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Abstract

This paper analyzes variation in the factor structure of asset returns within a trade day by

combining non-parametric kernel methods with principal component analysis. We estimate

the model on a collection of over 400 high frequency U.S. equity returns over the period 1996-

2020 and show that the proposed model has superior explanatory power relative to a collection

of well-known observable factor models and standard PCA. We present a stylized model of

asset prices and information flows and show that the factor structure of asset returns varies

with the arrival of news. Using data on individual firm earnings announcements, FOMC

announcements, and other macroeconomic announcements, we provide evidence consistent

with our stylized model, that the superior performance of the proposed model is due to time

variation in the factor structure of asset returns around times of information flows.
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1 Introduction

Factor models are fundamental tools for understanding systematic risks. The widely used Capital

Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) remains a workhorse for

analyzing financial data, and extensions, including Fama and French (1992), Carhart (1997),

Fama and French (2015) and many more, have provided additional insights into the risk and

returns of financial assets. Nevertheless, these models are known to be imperfect, failing to

capture some forms of comovements in stock returns, see Fama and French (2004) and Giglio

and Xiu (2021). This has given rise to a proliferation of factor models, famously called the

“factor zoo” by Cochrane (2011).

An alternative to building a model with a pre-specified set of observable factors is to extract

the factors directly from the data, resulting in the class of unobservable, or latent, factor mod-

els. The estimation of the latent factors is most commonly carried out by principal component

analysis (PCA), see Hastie et al. (2009) for a textbook treatment. This approach was first used

by Connor and Korajczyk (1986) in asset pricing and can be motivated by the arbitrage pricing

theory of Ross (1976). Recent noteworthy extensions of PCA for financial applications include

Kelly et al. (2019), Pelger (2020) and Lettau and Pelger (2020b), amongst others, which we

discuss further below.

Standard implementations of factor models, whether based on observable or latent factors,

assume that the factor loadings are constant, yet the battery of evidence of time-varying asset

return volatility (Bollerslev et al. (1994)), correlations (Engle (2009)), and risk premia (Shanken

(1990)), questions this assumption, and motivates allowing for a time-varying factor structure,

see for example Jagannathan and Wang (1996); Connor et al. (2012); Kelly et al. (2019); Gu et al.

(2021), among others. These papers consider factor structures that evolve at lower frequencies,

such as monthly or daily intervals. Recent work by Andersen et al. (2021, 2023) and Liao and

Todorov (2024) goes further and suggests that the factor structure in asset returns also varies at

higher frequencies, within the trading day.

Motivated by this empirical evidence, we propose a new framework to allow for intraday vari-

ation in latent factor models. We draw on recent econometric advances, see Su and Wang (2017)
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and Fan et al. (2022), that combine non-parametric kernel methods with principal component

analysis, generalizing the latent factor model of Connor and Korajczyk (1986) by treating factor

exposures as an unknown function of the time of day. We estimate the new factor model on

15-minute data for more than 400 individual U.S equity returns over the period from January

1996 to December 2020. We show that our proposed “Intraday PCA” has superior explanatory

power, both in-sample and out-of-sample, economically as well as statistically, relative to a col-

lection of well-known observable factor models and standard PCA. Indeed, the improvement in

fit from using Intraday PCA compared with the famous Fama-French (1992) three-factor model

(FF3) is larger than the improvement from using the FF3 compared with the workhorse CAPM.

Our empirical analysis unveils a striking intraday pattern in the improvement of perfor-

mance metrics, with gains concentrated predominantly around first periods of the trading day,

with smaller and sometimes insignificant gains at the market close. We hypothesize that the

overnight flow of information, and its incorporation into asset prices at the market open, leads to

variation in the factor structure of asset returns that standard factor models cannot capture. We

formalize this hypothesis via a stylized model of high frequency returns and information flows,

and demonstrate that information flows can lead to changes in the factor structure of asset re-

turns. The model further predicts that these changes are larger when the surprise component of

the news is greater.

We test our “information flow” hypothesis in three distinct empirical studies. First, we an-

alyze our model’s behavior following overnight periods with more surprising earnings announce-

ments (relative to equity analysts’ expectations). We find that new model achieves significantly

greater improvements on days following larger earning surprises, supporting our hypothesis.

Second, we analyze the relative performance of the proposed Intraday PCA model on Federal

Open Market Committee (FOMC) announcement days. This study is particularly revealing

because, unlike earnings announcements which mostly occur in the overnight period, FOMC

announcements occur within the trade day, typically at 2pm. Consistent with our “information

flow” hypothesis, we find the largest improvements from our model in the periods immediately

after 2pm. Moreover, we make use of the “monetary policy surprise” measure of Bauer and
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Swanson (2023) to quantify how surprising a given announcement was to financial markets, and

we find that our proposed model works particularly well when the surprise component FOMC

announcement is large.

Finally, we consider a set of other macroeconomic announcements: non-farm payrolls, con-

sumer price index (CPI), the Conference Board’s consumer confidence index, and the ISM man-

ufacturing report. We find the improvements in fit from using local PCA relative to standard

PCA is larger for all four of these announcement types, relative to the full sample, with the

improvements being between two and nearly four times as large as in the full sample.

1.1 Related literature

This work engages with several strands of the asset pricing literature. First and foremost, our

estimation method links this paper to high-dimensional models in asset pricing. Starting with

Ross (1976), this branch analyzes latent factors for returns, e.g. Connor and Korajczyk (1986),

Aı̈t-Sahalia and Xiu (2019), Pelger (2019, 2020), Lettau and Pelger (2020a,b), and Pelger and

Xiong (2022), amongst others. For example, Lettau and Pelger (2020b) employs a penalized

PCA method to extract latent factors using not only second moments but also first moments of

returns. Pelger and Xiong (2022) proposes a semi-parametric framework, estimating factors and

exposures as a function of states. Pelger (2019, 2020) apply standard PCA to stock returns and

estimate overnight, intraday and jump factors separately. Our paper extends these two papers

to consider whether, and why, the factor structure of asset returns varies within the trade day.

This paper is also related to recent work by Andersen et al. (2021, 2023) and Liao and Todorov

(2024) exploring intraday variation in market beta and factor structures. Specifically, Andersen

et al. (2021) show that dispersion in CAPM betas is high during the market open and gradually

subsiding as market approaches the close. Andersen et al. (2023) shows that this heightened

dispersion in market beta is attenuated when controlling for additional factors such as size, value

and momentum. Liao and Todorov (2024) propose a test to determine whether the span of factor

exposures is the same at the market open and the market close. Our paper complements these

papers by proposing a method to capture within-day variation in a factor model and showing that
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doing so leads to economically and statistically significant forecast improvements. Furthermore,

we conjecture an economic channel for the improved performance, namely our “information flow”

hypothesis, and provide a battery of evidence consistent with this channel.

The idea of intraday variation is also related to work on capturing lower-frequency (monthly

or daily) variation. For example, Connor et al. (2012) model factor loadings in observable

factor models as a function of observed firm characteristics, estimating the function using semi-

parametric methods. Gagliardini et al. (2016) model factor loadings as a function of macro

variables and firm specific quantities. In a similar vein, Fan et al. (2016); Kelly et al. (2019);

Gu et al. (2021) introduce time varying loadings in a latent factor model by linking them to

firm characteristics. Like this paper, Pelger and Xiong (2022) combines local kernel methods

with PCA and estimates the factor structure of (lower-frequency) asset returns as a function of

economy-wide variables such the Chicago Board of Exchange’s “volatility index” (VIX).

We also connect to the high-frequency econometrics literature, which utilizes the high fre-

quency data to estimate factor loadings within in each day, see for example Barndorff-Nielsen

and Shephard (2004); Andersen et al. (2005); Bollerslev et al. (2016), among many others. Our

contribution to this body of research is to capture intraday variation in the factor structure, and

explain its importance around times of information flows.

Finally, our paper is related to work that contrasts the behavior of asset returns in the

overnight and intraday periods. For example, Lou et al. (2019) find that overnight and intraday

returns show strong persistence along with an offsetting reversal effect. Bogousslavsky (2021)

demonstrates that a mispricing portfolio earns a positive return for most of the trade day but

yields a significant and negative alpha in the last 30 minutes of trading. We diverge from this

branch of the literature as we focus solely on intraday periods, and study variation at a more

granular level.

The rest of the paper is organized as follows. Section 2 presents our approach for capturing

intraday variation in the latent factor structure of a panel of asset returns and presents initial

evidence that such variation is statistically significant empirically. Section 3 presents a simple

model of asset returns and information flows that shows how such flows can alter the factor
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structure of returns. Section 4 shows that the gains from allowing for a time-varying factor

structure are particularly large around times of information flows. Section 5 presents some

extensions and robustness checks and Section 6 concludes. An appendix contains additional

details and derivations.

2 Intradaily variation in the factor structure of equity returns

This section introduces our model for the intraday factor structure in equity returns, describes

the data that we use, and presents evidence that the factor structure changes predictably over

the trade day.

Throughout, ri,t−1+τ denotes the return on asset i ∈ {1, 2, ..., N}, observed at day t ∈

{1, 2, ..., T} and intraday period τ ∈ { 1
M , 2

M , ..., 1}. We use rt−1+τ to denote the (N × 1) vector

of returns on all N assets at that time, and R to denote the (TM ×N) matrix of returns on all

assets across all time periods. We use K to denote the number of factors.

2.1 Data

This study employs high-frequency return data from the New Stock Exchange’s Trade and Quote

(TAQ) database, over the period January 1996 to December 2020 (T = 6254). We implement

standard cleaning procedures following Barndorff-Nielsen et al. (2008) and merge with CRSP

open-close prices. Days with incomplete trading hours are excluded from the analysis. High-

frequency returns are sampled at 15-minute intervals, with overnight returns omitted.1 As a

result, there are M = 26 observations for each trading day. The analysis considers all stocks

ever listed in the S&P 500 index in the period 1996-2020 and which traded throughout the entire

sample period, resulting in a balanced panel comprising N = 407 stocks.2 Summary statistics

1There is ample evidence in the literature, see e.g. Lou et al. (2019) and Bogousslavsky (2021), that overnight
asset returns exhibit different properties to intradaily returns. The focus of this paper is whether intradaily returns,
which might be thought to be similar to each other, exhibit important differences in their factor structure over
the trade day, and if so, why.

2Omitting stocks that did not trade for the full sample period introduces survivorship bias, however our focus
is on the second-moment structure of intradaily returns, not the cross-section of first moments, which are very
close to zero at high frequencies, and so this is not a concern for our analysis. The methods we consider can be
extended to accommodate an unbalanced panel of returns, for example estimating the principal components via
alternating least squares, at the cost of an increased computational burden.
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Table 1: Summary statistics. This table presents summary statistics on the 6, 254× 26× 407
panel of 15-minute returns we use in our analysis. We compute the mean, standard deviation,
skewness and kurtosis for each of the 407 stocks, and report cross-sectional descriptive statistics
(the cross-sectional mean and various percentiles) of these measures. The bottom row presents
summary statistics for the 82, 261 pairwise correlations across the 407 stocks.

Cross-sectional statistics

Mean 1% 5% Median 95% 99%

Mean×104 0.135 -0.435 -0.173 0.143 0.419 0.559
Std Dev ×102 0.412 0.066 0.195 0.394 0.669 0.802
Skewness 0.237 -3.067 -0.848 0.151 1.310 4.038
Kurtosis 73.127 12.622 15.454 31.291 192.388 669.695
Pairwise Corr 0.174 0.029 0.049 0.171 0.300 0.389

on these returns are presented in Table 1.

2.2 PCA and Local PCA for asset returns

Following Chamberlain and Rothschild (1983), Connor and Korajczyk (1986) and Bai (2003), a

popular alternative to specifying a set of observable factors (which may be incomplete, see e.g.

Giglio and Xiu, 2021), is to use the asset returns themselves to estimate the underlying factors,

which can be done using principal components analysis (PCA). We assume that asset returns

follow:

ri,t−1+τ = β⊤
i ft−1+τ + εi,t−1+τ (1)

where βi is K × 1 vector of exposures (or factor loadings), ft−1+τ is K × 1 vector of factors, and

εi,t−1+τ is the residual. The model can be written in matrix notation as:

rt−1+τ︸ ︷︷ ︸
N×1

= β︸︷︷︸
N×K

ft−1+τ︸ ︷︷ ︸
K×1

+ εt−1+τ︸ ︷︷ ︸
N×1

∀ (t, τ) ∈ {1, ..., T} × { 1

M
,
2

M
, ..., 1}. (2)

A “strict” factor structure holds if the residuals are cross-sectionally uncorrelated. Following Bai

(2003) we exploit the “large N” nature of our data set and assume only an “approximate” factor
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structure, which allows for some weak cross-sectional correlation in the residuals.3 PCA allows

us to find the factors and factor loadings that best explain the panel of asset returns, solving the

following optimization problem:

F̂, β̂ = argmin
F,β

1

NTM

N∑
i=1

T∑
t=1

M∑
τ=1

(ri,t−1+τ − β⊤
i ft−1+τ )

2 (3)

The model in equation (1) is identified only up to a rotation of the factors, and to overcome this

we impose an orthogonality constraint on exposures: β⊤β = IK . The outputs of this estimation

are the TM ×K matrix of estimated risk factors, F̂, and the N ×K matrix of estimated factor

loadings, β̂. As described in Bai (2003), factor loadings can be recovered as the eigenvectors

associated with the K largest eigenvalues of R⊤R, multiplied by
√
N . Given these, we can

estimate factors by regressing the returns on the estimated loadings: F̂ = Rβ̂(β̂
⊤
β̂)−1 or simply

Rβ̂, given the orthogonality constraint on the factor loadings.

Motivated by recent work on intraday variation in factor loadings in observable factor models

(Andersen et al., 2021, 2023) and in the span of factors in latent factor models (Liao and Todorov,

2024), we next consider a factor model for high frequency asset returns that varies across the

time of day:

F̂(τ), β̂(τ) = argmin
F,β

1

NT

N∑
i=1

T∑
t=1

(ri,t−1+τ − β⊤
i ft−1+τ )

2 (4)

for each τ ∈ {1/M, 2/M, ..., 1}. In our empirical work we use 15-minute returns, implyingM = 26

for stocks traded on the New York Stock Exchange. The model in equation (4) can be estimated

by using PCA for each the T × N matrix of returns over the same 15-minute window in our

sample. That is, we use PCA on all of the 9:30-9:45am returns, then separately on the collection

of 9:45-10am returns, etc. Estimating the factors and factor loadings separately for each of the

M high-frequency windows is clearly more flexible than standard PCA: the factors and loadings

can vary across each of the high frequency windows rather than being imposed to be constant.

Whilst flexible, the approach in equation (4) fails to incorporate the economic knowledge

that adjacent high-frequency windows are similar. That is, while features of returns are known

3In detail, an approximate factor structure holds if K < N eigenvalues of the covariance matrix of R diverge
as as N → ∞, while the remaining eigenvalues are bounded.
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to vary across the trade day (see, e.g., Wood et al., 1985; Harris, 1986; Andersen and Bollerslev,

1998), this variation tends to be smooth, and we can draw on information from neighboring

windows to improve estimation accuracy. To accomplish this, we propose using “local PCA”

(see, e.g., Su and Wang, 2017, Fan et al., 2022 and Pelger and Xiong, 2022), which combines

nonparametric kernel methods and principal component analysis. For a some kernel function, ϕ,

and bandwidth, h > 0, local PCA solves:

F̃(τ), β̃(τ) = argmin
F,β

1

NTM

N∑
i=1

T∑
t=1

M∑
s=1

ϕ

(
τ − s

h

)
(ri,t−1+s − β⊤

i ft−1+s)
2 (5)

We dub the model obtained by applying local PCA to high frequency returns “Intraday PCA.”

It is simple to show that the solution to the optimization problem in equation (5) can be

obtained by applying standard PCA to the TM × N matrix of weighted returns, R̃(τ), with

representative row given by:

r̃t−1+s(τ) = ϕ

(
τ − s

h

)1/2

rt−1+s (6)

These weighted returns lower the importance of returns from high-frequency windows that are

far from the window of interest (that is, when τ − s is large).4 As the bandwidth parameter in

equation (5) shrinks (h → 0), we recover the period-by-period PCA objective function in equation

(4), and as it grows (h → ∞), we recover the baseline PCA objective function in equation (3).

In between these limiting cases, Intraday PCA allows for variation in the factor structure across

the trade day, drawing on information from adjacent periods. In the next section we describe

how we select the bandwidth and other hyperparameters.

2.3 Hyperparameters for PCA and Intraday PCA

A key hyperparameter in principal component analyses is the number of factors, K, to use in the

model. We adopt the widely-used information criterion proposed in Bai and Ng (2002), extended

4This can be considered as standard PCA on the full panel of asset returns, as in equation (3), but downweighting
estimation errors that occur in periods far from the period of interest and upweighting errors that occur at or near
the period of interest, so that the fit is best near the period of interest.
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Figure 1: Number of factors across years. This figure shows the number of factors selected
for standard PCA using the information criterion proposed in Bai and Ng (2002) and Liao and
Todorov (2024) for each year in our sample.
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to the high frequency setting by Liao and Todorov (2024), for this purpose. In Section 5.2 we

show that our results are very similar when using the method of Pelger (2019) to choose the

number of factors.

First, consider the choice of K for the PCA model, where all intradaily periods are treated

identically. Let λ1 ≥ λ2 ≥ ... ≥ λN denote the sorted eigenvalues of 1
TNR⊤R, where R is the

matrix of high-frequency returns. The number of factors is then estimated as:

K̂ = argmin1≤K≤Kmax
log

∑
k>K

λk +K
T +N

TN
log

(
TN

T +N

)
(7)

Kmax is a pre-defined upper bound, which we set to 10.

We estimate K̂ year-by-year and present the estimated values in Figure 1. The estimated

number of factors varies over time, and increases almost monotonically over the sample period.

Prior to 2008, we find a single factor, with the exception of the years 2005 and 2006 where our

analysis identifies two factors as optimal. Subsequent to 2008, we find the presence of between

two and four factors, with at least three factors found starting from 2014.

To choose the number of factors to use in the Intraday PCA model, we estimate number of

factors following the same steps outlined above separately for each intradaily period and each

year. Figure 2 presents the estimated number of factors across the 26 15-minute windows, for
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Figure 2: Number of factors across years and intraday periods. This figure shows the
number of factors selected for Intraday PCA using the information criterion proposed in Bai
and Ng (2002) and Liao and Todorov (2024) for each 15-minute window of the New York Stock
Exchange trade day. For clarity we present results for three subsamples, rather than each year
separately, and report the median value in each subsample.
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three subsamples of the data (1996-2003, 2004-2012, 2013-2020). We report the median number

of factors selected for each of these three subsamples. Consistent with Figure 1, we observe that

selected number of factors is notably lower for the first subsample compared with the latter two

subsamples. Moreover, we find that optimal number of factors varies across the trade day. For

example, in the latest subsample, the optimal number of factors at the market open is five, while

it is only three at the market close. This intraday variation in the optimal number of factors is

the first indication that the factor structure of these asset returns varies over the trade day. We

investigate this more formally in the next subsection.

In Intraday PCA, we also need to choose a kernel to weight the intradaily periods. We adopt

the Gaussian kernel:

ϕ

(
τ − s

h

)
= exp

{
−1

2

(
τ − s

h

)2
}

(8)

and we impose that the kernel is one-sided at the open and close, so that the 9:30-9:45am window

is not treated as adjacent to the 3:45-4pm window, by imposing zero weight before the market

open and after the market close, and re-weighting the remaining windows so that the weights sum

to one. Figure 3 illustrates the optimal kernel (with bandwidth estimated via cross-validation)
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Figure 3: Kernel weights across the trading day. This figure shows the weights assigned to
each intraday period for the first, middle and last 15-minute window of the trade day. The weights
are computed using the Gaussian kernel described in Section 2.3 with bandwidth parameter
h = 0.17 obtained via cross-validation.
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for three periods in the trade day.5

The final hyperparameter, the bandwidth h, controls the smoothness of the Intraday PCA

model as a function of the time of day, i.e. how much information from adjactent intraday periods

is used, with smaller values for h indicating a more localized model. We consider choices for the

bandwidth ranging from 0.001 to 5, and we select the optimal bandwidth using a validation

sample. For out-of-sample forecasts for year Y , we estimate the Intraday PCA model on data

from year Y − 2 for each of the bandwidths, and construct forecasts for data in year Y − 1. The

bandwidth that performs best in year Y − 1 is then used for the forecasts made in year Y . This

year-by-year estimation procedure has the benefit that it allows for low-frequency changes in the

factor structure.

5We also considered allowing the bandwidth parameter to vary over the trade day, but did not find much
improvement in fit despite the greatly increased computational burden, and so we impose a common bandwidth
parameter across all intraday periods.
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2.4 Forecast performance evaluation

We compare performance of the factor models under consideration both in-sample and out-of-

sample. In-sample, we compare the fit of the models using the R2 associated with the grand

mean-squared error that appears in the PCA objective function, and we test for significant

differences in in-sample fit using the test of Rivers and Vuong (2002).

R2
is = 1−

∑
i

∑
(t,τ)∈T (ri,t−1+τ − β̂

⊤
i f̂t−1+τ )

2∑
i

∑
(t,τ)∈T r2i,t−1+τ

(9)

where T denotes the collection of days and intradaily observations in the in-sample period.

This measure captures the proportion of observed return variation explained by the model,

aggregated across all assets and time observations. One can consider β̂
⊤
i f̂t−1+τ ≡ r̂i,t−1+τ as

the projection of contemporaneous returns onto the space spanned by estimated factor loadings.

Therefore, comparing the R2’s of different models is equivalent to comparing the projection of

factor loadings for these models. Put differently, differences in R2 implies a discrepancy in factor

loadings’ projection matrices. This connects our in-sample comparisons to Liao and Todorov

(2024), who use the distance between projections of factor loadings to test for differences in the

factor structure between two periods of the trade day.

To compare models out-of-sample, we use an approximate “leave-one-out” R2 metric that

can be viewed as lying between the “predictive” and “total” R2 metrics considered in Kelly et al.

(2019). The “total R2” metric uses estimation sample factor loadings and realized factor returns

to construct the forecasts, and thus implicit in these predictions is information on the realized

value of the target variable, meaning that they are not true forecasts. The “predictive R2”

measure, on the other hand, uses the in-sample factor loadings and replaces the realized factor

return with the in-sample factor mean when constructing the forecasts, yielding proper forecasts.

However, this metric is not informative in applications where the variables have means close to

zero, as is the case for high-frequency asset returns, as in such applications all models, regardless

of quality, are assigned an R2 close to zero. To overcome this, we propose a simple approach where

the forecast of variable i is based on factor(s) that use the realized values of other variables and
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the estimation-sample mean for variable i, leading to the “approximate leave-one-out” forecast6:

r̃i,t = β̂
⊤
i f̂t − β̂

⊤
i β̂i(ri,t − µ̂i) (10)

Appendix A presents details on the derivation of this forecast. This is a proper out-of-sample

forecast of variable i, using contemporaneous information from other other variables in the panel.

We then compute:

R2
oos = 1−

∑
i

∑
(t,τ)∈T (ri,t−1+τ − r̃i,t−1+τ )

2∑
i

∑
(t,τ)∈T r2i,t−1+τ

(11)

where T denotes the collection of days and intradaily observations in the out-of-sample period.

We test for significant differences in out-of-sample forecast performance using the test of Diebold

and Mariano (1995).

Table 2 shows in-sample fit and out-of-sample predictive accuracy of the competing models.

Below each R2 value we report the t-statistic comparing the fit with that of Intraday PCA,

using Rivers and Vuong (2002) for the in-sample comparisons and Diebold and Mariano (1995)

for the out-of-sample comparisons. A positive t-statistic indicates superiority of Intraday PCA

in terms of R2. This table shows that Intraday PCA exhibits superior performance compared

to the observable factor models and the standard PCA specification. In-sample, Intraday PCA

provides an R2 gain of nearly 11% over CAPM and a 2.5% gain over standard PCA, both of

which are significant at the 1% level. Out-of-sample R2s are lower for all models than their

in-sample counterparts, as expected, but the gains from using Intraday PCA remain significant

and similarly large: 9.0% relative to the CAPM and 1.8% relative to standard PCA.

Our high frequency data enables us to delve into the details of the above performance gains

and examine the within-day variation in predictive performance of Intraday PCA. We take the

R2 differences between Intraday PCA and standard PCA, the latter being the competing method

with the best in-sample and out-of-sample fit, as shown above, and present in Figure 3 the R2

differences across the trade day. This figure reveals that improved performance of Intraday PCA

is not uniform across intraday periods, rather gains are larger and more significant near the

6The equation for the leave-one-out forecast exploits the normalization that β⊤β = IK . If the other common
normalization, that the factors are uncorrelated, is imposed, the functional form will differ.

14



Table 2: In-sample and out-of-sample performance of factor models. This table reports
measures of in-sample fit and out-of-sample accuracy (R2 metrics defined in equations (9) and
(11), measured in percent) for three models based on observable factors and two models based
on latent factors. The CAPM uses solely the market factor; FF3 additionally uses the size and
value factors of Fama and French (1992); FF6 additionally uses the momentum factor of Carhart
(1997) and the quality and profitability factors of Fama and French (2015). The column titled
PCA uses standard principal components analysis on the TM ×N panel of high frequency stock
returns. The last column uses the kernel-based local PCA introduced in Section 2.2. t-statistics
from Rivers-Vuong (2002) and Diebold-Mariano (1995) tests comparing the fit of each model to
that of Intraday PCA are reported in parentheses.

Factor model

CAPM FF3 FF6 PCA Intraday PCA

In-sample R2 19.56 22.60 24.40 24.44 26.12
(RV t-stat) (18.39) (14.11) (9.57) (19.41)

OOS R2 18.27 20.53 20.77 22.49 23.76
(DM t-stat) (16.43) (12.12) (12.07) (18.69)

market open, and smaller and less significant at the market close. For example, in the first

period Intraday PCA provides a 2% gain in OOS R2, significant at the 0.01 level, while the

improvement is between 0.5% and 1% in the last hour of the trade day.7

The significant improvement in fit of Intraday PCA compared with standard PCA represents

evidence that the factor structure of high frequency asset returns varies within the trade day.

We next propose an to answer the deeper question of why : what drives this variation in the

factor structure over the trade day? Noting that the improvements achieved by Intraday PCA

are greatest in the first hours of the trade day, and we conjecture a connection with the influx of

new information in the overnight period, such as earnings announcements, Consumer Price Index

releases, and non-farm payroll reports. We hypothesize that incorporation of new information

into asset prices generates a change in the factor structure of asset returns in the opening hours

7We also implemented the test of Liao and Todorov (2024), testing that the span of latent factors is the same
in the first two hours of the trade day as in the last two hours. Consistent with the conclusion from our forecast
comparison results in Table 2, we reject the null at the 1% level.
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Figure 4: Comparing the fit of Intraday PCA and PCA. This figure shows the difference
in out-of-sample R2 between Intraday PCA, introduced in Section 2.2, and standard PCA, for
each of the 26 15-minute periods during the New York Stock Exchange trade day. Positive values
indicate that Intraday PCA has a higher R2 than standard PCA. The vertical lines at the end
of each bar are 95% confidence intervals for the difference in R2 based on a Diebold-Mariano
(1995) test.
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of the trade day relative to the middle and closing hours. Section 3 formalizes this conjecture

and generates additional testable implications, which we take to the data in Section 4.

3 A model of high-frequency asset prices and information flows

This section presents a simple model of asset prices and information flows that reflects the

three key features of our empirical environment. Firstly, multiple types of news impacts asset

prices, e.g., earnings announcements, statements by the Federal Reserve, announcements by the

government or an industry regulator, etc. Secondly, different types of news induce possibly

different factor structures in returns, e.g., the factor structure in firm cashflows may differ from

that generated by other types of news. Thirdly, different types of news arrive at different times

in the trade day, e.g., earnings announcements typically occur in the overnight period, while

announcements from the Federal Open Market Committee (FOMC) typically occur in the middle

of the trade day.

Following the influential work of Vuolteenaho (2002) and Campbell and Vuolteenaho (2004),
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we model returns as driven by changes in expectations about cashflows and discount rates. We

next describe how we model each of these types of news and how they impact asset returns.

We assume that log-earnings follow a random walk, consistent with Watts and Leftwich

(1977), Kormendi and Lipe (1987) and Kothari (2001), who note that earnings are indeed very

persistent. This implies that “cashflow news” can be modeled as updates to expectations about

the current level of log-earnings for a given firm. Our model for the change in log-earnings is:

∆ logXi,t = gi + γ⊤i Zt + ui,t (12)

where gi is a firm-specific average growth rate of earnings, Zt are the K factors driving earnings

growth, γi is firm i’s exposure to the common factors, and ui,t is the unpredictable component

of earnings growth for firm i.

We assume that firms report their earnings every C days, always in the overnight (or 0th)

period of the day.8 Since the level of earnings of a given firm are not observed every day, and

since there are common factors in earnings growth, investors update their expectations about

profitability using information contained in the earnings announcements of other firms. We adopt

the model for cross-stock learning proposed in Patton and Verardo (2012), who use a Kalman

filter designed to accommodate the intermittent nature of earnings announcements (Sinopoli

et al., 2004). We describe the filtering problem in detail in Appendix B. The output of this filter

is a sequence of cashflows news for each day and each firm:

NCF
i,t = Et[logXi,t]− Et−1[logXi,t−1] (13)

where the information set available at time t includes the earnings announcements of all firms up

to and including day t, and Et[logXi,t] denotes the “nowcast” of the earnings of firm i in period t

based on the Kalman filter (see equation A.38 in the appendix). It varies even in the absence of

an earnings announcement from firm i due to updates to expectations based on announcements

by related firms.

8We discuss specific choices for the parameters of the model at the end of this subsection.
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We model discount rate news as a “monetary policy surprise” (e.g., see Bauer and Swanson,

2023), which can affect each firm differently through its sensitivity to the surprise. We assume

that the Fed makes an announcement every D days, and that this announcement always occurs in

the dth period of the announcement day, consistent with the 2pm timing of most announcements

from the FOMC. On non-announcement days, and in non-announcement trading periods, the

monetary policy suprise variable is equal to zero. The output of this part of the model is a

sequence of discount rate news for each day and each firm:

NDR
i,t−1+d/M = βMPS

i St (14)

Finally, to capture the slow diffusion of information (e.g., Brennan et al., 1993; Hong and

Stein, 1999; Boguth et al., 2016), we assume that news is incorporated into prices with a possible

delay: with probability πCF ∈ (0, 1] the price of firm i reacts to cashflow news in the first

trading period after the news is released, with probability (1− πCF )πCF it reacts in the second

period, (1 − πCF )
2πCF in the third, etc. We introduce an analogous parameter, πDR ∈ (0, 1],

for the incorporation of discount rate news into prices. This feature means that even though

cashflow news is assumed to arrive in the overnight period, and we focus only on intradaily

returns thus omitting the overnight return, it is still possible for intra-day returns to react to

overnight cashflow news.

Combining these effects, our model for asset returns is:

ri,t−1+τ = NCF
i,t−1+τ +NDR

i,t−1+τ + εi,t−1+τ (15)

where ri,t−1+τ is the return on firm i on day t ∈ {1, 2, ..., T} and intraday period τ ∈ { 1
M , 2

M , ..., 1},

NCF
i,t−1+τ and NDR

i,t−1+τ are the cashflow news (equation 13) and discount rate news (equation 14)

incorporated into prices in this period, and εi,t is the return attributable to noise traders, which

we model as independent across time and firms.

This model implies that the periods that reflect cashflow news “inherit” the factor structure in

earnings: for announcing firms, earnings growth realizations have the factor structure in equation
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(12), and for non-announcing firms the Kalman filter updates to expectations also inherit this

factor structure, see Appendix B. In the absence of news, returns are purely due to noise traders

and no factor structure is present. The dth period in the trading day occasionally has a one-factor

structure, driven by the release of monetary policy news, but on non-announcement days returns

in that period behave like those in the other intraday periods, and no factor structure is present.

Given the Kalman filtering step required to capture updates to investors’ expectations in

the presence of intermittent, correlated, earnings announcements, no closed-form expressions

for the factor structure are available. Instead, as in Patton and Verardo (2012), we rely on

1000 simulations of this model. We assume T = 3000 trade days and M = 20 intradaily

periods, both comparable to our data. Due to computational memory constraints, we assume

only N = 100 firms and C = 10 days between earnings announcements.9 To match the empirical

feature that FOMC announcements occur about twice as often as earnings announcements (eight

versus four times per year) we set D = 5, and we model them as arriving in intradaily period 13,

approximately matching the 2pm announcements by the Fed. We set the diffusion of information

parameters to πCF = πDR = 0.25. The choices for the remaining parameters of the model are

presented in Appendix B.

Figure 5 presents the improvements in R2 from using Intraday PCA compared with standard

PCA, for each of the intradaily trading periods, averaged across the 1000 simulations.10 For this

first simulation, we shut down the discount rate news channel and focus on cashflow news only.11

We see that the figure is qualitatively comparable to using real data. The gains are greatest in

the periods immediately after flows of information, which in this model are those at the start of

the day, after the overnight earnings announcements. For the rest of the trade day there is no

difference in fit between the two models, as they both correctly select zero factors.

Next, we consider the implications of allowing for both cashflow and discount rate news.

Panel A of Figure 6 and shows that the gains for allowing for a time-varying factor structure are

9The framework of Sinopoli et al. (2004), which we use, requires defining a state variable of size N × C, and
attempting to match our data on this dimension, with N ≈ 400 and C ≈ 63 makes the model too large to be
stored in memory. The qualitative predictions with this choice of N and C are unaffected.

10As in our empirical application, we use Bai and Ng (2002) to select the number of factors to use in each of
the models, and we use cross validation to choose the optimal bandwidth for Intraday PCA.

11In our data only approximately 8/252 ≈ 3.2% of days have an FOMC announcement, while our simulation
design has a monetary policy surprise on 20% of days, roughly six times as often.
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Figure 5: Comparing the fit of Intraday PCA and PCA, simulated data. This figure
shows the difference in out-of-sample R2 between Intraday PCA and standard PCA, using the
simulation design described in Section 2. Positive values indicate that Intraday PCA has a higher
R2 than standard PCA.
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greatest in the periods immediately after flows of information, namely after the overnight earnings

announcements at the start of the day, and those starting from period 13, when monetary policy

surprises are realized. This suggests that the gains from using Intraday PCA will differ on FOMC

announcement days versus other days, a prediction we test in Section 4.

We can also use the model to identify the types of news that lead to the greatest changes in

the intraday factor structure. For example, in Panel B of Figure 6 we increase the variance of the

unpredictable component of earnings, thereby making each earnings announcement “more sur-

prising.” We see an increase in the gains from using Intraday PCA when earnings announcements

resolve more uncertainty. Similarly, we can increase the size of the monetary policy surprise, and

in Panel C of Figure 6 we see that the gains from using Intraday PCA are also greater in that

case. We test these two predictions from this model in the next section.

4 Information flows and the factor structure of equity returns

We now empirically consider some of the insights into the impact of information flows on asset

return factor structures afforded by the model presented in the previous section. We first test

whether days following a large number of firm earnings announcements are also ones where
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Figure 6: Comparing the fit of Intraday PCA and PCA, simulated data. This figure
shows the difference in out-of-sample R2 between Intraday PCA and standard PCA, using the
simulation designs described in Section 2. Positive values indicate that Intraday PCA has a
higher R2 than standard PCA. Panel (a) shows the results when both cashflow and discount
rate news are present. Panel (b) shows the impact of larger cashflow news. Panel (c) shows the
impact of larger discount rate news.
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Intraday PCA outperformance is particularly large. Using equity analysts’ forecasts of earnings,

we are also able to sort earnings announcements by how surprising they were to analysts. Second,

we consider FOMC announcements, which have the added benefit of occuring during the trade

day, and so generate a clear testable implication for the information flow explanation for changes

in the factor structure of asset returns. Finally, we consider four other important macroeconomic

announcements, and compare the gains from using Intraday PCA on announcement days with

the gains on average days.

4.1 Earnings anouncements

Firms’ quarterly earnings announcements are well-documented disclosures of essential informa-

tion regarding their operational and financial status, and prior research has found significant

impacts of earnings announcements on equity prices, see for example Collins and Kothari (1989),

Livnat and Mendenhall (2006) and Patton and Verardo (2012). We investigate whether earnings

announcement surprises lead to changes in the factor structure of asset returns. The model in

Section 3 implies that the factor structure of asset returns varies over the trade day, and that the

variation is stronger when earnings announcements are “more surprising.” Following Livnat and

Mendenhall (2006), we measure the surprise component of a given earnings announcement as the

difference between realized earnings-per-share and the median analyst forecast in the 90 days

prior to the announcement, scaled by current quarter’s price for cross-sectionaly comparability.

We sort earnings days into quintiles using according to this measure of earnings surprise.

Table 3 shows R2 improvement of Intraday PCA over PCA for each quintile of earnings

surprise, and the last column shows the difference in R2 improvements between the top and

bottom quintiles. Table 3 reveals that the outperformance of Intraday PCA over standard PCA

is significant for all types of earnings announcements (the t-statistics in the first five columns are

all well above 1.96). Moreover, the outperformance is greatest for the most surprising earnings

announcements and smallest for the least surprising announcements. The difference in the im-

provement in fit is 1.2% in-sample and 1.1% out-of-sample, and both differences are significant

at the 1% level. The increased outperformance from allowing for a time-varying factor structure
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Table 3: Performance of Intraday PCA over standard PCA on earnings announce-
ment days by quintile of earnings surprise. This table reports measures of in-sample fit
and out-of-sample accuracy (R2 metrics defined in equations (9) and (11), measured in percent)
on earnings announcement days, sorted into quintiles by absolute earnings surprise as described
in Section 4.1. Each cell in the first five columns reports the difference in R2 of Intraday PCA
versus PCA. PCA uses standard principal components analysis on the TM×N panel of high fre-
quency stock returns, and Intraday PCA uses kernel-based local PCA introduced in Section 2.2.
The last column shows the difference of top and bottom quintiles. t-statistics from Rivers-Vuong
(2002) and Diebold-Mariano (1995) tests comparing the fit of each model to that of Intraday
PCA are reported in parentheses.

Quintile of absolute earnings surprise

Low 2 3 4 High High-Low

In-sample R2 gain 1.23 1.49 1.92 1.67 2.44 1.21
(RV t-stat) (16.45) (17.44) (8.88) (18.06) (14.48) (6.89)

OOS R2 gain 0.89 1.26 1.46 1.30 2.01 1.12
(DM t-stat) (15.78) (16.16) (14.04) (16.02) (13.71) (8.03)

following more surprising news is consistent with the model in the previous section.

4.2 FOMC Announcements

We next investigate the factor structure of asset returns around perhaps the most important single

piece of news for financial markets: the announcement by the Federal Open Market Committee

(FOMC) of the target range for the federal funds rate.12 FOMC announcements generally occur

eight times per year, and in our sample we have a total of 196 announcement days. We obtain

FOMC date and time information from the Bloomberg Economic Calendar.13 In the analyses

decribed above we use one-year rolling windows for estimation, however given the small number

of FOMC announcement dates per year we use an expanding window estimation strategy for the

12An extensive body of research shows that monetary policy announcements have significant impacts on the
stock market, see for example Bernanke and Kuttner (2005); Cieslak and Schrimpf (2019); Bollerslev et al. (2018).

13Almost 70% of the FOMC announcements in our sample occur at 2pm; another 20% occur at 2:15pm, and the
remainder occuring at other times. Importantly for our analysis, all FOMC announcements in our sample period
occur within the NYSE trade day.
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Table 4: In-sample and out-of-sample performance of factor models in FOMC an-
nouncements days. This table reports measures of in-sample fit and out-of-sample accuracy
(R2 metrics defined in equations (9) and (11), measured in percent) using only FOMC announce-
ment days, described in Section 4.2, for three models based on observable factors and two models
based on latent factors. The CAPM uses solely the market factor; FF3 additionally uses the size
and value factors of Fama and French (1992); FF6 additionally uses the momentum factor of
Carhart (1997) and the quality and profitability factors of Fama and French (2015). The column
titled PCA uses standard principal components analysis on the TM ×N panel of high frequency
stock returns. The last column uses the kernel-based local PCA introduced in Section 2.2. t-
statistics from Rivers-Vuong (2002) and Diebold-Mariano (1995) tests comparing the fit of each
model to that of Intraday PCA are reported in parentheses.

Factor model

CAPM FF3 FF6 PCA Intraday PCA

In-sample R2 21.95 25.04 26.23 24.30 35.38
(RV t-stat) (16.20) (15.14) (14.19) (16.19)

OOS R2 26.42 29.02 29.36 28.91 33.69
(DM t-stat) (13.47) (11.35) (9.68) (12.90)

study of these dates. Specifically, considering the days post-2010 as the out-of-sample period,

the factor models are estimated for each date using all available data up to that date.

Table 4 shows the in-sample and out-of-sample performances of the competing factor models

on FOMC days. We find that Intraday PCA exhibits the highest in-sample and OOS R2, 35.4%

and 33.7% respectively. Intraday PCA provides an R2 gain of over 11% compared to standard

PCA in-sample, and a gain of 4.8% out-of-sample, with both improvements being significant at

the 1% level. Comparing the results on FOMC days with the full-sample results from Table 2,

we see that the improvements from allowing for a time-varying factor structure are much greater

on FOMC days: 11.1% versus 1.7% in-sample, and 4.8% versus 1.3% out-of-sample, consistent

with the predictions of the model presented in Section 3.

Next, we exploit a feature of FOMC announcements that is particularly informative for

our “information flows” hypothesis: unlike earnings announcements, which predominantly occur

outside of trading hours, FOMC announcements typically happen at 2pm, during the trade
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Figure 7: Comparing the fit of Intraday PCA and standard PCA on FOMC announce-
ment days. This figure shows the difference in out-of-sample total R2 between Intraday PCA,
introduced in Section 2.2, and standard PCA on FOMC announcement days, described in Sec-
tion 4.2, for each of the 26 15-minute periods during the New York Stock Exchange trade day.
Positive values indicate that Intraday PCA has a higher R2 than standard PCA. The vertical
lines at the end of each bar are 95% confidence intervals for the difference in R2 based on a
Diebold-Mariano (1995) test.
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day. Thus, if it is the arrival of new information to the market and its subsequent processing

by market participants, we would expect to see larger gains from using Intraday PCA in the

windows immediately after 2pm. Figure 7 presents the OOS R2 differences between Intraday

PCA and PCA across the trade day, and reveals a pattern consistent with our conjecture: the

gains from using Intraday PCA are particularly large, as high as 11%, in the first two 15-minute

windows after the FOMC announcement.

The model presented in Section 3 predicts that the gains from allowing for changes in the

factor structure of asset returns will be larger for when the news is “larger”. To gauge the surprise

component of a given FOMC announcement we use the “monetary policy surprise” series of Bauer

and Swanson (2023), which is estimated as the first principal component of changes in the first

four quarterly Eurodollar futures contracts around the announcement.14

Figure 8 presents the improvement in OOS R2 for each of the 196 FOMC announcement

days as a function of the monetary policy surprise (measured as the log-squared surprise from

Bauer and Swanson, 2023). The figure reveals a broadly increasing pattern, especially for larger

14The monetary policy surprise data is available at www.michaeldbauer.com.
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Figure 8: Comparing the fit of Intraday PCA and PCA across monetary policy sur-
prises. This figure shows the difference in out-of-sample total R2 between Intraday PCA, intro-
duced in Section 2.2, and standard PCA for each of the 97 FOMC announcement days between
2010 and 2020 as a function of the monetary policy surprises (MPS) of Bauer and Swanson
(2023). We use log MPS2 as the measure of the magnitdue of the surprise. Positive values on
the y-axis indicate that intraday PCA has a higher R2 than standard PCA. The dashed line is
a fitted local polynomial curve.
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surprises (to the right-hand side of the plot). The red dashed line is a fitted local polynomial,

indicating an approximately flat relationship for surprises below the median surprise and a clear

positive relationship for surprises above the median. This represents further evidence that larger

information flows cause changes in the factor structure of asset returns, which in turn lead to a

greater improvement from using Intraday PCA relative to the standard PCA alternative.

4.3 Other macroeconomic announcements

While Federal Open Market Committee (FOMC) announcements are the most impactful an-

nouncements and are widely watched by investors and market analysts, other sources of macroe-
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conomic information also impact asset prices. We next consider four other macroeconomic an-

nouncements: non-farm payrolls (typically released at 8:30am on the first Friday of each month);

the consumer price index or CPI (8:30am in the second week of each month); the Conference

Board’s consumer confidence index (10am on the last Tuesday of each month); and the ISM

manufacturing report (10am on the first business day of each month). The times of these an-

nouncements are noteworthy as two of them occur in the overnight period (similar to earnings

announcements), and two are within the trade day (similar to FOMC announcements).

Table 5 reveals that for all four types of announcements Intraday PCA yields better forecasts

than the competing methods, and for three out of four announcement types the improvement is

statistically significant at the 5% level. Only for the consumer confidence announcement is the

out-of-sample improvement not significantly different from zero. (The in-sample gains in R2 are

significant at the 1% level for all four types of announcements.) It is noteworthy that the OOS

R2 improvement offered by Intraday PCA is greater for all four types of announcements than it is

in the full sample (see Table 2): in the full sample the improvement over standard PCA is 1.3%,

while for these four announcements it ranges from 2.7% for nonfarm payroll announcements to

4.9% for CPI announcements. Thus, consistent with the model in Section 3, the gains from

allowing for intradaily variation in the factor structure are greater following times of information

flows. For these four macroeconomic announcements, the gains are between two and nearly four

times as great on macroeconomic announcement days than on average.

5 Extensions and robustness checks

5.1 Subsample analysis

This section investigates whether our findings of a time-varying factor structure within equity

returns varies over our sample period. We repeat our full sample analyses, reported in Table 2,

separately for the first and second halves of our data (1998-2009, and 2010-2020) and present the

results in Table 6. A first finding from Table 6 is that the factor structure in asset returns, however

modeled, is stronger in the second period than the first: the OOS R2s are higher for each of the

five models, and the cross-model average R2 rises from 18.4% in the first subsample to 27.6% in
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Table 5: In-sample and out-of-sample performance of factor models on other macroe-
conomic announcements days. The table reports measures of in-sample fit and out-of-sample
accuracy (R2 metrics defined in equations (9) and (11), measured in percent) using macroeco-
nomic announcement days including non-farm payrolls, CPI, consumer confidence and ISM Man-
ufacturing releases, described in Section 4.2, for three models based on observable factors and
two models based on latent factors. The CAPM uses solely the market factor; FF3 additionally
uses the size and value factors of Fama and French (1992); FF6 additionally uses the momentum
factor of Carhart (1997) and the quality and profitability factors of Fama and French (2015).
The column titled PCA uses standard principal components analysis on the TM × N panel of
high frequency stock returns. The last column uses the kernel-based local PCA introduced in
Section 2.2. t-statistics from Rivers-Vuong (2002) and Diebold-Mariano (1995) tests comparing
the fit of each model to that of Intraday PCA are reported in parentheses.

Factor model

CAPM FF3 FF6 PCA Intraday PCA

Panel A: Non-farm payrolls (8:30am)

In-sample R2 17.85 20.64 21.31 19.58 25.67
(RV t-stat) (19.69) (16.80) (15.06) (18.46)

OOS R2 24.72 27.93 27.90 26.81 29.46
(DM t-stat) (3.95) (2.63) (2.07) (3.48)

Panel B: CPI (8:30am)

In-sample R2 17.98 21.29 22.27 22.19 29.31
(RV t-stat) (16.01) (14.25) (13.18) (15.45)

OOS R2 22.61 26.15 26.28 25.50 30.39
(DM t-stat) (2.62) (2.07) (1.85) (2.01)

Panel C: Consumer confidence (10am)

In-sample R2 15.88 18.57 19.30 17.61 25.52
(RV t-stat) (18.77) (16.59) (15.22) (18.45)

OOS R2 20.09 22.92 22.78 22.12 24.96
(DM t-stat) (1.08) (1.06) (1.06) (1.07)

Panel D: ISM Manufacturing (10am)

In-sample R2 15.67 18.34 19.10 17.36 23.90
(RV t-stat) (21.26) (18.78) (16.92) (20.51)

OOS R2 21.66 24.94 25.16 23.87 26.99
(DM t-stat) (3.34) (1.66) (1.78) (2.05)
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Table 6: In-sample and out-of-sample performance of factor models. The table reports
measures of in-sample fit and out-of-sample accuracy (R2 metrics defined in equations (9) and
(11), measured in percent) for three models based on observable factors and two models based
on latent factors. The CAPM uses solely the market factor; FF3 additionally uses the size and
value factors of Fama and French (1992); FF6 additionally uses the momentum factor of Carhart
(1997) and the quality and profitability factors of Fama and French (2015). The column titled
PCA uses standard principal components analysis on the TM ×N panel of high frequency stock
returns. The last column uses the kernel-based local PCA introduced in Section 2.2. t-statistics
from Rivers-Vuong (2002) and Diebold-Mariano (1995) tests comparing the fit of each model to
that of Intraday PCA are reported in parentheses. Panels A and B present results analogous to
the full-sample results in Table 2, for the first and second halves of the sample period.

Factor model

CAPM FF3 FF6 PCA Intraday PCA

Panel A: First subsample (1998-2009)

In-sample R2 17.67 19.85 21.35 20.68 22.11
(RV t-stat) (16.79) (11.69) (5.23) (18.17)

OOS R2 16.43 18.12 18.40 18.96 20.07
(DM t-stat) (15.55) (10.02) (8.70) (17.78)

Panel B: Second subsample (2010-2020)

In-sample R2 23.96 28.97 31.49 33.14 35.43
(RV t-stat) (16.03) (12.94) (10.83) (13.13)

OOS R2 22.55 26.14 26.24 30.68 32.31
(DM t-stat) (14.20) (11.41) (12.22) (12.61)

the second. In both subsamples we find strong evidence of a time-varying factor structure, with

Intraday PCA significantly outperforming all competing models, including standard PCA.15 The

outperformance of Intraday PCA is slightly greater in the latter subsample (e.g., the improvement

in OOS R2 relative to standard PCA is 1.1% in the first subsample and 1.6% in the second.)

The Diebold-Mariano t-statistic comparing Intraday PCA and standard PCA is greater than 18

in both subsamples, confirming our results from the full sample.

15The test of Liao and Todorov (2024), that the span of the latent factors is the same in the opening two hours
of trade as in the last two hours, also rejects the null in both subsamples, at the 1% level.
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Figure 9: Comparing the fit of Intraday PCA and PCA, first and second subsamples.
This figure shows the difference in out-of-sample R2 between Intraday PCA, introduced in Section
2.2, and standard PCA, for each of the 26 15-minute periods during the New York Stock Exchange
trade day. Positive values indicate that Intraday PCA has a higher R2 than standard PCA. The
vertical lines at the end of each bar are 95% confidence intervals for the difference in R2 based
on a Diebold-Mariano (1995) test. Panels (a) and (b) present the results for the first (1998-2009)
and second (2010-2020) subsamples.
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In Figure 9 we show how the improvement offered by Intraday PCA over standard PCA varies

over the trade day for each of the two subsamples. The pattern is similar in both subsamples,

and similar to the full-sample pattern presented in Figure 3: the gains are greatest in the first

trading periods of the day, and diminish towards the end of the trade day. Consistent with

the results in Table 6, we observe that the gains are slightly greater on average in the latter

subsample. Comparing the top and bottom panels of Figure 9 we can observe a difference at the

end of the trade day: in the first subsample Intraday PCA offered a significant improvement over

standard PCA in the last hour of the trade day, while in the latter subsample the improvement

is small and not significantly different from zero.

Overall, we conclude that our finding of significant variation in the factor structure of asset

returns is not sensitive to the choice of sample period, with both halves of our sample yielding

qualitatively similar results.

5.2 Choosing the number of factors

To select the number of factors in the standard PCA and Intraday PCA models in our main

analysis we adopt the information criterion proposed in Bai and Ng (2002) and extended to

high-frequency setting by Liao and Todorov (2024), see equation (7). In this section we consider

the estimator for the number of factors in a high frequency factor setting proposed by Pelger

(2019, Theorem 6). This estimator examines ratios of adjacent (ordered) eigenvalues, similar to

the method of Ahn and Horenstein (2013). We follow the recommendation of Pelger (2019) and

use median of eigenvalues as the “perturbation” and 0.2 as the “cutoff” hyperparameters for this

estimator.

Table 7 presents results for the full sample and two subsamples, when the PCA-based methods

choose the number of factors using Pelger (2019). The results in this table can be compared with

those in Tables 2 and 6. The observable factor models (CAPM, FF3 and FF6) are unchanged in

this analysis, so their in-sample and OOS R2s are identical to the earlier tables, however their

comparisons with Intraday PCA differ as the latter model is different in this analysis.

The performance of standard PCA and Intraday PCA when the number of factors are chosen
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Table 7: Performance of models with number of factors chosen using Pelger (2019).
The table reports measures of in-sample fit and out-of-sample accuracy (R2 metrics defined in
equations (9) and (11), measured in percent) for three models based on observable factors and
two models based on latent factors. The CAPM uses solely the market factor; FF3 additionally
uses the size and value factors of Fama and French (1992); FF6 additionally uses the momentum
factor of Carhart (1997) and the quality and profitability factors of Fama and French (2015).
The column titled PCA uses standard principal components analysis on the TM × N panel of
high frequency stock returns. The last column uses the kernel-based local PCA introduced in
Section 2.2. The latter two models set the number of factors using Pelger (2019). t-statistics
from Rivers-Vuong (2002) and Diebold-Mariano (1995) tests comparing the fit of each model to
that of intraday PCA are reported in parentheses. Panel A presents results analogous to the
full-sample results in Table 2, and panels B and C present results for the first and second halves
of the sample period, analogous to Table 6.

Factor model

CAPM FF3 FF6 PCA Intraday PCA

Panel A: Full sample (1998-2020)

In-sample R2 19.56 22.60 24.40 24.18 25.55
(RV t-stat) (18.91) (14.15) (8.11) (18.25)

OOS R2 18.27 20.53 20.77 22.29 23.19
(DM t-stat) (16.65) (11.48) (11.20) (16.99)

Panel B: First subsample (1998-2009)

In-sample R2 17.67 19.85 21.35 20.62 21.74
(RV t-stat) (17.24) (11.54) (3.31) (16.65)

OOS R2 16.43 18.12 18.40 18.94 19.74
(DM t-stat) (15.93) (9.45) (7.82) (14.20)

Panel C: Second subsample (2010-2020)

In-sample R2 23.96 28.97 31.49 32.42 34.41
(RV t-stat) (16.39) (12.97) (10.10) (12.17)

OOS R2 22.55 26.14 26.24 30.06 31.17
(DM t-stat) (13.96) (10.61) (11.33) (10.72)

using Pelger (2019) rather than Bai and Ng (2002) are very similar: in the full sample the

in-sample and OOS R2s fall by between 0.2% and 0.6%, but the outperformance of Intraday
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PCA relative to the competing models remains significant at the 1% level. This is true also for

both subsamples: the R2 values decline slightly, but the improvement of Intraday PCA over the

competing models remains significant at the 1% level.

6 Conclusion

Motivated by recent work on within-day variation in CAPM factor loadings (Andersen et al.,

2021, 2023) we propose using a combination of kernel-based methods and principal components

analysis (PCA), known as “local PCA” (Su and Wang, 2017; Fan et al., 2022; Pelger and Xiong,

2022) to allow the latent factor structure of asset returns to vary over the trade day. This

approach nests both standard PCA, which imposes no variation in the factor structure across

the trade day, and PCA applied to each high-frequency period separately, which ignores the fact

that adjacent high-frequency periods are likely to be similar. By optimally choosing the degree

of flexibility in the model, which we accomplish via cross-validation, we obtain a model that

exploits information from neighboring high-frequency periods, but allows the factor structure to

vary over the trade day.

We apply our “Intraday PCA” to 15-minute returns on a collection of over 400 individual U.S.

stock returns over the period 1996-2020. We find comprehensive evidence that the factor model

of these returns varies over the trade day, and the improvement in explanatory power of Intraday

PCA over standard PCA is significant at the 1% level. The improvement in fit compared with the

famous Fama-French (1992) model (FF3), which is also significant at the 1% level, is larger than

the improvement from using the FF3 compared with the workhorse capital asset pricing model

(CAPM). Our analysis reveals that the gains from allowing for a time-varying factor structure

mostly accrue in the opening hours of the trade day, when information accumulated in the

overnight period (e.g., earnings announcements and pre-market macroeconomic announcements)

is incorporated into asset prices.

We next propose a simple model of high frequency asset returns and information flows, and

demonstrate that information flows can lead to changes in the factor structure of asset returns.

The key mechanism in the model is that if prices are affected by different types of news (e.g.,
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cashflow and discount rate news), arriving at different times, and if the different news types have

different factor structures, then the factor structure of asset returns will naturally vary over the

trade day. The model additionally predicts that changes in the factor structure will be greatest

when the surprise component of the news is larger.

We test the predictions of the model in three distinct empirical analyses. Firstly, we sort

days according to the surprise component of earnings announcements made during the previous

overnight period. We find significant evidence that the changes in asset return factor structure are

larger when earnings announcements are more surprising. Secondly, we examine Federal Open

Market Committee (FOMC) announcements, which occur during the trade day rather than in

the overnight period. Focusing only on FOMC days we see that the gains from allowing for a

varying factor structure are greatest in ther periods immediately after 2pm, the typical FOMC

announcement time. We use the “monetary policy surprise” measure of Bauer and Swanson

(2023) to quantify the surprise component of a given FOMC announcement and find that the

gains from the Intraday PCA model are larger for more surprising announcements. Finally, we

consider four other important macroeconomic announcements and find the gains from allowing

for intradaily variation in the factor structure are between two and nearly four times as great on

announcement days than on average. All three analyses support our hypothesis that information

flows lead to changes in the factor structure of asset returns.
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Appendix A An approximate leave-one-out R2 metric

Recall that we estimate the factor loadings, β̂, in the estimation sample using the eigenvectors

associated with the K largest eigenvalues of R⊤R, the second moment matrix of returns in the

estimation sample. With those, we obtain the factor realizations by regressing returns on betas:

f̂t
(K×1)

= ( β̂
⊤

(K×N)
β̂

(N×K)
)−1 β̂

⊤

(K×N)
Rt

(N×1)
= β̂

⊤

(K×N)
Rt

(N×1)
(A.1)

where the last equality holds as we impose the normalization that β̂
⊤
β̂ = IK . From those we

obtain the (infeasible) forecasts, r̂i,t, from the factor model:

r̂i,t = β̂
⊤
i f̂t (A.2)

These are not true forecasts because f̂t uses, in part, the realized value of the target variable,

ri,t. One might instead consider using the estimation-sample mean of the factors, λ̂, rather than

their out-of-sample realizations, leading to the forecast:

r̄i,t = β̂
⊤
i λ̂ (A.3)

The “predictive” and “total” R2 measures of Kelly et al. (2019) are based on these two forecasts:

R2
total = 1−

∑
i

∑
(t,τ)∈T (ri,t−1+τ − r̂i,t−1+τ )

2∑
i

∑
(t,τ)∈T r2i,t−1+τ

(A.4)

R2
pred = 1−

∑
i

∑
(t,τ)∈T (ri,t−1+τ − r̄i,t−1+τ )

2∑
i

∑
(t,τ)∈T r2i,t−1+τ

(A.5)

where T denotes the collection of days and intradaily observations in the out-of-sample period.

Note that the infeasible forecasts in equation (A.2) can be written as:

r̂i,t = β̂
⊤
i

(1×K)

β̂
⊤

(K×N)
Rt

(N×1)
= β̂

⊤
i

N∑
j=1

β̂jrj,t = β̂
⊤
i β̂iri,t + β̂

⊤
i

∑
j ̸=i

β̂jrj,t (A.6)
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Consider a forecast that replaces ri,t on the right-hand side with its in-sample mean, µ̂i:

r̃i,t = β̂
⊤
i β̂iµ̂i + β̂

⊤
i

∑
j ̸=i

β̂jrj,t (A.7)

This is a proper forecast of ri,t, being based on estimation sample estimates of factor loadings,

and contemporaneous values only of the other variables in the panel, i.e. rj,t for j ̸= i. This

is an “approximate leave-one-out” (ALOO) forecast of variable i. It is particularly useful in

applications with a large cross-sectional dimension, where a true leave-one-out forecast is com-

putationally expensive, and in local PCA, where the bandwidth parameter must be tuned using

a validation sample, increasing the computational burden. Below we show that one can obtain

the ALOO forecast as a simple transformation of the original factors and infeasible forecasts.

It is convenient to write the above equation as:

r̃i,t = r̂i,t − β̂
⊤
i β̂i (ri,t − µ̂i) (A.8)

which is presented as equation (10) in the main paper. In matrix form, we then obtain the

factors, infeasible forecasts, and ALOO forecasts:

F̂
(T×K)

= R
(T×N)

β̂
(N×K)

(A.9)

R̂
(T×K)

= F̂
(T×K)

β̂
(K×N)

= R
(T×N)

β̂
(N×K)

β̂
⊤

(K×N)
(A.10)

R̃
(T×N)

= R̂
(T×N)

− ( R
(T×N)

− ι
(T×1)

µ̂⊤

(1×N)
) · diag{ β̂

(N×K)
β̂
⊤

(K×N)
}︸ ︷︷ ︸

(N×N)

(A.11)

where ι is a vector of ones, and diag{A} sets the off-diagonal elements of the matrix A to zero.

Thus the ALOO forecasts, R̃, can be obtained in closed form from the usual forecast, R̂, the

matrix of factor loadings, β̂, and the vector of in-sample mean returns, µ̂. No new estimation is

required. The “approximate leave-one-out” R2 metric is then computed as in equation (11) of

the main paper.

For PCA applied to standardized data, as in our empirical application, a simple modification
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of the above derivations is required. Denote the standardized returns as:

xi,t = (ri,t − µ̂i) /σ̂i (A.12)

so X
(T×N)

= ( R
(T×N)

− ι
(T×1)

µ̂⊤

(1×N)
) D̂−1

(N×N)
(A.13)

where µ̂ is the vector of estimation-sample means, and D̂ is a diagonal matrix of the estimation-

sample standard deviations.

We estimate the factor loadings, β̂i, in the estimation sample using the eigenvectors associated

with the K largest eigenvalues of X⊤X, again imposing the normalization that β̂
⊤
β̂ = IK . With

those, we obtain the factor realizations:

f̂t
(K×1)

= β̂
⊤

(K×N)
Xt

(N×1)
(A.14)

and from those we obtain the forecasts from the factor model for the standardized returns and

the original returns:

r̂i,t = µ̂i + σ̂ix̂i,t = µ̂i + σ̂iβ̂
⊤
i f̂t (A.15)

Analogous to equation (A.6), these infeasible forecasts can be written as:

r̂i,t = µ̂i + σ̂iβ̂
⊤
i β̂ixit + σ̂iβ̂

⊤
i

∑
j ̸=i

β̂jxjt (A.16)

We replace the realized value of xi,t with its estimation sample mean, which is zero by construc-

tion. Analogous to equations (A.7) and (A.8), we obtain the ALOO forecasts:

r̃i,t = µ̂i + σ̂iβ̂
⊤
i

∑
j ̸=i

β̂jxj,t (A.17)

= r̂i,t − σ̂iβ̂
⊤
i β̂ixi,t (A.18)
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Finally, we have the factors, original forecasts, and ALOO forecasts in matrix form:

F̂
(T×K)

= X
(T×N)

β̂
(N×K)

(A.19)

X̂
(T×N)

= F̂
(T×K)

β̂
(K×N)

(A.20)

R̂
(T×N)

= ι
(T×1)

µ̂⊤

(1×N)
+ X̂

(T×N)
D̂

(N×N)
(A.21)

X̃
(T×N)

= X̂
(T×N)

− X
(T×N)

· diag{ β̂
(N×K)

β̂
⊤

(K×N)
}︸ ︷︷ ︸

(N×N)

(A.22)

R̃
(T×N)

= R̂
(T×N)

− X
(T×N)

· diag{ β̂
(N×K)

β̂
⊤

(K×N)
}︸ ︷︷ ︸

(N×N)

D̂
(N×N)

(A.23)

The ALOO forecasts, R̃, can again be obtained in closed form from the usual forecast, R̂, the

standardized data, X, the matrix of factor loadings, β̂, and the diagonal matrix of standard

deviations of the original data, D̂. The approximate leave-one-out R2 is then computed as in

equation (11) using the ALOO forecasts from equation (A.23).
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Appendix B Details on the model in Section 3

Appendix B.1 Details on the Kalman filter

The underlying variable of interest in this problem is the (N×1) vector of daily earnings growth,

∆ logXt, for each of the firms (see equation 12). For reasons that become clear below, we define

the state variable for this filtering problem, ξt, as the most recent C values of this variable:

∆ logXt = g + γZt + ut (A.24)

ξt ≡ vec


∆ logX⊤

t

...

∆ logX⊤
t−C+1

 = Fξt−1 + νt (A.25)

where F = IN ⊗ F1 (A.26)

V [νt] = Q1 ⊗Q2 (A.27)

and F1 =

 0⊤C

IC−1,0C−1

 (A.28)

Q1 = γΣZγ
⊤ + σ2

uIN (A.29)

Q2 = e1e
⊤
1 (A.30)

where IN is the N -dimensional identity matrix, ⊗ is the Kronecker product, 0C is a (C × 1)

vector of zeros, and e1 is a (C × 1) vector with a 1 in the first element and zeros elsewhere.

The measurement variable for this problem is complicated by the fact that earnings an-

nouncements only occur every C > 1 days. We follow Patton and Verardo (2012) and use the

framework proposed by Sinopoli et al. (2004) for updating expectations when the signal is only

observed intermittently. We proceed by defining a measurement variable that tracks, with error,

earnings growth over the last C days:

Yi,t =

C−1∑
j=0

∆ logXi,t−j + ηi,t (A.31)

The measurement error, ηi,t is introduced to “mask” this signal in between earnings announce-

43



ment dates. Specifically, on earnings announcment dates the variance of the measurement error

is set to zero, and the earnings growth since the last announcement is perfectly observed. On

other dates, the variance of this variable is set to a large value:

V [ηi,t] = σ2
I (1−Ai,t) (A.32)

where Ai,t = 1 if day t is an announcement date for firm i, and zero otherwise, and σI → ∞ is

the variance of the measurement error on non-announcement days.

The measurement variable

Yt ≡ [Y1,t, ..., YN,t]
⊤ (A.33)

is linked to the state variable via:

Yt = H⊤ξt + ηt (A.34)

where H⊤ = IN ⊗ ιC (A.35)

and V [ηt] = σI(IN − diag{At}) (A.36)

where ιC is a (C × 1) vector of ones, At is a (N × 1) vector of announcement indicators for each

of the firms, and diag{a} is a diagonal matrix with the vector a on the diagonal.

With the above structure for the state variable, ξt and its connection to the measurement

variable, Yt, standard Kalman filtering computations can be applied. The one-step-ahead fore-

casts and the nowcasts of the state variable can be obtained as follows:

ξ̂t|t−1 = F ξ̂t−1|t−1 (A.37)

ξ̂t|t = ξ̂t|t−1 + Pt|t−1H
⊤
(
HPt|t−1H

⊤ + σI(IN − diag{At})
)−1 (

Yt −H⊤ξ̂t|t−1

)
(A.38)

Pt|t−1 = FPt−1|t−1F
⊤ +Q (A.39)

Pt|t = Pt|t−1 − Pt|t−1H
⊤
(
HPt|t−1H

⊤ + σ2
I (IN − diag{At})

)−1
HPt|t−1 (A.40)

From equation (A.38) we can extract the nowcasts of the earnings growth of each firm between

44



day t − C + 1 and day t. By summing the growth rates since the last announcement day of a

given firm (which can be no more than C days in the past) we obtain a nowcast of the log-level

of the earnings of the firm. The first-difference of this nowcast is the “cashflow news” for this

firm.

Appendix B.2 Parameter choices for the simulation

Parameter Value Description

T 3000 Number of trade days

M 21 Number of periods per day (including the overnight return)

N 100 Number of firms

C 10 Number of days between earnings announcements

D 5 Number of days between FOMC announcements

K 2 Number of common factors in earnings growth

πCF 0.25 Diffusion of cashflow information

πDR 0.25 Diffusion of discount rate information

σ2
ε,O 0.25 Variance of noise trades as a proportion of cashflow news variance,

σ2
ε,D 0.03 for the overnight period (σ2

ε,O) and the intraday periods (σ2
ε,D)

g 5/252 Growth rate of log-earnings

σ2
u 0.1 Variance of unpredictable component of earnings growth

ΣZ 2IN Covariance matrix of common factors in earnings growth

γ1 [2,3] Coefficients on common earnings factors, for first N/2 firms

γ2 [2,-1] Coefficients on common earnings factors, for second N/2 firms

σ2
rf 0.252 Variance of the monetary policy surprise (MPS)

µMPS -4 Mean (µMPS) and variance (σ2
MPS) of the Normal distribution

σ2
MPS 2 used to determine firm sensitivity to the MPS
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