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a b s t r a c t

Many theories in finance imply monotonic patterns in expected returns and other

financial variables. The liquidity preference hypothesis predicts higher expected returns

for bonds with longer times to maturity; the Capital Asset Pricing Model (CAPM) implies

higher expected returns for stocks with higher betas; and standard asset pricing models

imply that the pricing kernel is declining in market returns. The full set of implications

of monotonicity is generally not exploited in empirical work, however. This paper

proposes new and simple ways to test for monotonicity in financial variables and

compares the proposed tests with extant alternatives such as t-tests, Bonferroni bounds,

and multivariate inequality tests through empirical applications and simulations.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Finance contains many examples of theories implying
that expected returns should be monotonically decreasing
or monotonically increasing in securities’ risk or liquidity
characteristics. For example, under the liquidity preference
hypothesis, expected returns on treasury securities should

increase monotonically with their time to maturity. The
Capital Asset Pricing Model (CAPM) implies a monotoni-
cally increasing pattern in the expected return of stocks
ranked by their market betas. Another fundamental
implication of finance theory is that the pricing kernel
should be monotonically decreasing in investors’ ranking of
future states as measured, e.g., by market returns.

The full set of implications of such monotonic patterns is
generally not explored, however, in empirical analysis. For
example, when testing the CAPM, it is conventional practice
to form portfolios of stocks ranked by their beta estimates. A
t-test could then be used to consider the mean return spread
between the portfolios with the highest and lowest betas.
Yet comparing only the average returns on the top and
bottom portfolios does not provide a sufficient way to test
for a monotonic relation between expected returns and
betas. As an illustration, Fig. 1 presents average monthly
returns on stocks sorted into deciles according to their
estimated betas. The mean return on the high-beta stocks
exceeds that of the low-beta stocks, but a t-test on the top-
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minus-bottom return differential comes out insignificant. A
test that considers only the return difference between the
top and bottom ranked securities does not utilize the
observation from Fig. 1 that none of the declining segments
(which seemingly contradict the CAPM) appears to be
particularly large, so the question arises whether the
CAPM is, in fact, refuted by this evidence.

As a second illustration, Fig. 2 shows the term premia
on T-bills with a maturity between two and 11 months.
Clearly the overall pattern in the term premium is
increasing, and this is confirmed by a t-test on the mean
differential between the 11- and two-month bills, which
comes out significant. However, there are also segments
in which the term premium appears to be negative,
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Fig. 1. Average monthly returns on decile portfolios formed on past 12-month Capital Asset Pricing Model (CAPM) beta, from July 1963 to December 2001.
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Fig. 2. Average monthly term premia for US T-bills, relative to a T-bill with one month to maturity, over the period January 1964 to December 2001.
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particularly between the nine and ten-month bills, so the
question here is whether there are sufficiently many, and
sufficiently large, negative segments to imply a rejection
of the liquidity preference hypothesis. Only a test that
simultaneously considers the mean returns across all
maturities can answer this.

This paper proposes new ways to test for monotonicity
in the expected returns of securities sorted by character-
istics that theory predicts should earn a systematic
premium. Our tests are nonparametric and easy to
implement via bootstrap methods. Thus they do not
require specifying the functional form (e.g., linearity)
relating the sorting variables to expected returns or
imposing distributional assumptions on returns. This is
important because for many economic models the under-
lying hypothesis is only that expected returns should rise
or decline monotonically in one or more security
characteristics that proxy for risk exposures or liquidity.

In common with a conventional one-sided t-test, our
monotonic relation (MR) test holds that expected returns
are identical or weakly declining under the null, while
under the alternative we maintain a monotonically increas-
ing relation. (Testing for a monotonic decreasing relation
can be accomplished by simply reordering the assets.) Thus
a rejection of the null of no relation in favor of the
hypothesized relation (i.e., a finding of statistical signifi-
cance) represents a strong empirical endorsement of the
theory. We also develop separate tests based on the sum of
up and down moves. These tests combine information on
both the number and magnitude of deviations from a flat
pattern and so can help determine the direction of
deviations in support of or against the theory.

The converse approach of maintaining a monotonically
increasing relation under the null versus no such relation
under the alternative has been developed by Wolak (1987,
1989) and was also adopted by Fama (1984) in the context
of a Bonferroni bound test to summarize the outcome of
several t-tests. Depending on the research question and the
economic framework, one could prefer to entertain the
presence of a monotonic relation under the null or under the
alternative. For example, Richardson, Richardson and Smith
(1992) use the Wolak test to see if there was evidence
against an upward-sloping term structure of interest rates,
as predicted by the liquidity preference hypothesis.

Because the MR and Wolak tests use different ways to
test the theory, outcomes from such tests are not directly
comparable. One drawback of entertaining the hypothe-
sized monotonic relation under the null, as in the Wolak
and Bonferroni tests, is that a confirmation of a theory from
a failure to reject the null could simply be due to limited
power for the test (because of a short time series of data or
noisy data, for example). This turns out to be empirically
important as the Wolak test sometimes fails to reject the
null in cases in which the t-test and the MR test are able to
differentiate between theories that find support in the data
and those that do not. Conversely, in cases in which the MR
test has weak power, it could fail to reject the null, and thus
fail to support the theory, even for expected return patterns
that appear to be monotonic.

Empirically, our tests reveal many interesting findings.
For the CAPM example shown in Fig. 1, the MR test

strongly rejects the null in favor of a monotonically
increasing relation between portfolio betas and expected
returns. Consistent with this, the Bonferroni bound and
Wolak tests fail to reject the null that expected returns
increase in betas. Turning to the term structure example in
Fig. 2, the MR, Bonferroni, and Wolak tests all fail to find
evidence in support of the liquidity preference hypothesis
as the term premia do not appear to be monotonically
increasing in the maturity. Moreover, when applied to a
range of portfolio sorts considered in the empirical finance
literature, we find many examples where the difference in
average returns between the top and bottom ranked
portfolios is highly significant, but the pattern in average
returns across multiple portfolios is non-monotonic. This
holds, for example, for decile portfolios sorted on short-
term reversal, momentum, or firm size.

Our tests are not restricted to monotonic patterns in
the expected returns on securities sorted on one or more
variables and can be generalized to test for monotonic
patterns in risk-adjusted returns or in the factor loadings
emerging from asset pricing models. They can also be
adopted to test for piece-wise monotonic patterns, as in
the case of the U-shaped relation between fee waivers and
mutual fund performance reported by Christoffersen
(2001) or the U-shaped pricing kernels considered by
Bakshi, Madan, and Panayotov (2010). Finally, using
methods for converting conditional moments into un-
conditional ones along the lines of Boudoukh, Richardson,
Smith and Whitelaw (1999), we show that the approach
can be used to conduct conditional tests of monotonicity.

The outline of the paper is as follows. Section 2
describes our new approach to testing for monotonic
patterns in expected returns on securities ranked by one
or more variables and compares it with extant methods.
Section 3 uses Monte Carlo simulations to shed light on
the behavior of the tests under a set of controlled
experiments. Section 4 uses the various methodologies
to analyze a range of return series from the empirical
finance literature. Finally, Section 5 concludes.

2. Testing monotonicity

This section first provides some examples from finance
to motivate monotonicity tests. We next introduce the
monotonic relation test and then compare it with extant
alternatives such as a student t-test based on top-minus-
bottom return differentials, the multivariate inequality test
proposed by Wolak (1989), and the Bonferroni bound.

2.1. Monotonicity tests in finance

One of the most basic implications of financial theory
is that the pricing kernel should be monotonically
decreasing in investors’ ordering of future states (Shive
and Shumway, 2009). In empirical work, this implication
is typically tested by studying pricing kernels as a
function of market returns. Using options data, Jackwerth
(2000) finds that this prediction is supported by the data
prior to the October 1987 crash, when risk aversion
functions were monotonically declining. However, it
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appears to no longer hold in post-crash data. Rosenberg
and Engle (2002) also find evidence of a region with
increasing marginal utility for small positive returns.
These papers do not formally test monotonicity of the
pricing kernel, however.

The practice of looking for monotonic patterns in
expected returns on portfolios of stocks sorted by obser-
vables such as firm size or book-to-market ratio can be
motivated by the fact that, although such variables are
clearly not risk factors themselves, they could serve as
proxies for unobserved risk exposures. For example, Berk,
Green, and Naik (1999) develop a model of firms’ optimal
investment choices in which expected returns depend on a
single risk factor. Estimating the true betas with regard to
this risk factor requires knowing the covariance of each
investment project in addition to the entire stock of ongoing
projects, a task that is likely to prove infeasible. However,
expected returns can be rewritten in terms of observable
variables such as the book-to-market ratio and firm size,
which become sufficient statistics for the risk of
existing assets. Hence, expected returns on portfolios of
stocks sorted on these variables should be monotonically
increasing in book-to-market value and monotonically
decreasing in firm size. Similar conclusions are drawn from
the asset pricing model developed by Carlson, Fisher and
Giammarino (2004).

As a second illustration, in a model of momentum
effects in which growth rate risk rises with growth rates and
has a positive price, Johnson (2002) shows that expected
returns should be monotonically increasing in securities’
past returns and uses portfolios to study this implication.

If factor loadings on risk factors are either observed or
possible to estimate without much error, then tests based
on linear asset pricing models could be preferable on
efficiency grounds. However, in situations in which the
nature (functional form) of the relation between expected
returns and some observable variable used to rank or sort
assets is unknown, the linear regression approach could be
subject to misspecification biases. Hence, there is inher-
ently a bias-efficiency trade-off between regression mod-
els that assume linearity, but make use of the full data,
versus tests based on portfolio sorts that do not rely on
this assumption. Tests of monotonicity between expected
portfolio returns and observable stock characteristics such
as book-to-market value or size offer a fairly robust way to
evaluate asset pricing models, although they should be
viewed as joint tests of the hypothesis that the sorting
variable proxies for exposure to the unobserved risk factor
and the validity of the underlying asset pricing model.

2.2. Monotonicity and inequality tests

The problem of testing for the presence or absence of a
monotonic pattern in expected returns can be trans-
formed into a test of inequality restrictions on estimated
parameters. Consider a simple example in which decile
portfolios have been formed by sorting stocks in ascend-
ing order based on their past estimated market betas. Let
r1,t , . . . ,r10,t be the associated returns on the decile
portfolios listed. The CAPM implies that the expected

returns on these portfolios are increasing:

E½r10,t�4E½r9,t�4 � � �4E½r1,t�: ð1Þ

If we define Di � E½ri,t��E½ri�1,t �, for i=2,y,10, this im-
plication can be rewritten as

Di40 for i¼ 2, . . . ,10: ð2Þ

Alternatively, consider a test of the liquidity premium
hypothesis (LPH), as in Richardson, Richardson and Smith
(1992) and Boudoukh, Richardson, Smith and Whitelaw
(1999). If we define the term premium as E½rðtiÞ

t �rð1Þt �,
where rðtiÞ

t is the one-period return on a bond with
maturity ti, the simplest form of the LPH implies

E½rðtiÞ

t �rð1Þt �4E½r
ðtjÞ

t �rð1Þt �, for all tiZtj: ð3Þ

That is, term premia are increasing with maturity. If we
define Di � E½rðtiÞ

t �rð1Þt ��E½rðti�1Þ

t �rð1Þt �, then this prediction
can be rewritten as

Di40 for i¼ 2, . . . ,N: ð4Þ

We next propose a new and simple nonparametric approach
that tests directly for the presence of a monotonic relation
between expected returns and the underlying sorting
variable(s) but does not otherwise require that this relation
be specified or known. This can be a great advantage
in situations in which standard distributions are unreliable
guides for the test statistics, difficult to compute, or simply
unknown (Ang and Chen, 2007). Effectively our test allows
us to examine whether there can exist a monotonic
mapping from an observable characteristic used to sort
stocks or bonds and their expected returns.

2.3. Testing for a monotonic relation: A new approach

Consider the ranking of expected returns on N+1
securities. We take the number of securities, N+1, as given
and then show how a test can be conducted that accounts
for the relation between the complete set of securities (not
just the top and bottom) and their expected returns.
Denoting the expected returns by l¼ ðm0,m1, . . . ,mNÞu, and
defining the associated return differentials as Di ¼ mi�mi�1,
we can use the link between monotonicity and inequality
tests to consider tests on the parameter D� ½D1, . . . ,DN�u.

The approach proposed in this paper specifies a flat or
weakly decreasing pattern under the null hypothesis and
a strictly increasing pattern under the alternative, without
requiring any maintained assumptions on D1:

H0 : Dr0

versus

H1 : D40: ð5Þ

The test is designed so that the alternative hypothesis is
the one that the researcher hopes to prove, and in such
cases it is sometimes called the research hypothesis
(Casella and Berger, 1990). A theoretical prediction of a
monotonic relation is therefore confirmed only if there is
sufficient evidence in the data to support it. This is parallel

1 Equalities and inequalities are interpreted as applying element by

element for vectors.
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to the standard empirical practice of testing the signifi-
cance of the coefficient of a variable hypothesized to have
a nonzero effect in a regression.

The null and alternative hypotheses in Eq. (5) can be
rewritten as

H0 : Dr0

H1 : min
i ¼ 1,: :,N

Di40: ð6Þ

To see this, if the smallest value of Di40, then it must be
that Di40 for all i¼ 1, . . . ,N. This motivates the following
choice of test statistic:

JT ¼ min
i ¼ 1,: :,N

D̂i, ð7Þ

where D̂ i is based on the sample analogs D̂ i ¼ m̂ i�m̂ i�1,
m̂ i � ð1=TÞ

PT
t ¼ 1 rit , and fritg

T
t ¼ 1 is the time series of

returns on the ith security. We refer to the tests associated
with hypotheses such as those in Eq. (6) as monotonic
relation (MR) tests. Tests of monotonically decreasing
expected returns simply reverse the order of the assets.

In Eq. (7) we consider all adjacent pairs of security
returns. We could also consider all possible pair-wise
comparisons, E½ri,t��E½rj,t� for all i4 j. The latter approach
increases the number of parameter constraints, and the
size of the vector D, from N to N(N+1)/2. The adjacent
pairs are sufficient for monotonicity to hold, but con-
sidering all possible comparisons could lead to empirical
gains. We compare the adjacent pairs test to the ‘‘all
pairs’’ test in our empirical analysis and Monte Carlo
simulations. With the D vector suitably modified, the
theory presented below holds in both cases.

The proposed MR test for monotonicity is useful for
detecting the presence or absence of a monotonic relation
between expected returns and some economic variable.
Because the test focuses on the smallest deviation from the
null hypothesis, one can imagine patterns in expected
returns for which the power of the test grows relatively
slowly as the sample size expands. To address this concern,
we propose two further measures, namely an Up and a
Down statistic that account for both the frequency,
magnitude, and direction of deviations from a flat pattern.2

2.4. Extant tests and the choice of null and alternative

hypotheses

The MR test is closely related to earlier work on
multivariate inequality tests by Bartholomew (1961), Kudo
(1963), Perlman (1969), Gourieroux, Holly and Monfort
(1982), and Wolak (1987, 1989). Wolak (1989) proposes a
test that entertains (weak) monotonicity under the null
hypothesis and specifies the alternative as non-monotonic:

H0 : DZ0

versus

H1 : D unrestricted: ð8Þ

Here the theoretical prediction of monotonicity is contained
in the null hypothesis and is rejected only if the data
contain sufficient evidence against it. The test statistic in
this approach is based on a comparison of an unconstrained
estimate of D with an estimate obtained by imposing weak
monotonicity. Assuming that the data are normally dis-
tributed, Wolak (1987, 1989) shows that these test
statistics have a distribution under the null that is a
weighted sum of chi-squared variables,

PN
i ¼ 1 oðN,iÞw2ðiÞ,

where oðN,iÞ are the weights and w2ðiÞ is a chi-squared
variable with i degrees of freedom. Critical values are
generally not known in closed form, but a set of
approximate values can be calculated through Monte Carlo
simulation. This procedure is computationally intensive and
difficult to implement in the presence of large numbers of
inequalities. As a result, the test has found only limited use
in finance. Richardson, Richardson and Smith (1992) apply
the method in Wolak (1989) to test for monotonicity of the
term premium, and in our empirical work below we
present the results of Wolak’s test for comparison.

An important difference exists between the MR
approach in Eq. (6) and that of Wolak (1989) in Eq. (8).
In Wolak’s framework, the null hypothesis is that a
weakly monotonic relation exists between expected
returns and the sorting variable, while the alternative
hypothesis contains the case of no such monotonic
relation. One potential drawback of entertaining the
hypothesized monotonic relation under the null is that
limited power (due to a short time series of data or noisy
data) makes it difficult to reject the null hypothesis and
thus difficult to have much confidence in a confirmation
of a theory from a failure to reject the null.3 The MR
approach, meanwhile, contains the monotonic relation
under the alternative, and thus a rejection of the null of no
relation in favor of the hypothesized relation represents a
strong empirical endorsement of the theory. Conversely,
in cases in which the MR test has weak power, it could fail
to reject the null and so incorrectly fail to support the
theory entertained under the alternative hypothesis. In
such cases the aforementioned Up and Down tests come
in conveniently as they can help to diagnose if the
problem is lack of power.

2 In particular, consider the following null and alternative:

H0 : D¼ 0 versus H�1 :
XN

i ¼ 1

jDij1fDi o0g40,

where the indicator 1fDi o0g is one if Di o0 and is otherwise zero. Here

the null is a flat pattern (no relation) and the alternative is that at least

some parts of the pattern are strictly negative. By summing over all

negative deviations, this statistic accounts for both the frequency and

magnitude of deviations from a flat pattern. The natural test statistic is

J�T ¼
PN

i ¼ 1 jD̂ ij1fD̂ i o0g. As for the MR test, this Down test statistic does

not have a standard limiting distribution under the null hypothesis,

but critical values can be obtained using a bootstrap approach. The

corresponding version of the test for cumulative evidence of an

increasing pattern is

H0 : D¼ 0 versus Hþ1 :
XN

i ¼ 1

jDij1fDi 40g40,

suggesting the Up test statistic JþT ¼
PN

i ¼ 1 jD̂ ij1fD̂ i 40g.

3 Furthermore, the null in Eq. (8) includes the case of no relation

(when D¼ 0) and so a failure to reject the null could be the result of the

absence of a relation between expected returns and the sorting variable.
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Because the setup of the null and alternative hypoth-
esis under the MR test in Eq. (5) is the mirror image of that
under the Wolak test in Eq. (8), one cannot draw
universally valid conclusions about which approach is
best. Instead, which test to use depends on the research
question at hand. The MR test is more appropriate to use
when the relevant question is: Does the data support the
theory? Conversely, the Wolak setup is more appropriate
for a researcher interested in finding out if there is
significant evidence in the data against some theory. In
cases where this distinction is not clear, one could even
consider inspecting both types of tests. There is strong
support for the theory if the MR test rejects while the
Wolak test fails to reject. Conversely, if the Wolak test
rejects while the MR test fails to reject, this constitutes
strong evidence against theory. Cases in which both tests
fail to reject constitute weak confirmation of the theory
and could be due to the MR test having weak power.
Finally, if both tests reject, they disagree about the
evidence. We do not find a single case with this latter
outcome in any of our empirical tests.

The MR test has greater apparent similarity to the
setup of the multivariate one-sided tests considered by
Bartholomew (1961), Kudo (1963), Perlman (1969), and
Gourieroux, Holly, and Monfort (1982), and is labeled ‘‘EI’’
in Wolak (1989):

H0 : D¼ 0

versus

H1 : DZ0, ð9Þ

with at least one inequality strict, under the maintained
hypothesis Hm : DZ0. The test statistic in this approach is
based purely on an estimate of D obtained by imposing
the maintained assumption.4 The main drawback of this
framework, if one wishes to test for a monotonic relation,
is that if the true relation is non-monotonic, then the
behavior of the test is unknown, as the maintained
hypothesis is then violated.5 In a Monte Carlo study of
this test (available upon request) we find that it performs
well when the maintained hypothesis is satisfied. How-
ever, when this hypothesis is violated, the finite-sample
size of the test tends to be very high, likely due to the fact
that this test is not designed to work when the
maintained hypothesis of weak monotonicity is violated.
This leads the test to overreject and so we do not consider
this test further here.

Lastly, a naı̈ve approach to testing the hypotheses in
Eq. (8) would be to conduct a set of pair-wise t-tests to see

if Di is positive for each i¼ 1,: :,N. Unfortunately, it is not
clear how to summarize information from these N tests
into a single number because the test statistics are likely
to be correlated and their joint distribution is unknown.
To deal with this problem, Fama (1984) proposed using a
Bonferroni bound. This method analyzes whether the
smallest t-statistic on D̂ i, i¼ 1,: :,N, falls below the lower-
tail critical value obtained by using a bound on the
probability of a Type I error. The technique is simple to
implement but tends to be a conservative test of the null
hypothesis. This is confirmed in a Monte Carlo study
reported in Section 3.

2.5. A bootstrap approach to the MR test

Under standard conditions, discussed in the Appendix,
the estimated parameter vector D̂ ¼ ½D̂1, . . . ,D̂N�u asymp-
totically follows a normal distribution, i.e., in large
samples ðT-1Þ,ffiffiffi

T
p
ð½D̂1, . . . ,D̂N�u�½D1, . . . ,DN�uÞ �

a N ð0,OÞ: ð10Þ

Using this result would require knowledge, or estimation,
of the full set of N(N+1)/2 parameters of the covariance
matrix for the sample moments, O. These parameters
influence the distribution of the test statistic even though
we are not otherwise interested in them. Unfortunately,
when the set of assets involved in the test grows large, the
number of covariance parameters increases significantly
and it can be difficult to estimate these parameters with
much precision.

As shown in Eq. (7), we are interested in studying
the minimum value of a multivariate vector of
estimated parameters that is asymptotically normally
distributed. There are no tabulated critical values for
such minimum values, precisely because these would
depend on the entire covariance matrix, O. Furthermore,
the asymptotic distribution might not provide reliable
guidance to the finite sample behavior of the resulting
tests.

To deal with the problem of not knowing the
parameters of the covariance matrix or the critical values
of the test statistic, we follow recent studies on financial
time series such as Sullivan, Timmermann, and White
(1999) and Kosowski, Timmermann, Wermers, and White
(2006) and use a bootstrap methodology. As pointed out
by White (2000), a major advantage of this approach is
that it does not require estimating O directly. While this
approach dispenses with the need for making distribu-
tional assumptions on the data, conversely the approach
might not be optimal in situations in which more
information on the underlying return distribution is
available.

To see how the approach works in practice, let frit,
t¼ 1, . . . ,T; i¼ 0,1, . . . ,Ng be the original set of returns data
recorded for N+1 assets over T time periods. We first use
the stationary bootstrap of Politis and Romano (1994) to
randomly draw (with replacement) a new sample of returns
f~r ðbÞitðtÞ,tð1Þ, . . . ,tðTÞ; i¼ 0,1, . . . ,Ng, where tðtÞ is the new
time index, which is a random draw from the original set
f1,: :,Tg. This randomized time index, tðtÞ, is common across

4 Kudo characterizes the weights analytically in cases with up to

four constraints under the assumption that the covariance matrix of the

parameter estimator is known. Gourieroux, Holly and Monfort (1982)

propose simulation methods to compute critical values when the

covariance matrix is unknown. Kodde and Palm (1986) derive lower

and upper bounds on the critical values for the test, which avoids the

need for simulations.
5 In contrast, the MR test is not derived from a statistic that imposes

a maintained hypothesis in the estimation stage. Our test is therefore

robust in the sense that it gives rise to the correct asymptotic

distribution and inference in situations in which the data are from an

unknown generating process.
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portfolios to preserve any cross-sectional dependencies in
returns. Finally, b is an indicator for the bootstrap number
which runs from b=1 to b=B. The number of bootstrap
replications, B, is chosen to be sufficiently large that the
results do not depend on Monte Carlo errors. Time series
dependencies in returns are accounted for by drawing
returns data in blocks whose starting point and length are
both random. The block length is drawn from a geometric
distribution with a parameter that controls the average
length of each block.

To implement the MR test, we need to obtain the
bootstrap distribution of the parameter estimate D̂ under
the null hypothesis. The null in Eq. (6) is composite,
and so, following White (2000), we choose the point in
the null space least favorable to the alternative,

amely, D¼ 0.6 The null is imposed by subtracting the

estimated parameter D̂ from the parameter estimate

obtained on the bootstrapped return series, D̂
ðbÞ

. We then
count the number of times when a pattern at least as
unfavorable (i.e., yielding at least as large a value of JT)
against the null as that observed in the real data emerges.
When divided by the total number of bootstraps, B, this
gives the p-value for the test and allows us to conduct
inference:

JðbÞT ¼ min
i ¼ 1,: :,N

ðD̂
ðbÞ

i �D̂ iÞ, b¼ 1,2, . . . ,B ð11Þ

and

p̂ ¼
1

B

XB

b ¼ 1

1fJðbÞT 4 JTg: ð12Þ

When the bootstrap p-value is less than 0.05, we conclude
that we have significant evidence against the null in
favor of a monotonically increasing relation. We
implement a studentized version of this bootstrap, as
advocated by Hansen (2005) and Romano and Wolf
(2005). This eliminates the impact of cross-sectional
heteroskedasticity in the portfolio returns, a feature that
is prominent for some securities and could lead to gains in
power.

Theorem 1, given in the Appendix, provides a formal
justification for the application of the bootstrap to our
problem. Under a standard set of moment and mixing
conditions on returns, the appropriately scaled vector of
mean returns converges to a multivariate normal
distribution. Hence, an important difference between the
MR and Wolak tests is that, whereas the former does not
make parametric assumptions on the distribution from
which the data are drawn, the Wolak test assumes that
the data are normally distributed. Moreover, inference
about the minimum of a draw from the distribution of JT

can be conducted by means of the stationary bootstrap
provided that the average block length grows with the
sample size but at a slower rate.

2.6. Two-way sorts

Expected returns on financial securities are commonly
modeled as depending on multiple risk or liquidity
factors. In this subsection we show that the MR test is
easily generalized to cover tests of monotonicity of
expected returns based on two-way sorts.

Suppose that the outcome of the two-way sort is
reported in an (N+1)� (N+1) table with sorts according to
one variable ordered across rows and sorts by the other
variable listed along the columns. We are interested in
testing the hypothesis that expected returns increase
along both the columns and rows. The proposition of no
systematic relation, which we seek to reject, is enter-
tained under the null. To formalize the MR test in this
case, let the expected value of the return on the row i,
column j security be denoted mij:

H0 : mi,jrmi�1,j, mi,jrmi,j�1 for all i,j: ð13Þ

The alternative hypothesis is that expected returns
increase in both the row and column index:

H1 : mi,j4mi�1,j, mi,j4mi,j�1 for all i,j: ð14Þ

Defining row Dr
ij ¼ mi,j�mi�1,j and column Dc

ij ¼ mi,j�mi,j�1

differentials in expected returns, we can restate these
hypotheses as

H0 : Dr
ijr0, Dc

ijr0, for all i,j

versus

H1 : D
r
ij40 and Dc

ij40, for all i,j, ð15Þ

or, equivalently,

H1 : min
i,j ¼ 1,: :,N

fDr
ij,D

c
ijg40: ð16Þ

In parallel with the test for the one-way sort in Eq. (7),
this gives rise to a test statistic

JT ¼ min
i,j ¼ 1,: :,N

fD̂
r

ij,D̂
c

ijg: ð17Þ

The alternative hypothesis gives rise to 2N(N�1)
nonredundant inequalities. For a 5�5 sort, this means
40 inequalities are implied by the theory of a monotonic
relation in expected returns along both row and
column dimensions; for a 10�10 sort, 180 inequalities
are implied. This shows both how potentially complicated
and how rich the full set of relations implied by
monotonicity can be when applied to returns sorted by
two variables. If all pairs of returns are compared (not just
the adjacent ones), we get ð12 NðNþ1ÞÞ2�N2 inequalities,
which for a 5�5 table yields 200 inequalities and for a
10�10 table yields 2,925 inequalities.7

6 Analogously, in a simple one-sided test of a single parameter, H0 :

br0 versus H1 : b40, the point least favorable to the alternative under

the null is zero.

7 These results are easily generalized to cases in which the number

of rows and columns differs. For an N�K table, there are 2NK�K�N

inequalities to test. Our results also generalize to sorts on three or more

variables. For a D-dimensional sort, with N securities in each direction,

the total number of inequalities amounts to DND�1(N�1).
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2.7. Monotonic patterns in risk-adjusted returns or factor

loadings

The MR methodology can be extended to test for
monotonic patterns in parameters other than the
unconditional mean. For example, in a performance
persistence study one might be interested in testing that
risk-adjusted returns are monotonically increasing (or
decreasing) in past performance. Alternatively, a corpo-
rate finance model could imply that the sensitivity of
returns (or sales or free cash flows) to a credit constraint
factor is monotonically decreasing in firm size. These
examples are nested in the more general framework with
K risk factors, Ft ¼ ðF1t , . . . ,FKtÞu:

rit ¼ biuFtþeit , i¼ 0,1, . . . ,N

bi � ðb1i, . . . ,bKiÞu, ð18Þ

with the associated hypotheses on the jth parameter in
the above regression:

H0 : bjN rbjN�1r � � �rbj0

versus

H1 : bjN 4bjN�14 � � �4bj0 ð1r jrKÞ: ð19Þ

Our framework in the previous subsections corresponds
to regressing each portfolio return onto a constant and so
emerges when K=1 and F1t=1 for all t. A test for
monotonic risk-adjusted returns could be conducted by
regressing returns onto a constant and a set of risk factors
(for example, the Fama-French three-factor model) and
then testing that the intercept (the alpha) from that
regression is monotonically increasing. A test for mono-
tonically increasing or decreasing factor sensitivity can be
obtained by regressing returns on a constant, the factor of
interest, and other control variables, and then testing that
the coefficient on the relevant factor is monotonically
increasing or decreasing.

The bootstrap regression for the general case takes the
form

~r ðbÞitðtÞ ¼ bðbÞui FðbÞitðtÞ þeðbÞitðtÞ, i¼ 0,1, . . . ,N: ð20Þ

For each bootstrap sample an estimate of the coefficient
vector is obtained. The null hypothesis is imposed by
subtracting the corresponding estimate from the original
data. From the recentered bootstrapped estimates,

b̂
ðbÞ

i �b̂ i, the test statistic for the bootstrap sample can be

computed:

JðbÞj,T � min
i ¼ 1,...,N

½ðb̂
ðbÞ

j,i �b̂ j,iÞ�ðb̂
ðbÞ

j,i�1�b̂j,i�1Þ�: ð21Þ

By generating a large number of bootstrap samples the

empirical distribution of JðbÞj,T can be used to compute an

estimate of the p-value for the null hypothesis, as in the
simpler case presented in Section 2.5. The theorem in the
Appendix covers this more general regression case and is
based on the work of White (2000) and Politis and
Romano (1994).

2.8. Conditional tests

Asset pricing models often take the form of conditional
moment restrictions and so it is of interest to see how our
tests can be generalized to this setting. Following
Boudoukh, Richardson, Smith, and Whitelaw (1999),
such a generalization is easily achieved by using the
methods for converting conditional moment restrictions
into unconditional moment restrictions commonly used
in empirical finance.

To see how this works, let zt be some instrument used
to convert an unconditional moment condition into a
conditional one. This instrument could take the form of an
indicator variable that captures specific periods of interest
corresponding to some condition being satisfied (e.g.,
the economy being in a recession) but could take other
forms. The first step of the conditional MR test then pre-
multiplies the set of returns, rit, by zt. In a second step, the
test is conducted on the unconditional moments of the
modified data ~r it ¼ rit � zt along the lines proposed
above.

3. Performance of the tests: A simulation study

The hypothesis tests proposed here are nonstandard.
Unlike the standard t-test for equal expected returns,
there are no optimality results or closed-form distribu-
tions against which test statistics such as those in Eq. (7)
or Eq. (17) can be compared and from which critical
values can be computed. To address this issue, we next
undertake a series of Monte Carlo simulation experiments
that offer insights into the finite-sample behavior of the
proposed tests.

3.1. Monte Carlo setup

The first set of scenarios covers situations in which the
hypothesized theory is valid and a monotonic relation exists
between portfolio rank and the portfolios’ true expected
returns. We would like the MR tests to reject the null of no
systematic relation in this situation (while the Wolak and
Bonferroni tests should not reject) and the more often they
reject, the more powerful they are.

Experiment I assumes monotonically increasing ex-
pected returns with identically sized increments between
adjacent decile portfolios. Experiment II lets the expected
return increase by 80% of the total from portfolio one
through portfolio five, and then increase by the remaining
20% of the total across the remaining five portfolios.
Experiment III assumes a single large increase in the
expected return from decile one to decile two, equal to
50% of the total increase, and then spreads the remaining
50% of the increase across the nine remaining portfolios.
These three patterns are illustrated in the first column of
Fig. 3 and all have in common that the theory of a
monotonic relation holds.

The second set of scenarios covers situations in which
the theory fails to hold and a non-monotonic relation
exists between portfolio ranks and expected returns, so
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the MR test should not reject, while the Wolak and
Bonferroni tests should reject.

Experiments IV–VIII all break the monotonic pattern in
expected returns in some way. Experiment IV assumes an
increasing but non-monotonic pattern with declines in
expected returns for every second decile. Experiment V
assumes a rising, then declining pattern in the expected
return for a net gain in the expected return from the first

to the tenth portfolio. The next two experiments assume a
pattern in which expected returns first rise and then
decline so the expected return of the first and tenth
deciles are identical, with the pattern being symmetric for
Experiment VI and being smoothly increasing then flat
and finally sharply decreasing for Experiment VII. Finally,
Experiment VIII assumes a mostly flat, jagged pattern in
expected returns.
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Fig. 3. Patterns in expected returns under the eight experiments considered in the Monte Carlo simulations for a step size of one basis point.
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Each pattern is multiplied by a step size that varies
from a single basis point per month to two, five, and 10
basis point differentials in the expected returns.

To ensure that our experiments are computationally
feasible and involve both a sufficiently large number of
Monte Carlo draws of the original returns and a sufficient
number of bootstrap iterations for each of these draws, we
focus on a one-dimensional monotonic pattern with N=10
assets. We present results based on two sets of assump-
tions. The first is based on a normality assumption, while
the second set of results are based on more realistic data,
where we use the bootstrap to reshuffle the true returns on
the size-sorted decile portfolios and use these as our Monte
Carlo simulation data. We draw 2,500 bootstrap samples of
the original returns. For each simulated data set we employ
B=1,000 replications of the stationary bootstrap of Politis
and Romano (1994) and use one thousand Monte Carlo
simulations to get the weights required for the Wolak
(1989) test. We consider two sample sizes for the
simulation: T=966 matches the full sample of data on
size-sorted portfolios (1926—2006), and T=522 matches
the post-1963 sample of data on these portfolios.

3.2. Analytical results under normality

To obtain simple analytical results, we first make the
assumption that the estimated differences in portfolio
returns are independently and normally distributed, i.e.,
Dm̂ i �N ðDmi,ð1=TÞs2

i Þ, for i=2,y,N, and Corr½Dm̂ i,Dm̂j� ¼ 0
for all iaj. This setup allows us to present formulas for the
power of the tests and establish intuition for which results
to expect. In particular, we can derive the power of the
t-test analytically. First, note that the t-test is based on
the difference between the mean returns of the N th and
the first portfolios,

m̂N�m̂1 ¼
XN

i ¼ 2

Dm̂ i �N
XN

i ¼ 2

Dmi,
1

T

XN

i ¼ 2

s2
i

 !
: ð22Þ

Assuming that the variances are known, the t-statistic is

tstat�

ffiffiffi
T
p
ðm̂N�m̂1ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i ¼ 2 s2
i

q �N
ffiffiffi
T
p mN�m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i ¼ 2 s2
i

q ,1

0
B@

1
CA: ð23Þ

Under the null we have mN ¼ m1 and so the t-statistic
has the usual N ð0,1Þ distribution. Under the alternative
hypothesis that mN 4m1, the t-statistic diverges as T-1.
For finite T, the probability of rejecting the null hypothesis
using a one-sided test with a 5% critical value is then

Pr½tstat41:645� ¼F
ffiffiffi
T
p mN�m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i ¼ 2 s2
i

q �1:645

0
B@

1
CA, ð24Þ

where Fð�Þ is the cdf of a standard Normal distribution.
Given a sample size, T, the vector of differences in
expected returns Dl� ½Dm2, . . . ,DmN�u, and the vector of
associated standard deviations r� ½s2, . . . ,sN�u, we can
directly compute the power of the t-test.

For the MR test, the power is obtained as follows. To
obtain the distribution of our test statistic, JT �

mini ¼ 2,...,NDm̂ i, under the null, we use 100,000 simulated

draws to compute critical values, denoted J�T ðrÞ. The power of
our test is then simply Pr½JT ðDl,sÞ4 J�T ðrÞ�. We compute this
power using one thousand simulated draws.

Results for this benchmark case are presented in the
first column of Table 1 labeled ‘‘Normal simulation.’’ For
Experiments I, II, and III, the power of the t-test converges
to one as the step size grows from one to 10 basis points.
The probability of rejecting the null also approaches one
for Experiment IV, which assumes a non-monotonic but
increasing pattern of expected returns.

The MR test has somewhat lower power than the t-test
for the three experiments in which both tests should reject
the null (Experiments I, II, and III). Compensating for the
reduction in power, we observe that the probability that
the bootstrap rejects the null in Experiments IV–VIII, which
would constitute a Type I error as these experiments do not
have a monotonic pattern, goes to zero as the step size
grows and never much exceeds the nominal size of the test.
Thus the MR test is very unlikely to falsely reject the null
hypothesis. In contrast, the t-test frequently rejects the null
under Experiments IV and V when the step size is
comparable to that observed for the majority of portfolio
sorts in the empirical analysis in Section 3.3, i.e., five to 10
basis points. The t-test is not wrong. However, it has a
limited scope because it compares only the top and bottom
portfolios and thus fails to detect non-monotonic patterns
in the full portfolio sorts.

3.3. Bootstrap simulation results

The second set of columns in Table 1 present the
results from the simulation based on bootstrap draws of
monthly returns on the size sorted decile portfolios
presented in the empirical section using either the full
sample (1926–2006, in Panel A) or a shorter subsample
(1963–2006, in Panel B.) Results are first shown for the
Wolak (1989) test and the Bonferroni bound test. Wolak’s
test and the Bonferroni-based test have a weakly mono-
tonic relation under the null hypothesis and a non-
monotonic relation under the alternative. Hence, in
contrast with the other tests, these tests should not reject
the null for returns generated under Experiments I–III,
while they should reject the null hypothesis under
Experiments IV–VIII. We present the Up and Down tests
along with the MR tests. We focus our discussion on the
results for the long sample (Panel A), but the results are
similar for the shorter sample.8

The first panel, with step size set to zero, shows that
the Bonferroni, Wolak, t, Up, Down, MR, and MRall tests
have roughly the correct size when there is genuinely no
relation between expected returns and portfolio rank,
although most of the tests slightly over-reject the null

8 The generally small differences in power between the T=966 and

T=522 simulations could indicate that the power of these tests is

converging to unity relatively slowly. Differences in size and power

across these two studies could arise from the fact that the former uses

bootstrap shuffles of returns on the size-sorted portfolios from 1926 to

2006, while the latter uses returns from 1963 to 2006. Thus differences

in the properties of this data across these sample periods could result in

variations in the simulation results.
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hypothesis. This is not an unusual finding and mirrors
results reported in simulation studies of the finite-sample
size of asset pricing tests, see, e.g., Campbell, Lo, and
MacKinlay (1997).

Under Experiment I, the Wolak and Bonferroni tests
should not reject the null, and this is what we find. The
bootstrapped results from the t-test and MR test are
comparable to those obtained under the normality assump-
tion. The t-test rejects slightly more frequently than the MR
test. When the expected return differential increases by a
single basis point per month for each decile portfolio,
approximately 11–13% of the simulations correctly reject
and this increases to around 20% under the two basis point
differential. Under the five basis point return differential, the
rejection rate is close to 50%. Finally, under the largest step
size with a 10 basis point return differential per portfolio,
the rejection rate is above 80%.

In Experiments II and III, the expected return pattern is
monotonic but nonlinear, and both the t and MR tests
should again reject the null hypothesis. The t-test uses only
the difference in expected returns between portfolio one
and portfolio 10 and so is unaffected by the presence of a
kink in expected returns. The smallest step size affects the
power of the MR test, which focuses on the minimum
difference, miniDmi, and thus we expect this test to have
lower power to detect patterns like Experiments II and II.
This is what we find. For a step size equal to five basis
points, for example, the power of the MR test is 30% in
Experiments II and III, compared with 47% in Experiment I.

The column in Table 4 labeled ‘‘MRall’’ shows the result
of using all possible pair-wise inequalities in the test.
For a one-way sort with N=10, this entails comparing 45
instead of nine pairs of portfolio returns. There appears to
be a small gain in power from including the full set of
inequalities, although this could in part reflect that this
approach leads to a slightly oversized test.

Turning to the second set of experiments involving a
non-monotonic relation between expected returns and
portfolio ranks, we expect Wolak’s test and the Bonferroni
bound test to reject the null hypothesis of a weakly
monotonic relation: For step sizes less than five basis
points neither of these tests exhibit much power, but for
step sizes of five and particularly 10 basis points they do
detect the non-monotonic relation, with Wolak’s test in
most cases having considerably better power than the
Bonferroni bound test. Comparing Experiments VI and VII,
we see that the power of both the Wolak and Bonferroni
bound test is much greater in the presence of a single large
deviation from the null compared with many small
deviations that add up to the same total deviation.
Importantly, in these experiments the MR tests very rarely
reject, whereas the standard t-test does so frequently. For
example, the t-test rejects 77% of the time in Experiment IV
with the largest step size. These are cases in which we do
not want a test to reject if the theory implies a monotonic
relation between portfolio rank and expected returns.

Because the tests consider different hypotheses, their
size and power are not directly comparable. The t-test
compares only the top and bottom portfolio; the MR test
considers all portfolios and continues to have equality of
means as the null and inequality as the alternative; finally,
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the Wolak and Bonferroni bound tests have weak inequality
of expected returns under the null. Due to these differences,
the tests embed different trade-offs in terms of size and
power. While the t-test is powerful when expected returns
are genuinely monotonically rising, this test cannot estab-
lish a uniformly monotonic pattern in expected returns
across all portfolios and, as shown in Experiments IV–VIII, if
used for this purpose can yield misleading conclusions. The
Wolak test is not subject to this criticism. However, when
this test fails to reject, this could simply be due to the test
having weak power. Finally, the MR test has weak power for
small steps in the direction hypothesized by the theory but
appears to have good power for step sizes that match much
of the empirical data considered below. Moreover, this test
does not reject the null when the evidence contradicts the
theory as in Experiments IV–VIII.9

4. Empirical results

We finally revisit a range of examples from the finance
literature. We compare the outcome of tests based on our
new monotonic relation test or the Up and Down tests to a
standard t-test, the Wolak (1989) test, and the Bonferroni
bound.

Initially we consider empirical tests of the CAPM. An
investor believing in this model would hold strong priors
that expected stock returns and subsequent estimates of
betas should be uniformly increasing in past estimates of
betas, and so the CAPM is well suited to illustrate our
methodology. We next consider the liquidity preference
hypothesis, which conjectures that expected returns on
Treasury securities rise monotonically with the time to
maturity. Finally, we extend our analysis to a range of
portfolio sorts previously considered in the empirical
finance literature. In all cases we use one thousand
bootstrap replications for the bootstrap tests and we
choose the average block length to be 10 months, which
seems appropriate for returns data that display limited
time series dependencies at the monthly horizon. Finally,
we employ one thousand Monte Carlo simulations to
obtain the weight vector, oðN,iÞ, used to compute critical
values in the Wolak (1989) test.

4.1. Portfolio sorts on CAPM beta: Expected returns

We first test for an increasing relation between ex ante
estimates of CAPM beta and subsequent returns, using the
same data as in Ang, Chen, and Xing (2006), which runs
from July 1963 to December 2001.10 At the beginning of
each month stocks are sorted into deciles on the basis of
their beta estimated using one year of daily data, value-
weighted portfolios are formed, and returns on these
portfolios in the subsequent month are recorded. If the
CAPM holds, we expect a monotonically increasing

pattern in average returns going from the low-beta to
the high-beta portfolios.

A plot of the average returns on these portfolios is
presented in Fig. 1, and the results of tests for an increasing
relation between historical beta and subsequent returns are
presented in Table 2. Although the high-beta portfolio has a
larger mean return than the low-beta portfolio, the spread is
not significant and generates a t-statistic of only 0.34. The
MR test, however, does reject the null of no relation
between past beta and expected returns in favor of a
strictly increasing relation, with a p-value of 0.04.

One possible reason for the ability of our test to detect
a uniform relation between beta and expected returns is
that it considers all portfolio returns jointly. Another
reason stems from the rising pattern in the standard
deviation of beta decile portfolio returns. Low-beta
portfolios have a much smaller standard deviation than
high-beta portfolios. By using the studentized version of
our MR test we are able to more efficiently estimate the
pattern in these expected portfolio returns in a way that
accounts for cross-sectional heteroskedasticity.

The Wolak and Bonferroni tests do not reject the null
of a weakly increasing relation between betas and
expected returns and so are consistent with the conclu-
sion from our MR test.

4.2. Portfolio sorts on CAPM beta: Post-ranked betas

As an illustration of the monotonicity tests on factor
loadings, we next examine whether the post-ranked betas of
portfolios ranked by their ex ante beta estimates are
monotonically increasing across portfolios. Failure of this
property would suggest that past beta estimates have little
predictive content over future betas, perhaps due to
instability, thus making them inadequate for the purpose of
testing the CAPM. For this reason it is common to check
monotonicity of the post-ranked betas, see, e.g., Fama and
French (1992).

As above, at the beginning of each month stocks are
sorted into deciles on the basis of their beta calculated
using one year of daily data, value-weighted portfolios are
formed, and returns on these portfolios in the subsequent
month are recorded. If betas are stable over time and
estimated without too much error, we would expect to
see a monotonically increasing pattern in the post-ranked
betas. We compute the post-ranked betas using the
realized monthly returns on the decile portfolios ranked
by ex ante betas. Specifically, denoting the return on the
ith (ex ante sorted) decile portfolio as rit, we estimate the
following regressions:

rit ¼ aiþbirmtþeit , i¼ 1,2,: :,10 ð25Þ

and, using the theory discussed in Subsection 2.7, test the
hypothesis

H0 : b10rb9r � � �rb1

versus

H1 : b104b94 � � �4b1: ð26Þ

Panel C of Table 2 presents the results. As might be
expected, the post-ranked beta estimates vary substantially

9 In unreported simulation results, we impose identical pair-wise

correlations across the test statistics and investigate how the results

change when the correlation increased from 0 to 0.5 and 0.9. We find

that the power of the MR, Wolak, and Bonferroni tests declines the

higher the correlation.
10 We thank the authors for providing us with these data.
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from a value of 0.60 for the stocks with the lowest historical
beta estimates to a value of 1.54 for the stocks with the
highest historical beta estimates. This difference in betas is
large and significant with a p-value of 0.00. Moreover, the
MR test in Panel D confirms that the pattern is mono-
tonically increasing across the portfolios. The null of no
relation is strongly rejected in favor of a monotonically
increasing relation, with a p-value of 0.003.

4.3. Testing monotonicity of the term premium

In a series of papers, Fama (1984), McCulloch (1987),
and Richardson, Richardson, and Smith (1992) explore the
implication of the liquidity preference hypothesis that
expected returns on Treasury securities should be higher
the longer their time to maturity. Eq. (3) shows that this
fits in our framework.

To test this theory, Fama (1984) uses a Bonferroni
bound based on individual t-tests applied to term premia
on T-bills with a maturity up to 12 months. He finds
evidence against monotonicity of the term premium as
nine-month bills earned a higher premium than bills with
longer maturity, particularly as compared with ten-month
bills. McCulloch (1987) argues that this finding is
explained by the unusual behavior of the bid-ask spread

of nine-month bills during 1964–1972. Subsequently,
Richardson, Richardson, and Smith (1992) analyze mono-
tonicity in the term structure using the Wolak test applied
to bills with a maturity ranging from two to 11 months.
For the period 1964–1990, they find that the Wolak test
strongly rejects the null of a monotonically increasing
pattern. However, this rejection appears to be confined to
the 1964–1972 period because monotonicity is not
rejected in subsamples covering the period 1973–1990.

We revisit the liquidity preference hypothesis by
inspecting term premia on T-bills over the period 1964–
2001, the longest available sample from the Center for
Research in Security Prices monthly treasuries files. Like
Richardson, Richardson, and Smith (1992), we restrict our
analysis to maturities between two and 11 months.
Table 3 presents the results. Panel A shows the average
term premia as a function of maturity. Over the full
sample the spread in term premia between 11- and two-
month bills is 0.05% per month or 0.6% per annum. Panel B
shows that the associated t-statistic equals 2.42 and
hence is statistically significant. Turning to the tests for
monotonicity, both the Wolak and Bonferroni tests reject
the null of an increasing term structure, while the MR
test fails to find evidence in favor of a monotonically
increasing term structure. These results are all consistent

Table 2
Test statistics for portfolios sorted by historical beta.

This table presents results of tests for a monotonic relation between estimates of Capital Asset Pricing Model (CAPM) beta and subsequent returns,

using the same data as in Ang, Chen, and Xing (2006), which runs from July 1963 to December 2001. At the beginning of each month, stocks are sorted

into deciles on the basis of their ex ante beta estimates calculated using one year of daily data, value-weighted portfolios are formed, and returns on these

portfolios in the subsequent month are recorded. Panel A presents the average returns on each of these portfolios in percent per month along with the

monthly standard deviation of portfolio returns. Panel B presents various tests of the monotonicity of average returns across portfolios. Column 1 reports

the spread in the estimated expected return between the top and bottom ranked portfolio. Column 2 reports the t-statistic for this spread (using Newey

and West, 1987 heteroskedasticity and autocorrelation consistent standard errors), and Column 3 shows the associated p-value. Columns 4 and 5 present

the p-values from the monotonic relation (MR) test applied to the decile portfolios, based either on the minimal set of portfolio comparisons or on all

possible comparisons (MRall). Columns 6 and 7 show p-values associated with the Up and Down tests that consider signed deviations from a flat pattern.

Columns 8 and 9 report the p-values from tests based on the Wolak (1989) test and a Bonferroni bound. Panel C shows post-ranked beta estimates for the

decile portfolios ranked by ex ante betas. Finally, Panel D presents a t-test for the top-minus-bottom difference in post-ranked betas and p-values from

the MR and MRall tests applied to the post-ranked beta estimates.

Panel A: Average returns on CAPM beta decile portfolios

Past beta

Low 2 3 4 5 6 7 8 9 High

Mean 0.414 0.502 0.488 0.537 0.539 0.520 0.486 0.576 0.511 0.510

Standard deviation 3.534 3.746 3.828 4.024 4.307 4.230 4.417 4.942 5.807 7.506

Panel B: Tests of monotonicity for returns on CAPM beta decile portfolios

Top minus t-test MR MRall Up Down Wolak Bonferroni

bottom t-statistic p-value p-value p-value p-value p-value p-value p-value

Statistic or p-value 0.096 0.339 0.367 0.039 0.040 0.648 0.920 0.958 1.000

Panel C: Post-ranked betas on CAPM beta decile portfolios

Past beta

Low 2 3 4 5 6 7 8 9 High

Estimated beta 0.600 0.659 0.702 0.774 0.856 0.850 0.904 1.013 1.194 1.539

Panel D: Tests of monotonicity for post-ranked beta estimates

Top minus t-test MR MRall

bottom t-statistic p-value p-value p-value

Statistic or p-value 0.938 9.486 0.000 0.003 0.003
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with the presence of some declining segments in the term
structure. Fig. 2 shows that, consistent with the earlier
studies, the culprit appears to be the high term premium
on nine-month bills.

When conducted separately on the subsample 1964–
1972, very similar conclusions emerge. In this subsample,
a monotonically rising term structure is clearly rejected
by both the Wolak and Bonferroni tests and the MR test
also finds no evidence to support uniformly increasing
term premia. In sharp contrast, for the period 1973–2001,
the Bonferroni and Wolak tests both fail to reject the null
of an increasing term premium. The inability of the MR
test to reject the null against an increasing term premium
could simply reflect low power of this test in this
sample. In support of this interpretation, notice that the
Up test finds significant evidence of segments with a
strictly increasing term premium, while the Down
test fails to find significant evidence of decreasing
segments.

4.4. One-way portfolio sorts: Further evidence

It is common practice to inspect mean return patterns
for portfolios sorted on firm or security characteristics.
To illustrate how our approach can be used in this context,
we therefore consider returns on a range of portfolios
sorted on firm characteristics such as market equity (size),
book-to-market ratio, cashflow-price ratio, earnings-
price ratio, and the dividend yield or past returns
over the previous month (short-term reversal), 12 months
(momentum), or 60 months (long-term reversal).
For some of these sorts, the implications of theory are

not as clear-cut as in the case of the CAPM and so should
be viewed as joint tests that the sorting variable proxies
for exposure to some unobserved risk factor and the
validity of the underlying asset pricing model.

Data on value-weighted portfolio returns are obtained
from Ken French’s website at Dartmouth College11 and are
made up of stocks listed on NYSE, AMEX, and NASDAQ.
The findings on cross-sectional return patterns in portfo-
lios sorted on various firm characteristics reported by
Fama and French (1992) were based on data starting in
July 1963, and we keep this date as our starting point.
However, we also consider the earliest starting point for
each series, which is 1926 or 1927, except for the
portfolios sorted on long-term reversal that begin in
1931 and the portfolios sorted on the earnings-price or
cashflow-price ratios that begin in 1951. In all cases the
data end in December 2006. We focus our discussion on
the more recent sample from 1963 to 2006.

Panel A of Table 4 reports estimates of expected
returns for the decile portfolios sorted on the eight
variables listed in the columns. We preserve the order of
the portfolios reported by Ken French. This means that we
are interested in testing for an increasing relation
between portfolio rank and expected returns for the
portfolios sorted on book-to-market, cashflow-price,
earnings-price, dividend yield, and momentum. We also
are interested in testing for a decreasing relation for the
portfolios sorted on size, short-term reversal, and long-
term reversal.

Table 3
Test statistics for term premia.

This table presents results of tests for a monotonic relation (MR) between term premia on US Treasury bills (relative to the one-month Treasury bill)

and the time to maturity, using data from the Center for Research in Security Prices monthly treasuries files, over the period January 1964–December

2001. Panel A reports the average term premia in percent per month for the full sample (1964–2001) and for two subsamples (1964–1972 and 1973–

2001). Panel B reports various tests of the monotonicity of average term premia as a function of time to maturity. The first column presents the average

difference between the longest and the shortest term premia, and the second and third columns present the t-statistic (using Newey and West, 1987

heteroskedasticity and autocorrelation consistent standard errors) and p-value corresponding to this difference. In the fourth and fifth columns we

present the p-values from the MR test, based either on the minimal set of portfolio comparisons or on all possible comparisons. In the sixth and seventh

columns we present our p-values from the tests for increasing (Up) and decreasing (Down) segments in term premia, and in the final two columns we

present p-values from the Wolak (1989) test and a Bonferroni-based test of the null of weak monotonicity against an unconstrained alternative.

Panel A: Average term premia

Maturity (in months)

Sample 2 3 4 5 6 7 8 9 10 11

1964–2001 0.027 0.049 0.050 0.064 0.068 0.063 0.080 0.086 0.071 0.077

1964–1972 0.023 0.040 0.038 0.052 0.054 0.052 0.069 0.069 0.018 0.050

1973–2001 0.028 0.052 0.053 0.068 0.072 0.066 0.084 0.092 0.087 0.085

Panel B: Tests of monotonicity of term premia

Top minus t-test MR MRall Up Down Wolak Bonferroni

Sample bottom t-statistic p-value p-value p-value p-value p-value p-value p-value

1964–2001 0.050 2.416 0.008 0.953 0.906 0.000 0.369 0.036 0.020

1964–1972 0.026 0.908 0.182 0.983 0.991 0.003 0.375 0.007 0.004

1973–2001 0.057 2.246 0.012 0.633 0.617 0.002 0.474 0.340 0.704

11 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html
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For the portfolios sorted on the book-to-market,
cashflow-price or earnings-price ratios, or long-term
reversal, there are either no reversals of the monotonic
pattern or few and smaller ones compared with those
observed for the other sorts. There are larger reversals
in average returns for the size-sorted portfolios
(three reversals of up to five basis points per month) as

well as for the portfolios sorted on dividend yield
(five reversals of up to nine basis points), momentum
(a 10 basis point decrease), and short-term reversal
(an increase of 14 basis points). Hence, for some portfolio
sorts a monotonic pattern is observed in average returns,
while for other portfolio sorts non-monotonic patterns of
varying degrees arise. Moreover, large differences emerge

Table 4
Estimates of expected returns for decile portfolios.

This table reports mean returns (in percent per month) for stocks sorted into value-weighted decile portfolios. The sorting variables are market equity

(ME), book-to-market value (BE-ME), cashflow-price (CF-P), earnings-price (E-P), dividend-price (D-P), momentum (M’tum), short-term reversal (ST Rev),

and long-term reversal (LT Rev). All data series are taken from Ken French’s website at Dartmouth College. Panels A and B report results for the period July

1963–December 2006, and Panels C and D report results for the earliest available starting point for each series, which is 1926 or 1927 except for the

portfolios sorted on long-term reversal, which begin in 1931, and the portfolios sorted on the earnings-price or cashflow-price ratios, which begin in

1951. Panels B and D report various tests for monotonicity in the average returns on these portfolios described in Section 2. Row 1 reports the t-statistic

for this spread (using Newey and West, 1987 heteroskedasticity and autocorrelation consistent standard errors), and Row 2 shows the associated p-value.

Rows 3 and 4 present the p-values from the monotonic relation (MR) test between the portfolio sorting variables and expected returns across all decile

portfolios, based either on the minimal set of portfolio comparisons or on all possible comparisons (MRall). Rows 5 and 6 report the p-values from the

bootstrap tests for Up and Down changes in expected returns across adjacent portfolios. The second-last and last rows report the p-values from the Wolak

(1989) test and a test based on Bonferroni bounds.

Portfolio ME BE-ME CF-P E-P D-P M’tum ST Rev LT Rev

Panel A: Average returns, 1963–2006

Low 1.273 0.824 0.850 0.829 1.002 0.177 1.147 1.395

2 1.206 0.948 0.898 0.845 0.938 0.736 1.281 1.244

3 1.241 0.989 0.975 0.975 1.029 0.862 1.255 1.214

4 1.185 1.013 0.960 0.959 1.006 0.903 1.055 1.104

5 1.209 1.014 1.069 0.943 0.912 0.801 1.020 1.127

6 1.097 1.110 1.030 1.075 1.006 0.899 0.935 1.074

7 1.151 1.188 1.090 1.234 1.045 0.941 0.890 1.070

8 1.095 1.216 1.127 1.229 1.133 1.145 0.941 0.977

9 1.026 1.269 1.329 1.284 1.122 1.238 0.748 0.897

High 0.886 1.396 1.334 1.429 1.074 1.648 0.683 0.882

High–Low �0.387 0.572 0.485 0.600 0.072 1.472 �0.464 �0.512

Panel B: Tests of monotonicity, 1963–2006

t-statistic �1.536 2.544 2.404 2.683 0.295 5.671 �2.364 �2.205

t-test p-value 0.062 0.005 0.008 0.004 0.384 0.000 0.009 0.014

MR p-value 0.274 0.000 0.024 0.008 0.336 0.291 0.258 0.002

MRall p-value 0.237 0.000 0.012 0.021 0.256 0.242 0.170 0.002

Up p-value 0.737 0.045 0.035 0.016 0.353 0.000 0.889 0.999

Down p-value 0.051 1.000 0.994 0.985 0.651 0.954 0.015 0.114

Wolak p-value 0.736 1.000 0.990 0.991 0.810 0.873 0.860 0.998

Bonferroni p-value 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: Average returns, full sample

Low 1.520 0.872 0.863 0.852 0.924 0.338 1.493 1.504

2 1.326 0.973 0.939 0.864 0.984 0.732 1.217 1.315

3 1.298 0.977 0.986 1.010 0.934 0.741 1.168 1.286

4 1.249 0.970 1.003 1.010 1.024 0.865 1.039 1.094

5 1.211 1.054 1.116 1.020 0.902 0.869 1.064 1.164

6 1.183 1.101 1.086 1.190 0.991 0.943 1.017 1.044

7 1.148 1.115 1.189 1.265 1.086 1.032 0.972 1.072

8 1.093 1.272 1.212 1.344 1.145 1.163 0.932 1.047

9 1.040 1.306 1.397 1.403 1.109 1.268 0.828 0.922

High 0.907 1.410 1.437 1.549 1.094 1.591 0.487 0.902

High–Low �0.613 0.538 0.574 0.697 0.171 1.254 �1.007 �0.602

Panel D: Tests of monotonicity, full sample

t-statistic �2.350 2.439 3.244 3.665 0.938 5.434 �5.060 �2.486

t-test p-value 0.009 0.007 0.001 0.000 0.174 0.000 0.000 0.006

MR p-value 0.002 0.000 0.018 0.000 0.692 0.002 0.012 0.221

MRall p-value 0.002 0.000 0.012 0.000 0.492 0.002 0.016 0.158

Up p-value 0.987 0.027 0.007 0.001 0.169 0.000 0.993 0.919

Down p-value 0.024 1.000 0.994 1.000 0.606 0.998 0.003 0.020

Wolak p-value 0.985 0.999 0.995 1.000 0.530 0.999 0.995 0.880

Bonferroni p-value 1.000 1.000 1.000 1.000 0.361 1.000 1.000 1.000
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in the magnitude of the top–bottom spreads, which range
from a minimum of seven basis points per month for the
portfolios sorted on the dividend yield to nearly 150 basis
points for the portfolios sorted on momentum. A key
question is clearly how strong the deviations from a
monotonic pattern must be for us to reject the null
hypothesis and establish monotonicity in expected returns.

To answer this question, Panel B presents test results
for the eight portfolio sorts. The first row reports the t-
statistic for testing the significance of the difference
in expected returns between the top and bottom portfo-
lios. These range from 0.30 (for portfolios sorted on the
dividend yield) to 5.7 in the case of the momentum-sorted
portfolios. The associated p-values show that the portfo-
lios sorted on the dividend yield fail to produce a
statistically significant top–bottom spread. Moreover,
the spread in average returns on the size-sorted portfolios
is borderline insignificant with a p-value of 0.06. The
remaining portfolios generate significant spreads.

To see if the mean return patterns are consistent with
monotonicity in expected returns, the third row in Panel B
reports the bootstrapped p -values associated with the MR
test. This test fails to find a monotonic relation between
expected returns and portfolios ranked by short-term
reversal (p-value of 0.26), momentum (p-value of 0.29),
size (p-value of 0.27), or the dividend yield (p-value of
0.34). Only for the portfolios sorted on long-term reversal
and the book-to-market, cash flow-price, and earnings-
price ratios do we continue to find strong evidence of a
monotonic pattern in expected returns. The fourth row in
Panel B shows that the MR tests based on comparing only
the adjacent portfolios versus comparing all possible pairs
always lead to the same conclusions.

The MR test accounts for the effects of random
sampling variation. This has important implications. For
example, for the portfolios sorted on the earnings-price
ratio where three reversals appear in the ordering of
average returns, the test still rejects very strongly because
these reversals are small in magnitude (less than two
basis point per decile portfolio) relative to the sampling
variability of the average returns. In contrast, the relation
between expected returns and the dividend yield or
momentum are insignificant. This is to be expected given
the large reversals in the mean return patterns observed
for the portfolios sorted on this variable.

For all eight portfolio sorts, the Wolak (1989) test fails
to reject the null of a (weakly) monotonic relation.
Moreover, this conclusion is supported by the multi-
variate inequality test based on the Bonferroni bound,
which always equals one. Even the conventional t-test
found no evidence of a monotonic pattern for the
portfolios sorted on the dividend yield and so this
evidence illustrates the difficulty that could arise in
interpreting the Wolak and Bonferroni test. Failure to
find evidence against a weakly monotonic pattern in the
sorted portfolio returns could simply reflect weak power.

Similar results are obtained in the longer samples
listed in Panels C and D, although the MR test now also
finds evidence in support of monotonicity for the
portfolios sorted on size, momentum, and short-term
reversal but fails to reject the null for the portfolios sorted

on long-term reversal. As before, in each case the
Bonferroni and Wolak tests fail to reject the null.

4.5. Two-way portfolio sorts

As an illustration of how our methodology can be
extended, we next consider two-way sorts that combine
portfolios sorted on firm size with portfolios sorted on
either the book-to-market ratio or momentum. In both
cases we study 5�5 portfolio sorts. Results, reported in
Table 5, are for the period from July 1963 to December
2006. Inspecting the mean returns, there is some evidence
of a non-monotonic pattern across size-sorted portfolios
for the quintiles with a low book-to-market ratio tracking
growth stocks (Panel A) or stocks with poor past
performance (Panel B).

Because the two-way sorts involve a large number of
inequalities, it is useful to decompose the overall (joint) test
into a series of conditional tests that help identify the
economic source of the results. Table 5 therefore uses the MR
test to examine patterns in expected returns keeping one
sorting variable (e.g., size) constant while varying another
(e.g., the book-to-market ratio) or vice versa. For example, the
penultimate row in each panel presents the p-values from the
tests for a monotonic relation between the portfolio sorting
variable in the row (size) and expected returns, conditional
on keeping the column portfolio fixed. Hence, the p-value of a
test for the size effect, conditional on being in the top book-
to-market quintile (value stocks), is 0.031, while it is 0.687 for
the bottom book-to-market portfolio (growth stocks). The
final row in each panel presents the p-value from a joint test
for a monotonic relation between the sorting variable in the
row (size), computed across all column portfolios. Similarly,
the penultimate column presents results from tests for a
monotonic relation between the portfolio sorting variable in
the columns and expected returns, conditional on the row
portfolio, representing firm size.

The results in Table 5 shed new light on the earlier
findings. For example, Panel A reveals that the value effect
is strong among all size portfolios (with p-values ranging
from 0.004 to 0.057). Hence, the statistical evidence
appears to support the conclusion in Fama and French
(2006) that there is a value effect even among large
stocks, although the spread in the top-minus-bottom
portfolios’ average returns is much wider for the smallest
stocks than for the largest stocks. Conversely, the size
effect is significant only among value firms. For the other
book-to-market sorted portfolios, the size effect is non-
monotonic. Overall, the joint test fails to find evidence in
support of a size and book-to-market effect.

Both the Wolak and Bonferroni tests failed to reject the
null of monotonic patterns for both the size and book-to-
market portfolios, with p-values close to one. Again this
highlights the different conclusions that can emerge
depending on whether monotonicity is entertained under
the null or alternative hypothesis.

The results for the size and momentum two-way sorts
provide strong support for a momentum effect among the
four quintiles with the smallest stocks but fail to find a
momentum effect for the largest stocks, for which the MR
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test records a p-value of 0.552. Similarly, there is evidence
of a size effect only for the three portfolios with the
strongest past performance, but not among the two loser
portfolios. Hence, it is not surprising that the tests for
separate size and momentum effects both fail to reject, as
does the overall joint test (p-value of 0.545).

Consistent with the results from the MR test, the
Wolak test rejected the null that expected returns follow a
monotonic pattern in both size and momentum. In
contrast, the more conservative Bonferroni test failed to
reject the null hypothesis of weak monotonicity.

To summarize, two-way sorts can be used to diagnose
why empirical evidence could fail to support a hypothe-
sized pattern in expected returns. Here our findings
suggest that the size effect in expected returns is absent
from growth firms and among loser stocks. Moreover,
momentum effects seem strong for small and medium-
size firms but not among the largest quintile of stocks.

5. Conclusion

Empirical research in finance often seeks to address
whether a systematic relation exists between an asset’s

expected return and some measure of the asset’s risk or
liquidity characteristics. In this paper we propose a test
that reveals whether a null hypothesis of no systematic
relation can be rejected in favor of a monotonic relation
predicted by economic theory. The test summarizes in a
single number whether the relation is monotonic or not.
Moreover, it is nonparametric and does not require
making any assumptions about the functional form of
the relation between the variables used to sort securities
and the corresponding expected returns. This is a big
advantage because monotonicity in expected returns on
securities sorted by some variable is preserved under very
general conditions, including nonlinear mappings be-
tween sorting variables and risk factor loadings. Perhaps
most important, our test is extremely easy to use.

We see two principal uses for the new test. First, it can
be adopted as a descriptive statistic for monotonicity in
the expected returns of individual securities or portfolios
of securities ranked according to one or more sorting
variables. Besides providing a single summary statistic for
monotonicity, our test allows researchers to decompose
empirical results to better diagnose the source of a
rejection of (or failure to reject) the theory being tested.
In general, it is good practice to consider the complete

Table 5
Conditional and joint monotonicity tests for double-sorted portfolios.

This table shows mean returns for stock portfolios using 5�5 two-way sorts. The sorting variables are market equity, which is always listed in the row,

and one of either book-to-market value or momentum. The sample period is July 1963–December 2006, and all data series are taken from Ken French’s

website at Dartmouth College. Portfolios are value-weighted and mean returns are reported in percent per month. The penultimate row in each panel

presents the p-values from tests for a monotonic relation (MR) between the portfolio sorting variable in the row and expected returns, conditional on

being in a given column portfolio. For example, the p-value on a test for the size effect, conditional on being in the Growth book-to-market portfolio is

0.687, while it is 0.031 if we condition on being in the Value book-to-market portfolio. The final row in each panel presents the p-value from a joint test

for a monotonic relation between the portfolio sorting variable in the row, computed across all column portfolios. The penultimate and final columns

present p-values from tests for a monotonic relation between the portfolio sorting variable in the column and expected returns, conditional on being in a

given row portfolio (size). The bottom-right number in each panel is the p-value for the joint test for a monotonic relation in both variables.

Panel A: Market equity �book-to-market ratio

Book-to-market ratio MR Joint MR

Growth 2 3 4 Value p-value p-value

Market equity

Small 0.711 1.297 1.337 1.546 1.660 0.023

2 0.878 1.141 1.411 1.458 1.524 0.004

3 0.889 1.205 1.210 1.334 1.506 0.057 0.000

4 0.998 0.994 1.222 1.334 1.374 0.044

Big 0.879 0.968 0.982 1.066 1.074 0.023

MR p-value 0.687 0.401 0.405 0.069 0.031

Joint MR p-value 0.342 0.083

Panel B: Market value�momentum

Momentum MR Joint MR

Losers 2 3 4 Winners p-value p-value

Market equity

Small 0.362 1.154 1.417 1.564 1.973 0.000

2 0.423 1.034 1.257 1.499 1.777 0.000

3 0.601 0.979 1.123 1.228 1.728 0.000 0.154

4 0.597 0.992 1.026 1.238 1.583 0.008

Big 0.645 0.883 0.774 0.975 1.272 0.552

MR p-value 0.893 0.143 0.001 0.117 0.016

Joint MR p-value 0.708 0.545
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cross-sectional pattern in expected returns on securities
sorted by liquidity or risk characteristics and our test
makes it easy to do this.

Second, if theoretical considerations suggest a mono-
tonic relation between the sorting variable and expected
returns, then the approach can be used to formally test
asset pricing implications such as in the liquidity
preference and CAPM examples covered here or in tests
of whether the pricing kernel decreases monotonically in
market returns. Moreover, when a model implies a
particular ranking in the loadings of individual stocks on
observed risk or liquidity factors, the monotonicity test
can be based on the estimated asset betas. Lack of
monotonicity in such cases could imply that the con-
jectured theoretical model is not an adequate description
of the data.

Appendix

The theorem below applies not just to sample means
or differences in sample means, but also to slope
coefficients, and so we use the general notation b as the
coefficient of interest. The case of sample means is a
special case of the result below, setting Fit ¼ 1 for all i,t,
i.e., regressing each of the asset returns simply on a
constant. In the theorem we also consider the slightly
more general case, relative to the discussion in Section
2.7, that the regressors in each equation can differ, so we
index the regressors by both i and t instead of just t. This
generalization could be of use in cases in which different
control variables are needed for different assets, for
example.

Theorem 1. Consider a set of regressions, with potentially

different regressors in each equation:

rit ¼ biuFitþeit , i¼ 0,1, . . . ,N; t¼ 1,2, . . . ,T,

and define

ht � ½vechðF0tF0t uÞu, . . . ,vechðFNtFNt uÞu,r0tF0t u, . . . ,rNtFNt u�u,

where vech is the half-vec operator (see, e.g., Hamilton,
1994). Assume that (i) ht is a strictly stationary process, (ii)
E½jhkt j

6þ e�o1 for some e40 for all k, where hkt is the kth

element of ht , (iii) fhtg is a-mixing of size �3ð6þeÞ=e, and

(iv) E½FitFit u� is invertible for all i=0,1,: :,N. Let b̂i denote the

usual ordinary least squares (OLS) estimator of bi. Let

hj � ½bj0, . . . ,bjN � and ĥj � ½b̂ j0, . . . ,b̂ jN � be the vector of the

jth regression coefficient in each of the N+1 regressions. Then

as T-1ffiffiffi
T
p
ðĥj�hjÞ ) N ð0,OjÞ,

and

min
i ¼ 1,...,N

ffiffiffi
T
p
fðb̂j,i�b̂j,i�1Þ�ðbj,i�bj,i�1Þg

) Wj � min
i ¼ 1,: :,N

fZi�Zi�1g,

where ½Z0, . . . ,ZN�u�N ð0,OjÞ and ) denotes convergence

in distribution. Further, if aT is the length of the average

block in the stationary bootstrap, aT-1 and aT=T-0

as T-1, then

sup
z
jP�½Jĥ

�

j�ĥjJrz��P½Jĥj�hjjrz�J�!
p

0, as T-1,

and

sup
z

P� min
i ¼ 1,...,N

ffiffiffi
T
p
fðb̂
�

j,i�b̂
�

j,i�1Þ�ðb̂ j,i�b̂j,i�1Þgrz

� �����
�P min

i ¼ 1,...,N

ffiffiffi
T
p
fðb̂ j,i�b̂ j,i�1Þ�ðbj,i�bj,i�1Þgrz

� ������!p 0, as T-1,

where J � J represents a norm on RNþ1, �!
p

denotes

convergence in probability, and P� is the probability measure

induced by the bootstrap conditional on the original data, so

b̂
�

j,i refers to the bootstrapped OLS estimate of the jth variable

and the ith asset.

Proof of Theorem 1. The first part of Theorem 1, the
asymptotic normality of the (N+1) �1 vector of coeffi-
cients in each regression, follows from Theorem 4 in
Politis and Romano (1994) under the stated conditions. As
shown in Proposition 2.2 in White (2000), because the
minimum of a vector of (differences in) parameters is a
continuous function of the elements of the vector, by the
continuous mapping theorem we have that

min
i ¼ 1,...,N

ffiffiffi
T
p
fðb̂j,i�b̂j,i�1Þ�ðbj,i�bj,i�1Þg

) Wj � min
i ¼ 1,...,N

fZi�Zi�1g, ð27Þ

where ½Z0, . . . ,ZN �u�N ð0,OjÞ. The final part of Theorem 1,
which justifies use of the bootstrap, follows from
Corollary 2.6 in White (2000), noting that we do not need
any further assumptions than stated in the theorem due
to the fact that there are no estimated parameters here.
The Up and Down tests can be justified using the same
reasoning as for the directional accuracy test in Section 4
of White (2000). &
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