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Abstract

We propose methods to improve the forecasts from generalized autoregressive score

(GAS) models (Creal et al., 2013; Harvey, 2013) by localizing their parameters using de-

cision trees and random forests, which exploit information in state variables from within

and possibly beyond the model. The proposed methods allow the researcher to draw

on information from multiple state variables simultaneously and avoid the curse of di-

mensionality faced by kernel-based approaches. We apply the new models in four distinct

empirical analyses, and in all applications the proposed new methods significantly outper-

form the baseline GAS model. In our applications to stock return volatility and density

prediction, the optimal GAS tree model reveals a leverage effect and a variance risk pre-

mium effect. Our study of stock-bond dependence finds evidence of a flight-to-quality

effect in the optimal GAS forest forecasts, while our analysis of high-frequency trade

durations uncovers a volume-volatility effect.
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1 Introduction

Models for economic time series data that can capture time variation in features of

the predictive density are widely used for policy making, investment decisions, risk

management, and in many other applications. Such models include the autoregressive-

moving average model of Box and Jenkins (1970), the ARCH/GARCH models of Engle

(1982) and Bollerslev (1986), and many others. The family of “generalized autoregres-

sive score” (GAS) models, proposed by Creal et al. (2013) and Harvey (2013), nests

these time series models and others, and has been applied to a wide range of problems.

Artemova et al. (2022a,b) and Harvey (2022) provide recent surveys of this large and

growing literature.

Despite their success, score-driven models are inevitably only approximations to

the true data generating process. We propose to use data mining methods from the

machine learning literature to improve the performance of these models. Specifically,

we propose a “GAS tree,” that combines the parsimonious structure of the GAS model

with the flexible, data-driven learning of decision trees Breiman et al. (1984, 2017). A

GAS tree allows the parameters of the model to vary across “branches” of the tree,

which are formed using a possibly large collection of state variables. This leads to a

model that can incorporate information from outside the GAS model, and that allows

for potentially complicated nonlinearities and interactions, while maintaining inter-

pretability of the resulting final model. We further propose “GAS forests,” analogous

to the “random forests” of Breiman (2001) for linear regression, where we create many

GAS trees using bootstrap samples of the original data and then average the forecasts

from these trees. In many applications random forests have been found to improve

upon regression trees due to the reduction in variance obtained via averaging, see e.g.

Hastie et al. (2009).

The estimation of GAS trees and GAS forests is computationally demanding. It in-
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volves finding the optimal state variables and thresholds (which determine the locations

of the “branches” of the tree) from the set of candidate variables, as well as estimating

the parameters of the GAS model. We use cluster computing and a “greedy” estima-

tion algorithm related to that of Breiman et al. (1984) for regression. This algorithm

finds a near-optimal solution and converges quickly. A key hyperparameter in tree and

forest models is the maximum depth of the tree (essentially, how many subsamples of

the data will be considered) and we tune this parameter using a validation sample,

separate from our forecast evaluation sample.

We apply the proposed GAS tree and GAS forest models in four empirically relevant

forecasting problems: stock return volatility, the distribution of stock returns, the joint

distribution of stock and bond returns, and high-frequency trade durations. As baseline

models for these applications we use the GARCH model of Bollerslev (1986), the t-

GAS model of Creal et al. (2011), a joint distribution model with Student’s t margins

and a Student’s t copula, as in Janus et al. (2014), and the ACD model of Engle and

Russell (1998). We then consider tree and forest extensions of these models, using

between 10 and 14 state variables, and in all four cases we find that the baseline model

is significantly out-performed. For the two stock return applications, we find that the

GAS tree provides the best out-of-sample forecasts. The estimated tree structures

provide significantly better forecasts, and turn out to be relatively simple: we find

evidence of a leverage effect, where the GAS model parameters differ depending on

whether the lagged stock return was positive or negative, and a variance risk premium

effect, where the model parameters differ depending on whether the difference between

option-implied and historical volatilities (that is, between so-called Q- and P-measure

volatilities) is large or small.

In our study of the joint predictive distribution of stock and bond returns, we find

that the GAS forest produces the best out-of-sample forecasts. Variable importance
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analyses indicate that the most important variables for the GAS forest are the lagged

stock and bond returns themselves, indicating omitted nonlinearity in the baseline GAS

model. We find evidence of a flight-to-quality effect, where higher bond returns or lower

stock returns are associated with even more negative long-run correlations between the

stock and bond markets. In our analysis of trade durations, defined as the time taken

for 10,000 shares of the S&P 500 exchange traded fund, SPY, to be transacted, we

again find the forest-based extension to be the preferred model. In this application

the most important state variables are both measures of volatility, consistent with the

well-known volume-volatility relationship, see Tauchen and Pitts (1983) and Karpoff

(1987) for example.

This paper is part of the fast-growing literature using tools from machine learning

in econometrics, see Varian (2014) and Athey and Imbens (2019) for recent surveys.

Various studies have found that machine learning techniques bring significant gains over

traditional econometric methods for forecasting applications. For example, Medeiros

et al. (2021), Goulet Coulombe (2024) and Huber et al. (2020) show that tree-based

methods, including random forests, can produce more accurate forecasts of important

macroeconomic variables like unemployment and inflation. Gu et al. (2020) and Bianchi

et al. (2021) show how machine learning methods can improve forecasts of stock and

bond returns respectively.

In addition to macroeconomic and financial forecasting, some recent papers have

found success applying machine learning methods to volatility models such as the

GARCH model of Bollerslev (1986) and the HAR model of Corsi (2009). For instance,

Christensen et al. (2022) shows that neural networks and random forests significantly

improve over HAR model, and Nguyen et al. (2022, 2023) create hybrid stochastic

volatility and GARCH models with recurrent neural networks. Reisenhofer et al. (2022)

and Tetereva and Kleen (2022) use convolutional neural networks and random forests,
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respectively, combined with the HAR model to obtain improved out-of-sample fore-

casts.

Perhaps closest to our work is the “tree-structured GARCH” model of Audrino

and Bühlmann (2001), which uses the lagged return as a state variable to generalize

the GARCH model of Bollerslev (1986). We extend that paper in several empirically

important directions: we propose tree-based extensions of the broader family of GAS

models (Creal et al., 2013; Harvey, 2013), which nests the GARCH model as a special

case; we consider a large collection of possible state variables rather than just a single

state variable; we propose forest-based GAS models, nesting tree-based models as a

special case; and we formally test for forecast improvements of the proposed models over

existing models and show that the improvements are indeed statistically significant.

Our work also relates to a broadly defined “local estimation” literature. Tibshirani

and Hastie (1987), Fan et al. (1998), Fan et al. (2009) and Oh and Patton (2023)

use kernel-based methods to localize (quasi-) maximum likelihood models. A more

recent strand of this literature includes Breiman (2001), Schlosser et al. (2019) and

Athey et al. (2019), who use decision trees and random forests to localize regressions,

parametric distributions, and GMM models respectively. Amongst these, most related

to our work is Oh and Patton (2023). That paper’s approach suffers from the curse

of dimensionality, due to its use of kernel-based methods, and it additionally requires

that all (or none) parameters of the baseline model are localized. In contrast, the

approach proposed in this paper can deal with a large number of state variables as

well as permitting only a subset of parameters to be localized, thereby allowing the

researcher to impose more or less structure on the model as needed.

The remainder of the paper is structured as follows. In Section 2 we review the class

of generalized autoregressive score models of Creal et al. (2013) and Harvey (2013) and

introduce our new GAS tree and GAS forest models. Section 2 also includes computa-
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tional details on the implementation of these models. Section 3 presents four empirical

analyses, applying the new methods to forecasting volatility, correlation, and univari-

ate and bivariate distributions. Section 4 concludes, and the supplemental appendix

presents details on the derivations for the third application and some additional tables

and figures.

2 GAS Trees and Forests

The class of generalized autoregressive score (GAS) models of Creal et al. (2013) and

Harvey (2013) provide a parsimonious and powerful way to capture time variation in

the parameter(s) of a given probability density function. We describe this model below,

and in Sections 2.2 and 2.3 we introduce tree- and forest-based extensions of this class

of models.

2.1 GAS models

Let the dependent variable be denoted yt ∈ RK . Conditional on the information set Ft,

this variable is assumed to have a parametric predictive density p, with d-dimensional

time-varying parameter ft, and potentially a static parameter ν. The GAS(p, q) model

specifies the evolution of ft as:

ft = ω +

q∑
j=1

Bjft−j +

p∑
i=1

Aist−i (1)

where st = St · ∇t

∇t =
∂ log p(yt; ft, ν)

∂f ′
t

St = Et−1[∇t∇′
t]
−1
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It is the appearance of the score, ∇t, in the evolution equation for ft that gives this

class of models its name.1 Similar to the well-known Newton-Raphson algorithm for

numerical optimization, at each date t, ft moves in the direction that most improves

the model fit.2

Let θ = (ω, vec(B1), ..., vec(Bq), vec(A1), ..., vec(Ap)) denote the vector of all GAS

parameters of this model, making (θ, ν) the full set of unknown parameters. Since GAS

models are “observation driven,” as opposed to “parameter-driven” (Cox, 1981), the

likelihood function is available in closed form, and (θ, ν) can be estimated by maximum

likelihood with low computational cost. This feature makes it feasible to consider tree-

and forest-based extensions of this class of models, which we introduce below.

2.2 GAS Trees

Regression trees (Breiman et al., 1984; Breiman et al., 2017) are a type of nonpara-

metric regression based on sequentially splitting the available data into partitions. The

partitions are formed using one or more state variables, Zt, and estimated threshold

value(s), c. Figure 1 illustrates a simple tree structure. The left panel shows a tree with

two state variables and specific thresholds, and the right panel shows the corresponding

partition of the support of state variables. This hypothetical tree has three “terminal

nodes” and implies a specific partition of the data, denoted P = {P1,P2,P3}. Given

a tree structure, a “regression tree” is obtained by estimating a linear regression sepa-

rately for each of the terminal nodes in the tree. In so doing, regression trees allow for

nonlinearities and multi-way interactions, greatly generalizing the baseline regression

model. Importantly, interpretability of the final model is retained: the functional form

1We follow Creal et al. (2011) and use the inverse information matrix to scale the score in all of our
applications, though other choices for this matrix are possible, such as the square root of this matrix, or
simply the identity matrix.

2Blasques et al. (2015) present conditions under which the update step is optimal, in the sense that the
GAS evolution equation minimizes the Kullback–Leibler distance between the true conditional density and
the model-implied conditional density.
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Figure 1: A decision tree example
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of the baseline model remains the same in each terminal node, but with parameters

that can differ. Naturally the flexibility of trees make them prone to overfitting the

training data, and therefore trees must be regularized, or “pruned.” We describe the

estimation and regularization methods we use for GAS trees and forests in Section 2.4.

We adapt the idea of regression trees for application to generalized autoregres-

sive score (GAS) models. For a given tree structure with J terminal nodes, P =

{P1, ...,PJ}, the GAS(1,1) tree is based on the evolution equation:

ft = ω(Zt) + β(Zt)ft−1 + α(Zt)st−1 (2)

where θ(Zt) =
J∑

j=1

θj1(Zt ∈ Pj)

where θj ≡ [ωj, βj, αj] are the GAS parameters for partition j, and st is as in equation

(1). By allowing the parameters of the GAS model to vary across partitions we greatly

increase the flexibility of this class of models to fit the data. Furthermore, by retaining

the GAS structure for each partition, we can more easily interpret how the tree struc-

ture improves the fit of the model, in contrast with more “black box” machine learning

algorithms.

The parameters of the predictive density that are assumed constant in the baseline
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GAS model, denoted ν above, can either be held constant across partitions or can be

allowed to vary.3 In our description below we impose they are fixed across partitions.

2.3 GAS Forests

“Random forests” (Breiman, 2001) are an extension of regression trees designed to

reduce the estimation error in predictions, while retaining the information contained

in the tree-based forecast, see Hastie et al. (2009) for example. Similar to bootstrap

aggregation, or “bagging,” a random forest is populated by trees that are each esti-

mated on a bootstrap sample of the original data. In addition, each tree uses only a

randomly-selected subset of the original state variables. The predictions from each of

these trees are then averaged to obtain the random forest forecast.

If we denote trees in the random forest as Pb for b = 1, ..., B, and the forecast from

each tree for a given value of the vector of state variables, Zt as f
(b)
t (Zt), obtained

using equation (2), then the GAS forest forecast is obtained simply as

ft(Zt) =
1

B

B∑
b=1

f
(b)
t (Zt) (3)

We next turn to the estimation of the tree structure used in GAS trees and forests.

2.4 Estimating GAS Trees and Forests

The estimation of a GAS tree requires finding the optimal state variables and thresh-

olds from the set of candidate variables, as well as estimating the parameters of the

GAS model. Finding the global optimum of this optimization problem is computation-

ally infeasible in even moderately-sized regression tree applications, and to reduce the

computational burden Breiman et al. (1984) proposed a greedy estimation algorithm

3In the kernel-based local M-estimation approach of Oh and Patton (2023) it is not possible to allow only
a subset of parameters to vary with the state variable(s); the framework adopted in that paper requires an
“all-or-nothing” assumption on parameter variation.
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that finds a near-optimal solution and converges quickly. The algorithm finds a state

variable and a threshold to locally minimize the prediction error at each splitting step,

continuing until a stopping criteria is satisfied. Further, standard regression tree esti-

mation involves estimating a regression separately for each terminal node in the tree,

but given the autoregressive nature of GAS models, this is not possible for our appli-

cation. We use the estimation algorithm of Audrino and Bühlmann (2001), adapting

it to the estimation of GAS tree models, and extending it to accommodate multiple

state variables and to estimate GAS forests. We describe the estimation algorithm in

detail below.

In the case that the number of terminal nodes is just one, there is no tree structure

and the original GAS model is estimated via maximum likelihood:

(θ̂T , ν̂T ) = argmax
θ,ν

1

T

T∑
t=1

log p(yt; ft(θ), ν) (4)

When the number of terminal nodes is greater than one, we use the following estimation

algorithm to estimate the tree structure. As illustrated in Figure 1, a tree structure is

equivalent to a particular partition of the sample, and we use the latter formulation in

estimation. Estimation of the GAS tree involves Steps 1–6 below, and the GAS forest

additionally uses Step 7.

Step 1: Denote the entire sample as the trivial partition P (0). Estimate the parameters

of the model as in equation (4), and denote these as (θ̂0, ν̂0). Set the tree depth

parameter, m, to zero.

Step 2: Define a new partition: P (m+1)
j,k = P (m)

−j ∪{P(m)
j,k,L,P

(m)
j,k,R} where P

(m)
−j = P (m)/Pj

contains all the partitions of P (m) except for the jth, and the jth partition is split into
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“left” and “right” subpartitions based on the kth state variable and a threshold c

P(m)
j,k,L = {Zt : Zt ∈ P(m)

j and Zt,k ≤ c} (5)

P(m)
j,k,R = {Zt : Zt ∈ P(m)

j and Zt,k > c}

Step 3: Estimate the parameters for the new subpartition, taking the parameters of

the other partitions, θ̂
(m)
−j , as fixed:

4

(θ̂
(m+1)
j,k,L , θ̂

(m+1)
j,k,R ) = argmax

θL,θR

1

T

T∑
t=1

log p(yt; ft(θ̂
(m)
−j , θL, θR), ν̂

(m)) (6)

and compute the log-likelihood value at estimated parameter values:

log p(y;P (m+1)
j,k ) =

1

T

T∑
t=1

log p(yt; ft(θ̂
(m)
−j , θ̂

(m+1)
j,k,L , θ̂

(m+1)
j,k,R ), ν̂(m)) (7)

Step 4: Maximize equation (7) over the partition j, state variable k, and threshold c.

Denote the optimized new partition as P (m+1).

Step 5: Estimate all of the model parameters using the partition P (m+1) and denote

these as θ̂(m+1).5

Step 6: Repeat steps 2-5 until the depth of the tree, m, reaches a prespecified maximum

value, M . The depth of the tree controls the model complexity, and we consider values

of M between one and six. Audrino and Bühlmann (2001) choose M using the AIC;

with the benefit of a quarter-century of advances in parallel computing, we instead

optimize this hyperparameter using a validation sample.

4Optimizing the split (Steps 3 and 4 above) is the most demanding part of the estimation algorithm. The
assumption that the parameters in the other partitions remain unchanged significantly reduces the computa-
tional burden, making estimation feasible. Similar ideas have been implemented in the literature, e.g. Athey
et al. (2019) uses a gradient approximation to avoid full re-estimation of all parameters.

5In steps 3 and 5, parameter estimation is done using nonlinear solvers available in Python’s Scipy package.
Following the warm start idea in the optimization literature, we use the estimates from the previous iteration,
θ̂(m), as starting values for optimization procedure to accelerate the algorithm.
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Step 7: For the GAS forest, repeat steps 2-6 for B = 200 trees.6 Each tree in the forest

uses bootstrap data obtained from a circular block bootstrap (see, e.g., Politis et al.,

1999), with block length of 100 observations, and a random selection of one-third of the

total state variables. One-third is a common choice in the machine learning literature,

see Hastie et al. (2009) for example. The forecasts from each of the bootstrap trees are

then averaged to obtain the GAS forest forecast.

All computations are done using the Duke Computing Cluster exploiting multiple

computing nodes. We parallelize the split optimization steps, and use the Numba

package to speed up the code. Estimating a single tree takes around five minutes with

forty CPUs. We apply fixed-window estimation all models: we estimate the model

parameters using the estimation sample and use those parameters to compute all out-

of-sample forecasts.

3 Forecast performance of GAS trees and GAS forests

We apply our new GAS tree and forest models in four out-of-sample forecasting analy-

ses. First, we consider forecasting S&P 500 return volatility using the GARCH model

of Bollerslev (1986), followed by predicting the entire conditional density of S&P 500

returns using the “t-GAS” model of Creal et al. (2013). In our third application we

consider a flexible model for the joint distribution of S&P 500 returns and 10-year

U.S. government bond returns, motivated in part by work on the switching sign of this

correlation, see Guidolin and Timmermann (2006) and Baele et al. (2010), using the

t-GAS copula to link t-GAS models for the marginal distributions, as in Janus et al.

(2014). Finally, we consider the “autoregressive conditional duration” model of En-

gle and Russell (1998), using high frequency transaction data on the exchange traded

fund tracking the S&P 500 index, the SPY. These four applications represent a range

6In preliminary analyses we obtained very similar results for B = 500.

12



of predictive environments, and we provide evidence of the merits of GAS trees and

forests in each of them.

In addition to the baseline GAS model for each application, we consider two other

benchmark models. The first is a low-dimensional GAS tree (“small GAS tree”), in

which we only consider the lag of the dependent variable(s) as a state variable. This

model is similar to that of Audrino and Bühlmann (2001), and comparing the GAS

tree and forest forecasts with this benchmark reveals the benefits of using a larger set

of state variables. The third benchmark model is the “distributional random forest”

of Schlosser et al. (2019). This model has no time series dynamics, but can provide a

flexible distributional fit through the forest structure.

As is common in the GAS literature, we compare all models in terms of one-step-

ahead predictive performance.7 For the volatility forecasting application, we use the

QLIKE loss function with realized volatility as the volatility proxy, see Patton (2011)

for details. For the remaining applications we use the negative log-likelihood, which

is a consistent scoring rule for density forecasts, see Gneiting and Raftery (2007). We

conduct Diebold and Mariano (1995) tests of equal predictive accuracy, using Newey

and West (1987) standard errors based on 10 lags.

3.1 Data description

We consider GAS trees and forests in four empirical applications. The first three of

these use daily data on S&P 500 index returns and 10-year U.S. government bond

returns from January 2000 to December 2021, a total of 5447 observations. Our fourth

application uses high frequency trade durations for the S&P 500 index tracker fund,

SPY, during the calendar year 2021, and has 5,100 observations. In all applications

7Multi-step-ahead predictive densities from GAS models, even without tree or forest extensions, are gen-
erally not available in closed form. Evaluating the log-score of such forecasts requires nonparametrically
estimating the multi-step-ahead predictive density using simulated data. We do not consider this extension
here.
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we split the sample into three sub-periods: an estimation sample (first 30% of observa-

tions), a validation sample to determine the optimal depths of the GAS tree and GAS

forest (next 30%), and a test sample for out-of-sample forecast comparisons (remaining

40%).

We consider ten state variables for use in the applications based on daily data,

and we add three high frequency state variables in the fourth application. We firstly

include the (lagged) return on the S&P 500 index and the 10-year U.S. government

bond (abbreviated as SPX and T10Y), to capture any nonlinearities omitted by the

GAS models. We next consider three measures of volatility: 5-min subsampled realized

volatility (RVOL) on the S&P 500 index (Liu et al., 2015), a one-month (backward-

looking) rolling average of RVOL (RVOLM), motivated by prominent HAR model of

Corsi (2009), and the VIX index, a measure of S&P 500 volatility extracted from op-

tion prices (Fleming et al., 1995; Blair et al., 2001). We then consider three measures

from the fixed income market: the federal funds rate (FFR), the difference between

10-year and 3-month bond yields (T10Y3M), representing the level and slope of the

yield curve, and the “default spread” (DEFS) defined as the difference between BAA

and AAA rate corporate bond yields (Keim and Stambaugh, 1986; Campbell, 1987;

Estrella and Mishkin, 1998). For our ninth state variable we include the economic pol-

icy uncertainty index (POLICY) proposed by Baker et al. (2016), based on newspaper

coverage. This index tracks important policy related events like the failure of Lehman

Brothers or presidential elections. We take a rolling monthly average of policy uncer-

tainty index to eliminate the noise in the data. Our tenth state variable is time, to

capture potential structural breaks, see for example Goulet Coulombe et al. (2022). In

our fourth application, we additionally consider three high-frequency state variables:

the first lag of duration, which can capture nonlinearities missed by the benchmark

model, the return on SPY over the last trade event period (HFRETURN), which can
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capture leverage-type effects, and the market liquidity of Amihud (2002), which can

gauge whether the ACD model parameters differ during periods of high versus low

liquidity.

We use the augmented Dickey-Fuller test (Dickey and Fuller, 1979) for each state

variable to test for the presence of a unit root. We fail to reject the null of a unit root

for the federal funds rate and the difference between 10 year and 3 month yield, and

we take the first difference of these two variables. To avoid look-ahead bias, we use a

one-period lag of the state variables when forming the tree and forest forecasts.

All of our data comes from the FRED database at the Federal Reserve Bank of

St. Louis, with the following exceptions: the realized volatility data comes from the

Oxford Realized Library; the high frequency data comes from the New York Stock

Exchange’s TAQ database; the 10 year bond return series is from Liu and Wu (2021);

and the policy uncertainty series is from Baker et al. (2016).8

3.2 Forecasting stock return volatility

The GARCH model of Bollerslev (1986) is widely used for forecasting asset return

volatility, and has been shown to be difficult to beat in a range of applications, see

Hansen and Lunde (2005). Assuming a zero conditional mean, the model is:

yt = σtϵt; ϵt ∼ iid N (0, 1)

σ2
t = ω + βσ2

t−1 + αy2t−1.
(8)

Creal et al. (2013) show that this model can be interpreted as a GAS model for the

scale parameter of the Normal distribution. Given this equivalence, the GAS tree and

forest models for this case can also be labeled GARCH tree and forest models. The

“distributional random forest” (DRF) of Schlosser et al. (2019) in this application sets

8The data for the latter two variables is available at https://sites.google.com/view/jingcynthiawu/

yield-data and www.policyuncertainty.com.
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Table 1: Out-of-sample performance of GARCH models. This table presents t-
statistics from Diebold-Mariano (1995) tests of out-of-sample forecast performance (top four
rows) and average out-of-sample QLIKE losses (bottom row). A negative t-statistic indicates
that the model in the column had lower average loss than the model in the row, while a posi-
tive t-statistic indicates the opposite. GARCH refers to the model of Bollerslev (1986). DRF
refers to the distributional random forest model of Schlosser et al. (2019). Small GARCH
Tree refers to the model of Audrino and Bühlmann (2001), and uses only the lagged return
as a state variable. The GARCH tree and forest models are described in Section 2.

Small GARCH GARCH
GARCH DRF GARCH Tree Tree Forest

DRF -1.470
Small GARCH Tree -2.547 -0.414
GARCH Tree -8.651 -5.577 -8.288
GARCH Forest -6.409 -3.429 -2.777 4.973

Avg loss 0.393 0.375 0.367 0.303 0.343

β = α = 0 and allows the intercept, ω to vary with the forest structure, while the

“small GAS tree” model of Audrino and Bühlmann (2001) uses a decision tree with

only yt−1 as a state variable. We compare forecasts from these three models with those

from the new GAS tree and GAS forest models introduced in Section 2 in Table 1.

We observe that each variant of tree-based GARCH model (small GAS tree, GAS

tree and GAS forest) significantly outperforms the benchmark GARCH model with t

statistics all less than −2.5. Moreover, the GARCH tree and forest models significantly

beat the DRF specification. Thus, in this first application, we find that tree-structured

models improve the out-of-sample forecast accuracy over simple GARCH, a conven-

tional econometrics model, and DRF, a machine learning tool. Table 1 also shows that

the “small GAS tree” of Audrino and Bühlmann (2001) is significantly outperformed

by the GAS tree, with a t-statistic of −8.3, revealing that variables beyond the lagged

return carry important information about future volatility.

Interestingly, and in contrast with both the econometrics and the machine learning
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Figure 2: The estimated GARCH tree model. This figure depicts the tree structure for
the GARCH model. The tree’s splits are based on SPX, RVOL and VIX, which refer to the
S&P 500 return, realized volatility, and the option-implied volatility index respectively.
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literatures which generally find ensemble methods tend to outperform forecasts from

individual models, we find that the GAS tree outperforms the GAS forest, with a t-

statistic of nearly five. We interpret this result by noting that random forests have

the potential to improve forecast accuracy through variance reduction at the cost of

increasing bias, see for example Hastie et al. (2009). In our case, the variance reduction

attained by the GAS forest cannot compensate the associated increased bias, leading

to less accurate forecasts.

To understand the source of forecast gains from the GAS tree model, Figure 2

presents the estimated tree structure. The optimal tree depth was found to be three,

with three different splitting variables. The algorithm first chooses the S&P 500 return

with a threshold value −0.16 (its 40th percentile) which approximately splits the sample

using positive and negative market returns, consistent with an asymmetric reaction

of future volatility to past returns, also known as a “leverage effect” (Black, 1976).

The second split in the tree is for positive returns and uses realized volatility with a
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threshold of 0.47 (10.9% in annualized standard deviation form), corresponding to the

45th percentile of RVOL (conditional on the first split), thus approximately splitting

positive return days into “high” and “low” volatility days. The third and final split is

for low volatility days and uses VIX with a threshold of 14.01, corresponding to its 45th

conditional percentile. Recalling that the “variance risk premium” (Carr and Wu, 2008;

Bollerslev et al., 2009) can be approximated as the difference between VIX2 and RVOL,

the four terminal nodes of the tree in Figure 2 can be interpreted, approximately,

as those associated with (1) negative returns, (2) positive returns and high realized

volatility, (3) positive returns, low realized volatility and low variance risk premium,

(4) positive returns, low realized volatility and high variance risk premium.9

3.3 Forecasting the distribution of future stock returns

We next consider the problem of forecasting the entire distribution of daily returns

on the S&P 500 index. Our baseline model is the t-GAS model introduced by Creal

et al. (2013), which captures both excess kurtosis, through the use of the Student’s

t distribution for the standardized residuals, and time-varying volatility, through the

GAS structure for the scale parameter. Assuming a zero conditional mean, the t-GAS

model is:

yt = σtϵt; ϵt ∼ iid t(v) (9)

σ2
t = ω + βσ2

t−1 + α(1 + 3v−1)

(
1 + v−1

1− 2v−1

{
1 +

v−1

1− 2v−1

y2t−1

σ2
t−1

}−1

y2t−1 − σ2
t−1

)

where ν is the degrees of freedom parameter for the t distribution. As in Creal et al.

(2013), ν is assumed constant, while σ2
t varies over time. The dynamics of σ2

t differs

from the familiar GARCH structure when ν < ∞, and simplifies to the GARCH model

when ν → ∞. The {·} term in equation (9) implies a more moderate reaction to a

9Employing a semi-structural regime switching model, Baele et al. (2010) also finds that variance risk
premium is an important economic factor in explaining stock return volatility.
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Table 2: Out-of-sample performance of t-GAS models. This table presents t-statistics
from Diebold-Mariano (1995) tests of out-of-sample forecast performance (top four rows)
and average out-of-sample negative log-likelihoods (bottom row). A negative t-statistic in-
dicates that the model in the column had lower average loss (i.e., a higher out-of-sample
log-likelihood) than the model in the row, while a positive t-statistic indicates the opposite.
t-GAS refers to the model of Creal et al. (2013). DRF refers to the distributional random
forest model of Schlosser et al. (2019). Small GAS Tree refers to a GAS tree that uses only
the lagged return as a state variable. The GAS tree and forest models are described in Section
2.

Small GAS GAS
t-GAS DRF GAS Tree Tree Forest

DRF -5.396
Small Tree -3.555 1.571
GAS Tree -6.517 -1.240 -4.924
GAS Forest -5.485 1.555 -1.048 2.755

Avg Loss 1.179 1.141 1.153 1.132 1.147

large past return than in the GARCH model, as large returns are more common under

the t distribution than the Normal distribution.

Table 2 presents comparisons of the t-GAS model with the distributional random

forest (DRF), the “small GAS tree” (which only uses the lagged return as a state

variable), and the GAS tree and forest models, both of which use all ten state variables

described in Section 3.1. The first column shows that the t-GAS model is significantly

out-performed by all four competing models, with Diebold-Mariano t-statistics less

than -3.5 in all cases. We also observe that the GAS tree significantly outperforms the

“small GAS tree” and also the GAS forest, with t-statistics around -5. The GAS tree

also outperforms the DRF forecast, but the difference is not statistically significant at

the 5% level.

Figure 3 shows the estimated t-GAS tree. Unlike the structure for the GARCH

tree in the previous section, this tree only has depth of two, but those first two levels

19



Figure 3: The estimated t-GAS tree model. This figure depicts the tree structure for
the t-GAS model. The tree’s splits are based on SPX and RVOL, which refer to the S&P
500 return and realized volatility respectively.
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are identical to those of the GARCH tree.10 The three terminal nodes of the tree have

roughly equal numbers of observations, and can be interpreted as (1) negative returns,

(2) positive returns and low realized volatility, (3) positive returns and high realized

volatility.

3.4 Forecasting the joint distribution of stock and bond returns

We now focus on forecasting the joint distribution of stock and bond returns, using the

S&P 500 index and 10-year Treasury bond for this purpose. We construct this model

by combining t-GAS models for the marginal distributions, as utilized in the previous

section, see equation (9), with a Student’s t copula, as in Janus et al. (2014). Copulas

are convenient tools for capturing the dependence between variables separately from the

marginal distributions of each of the variables; see Patton (2013) for a review of these

methods for economic time series. The use of a t copula allows for the possibility of tail

10We use a grid of 19 values, corresponding to the 0.05, 0.10, ..., 0.95 quantiles of the state variable, as
possible thresholds for each state variable, making our finding of identical threshold values less surprising.
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dependence, or “joint crashes and joint booms.” Although the marginal distributions

and the copula are all from the Student’s t family, this joint distribution is not bivariate

Student’s t distribution unless all three degrees-of-freedom parameters are identical;

instead, this joint distribution allows for varying degrees of fat tails in each marginal

distribution and the joint tails. The Student’s t copula with GAS dynamics for the

correlation parameter is:

ut ∼ CStudent(ρt, ν)

ρt =
exp {ρ̃t} − 1

exp {ρ̃t}+ 1
(10)

ρ̃t = ω + βρ̃t−1

+α

(
2

1− ρ2t

)(
1 + ρ2t

g + (2g − 1)ρ2t

)(
wt(x1,tx2,t − ρt)−

ρt
1 + ρ2t

(wtx
2
1,t + wtx

2
2,t − 2)

)

where xi,t ≡ F−1
Student(ui,t; νi) uses the inverse t CDF with degrees-of-freedom parameter

νi, and g and wt are scalars defined in Appendix S.1. As in Janus et al. (2014), we

impose that the correlation parameter, ρt lies in (−1, 1) for all t by specifying GAS

dynamics for the variable ρ̃t and then transforming that variable to ρt in equation

(10). As in the univariate t-GAS model, we impose that the copula degrees of freedom

parameter, ν is constant over time.

Table 3 shows the out-of-sample performance of competing models. We see that

the benchmark GAS model significantly beats the distributional random forest (DRF),

unlike in the two univariate applications, but it is beaten by both the “small tree” and

the GAS tree models. The best-performing model is the GAS forest, which significantly

outperforms the GAS model, with a t-statistic of -3.7. The GAS forest also significantly

beats the DRF, but does not significantly beat either of the tree models. Interestingly,

in this application the GAS tree reduces to the “small GAS tree” model, in that the

only state variables selected for use in the tree structure are lags of the stock and bond
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Table 3: Out-of-sample performance of t Copula GAS models. This table presents t-
statistics from Diebold-Mariano (1995) tests of out-of-sample forecast performance (top four
rows) and average out-of-sample negative log-likelihoods (bottom row). A negative t-statistic
indicates that the model in the column had lower average loss (i.e., a higher out-of-sample
log-likelihood) than the model in the row, while a positive t-statistic indicates the opposite.
GAS refers to the GAS-copula model of Janus et al. (2014). DRF refers to the distributional
random forest model of Schlosser et al. (2019). Small GAS Tree refers to a GAS tree that
uses only the lagged stock and bond returns as state variables. The GAS tree and forest
models are described in Section 2.

Small GAS GAS
GAS DRF GAS Tree Tree Forest

DRF 2.598
Small Tree -1.451 -2.811
GAS Tree -1.451 -2.811 —
GAS Forest -3.680 -4.092 -0.795 -0.795

Avg Loss -0.079 -0.063 -0.084 -0.084 -0.087

returns.

In contrast with the univariate applications, the best-performing model is the GAS

forest, not the GAS tree, and so we cannot present a tree diagram to better understand

the structure of the best model. In its place, we consider two methods for interpreting

the optimal model. Firstly, we conduct a leave-one-out analysis to measure the impor-

tance of each state variable. Specifically, we drop each state variable from the analysis,

one at a time, and re-compute the optimal GAS forest forecasts. We then compare the

average out-of-sample average loss from the original GAS forest and the GAS forest us-

ing one fewer state variable. If the difference is small, then the omitted state variable is

unimportant, while if the difference is positive, then the omitted variable is important

for forecast performance.11 We can use Diebold-Mariano tests to determine whether

11As this is an out-of-sample comparison of models, it is possible that the difference is negative, meaning
that the smaller GAS forest is preferred to the original GAS forest. With a large enough sample size, including
irrelevant state variables leads to no change, positive or negative, in out-of-sample loss, as such state variables
will never be selected. In finite samples, however, irrelevant state variables may be mistakenly included.
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Figure 4: Leave-one-out variable importance for the Student’s t copula GAS forest.
This figure plots the change in out-of-sample average negative log-likelihood between using
the original GAS forest and a GAS forest with a state variable (listed on the y-axis) omitted.
Positive values indicate a worsening of forecast performance, and thus that the omitted state
variable is an important component of the original model. The horizontal lines represent
95% confidence intervals for the difference in average log-likelihoods. The state variable
abbreviations are given in Section 3.1.
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the change in out-of-sample loss is statistically significant. Figure 4 presents the results

of this analysis, and shows that the most important state variable for the GAS forest

is the lagged bond return, T10Y, followed by the lagged stock market return, SPX.

Omitting either of these significantly (at the 5% level) deteriorates the GAS forest

forecasts. The slope of the term structure (T10Y3M) and the volatility index (VIX)

are also found to be important for the quality of GAS forest forecasts. Interestingly, we

observe a statistically significant improvement in forecast performance by omitting the

Federal funds rate (FFR) as a state variable, indicating that this variable is unhelpful

for out-of-sample forecasting, but is selected for inclusion in the forest often enough to

deteriorate the forecast.

We next analyze the impact of the most important state variable on the GAS forest

model by plotting the parameters of the GAS model (recall equation 1) as a function of
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Figure 5: Parameter estimates as a function of S&P 500 index returns (SPX)
for the Student’s t copula GAS forest. This figure plots the average, across bootstrap
samples, values of ω/(1 − β) (upper-left), β (upper-right), and α (lower-left) from the GAS
model in equation (10), as well as the average predicted correlation, ρt (lower-right) from
that model. The state variable is discretized into bins based on 1% quantiles. The values
for each of these quantities from the benchmark GAS model are plotted in horizontal dashed
lines. The solid lines are local quadratic polynomials fitted to the grey dots.
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the state variable.12 The parameters β and α are interpretable as the persistence and

reaction-to-news of the model. The intercept, ω is not directly interpretable, and we

instead plot ω/(1− β) which is interpretable as the long-run level of the GAS process.

As the GAS forest involves averaging 200 bootstrap samples, each based on a random

subset of state variables, we construct this plot by averaging the GAS parameters

within each 1% quantile of the state variable.

Figure 5 presents the results for the stock return as a state variable. The upper-

left panel shows that the long-run correlation peaks when the stock market return is

12Similar plots for the other variables found to be significant in Figure 4 are presented in Section S.2 of the
supplemental appendix.
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around zero, at about −0.35. It declines to about −0.45 as the stock return increases

to 2%, while it declines markedly to nearly −0.6 when the stock return is −2%. This

is interpretable as a “flight-to-quality” effect, with low stock market returns leading

to more negative comovements between the stock and bond markets. Figure S.1 in

the supplemental appendix plots the corresponding results with the bond return as the

state variable, and that figure is also consistent with a flight-to-quality effect.

The upper-right panel of Figure 5 shows that the persistence of the GAS model is

roughly unrelated to the stock market return. The lower-left panel shows that the GAS

model reacts about 20% more strongly to news when the stock market is down versus

up: the α parameter is 0.046 when stocks are down, while it is 0.038 when stocks are

up. This is consistent with investors paying closer attention to bad news than good

news, a finding similar to that of Patton and Sheppard (2015) in a different context.

The lower-right panel of Figure 5 shows the predicted correlation from the GAS for-

est as a function of the stock market return, and reveals an inverted U-shaped pattern,

though with substantial noise. Without an underlying model to guide interpretation,

one might be hesitant to draw too much from this panel. With the benefit of the GAS

structure underlying our forest forecast, we know that this shape is primarily coming

from the long-run level, ω/(1− β), in the upper-left panel, and that that relationship

is strong. This reveals an important benefit of combining machine learning tools with

economically motivated, and/or empirically successful, econometric models.

3.5 Forecasting market activity

Finally, we consider the problem of forecasting the time between consecutive trade

events, known as a “trade duration.”13 Trade durations are a measure of market

activity, and are important for high-frequency risk management and transaction cost

13A “trade event” could be a single transaction occurring, or a total of x transactions occuring, or a total
of $y value of transactions occuring, or a total of z shares being transacted, or some other event defined as a
function of characteristics of transactions.
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minimization. We take as our benchmark the “autoregressive conditional duration”

(ACD) model of Engle and Russell (1998). Denoting yt as the time (in minutes)

between consecutive trade events, the ACD model assumes an exponential distribution

for yt with a time-varying conditional mean, µt:

yt ∼ Exp(µt)

µt = ω + βµt−1 + αyt−1.
(11)

Creal et al. (2013) show that the ACD model is also a special case of a GAS model,

allowing us to consider it in our study of tree- and forest-based extensions of GAS

models. See Bauwens and Hautsch (2009) for a review of ACD and related models.

For our empirical analysis in this section, we use high-frequency data on SPY,

an exchange traded fund tracking the S&P 500 index, between January 1st 2021 and

December 31st 2021. We study the time taken for 10,000 shares of SPY to be transacted,

leading to 5,100 durations during this sample period, and corresponding to an average

duration of 14.9 minutes.

Table 4 presents the out-of-sample forecast performance of the baseline ACD model

as well as the competing models considered in previous sections: the distributional

random forest (DRF), the ACD tree using only lagged durations as a state variable

(Small ACD tree), the ACD using all 13 state variables, and the ACD forest model.

We firstly observe that the DRF model for durations, which is pure machine learning

tool, is beaten by all other models including the benchmark with t-statistics all less

than −2.4.

The baseline ACD model has higher loss in the out-of-sample compared with to tree-

and forest-based extensions. Interestingly, the “small ACD tree” model, which only

uses lagged duration as a state variable, significantly beats the baseline ACD model,

while the “ACD tree” model, which considers 13 state variables including lagged dura-
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Table 4: Out-of-sample performance of ACD models. This table presents t-statistics
from Diebold-Mariano (1995) tests of out-of-sample forecast performance (top four rows)
and average out-of-sample negative log-likelihoods (bottom row). A negative t-statistic in-
dicates that the model in the column had lower average loss (i.e., a higher out-of-sample
log-likelihood) than the model in the row, while a positive t-statistic indicates the opposite.
ACD refers to the model of Engle and Russell (1998). DRF refers to the distributional ran-
dom forest model of Schlosser et al. (2019). Small ACD Tree refers to an ACD tree that uses
only the lagged duration as a state variable. The ACD tree and forest models are described
in Section 2.

Small ACD ACD
ACD DRF ACD Tree Tree Forest

DRF 6.170
Small ACD Tree -2.448 -5.778
ACD Tree -1.004 -3.988 -0.458
ACD Forest -2.293 -9.358 -0.830 0.083

Avg Loss 7.412 7.494 7.398 7.388 7.389

tion, does not significantly beat the baseline model. This reveals the value in imposing

some structure (namely, reducing the number of potential state variables) on the tree-

based extension in this application. The “ACD forest” model significantly beats the

baseline ACD model, revealing the forecast gains available from averaging forecasts

from randomly formed trees, consistent with Breiman (2001) in a linear regression

setting.

To understand how forecast accuracy is improved in the ACD forest model, we

calculate the variable importance measure for each of the state variables, introduced in

the previous section, and present the results in Figure 6. The horizontal bars show the

increase in average loss function from omitting a state variable, and a positive value

indicates that that state variable is important for forecasting. The lines refer to 95%

confidence intervals computed from Diebold-Mariano tests. We find that the volatility

variables RVOL and VIX are two most important state variables, despite the fact
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Figure 6: Leave-one-out variable importance for the ACD forest. This figure plots
the change in out-of-sample average negative log-likelihood between using the original ACD
forest and a ACD forest with a state variable (listed on the y-axis) omitted. Positive values
indicate a worsening of forecast performance, and thus that the omitted state variable is an
important component of the original model. The horizontal lines represent 95% confidence
intervals for the difference in average log-likelihoods.
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that these are measured only daily, and so are constant within a trade day. The next

two most important state variables are both high-frequency variables: Amihud (2002)

liquidity, and duration. Interestingly, we find that omitting default spread and time

from the set of potential state variables actually improves forecast accuracy, indicating

these are harmful when used in a forest-based ACD model.14

In Figure 7 we plot the parameters of the forest ACD model as a function of the most

important state variable, realized volatility (RVOL). We see that the long-run average

duration implied by the model is highest when volatility is low, at around 23 minutes,

and it steeply declines as volatility increases to about 10%, at around 19 minutes.

Persistence, measured by α+β in the ACD model, is lowest when volatility is low, and

it increases sharply with volatility to around 10% and is approximately flat beyond

14Figure S.4 in the supplemental appendix presents the optimal tree structure for the ACD tree. We find
three terminal nodes in this structure, all reflecting the direction of the stock and bond markets. We find one
state when the stock market is up (representing 55% of the sample), another when the stock market is down
and the bond market is not strongly up (representing 92% of the remaining sample), and a small third state
when the stock market is down and the bond market is strongly up (representing just 3% of the total sample).
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Figure 7: Parameter estimates as a function of realized volatility (RVOL) for the
ACD forest model. This figure plots the average, across bootstrap samples, values of
ω/(1 − α − β) (upper-left), α + β (upper-right), and α (lower-left) from the ACD model in
equation (11), as well as the average predicted duraction, µt (lower-right) from that model.
The state variable is discretized into bins based on 1% quantiles. The values for each of these
quantities from the benchmark ACD model are plotted in horizontal dashed lines. The solid
lines are local quadratic polynomials fitted to the grey dots.
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that. The parameter governing the reaction of the model to news, α, is essentially flat

as a function of volatility. The pattern for the forecasts from the ACD forest model,

in the lower-right panel, shows that predicted durations are around 12 minutes when

volatility is above 10%, while they are around double that when volatility is low. This

is consistent with the positive volume-volatility relationship (see, e.g., Tauchen and

Pitts, 1983; Karpoff, 1987): volume and durations are negatively correlated (longer

durations correspond to lower volumes, and vice versa) and so in periods of lower

volatility average trade durations tend to be longer.
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4 Conclusion

Since its publication a decade ago, the class of generalized autoregressive score (GAS)

models of Creal et al. (2013) and Harvey (2013) has proven to be a popular, par-

simonious way to capture time variation in the parameter(s) of a given model. Its

parsimonious nature, however, means that some important exogenous information or

nonlinearities may be neglected, and the best way to incorporate such additional fea-

tures is difficult to determine ex ante. We propose adapting methods from machine

learning to search across a wide range of exogeneous variables and capture various forms

of nonlinearity: the “GAS tree” combines the parsimonious structure of the GAS model

with the flexibility of decision trees (Breiman et al., 1984, 2017), and the “GAS for-

est,” analogous to the random forests of Breiman (2001), averages the forecasts from

many GAS trees each produced on a bootstrap sample of the original data. Our GAS

tree and GAS forest models can be applied whenever a GAS model is considered, and

require from the researcher only a set of exogenous variables that are thought to be

possibly useful for forecasting the target variable.

We apply the proposed GAS tree and GAS forest models in four diverse applica-

tions: forecasting stock return volatility, the distribution of stock returns, the joint

distribution of stock and bond returns, and high-frequency trade durations. We find

that the proposed extensions lead to significantly improved forecasts in all four appli-

cations. We moreover uncover economic explanations for the sources of these forecast

gains. Through inspections of the optimal GAS tree structures, and variable impor-

tance and parameter sensitivity analyses for GAS forest forecasts, we find that the

best-performing GAS tree and forest models are those that incorporate well-known

empirical regularities, such as the leverage effect in volatility, the flight-to-quality effect

in stock-bond correlations, and the volume-volatility relationship in trade durations.

Faced with evolving data generating processes and the resulting “small” data sets,
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the success of machine learning methods in economics and finance relies on good,

parsimonious benchmark models as reference points, an observation made nicely in

Israel et al. (2020). We used GAS models for this purpose; future work may consider

augmenting a different class of forecasting models with machine learning methods.
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