of this feature in Section 3.4 below. It

is also noteworthy that the cubic HAR daily lag weights roughly track the TOD weights

until lunch time, but are much higher at the end of day.The weekly and monthly weights

are broadly similar to each other, and hard to distinguish from either flat or TOD weights.

Rather than estimate confidence intervals for these estimated weights, which is made more

difficult due to our use of regularized estimation, we instead use out-of-sample forecast

performance to determine whether these weights are indeed different from either of these

benchmarks. This approach is consistent with the paper’s focus on forecast performance

of competing models and estimation methods.
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Figure 4: Cross-sectional average optimal flexible HAR weights

Note: This figure depicts the cross sectional average optimal weights implied by Flexible HAR
model, along with its comparisons with the equal-weighting scheme and the time-of-day weight-
ing scheme in the S&P500 cross section. The upper left corner depicts the daily lag weights,
upper right is the weekly lag weights, the lower left is the monthly lag weights, and the lower
right presents all three for ease of comparison.

3.3. Comparing out-of-sample forecast performance

We now present results comparing the forecast performance of the models using be-

spoke RVs with the benchmark HAR model using standard RV, as well as the HAR model

using the time-of-day weighted RV. For our main analysis we measure forecast accuracy

using the QLIKE loss function:

LQLIKE(RV, R̂V ) = RV/R̂V − logRV/R̂V − 1 (10)
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Figure 5: Cross-sectional average optimal cubic HAR weights

Note: This figure depicts the cross sectional average optimal weights implied by the Cubic HAR
regressions, along with its comparisons with the equal-weighting scheme and the time-of-day
weighting scheme in the S&P500 cross section. The upper left corner depicts the daily lag
weights, upper right is the weekly lag weights, the lower left is the monthly lag weights, and
the lower right presents all three for ease of comparison.

We report corresponding results using the quadratic loss function, LMSE(RV, R̂V ) =

(RV − R̂V )2, in the supplemental appendix.5

We compare the predictive accuracy of competing models using Giacomini-White

(2006) tests for each individual asset in our sample, and a panel GW test for all stocks

jointly.6 GW tests are ideal for comparing forecasts from models estimated with regular-

5Consistent with the power analyses in Patton and Sheppard (2009), the rankings using quadratic
loss are similar to those using QLIKE but the significance of the loss differences is generally weaker.

6For the individual GW tests we use Newey and West (1987) standard errors allowing for autocorre-
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ization methods, such as stochastic gradient descent, LASSO, and ridge regression, as the

estimation method is explicitly considered part of the forecasting method, along with the

forecasting model and the sample period used for estimation. The same model estimated

using a different method (e.g., with different regularization techniques) will produce dif-

ferent forecasts, and the performance of the resulting forecasts can be formally compared

via the GW approach.

Table 1 presents forecast comparison results comparing the baseline HAR model with

various competing methods. The first four rows present comparisons with the methods

presented in Figure 2, namely the TOD-HAR and three bespoke HAR models, while

the bottom four rows present comparisons with different, more familiar, methods for

estimating the “flexible HAR” model.

The first row of Table 1 compares the baseline HAR model with a fully flexible bespoke

HAR models. We see that the baseline model outperforms the fully flexible model in 714

out of 886 individual comparisons, losing in only 172, and of those 714 “wins” 321 are

statistically significant at the 5% level. Pooling the individual stocks and conducting the

comparison jointly, the last column reports a panel Giacomini-White (2006) t-statistic of

-9.3, which is strong evidence that the baseline HAR model outperforms the fully flexible

model overall. These comparisons lead to the conclusion that fully flexible model is worse

than the simple, familiar, and parsimonious HAR model.

The second row of Table 1 compares the baseline HAR with the “flexible HAR,” which

imposes the HAR structure on the lag parameters, but allows bespoke weights on each

of the daily, weekly, and monthly lags. We see that this model performs much better

than the fully flexible model: it out-performs the baseline HAR for 677 out of 886 stocks,

and has a panel GW statistic of 4.5, indicating strongly significant out-performance. The

third row of Table 1 imposes more structure on the bespoke RV, using a cubic spline

to ensure that the bespoke weights are smooth through the trade day. We see that this

improves forecast performance even further, with a panel GW statistic of 21.7. Thus

imposing some economically-motivated structure on the bespoke RV leads us to a model

lation up to 10 lags. For the panel GW tests we additionally cluster by stock.
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Table 1: Forecast performance of HAR vs other models for 886 S&P 500 stocks

GW Losses GW Wins GW t-stat
HAR vs: Total Signif Total Signif Panel

Fully Flexible 172 53 714 321 -9.3
Flexible HAR 677 430 209 38 4.5
Cubic HAR 731 470 155 41 21.7
TOD HAR 680 458 206 63 18.6

Ridge 445 185 441 175 -2.3
LASSO 222 42 664 299 -6.1
Elastic net 454 182 432 174 -7.2
OLS 245 46 641 272 -5.7

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
baseline HAR model against competing models across 886 S&P 500 stocks. A positive panel GW
t-statistic indicates that the competing model out-performs the HAR model, while a negative
t-statstic indicates the opposite.

that out-performs the baseline model by an even greater margin than that by which the

fully flexible model under-performs.7

Finally, the fourth row of Table 1 considers the non-bespoke, but computationally

simple, TOD-HAR, where the realized variances are computing using time-of-day weights.

We see that this model also significantly out-performs the baseline HAR, with a panel

GW statistic of 18.6, and almost the same number of “wins” as the flexible (bespoke)

HAR. These results suggest that this simple “off-the-rack” alternative RV is a significant

improvement over standard equal-weighted RV for volatility forecasting.

The bottom four rows of Table 1 present alternative methods for regularizing the

flexible HAR model parameters. Recall that the flexible HAR model has a total of

235 parameters, and all of them appear linearly, meaning that familiar methods like

OLS and ridge regression can be employed in place of our preferred stochastic gradient

descent (SGD) optimization method. We see, however, that all of these methods lead

7The form of the QLIKE loss function mitigates the right-skewness of RV, which can cause problems
when using OLS and MSE for evaluation. Some researchers choose to use OLS for the logarithm of RV,
which is more symmetrically distributed, though this transformation must be undone if the target is the
level of volatility. Table S.2 in the appendix compares the HAR and cubic HAR models on logRV and
find that the panel GW t-statistic is -7.2 in favor of cubic HAR. Thus the outperformance we observe
using QLIKE on levels of RV in Table 1 is very similar to what is obtained using MSE on log RV.
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Table 2: Forecast performance of Cubic HAR vs other models for 886 S&P 500 stocks

GW Losses GW Wins GW t-stat
Cubic HAR vs: Total Signif Total Signif Panel

Fully Flexible 106 39 780 571 -10.8
Flexible HAR 277 72 609 204 -12.8
TOD HAR 358 95 528 205 -2.9
HAR 155 41 731 470 -21.7

Ridge 114 32 772 434 -3.3
LASSO 48 15 838 595 -6.9
Elastic net 118 26 768 433 -10.2
OLS 54 17 832 564 -6.4

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
cubic HAR model against competing models across 886 S&P 500 stocks. A positive panel
GW t-statistic indicates that the competing model out-performs the cubic HAR model, while
a negative t-statstic indicates the opposite.

to significantly worse performance than the baseline HAR: the panel GW t-statistics are

all less than -2, while the flexible HAR model estimated using SGD significantly out-

performs the baseline model.8 This is evidence that the choice of regularization method

can have a large impact on the results: in our application, SGD is significantly better

than ridge, lasso, and elastic net. This is related to recent work by Shen and Xiu (2024)

on regularization methods for machine learning.

From the comparisons with the baseline model in Table 1, it appears that the cubic

HAR is the best-performing model, but strictly those comparisons do not guarantee

this interpretation is correct. Table 2 changes the reference model to the cubic HAR and

compares all of the other methods to it. We see that the panel GW t-statistic is uniformly

below -2, and indeed in several comparisons it is much smaller than that, confirming that

the cubic HAR model is indeed the best-performing model on average.

We next consider the gains from bespoke RV for multi-step ahead volatility forecasting.

8In Section S.3 of the supplemental appendix we consider shrinking the estimated OLS parameters
towards the benchmark HAR parameters rather than towards zero, as is done here. We find that the
optimal degree of shrinkage for this design is large, and the estimated parameters are shrunk almost
all the way towards the original HAR parameters. The cubic HAR model is shown to significantly
out-perform these alternative shrinkage estimators as well.
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Table 3: Multi-day ahead volatility forecasting

GW Losses GW Wins GW t-stat
Horizon (days) Total Signif Total Signif Panel

Panel A: Cubic vs HAR
1 155 41 731 470 -21.7
2 194 31 692 366 -11.6
3 222 38 664 325 -10.5
4 247 41 639 285 -8.8
5 250 36 636 265 -18.6
20 348 81 538 248 -8.6
60 413 154 473 223 -5.4

Panel B: Cubic vs TOD HAR
1 358 95 528 205 -2.9
2 449 120 437 146 -1.2
3 487 120 399 136 -2.6
4 496 129 390 133 1.0
5 500 131 386 124 -4.6
20 484 160 402 143 -0.3
60 458 175 428 189 -4.9

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
cubic HAR model against the HAR (Panel A) and TOD-HAR (Panel B) models for 886 S&P
500 stocks, for various forecast horizons. A positive panel GW t-statistic indicates that the
competing model out-performs the cubic HAR model, while a negative t-statstic indicates the
opposite.

Table 3 presents results for forecast horizons ranging from one to 60 days. For all models

we adopt a “direct” multi-step approach, projecting the RV at time t+ h on information

available at time t.9 In Panel A we see that using bespoke RV significantly improves

forecast accuracy for all horizons, with the panel GW t-statistics all less than -5. The

improvement is generally declining with the horizon: t-statistics decreasing in magnitude,

and proportions of “wins” in individual comparisons decreasing. Nevertheless, these

results represent strong evidence that “bespoke” RVs are preferred to standard RVs,

when employed in the HAR model, even for relatively long forecast horizons.

In Panel B of Table 3 we compare the bespoke RV to the simple TOD-RV. Table 1

9In Table S.6 we show that direct HAR forecasts significantly outperform iterated HAR forecasts,
consistent with results in Ghysels et al. (2019).
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Table 4: Average regression coefficients for different models

Daily Weekly Monthly Sum

HAR 0.438 0.298 0.225 0.960
TOD HAR 0.465 0.295 0.204 0.964
Cubic HAR 0.466 0.294 0.217 0.978
Flexible HAR 0.442 0.298 0.224 0.963
Fully Flexible 0.312 0.384 0.346 1.041

Note: This table presents the average, across 886 S&P 500 stocks, coefficients on daily, weekly
and monthly lagged RVs.

revealed that TOD-RV is significantly better, on average, than standard RV and so this

is a much tougher competitor. We find statistically significant gains from using bespoke

RV in around half of the horizons considered, and in only one horizon is the ranking

reversed, though in that case the difference in forecast performance is not significant.

This panel thus also confirms that bespoke RVs provide important improvements in

forecast performance across a range of forecast horizons.

3.4. Understanding the optimal bespoke weights

In this section we seek to understand the sources of the out-performance of models

using bespoke RV relative to the benchmark methods. We first investigate whether by

tailoring the measure of risk to the forecasting problem at hand the model can place

greater weight on the risk measure and thus react to news more quickly. To measure this,

we compute the average effective regression coefficients for the daily, weekly, and monthly

lagged RVs.10 Table 4 presents the results, and shows that the bespoke RVs are more

responsive than the standard RVs. The standard HAR has an average coefficient on daily

lagged RV of 0.438, while the bespoke cubic HAR has an average coefficient of 0.466. In

the other direction, we see that the poor-performing fully flexible HAR has an average

daily coefficient of only 0.312. When the sum of the coefficients is less than one, we can

interpret that sum as the weight on lagged information, and the difference from one as

10We adjust the regression weights to ensure that the bespoke RVs and the standard RVs have the
same unconditional mean during the in-sample period. This makes comparing coefficient magnitudes
meaningful.
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Figure 6: Multi-day ahead cubic HAR weights

Note: This figure depicts the cross sectional average optimal weights implied by the cubic HAR
regressions for multi-days ahead forecasts in the S&P 500 cross section. Note that the upper
left is the daily lag, upper right is the weekly lag, and the lower left is the monthly lag. Also
the colored lines are representing weights for one day ahead forecasting.

the effective weight on the unconditional average (the intercept). This too lines up with

the relative forecast performances documented above, and is consistent with bespoke RVs

(appropriately disciplined) providing more responsive forecasts.

We next seek to understand the reason cubic HAR weights take the shape that they

do. These weights were presented above in Figure 5 and present two key questions.

Firstly, why do the weights on the daily lag rise in the afternoon? Secondly, are the

weights on the weekly and monthly lags significantly different from either the flat weights

from the standard RV or the time-of-day (TOD) weights?
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Table 5: Forecast performance of Cubic-TOD vs other models on 886 S&P 500 stocks

GW Losses GW Wins GW t-stat
Cubic-TOD vs: Total Signif Total Signif Panel

Fully Flexible 100 35 786 567 -10.9
Flexible HAR 281 69 605 228 -14.2
Cubic 402 130 484 150 -3.7
Cubic-EW 417 123 469 136 1.1
TOD HAR 318 74 568 219 -8.1
HAR 159 37 727 471 -21.0

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
cubic-TOD model against competing models across 886 S&P 500 stocks. A positive panel
GW t-statistic indicates that the competing model out-performs the cubic-TOD model, while
a negative t-statstic indicates the opposite.

We conjecture that the rising weights in the daily lagged RV come from the proximity

of the afternoon to the target day. That is, returns realized in the afternoon are the

closest to, and presumably the most informative for, the returns that arise during the

following day. We test this conjecture by examining the weights on the daily lag returns

for longer forecast horizons. If the conjecture is correct, then the weights on the daily

lagged RV should rise by less in the afternoon for longer forecast horizons. Figure 6

presents the estimated weights for forecast horizons ranging from one to five days, and

we see that the weights on afternoon returns are monotonically declining as the horizon

increases, consistent with this being an information effect. The weights on weekly and

monthly lagged RVs increase slightly with the forecast horizon, offsetting the declining

weight given to the daily lagged RVs.

Next we seek to determine whether the weights on the weekly and monthly lags

significantly different from either the flat weights from the standard RV or the time-of-

day (TOD) weights. We do this via an out-of-sample forecast comparison of the cubic

HAR with a hybrid model that estimates the weights on the lagged daily data but imposes

either equal weights or TOD weights on the lagged weekly and monthly data. We estimate

these hybrid “cubic-EW” and “cubic-TOD” models using the same SGD algorithm as the

original cubic HAR model.
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Table 5 shows that the hybrid cubic-TOD model significantly out-performs all com-

peting models, according to the panel GW t-statistics, aside from the cubic-EW model.

The t-statistic for that comparison is 1.1, indicating no significant difference in perfor-

mance on average.11 While this analysis does not allow us to determine whether the

optimal weights for weekly and monthly lagged information are equal or TOD shaped,

Table 5 does show that it is preferable to impose either of those shapes than to try to

estimate them from data.

4. Additional analyses

In this section we consider extensions of the methods presented above. Firstly, we

consider bespoke RV for other volatility forecasting models. We consider the “continuous”

HAR model of Andersen et al. (2007), the “semi” HAR model of Patton and Sheppard

(2015), and the GARCH-X model of Engle (2002). The former two models are refinements

of the original HAR model, while the latter lies outside the HAR class of models.

We next consider two methods for obtaining a more flexible bespoke RV, where the

weights are a function of both the time of day and also the return sign and size. The

first of these is the model of Chen and Ghysels (2011), and the second is a more direct

extension of our “one-dimensional” bespoke RV for the HAR model.

Finally, we consider a simplification of the our machine-learning based approach,

exploiting the fact that the estimated optimal weights appear to be simple functions

of the time of day, and thus potentially amenable to a parametric approximation. We

show that this simplified method performs comparably to the more complicated method

introduced above, and requires only a fraction of the computational effort.

4.1. Bespoke RV for alternative forecasting models

The analysis in the previous section focused on tailoring realized variance (RV) mea-

sures for application in the heterogeneous autoregressive (HAR) model of Corsi (2009).

11We informally break this statistical tie by considering the number of significant differences for indi-
vidual stocks: we observe that cubic-TOD significantly out-performs cubic-EW for 136 stocks, compared
with 123 for cubic-EW.
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This section shows that out-of-sample forecast performance can similarly be improved

when tailoring RV measures for use in refinements of the original HAR model: the “con-

tinuous” HAR (CHAR) model of Andersen et al. (2007), which decomposes volatility into

continuous and jump components, and the “semi” HAR (SHAR) model of Patton and

Sheppard (2015), which decomposes volatility into upside and downside movements.

The CHAR model of Andersen et al. (2007) forecasts future realized volatility us-

ing only the continuous component of volatility, discarding the component coming from

jumps, as that component is found to be nearly unpredictable. This model uses bi-power

variation (BPV) (Barndorff-Nielsen and Shephard, 2004) to estimate the continuous com-

ponent of volatility:

RVt = β0 + βdBPVt−1 + βw
1

4

5∑
j=2

BPVt−j + βm
1

16

21∑
j=6

BPVt−j + et (11)

where BPVt = µ−2
1

∑M−1

i=1
|rt,i||rt,i+1|, and µ1 ≡

√
2/π

We tailor the measure of continuous volatility to the CHAR model by flexibly estimating

the weights attached to each product |rt,i||rt,i+1|. Motivated by the results in Tables 2

and 5, we impose that the daily weights are smooth by using a cubic spline, and that the

weekly and monthly weights use time-of-day (TOD) weights:

RVt = β0 + B̃PV t−1(γ) + βw
1

4

5∑
j=2

BPV TOD
t−j + βm

1

16

21∑
j=6

BPV TOD
t−j + et (12)

where B̃PV t(γ) =
∑M−1

i=1 γi|rt,i||rt,i+1|, and γi comes from a cubic spline with hourly or

half-hourly nodes. BPV TOD
t is defined analogously to RV TOD

t in equation (7).

Next we turn to the SHAR of Patton and Sheppard (2015), which decomposes realized

variance into positive and negative realized semivariances (Barndorff-Nielsen et al., 2010):

RVt = β0 + βd,pRV
+
t−1 + βd,nRV

−
t−1 + βw

1

4

5∑
j=2

RVt−j + βm
1

16

21∑
j=6

RVt−j + et (13)

where RV +
t =

∑M
i=1 max(0, ri,t)

2 and RV −
t =

∑M
i=1min(0, ri,t)

2 are the positive and
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Table 6: Bespoke RV for CHAR and SHAR models

GW Losses GW Wins GW t-stat
Model Total Signif Total Signif Panel

CHAR: Basic vs Bespoke 120 38 766 606 -19.2
SHAR: Basic vs Bespoke 164 40 722 492 -11.1

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
CHAR and SHAR models with their bespoke counterparts, across 886 S&P 500 stocks. A
positive panel GW t-statistic indicates that the original model out-performs the bespoke version,
while a negative t-statstic indicates the opposite.

negative realized semivariances. We tailor the measures of semivariance by using a cubic

spline to aggregate the high-frequency positive and negative returns. As for the bespoke

CHAR model, we again only estimate the weights for the daily lag, and impose TOD

weights for the weekly and monthly lags:

RVt = β0 + R̃V
+

t−1(γp) + R̃V
−
t−1(γn) + βm

1

4

5∑
j=2

RV TOD
t−j + βw

1

16

21∑
j=6

RV TOD
t−j + et (14)

where R̃V
+

t (γp) =
∑M

i=1 γi,p max(rt,i, 0)
2, R̃V

−
t (γn) =

∑M
i=1 γi,n min(rt,i, 0)

2, and (γi,p, γi,n)

come from cubic splines with hourly or half-hourly nodes. RV TOD
t is from equation (7).

We estimate the bespoke CHAR and SHAR models using the same methods as the

models in Section 3. Table 6 presents out-of-sample forecast comparisons of the orig-

inal models with their bespoke counterparts. We see that forecasts based on bespoke

volatility measures significantly out-perform their benchmark alternatives. The panel

GW t-statistics are less than -10 in both comparisons, and the bespoke models out-

perform for over 700 of the 866 individual comparisons. These results are qualitatively

as strong as the out-performance of cubic HAR over standard HAR reported in Table 1,

and provide evidence that the idea of tailoring the risk measure to the forecasting model

is not specific to the HAR model of Corsi (2009).

After seeing this strong forecasting performance, we are again interested in the optimal

weights that lead to the improved forecasting performance. To this end, we visualize the

average optimal weights from bespoke CHAR and SHAR models, and compare them with
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Figure 7: Bespoke CHAR and SHAR weights

Note: This figure depicts the cross sectional average optimal weights implied by the CHAR and
SHAR models along with their bespoke versions.

the weights from original SHAR and CHAR models, which are flat. Figure 7 shows that

the optimal weights for these models both display the rise in weights in the afternoon

that was observed for bespoke RV for the HAR model in Figure 5. Also, consistent with

Patton and Sheppard (2015), we find that the weights on the negative semivariances are

greater than those on the positive semivariances, both for the benchmark SHAR model

and the bespoke SHAR model, indicating that negative high frequency returns are more

important for forecasting one-day-ahead volatility than positive high frequency returns.

4.2. Bespoke GARCH-X

Next we explore bespoke measures of volatility for a model outside of the HAR fam-

ily of models. We consider the GARCH-X model of Engle (2002), which replaces the

lagged squared return in the GARCH model (Bollerslev, 1986) with the lagged realized

variance.12 Assuming a zero mean, the GARCH-X model is

12When focusing on one-day-ahead volatility forecasting, the HEAVY (Shephard and Sheppard, 2010)
and realized GARCH (Hansen et al., 2012) models both reduce to a GARCH-X type model. For multi-
step forecasting one of these models, or some other extension of the GARCH-X model, is required.
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Figure 8: Bespoke GARCH-X weights

Note: This figure depicts the cross sectional average optimal weights implied by the Bespoke
GARCH-X model weights.

rt =
√
htzt (15)

ht = ω + βht−1 + αRVt−1

where zt ∼ iid (0, 1).

We construct a bespoke RV for the GARCH-X model by flexibly estimating the

weights attached to the high frequency squared returns in RVt, again using a cubic spline

to impose smoothness as a function of the time of day.

ht = ω + βht−1 + αR̃V t(γ) (16)

where R̃V t(γ) is constructed as in the cubic HAR model in equation (6). Given the

impressive performance of the simple time-of-day adjusted RV measure in the HAR anal-

ysis, we also consider a GARCH-X model with RV TOD on the right-hand side in place of

standard RV.

26



Table 7: Bespoke RV for GARCH-X models

GW Losses GW Wins GW t-stat
Model Total Signif Total Signif Panel

GARCH-X: Basic vs Bespoke 336 68 550 186 -9.1
GARCH-X: TOD vs Bespoke 431 87 455 126 -4.3

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
GARCH-X model with a bespoke counterpart, and with a model using RV TOD, across 886 S&P
500 stocks. A negative panel GW t-statistic indicates that the bespoke model out-performs the
competitor, while a positive t-statstic indicates the opposite.

Figure 8 presents the bespoke GARCH-X model weights, as well as the bespoke HAR

weights and the TOD weights for comparison. We observe that the bespoke GARCH-X

weights are markedly different from both the equal weights of standard RV and the TOD

weights, and are quite similar to the optimal bespoke HAR weights, starting the day low

and close to the TOD weight, then rising to around the same level as the equal weighted

case, and then rising strongly in the afternoon. As discussed in Section 3.4, this increase

is likely driven by the additional information contained in that period for returns in the

subsequent day.

Next, we turn to forecast comparisons for this application. We evaluate the forecast

performance using the QLIKE loss function and using r2t as a proxy for true volatility,

following the spirit of the GARCH-type models.13 Table 7 reports the forecast comparison

results, and confirms that bespoke RVs outperform both the standard RV and RV-TOD

when used in GARCH-X models. The panel GW t-statistic comparing basic and bespoke

GARCH-X forecasts is -9.1, indicating very strong statistical significance of the forecast

improvement. Bespoke RV also significantly outperforms TOD-RV, with a GW t-statistic

of -4.3. These results confirm that tailoring the risk measure to the predictive model in

which it will be used, whatever form that model takes, leads to improved out-of-sample

volatility forecasts.

13In Section S.7 of the supplemental appendix we redo the analysis using RV as the volatility proxy,
and find slightly more rejections of the null hypothesis of equal forecast accuracy, consistent with this
more accurate proxy yielding more powerful tests.
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4.3. Flexible models of the news impact curve

The “news impact curve” was introduced by Engle and Ng (1993) as a way to measure

the reaction of future volatility to past returns. In the ARCH/GARCH models of Engle

(1982) and Bollerslev (1986), the news impact curve is a parabola centered on zero,

imposing that positive and negative shocks have an equal impact on future volatility.

Engle and Ng (1993), Glosten et al. (1993), and others have found that negative returns

lead to greater future volatility than equally-sized positive returns. Chen and Ghysels

(2011) propose a flexible model to estimate the news impact curve, as well as allowing

for flexible weights on lagged returns. Their most general formulation, adapted to the

notation of this paper, is:

RVt = β0 +
21∑
j=1

78∑
i=1

ψij(θ)NIC(ri,t−j; θ) + et (17)

where ψij is the weight attached to the ith return on day t − j, NIC is a function that

determines how past returns affect future volatility, and both functions depend on a

parameter vector θ. This framework nests the “fully flexible” model considered above, in

that it not only flexibly weights all 21 × 78 past five-minute returns, it estimates what

function of those returns best fits the data, whereas the “fully flexible” model imposes

that the news impact curve is a parabola. In this section we implement the preferred

specifications of Chen and Ghysels (2011) and compare them with the bespoke HAR

models discussed above.

Chen and Ghysels (2011) propose modeling the weight function, ψ, as the product of

two beta kernels:

ψij(θ) = Beta(j, 21; θ1, θ2)× Beta(i, 78; θ3, θ4) (18)

where Beta(k,K;α, β) =

(
k

K + 1

)α−1(
1− k

K + 1

)β−1
Γ(α + β)

Γ(α)Γ(β)
(19)

Beta(k,K; θ3, θ4) ≡ Beta(k,K;α, β)∑K
i=1 Beta(i,K;α, β)

for (α, β) > 0 and k = 1, 2, ..., K
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Table 8: Comparison with Chen and Ghysels (2011)

GW Losses GW Wins GW t-stat
Cubic HAR vs: Total Signif Total Signif Panel

CG symmetric 195 35 676 354 -26.5
CG asymmetric 226 45 646 298 -17.0

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
cubic HAR model against the symmetric and asymmtric models of Chen and Ghysels (2011),
see equation (20), across 886 S&P 500 stocks. A positive panel GW t-statistic indicates that
the competing model out-performs the cubic HAR model, while a negative t-statstic indicates
the opposite.

The first beta function determines how observations from different days are weighted, and

the second beta function (which is normalized to sum to one, for identification) determines

how observations from within the trade day are weighted. Our preferred specification, the

“cubic HAR” model, uses a step function to weight observations across days (in line with

the original HAR specification of Corsi, 2009) and a cubic spline to weight observations

within the trade day. Chen and Ghysels (2011) find that their best specification for the

NIC function is one they call “ASYMGJR”:

NIC(r) = b · r2 + c · r21{r ≤ 0} (20)

which allows positive and negative returns to have differing impacts on future volatility.

The symmetric version of this model imposes c = 0.

We estimate the symmetric and asymmetric versions of the Chen-Ghysels model on

our sample of stocks, and report the results of tests of out-of-sample forecast performance

in Table 8. In the first row we consider the symmetric NIC function, and so differences in

forecast performance are purely attributable to differences in how lagged high-frequency

returns are weighted. We observe that the cubic HAR model significantly outperforms

the symmetric CG model, with a panel GW t-statistic of less than -25. Thus this sample

of stocks is better fit using the HAR-like step function to weight different days, and

the cubic spline within each day. In the second row we consider the asymmetric CG
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model, and we see that it has better performance than the symmetric version, but is still

soundly beaten by the cubic HAR model.14,15 We infer that the flexibility of allowing

positive and negative returns to affect future volatility is not enough to overcome the loss

in performance from using the beta weight functions rather than the weights adopted in

the Cubic HAR model. In the next section, we propose a refinement of that model to see

whether sign information can indeed be useful in constructing a bespoke RV.

4.4. Two-dimensional bespoke RV

Here we consider an extension of our baseline model and allow the bespoke RV weights

to vary across lags and also across the value of the high frequency return, in the spirit

of Chen and Ghysels (2011) discussed in the previous section, though with a different

functional form and different estimation method. We continue to embed the bespoke

RVs in a HAR model, but now with a two-dimensional weighting function:

RVt = β0 + βd

78∑
i=1

g(i; γd, τ)g

(
ri,t−1

σi,t−1

;αd, s

)
σ2
i,t−1 (21)

+βw
1

4

5∑
j=2

78∑
i=1

g(i; γw, τ)g

(
ri,t−j

σi,t−j

;αw, s

)
σ2
i,t−1

+βm
1

16

21∑
j=6

78∑
i=1

g(i; γm, τ)g

(
ri,t−j

σi,t−j

;αm, s

)
σ2
i,t−1

where g(·; γ, τ) is a cubic spline with knots given by τ and estimated parameter γ. As

in the cubic HAR model, we use hourly or half-hourly knots for the time-of-day weights.

For the second dimension, we use a cubic spline for the standardized return, ri,t/σi,t. We

set the knots to be 0,±2,±5, distinguishing between large and moderate returns, and

allowing the impact to differ depending on whether the return is positive or negative.

As return volatility is known to vary predictably as a function of the time of day, recall

Figure 1, as well as being strongly persistent across time, we estimate σi,t in two steps.

14Comparing the models of Chen and Ghysels (2011) directly with the benchmark HAR model, we
find that the symmetric model is beaten by the HAR model, with a GW t-statistic of -4.4, while the
asymmetric Chen-Ghysels model significantly beats the benchmark HAR model, with a panel GW t-
statistic of 6.4.

15It is worth noting that Chen and Ghysels (2011) apply their model to stock indices (S&P 500 and
the Dow Jones Industrial Average) rather than individual stocks as we have done here.
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Table 9: Two-dimensional bespoke RV

GW Losses GW Wins GW t-stat
2D bespoke HAR vs: Total Signif Total Signif Panel

HAR 182 45 704 432 -13.1
TOD HAR 313 82 573 179 -2.0
Cubic HAR 376 99 510 155 -1.1
Bespoke SHAR 415 126 466 156 -3.0
CG symmetric 224 46 647 313 -13.9
CG asymmetric 248 61 624 268 -9.8

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the two-
dimensional bespoke HAR model, see equation (22), against various competing models across
886 S&P 500 stocks. A positive panel GW t-statistic indicates that the competing model out-
performs the two-dimensional bespoke HAR model, while a negative t-statstic indicates the
opposite.

We first estimate a simple HAR model to get the one-day-ahead predicted volatility, R̂V t,

and then we compute standardized five-minute returns as

r̃i,t =
ri,t√
R̂V t/78

(22)

We estimate the time-of-day component, ω̃i, as in equation (8), but using the standardized

five-minute returns, r̃i,t rather than the raw returns. We combine these components to

get σi,t:

σ2
i,t = ω̃2

i × R̂V t (23)

Note that if the spline for the standardized returns simplifies to be a parabola, then the

1/σi,t term inside the spline and the σ2
i,t outside the spline cancel out, and the model

simplifies to the “cubic HAR” model described in Section 2.1.

We estimate this “two-dimensional bespoke HAR” model using the the mini-Batch

stochastic gradient descent algorithm described in Section 2.3.1. The results of forecast

comparison tests are reported in Table 9.

Table 9 reveals that the 2D bespoke HAR is, on average, the best-performing model

considered, with all panel GW t-statistics being negative, indicating it has lower average
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loss than the competing models. The 2D bespoke HAR significantly beats the baseline

HAR model, with a panel GW t statistic of -13, and it beats both of the Chen and

Ghysels (2011) specifications almost as strongly. We compare the 2D bespoke HAR

model with the bespoke semi HAR model introduced in Section 4.1 as the bespoke semi

HAR represents a different way to incorporate sign information into the predictive model.

This model inflicts the most losses on the 2D bespoke HAR (415 out of 886) but it still

significantly outperformed across the panel, with a t-statistic of -3.

The only model that 2D bespoke HAR fails to significantly outperform is the Cubic

HAR model, for which the panel GW t-statistic is -1.1. Since the 2D bespoke HAR

reduces to the Cubic HAR when the spline for standardized returns is a parabola, this

statistical tie in forecast performance reveals that the optimal transformation of high-

freqency returns is not different from the simple squared return. We attribute this finding

to our focus on prediction rather than estimation: in out-of-sample forecasting an effect

has to be informative enough to overcome the increased estimation error that capturing

it incurs. In our sample it turns out that a simple quadratic function of returns, or

something close to it, produces the best forecasts.

4.5. Parametric bespoke RV

Finally, we exploit the fact that the optimal bespoke RV weights for the baseline

HAR model reveal a relatively simple pattern, see Figure 5, one that might be well

approximated using a simple polynomial function of the time of day. We consider this

simplification of our original approach here. We propose a “parametric bespoke RV” that

imposes the use of squared returns, motivated by the results in the previous section, and

uses a simple cubic function of the time of day:

R̃V t(γ) =
∑78

i=1

(
γ0 + γ1i+ γ2i

2 + γ3i
3
)
r2i,t (24)

≡ γ0RVt + γ1RV
Lin
t + γ2RV

Quad
t + γ3RV

Cub
t
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Table 10: Parametric bespoke RV vs other models on 886 S&P 500 stocks

GW Losses GW Wins GW t-stat
Parametric Bespoke vs: Total Signif Total Signif Panel

HAR 149 33 737 521 -25.4
TOD HAR 339 61 547 168 -9.2
Cubic HAR 479 159 407 110 -3.4

Note: This table reports individual and panel Giacomini-White (2006) tests comparing the
“parametric bespoke HAR” model against competing models across 886 S&P 500 stocks. A
positive panel GW t-statistic indicates that the competing model out-performs the parametric
bespoke HAR model, while a negative t-statstic indicates the opposite.

Note that the new realized variances, RV Lin
t , RV Quad

t , and RV Cub
t , are simple functions of

squared returns, and do not require optimization.16 If we use this approximation in place

of the more flexible approach, and exploit the knowledge gained from Section 3.4 that

the optimal weights for the weekly and monthly lags are the simple time-of-day weights,

we obtain a HAR model with three additional regressors:

RVt = β0 + βdRVt−1 + βL
dRV

Lin
t−1 + βQ

d RV
Quad
t−1 + βC

d RV
Cub
t−1 (25)

+ βw
1

4

∑5

j=2
RV TOD

t−j + βm
1

16

∑21

j=6
RV TOD

t−j + et

The model has only seven parameters and can be estimated with standard methods:

OLS if the quadratic loss function is adopted, or simple numerical optimization if QLIKE

is adopted. Unlike the larger models considered in Section 2.1, whose parameters are

estimated using regularized methods, the model in equation (26) can be studied using

standard inference methods for time series data, see Hamilton (1994) and White (2001)

for example.

In Table 10 we show that when compared with Cubic HAR, parametric bespoke RV

loses the majority of individual GW tests (479 losses to 407 wins) but it wins in the panel

16In unreported results, we also experimented with a step function approximation, where the weights
are flat as a function of the time of day aside for a jump for the last hour of trade. This corresponds
to augmenting the standard HAR with an additional regressor, the realized volatility computed over
the last hour of the trade day. Despite the intuitive appeal of this model, the forecasts it produced
were significantly worse than those of the flexible approach and the parametric polynomial approach in
equation (25), and so we did not proceed in that direction.

33



GW test, with a t-statistic of -3.4. Overall, a reasonable conclusion is that its performance

is on par with the more flexible approach, and it certainly wins computationally: the

model has just 7 free parameters, and can be estimated quickly and easily.

Of course, some “data snooping” is happening here: Having seen the results of the

flexible approach on our sample of data, e.g. in Figure 5, it is not surprising that a more

restrictive method can replicate the good out-of-sample forecast performance so long as

it can capture the main features detected by the more flexible approach. For future

researchers, the benefits of this section are that they can obtain optimal or near-optimal

weights with a simple parametric method, thereby avoiding a difficult computational

problem, and can be assured that such an approach yields forecasts that are optimal in

a much broader class of models.

5. Conclusion

This paper proposes to tailor the measure of risk, such as realized variance (RV), to

the specific forecasting model and the specific asset of interest in order to improve the

model’s forecasting performance. The resulting “bespoke RV” will not necessarily be

a good “all purpose” measure of risk, but it will optimally draw on the available high

frequency information to improve, if possible, the forecasting performance of the model.

We use data on all 886 stocks that were ever a constituent of the S&P 500 index

over the period 1995 to 2019, and we exploit recent advances in the estimation of deep

neural networks (DNNs) to flexibly construct “bespoke” measures of volatility. We find

that being completely flexible in the construction of the bespoke measure leads to poor

out-of-sample forecast performance, however after imposing some economically motivated

structure we obtain forecasts that significantly outperform the benchmark forecasts. Our

main analyses focus on bespoke RVs for the heterogeneous autoregressive (HAR) model

of Corsi (2009), and as extensions we consider the GARCH-X model (Engle, 2002), the

“continuous HAR” of Andersen et al. (2007), and the “semi HAR” of Patton and Shep-

pard (2015). In all four cases we find significant improvements in out-of-sample forecast

performance when using RVs tailored to the application.
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We consider an extension of the model to allow the bespoke weights to depend on

the sign and size of the high-frequency return, as well as the time of day, and find that

the optimal transformation of high-frequency returns, from a forecasting perspective, is

not different from the simple quadratic function. We also consider a simplification of

the model, exploiting the fact that optimal bespoke weights appear easy to approximate

parametrically, and find that a “parametric bespoke RV” achieves comparable forecast

performance at significantly lower computational cost.

Opening the black box to understand the sources of forecast improvements from using

bespoke RVs, we find two main channels. Firstly, we find that using a bespoke RV in place

of a standard RV leads the model to put more weight on the risk measure, increasing the

responsiveness of the forecast. Secondly, we find that the optimal bespoke RVs, across all

four models, place higher weight on returns from the afternoon, which is in contrast with

both the standard equal-weighted RV and an RV based on time-of-day information. We

find evidence that this increased afternoon weight comes from an information channel:

afternoon returns are closest to the target date, and thus more informative about the

future volatility.

This paper leaves open several avenues for future work. We focused exclusively on

univariate volatility models, and the important extension to multivariate models opens

up questions about the optimal degree of customization potentially differing between

variance and correlations, as well as the usual empirical challenges of moving to high

dimension models. We focused on linear bespoke RVs, and the extension to nonlinear

versions could yield further improvements, although our results suggest that imposing

some structure on the bespoke RV is important for achieving forecast gains. Finally, our

focus is on volatility models, but any forecasting model that uses a variable constructed

from other variables or data sources, e.g. macroeconomic forecasting models using pre-

constructed indices of prices or economic activity, may benefit from tailoring that input.

We look forward to pursuing, or reading about, these ideas in the future.
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