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a b s t r a c t

This paper proposes a dynamic multi-factor copula for use in high-dimensional time
series applications. A novel feature of our model is that the assignment of individual
variables to groups is estimated from the data, rather than being pre-assigned using
SIC industry codes, market capitalization ranks, or other ad hoc methods. We adapt the
k-means clustering algorithm for use in our application and show that it has excellent
finite-sample properties. Applying the new model to returns on 110 US equities, we find
around 20 clusters to be optimal. In out-of-sample forecasts, we find that a model with
as few as five estimated clusters significantly outperforms an otherwise identical model
with 21 clusters formed using two-digit SIC codes.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Models for the dependence structure of a large collection of variables play an important role in risk management and
egulation, yet there is a relative paucity of such models. A key impediment is that these models need to be parsimonious
nough to deal with the inevitable curse of dimensionality that arises in high-dimensional applications, yet flexible enough
o capture the time-varying and potentially asymmetric nature of the dependence between economic variables.

We propose a multi-factor, high-dimensional, copula model where the assignment of individual variables to groups or
lusters is estimated from the data. Existing approaches for similar problems (see Creal and Tsay, 2015; Bester and Hansen,
016; Opschoor et al., 2021, for example) use pre-specified cluster assignments, based on SIC industry codes, or market
apitalization deciles, or similar. In the absence of a computationally feasible data-driven alternative such approaches
re reasonable, however it is not obvious that such assignments are optimal empirically. We propose a method based
n k-means clustering (see, e.g., Hastie et al., 2009) to estimate the optimal assignments of variables to clusters, and we
odel dynamics in the conditional copula using a “generalized autoregressive score” (GAS) model (Creal et al., 2013;
arvey, 2013).
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The estimation of the optimal cluster assignments for a high-dimensional dynamic copula model requires us to
overcome two computational hurdles. Firstly, rather than the simulation-based factor copula model of Oh and Patton
(2017), we adopt and extend the model of Opschoor et al. (2021), which has a closed-form likelihood and is thus much
faster to estimate. Our extension enables us to capture asymmetric dependencies which can be important for equity
returns, see Ang and Chen (2002), Hong et al. (2007) and Patton (2013) amongst many others. Secondly, we exploit
the fact that the presence of clusters in the dynamic model implies the presence of clusters in the (misspecified) static
version of the model. The static version of the model is naturally much faster to estimate than the dynamic version. These
two techniques, combined with extensive use of parallel processing, make the estimation of optimal cluster assignments
feasible.

We prove the consistency of the estimated cluster assignments under very mild conditions, and we find in realistically-
designed simulations that our estimation method is remarkably accurate. We apply the new model to daily returns on
110 U.S. equities over the period 2010–2019, and consider a range of choices for the number of clusters in the model.
We find that the BIC-optimal number of clusters is around 20, and moreover find that a model with just five estimated
lusters outperforms an otherwise identical model based on 21 clusters formed using two-digit SIC groupings. In out-of-
ample forecast comparisons, we find that the model with estimated cluster assignments significantly outperforms one
ith clusters formed using two-digit SIC codes.
This paper bridges two lines in the extant literature. Most directly, this paper is related to the literature on high-

imensional methods for financial risk measurement. Early work focused on improved methods for estimating large
ovariance matrices. For example, Fan et al. (2008, 2013) propose using a factor model where the number of factors grows
ith the number of variables, with the latter of these papers also accommodating approximate factor models. Tao et al.
2011) consider high-dimensional covariance matrix estimation based on a combination of high- and low-frequency data,
lso using a factor model. Hautsch et al. (2012) propose a method to estimate covariance matrices using high frequency
ata from assets with varying degrees of liquidity. More recent work in this area has included a focus on copula-based
odels, such as Creal and Tsay (2015) who proposed a high-dimensional stochastic copula with a factor structure, and Oh
nd Patton (2018) and Opschoor et al. (2021) who consider factor copulas with dynamics driven by a GAS specification.
hristoffersen et al. (2018) propose a high-dimensional dynamic copula model with DCC (Engle, 2002) type dynamics. As
ar as we know, our paper is the first to consider a high-dimensional copula model with estimated group assignments.

This paper is also related to the fast-growing area of clustering and classification methods in economics and finance.
in and Ng (2012) and Bonhomme and Manresa (2015) consider linear panel models with unknown group assignments
hich are estimated using k-means clustering. Su et al. (2016, 2019) consider panel models with group assignments
stimated using a new type of LASSO estimator. The latter of these papers allows the parameters of the panel model
o vary nonparametrically with time. Vogt and Linton (2020) also consider nonparametric regression for a panel of data
ith unknown group assignments. Francis et al. (2017) cluster countries by their business cycle patterns, and Patton and
eller (2022) consider clustering stocks by the risk premia they generate. This research area is very active and this review

s surely incomplete already.
The remainder of the paper is structured as follows. In Section 2 we present the dynamic copula models considered in

his paper, and in Section 3 we discuss how we can optimally assign variables to clusters. Section 4 presents the results of
simulation study of the finite-sample performance of the proposed model and estimation method. Section 5 applies the
ew methods to a collection of 110 stock returns. Section 6 concludes, and the Appendix A contains proofs and technical
etails. A web appendix contains additional analyses and material.

. A dynamic skewed t factor copula model

A copula is an N-dimensional distribution function with Unif (0, 1) margins, and even when N is only moderately-
sized the curse of dimensionality arises. A common approach to overcome this in other contexts is to impose some sort
of factor structure, and recent work on high-dimensional copula models has moved in this direction, see Oh and Patton
(2017, 2018), Creal and Tsay (2015) and Opschoor et al. (2021). An attractive feature of the latter two papers is that the
copula likelihood is available in closed form. Motivated by previous work showing that equity returns exhibit asymmetric
dependence (see, e.g., Ang and Chen, 2002; Hong et al., 2007; Patton, 2013), we consider an extension of the model
proposed by Opschoor et al. (2021) to allow for asymmetric dependence, namely a skewed t factor copula:

ui,t = Tskew
(
xi,t; ν, ζ

)
, i = 1, . . . ,N, (1)

xi,t =

√
Wt

(̃
λ

′

i,tzt + σi,tϵi,t

)
+ ζWt , (2)

where zt ∼ iid N (0, Ik) , ϵi,t ∼ iid N (0, 1) , (3)

Wt ∼ iid IG
(ν
2
,
ν

2

)
, Wt⊥zt⊥ϵi,t (4)

where Tskew (·; ν, ζ ) denotes the univariate skewed t CDF of xi,t , with degrees of freedom parameter ν ∈ (2,∞] and
asymmetry parameter ζ ∈ [−1, 1].1 λ̃i,t is a vector of scaled factor loadings, zt is a vector of common latent factors and

1 Creal and Tsay (2015) describe this copula but do not implement it or present results on its likelihood and scores. As that paper notes, when
ζ ̸= 0 the function T ·; ν, ζ is not available in closed form, and Creal and Tsay (2015) omit it from their analysis. The presence of this parameter
skew ( )
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i,t is an idiosyncratic shock, both Normally distributed, and Wt is an inverse gamma variable. We define the vector λ̃i,t
and scalar σi,t as

λ̃i,t =
λi,t√

1 + λ′

i,tλi,t

, σ 2
i,t =

1
1 + λ′

i,tλi,t
(5)

for a factor loading λi,t to maintain the unit variance of λ̃′

i,tzt + σi,tϵi,t . The skewed t copula nests the Student’s t copula
when ζ = 0, and the Gaussian copula when ζ = 0 and ν → ∞. Given this structure, and since each element of the vector[̃
λ

′

1,tzt + σ1,tϵ1,t , . . . , λ̃
′

N,tzt + σN,tϵN,t

]
has unit variance, its covariance matrix is a correlation matrix, Rt , with the form:

Rt = L̃′

t̃Lt + Dt (6)

where L̃t =
[̃
λ1,t , . . . , λ̃N,t

]
and Dt = diag

(
σ 2
1,t , . . . , σ

2
N,t

)
. The skewed t copula then contains time-varying factor loadings[

λ′

1,t , . . . ,λ
′

N,t

]
and static shape parameters (ν, ζ ). Creal and Tsay (2015) show that a factor copula structure of the sort

in Eq. (2) facilitates the evaluation of the copula density even for high dimensions since the inverse and determinant of
Rt are available in closed form and require only lower-dimension inversions and determinant calculations:

R−1
t = D−1

t − D−1
t L̃′

t

(
Ik + L̃tD−1

t L̃′

t

)−1 L̃tD−1
t

|Rt | =
⏐⏐Ik + L̃tD−1

t L̃′

t

⏐⏐ · |Dt | .

We consider a factor structure determined by a (G + 1) vector zt of common latent factors and a loading matrix
Lt . Specifically, we allow for one common factor, shared by all variables, and G cluster-specific factors, shared only by
members of that cluster.2 For example, assuming there are G groups and each group has only two members, zt and L̃t
are determined by:

zt ∼ N (0, IG+1)

L̃′

t =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ̃M1,t λ̃C1,t 0 0 · · · 0

λ̃M2,t 0 λ̃C2,t 0 · · · 0

λ̃M3,t 0 0 λ̃C3,t 0 0
...

...
... 0

. . . 0
λ̃MG,t 0 0 0 0 λ̃CG,t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⊗

(
1
1

)
(7)

where ⊗ denotes the Kronecker product. Note that the loadings on the common factor and the cluster-specific factor
can only be separately identified if each group has at least two members; we impose this condition when estimating the
model.

Next, we formulate the dynamics of 2G distinct factor loadings based on the generalized autoregressive score model
proposed by Creal et al. (2013) and Harvey (2013). Specifically, we model those dynamics by:

λMg,t+1 = ωM
g + αM ∂ log cSkewt,t (xt;Rt , ν, ζ )

∂λMg,t
+ βMλMg,t , for g = 1, . . . ,G (8)

λCg,t+1 = ωC
g + αC ∂ log cSkewt,t (xt;Rt , ν, ζ )

∂λCg,t
+ βCλCg,t , for g = 1, . . . ,G

where xt = T−1
skew (ut; ν, ζ ), cSkewt,t (·;Rt , ν, ζ ) is the conditional skewed t copula density and

[
ωM

1 , . . . , ω
M
G , ω

C
1 , . . . ,

ωC
G, α

M , βM , αC , βC
]′ is the vector of parameters determining the dynamics of time varying factor loadings.3 Obviously

the key component is the score of the conditional copula ∂ log cSkewt,t (xt;Rt , ν, ζ ) /∂ηt where ηt is a (2G × 1) vector of
all dynamic factor loadings:

ηt =
[
λM1,t , . . . , λ

M
G,t , λ

C
1,t , . . . , λ

C
G,t

]′
. (9)

The skewed t copula density and the analytical derivation of its score are given in Appendices A.1 and A.2. respectively.
While our model has factor loadings that vary across time, we assume that the group assignments are stable.

Custodio João et al. (2022) and Lumsdaine et al. (2022) consider models with time-varying group assignments, and
generalizing our framework to allow this is an interesting extension for future research.

raises no theoretical difficulties, only a computational one. In Appendix A.1 we describe a simple and computationally tractable method to overcome
this difficulty, making the likelihood of this copula quasi-closed form (up to a simple one-dimensional numerical integral).
2 This corresponds to the “multi-factor” (MF) model in Opschoor et al. (2021), which is the second-most flexible factor structure considered in

that paper. The more flexible “lower-triangular MF” model is less amenable to the estimation of group assignments, which is the key focus of this
paper, and we do not consider that structure here.
3 As in Opschoor et al. (2021) and Oh and Patton (2018), we use a unit scaling of the score in Eq. (8), rather than the inverse Hession or its

square-root, to reduce the computational burden of estimating the model.
3
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. Clustering and factor copulas

.1. Clustering via a misspecified model

While the closed-form density and GAS equations presented in Eq. (8) greatly reduce the computational burden of
stimating a dynamic high-dimensional copula model, this model is still too costly to use when combined with an EM
lgorithm to estimate group assignments from the data. In this section we show that the structure of our model is such
hat we can estimate group assignments based on a simpler, misspecified, model, overcoming this hurdle.

Firstly, consider a static skew t factor copula. The factor loading vectors (λi) obey a cluster structure, in that all
ariables in the same cluster have the same loading vector. From Eq. (5) above, given the factor loadings we can obtain
he normalized loadings and idiosyncratic variances, λ̃i,t and σ 2

i,t , and from those we obtain the correlation matrix:

R = L̃′̃L + D

here L̃ =
[̃
λ1, . . . , λ̃N

]
and D = diag

(
σ 2
1 , . . . , σ

2
N

)
. The cluster structure embedded in λi implies that R exhibits a block

structure, which, as discussed above, can be used to speed up matrix inverse and determinant calculations. Further, we
note that the block structure in R holds regardless of the shape parameters (ν, ζ ). Thus a Normal factor copula, where the
shape parameters are incorrectly fixed at (ν, ζ ) = (∞, 0) will exhibit the same cluster structure as the more complicated
skew t factor copula. This means that the cluster assignments implied by the Normal factor copula are identical to the
skew t factor copula, permitting us to use the simpler model to estimate cluster assignments, with the usual caveat that
these estimates are likely less precise than those based on the true model.

Next consider a time-varying skew t factor copula. In this case the time-varying correlation matrix Rt = L̃′
t̃Lt +Dt obeys

a block structure, and while the values taken by the elements of Rt vary over time, the block structure is constant due
to the maintained assumption that group assignments are stable. The conditional marginal copula of any pair

(
ui,t , uj,t

)
is determined completely by

(
Ri,j,t , ν, ζ

)
, and any pair of variables (i, j) belonging to groups (g1, g2) will have the same

distribution as any other pair
(
i′, j′

)
belonging to the same two groups. The unconditional marginal copula is just an

integral of the conditional marginal copula, and so the unconditional rank correlation matrix, ¯ϱ ≡Corr [ut ] , exhibits the
same cluster structure as the conditional correlation matrix Rt , opening up the possibility of using a constant Normal
factor copula to estimate group assignments for a dynamic skew t factor copula.

One complication arises when using a static copula to determine group assignments for a dynamic DGP: since we are
taking time series averages, it is possible that the unconditional rank correlation matrix ϱ̄ is more homogeneous than the
conditional correlation matrix Rt , making it harder to identify group assignments. That is, clusters may not be as well
separated in the approximating model as in the true model. The concept of “well separatedness” is a finite-sample issue,
and we examine it in detail in our simulation study. To preview our findings, our simulations indicate that this is not a
significant concern here.

3.2. Estimation of cluster assignments and copula parameters

The main advantage of using a factor copula comes from the dimension reduction enabled by classifying variables into
a relatively small number of clusters and assuming identical factor loadings within each cluster. In the existing literature,
variables are clustered according to observable characteristics, such as SIC industry classifications. Given those cluster
assignments, the factor copula can be estimated via maximum likelihood under standard conditions, however, the ex ante
assignments of variables to clusters may not provide the best fit to the data.

We propose an iterative method which estimates cluster assignments, and copula parameters, directly from the
data, exploiting an expectation–maximization (EM) algorithm. This algorithm cycles between (1) estimating copula
parameters given cluster assignments and (2) estimating cluster assignments given the estimated copula parameters.
Let Γ = [γ1, . . . , γN ] where γi ∈ {1, . . . ,G} for i = 1, . . . .,N , denote the vector of cluster assignments, and let
θ =

[
λM1 , . . . , λ

M
G , λ

C
1 , . . . , λ

C
G

]
be the vector of market and cluster-specific factor loadings used to obtain the correlation

matrix parameter for the static Gaussian factor copula, with log-likelihood denoted log c (·). Given an estimate of the
cluster assignment vector, Γ̂ (s) the log-likelihood of the copula model is maximized over the copula parameters θ to
yield:

θ̂
(s+1)

= argmax
θ

Q̂T

(
θ,Γ̂ (s)

)
(10)

where Q̂T (θ,Γ ) ≡

T∑
t=1

log c (ut; θ,Γ ) (11)

Then, given copula parameter θ̂
(s+1)

, the log-likelihood is maximized over cluster assignments γi for i = 1, . . . ,N:

γ̂
(s+1)
i = arg max

g∈{1,...,G}

Q̂T

(
θ̂
(s+1)

, Γ̃
(s)
i,g

)
(12)

˜ (s) ˆ (s)
where Γi,g is equal to Γ except that the ith element is set equal to g .

4
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The copula parameter in Eq. (10) is estimated through a typical gradient-based optimization. We update each variable’s
cluster assignment (Eq. (12)) by re-optimizing the cluster assignments one variable at a time, motivated by the method
underlying k-means clustering. This latter step requires only G × N likelihood evaluations, making cluster assignment
stimation feasible and fast.4 The iteration between Eqs. (10) and (12) continues until convergence. Convergence to a
ocal optimum is guaranteed, and we use 10 randomly-chosen starting values to improve the accuracy of the estimator.
ur simulation study below confirms this to be a sufficient number of starting values. Denote the resulting estimates as
θ̂T , Γ̂T

)
.

We next provide conditions under which the estimated cluster assignments, Γ̂T , are consistent for the true cluster
ssignments, Γ0. This is a non-standard estimation problem as the parameter Γ0 is discrete: each of its N elements can

take one of only G values. Let G denote the parameter space for Γ .5 Since the labels attached to clusters are arbitrary
(i.e., the objective function is invariant to relabeling the clusters), there is a set of correct cluster labels, rather than just
a singleton; let G0 denote this set. To state the assumptions we define the following:

θ̃
∗

(Γ ) = argmin
θ∈Θ

E [log c (ut; θ,Γ )] (13)

θ∗
= argmin

θ∈Θ
E [log c (ut; θ,Γ0)] (14)

Note that the parameter θ∗ is a pseudo-true parameter: it is the optimal parameter for the misspecified static Gaussian
copula model. We obtain this parameter as a by-product of estimating the cluster assignments, but we have no subsequent
use for it.

Assumption 1. {ut} is a stationary ergodic sequence.

Assumption 2. For each Γ ∈ G, (a) |log c (ut; θ,Γ )|1 < ∞ ∀ θ ∈ Θ , (b)
∇θ log c

(
ut; θ̃

∗

(Γ ) ,Γ

)
1
< ∞, and (c)

∥∇θθ log c (ut; θ,Γ )∥1 < ∞ ∀ θ ∈ Θ .

Assumption 3. (a) For each Γ ∈ G, lim supT→∞

[
Q̂T

(
θ̃

∗

(Γ ) ,Γ

)
− Q̂T (θ,Γ )

]
> 0 ∀ θ ∈ Θ\ηT (ε), where ηT (ε) is an

ε-neighborhood of θ̃
∗

(Γ ), and (b) lim supT→∞

[
Q̂T
(
θ∗,Γ0

)
− Q̂T (θ,Γ )

]
> 0 ∀ (θ,Γ) ∈ {Θ \ ηT (ε)} × {G\G0}.

Assumption 1 allows for general forms of serial dependence in the data (e.g., mixing). Importantly, given that we expect
the static Gaussian copula model to be misspecified, it does not require correct specification of the conditional copula.
Assumption 2, combined with Assumption 1, ensures that the log-likelihood and its first and second derivatives each
obey a law of large numbers. Assumption 3 is a standard “identifiable uniqueness” assumption required for estimation,
see Definition 3.3 of White (1994). In our application, it requires that the clusters are “well separated.” If the clusters are
too close together, then identification of the clusters breaks down. A similar assumption is made in, e.g., Hahn and Moon
(2010) and Bonhomme and Manresa (2015). The proof of the following theorem is in Appendix A.4.

Theorem 1. Under Assumptions 1–3 we have Pr
[
Γ̂T ∈ G0

]
→ 1 as T → ∞.

Results from related contexts suggest that if the series {ut} generated by Eq. (1) satisfies certain mixing properties,
a large deviations principle may be applied (e.g., see Hahn and Moon, 2010; Choirat and Seri, 2012; Bonhomme and
Manresa, 2015). This enables obtaining a rate result, refining the consistency result in Theorem 1. Specifically, estimated
cluster assignments have been shown in some applications to be superconsistent, with estimation errors taking the form:

Pr
[
Γ̂T /∈ G0

]
≤ C1 exp {−C2T κ} (15)

for some constants C1, C2, κ > 0.6 The simulation results presented in the next section reveal that cluster assignments are
indeed estimated extremely well, in line with a superconsistent rate of convergence, though, unfortunately, general results
on the mixing properties of GAS processes are not yet available in the literature, and so we do not pursue a theoretical
result of this nature here.7 A result of the form in Eq. (15) implies that estimation error in estimated cluster assignments

4 Other estimation algorithms for k-means type problems have been proposed in the computer science/machine learning literature. Given the
ery good finite-sample performance we find for the algorithm described here, when a sufficient number of starting values is used, we did not
onsider any alternatives.
5 Recall that for identification of our model we require all clusters to have at least two members. We restrict G to impose this condition.
6 For example, Hahn and Moon (2010) provide conditions under which alpha mixing implies κ = 1/2, and phi mixing implies κ = 1. The constants

1, C2 vary with the specifics of the application.
7 Related to the GAS context considered here, Carrasco and Chen (2002) and Hafner and Preminger (2009) show that univariate and multivariate
ARCH processes, respectively, are beta mixing. Some results on the stationarity and ergodicity of univariate GAS processes are presented in Blasques
t al. (2014).
5
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anishes faster than the usual
√
T rate, and standard errors on the remaining model parameters can be computed as

though group assignments were known. If errors in estimated group assignments are of the same asymptotic order as
those in the remaining model parameters, then standard errors on the remaining parameters need to be adjusted.8 The
rimary research questions of this paper do not require us to take a stand on the rate of convergence of the estimated
roup assignments.
With the estimated the cluster assignments Γ̂T in hand, we estimate the parameters of the skewed t copula with GAS

ynamics:

ψ̂T = argmax
ψ

T∑
t=1

log cSkewt,t

(
ut;ψ|Γ̂T

)
here ψ =

[
ωM

1 , . . . , ω
M
G , ω

C
1 , . . . , ω

C
G, α

M , βM , αC , βC , ν, ζ
]′. As the parameter ψ is large, we adopt a “variance targeting”

pproach to separately estimate the intercept parameters
[
ωM

1 , . . . , ω
C
G

]
, leaving us with only six parameters that require

ifficult numerical optimization. Details on this method are described in Appendix A.3. Once ψ̂T is obtained, the time
eries of factor loadings, λt , can be computed using Eq. (8).

. Simulation study

We investigate the finite-sample performance of the estimation method proposed above in a simulation study designed
o match the key features of our empirical application below. We consider a sample size of T = 1000 and a collection
f N = 100 variables, and three different factor copulas: a Gaussian factor copula, a t factor copula, and a skew t factor
opula, corresponding to [ν, ζ ] = [∞, 0] , [5, 0] , [5,−0.1] respectively. For illustration, a sample of bivariate data from
hese three copulas, as well as a skew Normal copula which we omit from the simulation study, is presented in Fig. 1. In all
ases the linear correlation is 0.5, and to aid the interpretation we transform draws from these copulas using the inverse
ormal CDF, and so these four distributions all have N (0, 1) marginal distributions. In the upper-left panel of Fig. 1,
e see the familiar bivariate Normal distribution, with low dependence in the tails and displaying radial symmetry. The
pper-right panel displays the Student’s t copula, which is also radially symmetric but exhibits tail dependence, which
anifests in this figure as realizations that lie close to the main diagonal in the upper and lower joint tails. The lower two
anels present asymmetric copulas, with dependence being stronger in the lower tail than the upper tail, particularly for
he skew t copula which exhibits non-zero tail dependence.

We consider two cases for the dynamics of the copula: the benchmark static case, in which the conditional copula
s constant, and the case of empirical interest, where the parameters of the copula evolve according to the GAS model
ntroduced in Section 2. We set the number of clusters, G, to be 10 or 20, with an equal number of variables allocated to
ach cluster. In the static case, we assume that the loadings across groups on the market factor range from 0.25 to 2.50 in
ncrements of 0.25, while the loadings on the group specific factors range from 2.5 to 0.25 in increments of −0.25. This
mplies that some groups are more influenced by the common market factor than their group factor, while the reverse is
rue for other groups, roughly mimicking the differences between industries like manufacturing and mining/construction.
aturally, in this case the GAS dynamic parameters

(
αM , βM , αC , βC

)
are all zero.

In the dynamic case, we set the intercept parameters
(
ωM

g , ω
C
g

)
equal to 0.04 for all groups, which, combined with the

ommon values for the GAS dynamic parameters
(
αM , βM , αC , βC

)
= (0.02, 0.9, 0.02, 0.9), means that all groups have

the same average loading on the market factor and on their group-specific factor. This homogeneity of loadings makes
the estimation problem more difficult than if the loadings had different long-run averages, and is designed to further
interrogate the ability of our clustering method to correctly assign variables to groups.

Table 1 presents the results for the static copula case with G = 10. In Panel A we see that the estimated parameters
are centered on the true values, for all three copulas, and the standard errors on the factor loadings increase slightly (on
average) as we move from Gaussian to t to skew t copulas.

Panel B of Table 1 reports the striking result that in 100% of the simulations there were zero variables assigned to
an incorrect group. That is, in every simulation the clustering algorithm was able to correctly allocate variables to their
groups.9 In the Gaussian case, the clustering step is done using the correct model (a static Gaussian copula) while in the
other two cases the model used in the clustering step is misspecified. Panel B reveals that this misspecification leads to
no errors in the classification of these variables.10 This is consistent with the exponential convergence rate (see Eq. (15))
found in other contexts for cluster assignment estimators.

Panel C of Table 1 reports the average estimation time (using a machine with an Intel Xeon Gold 6132 processor, with
ten cores and clock speed of 2.60 GHz) and the number of EM iterations required for convergence, and reveals no large
differences in the difficulty of estimation across these models.

8 The supplemental appendix of Bonhomme and Manresa (2015) discusses a bootstrap approach for their application, however they note that it
is borderline computationally prohibitive even in their linear, non-dynamic, model. To the best of our knowledge, the literature does not yet contain
results allowing for the theoretical analysis of a bootstrap method for the dynamic time series applications considered here.
9 Recall that groups are identified only up to a re-labeling; we account for this when computing the accuracy of the estimated group assignments.

10 The clustering algorithm is not, of course, infallible: its accuracy depends on the structure of the DGP and the data available. In situations where
he clusters are close together relative to sampling variation, estimated cluster assignments will inevitably contain errors. In our realistically-calibrated
imulation design, the clusters appear to be sufficiently well separated that cluster assignments can be very accurately estimated.
6



D.H. Oh and A.J. Patton Journal of Econometrics 237 (2023) 105374

i

c
a
a
s
d
t
n

o
a
f
o

Fig. 1. This figure presents random draws from four joint distributions, all with standard Normal margins. Panel (a) uses a Gaussian copula, Panel
(b) uses a Student’s t copula, Panel (c) uses a skew Normal copula, Panel (d) uses a skew t copula. For all four copulas the correlation parameter
s set to 0.5. For both t copulas the degrees of freedom parameter is set to 5. For both skewed copulas the skewness parameter is set to −0.1.

Table 2 presents the results for the dynamic copula case with G = 10. We again see that the estimated parameters are
entered on the true values, and in Panel B we see the remarkable result that the clustering algorithm described above is
ble to correctly assign every variable to its group in 100% of simulations. Recall that the estimated cluster assignments
re based on a static Gaussian copula model, which is misspecified in all three cases considered in Table 2. That model is
hown in Table 2 to be rich enough to reveal the true clusters in the data even though it is misspecified, confirming the
iscussion in Section 3.1. Panel C of Table 2 shows that the clustering step for the dynamic model is almost as fast as for
he static case (where one source of model misspecification is removed), while the copula parameter estimation step is
aturally slower.
Table S1 in the Supplemental Appendix considers a design analogous to that for Table 2, except that we set the number

f clusters to be 20 rather than 10. This is a more challenging estimation problem, and the time required for the cluster
ssignment estimation is greater (around 22 min compared with around 9 min for the G = 10 case), as is the time required
or the copula estimation (around 60 min compared with around 40 min). In this design we also observe one, but only
ne, case where a variable is misclassified in the cluster assignment step, for the skew t copula DGP.
Overall, the results in Tables 1, 2 and S1 provide strong reassurance that the models and estimation methods proposed

in Section 3 work well in finite samples, enabling us to take these to real data in the next section.

5. Empirical application

5.1. Data and summary statistics

We study daily equity returns over the period from January 4, 2010 to December 31, 2019, a total of T = 2516 trade
days. Every stock that was ever a constituent of the S&P 100 index during this sample, and which traded for the full
sample period, is included in the data set, yielding a total of N = 110 firms. A list of those firms, including their names,
ticker symbols, and two-digit Standard Industrial Classification (SIC) codes, are provided in Table S2 in the supplemental
appendix.

Table 3 presents summary statistics of the data and parameter estimates for the mean, variance and marginal
distribution models. Panel A presents unconditional sample moments of the daily returns for each stock, and these
7
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Table 1
Simulation results for static copulas.
Panel A: Parameter estimation accuracy

True Gaussian t Skew t

Mean Std Dev Mean Std Dev Mean Std Dev

βM
1 0.25 0.245 0.076 0.253 0.089 0.276 0.062

βM
2 0.50 0.508 0.071 0.509 0.075 0.473 0.068

βM
3 0.75 0.755 0.053 0.744 0.056 0.740 0.066

βM
4 1.00 1.000 0.052 1.002 0.048 0.954 0.189

βM
5 1.25 1.246 0.033 1.243 0.035 1.246 0.040

βM
6 1.50 1.500 0.021 1.498 0.034 1.501 0.035

βM
7 1.75 1.747 0.020 1.752 0.027 1.755 0.036

βM
8 2.00 2.001 0.021 1.998 0.027 1.996 0.030

βM
9 2.25 2.253 0.019 2.252 0.028 2.255 0.031

βM
10 2.50 2.496 0.020 2.502 0.029 2.502 0.030

βC
1 2.50 2.499 0.026 2.495 0.030 2.503 0.031

βC
2 2.25 2.248 0.023 2.246 0.031 2.251 0.036

βC
3 2.00 2.001 0.031 2.003 0.030 1.998 0.038

βC
4 1.75 1.749 0.030 1.747 0.034 1.771 0.065

βC
5 1.50 1.497 0.030 1.501 0.029 1.497 0.031

βC
6 1.25 1.246 0.028 1.252 0.026 1.252 0.030

βC
7 1.00 1.005 0.023 0.999 0.023 1.003 0.019

βC
8 0.75 0.756 0.022 0.749 0.023 0.743 0.018

βC
9 0.50 0.504 0.019 0.499 0.023 0.499 0.026

βC
10 0.25 0.241 0.039 0.234 0.048 0.230 0.050

ν 5.00 5.007 0.069 4.858 0.369
ζ −0.10 −0.095 0.015

Panel B: Group assignment estimation accuracy

Number incorrect

0 100 100 100
≥1 0 0 0

Panel C: Estimation details

Clustering Copula Clustering Copula Clustering Copula

Time (min) 8.7 0.47 8.9 6.37 8.8 7.13
EM (iter) 79.54 – 80.12 – 80.56 –

Notes: This table presents results from 100 simulations from static Gaussian, t, and skew t factor copulas with 10 groups. Panel A presents results
n estimation accuracy of the copula parameters, Panel B presents results on estimation accuracy of the group assignments, and Panel C presents
verage estimation time (for the two stages of estimation) and EM iterations using a machine with an Intel Xeon processor, with ten cores and
lock speed of 2.60 GHz.

oments are comparable to those observed in other studies. Given the skewness and kurtosis estimates reported in
anel A, our marginal distribution model combines an AR(1) for the conditional mean, GJR-GARCH(1,1) for the conditional
ariance, and a skewed t for the marginal distribution of the standardized residuals:

ri,t = φ0i + φ1iri,t−1 + ϵi,t

hi,t = ϖi + βihi,t−1 + αiϵ
2
i,t−1 + κiϵ

2
i,t−11

{
ϵi,t−1 ≤ 0

}
ϵi,t√
hi,t

∼ iid Skew t (ξi, ψi)

where hi,t is the conditional variance at time t for firm i and Skew t is the univariate skewed t distribution of Hansen
(1994) with the tail parameter ξi and the asymmetry parameter ψi. Using quasi-maximum likelihood, we estimate the
conditional mean and variance models, then given those estimated standardized residuals, we estimate the skewed t
parameters. Panel B of Table 3 provides the estimation results of the marginal distribution model, and the values there
are consistent with those reported in the empirical finance literature (see, e.g., Bollerslev et al., 1994). The standardized
residuals still indicate substantial skewness (ψ̂ = −0.027 on average) and kurtosis (ξ̂ = 5.089 on average). Given the
marginal model parameters we obtain the probability integral transforms, u , used in the estimation of the copula.
it

8
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Table 2
Simulation results for time-varying copulas.
Panel A: Parameter estimation accuracy

True Gaussian t Skew t

Mean Std Dev Mean Std Dev Mean Std Dev

ωM
1 0.04 0.042 0.007 0.042 0.007 0.044 0.008

ωM
2 0.04 0.042 0.007 0.042 0.007 0.044 0.008

ωM
3 0.04 0.042 0.007 0.042 0.007 0.043 0.007

ωM
4 0.04 0.042 0.007 0.042 0.007 0.044 0.008

ωM
5 0.04 0.042 0.007 0.042 0.007 0.043 0.007

ωM
6 0.04 0.042 0.007 0.042 0.007 0.044 0.008

ωM
7 0.04 0.042 0.006 0.042 0.007 0.043 0.008

ωM
8 0.04 0.041 0.007 0.041 0.007 0.044 0.008

ωM
9 0.04 0.042 0.007 0.042 0.007 0.044 0.008

ωM
10 0.04 0.042 0.007 0.042 0.007 0.044 0.008

ωC
1 0.04 0.043 0.007 0.043 0.007 0.042 0.007

ωC
2 0.04 0.043 0.007 0.043 0.008 0.042 0.007

ωC
3 0.04 0.042 0.007 0.043 0.007 0.042 0.007

ωC
4 0.04 0.043 0.007 0.044 0.008 0.042 0.007

ωC
5 0.04 0.043 0.007 0.043 0.008 0.041 0.007

ωC
6 0.04 0.043 0.007 0.043 0.007 0.042 0.007

ωC
7 0.04 0.043 0.008 0.043 0.007 0.041 0.006

ωC
8 0.04 0.043 0.007 0.043 0.008 0.042 0.006

ωC
9 0.04 0.043 0.008 0.043 0.007 0.042 0.007

ωC
10 0.04 0.043 0.007 0.043 0.006 0.041 0.007

αM 0.02 0.020 0.002 0.020 0.002 0.020 0.002

βM 0.90 0.894 0.015 0.894 0.014 0.893 0.017

αC 0.02 0.020 0.002 0.020 0.002 0.020 0.002

βC 0.90 0.896 0.016 0.894 0.016 0.898 0.014

ν 5.00 5.014 0.071 5.016 0.108

ζ −0.10 −0.100 0.007

Panel B: Group assignment estimation accuracy

Number incorrect

0 100 100 100
≥1 0 0 0

Panel C: Estimation details

Clustering Copula Clustering Copula Clustering Copula

Time (min) 8.8 21.6 9.1 37.4 9.1 41.7
EM (iter) 91.32 - 91.78 - 90.83 -

Notes: This table presents results from 100 simulations from Gaussian, t, and skew t factor copulas with 10 groups and GAS dynamics. Panel A
resents results on estimation accuracy of the copula parameters, Panel B presents results on estimation accuracy of the group assignments, and
anel C presents average estimation time (for the two stages of estimation) and EM iterations using a machine with an Intel Xeon processor, with
en cores and clock speed of 2.60 GHz.

Panel C of Table 3 presents Pearson’s linear correlations and Spearman’s rank correlations between those standardized
esiduals whose quantiles between 5% and 95% range from 0.17 to 0.49 and from 0.20 to 0.53, respectively, indicating
eterogeneous pairwise dependence, and motivating our flexible factor copula specification presented in Section 2.

.2. Estimated cluster assignments

We firstly use the method described in Section 3 to estimate the group assignments for each variable. To determine
he optimal number of groups, we use the BIC for the fitted static Gaussian copula model.11 The value of the BIC for each

11 The BIC is computed as BIC (G) = −2
∑T

t=1 log c
(
ut ; θ̂

(G)
T , Γ̂

(G)
T

)
+ 2G log (T ), where G denotes the number of clusters, leading to 2G parameters

o be estimated. We use the notation (θ̂
(G)
, Γ̂

(G)) to emphasize that the parameters of the copula vary with G.
T T

9
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Table 3
Summary statistics.

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

Panel A: Marginal moments

Mean 0.001 0.000 0.001 0.001 0.001 0.001
Std 0.016 0.010 0.012 0.015 0.018 0.023
Skewness −0.081 −0.748 −0.310 −0.091 0.092 0.648
Kurtosis 9.939 5.154 6.411 8.087 10.923 22.803

Panel B: Marginal model parameters

Constant 0.001 0.000 0.001 0.001 0.001 0.001
AR(1) −0.019 −0.068 −0.041 −0.017 0.000 0.031
ϖ × 104 0.009 0.002 0.003 0.006 0.011 0.025
α 0.025 0.000 0.009 0.019 0.033 0.077
κ 0.099 0.029 0.064 0.095 0.131 0.179
β 0.885 0.756 0.864 0.904 0.932 0.958
ξ 5.089 3.401 4.234 4.846 5.798 7.256
ψ −0.027 −0.087 −0.051 −0.025 −0.004 0.020

Panel C: Correlations of standardized residuals

Pearson 0.322 0.170 0.256 0.314 0.378 0.492
Spearman 0.360 0.197 0.295 0.356 0.418 0.531

Notes: This table presents summary statistics on the 110 daily equity return series used in this paper. The sample period is January 2010 to December
2019. Panel A presents a summary of the cross-sectional distribution of the first four moments of these returns, Panel B presents a summary of the
estimated AR(1)-GJR GARCH(1,1)-skew t model used for the marginal distributions, and Panel C presents a summary of the 5995 pairwise correlations
of the standardized residuals.

choice of G is plotted in Fig. 2, along with the values of the BIC obtained when using one-digit or two-digit SIC codes to
determine group assignments. In our sample there are seven one-digit SIC groups and 21 two-digit SIC groups.12 Fig. 2
eveals that the BIC from a model using only four estimated group assignments dominates the seven one-digit SIC groups,
nd a model with just five estimated group assignments beats the 21-group model based on two-digit SIC codes. These
ankings reveal the gains available from a data-driven assignment of stocks to groups, rather than assignments based on
IC codes.13

The optimal number of estimated groups, according to the BIC, is 21, which is coincidentally the same as the number of
wo-digit SIC groups.14 We note that the BIC curve is relatively flat near the optimum, indicating that choosing G between
0 and 25 leads to approximately the same fit; i.e., there is some robustness to the specific choice of G.
Table 4 presents the estimated group assignments for the 110 stocks in our sample, along with each stock’s SIC code.

ome of the estimated groups line up closely with a two-digit SIC group. For example, the largest group (Group 1) is
omprised of 13 stocks, ten of which have SIC code 28 (“Chemical & Allied Products” manufacturing). The three other
tocks (Baxter, Medtronic and United Health) have different SIC codes, but are clearly broadly in the same category as the
est of this group. Group 5, as another example, looks clearly like a “Tech” group, and all but two members have SIC code
3 (“Business Services”). The two listed with other codes are Apple (listed as 35, “Industrial Machinery & Equipment”
anufacturing) and Netflix (listed as 78, “Motion Pictures”). Despite the different SIC codes, most investors would agree

hat Apple and Netflix fit neatly in a cluster containing Google, Amazon and Ebay. Among the smaller clusters, we see some
bvious pairs of stocks grouped together: AT&T and Verizon; Lowes and Home Depot; Mastercard and Visa; McDonalds
nd Starbucks.
Overall, the group assignments in Table 4 look economically plausible, in addition to representing a much better

tatistical fit according to the BIC. In Section 5.4 we conduct formal out-of-sample forecast comparison tests to determine
hether the improved in-sample fit leads to significantly better out-of-sample forecasts, and in Section 5.5 we study the
conomic environments in which this feature of the model is most helpful.

12 Our model cannot accommodate groups with only one member, and when estimating with SIC-based clusters we address this by moving stocks
that are a singleton in their group to the SIC group with which they have the highest correlation. Specifically, in the one-digit clustering model,
Weyerhaeuser (WY) is the only stock in the one-digit SIC group 0, and we move it to SIC group 3. In the two-digit clustering model, FCX (10), NKE
(30), WY (08), FDX (45) and V(61) are all singletons, and those are moved into the two-digit SIC groups 13, 37, 37, 42, and 60, respectively.
13 Opschoor et al. (2021) compare cluster assignments based on SIC codes with those based on some other common characteristics: market
capitalization (size), the book-to-market ratio (value), and past returns (momentum). They find that SIC-based assignments easily dominate these
alternatives.
14 We used a set of 100 random starting values for Γ , the cluster assignment vector, in estimation, and did not use information from SIC codes
at all in the EM-based model.
10
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Fig. 2. Plot of BIC value as a function of the number of groups (G) for the EM-estimated model. The BIC values for the 1-digit and 2-digit SIC-based
groups are also reported for comparison; these models have 7 and 21 groups respectively. As usual, lower BIC values are preferred. (Note the y-axis
has been scaled by 10−4 for ease of presentation.)

5.3. Estimated dependence time series

We now compare the fitted dependence time series from the two-digit SIC factor copula model and the factor copula
model with estimated group assignments. We use rank correlations as a summary measure for the strength and direction
of the dependence between assets implied by these models. With a fully-specified copula model such as the ones
employed here, it is also possible to extract other dependence measures, such as tail dependence or probabilities of joint
tail events, see e.g. the measures in Giesecke and Kim (2011) and Oh and Patton (2018).

The complete rank correlation matrix is 110×110, and even just focusing on the blocks implied by the factor structure
embedded in the model the matrix is 21 × 21. As an initial summary measure, we firstly consider the conditional rank
correlation for pairs in the same group. Fig. 3 plots these for three groups, along with the two-digit SIC group that best
matches the estimated group.15,16 The top panel compares estimated group 3 with SIC group 13. We observe that the
two conditional rank correlation paths track each other quite closely, but the rank correlations based on estimated group
assignments appear to adjust more quickly to news, and the SIC-based estimates look somewhat like a rolling average
of the path from the model with estimated group assignments. A similar picture arises in the middle panel, comparing
estimated group 7 with SIC group 36. It appears that by getting group assignments that better match the data, the model
is more quickly able to react to information that suggests dependence has gone up or down.

The lower panel of Fig. 3 compares estimated group 9 and SIC group 49, and represents a particularly interesting
comparison. Group 9 contains six members, and all of them are from SIC group 49 (“Electric, Gas, & Sanitary Services,” in
the “Transportation & Public Utilities” group). There is just one other SIC group 49 stock in our sample (Williams, ticker
WMB), and this stock was estimated to belong to group 3, which is dominated by SIC group 13 members (SIC 13 is “Oil &
Gas Extraction” in the “Mining” group). From the firm’s description on its website, it conducts a mix of activities captured
by these SIC labels, and it turns out that our cluster assignment algorithm estimates it to be a better match with mining
firms than with utilities firms. The lower panel of Fig. 3 shows that by removing just this one stock the within-group
rank correlation rises from around 0.55 to around 0.68. Moreover, we again see that the conditional rank correlations are
more dynamic in the model with estimated group assignments.

The plots of conditional rank correlations in Fig. 3 allow us to see differences in pairwise dependence implied by the
two models. For a more complete depiction of the differences implied by the model in the upper panel of Fig. 4 we plot
the QLIKE distance measure between the full 110 × 110 rank correlation matrices implied by the two models.17 When
this measure is lower, the rank correlation matrices are more similar. We see that the difference is largest in mid 2011,
and also large in late 2015, while it was relatively low in 2012. The middle panel of Fig. 4 presents the normalized sum
of the first 22 eigenvalues of the model-implied rank correlation matrices. Both of the models are based on a 22-factor

15 Figures S1–S2 in the supplemental appendix present other comparisons of fitted rank correlations from the two models.
16 For example, estimated Group 3 has eleven members, including all eight of the SIC group 13 stocks. Estimated Group 7 has seven members
including all five members of SIC group 36. Estimated Group 9 has six members and all of them belong to SIC group 49; the single other SIC group
49 member was estimated to belong to Group 3.
17 The QLIKE distance between two N × N matrices is QLIKE A, B = tr

(
A−1B

)
− log

⏐⏐A−1B
⏐⏐− N .
( ) ( )
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n

Table 4
Estimated group assignments.
Group Ticker Name SIC Group Ticker Name SIC

1 ABT Abbott Lab. 28 7 CSCO Cisco Sys 36
AGN Actavis 28 HPQ Hewlett Pac 35
AMGN Amgen 28 INTC Intel 36
BAX Baxter 38 MSFT Microsoft 73
BIIB Biogen 28 NVDA Nvidia 36
BMY Bristol–Myers 28 QCOM Qualcomm 36
GILD Gilead 28 TXN Texas Instru 36
JNJ Johnson & J 28
LLY Lilly Eli 28 8 AIG Ame Inter Group 63
MDT Medtronic 38 ALL Allstate 63
MRK Merck 28 CMCSA Comcast 48
PFE Pfizer 28 DIS Disney Walt 48
UNH Unitedhealth 63 F Ford 37

GE Gen Electric 35
2 BAC Bank Of Am 60 XRX Xerox 35

BK Bank Of NY 60
C Citigroup Inc 60 9 AEP Ame Elec Pow 49
COF Capital One 60 DUK Duke Energy 49
GS Goldman Sachs 62 ETR Entergy Corp 49
JPM Jpmorgan 60 EXC Exelon 49
MET Metlife 63 NEE Nextera Energy 49
MS Morgan Stanley 60 SO Southern Co 49
RF Regions Fin 60
USB U S Bancorp 60 10 COST Costco 53
WFC Wells Fargo 60 CVS C V S Health 59

TGT Target 53
3 APA Apache 13 WBA Walgreens 59

BHI Baker Hughes 35 WMT Walmart 53
COP Conocophillips 13
CVX Chevron 13 11 GD Gen Dynamics 37
DVN Devon 13 LMT Lockheed Martin 37
HAL Halliburton 13 RTN Raytheon 38
NOV Nat. Oilwell 35
OXY Occidental 13 12 AMT American Tower 48
SLB Schlumberger 13 SPG Simon Property 67
WMB Williams Co 49 WY Weyerhaeuser 8
XOM Exxon Mobil 13

13 BA Boeing 37
4 CAT Caterpillar 35 FCX Freeport Mcmo 10

EMR Emerson Ele 35 NKE Nike 30
FDX Fedex 45
HON Honeywell Int 37 14 ACN Accenture 67
MMM 3M 38 IBM IBM 35
NSC Norfolk South 40 ORCL Oracle 73
UNP Union Pacific 40
UPS United Parcel 42 15 AXP Amex 60

BLK Blackrock 62
5 AAPL Apple 35

ADBE Adobe 73 16 DHR Danaher 38
AMZN Amazon 73 TMO Thermo Fisher 38
CRM Salesforce 73
EBAY Ebay 73 17 T A T & T 48
GOOGL Google 73 VZ Verizon 48
NFLX Netflix 78
PCLN Priceline 73 18 AVP Avon Products 28

SNS Steak N Shake 58
6 CL Colgate Palmo 28

CPB Campbell Soup 20 19 MA Mastercard 73
KO Coca Cola 20 V Visa 61
MDLZ Mondelez 20
MO Altria 21 20 MCD Mcdonalds 58
PEP Pepsico 20 SBUX Starbucks 58
PG Procter Gamble 28
PM Philip Morris 21 21 HD Home Depot 52

LOW Lowes 52

Notes: This table presets the estimated group assignments based on the BIC-optimal number of groups, G = 21. The groups are ordered by the
umber of members.
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Fig. 3. Time series plots of model-implied within-group rank correlations. The upper panel presents estimated group 3 and SIC group 13; the middle
panel presents estimated group 7 and SIC group 36; the lower panel presents estimated group 9 and SIC group 49.

model (one common factor and 21 group-specific factors), and the sum of the first 22 eigenvalues provides a summary
for how informative the factors are.18 We see that the sum is uniformly greater for the model with estimated group
assignments than for the model based on SIC group assignments. Note that the period when the two sums are furthest
apart corresponds to the period when the QLIKE distance is also the greatest, indicating that this is one reason for the
increased QLIKE distance. The lower panel of Fig. 4 plots cross-sectional dispersion in pairwise rank correlations. We see
that this dispersion has been broadly increasing over the sample period, and that periods when the two models differ
most in the degree of dispersion also correspond to times when the QLIKE distance is larger.

5.4. Out-of-sample forecast performance

We next compare the out-of-sample (OOS) forecasts of the factor copula models using SIC-based group assignments
with those using estimated group assignments. To do so, we split our sample period in half, using data from 2010 to
2014 to estimate the models, and data from 2015 to 2019 to evaluate the models. Given the computational complexity
of the models, we estimate the models only once, on the last day of the in-sample period, and retain those parameters
throughout the OOS period.

18 Figure S3 in the supplemental appendix presents corresponding results using just the largest eigenvalue, or the sum of the first three eigenvalues.
The largest eigenvalues from each of the models are roughly equal, although similar to the pairwise rank correlation plots, the time series from
the model with estimated group assignments appears more dynamic. The plot of the sum of the largest three eigenvalues reveals not only more
dynamics, but a slight gap in the level, though it is not as large and not uniform as it is for the sum of the first 22 eigenvalues.
13
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Fig. 4. The upper panel presents the QLIKE distance between the conditional rank correlation matrices implied by the 2-digit SIC-based model and
the optimal EM-based factor copula model, both of which have a total of 22 factors. The middle panel presents the sum of the 22 largest eigenvalues
of the conditional rank correlation matrices, divided by 110, the number of assets. The lower panel presents the difference between the 90% and
10% cross-sectional quantiles of all 5995 pairwise rank correlations.

In Table 5 we use OOS forecast performance to determine the optimal shape of the copula (Gaussian, t , or skew t), as
well as the optimal choice of dynamics (static vs. GAS).19 We do this for a range of choices for the number of groups, to
determine the robustness of the conclusions, and also for the two SIC-based group assignments. In all cases we compare
the models using their out-of-sample likelihoods, which is a consistent scoring rule for ranking density forecasts, see
Gneiting and Raftery (2007). We test for the significance of the differences in OOS likelihoods using a Diebold and Mariano
(1995) test with a Newey and West (1987) estimator of the standard error based on 10 lags.

The left panel of Table 5 clearly indicates that including GAS dynamics in the model improves the fit: in all cases
the t-statistic is positive, and the smallest t-statistic across all configurations is 6.5, indicating strong evidence in favor
of the GAS model over the static model. The right panel of Table 5 uses GAS dynamics in all cases, and we compare
the choice of copula shape across various choices of the number of groups. We find in all cases that the t and skew
t models outperform the Gaussian factor copula, with t-statistics all greater than 7.7. This is consistent with previous
work in the literature (see, e.g., Patton, 2004, 2013; Amengual and Sentana, 2020) that the Normal copula is not a good
description of equity return dependence. In the last column of Table 5 we compare the t and skew t copulas, and we find
that the t-statistics are all negative, and generally significant, indicating that the estimation of the additional skewness
parameter in the skew t copula leads to worse OOS performance than the symmetric t factor copula. This is in contrast
with the in-sample parameter estimates (presented in Tables S3 and S4 in the supplemental appendix) where the copula

19 In addition to being economically interesting in their own right, using OOS forecast performance to make these comparisons allows us to
conduct formal statistical tests without having to make assumptions about the error rate in the estimated group assignments (see Section 3.2) that
cannot be verified.
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Table 5
Comparing different copula specifications.

Static vs. GAS Copula shape

Gaussian t skew t G vs. t G vs. skew t t vs. skew t

SIC 1 digit 7.861 12.067 11.552 9.288 8.596 −2.975
SIC 2 digit 9.887 15.730 16.501 8.938 8.465 −2.849
3 groups 6.528 6.636 6.761 8.339 7.711 −2.257
4 groups 7.681 10.059 9.412 9.121 8.381 −2.351
5 groups 7.548 10.804 10.913 9.236 9.088 −1.717
18 groups 10.571 16.052 15.711 9.295 7.945 −3.550
19 groups 9.806 15.457 15.259 9.553 8.847 −2.065
20 groups 10.908 16.193 14.741 9.426 7.995 −3.797
21 groups 10.916 16.626 17.321 9.474 8.670 −2.366
22 groups 10.732 16.891 16.802 9.688 8.962 −2.714
25 groups 11.817 19.001 19.140 9.475 8.569 −2.355
27 groups 10.725 15.836 15.794 9.591 8.951 −1.676
30 groups 10.917 17.169 15.917 9.697 8.717 −2.962

Notes: This table presents Diebold–Mariano t-statistics on pairwise comparisons of models using their out-of-sample log-likelihood. The left panel
compares models assuming no dynamics with those using GAS dynamics, for three different copula shapes (Gaussian, t, and skew t) and for a variety
of choices for the number of groups. The right panel compares the different copula shapes, using GAS dynamics in all cases, across a variety of
choices for the number of groups. In a comparison labeled “A vs. B,” a positive t-statistic indicates that B is preferred; a negative t-statistic indicates
that A is preferred. Note that there are 7 groups of firms using the 1-digit SIC, and 21 groups using the 2-digit SIC.

Table 6
Comparing different numbers of clusters.

SIC-1 SIC-2 3
groups

4
groups

5
groups

18
groups

19
groups

20
groups

21
groups

22
groups

30
groups

Panel A: t-statistics from pair-wise comparisons

SIC-1 26.174 −4.783 14.180 21.898 33.495 32.074 33.127 33.292 32.973 29.975
SIC-2 −26.174 −21.579 −8.472 2.530 23.186 21.202 23.288 23.359 21.255 17.075
3 groups 4.783 21.579 18.347 24.175 31.398 30.848 30.926 31.247 31.529 28.722
4 groups −14.180 8.472 −18.347 12.922 27.064 25.292 26.950 26.957 26.511 21.562
5 groups −21.898 −2.530 −24.175 −12.922 23.175 20.562 22.535 22.689 20.069 15.187
18 groups −33.495 −23.186 −31.398 −27.064 −23.175 −6.779 2.377 0.184 −6.754 −12.345
19 groups −32.074 −21.202 −30.848 −25.292 −20.562 6.779 7.596 6.545 −3.270 −9.828
20 groups −33.127 −23.288 −30.926 −26.950 −22.535 −2.377 −7.596 −2.915 −7.892 −13.062
21 groups −33.292 −23.359 −31.247 −26.957 −22.689 −0.184 −6.545 2.915 −7.315 −12.798
22 groups −32.973 −21.255 −31.529 −26.511 −20.069 6.754 3.270 7.892 7.315 −7.736
30 groups −29.975 −17.075 −28.722 −21.562 −15.187 12.345 9.828 13.062 12.798 7.736
Panel B: Out-of-sample log-likelihood values

logL 34074.5 37887.6 33175.8 36353.3 38303.6 42041.2 41564.0 42145.5 42050.1 41276.9 40559.2

Notes: This table presents Diebold–Mariano t-statistics on pairwise comparisons of models using their out-of-sample log-likelihood. In all cases
we use a t copula with GAS dynamics. A positive t-statistic indicates that the column model is preferred to the row model; a negative t-statistic
ndicates the opposite. Note that there are 7 groups of firms using the 1-digit SIC, and 21 groups using the 2-digit SIC.

symmetry parameter is significantly negative.20 These conflicting results can be reconciled by the fact that OOS forecast
omparisons tend to carry a strong implicit penalty for estimation error, and so unless the new parameter is far from zero
nd precisely estimated, better forecasts may be obtained by setting it to zero.
In Table 6 we compare the OOS performance of t factor copulas with GAS dynamics that use different numbers of

roups. Consistent with the BIC rankings of models presented in Fig. 2, the model based on one-digit SIC groupings is
eaten by every other model except the estimated group assignment model with only 3 groups. Similarly, the model
ased on two-digit SIC groupings is beaten by every other model except the one-digit SIC model and the estimated group
ssignment models with only 3 or 4 groups. Amongst the models with estimated group assignments, the model with
= 20 groups performs the best in terms of OOS likelihoods, significantly beating every other model, including the
= 21 model which was selected as being optimal over the full sample according to the BIC. That the optimal model for
OS forecasting is smaller than the optimal model for in-sample fitting is consistent with the abovementioned predilection
f OOS forecasts for parsimonious models.

20 These two tables present parameter estimates and standard errors for models using one-digit SIC codes (seven clusters) or using estimated cluster
assignments (using the BIC-optimal number of clusters, 21). In both cases we see that the copula asymmetry parameter is significantly negative.
Standard errors in this table are computed assuming that estimation error from cluster assignments is negligible, as discussed in Section 3.2.
15
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Table 7
Economic determinants of forecast performance.

Static vs. GAS dynamics Gaussian vs. Student’s t shape SIC vs. Estimated clusters

Intercept 0.511 0.511 0.511 0.511 1.493 1.493 1.493 1.493 4.114 4.114 4.114 4.114
(s.e.) (0.066) (0.066) (0.066) −0.066 (0.145) (0.146) (0.147) (0.020) (0.171) (0.177) (0.17) (0.020)
[t-stat] [7.741] [7.717] [7.791] [7.777] [10.316] [10.259] [10.142] [10.323] [24.133] [23.262] [24.218] [23.414]

VIX 0.023 0.007 0.106 0.063 0.024 −0.061
(s.e.) (0.018) (0.020) (0.038) (0.020) (0.039) (0.020)
[t-stat] [1.265] [0.357] [2.820] [1.217] [0.609] [−1.300]

Dispersion 0.474 0.393 1.354 0.760 2.243 2.146
(s.e.) (0.157) (0.186) (0.578) (0.020) (0.565) (0.020)
[t-stat] [3.018] [2.108] [2.342] [1.073] [3.969] [3.232]

Abs. alpha 1.312 0.479 5.256 3.256 6.098 2.333
(s.e.) (0.498) (0.605) (2.144) (0.020) (1.395) (0.020)
[t-stat] [2.635] [0.793] [2.451] [1.396] [4.371] [1.462]

R2 (%) 0.300 1.400 0.667 1.497 1.095 1.951 1.823 2.874 0.038 3.733 1.710 4.127

GW p-valueALL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GW p-valueSLOPES 0.206 0.003 0.008 0.001 0.005 0.019 0.014 0.000 0.543 0.000 0.000 0.000

CSPA p-value 0.000 0.000 0.000 – 0.000 0.000 0.000 – 0.000 0.000 0.000 –

Notes: This table presents the results of Giacomini and White (2006) tests and Li et al. (2021) conditional superior predictive ability (CSPA) tests, comparing three pairs of models.
The baseline model uses a Student’s t copula with GAS dynamics and estimated assignments into 20 clusters, and is compared to a model that: imposes a static conditional copula
left panel); uses a Gaussian copula (middle panel); uses two-digit SIC codes to form clusters (right panel). The bottom row presents the CSPA p-value for the null hypothesis that
he simpler model in each comparison is uniformly weakly better against the alternative that the more flexible model is uniformly strictly better. The rows labeled “GW p-value” test
hat all parameters in the regression, or only the slope coefficients, are equal to zero. The conditioning variables are the VIX index, the cross-sectional standard deviation of returns
“dispersion”), and the absolute value of the cross-sectional average CAPM alpha.

.5. Economic determinants of forecast performance

We next seek to understand the economic environments in which specific features of the model lead to meaningful
ains in forecast performance. We focus on three key model features: the model for dynamics in the conditional copula,
he model for the shape of the copula, and the method for assigning stocks to groups in the factor structure. To summarize
he economic environment we use three conditioning variables. Firstly, we use the Chicago Board of Exchange’s volatility
ndex or “VIX” (see Whaley, 2009), which is a widely-used measure of market volatility. Next we use the cross-sectional
tandard deviation of stock returns on each day, which is a common measure of the degree of idiosyncratic risk (see Goyal
nd Santa-Clara, 2003, for example).21 Finally, we use the absolute value of the cross-sectional average of the difference
etween realized returns and the return predicted by the capital asset pricing model (CAPM), known as “alpha.”22 This
easure is interpretable as a measure of the degree of mispricing relative to the CAPM on a given day, or, more robustly, as
measure of how important non-market factors were for determining stock returns on a given day. These three measures
ach provide a different view of economic environment on a given day.
We use two complementary methods in this analysis. Firstly, we use the parametric approach of Giacomini and White

2006) (GW), where differences in out-of-sample forecast performance are regressed on one or more of the conditioning
ariables summarizing the economic environment. Secondly, we use the nonparametric “conditional superior predictive
bility” (CSPA) test of Li et al. (2021). The GW test allows us to determine whether the conditioning variable(s) help explain
he relative performance of the competing models, while the CSPA test determines whether one model has expected
erformance above/below the other model for all values of the conditioning variable. It is possible for neither, one, or
oth of these tests to reject their respective null hypotheses, and thus they provide complementary information about
elative performance.

Table 7 presents the results for the three conditional model comparisons. In the GW tests, we consider the variables
eparately and jointly. We de-mean all regressors so that the intercept is interpretable as the expected difference in log-
ikelihoods when the regressors equal their average value. In all cases the intercepts are positive and strongly significant
consistent with Tables 5 and 6), indicating that in each comparison the more flexible model is preferred to the simpler
odel. Our interest in this analysis is primarily the slope coefficients, which affords us insight into whether there are
pecific economic environments where one model outperforms the other. The penultimate and antepenultimate rows
how the p -values from joint tests of all coefficients in the regression, or only the slope coefficients.
In the left panel of Table 7 we compare a model with no dynamics in the conditional copula with a model that has

AS dynamics, and we see that the most useful variable is dispersion, which has a t-statistic of over three. The positive
ign of this coefficient reveals that the gains from allowing for dynamics in the conditional copula are particularly great
hen stock returns exhibit higher idiosyncratic risk.
The middle panel of Table 7 presents results comparing a Gaussian copula with a Student’s t copula, both with GAS

ynamics. Here we see that VIX is the most useful explanatory variable, with a t-statistic of 2.8. The positive slope of
this coefficient implies that when volatility is high the gains from allowing for joint fat tails, as provided by the Student’s
t copula, are larger than in low-volatility times. We note also that dispersion and absolute alpha also have positive and

21 We also considered the idiosyncratic risk relative to the CAPM for these stocks. That series had correlation of 0.99 with simple cross-sectional
dispersion, and so we present results only using the latter.
22 We estimate the CAPM beta for each stock just once, using the full sample of data.
16



D.H. Oh and A.J. Patton Journal of Econometrics 237 (2023) 105374

t
m

s

Fig. 5. This figure presents estimates of the expected difference in out-of-sample log likelihoods between the models listed in the y-axis label,
conditioning on the variable given in the x-axis label. Positive values indicate that the second model in the comparison is preferred. Also presented
are pointwise 95% confidence intervals for the estimated difference.

significant coefficients in this panel, indicating that joint fat tails are also important when cross-sectional dispersion is
high, and when non-market factors are particularly important for the cross-section of realized returns.23

The right panel of Table 7 examines when the gains from using estimated group assignments rather than two-digit
SIC groups are greatest. In this panel the most significant individual variable is absolute alpha, revealing that data-driven
groupings are particularly valuable when non-market factors drive the cross-section of realized returns.

The bottom row of Table 7 presents the p-value from the nonparametric CSPA test for each of these comparisons.24 We
find p-values of less than 0.005 in all comparisons, consistent with (but generalizing) the strongly significant intercepts
in the GW regressions, indicating that the more flexible model in each comparison dominates the more restrictive
specification uniformly on the support of the conditioning variable.

To understand these nonparametric relationships better, Fig. 5 presents simple nonparametric kernel-smoothed
estimates of the differences in forecast performance as a function of each of the conditioning variables, for values between
the 0.01 and 0.99 sample quantiles of each variable.25 We see that the gains from allowing for dynamics in the conditional

23 In the joint regression none of the three slope coefficients are individually significant, though they are strongly jointly significant (p-value less
han 0.005), consistent with the presence of multicollinearity. The correlations between the regressors range from 0.21 to 0.50, indicating moderate
ulticollinearity.

24 Being a nonparametric test, the CSPA test suffers from the curse of dimensionality. For this reason, we implement it only for each variable
eparately, not for all variables jointly.
25 The estimate and confidence intervals are computed using Theorem 2.2 of Li and Racine (2007).
17
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opula (top row) are roughly flat in VIX (consistent with the GW regression), while they are generally increasing in
ispersion and absolute alpha. In particular, they increase almost linearly as dispersion increases from its first percentile
0.6) to about 1.8 (corresponding to its 88th percentile), and then flatten beyond that.

The gains from allowing for joint fat tails in the copula (second row of figures) are roughly flat when the three
onditioning variables are in the lower half of their support, and then sharply increase beyond that, indicating that in
imes of high volatility, high idiosyncratic risk, or high importance of non-market factors, joint fat tails are particularly
seful in the model. The gains from allowing for estimating group assignments (bottom row) are effectively unrelated to
olatility, as measured by VIX, but they are strongly increasing in dispersion and absolute alpha. It is noteworthy that even
hen all three of these conditioning variables are at their first percentile, that is, when markets are calm, not disperse, and
he market factor is dominant, the gains from allowing for dynamics, joint fat tails, and estimated group assignments are
ach significantly larger than zero. This is strong support for the importance of these features of the conditional copula.

. Conclusion

This paper proposes a new dynamic factor copula model for use in high-dimensional time series applications. Our
odel does not require variables to be grouped according to ex ante information, like SIC industry codes or similar; instead
e estimate the optimal assignment of variables to groups from the data using a k-means type approach. Our clustering
ethod exploits the fact that clusters can be consistently estimated from a static version of the copula model, rather

han the more computationally-challenging dynamic version that is of primary interest, making the clustering problem
easible. We show via an extensive simulation study that group assignments can be accurately estimated in finite samples.
n an application to 110 U.S. equity returns over the period 2010–2019 we find evidence that a model with estimated
roup assignments significantly outperforms an otherwise identical model with group assignments determined using SIC
odes. The improvement in fit appears to come from a better assignment of stocks that are labeled with one SIC code but
omove more like stocks from a different SIC code, which allows the dynamic model to react to new information more
uickly.
The methods in this paper suggest at least two directions for future research. First, one could consider how to allow

or time variation in estimated cluster assignments. For example, Lumsdaine et al. (2022) consider estimated group
ssignments that are subject to structural breaks, while Custodio João et al. (2022) model group assignments as evolving
ccording to a hidden Markov model. Adapting these ideas to models of the form considered in this paper, which are
lready computationally intensive, is an interesting and challenging problem. A second direction is to consider extensions
o “vast” dimensional data sets. Our analysis considers a cross-section of 110 stocks, which is large in absolute terms but
mall relative to our time series of around 2500 observations. Applications involving cross-sections comparable in size
o the time series may require some new methods, e.g., adapting methods from random matrix theory (as in Fan et al.,
013, for example) as well as alternative, faster, methods for estimating group assignments, e.g., hierarchical clustering
see, e.g., Hastie et al., 2009). We leave these interesting extensions for future work.

ppendix A

.1. The probability density of the skewed t copula

We adopt the skewed t copula discussed in Demarta and McNeil (2005) and Christoffersen et al. (2012). Specifically,
t is the copula embedded in the multivariate skewed t distribution of Xt , where:

Xt =

√
WtZt + ζWt (16)

here ζ is a N × 1 asymmetry parameter vector filled with an identical scalar ζ , Wt is an inverse gamma variable
t ∼ IG

(
ν
2 ,

ν
2

)
, Zt is a N × 1 normal variable Zt ∼ N (0,Rt), and Wt and Zt are independent. The probability density

function of the skewed t copula is given by
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here Γ̈ is the Gamma function, K (·) is the modified Bessel function of the third kind (also called the modified Bessel
unction of the second kind, or the modified Hankel function), and xt =

[
x1,t , . . . , xN,t

]′
=
[
T−1
skew

(
u1,t; ν, ζ

)
, . . . , T−1

skew(
uN,t; ν, ζ

)]′ are obtained by applying the inverse of the univariate skewed t distribution from Eq. (16) defined by

Tskew (y; ν, ζ ) =

∫ y

−∞

21−0.5(ν+1)K ν+1
2

(√(
ν + x2

)
ζ 2
)
exp (xζ )

Γ̈
(
ν
2

)√
πν

(√(
ν + x2

)
ζ 2
)−

ν+1
2
(
1 +

x2
ν

) ν+1
2

dx.

ince T−1
skew (·; ν, ζ ) is not available in closed form, we generate 1,000,000 random draws from Eq. (16) and use linear

nterpolation to approximate T−1
skew (·; ν, ζ ) on (0, 1). Note that Tskew (·; ν, ζ ) is identical across the cross sectional

imension and also over time because the shape parameters of this distribution are assumed constant, this means that we
an approximate T−1

skew just once per parameter set [ν, ζ ] and apply it to all copula inputs {ut}
T
t=1, making the likelihood

valuation of the skewed t copula very fast. An alternative to this simulation-based approach for finding an inverse CDF
s to use quadrature-based methods, though in our initial analyses of such methods we found them too slow for use in
he computationally-intensive estimation problem considered here.

.2. Derivation of the score

From Eq. (17), the log-likelihood of the skewed t copula is obtained by

log cSkewt,t (xt;Rt , ν, ζ ) = −
1
2
log |Rt | −

ν + N
2

log
(
1 +

1
ν
x′

tR
−1
t xt

)
(18)

+ log
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log
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t ζ

)
+ const (ν, ζ )

here const (ν, ζ ) contains any components that do not depend on Rt , and recall that

Rt = L̃′

t̃Lt + Dt , L̃t =
[̃
λ1,t , . . . , λ̃N,t

]
, Dt = diag

(
σ 2
1,t , . . . , σ

2
N,t

)
here

λ̃i,t =
λi,t√

1 + λ′

i,tλi,t

, σ 2
i,t =

1
1 + λ′

i,tλi,t

To derive the score, we first define Lt =
(
λ1,t , . . . ,λN,t

)
∈ Rk×N where λi,t is a k× 1 vector of factor loadings for variable

. In the example of Eq. (7), the number of factors denoted by k is G + 1 and if the variable i belongs to Group 3, then
i,t =

[
λM3,t , 0, 0, λ

C
3,t , 0, . . . , 0

]′. By the chain rule, the derivative of Eq. (18) with respect to ηt (given in Eq. (9)) can be
ritten as product of three factors
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where vec (·) stacks the columns of the matrix on top of one another to form a vector. The first factor of Eq. (19) can be
written as

∂ log cSkewt,t (xt;Rt , ν, ζ )
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where M is a symmetric non-singular matrix, and v and w are vectors conformable with M. With those formulas we
calculate each component separately to obtain
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As ζ → 0, Eq. (20) boils down to the derivative of the log density of the Student t copula,

∂ log cStudent−t,t (xt;Rt , ν)
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)
and in addition, as ν → ∞, it becomes that of the Gaussian copula,

∂ log cGaussian,t (xt;Rt)

∂Rt
= −

1
2
R−1
t +

1
2
R−1
t xtx′

tR
−1
t .

To derive the second and third factors in Eq. (19) we closely follow the logic and notations of Opschoor et al. (2021).
he second factor is re-written as

∂vec (Rt)

∂vec (Lt)′
=
∂vec

(̃
L′
t̃Lt
)

∂vec
(̃
Lt
)′ ·

∂vec
(̃
Lt
)

∂vec (Lt)′
+
∂vec (Dt)

∂vec (Lt)′

=
(
IN2 + JN,N

) (
IN ⊗ L̃′

t

)
·
∂vec

(̃
Lt
)

∂vec (Lt)′
+
∂vec (Dt)

∂vec (Lt)′
(21)

ith another useful formula
∂vec

(
M′M

)
∂vec (M)′

=
(
In2 + Jn,n

) (
In ⊗ M′

)
where M ∈ Rm×n, and Jm,n ∈ Rmn×mn is the vectorized transpose matrix, i.e. vec

(
M′
)

= Jm,nvec (M). Furthermore, we have

∂vec
(̃
Lt
)

∂vec (Lt)′
=

⎛⎜⎜⎝
Q1,t 0 · · · 0
0 Q2,t · · · 0
...

. . .
...

0 0 · · · QN,t

⎞⎟⎟⎠ , Qi,t =
Ik√

1 + λ′

i,tλi,t

−
λi,tλ

′

i,t(
1 + λ′

i,tλi,t
)3/2

or i = 1, . . . ,N . (The denominator on the final term in the above equation corrects a typo in Opschoor et al., 2021). The
parsity of

(
IN ⊗ L̃′

t

)
and ∂vec

(̃
Lt
)
/∂vec (Lt)′ simplifies product of those two factors to

(
IN ⊗ L̃′

t

)
·
∂vec

(̃
Lt
)

∂vec (Lt)′
=

⎛⎜⎝̃L′
tQ1,t · · · 0
...

. . .
...

0 · · · L̃′
tQN,t

⎞⎟⎠ . (22)

e define Tdiag as a N2
× N transformation matrix such that vec (A) = Tdiag · a where A is a N × N diagonal matrix with

N × 1 vector a on the diagonal. Then,

∂vec (Dt)

∂vec (Lt)′
= Tdiag ·

∂
[
σ 2
1,t , . . . , σ

2
N,t

]′
∂vec (Lt)′

= Tdiag ·

⎛⎜⎜⎜⎜⎜⎝
−2λ′

1,t(
1+λ′

1,tλ1,t

)2 · · · 0

0
. . . 0

0 · · ·
−2λ′

N,t(
′

)2

⎞⎟⎟⎟⎟⎟⎠ . (23)
1+λN,tλN,t
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F
η

w
m

S
η

w

or the last factor in Eq. (19), recall that ηt in Eq. (9) is a vector of distinct factor loadings and ηt,i denotes ith element of
t . Lt is written as

Lt =

2G∑
i=1

ηt,i · S ′

i

Si =

⎛⎜⎜⎜⎜⎝
δ1,iιN1 δG+1,iιN1 0 · · · 0

δ2,iιN2 0 δG+2,iιN2

...
...

...
. . . 0

δG,iιNG 0 · · · 0 δ2G,iιNG

⎞⎟⎟⎟⎟⎠ ∈ RN×(G+1)

here ιp is a p × 1 vector filled with ones, δi,j = 1 if i = j and zero otherwise, Ng for g = 1, . . . ,G is the number of
embers in group g such that N =

∑G
g=1 Ng . Then

∂vec (Lt)
∂η′

t
=
(
vec

(
S ′

1

)
, . . . , vec

(
S ′

G

)
, vec

(
S ′

G+1

)
, . . . , vec

(
S ′

2G

))
∈ R(G+1)N×2G. (24)

Thus, the score expressed in Eq. (19) is obtained by combining Eqs. (20), (21), (22), (23), and (24).

A.3. Variance targeting

The number of parameters to estimate in the proposed skewed t copula with GAS dynamics is 2G + 6, and when
G is large estimating all the parameters at once is not feasible. We adopt a two-step approach, so-called “variance
targeting,” to eliminate the need to numerically optimize over the intercept parameters

[
ωM

1 , . . . , ω
M
G , ω

C
1 , . . . , ω

C
G

]
.

pecifically, under the stationarity assumption, the unconditional expectation of all distinct factor loadings in Eq. (8),
t =

[
λM1,t , . . . , λ

M
G,t , λ

C
1,t , . . . , λ

C
G,t

]′ is
η̄ = ω + B · η̄

here η̄ ≡ E
[
ηt
]
, ω ≡

[
ωM

1 , . . . , ω
M
G , ω

C
1 , . . . , ω

C
G

]′ and B = diag
(
βM , . . . , βM , βC , . . . , βC

)
∈ R2G×2G, so if η̄ is estimated

from data in a first step, ω can be replaced with (I2G − B)ˆ̄η and only
[
αM , βM , αC , βC , ν, ζ

]
are left to be estimated

numerically in a second step.
Define a (G + 1)× G matrix L̄ filled with elements of η̄ as

L̄′
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

E
[
λM1,t

]
v1

E
[
λC1,t

]
v1

0 · · · 0
E
[
λM2,t

]
v2

0
E
[
λC2,t

]
v2

· · · 0
...

...
...

. . .
...

E
[
λMG,t

]
vG

0 0 · · ·
E
[
λCG,t

]
vG

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where vi ≡

√
1 + E

[
λMi,t
]2

+ E
[
λCi,t
]2, then the model implied correlation matrix of within- and across-group is obtained

by L̄′L̄. The corresponding unconditional correlation matrix based on samples xit = Φ−1 (uit) is denoted by Ω̂ ∈ RG×G

where the gth diagonal element is the average correlation of any pair of variables belonging to group g and a (i, j) element
is the average correlation of any pair of variables belonging to group i and group j. Then η̄ is estimated by minimizing
the difference between the sample (Ω̂) and model-implied correlation matrices:

ˆ̄η = argmin
η̄

[
vech

(
Ω̂ − L̄′L̄

)]′

vech
(
Ω̂ − L̄′L̄

)
In most variance targeting applications, the estimation of the intercept can be done analytically. Here it requires numerical
optimization, however it is extremely fast.

A.4. Proof of Theorem 1

Firstly, define the profile estimator

θ̃T (Γ ) = argmax
θ

1
T

T∑
log c (ut; θ,Γ ) (25)
t=1

21
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A
ssumptions 1, 2(a) and 3(a) are sufficient for θ̃T (Γ )
p

→ θ̃
∗

(Γ ) for each Γ ∈ G, see White (1994, Theorem 3.5) for
example. Next define the sample and population profile likelihoods as:

Q̄T (Γ ) =
1
T

T∑
t=1

log c
(
ut; θ̃T (Γ ) ,Γ

)
Q ∗ (Γ ) ≡ E

[
log c

(
ut; θ̃

∗

(Γ ) ,Γ

)]
Define the infeasible version of the sample likelihood using the population copula parameter as

Q̇T (Γ ) ≡
1
T

T∑
t=1

log c
(
ut; θ̃

∗

(Γ ) ,Γ

)
Consider a mean-value expansion of the sample objective function:

log c
(
ut; θ̃T (Γ ) ,Γ

)
= log c

(
ut; θ̃

∗

(Γ ) ,Γ

)
+ ∇θ log c

(
ut; θ̃

∗

(Γ ) ,Γ

)′ (
θ̃T (Γ )− θ̃

∗

(Γ )

)
(26)

+
1
2

(
θ̃T (Γ )− θ̃

∗

(Γ )

)′

∇θθ log c
(
ut; θ̈

∗

,Γ

)(
θ̃T (Γ )− θ̃

∗

(Γ )

)
where θ̈

∗

= λθ̃T (Γ )+ (1 − λ) θ̃
∗

(Γ ) for some λ ∈ [0, 1]

Then summing the equation above over t = 1, . . . , T we have

Q̄T (Γ )− Q̇T (Γ ) =

(
1
T

T∑
t=1

∇θ log c
(
ut; θ̃

∗

(Γ ) ,Γ

))′ (
θ̃T (Γ )− θ̃

∗

(Γ )

)
(27)

+
1
2

(
θ̃T (Γ )− θ̃

∗

(Γ )

)′ 1
T

T∑
t=1

∇θθ log c
(
ut; θ̈

∗

,Γ

)(
θ̃T (Γ )− θ̃

∗

(Γ )

)
Assumptions 2(b) and 3(a) imply that 1

T

∑T
t=1 ∇θ log c

(
ut; θ̃

∗

(Γ ) ,Γ

)
p

→ 0, as usual for M-estimation. Assump-

tion 3(c) ensures the Hessian term has a finite limit. Thus we have Q̄T (Γ )− Q̇T (Γ ) = op (1). Further, by Assumptions 1
and 2(a) we also have Q̇T (Γ ) − Q ∗ (Γ ) = op (1), and so we have Q̄T (Γ ) − Q ∗ (Γ ) = op (1). Thus the sample objective
function is pointwise (in Γ ) consistent for the population objective function. Since the parameter space is discrete, uniform
convergence simplifies to pointwise convergence (see, e.g., Choirat and Seri, 2012). This implies the estimator obtained
by maximizing the sample objective function is consistent for the parameter that maximizes the population objective
function. Since the population objective function is unaffected by re-labeling of clusters, any element of G0 maximizes the
population objective function. We thus have Pr

[
Γ̂T ∈ G0

]
→ 1 as T → ∞, completing the proof.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.07.012.
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