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Key sources of disagreement among economic forecasters are identified by using data

on cross-sectional dispersion in forecasters’ long- and short-run predictions of

macroeconomic variables. Dispersion among forecasters is highest at long horizons

where private information is of limited value and lower at short forecast horizons.

Moreover, differences in views persist through time. Such differences in opinion cannot

be explained by differences in information sets; our results indicate they stem from

heterogeneity in priors or models. Differences in opinion move countercyclically, with

heterogeneity being strongest during recessions where forecasters appear to place

greater weight on their prior beliefs.
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1. Introduction

Differences in agents’ beliefs play an important role in macroeconomic analysis. In models where agents observe noisy
private and public information, heterogeneity in beliefs has been offered as an explanation for why monetary policy shocks
can have real and persistent effects on output growth due to limited capacity for processing information (Woodford, 2003;
Mackowiak and Wiederholt, 2009), infrequent updating of beliefs (Mankiw and Reis, 2002) or slow aggregate learning
arising from dispersed information (Lorenzoni, 2009). Differences in beliefs also play a key role in determining the effect of
public information signals in the literature on the social value of information in which agents have a coordination motive
due to the strategic complementarity of their actions (Morris and Shin, 2002; Amador and Weill, 2009).2

While heterogeneity in agents’ beliefs can be an important determinant of the ‘‘average opinion’’ about macroeconomic
conditions, the reasons why agents disagree are not well understood. This is important since differences in agents’ priors
versus differences in their private information signals need not display the same degree of persistence and thus could
influence macroeconomic dynamics very differently. Moreover, a better understanding of what determines heterogeneity
in agents’ beliefs and how this heterogeneity evolves over time can facilitate sharper tests of macroeconomic models for
which subjective beliefs are a driver of economic activity. This point is highlighted by the sensitivity of some of the
conclusions drawn from models with heterogeneous information to the type of signals observed by agents (e.g., Hellwig
and Venkateswaran, 2009).
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Hence, it is important to establish empirically why agents disagree and how this disagreement evolves over time and
across different states of the economy. To this end, our paper explores survey data on differences in agents’ subjective
views at several forecast horizons and develops a novel approach for comparing these to model-based predictions of
forecast dispersion. This allows us to address to what extent agents disagree, whether this disagreement has diminished
over time, whether the primary source of disagreement is differences in models or differences in information, and how
disagreements depend on the state of the economy.

A unique data set on forecasts of GDP growth and inflation for a given year recorded at different forecast horizons is
used in the analysis. Fixing the time period and varying the forecast horizon allows us to identify the source of
disagreement among forecasters. This holds because heterogeneity in private signals versus heterogeneity in model priors
have very different effects on the cross-sectional dispersion of beliefs at long, medium and short forecast horizons. If
instead the conventional approach of fixing the forecast horizon and varying the time period was used, variations in
disagreement might simply reflect changes in the volatility of the underlying variable (e.g., the ‘‘Great Moderation’’,
McConnell and Perez-Quiros, 2000) and so the two effects would be difficult to disentangle.

Our analysis accomplishes five objectives. First, it documents empirically how the dispersion among agents’ beliefs
varies over time as well as across different forecast horizons, whether there is any relation between ‘‘average’’ beliefs and
dispersion in beliefs, and how persistent differences in individual agents’ beliefs tend to be.

Second, our analysis addresses the question from the title, namely the key sources of disagreement among forecasters.
At the most basic level of analysis, agents can disagree either because of differences in their information signals or because
of differences in their priors or models. Intuitively, in a stationary world differences among agents’ information signals
should matter most at short forecast horizons and less so at long horizons since variables will revert to their mean.
Conversely, differences in prior beliefs about long-run inflation or output growth, or differences in their models of these
quantities, should matter relatively more at long horizons where signals are weaker. If cross-sectional dispersion was only
available for a single horizon it would not be possible to infer the relative magnitude of priors versus information signals
underlying the cross-sectional dispersion. By studying the term-structure of dispersion in beliefs – i.e., differences in
forecasts at long, medium and short horizons – the key sources of disagreement can thus be identified. Empirically,
heterogeneity in information signals is found not to be a major factor in explaining the cross-sectional dispersion in
forecasts of GDP growth and inflation: heterogeneity in priors or models is more important.

Third, our paper develops an approach for comparing the observed dispersion in subjective beliefs to that implied by a
simple reduced-form model (whose moments are matched as closely as possible to the survey data) for how uncertainty
about macroeconomic variables evolves. Our analysis uncovers evidence of ‘‘excess dispersion’’ in inflation forecasts at
short horizons: at horizons of less than six months the observed disagreement between agents’ predictions of inflation is
high relative to the degree of uncertainty about inflation implied by our model. In contrast, the benchmark model does a
good job at matching the empirically observed dispersion in views about GDP growth.

Fourth, our model is generalized to incorporate the effect of economic state variables on time-variation in the
(conditional) cross-sectional dispersion measured at different horizons. Theoretical models such as Van Nieuwerburgh and
Veldkamp (2006) suggest that macroeconomic uncertainty and dispersion in beliefs should be greater during recessions,
where fewer information signals are received, than during expansions. Consistent with this, empirical evidence is found
that differences in opinion move counter-cyclically, with disagreements being larger in recessions than in expansions.
Our analysis suggests that greater differences in opinion are not due to increased heterogeneity in information signals but
can be related to a shift toward agents putting more weight on model-based forecasts during recessions.

Fifth, our paper offers a variety of methodological contributions. A model is developed that incorporates heterogeneity
in agents’ prior beliefs and information sets while accounting for measurement errors and the overlapping nature of the
forecasts for various horizons. A simulation-based method of moments (SMM) framework is employed for estimating
the model parameters in a way that accounts for how agents update their beliefs as new information arrives. The shape of
the cross-sectional dispersion in forecasts at different horizons is taken as the object to be fitted and SMM estimation is
used to account for the complex covariance patterns arising in forecasts recorded at different (overlapping) horizons.

The plan of the paper is as follows. Section 2 takes a first look at the data. Section 3 presents our framework for
modelling the evolution in the cross-sectional dispersion among forecasters across multiple forecast horizons in a way that
allows for heterogeneity in agents’ information and their prior beliefs. Section 4 develops our econometric approach.
Empirical findings on the cross-sectional forecast dispersion are presented in Section 5 and Section 6 presents results for a
model of time-varying dispersion. Section 7 concludes. Additional details on the estimation of the model are presented in a
technical appendix.
2. A first look at the data

Before setting up a formal model, it is useful to take a first look at the data used in the analysis. Our data are taken from
the Consensus Economics Inc. forecasts which comprise quantitative predictions of private sector forecasters. Each month
survey participants are asked for their forecasts of a range of macroeconomic and financial variables for the major
economies. The number of survey respondents varies between 15 and 33 during our sample, with an average of 26
respondents. Our analysis focuses on US real GDP growth and CPI inflation for the current and subsequent calendar year.
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This gives 24 monthly next-year and current-year forecasts over the period 1991–2008 or a total of 24�18=432 monthly
observations. The target dates for the predicted variable are labeled t=1991,y,2008, while h=1,y,24 months are the
forecast horizons.

To document how the spread in individual forecasters’ views around the mean depends on the forecast horizon, and to
see how it evolves through time, Figs. 1 and 2 plot for each year in our sample the individual forecasts against the
consensus (average) forecast at horizons of h=1,6,12 and 24 months. Movements in mean forecasts from year to year tend
to be very smooth at the longest forecast horizon but are more volatile at shorter forecast horizons. Conversely, the cross-
sectional spread in forecasts is highest at the 24-month horizon and is sharply reduced as the horizon shrinks, with the
dispersion being particularly low at the one-month horizon. Since agents’ information signals can be expected to be of less
value at the long horizons where disagreement seems to be greatest, these plots provide an early indication that
differences in opinion are not primarily driven by differences in information.

In the heterogeneous information approach to macroeconomics, differences in information are a key to the formation of
the ‘‘average opinion’’ about macroeconomic conditions. It is therefore of interest to see whether there is a relation
between the mean forecast and the dispersion in beliefs. To this end, Table 1 presents the correlation between the
consensus forecast and the dispersion in forecasts for each horizon. For GDP growth a strong negative correlation emerges –
with 23 of 24 correlation estimates being negative and 14 being significant at the 10% level – indicating higher dispersion
in beliefs during years with low economic growth, i.e., countercyclical movements in disagreements about GDP growth.
Conversely, for inflation, a positive relation emerges between the dispersion in beliefs and the consensus view – with 22 of
24 correlation estimates being positive and 6 being significant at the 10% level – suggesting that dispersion grows with the
average expected inflation rate.

Further insight into the sources of differences in opinion can be gained from studying the extent to which individual
forecasters are regularly above or below the mean forecast. Differences in prior beliefs might suggest persistent patterns in
individual forecasters’ optimism or pessimism relative to the average forecaster, whereas differences in private
information are perhaps more suggestive of short-lived differences. As a first illustration, Fig. 3 plots for all horizons
the time-series average of four individual forecasters’ positions in the cross-sectional distribution of forecasts (with 0.1
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Fig. 1. Consensus and individual forecasts for GDP growth over the period 1991–2008, for four forecast horizons (24 months, 12 months, 6 months and

one month).
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Fig. 2. Consensus and individual forecasts for inflation over the period 1991–2008, for four forecast horizons (24 months, 12 months, 6 months and one

month).
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meaning that a forecaster is at the 10th percentile of this distribution; 0.5 means the forecaster is at the median; 0.9 means
the forecaster is at the 90th percentile, etc.) If differences in beliefs across forecasters were short-lived, the percentiles of
the individual forecasters should be tightly clustered around the median. This is not what the data suggest, particularly at
the longest horizons where some of the forecasters are consistently optimistic or pessimistic. However, as the forecast
horizon gets shorter, views tend to become more densely clustered around the median, particularly for the inflation series.

To address persistence in (relative) views more systematically, all individual forecasters are ranked according to
whether, in a given year, t , their forecast is in the bottom, middle or top tercile. This exercise is repeated for all years in the
sample and used to compute transition probabilities to see whether forecasters who are in, say, the top tercile (i.e., the
most optimistic forecasters in the case of GDP growth) in year t continue to be in the top tercile in year t+1. Results from
this exercise, conducted separately at short, (1–12 months) and long (13–24 months) forecast horizons are reported in
Table 2. In the absence of persistence in the relative views of individual forecasters, the entries in this table should all be
approximately one-third (0.33). In contrast, if differences in forecasters’ views persist, terms on the diagonal should be
significantly higher than 0.33 and off-diagonal terms smaller than 0.33. There is strong evidence that disagreements
among forecasters tend to persist. For GDP growth, at the short horizon, there is a 63% chance (nearly twice what is
expected under no persistence) that the most optimistic forecasters continue to be relatively optimistic in the following
period, while the most pessimistic forecasters repeat with a 45% probability. At the long forecast horizons there is even
greater persistence in the relative ranking of forecasters by their degree of optimism or pessimism with repeat
probabilities always above 50%. Similar conclusions hold for inflation. In all cases the estimated probabilities of remaining
in the same tercile are significantly greater than 33%.

Forecasters enter and exit from our sample, and variations in the length of time a forecaster has been reporting to the
survey could be a source of cross-sectional dispersion beyond the two channels modeled in the next section (differences in
signals and differences in models or priors). However, this does not appear to be a main concern here. The probability of a
forecaster remaining in the sample conditional on having reported in the previous month is 95% (i.e., there is only a 5%
probability of leaving the sample), while the probability of remaining out of the sample if previously excluded is 0.90, so



Table 1
Summary statistics for the consensus forecast and the dispersion of forecasts, across horizons.

Forecast horizon GDP growth Inflation

Mean Mean Correlation Mean Mean Correlation

forecast dispersion forecast dispersion

1 2.861 0.071 �0.602* 2.839 0.075 0.448

2 2.824 0.088 �0.414 2.865 0.083 0.454

3 2.788 0.127 �0.410* 2.890 0.108 0.257

4 2.810 0.140 �0.524* 2.907 0.125 0.359

5 2.785 0.153 �0.375* 2.909 0.147 0.383

6 2.824 0.197 �0.482* 2.888 0.177 0.264

7 2.827 0.222 �0.534* 2.881 0.198 0.176

8 2.817 0.252 �0.462* 2.814 0.212 �0.084

9 2.748 0.306 �0.694* 2.713 0.259 0.563*

10 2.677 0.341 �0.640* 2.648 0.287 0.522*

11 2.606 0.355 �0.799* 2.591 0.286 0.261

12 2.559 0.380 �0.688* 2.653 0.323 0.478*

13 2.569 0.388 �0.646* 2.720 0.327 0.248

14 2.558 0.407 �0.698* 2.772 0.347 0.424*

15 2.626 0.419 �0.516* 2.814 0.355 0.388

16 2.739 0.414 �0.231 2.855 0.369 0.294

17 2.806 0.391 0.066 2.841 0.385 0.034

18 2.848 0.374 �0.102 2.847 0.405 0.129

19 2.852 0.391 �0.120 2.870 0.433 0.512*

20 2.856 0.387 �0.148 2.872 0.411 �0.020

21 2.849 0.396 �0.092 2.828 0.416 0.325

22 2.869 0.396 �0.297 2.825 0.435 0.228

23 2.865 0.400 �0.305 2.836 0.430 0.461*

24 2.853 0.420 �0.300 2.865 0.436 0.386

Note: This table presents the average consensus forecast, average cross-sectional dispersion in forecasts, and the time-series correlation between the

consensus forecast and the dispersion in forecasts, for each horizon between one month and 24 months, computed across all years in the sample period

(1991–2008). Correlation coefficients that are significantly different from zero at the 10% level (using Newey and West (1987) standard errors) are

marked with an asterisk.
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there is a 10% chance of re-entering the following month. Moreover, the cross-sectional dispersion is very similar whether
calculated with or without new entrants in the sample.

To get an early indication of whether learning effects are important in the sample, the number of reported forecasts can
be used as a crude indicator of experience. This is admittedly an imperfect measure of experience since a forecaster could
have produced predictions long before being included in the Consensus Economics survey. At each point in time our
forecasters are sorted into two groups according to whether the number of their reported forecasts is higher or lower than
the median number of reports filed up to that point. Then separate measures of cross-sectional dispersion are computed for
the most experienced and least experienced forecasters. Unreported results (available upon request) show that the cross-
sectional dispersion in the two groups is almost identical, with only mild evidence of slightly higher dispersion among the
most experienced group of inflation forecasters.

Three conclusions can be drawn from this brief look at the data. First, differences in opinions among forecasters tend to
be much greater at long forecast horizons than at short forecast horizons. Second, there is a systematic relationship
between the cross-sectional dispersion and average beliefs, with differences in opinion about GDP growth varying
countercyclically. Third, there is considerable persistence through time in individual forecasters’ views relative to that of
the median forecaster and persistence tends to be higher at the longer forecast horizons.

3. The term structure of cross-sectional dispersion

Survey data on economic forecasts have been the subject of a large literature – see Pesaran and Weale (2006) for a
recent review – and many studies have found this type of data to be of high quality, e.g., Romer and Romer (2000) and
Ang et al. (2007). The focus of this literature has, however, mainly been on measuring the precision of average survey
expectations as opposed to understanding why and by how much forecasters disagree.

Dispersion in beliefs observed at different forecast horizons turns out to provide important clues on why forecasters
disagree. In fact, the importance of heterogeneity in priors can be identified primarily from the long end of the term
structure of cross-sectional dispersion, while the importance of heterogeneity in signals is primarily identified from the
short end of the term structure. Intuition for this comes from considering a simple AR(1) example. For this case, the
h-period forecast is simply the present state times the AR(1) coefficient raised to the appropriate power, fh. Using
parameter values similar to those obtained in our empirical analysis, less than one-third of the current signal carries over
after 24 months. Hence, any difference between agents’ signals about the current state is not going to be very important for
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the long-horizon forecasts, and so disagreement in long-term forecasts must largely reflect different beliefs about the long-
run mean. The next section introduces a model that formalizes this intuition in a more general setting.

3.1. A model for disagreement between forecasters

Consider how the disagreement among forecasters about an ‘‘event’’ measured at a fixed time period, t, (e.g., GDP
growth in 2011) changes as the forecast horizon, h, is reduced. These so-called fixed-event forecasts (Nordhaus, 1987;
Clements, 1997) with a time-varying forecast horizon match the focus in some theoretical models (e.g., Amador and Weill,
2009), that study how heterogeneity among agents evolves leading up to the revelation of the true value of a predicted
variable.

Our analysis addresses how agents update their forecasts of some variable measured, e.g., at the annual frequency,
when they receive news on this variable more frequently, e.g., on a monthly basis. To this end, let yt denote the single-
period variable (e.g., monthly log-first differences of GDP or a price index tracking inflation), while the rolling sum of the 12



Table 2
Transition matrices for low, middle and high ranked forecasters.

GDP growth Inflation

Low Mid High Low Mid High

Short-horizon forecasts

Low 0.451* 0.323 0.225y 0.491* 0.290 0.218y

Mid 0.258y 0.433* 0.309 0.204y 0.415* 0.381*

High 0.106y 0.266y 0.629* 0.082y 0.246y 0.672*

Long-horizon forecasts

Low 0.583* 0.333 0.085y 0.603* 0.285y 0.112y

Mid 0.201y 0.519* 0.280y 0.230y 0.554* 0.216y

High 0.073y 0.264y 0.663* 0.091y 0.219y 0.700*

Note: This table presents the probability of a forecaster transitioning from a given tercile of the cross-sectional distribution of forecasts (low, middle, and

high) to another tercile in the following year. The upper panel presents the average of these probabilities for all forecasts with horizon up to 12 months

(‘‘short horizon’’ ) and the lower panel presents the corresponding results for forecasts with horizon greater than 12 months (‘long horizon’’). Estimated

probabilities that are significantly greater (lower) than 0.33 at the 10% level are marked with an asterisk (dagger).
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most recent single-period observations of y is denoted zt:

zt ¼
X11

j ¼ 0

yt�j: ð1Þ

That is, yt is the monthly variable (e.g., monthly GDP growth) and zt is the corresponding annual variable. Our use of a
variable tracking monthly changes in GDP (yt) is simply a modelling device. US GDP figures are currently only available
quarterly, but economic forecasters can be assumed to employ higher frequency data when constructing their monthly
forecasts of GDP. Giannone et al. (2008), for example, propose methods to incorporate into macroeconomic forecasts news
about the economy between formal announcement dates. When taking our model to data, the focus is naturally on those
aspects of the model that have empirical counterparts. Because the analysis is concerned with flow variables that
forecasters gradually learn about as new information arrives prior to and during the period of their measurement, the fact
that part of the outcome could be known prior to the end of the measurement period (the ‘‘event date’’) means that the
timing of the forecasts has to be carefully considered.

Agents are assumed to choose their forecasts to minimize the expected value of the squared forecast error,
etjt�h � zt�ẑtjt�h, where zt is the predicted variable, ẑtjt�h is the forecast computed at time t�h, t is again the event date and
h is the forecast horizon. Under this loss function, the optimal h-period forecast is simply the conditional expectation of zt

given information at time t�h,F t�h:

ẑ
*
tjt�h ¼ E½ztjF t�h�: ð2Þ

To track the evolution in the predicted variable, our analysis follows Patton and Timmermann (forthcoming) and uses a
simple reduced-form model that, in common with popular macroeconomic models, decomposes yt into a persistent first-
order autoregressive component, xt, and a temporary component, ut:

yt ¼ xtþut

xt ¼fxt�1þet , �1ofo1

ut � iidð0,s2
uÞ,et � iidð0,s2

e Þ, E½utes� ¼ 0 for all t,s: ð3Þ

Here f measures the persistence of xt, while ut and et are innovations that are both serially uncorrelated and mutually
uncorrelated. Without loss of generality, the unconditional mean of xt, and thus yt and zt, is assumed to be zero.

The advantage of using this highly parsimonious model is that it picks up the stylized fact that variables such as GDP
growth and inflation clearly contain a persistent component. Unlike more structural approaches, it avoids having to take a
stand on which particular variables agents use to compute their forecasts, a decision that in practice can be very
complicated, see Stock and Watson (2002, 2006). The model can easily be extended to account for higher order dynamics,
although given the relatively short time series under consideration, this is unlikely to be feasible in our empirical
application.3

The model in Eq. (3) represents the data generating process for the macroeconomic variable being forecasted. To
understand the cross-sectional dispersion in beliefs, heterogeneity across forecasters is next introduced. Disagreement
between forecasters is modeled as arising from two possible sources: differences in information signals observed by
3 For similar reasons, heteroskedasticity in the underlying data generating process is also ignored, although this is unlikely to be important over the

sample period studied here.
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individual forecasters, or differences in their prior beliefs about, or econometric models for, long-run average levels. Define
the cross-sectional dispersion among forecasters as

d2
tjt�h �

1

Nt�h

XNt�h

i ¼ 1

ðẑitjt�h�ztjt�hÞ
2, ð4Þ

where ztjt�h � ð1=Nt�hÞ
PNt�h

i ¼ 1 ẑitjt�h is the consensus forecast of zt at time t�h, ẑitjt�h is forecaster i’s prediction of zt at time
t�h and Nt�h is the number of forecasters at time t�h. Notice that d2

tjt�h is a measure of subjective uncertainty reflected in
agents’ perceptions as distinct from objective measures of risk derived, e.g., from structural or time-series forecasting
models.

To capture heterogeneity in forecasters’ information, each forecaster is assumed to observe a different signal of the
current value of yt, denoted ~yi,t . This assumption replicates the fact that different agents employ slightly different high-
frequency variables for forming their forecast of GDP growth and inflation. Of course, many of the variables they examine
will be common to all forecasters, such as government announcements of GDP growth, inflation and other key
macroeconomic series, and so the signals the forecasters observe will, potentially, be highly correlated. The assumed
structure is

~yit ¼ ytþZtþnit

Zt � iidð0,s2
ZÞ 8t

nit � iidð0,s2
n Þ 8t,i

E½nitZs� ¼ 0 for all t,s,i: ð5Þ

Individual forecasters’ measurements of yt are contaminated with a common source of noise, denoted Zt , representing
factors such as measurement errors, and independent idiosyncratic noise, denoted nit . Participants in the survey are not
formally able to observe each others’ forecasts for the current period but they do observe previous survey forecasts.4 For
this reason, we include a second measurement variable, ~yt�1 , which is the measured value of yt�1 contaminated with only
the common noise:

~yt�1 ¼ yt�1þZt�1: ð6Þ

From this the individual forecaster is able to compute an optimal forecast from the variables observable to him:

ẑ
*
itjt�h � E½ztjF ijt�h�, F ijt�h ¼ f ~yijt�h�j, ~yt�h�1�jg

t�h
j ¼ 0: ð7Þ

Differences in signals about the predicted variable alone are unlikely to explain the observed degree of dispersion in the
forecasts. The simplest way to verify this is to consider dispersion for very long horizons: as h-1 the optimal forecasts
converge towards the unconditional mean of the predicted variable. Because all forecasters are assumed to use the same
(true) model to update their expectations about z, the dispersion should asymptote to zero as h-1. As Figs. 1 and 2 reveal,
this implication is in stark contrast with our data, which suggests instead that the cross-sectional dispersion converges to a
constant but non-zero level as the forecast horizon grows. Thus there must be a second source of dispersion beyond
differences in signals.5

The second source of dispersion is introduced by assuming that each forecaster comes with prior beliefs about the
unconditional mean of zt, denoted mi. Forecaster i is assumed to shrink the optimal forecast based on his information set
F ijt�h towards his prior belief about the unconditional mean of zt. The degree of shrinkage is governed by a parameter,
k2

Z0, with low values of k2 implying a small weight on the data-based forecast ẑ
*
itjt�h (i.e., a large degree of shrinkage

towards the prior belief) and large values of k2 implying a big weight on ẑ
*
itjt�h. As k2-0, the forecaster places all weight on

his prior beliefs and none on the data; as k2-1 the forecaster places no weight on his prior beliefs:

ẑitjt�h ¼ohmiþð1�ohÞE½ztjF ijt�h�,

oh ¼
E½e2

itjt�h�

k2þE½e2
itjt�h�

eitjt�h � zt�E½ztjF ijt�h�: ð8Þ

The weights placed on the prior and the conditional expectation, E½zt jF ijt�h�, are allowed to vary across the forecast
horizons in a manner consistent with standard forecast combinations. As ẑ

*
itjt�h � E½ztjF ijt�h� becomes more accurate (i.e., as

E½e2
itjt�h� decreases) the weight attached to that forecast increases. This weighting scheme lets agents put more weight on
4 As the participants in our survey are professional forecasters they may be able to observe each others’ current forecasts through published versions

of their forecasts such as investment bank newsletters or recommendations. If this is possible, then sn is expected to be close to zero.
5 While 24 months may not seem like a long forecast horizon, Lahiri and Sheng (2010) report evidence that the 24-month and 10-year survey

forecasts of real GDP growth and inflation are in fact very similar.
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the more precise signals in their short-term forecasts and less weight on signals at longer horizons. As pointed out by Lahiri
and Sheng (2008, 2010), the ‘‘anchoring’’ of long-run forecasts is a consequence of Bayesian updating.6 Also, note that

oh-
V ½zt�

k2þV ½zt�
as h-1:

Hence the weight on the prior in the long-run forecast can be quite large if k2 is small relative to V[zt]. For analytical
tractability, and for better finite sample identification of this parameter, k2 is restricted to be identical across all
forecasters.

Our analysis assumes that forecasters know both the form and the parameters of the data generating process for zt but
do not observe this variable. Instead they only observe ~yit and ~yt�1 which are noisy estimates of ½yt ,yt�1�u. In common with
many macroeconomic studies (e.g., Woodford, 2003), it is further assumed that agents use the Kalman filter to optimally
predict (forecast, ‘‘nowcast’’ and ‘‘backcast’’) the values of yt needed for the forecast of zt �S11

j ¼ 0yt�j.
7 Thus the learning

problem faced by forecasters in our model relates to the latent state of the economy (measured by xt and yt), but not to the
parameters of the model. This simplification is necessitated by our relatively short time series of data. Details on the state
space representation of the model and the forecasters’ updating equations are provided in a technical appendix.

A possible interpretation of the heterogeneity in beliefs represented above by mi is that it captures differences in
econometric models for long-run growth or inflation (for example, models with or without cointegrating relationships
imposed), or it captures differences in sample periods used for the computation of agents’ forecasts (due to, for example,
differences in beliefs about the dates of structural breaks). The short time-series dimension of our data does not allow us to
distinguish between these competing interpretations.

The shrinkage of agents’ forecasts towards time-invariant long-run levels, mi, can alternatively be motivated by
uncertainty about the value of the information signals received by agents. If agents know the interpretation of signals,
under very mild conditions they will eventually hold identical beliefs. A standard Bayesian model would therefore require
all disagreement to eventually be driven by differences in private signals. However, as shown by Acemoglu et al. (2007), if
agents are uncertain about the interpretation of the signals, they need not agree even after observing an infinite sequence
of identical signals. This is important since Figs. 1–3 show no evidence that agents’ beliefs converge even after 18 years of
observations in our sample.8
4. Estimation of the model

The cross-sectional dispersion implied by our model is defined by

d2
h �

1

N

XN

i ¼ 1

E½ðẑ itjt�h�ztjt�hÞ
2
�: ð9Þ

Simulated method of moments (SMM, Gourieroux and Monfort, 1996a; Hall, 2005) is used to match the cross-sectional
dispersion implied by our model, d2

h , with its sample equivalent in the data given in Eq. (4). Unfortunately, a closed-form
expression for d2

h is not available and so simulations are used to evaluate d2
h . In brief, this is done by simulating the state

variables for T observations and then generating a different ~yit series for each of the N forecasters. For each forecaster the
optimal Kalman filter forecast is computed and then combined with the forecaster’s prior to obtain the final forecast using
Eq. (8). Finally, the cross-sectional variance of the individual forecasts is used to compute d2

tjt�h which is averaged across
time to obtain d2

h .
Our model also yields predictions for the root mean-squared error (RMSE) of the consensus forecast, which is matched

to the data to pin down the parameters of the data generating process, s2
u,s2

e ,f
� �

. Details on these moments are presented
in a technical appendix. Given our model for the term structure of dispersion in beliefs and the RMSE of the consensus
forecast, all that remains is to specify a residual term for the model. Since the dispersion is measured by the cross-sectional
variance, it is sensible to allow for an (additive) innovation term with variance related to the level of dispersion. One way to
do this is to introduce a multiplicative innovation term of the following form:

d2
tjt�h ¼ d2

h � ltjt�h,

E½ltjt�h� ¼ 1, V ½ltjt�h� ¼ s2
l , ð10Þ
6 A formal Bayesian framework for the individual forecasters is not adopted because individual forecasters frequently enter and exit during our

sample. This makes it impossible to capture how a single forecaster updates his views using Bayesian updating rules. The weighting scheme employed

here has an intuitive Bayesian interpretation as a combination of the prior and the data to obtain the posterior.
7 The assumption that forecasters make efficient use of the most recent information is most appropriate for professional forecasters such as those

considered in our empirical analysis, but is less likely to hold for households that only update their views infrequently, see Carroll (2003).
8 Agents’ beliefs could also fail to converge because of non-stationarities, see Kurz (1994). Another source of dispersion that is not considered here is

differences in forecasters’ objectives (loss function). Capistran and Timmermann (2009) consider this possibility to explain differences among agents’

forecasts of US inflation measured at a given horizon and find that this can explain some of the dispersion in forecasts.
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where d2
tjt�h is the observed value of the cross-sectional dispersion. The residual, ltjt�h, is assumed to be log-normally

distributed with unit mean:

ltjt�h � iidlogNð�1
2s

2
l ,s2

lÞ:

In addition to the term structures of consensus MSE-values and cross-sectional dispersion (each yielding up to 24
moment conditions), moments implied by the term structure of dispersion variances are also included to help estimate s2

l .
The parameters of our model are obtained by solving the following expression:

ĥT � argminhgT ðyÞugT ðhÞ, ð11Þ

where h� ½s2
u,s2

e ,f,s2
Z,s2

n ,k2,s2
m,s2

l�u, and, for h¼ 1,2, . . . ,24,

gT ,hðhÞ �
1

T

XT

t ¼ 1

e2
tjt�h�MSEhðhÞ

d2
tjt�h�d

2
hðhÞ

ðd2
tjt�h�d

2
hðyÞÞ

2
�d4

hðhÞðexpðs2
lÞ�1Þ

2
6664

3
7775: ð12Þ

In total our model generates 72 moment conditions and contains eight unknown parameters. In practice only six
forecast horizons (h=1,3,6,12,18,24) are used in the estimation, rather than the full set of 24, in response to studies of the
finite-sample properties of GMM estimates (Tauchen, 1986) which find that using many more moment conditions than
required for identification leads to poor approximations from the asymptotic theory, particularly when the moments are
highly correlated, as in our application.9 The identity matrix is used as the weighting matrix in our initial SMM estimation,
while the efficient weight matrix is used for the final parameter estimates and tests.

To compute standard errors and the test of over-identifying restrictions, the covariance matrix of the moments in
Eq. (12) is needed. For this purpose, the model-implied covariance matrix of the moments based on the estimated parameters
is used. This matrix is not available in closed-form and so 50 non-overlapping years of data are simulated to estimate it while
imposing that the innovations to these processes are normally distributed and using the expressions given in the Appendix to
obtain Kalman filter forecasts.10 As noted above, a closed-form expression for d2

h is not available and so simulations are used to
obtain an estimate of it. For each evaluation of the objective function, 50 non-overlapping years of data are simulated for 30
forecasters to estimate d2

h .11 The priors for each of the 30 forecasters, mi, are simulated as iidNð0,s2
mÞ.

12 The estimated d2
h series

are multiplied by ltjt�h, defined in Eq. (10), from which ‘measured’ values of dispersion, d2
tjt�h ¼ d2

h � ltjt�h, and the squared
dispersion residual, l2

tjt�h, are obtained. These appear in the second and third set of moment conditions in Eq. (12) and, when
combined with the MSE-values, are used to compute the sample covariance matrix of the moments.

5. Empirical results on forecast disagreement

We next turn to our empirical results from the econometric analysis of the cross-sectional dispersion in the survey
forecasts of GDP growth and inflation. Revised data are used to measure the realized value of the target variable (GDP
growth or inflation), but note that these are strongly correlated (correlation of 0.90) with the first release of the real-time
series, the data recommended by Corradi et al. (2009). Our model in Section 3 assumes that the target variable is the
December-on-December change in real GDP or the consumer price index, which can conveniently be written as the sum of
the month-on-month changes in the log-levels of these series, as in Eq. (1). The Consensus Economics survey formally
defines the target variable slightly differently to this but the impact of this difference on the model fit is negligible.13

To gain intuition for how the parameters of our constant-dispersion model are identified, notice that of those
parameters, three ðf,s2

u ,s2
e Þ characterize the data generating process in Eq. (3). These parameters are mostly, though not

solely, identified by the moments pertaining to the RMSE-values of the average forecast. In contrast, s2
Z,s2

m,s2
n and k2 are

primarily determined by the moments capturing the term structure of cross-sectional dispersion. Fig. 4 shows how the
model-implied cross-sectional dispersion in beliefs varies across different horizons as each of the four parameters take on
low, medium and high values.14 The plots suggest that the parameters have very different effects on the term structure.
Higher values of s2

Z increase the dispersion at short horizons, but have little effect on long-horizon dispersion. Increases in
9 The models presented in this paper were also estimated using the full set of 24 moment conditions and the results were qualitatively similar.
10 The sensitivity of this estimate to changes in the size of the simulation and to re-simulating the model was examined. When 50 non-overlapping

years of data are used, changes in the estimated covariance matrix were found to be negligible.
11 The actual number of forecasters in each survey exhibited some variation across t and h, but the simulations set N¼ 30 for all t,h for simplicity.

Simulation variability for this choice of N and T is small, particularly relative to the values of the time-series variation in d2
tjt�h observed in the data.

12 As a normalization it is assumed that N�1
PN

i ¼ 1 mi ¼ 0 since N�1
PN

i ¼ 1 mi and s2
m �N�1

PN
i ¼ 1 m2

i cannot be separately identified from our data on

forecast dispersions. This normalization is reasonable if the number of optimistic forecasters is approximately equal to the number of pessimistic

forecasters.
13 Generalizing the model to accommodate the exact definition of the target variable in the Consensus Economics survey involves lengthy algebra

and complicates the description of the model, see Patton and Timmermann (forthcoming) for details.
14 The medium value of each of these parameters (except for sn) corresponds to the fitted value for GDP growth (reported in Table 3), and the high/

low values are the fitted values 72 times the standard errors. The fitted value for sn was very near to zero, and so for that parameter we use that as the

‘‘low’’ value and obtain medium and high values as the fitted value +2 and +4 standard errors.



24 21 18 15 12 9 6 3 1
0

0.1

0.2

0.3

0.4

0.5

Horizon

sig2eta

low sig2eta
med sig2eta
high sig2eta

24 21 18 15 12 9 6 3 1
0

0.1

0.2

0.3

0.4

0.5

Horizon

sig2nu

low sig2nu
med sig2nu
high sig2nu

24 21 18 15 12 9 6 3 1
0

0.1

0.2

0.3

0.4

0.5

Horizon

sig2mu

low sig2mu
med sig2mu
high sig2mu

24 21 18 15 12 9 6 3 1
0

0.1

0.2

0.3

0.4

0.5

Horizon

kappa2

low kappa2
med kappa2
high kappa2

D
is

pe
rs

io
n

D
is

pe
rs

io
n

D
is

pe
rs

io
n

D
is

pe
rs

io
n

Fig. 4. Term structure of forecast dispersion when varying the variance of the common noise component (sig2eta), the variance of the idiosyncratic noise

(sig2nu), the variance of the differences in prior beliefs, and the variance of perceived accuracy of prior beliefs (kappa2).
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s2
v have a smaller but similar effect. Variations in s2

m lead to big shifts in the long-run dispersion in beliefs, but have little
effect on short-run disagreements, while conversely variations in k2 lead to small variations in the long-run dispersion but
imply large changes in the short-run dispersion. Thus the parameters generally have very different effects on different
portions of the term structure, which helps identify their values.

Fig. 5 plots the term structure of cross-sectional dispersion for GDP growth and inflation, i.e., the cross-sectional
standard deviation of forecasts, averaged across the full sample, 1991–2008, listed against the forecast horizon. The cross-
sectional dispersion of output growth is only slowly reduced for horizons in excess of 12 months, but declines rapidly for
ho12 months from 0.38 at the 12-month horizon to 0.07 at the one-month horizon. For inflation, again there is a
systematic reduction in the dispersion as the forecast horizon shrinks. The cross-sectional dispersion declines from 0.44 at
the 24-month horizon to 0.32 at the 12-month horizon and 0.08 at the one-month horizon.

It is interesting to contrast the pattern in Fig. 5 with the cross-sectional dispersion implied by the analysis in Amador
and Weill (2009). In their model, more precise public information leads agents to rely less on private information and so
slows down learning, crowding out valuable private information. Provided that prior beliefs are sufficiently dispersed,
initially agents put increasingly more weight on their private information, leading to a convex segment of the aggregate
learning curve. Subsequently, the learning curve becomes concave due to the fact that the true state is eventually revealed.
Hence information diffuses over time along an S-shaped curve, while the cross-sectional dispersion in beliefs converges
towards zero along a hump-shaped curve, i.e., it starts low, then increases monotonically, reaches a peak before decreasing
towards zero. While our data are consistent with the reduced dispersion found at short forecast horizons, the very high
dispersion observed at the longest horizons is clearly at odds with this type of learning model.

5.1. Parameter estimates and hypothesis tests

Table 3 reports parameter estimates for the model based on the moments in Eq. (12). For both GDP growth and inflation
the estimates of sm and k suggest considerable heterogeneity across forecasters in our panel. Conversely, the estimates of
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Fig. 5. Term structure of cross-sectional dispersion (standard deviation) of forecasts of GDP growth and Inflation in the U.S.
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sn suggest that differences in individual signals are not important.15 Indeed, for GDP growth the test statistics for sn and sm
are 0 and 12.98, respectively, while for inflation the test statistics are 0.001 and 2.97. Thus for both series, the null that
sn ¼ 0 is not rejected while the null that sm ¼ 0 is rejected at the 5% level. Heterogeneity in signals about GDP growth and
inflation therefore does not appear to be a significant source of disagreement among professional forecasters, whereas
heterogeneity in beliefs about the long-run levels of GDP growth and inflation is strongly significant.
15 Testing the null that sn (or sm) is zero against it being strictly positive is complicated by the fact that zero is the boundary of the support for this

parameter, which means that standard t -tests are not applicable. In such cases the squared t-statistic no longer has an asymptotic w2
1 distribution under

the null, rather it will be distributed as a mixture of a w2
1 and a w2

0 , see, e.g., Gourieroux and Monfort (1996b, Chapter 21), and the 90% and 95% critical

values for this distribution are 1.64 and 2.71.



Table 3
Parameter estimates of the joint consensus forecast and constant dispersion model.

GDP growth Inflation

su 0.000 0.074

(–) (0.062)

se 0.073 0.018

(0.040) (0.013)

f 0.890 0.981

(0.039) (0.031)

sZ 0.083 0.000

(0.069) (–)

sn 0.000 0.486

(2.287) (14.264)

sm 0.380 0.531

(0.081) (0.260)

k 0.552 0.593

(0.153) (0.344)

J p-val 0.766 0.000

H0 : sn ¼ 0 0.000 0.001

(0.500) (0.486)

H0 : sm ¼ 0 12.982 2.970

(0.000) (0.042)

Note: This table reports simulated method of moments (SMM) parameter estimates of the Kalman filter model for the consensus forecasts and forecast

dispersions, with standard errors in parentheses. The model is estimated using six moments each from the MSE term structure for the consensus forecast

and from the cross-sectional term structure of dispersion for each variable. p-values from the test of over-identifying restrictions are given in the row

titled ‘‘J p-val’’. The final two rows present the test statistics, with p-values in parentheses, of the tests for no heterogeneity in signals ðH0 : sn ¼ 0Þ and no

heterogeneity in beliefs ðH0 : sm ¼ 0Þ.
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Our tests of the over-identifying restrictions indicate that the model provides a good fit to the GDP growth
consensus forecast and forecast dispersion, with the J-test p-value being 0.77. Moreover, the top panel of Fig. 5
confirms that the model provides a close fit to the empirical term structure of forecast dispersions. This panel
also shows that the model with sn set to zero provides an almost identical fit to the model with this parameter
freely estimated, consistent with the test results for this hypothesis. In contrast, the model with sm set to zero
provides a poor fit to the term structure of dispersion for all horizons but the shortest. Without heterogeneity in priors, this
model can only generate dispersion from differences in signals and these have limited impact at long horizons.
Consistent with this, differences in individual information about GDP growth, modeled by nit , do not appear important for
explaining forecast dispersion. The most important features are the differences in prior beliefs about long-run GDP growth
and the accuracy of Kalman filter-based forecasts as they affect the weight given to the prior relative to the Kalman filter
forecast.

Unlike the model for GDP forecasts, the model for inflation forecasts and dispersions is rejected by the test of over-
identifying restrictions (see the row labeled ‘J p-val’ in Table 3). The model fits dispersion well for horizons greater than
12 months, but for horizons less than four months the observed dispersion is above what is predicted by our model. Given
the functional form specified for the weight attached to the prior belief about long-run inflation versus the Kalman filter-
based forecast, the model predicts that each forecaster will place 95.0% and 99.1% weight on the Kalman filter-based
forecast for horizons of h=3 and 1 month, and since the Kalman filter forecasts are very similar across forecasters at short
horizons our model predicts that dispersion will be low.

The observed dispersion in inflation forecasts is high relative both to the predictions of our model, and to
observed forecast errors: observed dispersion (in standard deviations) for horizons h=3 and 1 month are 0.11 and 0.07,
compared with the RMSE of the consensus forecast at these horizons of 0.19 and 0.08. Contrast this with the
corresponding figures for the GDP forecasts, with dispersions of 0.13 and 0.07 and RMSE-values of 0.34 and 0.30.
Thus, the dispersion of inflation forecasts is around 69% as large as the RMSE of the consensus forecast for short horizons
ð1rhr6Þ, whereas the dispersion of GDP growth forecasts is around 35% as large as the RMSE of the consensus
forecast.

To further illustrate this point, Fig. 6 plots the observed ratio of dispersion to RMSE, along with the predicted ratios, for
horizons ranging from 24 months to one month, for both GDP growth and inflation. The upper panel of this plot reveals
that our model is able to capture the basic shape of this function for GDP growth, while the lower panel shows how this
ratio diverges for short horizons, especially the one-month horizon, and is not described well by our model. Patton and
Timmermann (forthcoming) show that this model fits the RMSE term structure well, and so the divergence of the observed
data from our model is not due to a poor model for the RMSE. The upward sloping function for the dispersion-to-RMSE
ratio is difficult to explain within the confines of our model, or indeed any model assuming a quadratic penalty for forecast
errors and efficient use of information, and thus poses a puzzle.
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6. Time-varying dispersion

There is a growing amount of theoretical and empirical work on the relationship between the uncertainty facing
economic agents and the economic environment. Van Nieuwerburgh and Veldkamp (2006), Veldkamp (2006) and
Veldkamp and Wolfers (2007) propose endogenous information models where agents’ participation in economic activity
leads to more precise information about unobserved economic state variables such as (aggregate) technology shocks. In
these models the number of signals observed by agents is proportional to the economy’s activity level so more information
is gathered in a good state of the economy than in a bad state. Recessions are therefore times of greater uncertainty which
in turn means that dispersion among agents’ forecasts can be expected to be wider during such periods. Similarly,
Mackowiak and Wiederholt (2009) show that an increase in the variance of nominal aggregate demand leads firms to pay
more attention to aggregate activity and less to idiosyncratic conditions. This could lead to a decrease in the cross-sectional
dispersion in beliefs about the aggregate nominal demand. Thus, changing volatility in the variance of nominal aggregate
demand – e.g., around turning points of the business cycle – can lead to time-varying cross-sectional dispersion.



Table 4
Parameter estimates for two models of time-varying dispersion.

GDP growth Inflation

Panel A: OLS estimates of a panel model for dispersion

Fixed effects? Yes Yes

bSPR 0.425 0.779

(0.115) (0.082)

Panel B: SMM parameter estimates of a Kalman filter model

su 0.000 0.033

(–) (0.054)

se 0.042 0.023

(0.022) (0.014)

f 0.954 0.957

(0.026) (0.038)

sZ 0.073 0.000

(0.066) (–)

sn 0.046 0.486

(0.108) (8.359)

sm 0.682 0.530

(0.378) (0.322)

bk0 4.452 �2.179

(1.819) (3.253)

bk1 �4.451 1.190

(2.284) (4.558)

J p-val 0.983 0.000

Note: The first two rows report the results from the estimation of a panel model for log-dispersion, with horizon-specific fixed effects, as a function of the

log default spread. In the interests of brevity, the individual fixed effect parameters are not reported. The remainder of the table reports simulated method

of moments (SMM) parameter estimates of the Kalman filter model for the consensus forecasts and forecast dispersions, with standard errors in

parentheses. p-values from the test of over-identifying restrictions are given in the row titled ‘‘J p-val’’. The model is estimated using six moments each

from the MSE term structure for the consensus forecast and from the cross-sectional term structure of dispersion for each variable.
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To address such issues, our model can be generalized to allow forecast dispersion to vary over the business cycle. There
are of course many variables that vary with the business cycle and could be used in our empirical model for time-varying
dispersion. Our choice is to simply employ the default spread (the difference in average yields of corporate bonds rated by
Moody’s as BAA vs. AAA), which is known to be strongly counter-cyclical, increasing during economic downturns. Over our
sample period the default spread ranges from 55 basis points in 1995, 1997 and 2000, to 338 basis points in December
2008.

6.1. Time-varying differences in beliefs

As a simple, robust way to explore the relation between disagreements among forecasters and the state of the economy,
consider a pooled regression of the logarithm of the cross-sectional dispersion on the logarithm of the default spread and
separate horizon fixed effects, ah, i.e.,

logðd2
tjt�hÞ ¼ ahþbSPRlogðSt�hÞþet�h, t¼ 1,2, . . . ,T; h¼ 1,2, . . . ,24, ð13Þ

where St�h is the default spread in month t�h. This regression is robust in the sense that it does not impose our model, but
conversely also does not reveal the source of any cyclical variations in belief dispersion. Panel A in Table 4 reports the
estimated coefficients from Eq. (13). For GDP growth the estimate of bSPR is 0.43 with a t-statistic around four. For inflation
the estimate of bSPR is 0.78 and the t-statistic exceeds nine. Thus dispersion in output growth and inflation expectations is
significantly higher during economic recessions than during upturns.16

Next our analysis explores how counter-cyclical movements in the cross-sectional dispersion can be introduced into
our model. The most natural way to allow the default spread to influence dispersion in our model is through the variance of
the individual signals received by the forecasters, s2

n , or through k2 which determines how much weight forecasters put on
their data-based forecast relative to their long-run model forecast. Given that the former variable explained very little of
the (unconditional) dispersion term structure, our focus is on the latter channel. This leads to the following model

logðk2
t Þ ¼ bk0þb

k
1 logðStÞ: ð14Þ

In this model, if bk1 o0, then increases in the default spread coincide with periods where forecasters put less emphasis on
their signals and more weight on their long-run models. Since the main source of differences in beliefs is found to be
16 These findings are consistent with the work of Döpke and Fritsche (2006) for a panel of forecasters in Germany over a different sample period.
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attributable to differences in models or priors, a negative value of bk1 would indicate that periods with increased default
spreads coincide with periods with greater dispersion.

Leaving the rest of the model unchanged, the model with time-varying dispersion is estimated in a similar way to the
model with constant dispersion, with the following modifications. The stationary bootstrap of Politis and Romano (1994)
with average block length of 12 months is used to ‘‘stretch’’ the default spread time series, St, to be 50 years in length for
the simulation. This maintains the properties of the default spread process and allows us to simulate longer time series
than those in our data set. Following this step the remainder of the simulation is the same as for the constant dispersion
case above, noting that the combination weights applied to the Kalman-filter forecast and the ‘‘prior’’ are now time-varying
as k2

t is time-varying. The value of d2
hðk2

t Þ is needed in the estimation stage so the dispersion residual can be computed. In
the constant dispersion model, this is simply the mean of d2

tjt�h, but in the time-varying dispersion model it depends on k2
t .

It is not computationally feasible to simulate d2
hðk2

t Þ for each unique value of k2
t in our sample, so this is estimated by

setting k2
t equal to its sample minimum, maximum and its [0.25,0.5,0.75] sample quantiles, and then using a cubic spline

to interpolate this function, obtaining ~d
2

hðk2
t Þ. The accuracy of this approximation is checked for values in between these

nodes and the errors are very small. Finally, dispersion residuals are computed from ~d
2

hðk2
t Þ and the data and these are used

in the SMM estimation of the model parameters.
Empirical results for this model are presented in Panel B of Table 4. Consistent with the work of Veldkamp (2006) and

Van Nieuwerburgh and Veldkamp (2006), for GDP growth the negative sign of b̂
k
1 implies that when spreads are high,

forecasters rely less on (common) information and disagree more. Moreover, the estimate b̂
k
1 is significant at the 10% level

and, as indicated by the last row, the model is not rejected. For inflation forecasts, in contrast, this parameter estimate is
positive but not significantly different from zero and the model is rejected.

To see the implications of our analysis for the time series of cross-sectional dispersion, Fig. 7 plots the actual dispersion
versus the fitted (model-implied) dispersion at horizons of h¼ 24 and 12 months. For GDP growth the model implies
considerable variation in disagreement among forecasters with dispersions increasing markedly during economic
downturns as tracked by the default spread. Moreover, the model nicely tracks time-variations in the cross-sectional
dispersion of GDP growth with large positive correlations between the model-implied and actual dispersion.
Unsurprisingly, given the poor fit of the inflation model, for the inflation series the model fails to similarly match
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Fig. 7. Time series of observed cross-sectional dispersion of GDP growth and inflation forecasts, and model-implied time series of forecast dispersions

(with constant and time-varying dispersions, respectively), for forecast horizons of 12 and 24 months.
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time-variations in the actual dispersion. The contrast between the (constant and time-varying dispersion) model’s ability
to capture the term structure of cross-sectional dispersion for GDP growth versus its poor performance for inflation
suggests that there could be fundamental differences in how agents update their beliefs about these two variables.

7. Conclusion

The degree of heterogeneity in forecasters’ opinions, the nature and source of differences in opinions, and how such
differences evolve over the economic cycle are important inputs to many macroeconomic models. Our empirical analysis
suggests that differences in agents’ forecasts of macroeconomic variables such as GDP growth and inflation tend to be
much greater at long forecast horizons of up to two years compared with short horizons of a few months. Moreover, such
differences in opinion tend to persist through time. To understand these patterns, our paper presents a simple and
parsimonious model for the cross-sectional dispersion among forecasters that allows for heterogeneity in forecasters’
information signals and in their prior beliefs or models.

Our analysis reveals several puzzling features that are difficult to explain with simple and popular forecasting models of
the type used by macroeconomists. First, our empirical results suggest that heterogeneity in forecasters’ information
signals is not a major factor in explaining the cross-sectional dispersion in forecasts of GDP growth and inflation:
heterogeneity in priors or models is more important. Second, the dispersion of forecasts does not appear to fall through
time, suggesting that beliefs do not converge. Third, forecasters’ views of inflation at short horizons appear to display
‘‘excess dispersion’’ that cannot be matched by our model and seems far greater than one would expect from differences in
either prior beliefs or information signals. Fourth, and finally, our analysis shows that differences in opinions about GDP
growth or inflation move strongly counter-cyclically, increasing during bad states of the world, although such variations
again do not appear to be driven by heterogeneity in signals.
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