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Abstract

Is there a gap between the profitability of a trading strategy “on paper” and that
which is achieved in practice? We answer this question by developing a general tech-
nique to measure the real-world implementation costs of financial market anomalies.
Our method extends Fama-MacBeth regressions to compare the on-paper returns to
factor exposures with those achieved by mutual funds. Unlike existing approaches, our
approach delivers estimates of all-in implementation costs without relying on parametric
microstructure models or explicitly specified factor trading strategies. After accounting
for implementation costs, typical mutual funds earn low returns to value and no returns
to momentum.
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I. Introduction

Empirical asset pricing overflows with explanations for differences in average returns across
securities. The proliferation of predictors distracts from genuine market anomalies from which we
might draw lessons about risks, preferences, and beliefs. Recent calls to action by Harvey, Liu, and
Zhu (2016), Harvey (2017), and Hou, Xue, and Zhang (2017) have focused on high false discovery
rates and scurrilous academic practices. Fundamentally they question whether candidate factors
in the cross-section of expected returns are real and actionable.

We give on-paper trading strategies the benefit of the doubt and instead investigate whether
they are implementable in practice, thereby representing true expected return factors or market
anomalies. This line of inquiry originates with Fama (1970), who considers the role of transactions
costs in defining market efficiency and departures therefrom.

Despite nearly fifty years of subsequent research, accurately measuring real-world implementa-
tion costs for academic factors remains a formidable challenge. Existing approaches generally fall
into two categories. The first category entails using proprietary trading data to analyze costs for a
single firm (e.g., Keim and Madhavan (1997), Engle, Ferstenberg, and Russell (2012), and Frazzini,
Israel, and Moskowitz (2015)). Although selected firms may not be representative of asset managers
as a whole, such analyses provide an informative lower bound on the implementation costs of factor
strategies. The second approach uses market-wide trading data such as NYSE Trade and Quote
(TAQ) to estimate trading costs for individual securities and then cumulate simulated costs of trade
implied by dynamic factor strategies (e.g., Lesmond, Schill, and Zhou (2004), Korajczyk and Sadka
(2004), and Novy-Marx and Velikov (2016)). Papers in this category typically extrapolate price
impact estimates from small trades to large factor portfolios or ignore price impact costs entirely.

Our work complements these approaches with a new cross-sectional technique that combines the
best elements of both. Like papers that utilize proprietary trading data, our estimates reflect the all-
in costs of implementing factor strategies, and they apply equally well for past and modern market
environments (for which Lesmond, Ogden, and Trzcinka (1999)’s zero-return day measure fails, for
example). Like papers that estimate transaction cost functions using market data, our baseline
methodology captures the costs faced by representative practitioners of factor investing rather than
single, special investment managers. In contrast with both approaches, our methodology facilitates
the evaluation of implementation costs (1) without specifying the precise trades used to implement
factor strategies and (2) for arbitrary subsets of the asset management universe trading universe.
These innovations are important because existing methods using precisely specified factor strategies
with different data sources and sets of firms disagree on the implementability of factor strategies.
For example, Lesmond, Schill, and Zhou (2004) find no net-of-costs return to momentum using TAQ
data and a representative set of traders, whereas Frazzini, Israel, and Moskowitz (2015) find positive
momentum premia for a large hedge fund. Although our approach rests on few assumptions, it has
sufficient resolution to reconcile these disparate results in a transparent way.
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Our methodology is an extension of the familiar Fama and MacBeth (1973) procedure. In the
first stage, time-series regressions estimate factor loadings βi for each asset i, and in the second-
stage, cross-sectional regressions estimate the compensation per unit of factor exposure λt at each
date t. Standard assets are based on stock portfolios, and the resulting estimates of compensation
for factor exposure, denoted λ̄Sk , represent the “on-paper” profitability of a given factor strategy.
We augment the set of assets to include 4,267 U.S. domestic mutual funds, and we allow the com-
pensation for factor exposure earned by mutual funds, λ̄MF

k , to differ from that which is available
on paper. Unlike stock portfolio returns, (gross) mutual fund returns reflect the real-world imple-
mentation costs of factor strategies, thus the difference between mutual fund and stock portfolio
compensation λ̄Sk − λ̄MF

k delivers an estimate of implementation costs for factor k.1,2 Because costs
per unit of exposure are likely to be negatively correlated with factor exposures—funds that earn
greater net returns to a factor are more likely to take greater exposures to it—our estimate of
implementation costs represents a lower bound on the costs faced by a representative mutual fund.

Our empirical analysis focuses on the implementation costs of mutual funds for the market
(MKT ), value (HML), size (SMB), and momentum (UMD). We choose these factors because
they comprise the dominant empirical models in academic finance (e.g., Fama and French (1992)
and Carhart (1997)) and because they serve as the basis for hundreds of billions of dollars in
investments. We study mutual funds as our set of asset managers because they collectively manage
more than $16 trillion of capital in the United States,3 and the mutual fund industry has been
better populated for a longer period of time than alternative asset managers such as hedge funds.
Our approach is readily extended to other factors and market participants, however.

Our analysis delivers new empirical facts on the all-in implementation costs of anomalies for
typical mutual funds. First, momentum strategies suffer extreme underperformance in practice
relative to on-paper strategies: our full-sample estimates of all-in implementation costs are in
the range of 7.2%–7.6% per year, which eliminates most profits accruing to momentum during
the 1970–2016 period. About half of this cost is due to mutual funds’ inability to short. Our
all-in cost estimates are considerably larger than those typically estimated using bid-ask spreads
alone (e.g., Novy-Marx and Velikov (2016)). We conclude—as Lesmond, Schill, and Zhou (2004)
do—that momentum strategies are unprofitable for typical asset managers when a broader set of
implementation costs are considered. Second, mutual fund implementation costs sharply reduce
returns to the value factor; we estimate all-in costs of 2.6%–4.1% per year. In contrast, mutual
funds implementation costs for the market and size factors are approximately zero.

Our approach also yields insights into the sources of implementation costs for typical firms.
Simple modifications to the set of test portfolios, factors, and slopes considered allow us to at-

1We use gross returns to focus on the efficiency of mutual funds’ investing technology rather than on the distri-
bution of rents between managers and investors embedded in net returns.

2Our more sophisticated approaches account for time- and cross-sectional variation in implementation costs, which
we discuss further below.

3Per the 2017 Investment Company Fact Book, available at http://www.icifactbook.org/.
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tribute costs to three primary sources. First, by excluding microcap stock portfolios, we can gauge
the potential shadow costs of investability restrictions faced by real-world investors. Doing so we
find that difficulty in investing in the smallest stocks explains reductions in realizable factor com-
pensation of 1% per year for value and momentum. Second, we develop two “long-only” variants of
the Carhart factors to assess the role of institutional constraints on shorting. We find that shorting
frictions explain roughly half of mutual fund underperformance on momentum, and between one
fifth and one third of underperformance on value. Third, we consider the gap attributable to mu-
tual funds tracking alternative variants of the usual academic factors. Sorting funds by their time
series R2 from the four-factor model, we estimate that around half of the the average mutual fund
underperformance on value and momentum is associated with uncompensated departures from the
academic factors.4

As a third empirical contribution, we analyze variation in implementation costs across funds and
time and demonstrate the importance of considering such variation in evaluating the implementabil-
ity of factor strategies. While the typical firm’s compensation for momentum is indistinguishable
from zero, subsets of the mutual fund universe may achieve positive returns to momentum net of
costs. A focused analysis on smaller subsets is also important from an aggregate market efficiency
perspective because a violation exists if the marginal investor sees anomalous profits, even if a
typical investor does not. For this purpose we segment the mutual-fund universe by (lagged) total
net assets. Size is a natural sorting dimension because Berk and Green (2004), Pastor, Stambaugh,
and Taylor (2015), Berk and van Binsbergen (2015), and others link scale to gross-of-fees perfor-
mance. We rerun our cross-sectional analysis using each mutual fund size category separately, and
we confirm that small and large mutual funds achieve different returns to momentum from “typical”
mutual funds. Using this insight we reconcile conflicting evidence on the transactions-cost rationale
for the continued existence of the momentum anomaly.5

Our approach provides us with an estimate of the gap in factor-mimicking portfolio performance
(λSkt−λMF

kt ) for each particular factor and date, and we use this information to study determinants of
the time series of average implementation costs. We document that industry inflows are associated
with increased strategy costs, which in turn neutralize the secular declines in bid-ask spreads that
affect the first dollar traded in factor strategies. As a consequence, bid-ask spread based measures
increasingly underestimate the true costs of factor strategies as asset management (and factor
investing in particular) grows in scale.

While our new approach delivers simple, nonparametric, estimates of the implementation costs
for factor trading strategies, it does face some limitations. First, as mentioned above, our approach
delivers lower bounds on implementation costs. In our empirical analysis these bounds do not

4This analysis also addresses a potential concern about the strategies that mutual funds actually trade, and it is
discussed in detail below.

5We also run subsample analyses by quintile of total net assets and four-factor R2s. Our methodology can
accommodate many other splits of interest, e.g., sorting by factor betas sheds light on typical gains to running
combined strategies. We leave investigations of other cuts of the mutual fund universe to future work.
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greatly limit the economic conclusions we can draw: the estimated costs are already so high as to
eliminate or severely attenuate the on-paper profitability of strategies like value and momentum
for typical mutual funds. For other strategies, estimates that indicate positive returns net of costs
do not necessarily imply that an anomaly can be implemented by typical investors. In this sense
our measures can diagnose an implementability problem with a factor, but they cannot deliver a
clean bill of health.

Secondly, our technique relies on real-world asset managers to reveal implementation costs
through realized returns to their chosen factor exposures. We cannot speak to the costs of new
factors that asset managers have not had an opportunity to trade.6 For the same reason, our
approach cannot estimate implementation costs for counterfactual factor exposures to evaluate
strategy carrying capacities, unlike approaches that rely on parametric transaction cost models.

Finally, like much of the literature on performance evaluation, our method is susceptible to
criticism of the choice of factors included in the analysis. A manager who is following a strategy
that does not correspond to an approximate linear combination of those included in the model may
appear to have high implementation costs for the included strategies, even though she has low costs
for the strategy actually being implemented. We verify that omitted mutual fund strategies do not
drive our high implementation cost estimates by replicating large performance gaps for funds with
returns almost completely explained by the academic factors (the average R2 of the four-factor
model for these funds’ return histories is 94%). For these funds, the scope for omitted strategies is
too small to explain the observed real-world performance gaps.

II. Related Literature

The Fama and French three-factor model has been the benchmark for empirical asset pricing
since its introduction in 1992. This empirical model supplanted the CAPM, but its new value
and size factors had little theoretical motivation.7 As factors continued to emerge over the next
quarter century—most notably, the momentum anomaly of Jegadeesh and Titman (1993)—several
strands of literature emerged in an attempt to tame the “factor zoo” (Cochrane (2011)). One
active strand investigates the implementation costs of anomalies with a particular focus on size,
value, and momentum anomalies. While implementation costs cannot explain why expected return
discrepancies come to be in the first place, this literature (reviewed below) seeks to rationalize
the continued existence of market anomalies as their byproduct. Our paper advances this line
of inquiry by introducing a new and readily generalizable approach for measuring the real-world
implementation costs of return factors and anomalies.

6This caveat does not apply in the particular case of momentum. Grinblatt, Titman, and Wermers (1995) argue
that momentum-like strategies are endemic among mutual funds in their 1975–1984 sample, decades before the
publication of Jegadeesh and Titman (1993).

7Banz (1981) and Basu (1977) document price-earnings ratios and market capitalization as characteristics asso-
ciated with deviations from the CAPM.
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Existing methods for measuring implementation costs take two approaches. The first approach
uses specialized trading data to evaluate the costs of trade for large investment managers with the
implicit assumption that these managers are representative of sophisticated investment managers
more generally. These papers typically assess trading costs using Perold (1988)’s implementation
shortfall measure, which captures the difference between realized profits and on-paper profits using
a preset decision price. This approach dates back at least to Keim and Madhavan (1997)’s analysis
of the transactions costs of a variety of investment styles for $83 billion of trades.8 In this vein
Keim (2003) uses institutional trading data for 33 firms and finds that trading costs likely eliminate
profits to on-paper momentum strategies.

A key challenge to this method is that institutional trading is endogenous; traders are particu-
larly aggressive in their trading targets when liquidity is readily available, which in turn imparts a
downward bias to estimated cost functions. Frazzini, Israel, and Moskowitz (2015) overcome this
challenge by using data from an investment manager whose trading targets are model-generated
and selected irrespective of market conditions. Armed with more than $1 trillion of trades, they
analyze value, size, and momentum anomalies and find that all of them are implementable and
scalable to tens or hundreds of billions of dollars of invested capital. By their reckoning (and by
contrast with Keim (2003)’s managers), major anomalies continue to be anomalous if their asset
manager’s costs are representative of typical investment managers’ costs.

The second approach trades off accuracy for representativeness in estimating implementation
costs. Rather than using proprietary trading data for a single asset manager to estimate costs
directly, other studies derive transactions costs using aggregate price and transaction records and
extrapolate estimated price impact functions to factor trading strategies.9 Much of this literature
focuses on the momentum anomaly because of its high turnover, and even the originating article
establishing the momentum anomaly considers a trading-costs explanation (Jegadeesh and Titman
(1993) and later Jegadeesh and Titman (2001)). Notably none of these papers use precise “all-in”
trading cost measures like implementation shortfall because theoretical or “decision-date” prices
are not obtainable outside of specialized trading data.

Chen, Stanzl, and Watanabe (2002) estimate separate price impact functions for 5,173 indi-
vidual stocks and calculate the trading costs accruing to size, value, and momentum strategies.
The authors suggest that all factors have break-even carrying capacities on the order of millions of
dollars (HML) to hundreds of millions of dollars (SMB). By their calculations, factor strategies
are not investable. Lesmond, Schill, and Zhou (2004) suggest that momentum in practice trades
in “disproportionately high cost securities” rather than the typical-transactions cost securities Je-
gadeesh and Titman (1993) use for approximating the momentum factor’s trading costs. Using

8Other studies use Keim and Madhavan (1997)’s calibrated transaction-cost functions to decompose fund perfor-
mance for a larger universe of funds. For example, Wermers (2000), like our study, finds that implementation costs
meaningfully erode mutual fund returns.

9Grundy and Martin (2001) and Barroso and Santa-Clara (2015) invert this logic and calculate the transactions
costs that would be required to wipe out the momentum anomaly.
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effective spreads from TAQ, commission schedules from a discount brokerage, and “all-in” frictions
implied by zero-trading days (Lesmond, Ogden, and Trzcinka (1999)), Lesmond, Schill, and Zhou
(2004) argue that trading costs erase the returns to the momentum anomaly.

Korajczyk and Sadka (2004) present more optimistic results on the investability of factor strate-
gies. Korajczyk and Sadka (2004) use TAQ data to estimate effective and quoted spreads, the
primary proportional costs studied in the literature, and price impact or “non-proportional trading
cost” functions from Glosten and Harris (1988) and Breen, Hodrick, and Korajczyk (2002). In uti-
lizing different non-proportional cost functions from Lesmond, Schill, and Zhou (2004), Korajczyk
and Sadka (2004) extrapolate trade-level costs to find positive net-of-cost returns to the momen-
tum anomaly. They invert their cost function estimates to obtain a break-even momentum strategy
carrying capacity of $5 billion. Novy-Marx and Velikov (2016) measure trading costs using effective
spreads recovered from Hasbrouck (2009)’s Bayesian Gibbs sampler and tally costs of trading size,
value, and momentum strategies, among others. The authors estimate strategy carrying capacities
of $5 billion for momentum (as in Korajczyk and Sadka (2004)), $170 billion for size, and $50 billion
for value (the latter two of which are comparable to Frazzini, Israel, and Moskowitz (2015)’s esti-
mates). These approaches do not account for the price impact costs of large institutional investors,
and they likely overestimate the true strategy carrying capacities as a result.

In concurrent work, Arnott, Kalesnik, and Wu (2017) argue, as we do, that mutual funds
deliver much lower returns on value and momentum anomalies than on-paper factor counterparts
might indicate. Our paper differs from theirs in four key respects. First, we modify standard
Fama-MacBeth regressions to develop a cost-estimation procedure that is robust to heterogeneity
in implementation costs across both funds and time. Second, we decompose costs to highlight the
respective roles of shorting, investability, and liquidity frictions. Third, we slice the cross section of
mutual funds to distinguish among funds of different attributes and in so doing reconcile previous
work on implementation costs. Finally, our approach compares factor-mimicking portfolio returns
for mutual funds and stock portfolios. Arnott, Kalesnik, and Wu (2017)’s use of on-paper factor
returns as a benchmark is valid only if investors can frictionlessly trade stock factors.

III. Data

Our mutual fund sample consists of 4,267 United States domestic equity mutual fund groups
with at least 24 non-missing monthly gross returns from January 1970 to December 2016. Appendix
A details our mutual fund filtering methodology. Therein we describe a number of data cleaning
and filtering steps based on the recommendations of Berk and van Binsbergen (2015), Pastor,
Stambaugh, and Taylor (2015), and others. One data processing step bears special mention here:
we map funds delineated by share class into fund groups. Share classes for funds with identical
investments differ in fees charged to investors, but they are not otherwise economically distinct.
To aggregate returns within a fund group, we take total-net asset weighted gross-of-fee returns.
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Figure I: Count of Active Domestic Equity Mutual Funds by Month

Figure plots the count of non-missing returns by month for United States domestic equity mutual
funds. The dashed line at January 1970 marks the starting point of our 1970–2016 sample. The
dashed line at July 1993 marks the midpoint of the post-1970 sample as well as the start date for
our post-Jegadeesh and Titman (1993) sample.
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CRSP provides returns net of management and 12b-1 fees, and we convert these into gross returns
by adding expense ratios divided by 12, following Fama and French (2010). We use “fund group”
and “fund” interchangeably henceforth.

Significant changes in the count of active mutual funds reflect both a secular growth in the
mutual fund industry and continual improvements in data quality.10 Figure I highlights these
changes by plotting the number of non-missing returns for domestic equity mutual funds by month.
The number of funds increases from 276 in January 1970 to 979 in July 1993 to 2,463 in December
2016. Because the number and composition of funds varies widely over time, we conduct our analysis
both on an extended sample and on a more recent subsample. Our long sample runs from January
1970 to December 2016. We discard the 1962–1969 window during which monthly returns are less
consistently provided and during which several of our liquidity proxies are not available. Our recent
subsample consists of the second half of the long sample and runs from July 1993 to December
2016. This start date postdates Jegadeesh and Titman (1993)’s documenting of the momentum
anomaly, the most recently discovered factor we consider. Table I reports summary statistics for
the set of mutual funds used in our analysis. All told the 1970–2016 sample consists of 724,995
fund-month observations and the 1993–2016 sample consists of 597,992 fund-month observations.

Much of our analysis compares mutual funds with similar stocks as measured by loadings on
equity risk factors. Our Fama-MacBeth tests of Section IV combine mutual fund data with common

10Pages 1–2 of the CRSP mutual fund database guide details the amalgamation of data sources used to construct
returns from December 1961 through the present. Page 16 discusses the merge of classifications into CRSP objective
or style codes that we use to restrict the set of funds to United States domestic equity funds.
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Table I: Domestic Equity Mutual Fund Sample Summary Statistics

Table presents summary statistics for the 1970–2016 sample of 4,267 United States domestic equity
mutual funds. The top subtable provides information on the time series of the number of active
funds for each date as well as cross-sectional information on fund lifetimes and total net assets
(TNA) at sample start, middle, and end. The bottom subtable reports distributional information
on fund excess returns. ρ̄ is the average pairwise correlation with other mutual funds’ returns, and
ρS&P500 is the correlation with the S&P 500.

Funds Lifetime TNA, Jan. 1970 TNA, July 1993 TNA, Dec. 2016
Unit # Years Million USD Million USD Million USD

Mean 1286 14.16 128.74 552.87 2590.70
Std. Dev. 917 10.50 302.83 1533.70 13254.00

25% 324 5.75 3.96 37.48 70.93
50% 1023 11.58 23.90 118.36 314.00
75% 2282 19.58 91.18 431.83 1421.30

Mean Return Return Vol. Sharpe Ratio ρ̄MF ρS&P500
Unit % / Month % / Month Annualized % %

Mean 0.46 4.88 0.41 74.10 84.97
Std. Dev. 0.63 1.97 0.41 16.49 18.42

25% 0.32 3.86 0.25 71.77 81.94
50% 0.56 4.66 0.44 77.86 89.55
75% 0.78 5.59 0.60 82.32 94.53

test portfolios. Our first portfolio set consists of the Fama-French 25 size-value double-sorted
portfolios plus 25 size-beta portfolios, 25 size-prior return portfolios, and 25 size-Amihud illiquidity
portfolios to ensure adequate dispersion in factor loadings to identify risk premia. We supplement
this set of test assets with an expanded cross section following the recommendation of Lewellen,
Nagel, and Shanken (2010). In our larger portfolio set, we add 49 industry portfolios, 25 size-
operating profitability portfolios, 25 size-investment portfolios, 10 market beta-sorted portfolios,
10 market capitalization-sorted portfolios, 10 book-to-market ratio sorted portfolios, 10 Amihud
illiquidity-sorted portfolios, 10 operating profitability-sorted portfolios, and 10 investment-sorted
portfolios for a total of 269 portfolios. With the exception of the illiquidity-sorted portfolios, all
portfolio data are downloaded from Ken French’s website. Decile illiquidity portfolios sort stocks
by the median daily Amihud illiquidity (daily absolute returns over dollar volume) over the prior
calendar year, and stocks are assigned for the following year using deciles the end of June to match
the timing convention of the other portfolio data.11 The 25 size-illiquidity portfolios sort first on

11Our monthly stock sample consists of all CRSP stocks (share codes 10 or 11) with at least 24 non-missing
monthly returns, for a total of 22,121 unique PERMNOs over the 1970–2016 sample period.
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lagged market capitalization and then on Amihud illiquidity quintile within each size bin to ensure
that all portfolios are non-empty. Our analysis uses both equal- and value-weighted stock portfolios.

We include several market and funding liquidity variables to proxy for time-varying cost fac-
tors that may affect the performance of mutual funds relative to stocks. Our market liquidity
variables are Amihud illiquidity (Amihud (2002)), Pastor-Stambaugh liquidity levels (Pastor and
Stambaugh (2003)), Corwin and Schultz (2012) NYSE-average bid-ask spreads, and the CBOE S&P
500 Volatility Index (VIX), as motivated by Nagel (2012). We use Corwin and Schultz (2012)’s
methodology to estimate bid-ask spreads because it enables measurement of market liquidity be-
fore TAQ becomes available in 1993 and because it captures average effective spread levels and
innovations better than other pre-TAQ methodologies (see Corwin and Schultz (2012) Table IV).12

We use the CBOE S&P 100 Volatility Index (VXO) in place of the VIX in the pre-1990 period for
which the VIX is not available. We compute Amihud illiquidity using CRSP daily data with values
averaged within a month as in Amihud (2002), and we obtain the Pastor-Stambaugh series and
CBOE VXO/VIX series from Robert Stambaugh’s website and the Federal Reserve of St. Louis’s
FRED database, respectively.

Our funding liquidity variables are Frazzini and Pedersen (2014)’s “betting against beta” (BAB)
factor, He, Kelly, and Manela (2017)’s intermediary capital ratio, the 10-year BAA minus 10-year
Treasury spread, and the 3-month LIBOR minus 3-month Treasury yield or “TED” spread. The
first two series are expressly designed to capture institutions’ funding liquidity constraints, and the
latter two series are common proxies in the funding liquidity literature (e.g., Brunnermeier (2009)).
We obtain BAB from AQR’s website, intermediary capital ratios from Asaf Manela’s website, and
credit and TED spreads from FRED.

IV. Fama-MacBeth Estimates of Implementation Costs

A. Fama-MacBeth Methodology

In this section, we consider the compensation per unit of risk exposure and investigate whether
mutual funds obtain the same risk premium that academics achieve on paper. In our baseline
estimation, we assume that mutual funds have a constant per-unit cost for implementing academic
anomalies. Investing in a market index with βMKT = 1 results in a performance gap of η relative to
the on-paper performance of a market index, and investing in a levered version of the market more
generally results in a performance gap of ηβMKT . In this setting, we would expect performance
differences between stock and mutual fund portfolios to be linear in factor exposure.

We estimate the “implementation gap” using augmented Fama and MacBeth (1973) two-stage
regressions for the Carhart four-factor model (Carhart (1997)). The time-series regression step

12Corwin and Schultz make their code available at https://www3.nd.edu/∼scorwin/HILOW_Estimator_Sample_002.sas.
As in their paper, we compute cross-sectional averages using only NYSE-listed stocks, and we use their variant of
estimated spreads in which negative values are set to 0.
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is standard except for the choice of test assets. As discussed in the preceding section, we have
NS = 100 and NS = 269 stock portfolios for the baseline and extended portfolio sets, respectively.
In addition to stock portfolios, we also include NMF = 4, 267 mutual funds, of which more than a
thousand are active in the typical month. As diversified entities spanning a wide range of multifactor
risk exposures, mutual funds unlike stocks need not be grouped into portfolios via a characteristic-
sorting procedure.

The NS +NMF first-stage time series regressions are

rit = αi +
∑
k

fktβik + εit, i = 1, . . . , NS , NS+1, . . . , NS +NMF , (1)

where rit is the month t gross return on stock portfolio or mutual fund i net of the contemporaneous
risk-free rate and fkt (for k = 1, ...,K) is the return on factor k at date t. The usual second-stage
cross-sectional regressions are extended to accommodate the possibility of differences in risk pricing
for stocks and mutual funds,

rit =
∑
k

λSktβ̂ik1i∈S +
∑
k

λMF
kt β̂ik1i∈MF + εit, t = 1, . . . , T. (2)

Regression (2) is equivalent to two separate cross-sectional regressions run on stocks and mutual
funds because the indicators partition the set of observations and coefficients. λSkt and λMF

kt repre-
sent the factor-mimicking portfolio returns for stocks and mutual funds, that is, the hypothetical
date-t returns to a stock or mutual fund portfolio with βk = 1 and βj = 0∀ j 6= k. If these fac-
tors were tradeable by real-world investors, fkt, λSkt, and λMF

kt would all be equal. The difference
λ̂∆
kt ≡ λ̂Skt − λ̂MF

kt is our estimate of the implementation costs for strategy k, and it is the gap
between the on-paper returns of a given strategy (“what you see”) and the actual returns achieved
by an asset manager facing real-world implementation costs (“what you get”). Conceptually this
difference captures both direct costs such as spreads and price impact from factor trading as well as
indirect costs such as investing in liquid versions of factors to robustify strategies against outflows.
Our point estimates are the average of the monthly differences in factor compensation λ̄∆

k , and we
construct Newey and West (1987) standard errors for this difference using three monthly lags to
account for serial correlation and heteroskedasticity in the λ-difference series.

Throughout our analysis, we estimate cross-sectional slopes of returns on risk exposures as-
suming that risk exposures are constant. In making this assumption we prioritize minimizing
the errors-in-variables problem arising from using noisy betas as inputs in the second-stage Fama-
MacBeth regression. This problem is vitally important because we do not want to find differences in
λs simply as a byproduct of higher measurement error in mutual fund betas. Static betas effectively
eliminate this issue; empirically, cross-sectional slopes are virtually unaffected by measurement er-
ror because the time-series variance of estimated betas is about two orders of magnitude smaller
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than the cross-sectional variance of estimated betas for both stock and mutual fund portfolios.13 In
using static betas, we trade off against taking on model misspecification arising from time-varying
stock portfolio or mutual fund risk exposures. Note, however, that if funds on average have timing
ability, then using static betas in place of time-varying betas understates true implementation costs.
For example, if funds scale up their betas when λ is high, then cross-sectional slopes for mutual
funds λ̂t are biased up, and the average estimated factor compensation ¯̂

λ exceeds its true value.
Following Lettau, Maggiori, and Weber (2014) and others, we omit the constant term in (2)

to force cross-sectional average alphas to zero. Economically this omission forces the typical zero-
risk security or mutual fund to have zero excess (gross) return at each point in time. We impose
this restriction because the slope on βMKT is not otherwise well identified in our stock portfolio
sample, namely the time series of the intercept αt and the estimated market risk premium λMKT,t

are strongly negatively correlated and of similar magnitudes. By contrast in the mutual fund
sample, market beta has a large and positive risk price regardless of whether a constant is included.
Empirically, none of the other factor risk premia are meaningfully affected.

B. Baseline Estimates

Table II presents estimates of Equation (2). The λ∆ value in the upper-left corner indicates
that the difference in compensation per unit of market exposure is 0.38% per year greater for risk
exposures taken via mutual funds than in (100 value-weighted) on-paper stock portfolios. This
difference declines slightly to 0.21% per year when assessed against the full set of 269 portfolios.
Neither effect is statistically or economically significant, and the absence of a performance gap is
robust to using equal-weighted portfolios (bottom subtable) rather than value-weighted portfolios.
This result is unsurprising as mutual funds are expected to be relatively good at implementing the
market factor.

Broadening our focus to columns 1–4, we see that mutual funds underperform stocks in isolating
factor exposures for two of the other Carhart factors. The average implementation gaps for value
(HML) and momentum (UMD) range from of 50%–80% of the total on-paper factor return in
stock portfolios. The remaining compensation to mutual funds for HML and UMD are positive
(λMF > 0), but they are only 1%–3% per year and not statistically distinguishable from zero.
Conversely, HML and UMD factors are both highly compensated and statistically robust in value-
weighted stock portfolios in this period. On-paper compensation for size factor (SMB) exposure
has a smaller positive point estimate, but this value is not reliably different from zero.

Notably the point estimates for the differences λ∆ for HML and UMD are typically more
statistically significant than either of the components of the difference λS or λMF . This feature

13The multiplicative attenuation bias in cross-sectional slopes is proportional to σ2
ε/σ2

β̂
≈ 1%–2%, where σ2

β̂
is

the cross-sectional variance of estimated betas (including measurement error) and σ2
ε is the average variance of the

time-series beta estimates.
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Table II: Implementation Cost Estimates in Fama-MacBeth Regressions — Baseline Specification

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).
Coefficients are the average cross-sectional slopes λ̄k across monthly regressions of excess returns
rit on time-series betas β̂ik,

rit =
∑
k

λSktβ̂ik1i∈S +
∑
k

λMF
kt β̂ik1i∈MF + εit, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and λ∆ is defined as λS − λMF . Stock portfolio
sets are described in Section III. All coefficients are annualized and reported in percent. Standard
errors are Newey-West with three lags. t statistics are reported in parentheses.

(a) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 100 -0.38 3.81∗∗∗ 0.26 7.18∗∗∗ -0.11 3.12∗∗∗ -0.24 4.27∗∗∗
t-stat (-1.28) (5.08) (0.42) (5.53) (-0.32) (3.83) (-0.29) (2.64)

λ∆ 269 -0.21 2.59∗∗∗ -0.07 7.30∗∗∗ 0.28 2.09∗∗∗ -0.97 5.04∗∗∗
t-stat (-0.88) (3.81) (-0.14) (5.54) (1.25) (3.31) (-1.39) (2.89)

λS 100 6.60∗∗∗ 6.43∗∗∗ 1.27 8.72∗∗∗ 7.67∗∗ 5.43∗ 1.96 6.01
t-stat (2.75) (3.51) (0.75) (3.74) (2.35) (1.93) (0.81) (1.60)

λS 269 6.77∗∗∗ 5.20∗∗∗ 0.94 8.85∗∗∗ 8.06∗∗ 4.40 1.23 6.78∗
t-stat (2.82) (2.84) (0.56) (3.80) (2.49) (1.54) (0.51) (1.83)

λMF — 6.98∗∗∗ 2.62 1.01 1.54 7.78∗∗ 2.31 2.20 1.73
t-stat (2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 100 -0.36 4.47∗∗∗ 2.34∗∗ 6.83∗∗∗ 0.07 3.16∗∗∗ 2.14 3.71∗∗
t-stat (-0.76) (5.57) (2.41) (5.21) (0.12) (3.29) (1.55) (2.21)

λ∆ 269 0.25 3.31∗∗∗ 2.22∗∗ 8.51∗∗∗ 0.95 2.01∗ 2.05 6.04∗∗∗
t-stat (0.5) (3.58) (2.05) (6.19) (1.45) (1.96) (1.34) (3.13)

λS 100 6.62∗∗∗ 7.09∗∗∗ 3.35∗∗∗ 8.37∗∗∗ 7.85∗∗ 5.48∗∗ 4.34 5.45
t-stat (2.75) (3.91) (1.70) (3.59) (2.39) (1.99) (1.53) (1.44)

λS 269 7.23∗∗∗ 5.93∗∗∗ 3.23 10.06∗∗∗ 8.73∗∗∗ 4.33 4.25 7.78∗∗
t-stat (3.02) (3.03) (1.56) (4.17) (2.69) (1.47) (1.43) (1.98)

λMF — 6.98∗∗∗ 2.62 1.01 1.54 7.78∗∗ 2.31 2.20 1.73
t-stat (2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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reflects the netting out of common variation in factor realizations between the λ time series. Ideally
the residual variation in λ∆ captures only random variation in trading costs. In practice this
residual variation also captures idiosyncratic differences in estimated risk prices associated with
using different sets of test assets; the difference between λ∆ estimated from the set of 100 stock
portfolios and the set of 269 stock portfolios suggests that the implementation gap depends in part
on the stock benchmarks employed.

Columns 5–8 reproduce these tests for the July 1993 to December 2016 sample. Mutual funds
achieve lower returns to HML and UMD and higher returns to SMB than in the full sample,
and these returns are universally statistically indistinguishable from zero. For stock portfolios, the
compensation for HML and UMD (SMB) exposures also decreases (increases) relative to the full
sample. The net effect of these changes is a small decrease in the typical implementation gap for
HML and a moderate decrease in the implementation gap for UMD. The implementation gap
is roughly unchanged for market exposure (effectively zero) and SMB exposure (positive but now
statistically insignificant). Focusing on the latter sample with a more broadly representative set of
mutual funds does not change our conclusions on the high real-world efficacy of achieving market
exposure and size and the low real-world efficacy of implementing value and momentum.

In sum, no factor other than the market earns reliably positive risk premia for the typical mutual
fund. This finding is our first main result, and below we investigate whether it survives alternative
weightings (including equal-weighted returns in the bottom subtable), enriched methodologies,
additional controls, and sample splits.14,15 Section IV.E presents a detailed comparison of our
estimates to prior work, and we postpone most discussion of economic mechanisms and implications
until that time. However, we understand that implementation cost estimates of this magnitude may
surprise some readers, and it is worth mentioning now an intuitive channel by which real-world
compensation to these factors may fall to zero even as on-paper returns persist.

Using evidence from mutual fund flows, Berk and van Binsbergen (2016) and Barber, Huang,
and Odean (2016) demonstrate that investors appear to use the CAPM to evaluate market risks,
and compensation accruing to non-market sources is perceived as skill. By this logic, capital market
equilibrium requires that real-world factor compensation must be squeezed to zero because these
other factors are not seen as risky. Otherwise, if funds were to achieve positive returns to HML and
UMD, funds could load on these factors to achieve “alpha” and attract inflows indefinitely. Our
findings indicate that equilibrium obtains through greater implementation costs rather than through
reduced on-paper factor compensation. Higher implementation costs resulting from greater fund

14E.g., Section D below evaluates a purely characteristic-based variant of our Fama-MacBeth regressions with
similar results.

15Appendix D introduces a complementary, matched-pairs approach to investigating mutual fund implementation
costs. In the spirit of Daniel, Grinblatt, Titman, and Wermers (1997), this approach compares returns to high
book-to-market ratio, small size, and high prior return stocks and mutual funds with similar risk characteristics.
The analysis therein has the ancillary benefit of controlling for differences in the distribution of betas between stock
portfolios and mutual funds, which may be important if compensation for factor exposure is earned only in some
segments of this distribution.
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size (Berk and Green (2004)) or industry scale (Pastor and Stambaugh (2012)) are two established
mechanisms by which these costs may adjust until achievable anomalous returns disappear.

C. Estimates When Costs Vary Across Funds and Time

Time-varying implementation costs complicate the comparison of compensation per unit of
factor risk. To see why, consider the following augmented model of mutual fund costs. As before,
let there be a set of academic factors f , where ft is a 1×K vector. Each mutual fund i implements
its favored version of academic factors and earns a return of

hit = ft − ηit, (3)

where ηit reflects tilts away from the academic factor on account of trading costs or factor opti-
mization. This section differs from the previous one in that we no longer assume that η is constant
across funds and time in interpreting λ∆. The ηit term in turn can be decomposed into components,

ηit = ηi + ηtγi + η̃it. (4)

The first component is the fixed, fund-specific cost of trading a factor. The second component is
a set of L time-varying liquidity costs, ηt multiplied by the L ×K loadings of all factors on these
liquidity costs, γi. Finally, η̃it is a 1 × K set of idiosyncratic costs, e.g., a surprise redemption
demand that makes continued investment in factor k more costly for fund i.

In this heterogeneous-cost specification, funds earn returns of

rit = αi + hitβi + εit

= (αi − ηiβi) + (ft − ηtγi)βi + (εit − η̃itβi) . (5)

An ideal test compares the average compensation ft for factor exposure for on-paper investment in
stocks against the compensation hit for factor exposure for real-world investment. In the constant-
cost setting of Section IV.A, we achieve this ideal: ηit simplifies to η, and Fama-MacBeth regressions
recover consistent estimates of h as the difference in λs in Equation (2).

By contrast, in this general setting we face two key challenges that complicate the comparison of
ft and hit. First, trading costs vary over time, and these costs may covary with factor realizations.
For example, during the 2007–2008 Financial Crisis, the aggregate market declines sharply just
as funding and market liquidity deteriorate significantly. Omitting relevant liquidity factors thus
contributes to an omitted variable bias in time-series estimates of βi for investment managers,
which in turn potentially invalidates simple comparisons of second-stage slope estimates. Second,
investment managers select their risk exposures endogenously. An investor who has discovered
improvements upon academic factors and another who faces particularly high trading costs are
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unlikely to select the same factor exposures, all else equal. For this reason we would expect mutual
fund-specific trading costs ηi to be correlated with βi in the cross-section.

We now address these two sources of bias. First, to address the omission of trading-cost factors,
we assume that trading costs or optimization gains for mutual funds are spanned by liquidity
proxies considered in the literature (and described in Section III). To avoid overfitting by including
too many correlated liquidity proxies, we start with two:16 the first principal component of four
market-liquidity variables (Amihud illiquidity, Pastor-Stambaugh liquidity, Corwin-Schultz bid-ask
spreads, and the CBOE VIX/VXO) and the first principal component of four funding-liquidity
variables (Frazzini and Pedersen (2014)’s “betting against beta” factor, He, Kelly, and Manela
(2017)’s intermediary capital risk factor, 10-year BAA minus 10-year Treasury spreads, and 3-
month LIBOR minus 3-month Treasury yield or “TED” spreads).17 We normalize all liquidity
variables to have unit standard deviation before taking principal components because liquidity
proxies vary widely in their scales. We assign these components an illiquidity interpretation by
normalizing them to be positively correlated with the VIX/VXO.

We then run Fama-MacBeth regressions as before, but we extend the factor model to include
these liquidity proxies in the time-series regressions,

rit = αi +
∑
k

fktβik +
∑
l

η̃ltγ̃il + εit, i = 1, . . . , NS , NS+1, . . . , NS +NMF , (6)

where η̃lt are the liquidity factor proxies at time t. The second-stage cross-sectional regressions are
exactly as in Equation (2).

The mismatch in model specification for the time-series and cross-sectional regressions is inten-
tional, and the decomposition of the resulting second-stage coefficient estimates reveals why the
second source of bias—cross-sectional heterogeneity in implementation costs—makes our results
conservative. In the time-series regressions, we recover fund exposures to the academic factors,
and we need the additional liquidity proxy variables to cleanse the estimated mutual fund factor
loadings of omitted illiquidity components. By contrast, in the second stage, we recover the cost
per unit exposure to the academic factors and do not want to include the liquidity proxy exposures.
Excluding the liquidity factors only in the second stage delivers λ̂St = λSt and

λ̂∆
t = λSt −

cov
(
rMF
it , βi

)
var (βi)

= −cov (αi − ηitβi, βi)
var (βi)

= η̄t −
cov ((η̄t − ηit)βi, βi)

var (βi)
. (7)

16Ideally we would use all liquidity variables rather than their principal components because we want time-varying
determinants of ηit to lie in the span of the liquidity-augmented factor model. To this end we include all proxies in
a sparse-regression approach in Appendix C.

17The CBOE VXO and the TED spread series start in January 1986. Our principal components procedure
accommodates the missing liquidity proxy data using MATLAB’s alternating least squares (ALS) algorithm. ALS
extracts factors and completes missing data by conjecturing principal components and iteratively estimating principal
component loadings φ and factor values g until the distance between known and fitted values achieves a local minimum.
We run PCA-ALS from 1,000 starting points and select the global distance-minimizing factors and loadings.
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The final equality makes the standard assumption that alphas and betas are cross-sectionally un-
correlated. η̄t represents the cross-sectional average per-unit liquidity costs to implementing the
factor. The second term is the covariance between deviations from the average costs and βs. Funds
with a particular skill in investing in a factor likely have higher exposures to it, βi is endogenous,
so βi is high when η̄t − ηit is high, and βi is close to zero when η̄t − ηit is negative (negative betas
do not reverse the sign on costs). Combining these features, the overall covariance is positive, and
the cross-sectional slopes of returns with respect to βi are biased upward (λ̂MF

t > λMF
t ).18 Conse-

quently λMF
kt is an upper bound on the realizable gains to factor investing per unit risk exposure,

and λ∆
kt is a lower bound on the costs of implementing a factor strategy.

Table III presents results from the liquidity-extended first-stage regression. Results are virtually
the same as those of the baseline specification in Table II with one exception. Mutual funds’ (already
low) annual compensation for UMD exposure decreases from 1.54% to 1.28% in the long sample
and from 1.73% to 0.76% in the recent sample, suggesting that liquidity factor exposure at least
partly explains mutual funds’ compensation for momentum. Asness, Moskowitz, and Pedersen
(2013) find that momentum loads positively on liquidity risk, and we find that the same holds for
mutual funds’ implementation of momentum. We examine this feature in detail in Section VI.B.

D. Cross-Sectional Characteristic Regressions

The Fama-MacBeth regression approach of the preceding sections estimates implementation
costs for asset pricing factors under the assumption that factor exposures are the source of risk
premia. However, Daniel and Titman (1997) and Daniel, Grinblatt, Titman, and Wermers (1997),
among others, argue that characteristics such as book-to-market ratios and market capitalization
dominate factors in explaining the cross-section of expected stock returns and mutual fund perfor-
mance.19 To address this class of models, we modify our baseline two-stage regression approach to
use characteristics rather than factor betas. The resulting cross-sectional slopes are estimates of
the compensation to characteristics accruing to on-paper stock portfolios and in real-world mutual
funds.

We obtain characteristic prices in the style of Fama-MacBeth regressions by replacing the time-
series beta estimates from Equation (1) with stock portfolio or fund characteristics, cikt, in the
cross-sectional regressions,

rit =
∑
k

λSktcikt1i∈S +
∑
k

λMF
kt cikt1i∈MF + εit, t = 1, . . . , T. (8)

Because characteristics are directly observed rather than estimated, we no longer face an errors-in-

18Including liquidity proxies in the second-stage introduces a more opaque omitted variable bias, as we discuss in
Appendix B.

19Berk (2000) and Davis, Fama, and French (2000) provide other views in the debate on compensation to factors
or characteristics. We thank Juhani Linnainmaa and Ronnie Sadka for the suggestion to consider both perspectives.
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Table III: Implementation Cost Estimates in Fama-MacBeth Regressions — Liquidity PCs

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).
Coefficients are the average cross-sectional slopes λ̄k across monthly regressions of excess returns
rit on time-series betas β̂ik,

rit =
∑
k

λSktβ̂ik1i∈S +
∑
k

λMF
kt β̂ik1i∈MF + εit, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and λ∆ is defined as λS − λMF . First-stage
regression estimates include these factors, the first principal component of market liquidity proxies,
and the first principal component of funding liquidity proxies. Liquidity proxies and stock portfolio
sets are described in Section III. All coefficients are annualized and reported in percent. Standard
errors are Newey-West with three lags. t statistics are reported in parentheses.

(a) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 100 -0.44 4.07∗∗∗ 0.35 7.49∗∗∗ -0.12 3.30∗∗∗ -0.24 5.23∗∗∗
t-stat (-1.45) (5.17) (0.57) (5.71) (-0.36) (3.92) (-0.29) (3.09)

λ∆ 269 -0.22 2.83∗∗∗ -0.02 7.55∗∗∗ 0.27 2.30∗∗∗ -0.93 5.84∗∗∗
t-stat (-0.92) (3.87) (-0.03) (5.70) (1.22) (3.54) (-1.32) (3.29)

λS 100 6.55∗∗∗ 6.71∗∗∗ 1.26 8.77∗∗∗ 7.68∗∗ 5.38∗ 1.98 5.99
t-stat (2.74) (3.63) (0.74) (3.76) (2.37) (1.90) (0.82) (1.59)

λS 269 6.77∗∗∗ 5.47∗∗∗ 0.89 8.84∗∗∗ 8.08∗∗ 4.39 1.30 6.60∗
t-stat (2.83) (2.94) (0.53) (3.78) (2.51) (1.51) (0.54) (1.78)

λMF — 6.99∗∗∗ 2.64 0.90 1.28 7.80∗∗ 2.09 2.22 0.76
t-stat (2.87) (1.51) (0.53) (0.52) (2.41) (0.74) (0.92) (0.20)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 100 -0.53 4.48∗∗∗ 2.69∗∗∗ 6.92∗∗∗ 0.00 2.67∗∗∗ 2.32∗ 4.00∗∗
t-stat (-1.12) (5.35) (2.75) (5.14) (0.00) (2.59) (1.71) (2.27)

λ∆ 269 0.05 3.64∗∗∗ 2.64∗∗ 8.54∗∗∗ 0.74 1.92∗ 2.29 5.73∗∗∗
t-stat (0.09) (3.79) (2.44) (5.95) (1.09) (1.81) (1.56) (2.82)

λS 100 6.46∗∗∗ 7.12∗∗∗ 3.60∗ 8.20∗∗∗ 7.81∗∗ 4.76∗ 4.54 4.76
t-stat (2.70) (3.88) (1.84) (3.51) (2.40) (1.73) (1.63) (1.26)

λS 269 7.04∗∗∗ 6.28∗∗∗ 3.55∗ 9.82∗∗∗ 8.55∗∗∗ 4.01 4.51 6.49
t-stat (2.97) (3.14) (1.73) (4.05) (2.66) (1.35) (1.57) (1.64)

λMF — 6.99∗∗∗ 2.64 0.90 1.28 7.80∗∗ 2.09 2.22 0.76
t-stat (2.87) (1.51) (0.53) (0.52) (2.41) (0.74) (0.92) (0.20)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01 17



variables problem arising from using estimated betas in the second-stage regression. This feature
allows us to use time-varying characteristics cikt rather than averages over the full time series.
Indeed this replacement is critical because while betas are relatively stable across the sample period,
characteristics such as average market capitalization have strong time trends.20

With the modified methodology in hand, the next step is to specify the set of characteristics
and their construction. We follow Daniel and Titman (1997) and Daniel et al. (1997) in using
market capitalization, book-to-market ratios, and prior returns as characteristics. We construct
these characteristics at the stock-month level using book-to-market ratios from the most recent
fiscal year, market capitalization at the end of the current month, and prior 12-month minus 2-
month returns. We then lag book-to-market ratios and market capitalization by one month to
ensure that all characteristics are available to market participants at the start of month t. To
control data errors in the book-to-market ratio, we drop negative values and winsorize at the 1%
level within each date.

We then build characteristics at the stock portfolio and mutual fund group levels as value-
weighted averages of the characteristics of their constituent stocks. For stock portfolios, we use Ken
French breakpoints where available to partition NYSE/AMEX/NASDAQ common stocks (share
code 10 or 11). For illiquidity-sorted portfolios, we use quintiles of Amihud illiquidity in univariate-
sorted portfolios and conditional quintiles of Amihud illiquidity by market capitalization bin in
double-sorted portfolios. The stock portfolio value of each characteristic is the value-weighted
average of its constituent stocks’ characteristics.

To construct mutual fund characteristics, we first obtain mutual fund holdings using the Thom-
son Reuters mutual funds holdings database (s12). We match holdings at the fund level using
MFLINKS to convert Thomson Reuters identifiers to CRSP mutual fund identifiers.21 We form
fund-level characteristics as the dollar holdings-weighted average of stock-level characteristics and
fund-group characteristics as the TNA-weighted average of fund-level characteristics. Finally, we
take logs of book-to-market ratios and market capitalization to prevent the regressions from being
dominated by outlier firms.22

20Because of these time trends and because a zero value of a characteristic need not command a zero risk premium
(unlike betas), we also include a constant as part of the characteristic set. The inclusion of a constant at each date
eliminates the influence of time trends by absorbing shifts in the means of the characteristics. However, by the same
token, absorbing time-varying means of the characteristics renders the constant term uninterpretable, and we do not
report it in our results.

21Details on the merge procedure are available at the Guide for MFLINKS on WRDS; most importantly for our
application, the link table matches up to 98% of the domestic equity funds in CRSP for the March 1980 to September
2015 period in which linking data is available.

22Characteristic ranks are an alternative transformation sometimes used in characteristic regressions, but they
are inappropriate in our setting for two reasons. First, a change in rank has a different meaning for stock portfolios
and mutual funds, particularly in light of the flow-performance relationship related to mutual funds’ prior returns
characteristic. Second, the distribution of characteristics differs for stock portfolios and mutual funds, so ranking
must be performed across all entities so as to not destroy information about differences in average characteristics.
However, doing so introduces the undesirable feature that stock portfolio characteristics depend on the set of mutual
funds considered and vice-versa.
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Table IV: Implementation Cost Estimates in Fama-MacBeth Regressions — Characteristic Model

Table reports Fama-MacBeth estimates of the compensation for characteristic exposure for stock
portfolios (second panel), domestic equity mutual funds (third panel), and their difference (top
panel). Coefficients are the average cross-sectional slopes λ̄k across monthly regressions of excess
returns rit on characteristics,

rit =
(
λS0t + λSBtBMit + λSStSIZEit + λSPtP212it

)
1i∈S

+
(
λMF

0t + λMF
Bt BMit + λMF

St SIZEit + λMF
Pt P212it

)
1i∈MF + εit, t = 1, . . . , T,

where BM denotes lagged log book-to-market ratios, SIZE denotes lagged log market capitaliza-
tion, and P212 denotes prior 2-12 month return. λ∆ is defined as λS − λMF . Stock portfolio sets
are described in Section III. All coefficients are annualized and reported in percent. Standard errors
are Newey-West with three lags. t statistics are reported in parentheses.

(a) Value-Weighted Stock Portfolios

1980 – 2015 1993 – 2015
NS BM SIZE P212 BM SIZE P212

λ∆ 100 1.86 -0.37 10.64∗ 2.10 -0.51 9.04
t-stat (1.07) (-0.97) (1.90) (0.89) (-1.10) (1.25)

λ∆ 269 -0.06 -0.11 7.16∗ -1.33 -0.14 7.99∗
t-stat (-0.04) (-0.42) (1.92) (-0.78) (-0.39) (1.69)

λS 100 2.53 -0.69 16.07∗∗ 2.17 -0.98 10.55
t-stat (1.28) (-1.21) (2.36) (0.82) (-1.38) (1.14)

λS 269 0.67 -0.43 13.02∗∗ -1.14 -0.60 10.17
t-stat (0.58) (-1.07) (2.49) (-0.76) (-1.16) (1.41)

λMF — 0.69 -0.34 5.70∗ 0.10 -0.49 1.91
t-stat (0.48) (-0.90) (1.82) (0.05) (-1.06) (0.44)

T 429 429 429 267 267 267
N̄MF 997 997 997 1405 1405 1405
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) Equal-Weighted Stock Portfolios

1980 – 2015 1993 – 2015
NS BM SIZE P212 BM SIZE P212

λ∆ 100 2.78 -0.44 10.48∗ 3.60 -0.62 10.39
t-stat (1.52) (-1.07) (1.80) (1.43) (-1.24) (1.36)

λ∆ 269 -0.17 0.18 13.07∗∗∗ -1.22 0.16 16.20∗∗∗
t-stat (-0.12) (0.64) (3.71) (-0.70) (0.42) (3.53)

λS 100 3.35 -0.76 15.89∗∗ 3.51 -1.08 11.87
t-stat (1.60) (-1.36) (2.29) (1.24) (-1.59) (1.24)

λS 269 0.47 -0.14 18.82∗∗∗ -1.19 -0.31 18.21∗∗∗
t-stat (0.47) (-0.49) (3.93) (-0.90) (-0.90) (2.71)

λMF — 0.69 -0.34 5.70∗ 0.10 -0.49 1.91
t-stat (0.48) (-0.90) (1.82) (0.05) (-1.06) (0.44)

T 429 429 429 267 267 267
N̄MF 997 997 997 1405 1405 1405
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01 19



Table IV reports results of Fama-MacBeth style regressions using our characteristic pricing
model. By contrast with Daniel and Titman (1997), we do not find strong evidence of compensa-
tion for characteristics in stock or mutual fund portfolios. This result is likely due to the sensitivity
of characteristic-based pricing models to the choice of functional form, and average return compen-
sation may not be linear in logs. By contrast, the prior returns characteristic is highly compensated
in both value- and equal-weighted stock portfolios: a 1% increase in prior return is associated with
a 10–19 basis point increase in future returns. Turning to mutual funds, compensation to this char-
acteristic is a far lower 1.9–5.7 basis points, and only the latter value is even marginally statistically
significant. Hence the implementation gap on the momentum characteristic remains prohibitively
high at 56%–90% of the on-paper stock portfolio compensation. Paralleling our results in Sections
IV.B–C, we conclude that mutual funds cannot reliably earn premia on characteristic versions of
any of the Carhart anomalies.

E. Comparison with Cost Estimates from Other Work

Table V compares our real-world factor return estimates with estimates from selected works in
the literature. Novy-Marx and Velikov (2016) estimate trading costs by summing effective bid-ask
spreads of traded securities, and by their reckoning, momentum’s trading costs reduce the gross
strategy return from 16.0% per year to 8.16% per year (Table 3 of their paper). These positive
momentum returns net-of-costs likely significantly overstate achievable returns, however, because
their calculation ignores the price impact of trading that is particularly relevant to institutional
investors.

Papers that consider price impact costs reach mixed conclusions on the implementability of mo-
mentum. Korajczyk and Sadka (2004) suggest that momentum profits exist only at small scales (the
table reports only their returns net of proportional costs, and by their reckoning, non-proportional
costs quickly overwhelm strategy returns), and Lesmond, Schill, and Zhou (2004) argue that high
transaction costs preclude profitable momentum strategies altogether. Because these studies es-
timate transactions-cost functions using all TAQ transactions, their average implementation cost
estimates smooth over heterogeneous investors and over trades unrelated to momentum strate-
gies. Nevertheless, Lesmond, Schill, and Zhou (2004) find that momentum has an economically
unimportant premium for the average trader.

Our factor compensation estimates fall on the lower end of the spectrum, and our results are
most similar to Lesmond, Schill, and Zhou (2004) in that we find no net-of-cost compensation to
momentum. We square our implementation cost estimates with prior work in two ways. First, we
decompose implementation costs to better understand what frictions erode mutual funds’ ability to
capture factor premia. Section V considers the roles of shorting frictions and limitations on funds’
investable universe, as well as the trade-off between tracking error and performance more generally.
Second, Section VI considers cross-sectional and time-series variation in costs across funds, and
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Table V: Comparison with Selected Factor Profitability Estimates from Prior Work

Table presents estimates of factor strategy returns. The top panel reports cross-sectional slopes
from Fama-MacBeth regressions as in Table X. For brevity we report only the estimates in which
liquidity proxy principal components appear in the time-series step, and we focus on the slopes
for the full sample of mutual funds and for small mutual funds (lagged total net assets between
$10 million and $50 million). As before, standard errors are Newey-West with three lags. The
second panel presents value-weighted momentum strategy returns from Table IV of Korajczyk and
Sadka (2004). Alphas are constructed relative to the Fama-French three factors. αespr.net and αqspr.net

represent excess momentum returns net of proportional costs as measured by effective spreads
and quoted spreads, respectively. The third panel reports equal-weighted strategy returns from
Table 3 of Lesmond, Schill, and Zhou (2004) (value-weighted returns are not reported). rLDVnet

and rdirectnet are momentum returns net of Lesmond, Ogden, and Trzcinka (1999)-implied costs and
“direct” costs (consisting of bid-ask spreads and trading commissions), respectively. The fourth
panel tabulates realized strategy returns from Table IV of Frazzini, Israel, and Moskowitz (2015).
The final panel reports value-weighted strategy returns net of Hasbrouck (2009)-implied effective
spreads from Table 3 of Novy-Marx and Velikov (2016). Throughout returns are annualized and t
statistics are reported in parentheses.

HML SMB UMD

λMF 2.64 0.90 1.28
Cross-Sectional Slopes w/ PCA t-stat (1.51) (0.53) (0.52)

1970–2016 λMF
small 2.55 1.37 2.62
t-stat (1.37) (0.82) (0.97)
αgross 6.84∗∗∗
t-stat (4.54)

Korajczyk and Sadka (2004) αespr.net 5.40∗∗∗
1967–1999 t-stat (3.59)

αqspr.net 4.80∗∗∗
t-stat (3.17)
rgross 7.83∗∗∗
t-stat (6.22)

Lesmond, Schill, and Zhou (2004) rLDVnet 0.13
1980–1998 t-stat (0.07)

rdirectnet 2.24
t-stat (1.22)
rgross 4.86 7.98∗∗∗ 2.26

Frazzini, Israel, and Moskowitz (2015) t-stat (1.12) (3.01) (0.40)
1986–2013 rnet 3.51 6.52∗∗ -0.77

t-stat (0.80) (2.48) (-0.14)
rgross 5.64∗∗∗ 3.96∗ 15.96∗∗∗

Novy-Marx and Velikov (2016) t-stat (2.68) (1.66) (4.80)
1963–2013 rnet 5.04∗∗ 3.36 8.16∗∗

t-stat (2.39) (1.44) (2.45)
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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we find substantial heterogeneity. Differences between “average” and “skilled” funds reconcile the
lower costs seen in studies of single funds using proprietary trading data and studies of average
traders in TAQ.

V. Decomposing Implementation Costs

A. The Role of Mutual Fund Shorting Constraints

The implementation gap we estimate reflects the difference between on-paper and real-world
performance for zero-cost factor strategies. Such strategies consist of financing long position by
shorting other stocks, for example, selling “growth” stocks to purchase “value” stocks. Institu-
tional impediments to shorting may significantly increase costs on the short side and reduce the
performance of real-world factor strategies.

In this section we adapt our Fama-MacBeth approach to evaluate the extent to which imple-
mentation gaps arise derive from shorting frictions. To do this, we consider two long-only variants
of value, size, and momentum. Specifically, we first consider pure no-shorting strategies in which
mutual funds borrow at the riskfree rate to invest in the long side of each factor. Our “long-only”
factors are the excess returns on H, S, and U portfolios, all of which are accessible to short-sale
constrained mutual funds, and we denote these long-only factors with a ‘+’ superscript.

The typical mutual fund is highly exposed to the market—the mean and median correlations
with the S&P 500 are 85% and 90%—and increasing exposure to H, S, or U may be financed by
reducing a long position in other securities (e.g., the market) rather than by opening a short position.
With this motivation, we also consider returns on “tilt” factors, defined as the difference between
the long-factor portfolios and the market.23 We denote the “tilt” factors with a ‘#’ superscript. For
both sets of factors, we do not modify MKT because the market factor is already in excess return
form and accessible to long-only funds.

Table VI reports stock portfolio and mutual fund returns to the long-only Carhart factors.
Focusing on the differences in premia earned, λ∆, relative to the baseline estimates, the long-
only factor implementation costs are about 60% as large for HML+ and about 40% as large for
UMD+, but they are of comparable statistical significance.24 As before, we find no evidence of
significant implementation costs for market or long-only size factor exposures in value-weighted
portfolios. Equal-weighted portfolio results are very similar, although we do find a significant
SMB+ implementation gap because of the increased weight assigned to difficult-to-access microcaps

23Such tilt factors also have the advantage of closely tracking the traditional Carhart factors. For example, if H
and L have comparable market capitalization for all dates, then the return to the tilt factor HML# is H−(H + L) /2
or HML/2, and the accessible tilt factor is proportional to standard HML.

24Intriguingly, the scaling of long-only implementation costs relative to total implementation costs is in line with
Israel and Moskowitz (2013)’s finding that roughly 60% of the value premium and 50% of the momentum premium
are earned on the long side of the anomalies. We find that real-world trading costs are roughly proportional to premia
earned in on-paper portfolios.
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Table VI: Implementation Cost Estimates in Fama-MacBeth Regressions — Long-Only Factors

Table reports Fama-MacBeth estimates of the compensation for long-only factor exposure for posi-
tive and negative beta stock portfolios (second panel), domestic equity mutual funds (third panel),
and their difference (top panel). Coefficients are the average cross-sectional slopes λ̄k across monthly
regressions of excess returns rit on time-series betas β̂+

ik,

rit =
∑
k

λSktβ̂
+
ik1i∈S +

∑
k

λMF
kt β̂+

ik1i∈MF + εit, t = 1, . . . , T,

where k indexes the long-only versions of the Carhart (1997) factors—the excess returns on MKT ,
H, S, and U—and λ∆ is defined as λS − λMF . Stock portfolio sets are described in Section III.
All coefficients are annualized and reported in percent. Standard errors are Newey-West with three
lags. t statistics are reported in parentheses.

(a) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML+ SMB+ UMD+ MKT HML+ SMB+ UMD+

λ∆ 100 -0.61∗ 2.56∗∗∗ 0.52 3.09∗∗∗ -0.32 2.10∗∗∗ 0.32 2.41∗∗∗
t-stat (-1.94) (4.05) (1.00) (4.52) (-0.92) (3.85) (0.56) (2.98)

λ∆ 269 -0.29 1.60∗∗∗ 0.02 2.85∗∗∗ 0.18 1.30∗∗∗ -0.34 2.46∗∗∗
t-stat (-1.21) (2.72) (0.04) (4.25) (0.81) (3.00) (-0.61) (2.85)

λS 100 6.22∗∗∗ 12.25∗∗∗ 9.19∗∗∗ 11.69∗∗∗ 7.32∗∗ 12.89∗∗∗ 10.84∗∗ 12.12∗∗∗
t-stat (2.59) (4.33) (2.85) (4.11) (2.24) (3.19) (2.54) (3.22)

λS 269 6.54∗∗∗ 11.29∗∗∗ 8.68∗∗∗ 11.46∗∗∗ 7.82∗∗ 12.09∗∗∗ 10.17∗∗ 12.17∗∗∗
t-stat (2.73) (3.95) (2.68) (4.02) (2.41) (2.95) (2.38) (3.24)

λMF — 6.83∗∗∗ 9.69∗∗∗ 8.66∗∗∗ 8.60∗∗∗ 7.63∗∗ 10.80∗∗∗ 10.51∗∗ 9.71∗∗
t-stat (2.81) (3.25) (2.60) (2.85) (2.34) (2.59) (2.44) (2.48)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML+ SMB+ UMD+ MKT HML+ SMB+ UMD+

λ∆ 100 -0.83 3.82∗∗∗ 2.21∗∗∗ 3.64∗∗∗ -0.25 3.11∗∗∗ 2.31∗∗∗ 3.27∗∗∗
t-stat (-1.66) (6.06) (3.37) (5.46) (-0.43) (5.57) (2.64) (4.01)

λ∆ 269 -0.26 3.40∗∗∗ 2.17∗∗∗ 4.25∗∗∗ 0.41 2.84∗∗∗ 2.38∗∗ 4.26∗∗∗
t-stat (-0.50) (4.92) (2.96) (6.29) (0.66) (4.21) (2.25) (4.86)

λS 100 6.00∗∗ 13.50∗∗∗ 10.88∗∗∗ 12.24∗∗∗ 7.38∗∗ 13.91∗∗∗ 12.82∗∗∗ 12.98∗∗∗
t-stat (2.49) (4.71) (3.27) (4.27) (2.23) (3.41) (2.87) (3.39)

λS 269 6.57∗∗∗ 13.09∗∗∗ 10.83∗∗∗ 12.86∗∗∗ 8.04∗∗ 13.64∗∗∗ 12.90∗∗∗ 13.98∗∗∗
t-stat (2.75) (4.44) (3.19) (4.44) (2.46) (3.23) (2.80) (3.64)

λMF — 6.83∗∗∗ 9.69∗∗∗ 8.66∗∗∗ 8.60∗∗∗ 7.63∗∗ 10.80∗∗∗ 10.51∗∗ 9.71∗∗
t-stat (2.81) (3.25) (2.60) (2.85) (2.34) (2.59) (2.44) (2.48)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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with high average returns.
The second and third panels report the risk premia earned on the long side of each factor. On

paper, long-only value and momentum premia are quite large relative to the equity premium, with
gaps of 5%–6% depending on the choice of portfolio weighting and time period. These expected-
return improvements earned by tilting away from the market portfolio are reflected much less
strongly in mutual funds, however.

Table VII replaces long-only factors with tilt factors. Our conclusions are much the same as
above: HML# and UMD# suffer large implementation costs in practice regardless of time period
or portfolio weighting. Moreover the magnitude of these estimated costs is comparable to that
of the long-only factors in Table VI: real-world underperformance is robust to assumptions on
how funds implement the long side of anomalies. Focusing on the second and third panels delivers
statistical assessments of the cross-column comparisons of Table VI. Mutual funds earn a marginally
statistically significant premium on value tilts in the full sample and zero premium to factor tilts
for all other factors and sample periods. By contrast, stocks earn robust premia to value and
momentum tilts.

From both tables we conclude that the implementation costs of “long only” versions of standard
factors are significant and comparable to short-side costs. Real-world shorting frictions hence
explain as much as half of the high all-in implementation costs of value and momentum factors.
The high cost of shorting restrictions may explain the growing popularity of levered mutual funds,
e.g., “130/30” funds, for which these restrictions are less binding.

B. The Role of Investability Frictions

Implementation costs attenuate the returns to traded securities and motivate investors to depart
from prescribed factor strategies. Frictions that reduce the set of investment opportunities are
an important “shadow” implementation cost—analogous to the shadow price on a constraint on
which stocks can be included in a portfolio—faced by real-world investors and missed by existing
measures of costs. In this section we consider the role of security size in circumscribing mutual
funds’ investable universe. Security size is a natural candidate for explaining the performance gap
between on-paper and real-world factor investing because (1) the highest returns to HML exposure
are earned in the smallest stocks (Fama and French (2012), Israel and Moskowitz (2013)), and (2)
low-market capitalization securities are too small to accommodate meaningful investment by large
mutual funds.

The smallest stocks or “microcaps” present especially challenging environments for asset man-
agers because of their particularly low carrying capacities and high transaction costs. Perhaps
because of the challenges facing potential arbitrageurs in this space, the majority of academic
anomalies only exist in these “dusty corners” of the stock market (Hou, Xue, and Zhang (2017)).
To evaluate the effect of microcaps on our cost estimates, we exclude microcaps from our set of
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Table VII: Implementation Cost Estimates in Fama-MacBeth Regressions — Tilt Factors

Table reports Fama-MacBeth estimates of the compensation for long-only factor exposure for posi-
tive and negative beta stock portfolios (second panel), domestic equity mutual funds (third panel),
and their difference (top panel). Coefficients are the average cross-sectional slopes λ̄k across monthly
regressions of excess returns rit on time-series betas β̂#

ik,

rit =
∑
k

λSktβ̂
#
ik1i∈S +

∑
k

λMF
kt β̂#

ik1i∈MF + εit, t = 1, . . . , T,

where k indexes “tilt” versions of the Carhart (1997) factors—the excess return on the market,
and H, S, and U net of the market—and λ∆ is defined as λS − λMF . Stock portfolio sets are
described in Section III. All coefficients are annualized and reported in percent. Standard errors
are Newey-West with three lags. t statistics are reported in parentheses.

(a) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML# SMB# UMD# MKT HML# SMB# UMD#

λ∆ 100 -0.61∗ 3.17∗∗∗ 1.13∗ 3.70∗∗∗ -0.32 2.41∗∗∗ 0.64 2.72∗∗∗
t-stat (-1.94) (4.34) (1.77) (5.08) (-0.92) (3.39) (0.86) (3.09)

λ∆ 269 -0.29 1.89∗∗∗ 0.31 3.15∗∗∗ 0.18 1.11∗∗ -0.52 2.27∗∗∗
t-stat (-1.21) (3.06) (0.58) (4.81) (0.81) (2.36) (-0.91) (2.74)

λS 100 6.22∗∗∗ 6.03∗∗∗ 2.97∗ 5.47∗∗∗ 7.32∗∗ 5.58∗∗ 3.52 4.80∗∗∗
t-stat (2.59) (4.19) (1.94) (4.57) (2.24) (2.49) (1.64) (2.72)

λS 269 6.54∗∗∗ 4.75∗∗∗ 2.15 4.92∗∗∗ 7.82∗∗ 4.28∗ 2.36 4.35∗∗
t-stat (2.73) (3.28) (1.42) (4.18) (2.41) (1.85) (1.11) (2.54)

λMF — 6.83∗∗∗ 2.86∗ 1.83 1.77 7.63∗ 3.16 2.88 2.08
t-stat (2.81) (1.92) (1.17) (1.47) (2.34) (1.36) (1.34) (1.24)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML# SMB# UMD# MKT HML# SMB# UMD#

λ∆ 100 -0.83 4.65∗∗∗ 3.04∗∗∗ 4.47∗∗∗ -0.25 3.36∗∗∗ 2.56∗∗ 3.52∗∗∗
t-stat (-1.66) (5.56) (3.16) (5.92) (-0.43) (4.31) (2.18) (3.81)

λ∆ 269 -0.26 3.66∗∗∗ 2.43∗∗ 4.52∗∗∗ 0.41 2.43∗∗ 1.97 3.85∗∗∗
t-stat (-0.50) (3.97) (2.28) (6.33) (0.66) (2.55) (1.38) (4.34)

λS 100 6.00∗∗ 7.50∗∗∗ 4.88∗∗∗ 6.24∗∗∗ 7.38∗∗ 6.53∗∗∗ 5.44∗∗ 5.60∗∗∗
t-stat (2.49) (5.06) (2.75) (4.98) (2.23) (2.98) (2.23) (3.08)

λS 269 6.57∗∗∗ 6.52∗∗∗ 4.27∗∗ 6.29∗∗∗ 8.04∗∗ 5.60∗∗ 4.85∗ 5.93∗∗∗
t-stat (2.75) (4.00) (2.26) (4.82) (2.46) (2.27) (1.82) (3.23)

λMF — 6.83∗∗∗ 2.86∗ 1.83 1.77 7.63∗ 3.16 2.88 2.08
t-stat (2.81) (1.92) (1.17) (1.47) (2.34) (1.36) (1.34) (1.24)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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stock portfolios. We follow Fama and French (2008) and Hou, Xue, and Zhang (2017) in defining
microcaps as stocks with market capitalization less than the 20th percentile of NYSE market capi-
talization, and we implement this filter by dropping the smallest-size portfolios from double-sorted
size-value, size-beta, size-prior return, and size-Amihud portfolios. This exclusion eliminates a fifth
of the portfolios but only 3% of market capitalization (Fama and French (2008)).

Table VIII reports Fama-MacBeth estimates of factor premia on this set of stock portfolios.
We present only value-weighted results because we are interested in downweighting tiny stocks to
reflect the investable universe. Our main finding is that microcaps indeed explain some of the
measured performance attrition for value and momentum strategies, but not enough to close the
measured implementation gap. As a useful placebo, the gap on replicating performance on the
value-weighted market changes by at most a few basis points.

In the 1970–2016 sample, both value and momentum compensation are about 1% smaller in
the stock portfolios in which microcaps are excluded. This difference persists for value in the more
recent sample, echoing Fama and French (2012) and Israel and Moskowitz (2013), but it roughly
halves for momentum. Nevertheless, the performance gap between non-microcap stock portfolios
and mutual funds remains economically large and statistically robust. If mutual funds indeed
cannot invest in microcap stocks, this narrowing of the investable universe explains about one third
of the implementation gap for value and about one sixth of the implementation gap for momentum.

C. Tracking Error and the Performance of Factor Strategies

Mutual funds face a trade-off between following high-cost canonical factor strategies and devi-
ating from those strategies to capture the bulk of factor premia at lower costs. Benchmark-based
performance evaluation in particular pushes funds to mimic factor benchmarks despite the po-
tentially lower Sharpe ratios of doing (Basak and Pavlova (2013)). In this section we split our
sample into quintiles by Carhart four-factor R2s to evaluate whether variation in tracking error is
associated with factor strategy performance.

This split also serves a second function in combating bias in our implementation cost estimates
that arises from misspecifying mutual fund strategies. Bias occurs if incidental factor exposures
incurred by other activities are cross-sectionally correlated with mutual fund returns. For especially
highR2 values in the time-series regressions, the scope for omitted variable bias is small if coefficients
are stable across specifications, as they are in our study (Oster (2017)).

To perform this split, we run the time-series regressions fund-by-fund as before using the Carhart
(1997) model, and we sort funds into one of five equally-spaced bins at each date based on the R2 of
its time-series regression. Funds with high R2 have returns nearly spanned by the academic strate-
gies,25 and these funds have low tracking error and little scope for omitted strategies that might

25The top R2 quintile also includes many index funds (roughly 5% of observations in our sample). Because index
funds seek to replicate factors at the lowest possible cost, we expect factor compensation estimates for this quintile
to represent the best case achievable for passive or active mutual funds.
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Table VIII: Implementation Cost Estimates in Fama-MacBeth Regressions — Microcaps Excluded

Table reports Fama-MacBeth estimates of the compensation for factor exposure in value-weighted
stock portfolios in the baseline regressions (top panel) and regressions with liquidity principal
components (bottom panel). Coefficients are the average cross-sectional slopes λ̄k across monthly
regressions of excess returns rit on time-series betas β̂ik,

rit =
∑
k

λSktβ̂ik1i∈S +
∑
k

λMF
kt β̂ik1i∈MF + εit, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and λ∆ is defined as λS−λMF . First-stage regression
estimates in the second panel include these factors, the first principal component of market liquidity
proxies, and the first principal component of funding liquidity proxies. Liquidity proxies and stock
portfolio sets are described in Section III, with the important distinction that all portfolios with the
smallest market capitalization quintile are excluded in the NS = 80 specifications. All coefficients
are annualized and reported in percent. Standard errors are Newey-West with three lags. t statistics
are reported in parentheses.

(a) Baseline Specification

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 80 -0.37 2.85∗∗∗ 0.70 6.14∗∗∗ 0.10 2.06∗∗ -0.42 3.49∗∗
t-stat (-1.39) (3.84) (1.24) (4.66) (0.32) (2.44) (-0.61) (2.12)

λS 80 6.61∗∗∗ 5.47∗∗∗ 1.71 7.68∗∗∗ 7.88∗∗∗ 4.37 1.78 5.23
t-stat (2.74) (3.03) (1.07) (3.31) (2.40) (1.57) (0.80) (1.41)

λS 100 6.60∗∗∗ 6.43∗∗∗ 1.27 8.72∗∗∗ 7.67∗∗ 5.43∗ 1.96 6.01
t-stat (2.75) (3.51) (0.75) (3.74) (2.35) (1.93) (0.81) (1.60)

λMF – 6.98∗∗∗ 2.62 1.01 1.54 7.78∗∗ 2.31 2.20 1.73
t-stat (2.86) (1.51) (0.59) (0.63) (2.38) (0.83) (0.92) (0.45)
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) Liquidity PCs

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 80 -0.37 2.97∗∗∗ 0.55 6.42∗∗∗ 0.13 2.25∗∗∗ -0.69 4.55∗∗∗
t-stat (-1.34) (3.81) (0.97) (4.82) (0.4) (2.64) (-0.96) (2.65)

λS 80 6.63∗∗∗ 5.60∗∗∗ 1.45 7.70∗∗∗ 7.93∗∗ 4.34 1.53 5.31
t-stat (2.76) (3.10) (0.91) (3.31) (2.43) (1.56) (0.68) (1.43)

λS 100 6.55∗∗∗ 6.71∗∗∗ 1.26 8.77∗∗∗ 7.68∗∗ 5.38∗ 1.98 5.99
t-stat (2.74) (3.63) (0.74) (3.76) (2.37) (1.90) (0.82) (1.59)

λMF – 6.99∗∗∗ 2.64 0.90 1.28 7.80∗∗ 2.09 2.22 0.76
t-stat (2.87) (1.51) (0.53) (0.52) (2.41) (0.74) (0.92) (0.20)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01
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complicate the interpretations of λMF and λ∆. Conversely funds with lower R2 either (1) implement
academic strategies with greater discretion and/or tracking error or (2) implement strategies that
we cannot observe. We then construct cross-sectional mutual fund factor compensation estimates
for each R2 group as in Tables II–III.

Table IX presents results from the splits by explanatory power of the four-factor model on
the full 1970–2016 sample. The decomposition by R2 delivers two results related to how funds
implement asset pricing factors. First, perhaps unsurprisingly, funds that track factors more closely
are generally more efficient at earning factor premia. Performance differences across fund quintiles
are statistically significant for MKT , SMB, and UMD factors. This result is reversed for the
market factor, however. Funds with greater deviations from the academic factors typically achieve
greater returns to market beta. Small deviations from the CRSP market go a long way toward
improving returns: market exposure is compensated 41–81 basis points more in mutual funds that
track the four factors less well. This finding reinforces the importance of using flexible approaches
to measuring implementation costs that are robust to real-world departures from the academic
factors.

More importantly for our study, relative to the average mutual fund, funds with the highest R2s
achieve economically similar performance on market and value factors and somewhat higher per-
formance on size and momentum factors. Value premia are about 1% larger among the funds most
closely mimicking academic factors, and compensation for value exposure is significantly different
from zero at the 5% level for the highest-R2 quintile. Likewise, returns to momentum exposure for
this group are nearly triple those of the typical mutual fund, and they are statistically significant
with strength depending on specification. Even so, the funds that most closely track the four aca-
demic factors continue to significantly underperform the on-paper factors. The best-performing R2

segments for value see an implementation gap of 1%–2% relative to the stock portfolios, and the
momentum implementation gap for these funds is roughly half the on-paper momentum premium.

VI. Cost Estimates Across Funds and Time

A. Implementation Costs Across Funds

With the exception of the breakdown by four-factor R2s, our analysis thus far considers the
implementation costs of factor strategies for an average mutual fund, with no attention paid to
heterogeneous characteristics and costs. Variation in investors’ trading technologies may drive a
wedge between a typical asset manager and the marginal investor in an anomaly. By dividing
asset managers into groups we can learn whether factors are broadly (in)accessible or whether
they generate positive net-of-costs returns for a subset of managers. In this section, we briefly
demonstrate the utility of our cross-sectional approach for examining segments of asset managers.

Motivated by extensive work relating fund size to gross-of-fees performance (e.g., Berk and
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Green (2004), Pastor, Stambaugh, and Taylor (2015), and Berk and van Binsbergen (2015)), we
split fund groups into groups based on lagged total net assets (TNA). We then run our second-stage
cross-sectional regressions (Equation (2)) separately for each asset manager TNA group.26 We set
aside funds with less than $10 million in assets because selection into this group implies that the
fund has lost money (we retain observations only after funds reach $10 million in assets to avoid
incubation bias).

Table X presents results from these segmented regressions on the full 1970–2016 sample. As
in Tables II–III, mutual funds generally achieve returns to market factor exposure comparable
to those of on-paper stock portfolios. HML also earns positive compensation for most TNA
groups, but returns to HML are not statistically different from zero in both specifications, with
the possible exception of the mega-funds group. Point estimates for returns to SMB are positive for
all fund size groups excluding micro funds, but SMB compensation estimates are not statistically
distinguishable from zero or from each other.

Focusing on momentum, we estimate large differences in compensation across mutual fund size
categories, with the smallest funds earning 5%–6% more per unit momentum beta than the largest
funds. Notwithstanding the greater momentum-strategy performance of small funds, we nonetheless
continue to reject the hypothesis that these funds perform as well as on-paper stock portfolios.
We can also reject non-monotonicity of momentum compensation across size categories using the
bootstrap test of Patton and Timmermann (2010): we find momentum strategy performance is
significantly decreasing in fund size. This feature makes intuitive sense in that momentum is a high-
turnover strategy, and larger funds suffer greater market impact costs in implementing momentum
than smaller funds.

From this analysis we conclude that heterogeneity among asset managers is important when
considering the net-of-costs returns to momentum. When we focus only on small mutual funds,
net-of-costs compensation to momentum looks quite different from that of the average fund. Which
momentum premium is of greater interest hinges on whether the researcher evaluates a broad set
of firms, as in benchmarking applications, or marginal investors, as in discussions of market effi-
ciency. Intriguingly we find that the largest mutual funds earn the most negative compensation for
momentum exposure, suggesting that the firm examined in Frazzini, Israel, and Moskowitz (2015)
is exceptional, or that non-mutual fund asset managers have different compensation schedules for
factor exposure. More generally, our results reveal that the longstanding disagreement on the prof-
itability of momentum strategies likely arises in part because market-wide and single-firm analyses,
e.g., Lesmond, Schill, and Zhou (2004) and Frazzini, Israel, and Moskowitz (2015), respectively,
focus on different sets of institutions with different factor implementation technologies.

26Groups are assigned separately for each date with cutoffs in terms of December 2016 dollars. The micro-fund
group has TNAt < $10M and comprises 5.2% of the data. The small-fund group has $10M < TNAt < $50M and
comprises 22.8% of the data. The medium-fund group has $50M < TNAt < $250M and comprises 31.8% of the
data. The large-fund group has $250M < TNAt < $1B and comprises 22.5% of the data. The mega-fund group has
TNAt > $1B and comprises 17.7% of the data.

30



Ta
bl
e
X
:F

am
a-
M
ac
B
et
h
Sl
op

es
fo
r
St
oc
ks

an
d
M
ut
ua

lF
un

ds
—

Si
ze

Sp
lit
s

Ta
bl
e
re
po

rt
s
Fa

m
a-
M
ac
B
et
h
es
tim

at
es

of
th
e
co
m
pe

ns
at
io
n
fo
r
fa
ct
or

ex
po

su
re

fo
r
do

m
es
tic

eq
ui
ty

m
ut
ua

lf
un

ds
.
C
oe
ffi
ci
en
ts

ar
e
th
e
av
er
ag

e
cr
os
s-
se
ct
io
na

ls
lo
pe

s
λ̄
g k
ac
ro
ss

m
on

th
ly

re
gr
es
sio

ns
of

ex
ce
ss

re
tu
rn
s
r i
t
on

tim
e-
se
rie

s
be

ta
s
β̂
ik

fo
r
ea
ch

gr
ou

p
of

m
ut
ua

lf
un

ds
g
,

r i
t

=
∑ k

λ
M
F
,g

k
t

β̂
ik

+
ε i
t,
t

=
1,
..
.,
T
,
g

=
1,
..
.,

5,

w
he

re
k
in
de

xe
s
th
e
fo
ur

C
ar
ha

rt
(1
99

7)
fa
ct
or
s.

W
e
pa

rt
iti
on

m
ut
ua

lf
un

ds
in
to

fo
ur

gr
ou

ps
ba

se
d
on

on
e-
m
on

th
la
gg

ed
to
ta
l

ne
t
as
se
ts

(T
N
A
),

w
ith

T
N
A

cu
to
ffs

sp
ec
ifi
ed

in
D
ec
em

be
r
20

16
U
SD

.
T
he

m
ic
ro
-fu

nd
gr
ou

p
ha

s
T
N
A
t
<

$1
0M

,
th
e
sm

al
l-

fu
nd

gr
ou

p
ha

s
$1

0M
<
T
N
A
t
<

$5
0M

,
th
e
m
ed

iu
m
-fu

nd
gr
ou

p
ha

s
$5

0M
<
T
N
A
t
<

$2
50
M

,
th
e
la
rg
e-
fu
nd

gr
ou

p
ha

s
$2

50
M

<
T
N
A
t
<

$1
B
,a

nd
th
e
m
eg
a-
fu
nd

gr
ou

p
ha

s
T
N
A
t
>

$1
B
.
Fi
rs
t-
st
ag

e
re
gr
es
sio

n
es
tim

at
es

in
cl
ud

e
th
es
e
fa
ct
or
s
on

ly
(fi
rs
t
co
lu
m
ns
)
an

d
th
e
fir
st

pr
in
ci
pa

lc
om

po
ne

nt
of

m
ar
ke
t
an

d
fu
nd

in
g
liq

ui
di
ty

pr
ox
ie
s
(s
ec
on

d
co
lu
m
ns
).

Li
qu

id
ity

pr
ox
ie
s
an

d
st
oc
k
po

rt
fo
lio

se
ts

ar
e
de

sc
rib

ed
in

Se
ct
io
n
II
I.
λ

∆ sm
a
ll
is
th
e
di
ffe

re
nc

e
be

tw
ee
n
co
m
pe

ns
at
io
n
fo
r
fa
ct
or

ex
po

su
re

be
tw

ee
n
th
e
26

9
st
oc
k
po

rt
fo
lio

sa
nd

th
e
sm

al
l-f
un

d
gr
ou

p.
A
ll
co
effi

ci
en
ts

ar
e
an

nu
al
iz
ed

an
d
re
po

rt
ed

in
pe

rc
en
t.

St
an

da
rd

er
ro
rs

ar
e
N
ew

ey
-W

es
t

w
ith

th
re
e
la
gs
.
t
st
at
ist

ic
s
ar
e
re
po

rt
ed

in
pa

re
nt
he

se
s.

T
he

fin
al

th
re
e
ro
w
s
re
po

rt
th
e
p
va
lu
es

of
F

te
st
s
of

co
effi

ci
en
ts

be
in
g

jo
in
tly

di
ffe

re
nt

fr
om

ze
ro
,o

fF
te
st
s
of

eq
ua

lit
y
of

co
effi

ci
en
ts
,a

nd
of

Pa
tt
on

an
d
T
im

m
er
m
an

n
(2
01

0)
’s
te
st

of
no

n-
m
on

ot
on

ic
ity

of
co
effi

ci
en
ts
.

N
o
Li
qu

id
it
y
P
ro
xi
es

Li
qu

id
it
y
P
C
s

M
K
T

H
M
L

S
M
B

U
M
D

M
K
T

H
M
L

S
M
B

U
M
D

λ
M
F

m
eg
a

6.
66
∗∗
∗

3.
11
∗

1.
89

-2
.5
3

6.
67
∗∗
∗

3.
15
∗

1.
94

-2
.7
7

t-
st
at

(2
.7
4)

(1
.6
7)

(1
.0
5)

(-
0.
75

)
(2
.7
5)

(1
.6
6)

(1
.0
8)

(-
0.
84

)
λ
M
F

la
r
g
e

6.
85
∗∗
∗

2.
78

0.
90

0.
86

6.
86
∗∗
∗

2.
83

0.
91

0.
04

t-
st
at

(2
.7
8)

(1
.5
4)

(0
.5
2)

(0
.3
1)

(2
.7
9)

(1
.5
4)

(0
.5
3)

(0
.0
2)

λ
M
F

m
ed
iu
m

7.
02
∗∗
∗

2.
45

0.
90

2.
36

7.
00
∗∗
∗

2.
45

0.
96

1.
76

t-
st
at

(2
.8
7)

(1
.4
1)

(0
.5
2)

(0
.9
2)

(2
.8
6)

(1
.3
7)

(0
.5
5)

(0
.6
8)

λ
M
F

sm
a
ll

7.
36
∗∗
∗

2.
94

1.
20

3.
40

7.
30
∗∗
∗

2.
55

1.
37

2.
62

t-
st
at

(2
.9
8)

(1
.6
4)

(0
.7
2)

(1
.2
5)

(2
.9
6)

(1
.3
7)

(0
.8
2)

(0
.9
7)

λ
M
F

m
ic
r
o

7.
18
∗∗
∗

2.
60

-2
.6
8

-0
.2
4

7.
18
∗∗
∗

2.
54

-3
.2
9

-0
.0
4

t-
st
at

(2
.9
4)

(1
.1
1)

(-
1.
32

)
(-
0.
06

)
(2
.9
2)

(1
.1
1)

(-
1.
59

)
(-
0.
01

)
λ

∆ sm
a
ll

-0
.5
9

2.
26
∗∗

-0
.2
6

5.
45
∗∗
∗

-0
.5
3

2.
92
∗∗

-0
.4
8

6.
22
∗∗
∗

t-
st
at

(-
1.
59

)
(2
.2
2)

(-
0.
34

)
(3
.3
2)

(-
1.
4)

(2
.5
8)

(-
0.
62

)
(3
.7
6)

λ
M
F

6.
98
∗∗
∗

2.
62

1.
01

1.
54

6.
99
∗∗
∗

2.
64

0.
90

1.
28

t-
st
at

(2
.8
6)

(1
.5
1)

(0
.5
9)

(0
.6
3)

(2
.8
7)

(1
.5
1)

(0
.5
3)

(0
.5
2)

λ
=

0
0.
01
∗∗
∗

0.
46

0.
56

0.
11

0.
01
∗∗

0.
52

0.
52

0.
14

λ
=

0.
13

0.
81

0.
46

0.
13

0.
20

0.
83

0.
44

0.
13

∆
λ
��≶

0
0.
01
∗∗
∗

0.
28

0.
20

0.
01
∗∗
∗

0.
01
∗∗
∗

0.
06
∗

0.
28

0.
01
∗∗
∗

∗ p
<
.1

0,
∗∗
p
<
.0

5,
∗∗
∗
p
<
.0

1

31



B. Implementation Costs Over Time

The preceding analysis considers how implementation costs vary in the cross-section. In this
section, we investigate determinants of time-series variation in implementation costs. Figure II
plots the log return of the “on-paper” factor-mimicking portfolios minus the log return of the
corresponding mutual-fund factor-mimicking portfolio. To do this we invoke the interpretation of
Fama-MacBeth coefficients λkt as the date t return on a portfolio with a unit loading on factor k
and zero loading on all other factors. Our series is the centered rolling difference in performance,

yk (t) =
t+6∑
s=t−6

log
(
1 + λSkt

)
− log

(
1 + λMF

kt

)
≈

t+6∑
s=t−6

λ∆
kt. (9)

The four panels of Figure II depict factor implementation costs for each set of liquidity prox-
ies using the 269 stock portfolios as the on-paper return benchmark. Although magnitudes vary
slightly across specifications, the two slope series are highly similar for each factor. The imple-
mentation gap is clearly rank-ordered as UMD, HML, SMB, and MKT , with large and positive
implementation gaps for UMD and HML, no implementation gap for SMB, and a small negative
implementation gap for MKT . The difference series are also affected by macroeconomic events.
All four implementation gaps fall before the end of the tech bubble of the late 1990s and rise during
the subsequent crash and the Great Recession of 2007–2009. One interpretation of this feature is
that factor returns are most accessible by investment managers when market liquidity is abundant
and funding constraints are unlikely to be binding.

Perhaps the most intriguing feature of Figure II is the absence of a trend in strategy imple-
mentation costs. This feature contrasts with well-documented secular declines in bid-ask spreads
and commissions since 1970 (e.g., Jones (2002) and Corwin and Schultz (2012)). An equilibrium
perspective on the size of the asset management sector suggests why we instead obtain a stationary
time series.27 As trading technology improves and equity intermediation becomes more competi-
tive, the cost of trading the first dollar of a factor strategy declines. Perceived sector-level alphas
increase for factor investors, and aggregate inflows attract new entrants (as in Figure I) or con-
tribute to the growth of existing fund managers (as in Berk and Green (2004)). These inflows
increase the scale of factor investing, which in turn increases non-proportional transactions costs
such as price impact. In equilibrium this process continues until factor alphas fall to zero for the
marginal dollar. Consequently the average dollar invested in factor strategies may see no reduction
in implementation costs despite improvements in trading technology.

This conjectured equilibrium adjustment mechanism hinges on non-proportional trading costs,
but it generates a testable prediction that industry-level inflows increase implementation costs of
factor strategies. We analyze this relationship between implementation costs, flows, and illiquidity

27Augmented Dickey-Fuller tests reject the null of a unit root in implementation costs at the 0.1% significance
level in all series.
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Figure II: Rolling Performance Difference Between Mutual Funds and Stocks (β = 1)

Figures plot the rolling difference between log Fama-MacBeth cross-sectional slopes for stock port-
folios (S) and mutual funds (MF ). Each series yk (t) equals the centered rolling difference

yk (t) =
t+6∑
s=t−6

log
(
1 + λSkt

)
− log

(
1 + λMF

kt

)
,

where λkt are cross-sectional slopes from monthly regressions of excess returns rit on time-series
betas β̂ik. Each figure plots differences in slopes (1) when no liquidity proxies are included in the
time-series regressions and (2) when the first principal component of market liquidity proxies and of
funding liquidity proxies are included. Stock portfolio slopes are estimated using all 269 portfolios
described in Section III. Solid lines depict averages of series means. NBER recessions are in gray.

(a) MKT Costs (b) HML Costs

(c) SMB Costs (d) UMD Costs
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more formally by examining relating the cost time series with liquidity and fund flow proxies. We
start by constructing illiquidity proxies as the first principal components of market liquidity proxies
and of funding liquidity proxies, as described in Section IV.C. We also construct flow variables to
capture costs associated with fund inflows and outflows. Fund flows are the component of asset
growth not explained by returns,

flowit = TNAit
TNAi,t−1

− (1 +Rit) . (10)

We summarize the distribution of flows with its first and second cross-sectional moments—the cross-
sectional average fund flow (MFLOW ) and the cross-sectional dispersion in fund flows (DFLOW ).
In addition to speaking to returns to scale, flow variables are a natural candidate for explaining
trading costs because large flows into the mutual fund sector or reshuffling of assets among mutual
funds generates liquidity demands. To enhance interpretability, we normalize all right-hand-side
variables to have mean zero and standard deviation one.

Table XI reports results from a regression of λ∆
kt on the liquidity and fund flow proxies,

λ∆
kt = α+ βMFLOWMFLOW + βDFLOWDFLOW + βMLPCML + βFLPCFL + εkt. (11)

We report only value-weighted results for the 269 stock portfolios because relations between costs
and liquidity proxies are quite similar for value-weighted and equal-weighted stock portfolios and
for 100 and 269 stock portfolios.

We draw four lessons from Table XI. First, the time-invariant component of implementation
costs from Equation (4) is large and positive for these factors, as evidenced by the constant terms
for HML and UMD. Second, focusing on flows, average inflows are weakly associated with higher
implementation costs for value and momentum factors, and cross-sectional dispersion in flows is
weakly associated with lower implementation costs for these factors. We find no flow-cost relations
for market and size factors, as is expected because these costs are small in magnitude to begin
with. We interpret these relations as suggestive evidence that (1) inflows are expensive from a
transactions-cost standpoint for funds trading value and momentum strategies, thereby contributing
to diseconomies of scale and stationary average implementation costs, and (2) reallocation of funds
within the mutual fund sector may increase liquidity trading (in a Kyle (1985) sense), thereby
reducing average transactions costs for value and momentum traders. Third, focusing on illiquidity
principal components, market illiquidity increases implementation costs, and particularly so for
value and momentum strategies. Intuitively trading becomes more expensive when market liquidity
is low. Fourth, funding illiquidity decreases implementation costs (again most strongly for HML

and UMD). We conjecture that mutual funds are insulated from funding liquidity shocks that
affect highly levered institutional asset managers like hedge funds (Sadka (2010) and Boyson,
Stahel, and Stulz (2010), among others, discuss hedge funds’ particular vulnerability to funding
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liquidity shocks), and hence mutual funds can acquire the ingredients of factor strategies from
distressed asset managers at a discount during times of strained funding liquidity.

VII. Conclusion

Existing methods for assessing the implementation costs of financial market anomalies use
proprietary trading data for single firms or market-wide trading data combined with parametric
transactions cost models. We propose an extension of Fama-MacBeth regression to estimate im-
plementation costs using only returns data from stocks and mutual funds. Doing so frees us from
the requirement of specifying factor trading strategies and transaction costs models that may be
incomplete or misspecified. Moreover, the ready availability of returns data for a large universe
of investment managers enables detailed investigation of factor implementation costs in the cross-
section and over time.

We demonstrate that mutual funds are generally poorly compensated for exposure to some
common risk factors. Our estimates based on Fama-MacBeth regressions imply that implementation
costs erode almost the entirety of the return to value and momentum strategies for typical mutual
funds, but have little effect on market and size factor strategies. Taken together, these results paint
a sobering picture of the real-world returns to the most important financial market anomalies. These
costs derive in part from institutional constraints often ignored in studies of academic anomalies,
such as shorting and investability constraints, but even these frictions do not fully explain high
observed costs. We find suggestive evidence that unprofitable deviations from standard academic
strategies and greater market impact associated with fund growth contribute to the remainder.

Sample splits reveal considerable heterogeneity in implementation costs among funds. Using a
very different estimation method and data set, our results agree with Lesmond, Schill, and Zhou
(2004)’s analysis that momentum profits in particular may be out of reach for a typical asset
manager. However, we find smaller funds and funds that better track academic factors tend to
perform significantly better in earning factor premia than larger funds and funds with greater
tracking error. In this respect markets may be efficient from the perspective of an average mutual
fund, even if some segments of the mutual fund space see a very different picture of risk and return
net-of-costs. Analyses using proprietary data from single funds cannot reveal such heterogeneity.

The nonparametric, market-based method for estimating all-in implementation costs proposed
in this paper can be viewed as an independent check on prior work because it differs in both
estimation strategy and data employed. The assumptions underlying our approach are few and
transparent, and our stark findings on realizable factor premia obtain under a wide range of al-
ternative specifications. While we do not anticipate resolving a decades-old dispute on whether
momentum is accessible to typical investors, our approach forces a conversation about the palata-
bility of assumptions on representativeness, price impact, and the like made in existing work.
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A. Mutual Fund Filters

We clean the CRSP mutual fund database at the individual fund and fund group levels. We
first clean at the lowest level of aggregation to deal with missing and erroneous data, and then we
filter our sample based on fund group-level information.

Cleaning Procedures at the Fund Level We first flag fund-dates with reporting frequencies
less than monthly in the monthly returns file (6,526,393 observations). As discussed by Elton, Gru-
ber, and Blake (2001) and Fama and French (2010), about 15% of funds before 1983 report returns
only annually, and we mark as missing the fund returns for which neither adjacent month has a
non-zero and non-missing return. These annual returns comprise 1.71% of fund-month observations.

Next we construct current and lagged total net asset (TNA) values for value-weighting fund
returns within and across fund groups. Nearly a tenth of total net asset (TNA) values are undefined,
and we interpolate TNA values to avoid discarding such a large fraction of the data. Before
interpolating, we flag as missing invalid TNA values that arise because of recording errors or
bottom coding. As noted in the CRSP mutual fund database documentation, entries of $100,000
denote TNAs of less than or equal to this value. Although not documented, entries of $1,000 seem
to serve a similar role. We eliminate bottom-coded TNAs by setting to missing values less than
or equal to $100,000 USD. Likewise, we set to missing TNA values exceeding $1 trillion USD, as
no single fund has ever reached this value. Imposing these filters, 14.9% of TNA observations are
flagged as missing.

We interpolate TNAs in three steps. First, we compute a “predicted” TNA by multiplying
the last available TNA value by cumulative returns since that date. This predicted TNA value
misses inflows and outflows from the fund. Second, when available, we reconcile predicted TNAs
and the next filled TNA observation. The ratio of true TNA to predicted TNA (minus one) is a
discrepancy associated with fund inflows or outflows. We assume flows are constant between known
TNA values, and we multiply predicted TNA by (1 + discrepancy)s/∆t, where s is the number of
months since the last known TNA value and ∆t is the number of months between TNA values.
We assume a discrepancy of zero if there is no next known TNA. In the third step we run the first
and second steps backward to use return data to fill in TNAs before the first reported TNA value.
Given the interpolated values, we again set as missing any TNA values smaller than $100,000 or
greater than $1 trillion. The filling and cleaning procedures reduce the number of missing TNA
values to 2.8% of the data.

Share classes differ from one another in their fee structures, and we account for this variation
before aggregating across share classes within a fund. We convert net returns to gross returns
by adding to net returns the annual expense ratio divided by 12, following Fama and French
(2010). The fund summary file has missing or non-positive expense ratios for 16.9% of observations,
however, and we take several steps to fill in the missing data. First, as before, we fill missing expense
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ratios with the nearest observation with a non-missing value within each CRSP fund number group.
This operation reduces the number of missing expense ratios to 8.4% of the summary data. We then
merge the monthly return data with the summary data by fund number and calendar quarter. This
merge assigns expense ratios to 76.2% of fund-month observations. For unmerged observations,
we merge again on fund number and year, where we take the average expense ratio within the
fund number-year in the fund summary file. This operation boosts the number of fund-month
observations with an expense ratio to 88.5% of the data or 5,774,820 observations. We then drop
the 89 observations with expense ratios exceeding 50% as these are almost certainly data errors.

We next filter out extreme return observations resulting from data errors. For example, we
do not wish to include the recorded return of 533% on the Deutsche Equity 500 Index Fund
in September 1997. Berk and van Binsbergen (2015) and Pastor, Stambaugh, and Taylor (2015)
address these errors in part using external Bloomberg and Morningstar databases. We take a simpler
approach to eliminate errors. We drop the 23 observations with reported returns exceeding one (i.e.,
100%) in absolute value. This approach is inspired by the shape of the tail of extreme returns in the
data depicted in Figure A.I: the frequency of extreme returns decays roughly exponentially until
|r| = 100%, with a smattering of randomly spaced returns beyond this value. These observations
appear to come from a different distribution, and for this reason, we classify them as likely errors.

Because our analysis concerns mutual funds, we filter out exchange-traded funds (ETFs),
exchange-traded notes (ETNs), and variable annuity underlying (VAU) funds. To do this, we
discard any observations for which et_flag indicates an ETF or ETN or vau_fund indicates a VAU
at any time in a fund’s life. These exclusions total 9.1% of observations.

Aggregation into Fund Groups Having accounted for the salient variation across share classes,
we next identify share classes of the same fund. As a preliminary step, we fill missing fund names
using the nearest observation with a non-missing fund name within each CRSP fund number group.
Of the 1,859,702 observations in the fund summary file, we assign fund names for 19,460 observations
and remove 242 observations without recoverable names. We then repeat this procedure for missing
fund tickers. This matching step assigns 116,238 of the 274,875 observations with missing tickers.
By contrast with observations missing names, we retain observations with missing tickers.

We then follow almost verbatim the fund class grouping procedure of Berk and van Binsbergen
(2015) and Pastor, Stambaugh, and Taylor (2015). Their procedure consists of two steps:

1. We identify share classes following three mutually exclusive rules. First, if the CRSP fund
name contains a semicolon and the phrase after the last semicolon does not contain a forward
slash, we retain the fund name prior to the last semicolon as the fund group name. Second,
if the CRSP fund name contains a forward slash, and the entire phrase after the last forward
slash does not contain a space or a semicolon, we use the word prior to the last forward slash
as the fund group name. Third, if neither rule applies, we assume that the CRSP fund name
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Figure A.I: Distribution of Log Fund Returns

Figure plots the distribution of the log of absolute monthly mutual fund returns. We truncate the
plot to −1 on the left to maintain resolution on the extreme returns on the right. The dashed line
represents of cutoff at |r| = 100%.
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does not include a share class.

We make a minor adjustment to their methodology before applying these rules. Although
handling semicolons is straightforward, forward slashes—the other class-name delimiter used
in CRSP—require more care. For example, fund names include “Franklin/Templeton” and
“M/M” (money market), so “/” does not serve only as a delimiter, and the absence of a space
does not guarantee that the subsequent string is a share class. So as a preliminary step, we
replace forward slashes in T/F, T/E, M/M, L/S, Small/Mid, Long/Short, S/T, and L/T with
backslashes in fund names.

2. We define equivalent funds as those sharing an adjusted name or a ticker symbol. To do so,
we iteratively build equivalence classes of funds with equivalent names and/or ticker symbols.
Because equivalence is transitive, a pair of funds that shares a name, and another fund that
shares a ticker with the second fund, are all considered to be of the same group.

This mapping reduces the 61,734 surviving unique fund IDs in the CRSP monthly returns file to
23,613 unique fund groups. Of the 6,522,095 observations in the monthly return file, only 4,298 of
these are not assigned a fund group, and these observations are dropped.
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Cleaning Procedures at the Fund Group Level We construct fund group returns and total
net assets by taking a weighted average of returns across component fund IDs. The return weights
are one-month lagged TNAs. We retain observations for which the lagged TNA is undefined but the
fund group only has one fund ID, that is, the one fund ID has an effective weight of 100%. Likewise,
fund group TNAs are the sum of current TNA values across component fund IDs. Aggregating
funds across share classes delivers 2,244,101 monthly fund-group observations.

As Fama and French (2010) note, “incubation bias arises because funds typically open to the
public—and their pre-release returns are included in mutual fund databases—only if the returns
turn out to be attractive.” We follow their approach to countering incubation bias by keeping
observations only after a fund group achieves a TNA of at least $10 million (in December 2016
dollars).28 We retain data from funds that later drop below this threshold to avoid introducing
a selection bias. Dropping fund groups that never achieve a $10 million TNA eliminates 2.3% of
fund group-month observations. Dropping observations from potential incubation periods before
the $10 million threshold is achieved eliminates another 3.9% of the sample.

Next, we filter fund groups based on fund name and objective. We first exclude all funds with
names containing ETF, ETN, exchange-traded fund, exchange traded fund, exchange-traded note,
exchange traded note, iShares, and PowerShares (not case sensitive) as a redundant filter on top of
the CRSP-based ETF/ETN filter. These exclusions eliminate 3,006 observations. We then exclude
any funds with names that have clear international or non-equity connotations: international, intl,
bond, emerging, frontier, rate, fixed income, commodity, oil, gold, metal, world, global, China,
Europe, Japan, real estate, absolute return, government, exchange, euro, India, Israel, treasury,
Australia, Asia, pacific, money, cash, yield, U.K., UK, kingdom, municipal, Ireland, LIBOR, govt,
obligation, money, cash, yield, mm, m/m, diversified (but not diversified equity), and short term
(not case sensitive). This filter complements our requirement that a fund have a domestic equity
“ED” CRSP objective code.29 These filters reduce the number of valid funds from 12,691 to 4,282,
and the corresponding number of non-missing return observations decreases to 740,899 for the entire
December 1961 to December 2016 CRSP mutual fund database.

Lastly, we restrict the set of funds to those with at least two years of monthly data in our
1970–2016 sample period. This filter reduces our sample to 4,267 mutual funds with 724,995 non-
missing return observations. Summary statistics for this sample are reported in Table I.

B. Bias of Symmetric Fama-MacBeth Regressions with General hit

Section IV.C implements an asymmetric Fama-MacBeth regression in which the first stage
includes liquidity proxies, and the second stage does not. If instead we were to also include the

28Our inflation index is the Consumer Price Index for All Urban Consumers (CPIAUCSL) series provided by the
Federal Reserve Bank of St. Louis’ FRED database.

29The CRSP objective code unifies Wiesenberger objective codes for 1962–1993 data, Strategic Insight objective
codes for 1993–1998 data, and Lipper objective codes for 1998–2016 data.
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loadings on the liquidity proxies in Equation (2), the second-stage regression becomes

rit =
∑
k

λSktβ̂ik1i∈S +
∑
k

λMF
kt β̂ik1i∈MF +

∑
l

λSltγ̂il1i∈S +
∑
l

λMF
lt γ̂il1i∈MF + εit. t = 1, . . . , T. (12)

From the conjectured return process of Equation (5), λ̂St = λSt , λ̂∆
kt = η̄ + cov((ηi−η̄)βi,βi)

var(βi) , and
λ̂∆
lt = ηlt. The problem with this approach is that the λ̂∆

lt terms absorb the time-varying part of
ηit, so we can no longer cleanly attribute time-varying costs to each return factor. Moreover the
logic of mutual funds scaling down strategies in the face of high costs applies to ηit rather than to
ηi.

To resolve the first issue we need to decompose ηst into factor-specific parts. The sum of all
time-varying costs is

TV Cit ≡
∑
l

ηltγil =
∑
l

ηlt

(∑
k

γiklβik

)
. (13)

Regressing total time-varying costs on βis decomposes costs into factor-specific time-varying parts,

TV Cit =
∑
t

∑
k

ηktβik1t + εit. (14)

This regression can be interpreted as projecting time-varying liquidity costs onto the factor-exposure
space. However, this rotation is imperfect because of cross-sectional variation in γis. To see why
dispersion in γi is problematic, consider a single coefficient estimate in a one-return factor case of
Equation (14),

η̂t = cov (
∑
l ηltγil, βi)

cov (βi)
=
∑
l

ηltγ̄l +
∑
s

cov (βiηlt (γil − γ̄l) , βi)
cov (βi)

. (15)

The first term represents the average exposure to liquidity factors multiplied by the factors’ time-t
realizations. This is the term of interest, but instead we identify this term plus a cross-sectional
bias term.

Focusing on the bias for each l, we might expect higher-than-average cost-factor sensitivities
γil > γ̄l to be associated with lower betas if firms are risk averse. Although we would expect betas
to be negatively associated with total costs per unit of risk exposure ηit, it is not clear what relation
the time-varying component alone should have with betas. Because of this ambiguous sign and the
additional complexity of this approach, it is preferable not to include the liquidity exposures in the
cross-sectional regression step.
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C. Spanning Variation in η Using Many Liquidity Proxies

Including more covariates increases the likelihood that we span variation in implementation
costs, ηit, by including all salient liquidity proxies. At the same time, including additional highly
correlated cost proxies may overfit the first-stage regression and deliver nonsensical cross-sectional
slopes in the second stage.

Sparse regression techniques offer a solution to this challenge. We supplement the standard
first-stage regression with a Lasso or l1-penalized regression (Tibshirani (1994)). We augment the
least-squares minimization problem in the time-series regressions with additional terms to penalize
liquidity coefficients,

min
β,γ̃

1
Ti

∑
t

(
rit −

∑
k

fktβik −
∑
l

η̃ltγ̃il

)2

+ κ

(∑
k

ωk |βik|+
∑
l

ωl |γ̃il|
)
, (16)

where κ represents a penalty term for coefficients different from zero, and ωk and ωl represent
additional relative penalties explained below. The problem reduces to least squares when κ =
0; otherwise, liquidity coefficients are compressed toward zero. Note that we do not require a
penalization in the cross-sectional step because the second-stage regression omits liquidity proxies.
As before, we normalize all liquidity proxies to give them similar scales and an equal chance of
entering the Lasso regression.30

Lasso simultaneously prevents overfitting in the time-series regressions by shrinking coefficients
and selects covariates by zeroing out coefficients that would otherwise be close to zero. Both
features facilitate the use of many liquidity proxies even when a mutual fund is relatively short-
lived. Moreover, we no longer need to choose which measure(s) best approximate the costs faced
by each fund, and indeed, different liquidity measures may be more salient for different mutual
funds. First-stage penalization also knocks out spurious strategy loadings for funds that take on
risk exposures unintentionally—a small non-zero loading taken en route to implementing a different
strategy will be zeroed out.

The original Lasso implementation sets ωk = ωl = 1 for all k and l. Unfortunately Lasso is not
guaranteed to deliver consistent estimates of β and γ, and it does not have the “oracle property”
by which the variable selection step identifies the correct model and estimates converge at the
optimal rate. By contrast, Zou (2006)’s adaptive Lasso has these desirable features, which enables
us to construct confidence intervals for cross-sectional slopes as though the first-stage regression
were OLS. Adaptive Lasso differs from Lasso in placing higher penalties on parameters with little
explanatory power by setting ω =

∣∣∣β̂∣∣∣−γ . Our penalization weights use OLS β̂s (as in Zou (2006))
and a penalty exponent of γ = 1.

The obvious concern when using Lasso is the selection of the penalization parameter κ. Follow-
30We interpolate missing elements of the VXO/TED series using their matrix-completed values φ′VXOgML and

φ′TEDgFL from the PCA-ALS procedure described in Footnote 17.
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ing standard practice (e.g., Bühlmann and van de Geer (2011), Hastie, Tibshirani, and Wainwright
(2015)), we use k-fold cross-validation to select κ. Cross-validation works as follows. First, select
a candidate value of κm and partition the sample into k equal “folds”; in our case, we choose the
MATLAB default of k = 10. Next, for each fold, estimate the model on the set difference of the full
sample and the partition. Then calculate the mean-squared error (MSE) of the estimated model
on the fold that was set aside. This procedure provides k pseudo-out-of-sample (POOS) MSEs as
a function of κm. Finally, repeat this procedure for a range of κm, and select κ as the value κm
that maximizes the average POOS MSE. Intuitively this process tames overfitting by selecting the
model with the best out-of-sample predictive properties.31

Table A.I presents results using the adaptive Lasso first stage described by Equation (16).
Most importantly, the coefficients on λ∆ are of similar size and statistical significance as they are
in the preceding two tables. Using the adaptive Lasso results in one key change from Table III,
however: the point estimate for UMD compensation for mutual funds becomes negligible in the
full sample and negative in the recent sample. This feature is consistent with mutual funds earning
compensation for momentum exposure only to the extent that momentum also embeds liquidity risk.
By including a rich set of liquidity and liquidity risk proxies rather than two principal components,
we allow this source of compensation to be spanned in the first stage, thereby effectively kicking
out UMD as a compensated factor for mutual funds.

D. Matched Pairs Estimates of Implementation Costs

Our cross-sectional approach compares the return compensation for an incremental unit of risk
exposure taken in on-paper portfolios versus in mutual funds. Such an approach does not address
whether mutual funds achieve more favorable risk-reward trade-offs for investments in stocks with
high book-to-market ratios, small size, or high prior returns. To answer this question, we consider
the building blocks for many tradeable return factors in academia—long-short portfolios implied
by characteristic sorts—and conduct a matched pairs analysis of characteristic-sorted stocks and
matched mutual funds.

Our analysis is similar in spirit to Daniel, Grinblatt, Titman, and Wermers (1997), who ex-
amine the origins of mutual fund performance by comparing mutual fund returns against those of
characteristic-matched portfolios of stocks. Rather than using holdings data to build and match
with benchmark portfolios, we use a formal matched pairs design to directly compare mutual funds
and “high-characteristic” stocks with similar risk attributes. This approach has the advantage of

31Remarkably, Chetverikov, Liao, and Chernozhukov (2017) demonstrate that time-series betas estimated using
the cross-validated Lasso converge to the true betas at rate

√
n, up to a negligible log term. Because the convergence

rate is comparable to that of OLS, using (adaptive) Lasso in the first stage does not exacerbate the errors-in-variables
problem endemic to Fama-MacBeth regression. We therefore follow standard practice in taking betas as “known”
inputs into the Fama-MacBeth cross-sectional regressions and adjusting standard errors for heteroskedasticity and
serial correlation by Newey-West.
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Table A.I: Implementation Cost Estimates in Fama-MacBeth Regressions — Liquidity Lasso

Table reports Fama-MacBeth estimates of the compensation for factor exposure for stock portfo-
lios (second panel), domestic equity mutual funds (third panel), and their difference (top panel).
Coefficients are the average cross-sectional slopes λ̄k across monthly regressions of excess returns
rit on time-series betas β̂ik,

rit =
∑
k

λSktβ̂ik1i∈S +
∑
k

λMF
kt β̂ik1i∈MF + εit, t = 1, . . . , T,

where k indexes the four Carhart (1997) factors and λ∆ is defined as λS−λMF . First-stage regression
estimates include these factors and all market and funding liquidity proxies in an adaptive Lasso
regression with portfolio-specific penalty parameters chosen by 10-fold cross validation. Liquidity
proxies and stock portfolio sets are described in Section III. All coefficients are annualized and
reported in percent. Standard errors are Newey-West with three lags. t statistics are in parentheses.

(a) Value-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 100 -0.22 4.97∗∗∗ 0.09 8.71∗∗∗ -0.02 3.85∗∗∗ -0.36 6.67∗∗∗
t-stat (-0.71) (6.16) (0.14) (6.14) (-0.06) (4.17) (-0.42) (3.48)

λ∆ 269 -0.06 3.71∗∗∗ -0.30 8.57∗∗∗ 0.33 2.93∗∗∗ -1.13 7.18∗∗∗
t-stat (-0.24) (4.88) (-0.54) (6.14) (1.32) (4.10) (-1.56) (3.74)

λS 100 6.70∗∗∗ 6.96∗∗∗ 1.11 8.61∗∗∗ 7.76∗∗ 5.34∗ 2.05 5.88
t-stat (2.80) (3.64) (0.64) (3.67) (2.39) (1.80) (0.83) (1.56)

λS 269 6.86∗∗∗ 5.70∗∗∗ 0.72 8.47∗∗∗ 8.10∗∗ 4.43 1.27 6.38∗
t-stat (2.86) (2.99) (0.42) (3.60) (2.50) (1.43) (0.52) (1.70)

λMF — 6.92∗∗ 1.99 1.02 -0.10 7.78∗∗ 1.50 2.41 -0.79
t-stat (2.83) (1.01) (0.58) (-0.04) (2.39) (0.48) (0.97) (-0.19)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) Equal-Weighted Stock Portfolios

1970 – 2016 1993 – 2016
NS MKT HML SMB UMD MKT HML SMB UMD

λ∆ 100 -0.27 5.15∗∗∗ 2.64∗∗∗ 8.26∗∗∗ 0.31 2.68∗∗ 2.22 6.05∗∗∗
t-stat (-0.58) (5.92) (2.65) (5.68) (0.51) (2.26) (1.61) (2.99)

λ∆ 269 0.26 4.91∗∗∗ 2.50∗∗ 9.86∗∗∗ 1.07 2.03∗ 1.99 7.69∗∗∗
t-stat (0.5) (4.92) (2.26) (6.35) (1.60) (1.72) (1.34) (3.48)

λS 100 6.65∗∗∗ 7.14∗∗∗ 3.66∗ 8.16∗∗∗ 8.09∗∗ 4.17 4.62 5.26
t-stat (2.77) (3.69) (1.85) (3.46) (2.49) (1.43) (1.65) (1.38)

λS 269 7.18∗∗∗ 6.90∗∗∗ 3.51∗ 9.76∗∗∗ 8.85∗∗∗ 3.52 4.40 6.89∗
t-stat (3.01) (3.25) (1.70) (4.03) (2.75) (1.10) (1.52) (1.76)

λMF — 6.92∗∗∗ 1.99 1.02 -0.10 7.78∗∗ 1.50 2.41 -0.79
t-stat (2.83) (1.01) (0.58) (-0.04) (2.39) (0.48) (0.97) (-0.19)

T 564 564 564 564 282 282 282 282
N̄MF 1286 1286 1286 1286 2123 2123 2123 2123
∗p < .10, ∗∗ p < .05, ∗∗∗ p < .01 49



exploiting a wider range of stock-level variation to more precisely match the properties of mutual
funds, and it builds on recent advances in matched-pairs theory to adjust for differences between
matched entities.

A. Matched Pairs Methodology

We begin by constructing characteristics for each stock and sorting stocks into quintile portfolios.
Our characteristics are 60-month rolling market beta (requiring at least 24 observations), book-to-
market ratio,32 market capitalization (with scale reversed to place small stocks in the top quintile),
and prior return over the previous year, skipping the latest month (the “2-12” return). We follow
the methodology of Ken French’s website in constructing these characteristics, and we use the
provided breakpoints based on NYSE quintiles where available. In the case of rolling market betas
we construct our own quintile breakpoints. For the first three characteristics, we assign portfolios at
the end of June and retain assignments for July through the end of the following June. Momentum
is a higher-frequency anomaly, and we sort on prior returns and retain assignments for the next
month only. We then estimate two sets of betas on monthly return data for all common stocks in
the CRSP universe and all U.S. domestic equity mutual funds: univariate betas with respect to a
single factor fk and multivariate betas with respect to all four Carhart factors.

For each stock in quintile q for factor k in month t, we find the three closest mutual funds
active in that month. We assess proximity using the Mahalanobis distance on betas with covari-
ances estimated using the full sample,33 where βk determines distance in our univariate analysis,
and all four βs determine distance in our multivariate analysis. By matching betas rather than
characteristics, our approach remains rooted in factor-based explanations for differences in average
returns: the matched-pairs analysis answers the question of whether mutual funds can replicate
high-characteristic stock performance by taking similar risk exposures.

Implicitly we select stocks as our matched pairs “treatment group” because we want to mimic
on-paper factor portfolios as best as possible using mutual funds. Each stock is matched to three
mutual funds rather than to one to improve precision of the estimated average return for mutual
funds with the same risk characteristics. To ensure high match quality, we impose a maximum
distance or caliper of 0.25 standard deviations for univariate matches (following Rosenbaum and
Rubin (1984)’s rule-of-thumb in the context of propensity score matching) and 0.25 ×

√
4 = 0.5

standard deviations for four-factor matching. Stocks with fewer than three matched mutual funds
within these radii are dropped.34

32We source book-to-market ratios from the WRDS Financial Ratios Suite.
33The Mahalanobis distance is

√
(x− y)′ Σ−1 (x− y) for two vectors x and y and covariance matrix Σ, and it

reduces to the Euclidean distance when Σ = I. Σ−1 accounts for differences in standard deviations and nonzero
correlations among attributes.

34The stocks that do not match are those with the most extreme characteristics, e.g., microcaps, but they also
have particularly high returns on average. For this reason our estimates using matched stocks likely overstate the
ability of mutual funds to replicate the performance of stocks in the highest-characteristic quintiles.
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Matching of multivariate betas controls for possible variation in several risk factors simulta-
neously at the cost of worsening match quality along any particular dimension. Because betas
for stocks and matched mutual funds do not perfectly coincide in either case, we employ a bias-
adjusted matched pairs estimator for each month’s implementation gap. To a first approximation,
this matched-pairs estimate is the average difference between next-month returns for stocks and
mutual funds. We follow Abadie and Imbens (2006, 2011) to bias adjust this estimate by shifting
mutual fund returns by the compensation for a “local” difference in betas. This adjustment factor
is the difference in matched betas multiplied by the slope of cross-sectional regressions of returns
on betas. In this way, our modern matched-pairs approach weds older differencing techniques with
cross-sectional regression models. Finally, armed with monthly performance differences, we take the
time-series average value as our full-sample implementation gap estimate for quintile q and factor
k. We also consider value-weighted performance differences using the lagged market capitalization
of the matched stocks.

We do not directly compare the performance of long-short strategies for stocks and mutual
funds. We cannot short mutual funds, and underperformance on both ends of a long-short strat-
egy, for example, because of transactions costs, would be incorrectly obscured by differencing.
Instead, we compare the performance of stocks in high-characteristic portfolios and matched mu-
tual funds. These differences in high-characteristic quintile returns represent a lower bound on the
underperformance of mutual fund implementations of factor investing. To see why, consider the
difference in factor returns for stocks and mutual funds, ∆S−MF ,

∆S−MF ≡
(
µS(5) − µ

S
(1)

)
−
(
µMF

(5) − µ
MF
(1)

)
≥
(
µS(5) − µ

S
(1)

)
−
(
µMF

(5) − µ
S
(1)

)
= µS(5) − µ

MF
(5) ≡ ∆S−MF

(5) , (17)

where ∆S−MF is the implementation gap and µ(x) denotes the average returns for quintile-x stocks
(S) and mutual funds (MF ). The inequality in Equation (17) holds if mutual funds are weakly
less able to implement the short side of strategies than paper shorting returns would indicate. We
expect underperformance on selling the low-beta quintiles because shorting entails relatively high
transaction costs. Short-side underperformance is especially plausible if we find that mutual funds
also underperform on the long side. In addition, some firms implement positive-cost versions of
anomalies such as long-only momentum, in which only the extreme “buy” portfolio is traded.

B. Results

Table A.II reports the results of our matched pairs analysis. The LMS value in the upper-left
corner indicates that mutual funds outperform stocks with the same market beta exposure by 2.66%
per year when stocks are in the 80–100th percentile of the distribution of rolling market betas. We
designate “LMS” as long high-market beta stocks and short low-market beta stocks to distinguish
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Table A.II: Returns of Matched Stocks and Matched Mutual Funds

Tables report bias-adjusted differences in performance between stocks and matched mutual funds.
The first row of each panel denotes the difference in returns between stocks and mutual funds in
quintile five (∆S−MF

(5) ) of the distribution of stock characteristics. Differences are estimated using
matched pairs on the four Carhart (1997) factors with bias adjustment by linear regression in
the matching variable(s), where we designate “LMS” as long high-market beta stocks and short
low-market beta stocks to distinguish long-short market beta portfolios from the excess return
on the market. Differences are equal- or value-weighted within each month and averaged across
months. µS(5)−(1) rows denote the difference in equal- or value-weighted performance between stocks
in quintiles 5 and 1 of the distribution of characteristics. All coefficients are annualized and reported
in percent, and standard errors are Newey-West with three lags. The top panel matches only on βk,
whereas the bottom panel matches on all four factors. “VW” rows value weight returns by market
capitalization, and “EW” rows equal weight returns. t statistics are reported in parentheses.

(a) Sorting and Matching on Univariate Beta

1970 – 2016 1993 – 2016
LMS HML SMB UMD LMS HML SMB UMD

V
W

∆S−MF
(5) -2.66∗ 3.05∗∗ 1.71 3.83∗∗∗ -0.16 0.25 1.97 3.41∗

t-stat (-1.95) (2.30) (1.20) (3.15) (-0.09) (0.15) (0.90) (1.95)
µS(5)−(1) -0.63 4.77∗∗ 1.61 8.75∗∗∗ 2.32 1.51 2.34 4.47
t-stat (-0.18) (2.32) (0.69) (3.00) (0.44) (0.52) (0.74) (1.00)

E
W

∆S−MF
(5) -0.32 8.78∗∗∗ 3.39∗∗ 7.94∗∗∗ 2.77 8.31∗∗∗ 3.93 6.76∗∗∗

t-stat (-0.15) (4.47) (2.14) (5.42) (0.93) (3.37) (1.62) (3.33)
µS(5)−(1) -0.70 11.32∗∗∗ 3.82 6.17∗∗ 2.26 10.29∗∗∗ 4.00 1.91
t-stat (-0.23) (5.82) (1.55) (2.32) (0.47) (3.67) (1.25) (0.43)

(b) Sorting and Matching on Multivariate Beta

1970 – 2016 1993 – 2016
LMS HML SMB UMD LMS HML SMB UMD

V
W

∆S−MF
(5) -1.67 2.28∗ 6.21∗∗∗ 2.29∗ 3.37∗∗ 3.41∗∗∗ 4.11∗∗∗ 3.25∗∗

t-stat (-1.07) (1.87) (5.36) (1.91) (2.02) (2.96) (4.13) (2.53)
µS(5)−(1) -0.63 4.77∗∗ 1.61 8.75∗∗∗ 2.32 1.51 2.34 4.47
t-stat (-0.18) (2.32) (0.69) (3.00) (0.44) (0.52) (0.74) (1.00)

E
W

∆S−MF
(5) 3.79∗∗∗ 6.81∗∗∗ 7.91∗∗∗ 7.44∗∗∗ 5.76∗∗∗ 7.56∗∗∗ 5.70∗∗∗ 6.12∗∗∗

t-stat (2.71) (5.66) (6.17) (7.90) (3.70) (6.43) (4.82) (5.80)
µS(5)−(1) -0.70 11.32∗∗∗ 3.82 6.17∗∗ 2.26 10.29∗∗∗ 4.00 1.91
t-stat (-0.23) (5.82) (1.55) (2.32) (0.47) (3.67) (1.25) (0.43)
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long-short market beta portfolio returns from the excess return on the market. This outperformance
is larger than the on-paper return to an value-weighted long-short strategy based on market beta
quintiles, and it is roughly 40% of the annual equity premium over this period (6.35% per year, not
tabulated). Moving across the upper-left panel we see that the implementation gap is positive for
all other factors considered. Costs are particularly high for momentum strategies, as prior literature
suggests, and they are similarly high for value strategies. Mutual funds underperform on the long
side for both value and momentum by 3%–4%, and these values are statistically robust.

The top panel reflects performance differences between stocks and mutual funds matched on
betas from a one-factor model of returns. This matching is akin to a portfolio sort in which a
single characteristic is used. Other return-relevant variables are not held fixed as we vary one
characteristic, so it may be that stocks and matched mutual funds vary substantially on other
dimensions. For example, mutual funds trading continuation strategies like momentum are less
likely to trade contrarian strategies like value (ρβHML,βUMD

= −15.7% for mutual funds). The
bottom panel addresses this concern by reporting return differences in high-characteristic portfolios
between stocks and mutual funds matched on the four Carhart (1997) factors. In this analysis we
estimate multifactor betas using four-factor time-series regressions as in Equation (1).

Matching on multifactor betas reduces (increases) our estimated implementation costs for the
full (recent) sample, which suggests that controlling for differences in multiple risk exposures is
important to make the stock and mutual fund samples comparable. In the full sample we see that
the implementation gap is large and statistically significant for SMB only, and it is economically
large but marginally statistically significant for momentum and value. In the recent sample, the
implementation gaps are so large that they swamp or severely attenuate factor returns for all non-
market factors considered (tabulated in µS(5)−(1) rows). No non-market factors earn returns after
real-world costs for the 1993–2016 period in which the four academic factors are known and the
mutual fund universe is far more developed (see Figure I). This finding mirrors our main result
in Section IV, and it accords with the evidence of Berk and van Binsbergen (2016) and Barber,
Huang, and Odean (2016) that investors perceive only the market factor to be risky and should
(eventually) eliminate other risk premia through fund flows.

The bottom half of each panel presents equal-weighted results. Differences in performance widen
dramatically when small, harder-to-access stocks are upweighted. Focusing first on the univariate
matches, mutual fund underperformance on value, size, and momentum strategies doubles relative
to the corresponding value-weighted results. Turning to the multivariate matches also strengthens
our finding that mutual funds underperform matched stocks for the non-market factors. Implemen-
tation gaps are again larger than in the value-weighted results, but the magnitudes are nonetheless
economically large for the three main anomalies in both: the 2.3%–3.4% implementation gap for
value increases to 6.8%–7.6% against a time-series average return of 4.8% for value-weighted HML;
4.1%–6.2% increases to 5.7%–7.9% for size against a time-series average return of 1.6% for SMB;
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and 2.3%–3.3% increases to 6.1%–7.4% against a time-series average return of 8.8% for UMD. In
short, we replicate the high implementation costs of these factors, and such performance attrition is
a stark departure from the muted effects of trading costs often considered in the academic literature.

Taken together, these matched-pair results agree qualitatively with the cross-sectional results
for three of the four factors (MKT/LMS, HML, and UMD), but they disagree for size. This
disagreement is likely attributable to the fact that SMB beta is not associated with cross-sectional
differences in average returns—and the cross-sectional approach thus reveals no difference in com-
pensation to SMB exposure—whereas the small-size characteristic is associated with higher aver-
age returns. Consequently we observe high returns on small-stock portfolios in the matched pairs
approach, and mutual funds clearly cannot capture these returns well in practice.

E. Matched Pairs Estimates of Implementation Costs: Additional Details

A. Bias Adjustment for Imperfect Matches

Characteristics are not perfectly matched between stocks and mutual funds, and match char-
acteristics may differ systematically between stocks and matched mutual funds. We follow Imbens
and Rubin (2015)’s guidance to bias correct our matching estimator using a linear regression of
outcomes on mutual fund (“control-group”) attributes.35 For each date t, we bias-adjust mutual
fund returns using a factor model for returns in which the estimated betas serve as risk exposures,

rit = αi +
∑
k

δktβ̂ik + εit, i ∈MF, t = 1, . . . , T. (18)

Despite its matched-pairs origin, Equation (18) is our usual Fama-MacBeth cross-sectional regres-
sion for the set of domestic equity mutual funds.

Using Equation (18), we shift our estimate of mutual fund returns by the difference in betas
between matched stocks and mutual funds multiplied by the time t return to a unit of beta exposure,

1
3
∑
j∈Ω(i)

∑
k

δkt
(
βSik − βMF

jk

)
, (19)

where Ω (i) denotes the three-element set of mutual funds matched to stock i. In effect, bias-
correction combines unadjusted matched pairs with the factor model approach of Section IV. By
contrast with the cross-sectional analysis of Section IV, however, these adjustments are “local”
because differences in betas between stocks and matched mutual funds are small by construction.
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B. Evaluation of Match Quality

Figure A.II plots the distribution of each matching variable (β) for unmatched stocks, matched
stocks, matched mutual funds, and all mutual funds. We see immediately that stocks have more
variable factor exposures than mutual funds, so the most extreme stocks on either side of the
beta distributions cannot be matched to mutual funds. Of stocks that are matched, their beta
distributions line up well with those of mutual funds: there are no systematic biases at any point
in the distribution of stock betas, as evidenced by the absence of over- and undershooting of the
red line by the yellow-dashed line. Matching in the tails of the stock beta distributions is achieved
by oversampling relatively extreme mutual funds. This feature manifests as a counterclockwise
rotation of the purple quantile plot for all mutual funds to achieve the yellow-dashed quantile plot
of matched mutual funds.

Table A.III quantifies match quality depicted in Figure A.II. All quintiles and factors have
highly similar means and standard deviations between matched stocks (SM ) and matched mutual
funds (SU ). All factors are matched well in all quintiles, and overall match percentages are high
(62%–76%). Match rates deteriorate in the most extreme quintiles, and particularly so in quintile
five of market beta (the largest betas) and market capitalization (the smallest stocks). In these
quintiles the proportion of matched to unmatched stocks becomes less favorable, and stocks match
more frequently to the same extreme mutual funds. For example, the typical matched mutual fund
in the smallest stock group is used more than 12 times: 989,081 stock-months are matched to three
of 246,168 unique mutual fund-months.

The drawback to matching on a single variable is that other factors determining returns may
differ considerably between stocks and matched mutual funds. Figure A.III confirms this issue
by plotting bivariate distributions of four-factor betas when matches are constructed based only
on βMKT . Perfect matching between stocks and mutual funds would appear visually as complete
coverage of the green regions by the red region. Instead we see green clouds surrounding the red
region, indicating that matched mutual funds do not cover the same range of non-market betas as
matched mutual funds. Focusing on the third column of the first row as an example, we see that
matched stocks tend to have significantly larger βSMB than matched mutual funds, so the existence
of a size premium would create a positive wedge between the returns on mutual funds and stocks.

Table A.IV quantifies these visual disparities. Taking the same (1,3) coordinate, we see that
the typical matched-stock size betas are consistently 0.4–0.6 larger for stocks than for mutual
funds when entities are matched exclusively on market beta. Such differences are rife throughout
the table. An apples-to-apples comparison of stocks and mutual funds thus requires multivariate
matching if the true model of average returns has factors other than the market.

Figure A.IV reports match quality when matching uses all four factor betas and a wider caliper

35Bias-correction is optional in univariate matches, but it considered to be best practice. It is required to correct
for a “large-sample bias” for multivariate matches (Abadie and Imbens (2011)).
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Figure A.III: Comparison of Samples on All Variables — Univariate β Matching on βMKT

Figure plots the distribution of factor betas for unmatched stocks, matched stocks, and matched
mutual funds. Matches are constructed monthly using the single match variable βMKT , and plots
depict all bivariate distributions of Carhart (1997) four-factor betas. Stocks are considered
“matched” at date t if and only if they have at least three mutual funds within a Mahalanobis
distance of 0.25σ of the matching variable during month t. Covariances for the Mahalanobis
metric are calculated across all stocks and mutual funds and all dates. To enhance visual clarity
we clip the distribution of betas at the 2.5 and 97.5 percentiles and plot every 10th data point for
unmatched and matched stocks. We plot every 30th data point for matched mutual funds because
each matched stock has three associated mutual funds in its approximating set. Diagonal
elements plot univariate histograms on a single beta rather than bivariate distributions.
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Figure A.IV: Comparison of Samples on All Variables — Multivariate β Matching

Figure plots the distribution of factor betas for unmatched stocks, matched stocks, and matched
mutual funds. Matches are constructed monthly using all Carhart (1997) four-factor betas, and
plots depict all bivariate distributions of these betas. Stocks are considered “matched” at date t if
and only if they have at least three mutual funds within a Mahalanobis distance of 0.5σ of the
matching variables during month t. Covariances for the Mahalanobis metric are calculated across
all stocks and mutual funds and all dates. To enhance visual clarity we clip the distribution of
betas at the 2.5 and 97.5 percentiles and plot every 10th data point for unmatched and matched
stocks. We plot every 30th data point for matched mutual funds because each matched stock has
three associated mutual funds in its approximating set. Diagonal elements plot univariate
histograms on a single beta rather than bivariate distributions.
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of 0.5σ. The figure clarifies the trade-off between high multivariate match quality and sample
coverage. The blue region of unmatched stocks is quite small in the univariate matches, but it
visually dominates here. Likewise the matching along any single dimension is not quite as good as
in the univariate matches (e.g., Figure A.II), as the red and green regions of matched mutual funds
and matched stocks do not perfectly coincide. However, these regions are much more similar than
in the previous figure, and the differences between matched stock and matched mutual fund betas
are small enough to be tamed by our local bias-adjustment methodology.

Table A.V quantifies this trade-off. About three quarters of the sample is matched (the size of
the blue region in Figure A.IV overstates the sparse-matching problem because the red and green
regions are more densely populated). The distributions of matched stocks and matched mutual
funds are mostly comparable, but they differ in the tails as more extreme stock betas are matched
with less extreme mutual fund betas within our generous caliper. The table confirms the necessity
of bias adjustment for this high-dimensional match.
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