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Abstract

This paper proposes a dynamic multi-factor copula for use in high dimensional time series ap-

plications. A novel feature of our model is that the assignment of individual variables to groups

is estimated from the data, rather than being pre-assigned using SIC industry codes, market cap-

italization ranks, or other ad hoc methods. We adapt the k -means clustering algorithm for use in

our application and show that it has excellent finite-sample properties. Applying the new model to

returns on 110 US equities, we find around 20 clusters to be optimal. In out-of-sample forecasts,

we find that a model with as few as five estimated clusters significantly outperforms an otherwise

identical model with 21 clusters formed using two-digit SIC codes.
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1 Introduction

Models for the dependence structure of a large collection of variables play an important role in risk

management and regulation, yet there is a relative paucity of such models. A key impediment is

that these models need to be parsimonious enough to avoid the inevitable curse of dimensionality

that arises in high-dimensional applications, yet flexible enough to capture the time-varying and

potentially asymmetric nature of the dependence between economic variables.

We propose a multi-factor, high-dimensional, copula model where the assignment of individual

variables to groups or clusters is estimated from the data. Existing approaches for similar problems

(see Creal and Tsay, 2015, Bester and Hansen, 2016, and Opschoor et al., 2020, for example) use

pre-specified cluster assignments, based on SIC industry codes, or market capitalization deciles, or

similar. In the absence of a computationally feasible data-driven alternative such approaches are

reasonable, however it is not obvious that such assignments are optimal empirically. We propose

a method based on k -means clustering (see, e.g., Hastie et al., 2009) to estimate the optimal

assignments of variables to clusters, and we model dynamics in the conditional copula using a GAS

model (Creal et al., 2013; Harvey 2013).

The estimation of the optimal cluster assignments for a high-dimensional dynamic copula model

requires us to overcome two computational hurdles. Firstly, rather than the simulation-based factor

copula model of Oh and Patton (2017), we adopt and extend the model of Opschoor et al. (2020),

which has a closed-form likelihood and is thus much faster to estimate. Our extension enables

us to capture asymmetric dependencies which can be important for equity returns, see Ang and

Chen (2002), Hong et al. (2007) and Patton (2013) amongst many others. Secondly, we exploit

the fact that the presence of clusters in the dynamic model implies the presence of clusters in

the (misspecified) static version of the model. The static version of the model is naturally much

faster to estimate than the dynamic version. These two techniques, combined with extensive use

of parallel processing, make the estimation of optimal cluster assignments feasible.

We prove the consistency of the estimated cluster assignments under very mild conditions, and

we find in realistically-designed simulations that our estimation method is remarkably accurate.
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We apply the new model to daily returns on 110 U.S. equities over the period 2010-2019, and

consider a range of choices for the number of clusters in the model. We find that the BIC optimal

number of clusters is around 20, and moreover find that a model with just five estimated clusters

outperforms an otherwise identical model based on 21 clusters formed using two-digit SIC groupings.

In out-of-sample forecast comparisons, we find that the model with estimated cluster assignments

significantly outperforms one with clusters formed using two-digit SIC codes.

This paper bridges two lines in the extant literature. Most directly, this paper is related to

the literature on high-dimensional methods for financial risk measurement. Early work focused on

improved methods for estimating large covariance matrices. For example, Fan et al. (2008, 2013)

propose using a factor model where the number of factors grows with the number of variables,

with the latter of these papers also accommodating approximate factor models. Tao et al. (2011)

consider high-dimensional covariance matrix estimation based on a combination of high- and low-

frequency data, also using a factor model. Hautsch et al. (2012) propose a method to estimate

covariance matrices using high frequency data from assets with varying degrees of liquidity. More

recent work in this area has included a focus on copula-based models, such as Creal and Tsay

(2015) who proposed a high-dimensional stochastic copula with a factor structure, and Oh and

Patton (2018) and Opschoor et al. (2020) who consider factor copulas with dynamics driven by a

GAS specification. Christoffersen et al. (2018) propose a high-dimensional dynamic copula model

with DCC (Engle, 2002) type dynamics. As far as we know, our paper is the first to consider a

high-dimensional copula model with estimated group assignments.

This paper is also related to the fast-growing area of clustering and classification methods in

economics and finance. Lin and Ng (2012) and Bonhomme and Manresa (2015) consider linear

panel models with unknown group assignments which are estimated using k -means clustering. Su

et al. (2016, 2019) consider panel models with group assignments estimated using a new type of

LASSO estimator. The latter of these papers allows the parameters of the panel model to vary

nonparametrically with time. Vogt and Linton (2020) also consider nonparametric regression for

a panel of data with unknown group assignments. Francis et al. (2017) cluster countries by their

business cycle patterns, and Patton and Weller (2019) consider clustering stocks by the risk premia
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they generate. This research area is very active and this review is surely incomplete already.

The remainder of the paper is structured as follows. In Section 2 we present the dynamic copula

models considered in this paper, and in Section 3 we discuss how we can optimally assign variables

to clusters. Section 4 presents the results of a simulation study of the finite-sample performance of

the proposed model and estimation method. Section 5 applies the new methods to a collection of

110 stock returns. Section 6 concludes, and the appendix contains proofs and technical details. A

web appendix contains additional analyses and material.

2 A dynamic skewed t factor copula model

A copula is an N -dimensional distribution function with Unif (0, 1) margins, and even when N

is only moderately-sized the curse of dimensionality arises. A common approach to overcome this

in other contexts is to impose some sort of factor structure, and recent work on high-dimensional

copula models has moved in this direction, see Oh and Patton (2017, 2018), Creal and Tsay (2015)

and Opschoor et al. (2020). An attractive feature of the latter two papers is that the copula

likelihood is available in closed form. Motivated by previous work showing that equity returns

exhibit asymmetric dependence (see, e.g., Ang and Chen, 2002, Hong et al., 2007, and Patton,

2013), we consider an extension of the model proposed by Opschoor et al. (2020) to allow for

asymmetric dependence, namely a skewed t factor copula:

ui,t = Tskew (xi,t; ν, ζ) , i = 1, · · · , N, (1)

xi,t =
√
Wt

(
λ̃
′
i,tzt + σi,tεi,t

)
+ ζWt, (2)

where zt ∼ iid N (0, Ik) , εi,t ∼ iid N (0, 1) , (3)

Wt ∼ iid IG
(ν

2
,
ν

2

)
, Wt⊥zt⊥εi,t (4)

where Tskew (·; ν, ζ) denotes the univariate skewed t CDF of xi,t, with degrees of freedom parameter

ν ∈ (2,∞] and asymmetry parameter ζ ∈ [−1, 1].1 λ̃i,t is a k × 1 vector of scaled factor loadings,

1Creal and Tsay (2010) describe this copula but do not implement it or present results on its likelihood and scores.
As that paper notes, the presence of skewness implies that Tskew (·; ν, ζ) is not available in closed form, and Creal
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zt is a k × 1 vector of common latent factors and εi,t is an idiosyncratic shock, both Normally

distributed, and Wt is an inverse gamma variable. We define the k× 1 vector λ̃i,t and scalar σi,t as

λ̃i,t =
λi,t√

1 + λ′i,tλi,t
, σ2

i,t =
1

1 + λ′i,tλi,t
(5)

for a factor loading λi,t to maintain the unit variance of λ̃
′
i,tzt + σi,tεi,t. The skewed t copula nests

the Student’s t copula when ζ = 0, and the Gaussian copula when ζ = 0 and ν → ∞. Given this

structure, the correlation matrix, Rt, of
[
λ̃
′
1,tzt + σ1,tε1,t, . . . , λ̃

′
N,tzt + σN,tεN,t

]′
is

Rt = L̃′tL̃t + Dt (6)

where L̃t =
[
λ̃1,t, . . . , λ̃N,t

]
and Dt = diag

(
σ2

1,t, . . . , σ
2
N,t

)
. The skewed t copula then contains

time-varying factor loadings
[
λ′1,t, . . . · · · ,λ′N,t

]
and static shape parameters [ν, ζ]. Creal and Tsay

(2015) show that a factor copula structure of the sort in equation (2) facilitates the evaluation of

the copula density even for high dimensions since the inverse and determinant of Rt are available

in closed form and require only lower dimension inversions and determinant calculations:

R−1
t = D−1

t −D−1
t L̃′t

(
Ik + L̃tD

−1
t L̃′t

)−1
L̃tD

−1
t

|Rt| =
∣∣∣Ik + L̃tD

−1
t L̃′t

∣∣∣ · |Dt| .

We consider a factor structure determined by a (G+ 1)× 1 vector zt of common latent factors

and a loading matrix L̃t. Specifically, we employ one common factor and G group-specific factors

where the common factor is shared by all variables, and each group-specific factor is shared only

by members of that cluster. We allow the factor loadings to vary across groups (corresponding to

the most flexible model considered by Opschoor et al., 2020). For example, assuming there are G

and Tsay (2010) omit it from their analysis. In Appendix A.1 we describe a simple and computationally tractable
method to overcome this diffi culty.
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groups and each group has only two members, zt and L̃t are determined by

zt ∼ N (0, IG+1)

L̃′t =



λ̃M,1,t λ̃1,1,t 0 0 · · · 0

λ̃M,2,t 0 λ̃2,2,t 0 · · · 0

λ̃M,3,t 0 0 λ̃3,3,t 0 0

...
...

... 0
. . . 0

λ̃M,G,t 0 0 0 0 λ̃G,G,t


⊗

1

1

 (7)

where ⊗ denotes the Kronecker product.

Next, we formulate the dynamics of 2G distinct factor loadings based on the generalized au-

toregressive score model proposed by Creal et al. (2013) and Harvey (2013). Specifically, we model

those dynamics by:

λM,g,t+1 = ωMg + αM
∂ log cSkewt,t (xt; Rt, ν, ζ)

∂λM,g,t
+ βMλM,g,t, for g = 1, ..., G (8)

λg,g,t+1 = ωCg + αC
∂ log cSkewt,t (xt; Rt, ν, ζ)

∂λg,g,t
+ βCλg,g,t, for g = 1, ..., G

where xt = T−1
skew (ut; ν, ζ), cSkewt,t (·; Rt, ν, ζ) is the conditional skewed t copula density and[

ωM1 , . . . , ωMG , ω
C
1 , . . . , ω

C
G, α

M , βM , αC , βC
]′
is the vector of parameters determining the dynam-

ics of time varying factor loadings. Obviously the key component is the score of the conditional

copula ∂ log cSkewt,t (xt; Rt, ν, ζ) /∂ηt where ηt is a (2G× 1) vector of all dynamic factor loadings:

ηt = [λM,1,t, . . . , λM,G,t, λ1,1,t, . . . , λG,G,t]
′ . (9)

The skewed t copula density and the analytical derivation of its score are given in Appendix A.1.

and A.2. respectively.
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3 Clustering and factor copulas

3.1 Clustering via a misspecified model

While the closed-form density and GAS equations presented in the previous section greatly reduce

the computational burden of estimating a dynamic high-dimensional copula model, this model is

still too costly to use when combined with an EM algorithm to estimate group assignments from

the data. In this section we show that the structure of our model is such that we can estimate

group assignments based on a simpler, misspecified, model, overcoming this hurdle.

Firstly, consider a static skew t factor copula. The factor loading vectors (λi) obey a cluster

structure, in that all variables in the same cluster have the same loading vector. From equation (5)

above, given the factor loadings we can obtain the normalized loadings and idiosyncratic variances,

λ̃i,t and σ2
i,t, and from those we obtain the correlation matrix:

R = L̃′L̃ + D

where L̃ =
[
λ̃1, . . . , λ̃N

]
and D = diag

(
σ2

1, . . . , σ
2
N

)
. The cluster structure embedded in λi implies

thatR exhibits a block structure, which, as discussed above, can be used to speed up matrix inverse

and determinant calculations. Further, we note that the block structure inR holds regardless of the

shape parameters (ν, ζ) . Thus a Normal factor copula, where the shape parameters are incorrectly

fixed at (ν, ζ) = (∞, 0) will exhibit the same cluster structure as the more complicated skew t

factor copula. This means that the cluster assignments implied by the Normal factor copula are

identical to the skew t factor copula, permitting us to use the simpler model to estimate cluster

assignments, with the usual caveat that these estimates are likely less precise than those based on

the true model.

Next consider a time-varying skew t factor copula. In this case the time-varying correlation

matrix Rt = L̃′tL̃t + Dt obeys a block structure, and while the values taken by the elements

of Rt vary over time, the block structure is constant due to the maintained assumption that

group assignments are stable. The conditional marginal copula of any pair (ui,t, uj,t) is determined
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completely by (Ri,j,t, ν, ζ) , and any pair of variables (i, j) belonging to groups (g1, g2) will have the

same distribution as any other pair (i′, j′) belonging to the same two groups. The unconditional

marginal copula is just an integral of the conditional marginal copula, and so the unconditional rank

correlation matrix, %̄ ≡Corr [ut] , exhibits the same cluster structure as the conditional correlation

matrix Rt, opening up the possibility of using a constant Normal factor copula to estimate group

assignments for a dynamic skew t factor copula.

One complication arises when using a static copula to determine group assignments for a dy-

namic DGP: since we are taking time series averages, it is possible that the unconditional rank

correlation matrix %̄ is more homogeneous than the conditional correlation matrix Rt, making it

harder to identify group assignments. That is, clusters may not be as well separated in the ap-

proximating model as in the true model. The concept of “well separatedness” is a finite-sample

issue, and we examine it in detail in our simulation study. To preview our findings, our simulations

indicate that this is not a significant concern here.

3.2 Estimation of cluster assignments and copula parameters

The main advantage of using a factor copula comes from the dimension reduction enabled by

classifying variables into a relatively small number of clusters and assuming identical factor loadings

within each cluster. In the existing literature, variables are clustered according to observable

characteristics, such as SIC industry classifications. Given those cluster assignments, the factor

copula can be estimated via maximum likelihood under standard conditions, however, the ex ante

assignments of variables to clusters may not provide the best fit to the data.

We propose an iterative method which estimates cluster assignments, and copula parameters,

directly from the data, exploiting an expectation-maximization (EM) algorithm. This algorithm

cycles between (1) estimating copula parameters given cluster assignments and (2) estimating clus-

ter assignments given the estimated copula parameters. Let Γ = [γ1, ..., γN ] where γi ∈ {1, ..., G}

for i = 1, ...., N , denote the vector of cluster assignments, and let θ =
[
λM1 , ..., λMG , λ

C
1 , ..., λ

C
G

]
be

the vector of market and cluster-specific factor loadings used to obtain the correlation matrix para-

meter for the static Gaussian factor copula, with log-likelihood denoted log c (·). Given an estimate
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of the cluster assignment vector, Γ̂(s) the log-likelihood of the copula model is maximized over the

copula parameters θ to yield:

θ̂
(s+1)

= arg max
θ

Q̂T

(
θ,Γ̂(s)

)
(10)

where Q̂T (θ,Γ) ≡ 1

T

T∑
t=1

log c (ut;θ,Γ) (11)

Then, given copula parameter θ̂
(s+1)

, the log-likelihood is maximized over cluster assignments γi

for i = 1, ..., N :

γ̂
(s+1)
i = arg max

g∈{1,...,G}
Q̂T

(
θ̂

(s+1)
,Γ̃

(s)
i,g

)
(12)

where Γ̃
(s)
i,g is equal to Γ̂(s) except that the ith element is set equal to g.

The copula parameter in equation (10) is estimated through a typical gradient-based optimiza-

tion, while we update the each variable’s cluster assignment (equation 12) by re-optimizing the

cluster assignments one variable at a time, motivated by the method underlying k -means cluster-

ing. This step requires only G × N likelihood evaluations, which makes the cluster assignment

estimation feasible and fast.2 The iteration between equation (10) and equation (12) continues

until convergence. Convergence to a local optimum is guaranteed, and we use 100 randomly-chosen

starting values to improve the accuracy of the estimator. Our simulation study below confirms this

to be a suffi cient number of starting values.3 Denote the resulting estimates as
(
θ̂T , Γ̂T

)
.

We next provide conditions under which the estimated cluster assignments, Γ̂T , are consistent

for the true cluster assignments, Γ0. This is a non-standard estimation problem as the parameter Γ0

is discrete: each of its N elements can take one of only G values.4 Let G denote the parameter space

for Γ. Since the labels attached to clusters are arbitrary (i.e., the objective function is invariant

2Other estimation algorithms for k -means type problems have been proposed in the computer science/machine
learning literature. Given the very good finite-sample performance we find for the algorithm described here, when a
suffi cient number of starting values is used, we did not consider any alternatives.

3 In our simulations we find that between 25% and 45% of starting values lead to the global optimum, emphasizing
that more than a single starting value is required, and also that the problem of convergence to local optima can be
overcome with a reasonable number of starting values.

4 In some k -means applications, a cluster may contain just a single member. Our factor copula model, which has
one common factor and G cluster-specific factors, is unidentified if any cluster has fewer than two members and so
we restrict G to impose this condition.
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to relabeling the clusters), there is a set of correct cluster labels, rather than just a singleton; let

G0 denote this set. To state the assumptions we define the following:

θ̃
∗

(Γ) = arg min
θ∈Θ

E [log c (ut;θ,Γ)] (13)

θ∗ = arg min
θ∈Θ

E [log c (ut;θ,Γ0)] (14)

Note that the parameter θ∗ is a pseudo-true parameter: it is the optimal parameter for the mis-

specified static Gaussian copula model. We obtain this parameter as a by-product of estimating

the cluster assignments, but we have no subsequent use for it.

Assumption 1: {ut} is a stationary ergodic sequence.

Assumption 2: For each Γ ∈ G, (a) |log c (ut;θ,Γ)|1 <∞∀ θ ∈ Θ, (b)
∥∥∥∇θ log c

(
ut; θ̃

∗
(Γ) ,Γ

)∥∥∥
1
<

∞, and (c) ‖∇θθ log c (ut;θ,Γ)‖1 <∞ ∀ θ ∈ Θ.

Assumption 3: (a) For each Γ ∈ G, lim supT→∞

[
Q̂T

(
θ̃
∗

(Γ) ,Γ
)
− Q̂T (θ,Γ)

]
> 0 ∀ θ ∈

Θ\ηT (ε) , where ηT (ε) is an ε-neighborhood of θ̃
∗

(Γ) , and (b) lim supT→∞

[
Q̂T (θ∗,Γ0)− Q̂T (θ,Γ)

]
>

0 ∀ (θ,Γ) ∈ {Θ \ ηT (ε)} × {G \ G0} .

Assumption 1 allows for general forms of serial dependence in the data (e.g., mixing). Impor-

tantly, given that we expect the static Gaussian copula model to be misspecified, it does not require

correct specification of the conditional copula. Assumption 2, combined with Assumption 1, en-

sures that the log-likelihood and its first and second derivatives each obey a law of large numbers.

Assumption 3 is a standard “identifiable uniqueness”assumption required for estimation, see De-

finition 3.3 of White (1994). In our application, it requires that the clusters are “well separated.”

If the clusters are too close together, then identification of the clusters breaks down. A similar

assumption is made in, e.g., Hahn and Moon (2010) and Bonhomme and Manresa (2015). The

proof of the following theorem is in Appendix A.4.

Theorem 1 Under Assumptions 1-3 we have Γ̂T
p→ Γ0 as T →∞, up to re-labeling of the clusters.

Results from related contexts suggest that if the series {ut} generated by equation (1) satisfies
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certain mixing properties, a large deviations principle may be applied (e.g., see Hahn and Moon,

2010, Choirat and Seri, 2012, and Bonhomme and Manresa, 2015). This enables obtaining a rate

result, refining the consistency result in Theorem 1. Specifically, estimated cluster assignments have

been shown in some applications to be superconsistent, with estimation errors taking the form:

Pr
[
Γ̂T 6= Γ0

]
≤ C1 exp {−C2T

κ} (15)

for some constants C1, C2, κ > 0.5 A result of the form in equation (15) implies that estimation error

in estimated cluster assignments vanishes much faster than the usual
√
T rate, and the simulation

results presented in the next section reveal that cluster assignments are indeed estimated extremely

well. Unfortunately, general results on the mixing properties of GAS processes are not yet available

in the literature, and so we do not pursue a result of this nature here.6

With the estimated the cluster assignments Γ̂T in hand, we estimate the parameters of the

skewed t copula with GAS dynamics:

ψ̂T = arg max
ψ

T∑
t=1

log cSkewt,t

(
ut;ψ| Γ̂T

)

where ψ=
[
ωM1 , . . . , ωMG , ω

C
1 , . . . , ω

C
G, α

M , βM , αC , βC , ν, ζ
]′
. As the parameter ψ is large, we adopt

a “variance targeting” approach to separately estimate the intercept parameters
[
ωM1 , . . . , ωCG

]
,

leaving us with only six parameters that require diffi cult numerical optimization. Details on this

method are described in Appendix A.3.

4 Simulation study

We investigate the finite-sample performance of the estimation method proposed above in a sim-

ulation study designed to match the key features of our empirical application below. We consider

5For example, Hahn and Moon (2010) provide conditions under which alpha mixing implies κ = 1/2, and phi
mixing implies κ = 1. The constants C1, C2 vary with the specifics of the application.

6Related to the GAS context considered here, Carrasco and Chen (2002) and Hafner and Preminger (2009) show
that univariate and multivariate GARCH processes, respectively, are beta mixing. Some results on the stationarity
and ergodicity of univariate GAS processes are presented in Blasques et al. (2014).
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a sample size of T = 1000 and a collection of N = 100 variables, and three different factor cop-

ulas: a Gaussian factor copula, a t factor copula, and a skew t factor copula, corresponding to

[ν, ζ] = [∞, 0] , [5, 0] , [5,−0.1] respectively. For illustration, a sample of bivariate data from

these three copulas, as well as a skew Normal copula which we omit from the simulation study, is

presented in Figure 1. In all cases the linear correlation is 0.5, and to aid the interpretation we

transform draws from these copulas using the inverse Normal CDF, and so these four distributions

all have N (0, 1) marginal distributions. In the upper-left panel of Figure 1, we see the familiar

bivariate Normal distribution, with low dependence in the tails and displaying radial symmetry.

The upper-right panel displays the Student’s t copula, which is also radially symmetric but exhibits

tail dependence, which manifests in this figure as realizations that lie close to the main diagonal in

the upper and lower joint tails. The lower two panels present asymmetric copulas, with dependence

being stronger in the lower tail than the upper tail, particularly for the skew t copula which exhibits

non-zero tail dependence.

[ INSERT FIGURE 1 ABOUT HERE ]

We consider two cases for the dynamics of the copula: the benchmark static case, in which

the conditional copula is constant, and the case of empirical interest, where the parameters of

the copula evolve according to the GAS model introduced in Section 2. In both cases we set the

number of clusters to be G = 10, with an equal number of variables allocated to each cluster. In

the static case, we assume that the loadings across groups on the market factor ranges from 0.25 to

2.50 in increments of 0.25, while the loadings on the group specific factors range from 2.5 to 0.25

in increments of -0.25. This implies that some groups are more influenced by the common market

factor than their group factor, while the reverse is true for other groups, roughly mimicking the

differences between industries like manufacturing and mining/construction. Naturally, in this case

the GAS dynamic parameters
(
αM , βM , αC , βC

)
are all zero.

In the dynamic case, we set the intercept parameters
(
ωMg , ω

C
g

)
equal to 0.04 for all groups,

which, combined with the common values for the GAS dynamic parameters
(
αM , βM , αC , βC

)
=

(0.02, 0.9, 0.02, 0.9), means that all groups have the same average loading on the market factor and
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on their group-specific factor. This homogeneity of loadings makes the estimation problem more

diffi cult than if the loadings had different long-run averages, and is designed to further interrogate

the ability of our clustering method to correctly assign variables to groups.

Table 1 presents the results for the static copula case. In Panel A we see that the estimated

parameters are centered on the true values, for all three copulas, and the standard errors on the

factor loadings increase slightly (on average) as we move from Gaussian to t to skew t copulas.

Panel B of Table 1 reports the striking result that in 100% of the simulations there were zero

variables assigned to an incorrect group. That is, in every simulation the clustering algorithm was

able to correctly allocate variables to their groups.7 In the Gaussian case, the clustering step is

done using the correct model (a static Gaussian copula) while in the other two cases the model

used in the clustering step is misspecified. Panel B reveals that this misspecification leads to no

errors in the classification of these variables.8 This is consistent with the exponential convergence

rate (see equation 15) found in other contexts for cluster assignment estimators.

Panel C of Table 1 reports the average estimation time (using a machine with 28 cores) and

number of EM iterations required for convergence, and reveals no large differences in the diffi culty

of estimation across these models.

[ INSERT TABLE 1 ABOUT HERE ]

Table 2 presents the results for the dynamic copula case. We again see that the estimated

parameters are centered on the true values, and in Panel B we see the remarkable result that the

clustering algorithm described above is able to correctly assign every variable to its group in 100%

of simulations. Recall that the estimated cluster assignments are based on a static Gaussian copula

model, which is misspecified in all three cases considered in Table 2. That model is shown in Table

2 to be rich enough to reveal the true clusters in the data even though it is misspecified, confirming

the discussion in Section 3.1. Panel C of Table 2 shows that the dynamic model is about 35%

7Recall that groups are identified only up to a re-labelling; we account for this when computing the accuracy of
the estimated group assignments.

8The clustering algorithm is not, of course, infallible: its accuracy depends on the structure of the DGP and the
data available. In situations where the clusters are close together relative to sampling variation, estimated cluster
assignments will inevitably contain errors. In our realistically-calibrated simulation design, the clusters appear to be
suffi ciently well separated that cluster assignments can be very accurately estimated.
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slower to estimate than the static model.9

Overall, the results in Tables 1 and 2 provide strong reassurance that the models and estimation

methods proposed in Section 3 work well in finite samples, enabling us to take these to real data

in the next section.

[ INSERT TABLE 2 ABOUT HERE ]

5 Empirical application

5.1 Data and summary statistics

We study daily equity returns over the period from January 4, 2010 to December 31, 2019, a total

of T = 2159 trade days. Every stock that was ever a constituent of the S&P 100 index during this

sample, and which traded for the full sample period, is included in the data set, yielding a total of

N = 110 firms. A list of those firms, including their names, ticker symbols, and two-digit Standard

Industrial Classification (SIC) codes, are provided in Table S1 in the supplemental appendix.

Table 3 presents summary statistics of the data and parameter estimates for the mean, variance

and marginal distribution models. Panel A presents unconditional sample moments of the daily

returns for each stock, and these moments are comparable to those observed in other studies. Given

the skewness and kurtosis estimates reported in Panel A, our marginal distribution model combines

an AR(1) for the conditional mean, GJR-GARCH(1,1) for the conditional variance, and a skewed

t for the marginal distribution of the standardized residuals:

ri,t = φ0i + φ1iri,t−1 + εi,t

hi,t = $i + βihi,t−1 + αiε
2
i,t−1 + κiε

2
i,t−11 {εi,t−1 ≤ 0}

εi,t√
hi,t

∼ iid Skew t (ξi, ψi)

where hi,t is the conditional variance at time t for firm i and Skew t is the univariate skewed t

9The estimation of the cluster assignments takes about 92% of the total computation time; the average computation
time with the true cluster assignments known is only around 0.6 hours.
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distribution of Hansen (1994) with the tail parameter ξi and the asymmetry parameter ψi. Using

quasi-maximum likelihood, we estimate the conditional mean and variance models, then given those

estimated standardized residuals, we estimate the skewed t parameters. Panel B of Table 3 provides

the estimation results of the marginal distribution model, and the values there are consistent with

those reported in the empirical finance literature (see, e.g., Bollerslev, Engle, and Nelson 1994).

The standardized residuals still indicate substantial skewness (ψ̂ = −0.027 on average) and kurtosis

(ξ̂ = 5.089 on average). Given the marginal model parameters we obtain the probability integral

transforms, uit, used in the estimation of the copula.

Panel C of Table 3 presents Pearson’s linear correlations and Spearman’s rank correlations

between those standardized residuals whose quantiles between 5% and 95% range from 0.17 to 0.49

and from 0.20 to 0.53, respectively, indicating heterogeneous pairwise dependence, and motivating

our flexible factor copula specification presented in Section 2.

[ INSERT TABLE 3 ABOUT HERE ]

5.2 Estimated cluster assignments

We firstly use the method described in Sections 3 to estimate the group assignments for each

variable. To determine the optimal number of groups, we use the BIC for the fitted static Gaussian

copula model.10 The value of the BIC for each choice of G is plotted in Figure 2, along with

the values of the BIC obtained when using one-digit or two-digit SIC codes to determine group

assignments. In our sample there are seven one-digit SIC groups and 21 two-digit SIC groups.11

Figure 2 reveals that the BIC from a model using only four estimated group assignments dominates

the seven one-digit SIC groups, and a model with just five estimated group assignments beats the

21-group model based on two-digit SIC codes. These rankings reveal the gains available from a

10The BIC is computed as BIC (G) = −2
∑T
t=1 log c

(
ut; θ̂

(G)

T , Γ̂
(G)
T

)
+ 2G log (T ) , where G denotes the number of

clusters. We use the notation (θ̂
(G)

T , Γ̂
(G)
T ) to emphasize that the parameters of the copula vary with G.

11Our model cannot accommodate groups with only one member, and when estimating with SIC-based clusters we
address this by moving stocks that are a singleton in their group to the SIC group with which they have the highest
correlation. Specifically, in the one-digit clustering model, Weyerhaeuser (WY) is the only stock in the one-digit SIC
group 0, and we move it to SIC group 3. In the two-digit clustering model, FCX (10), NKE (30), WY (08), FDX (45)
and V(61) are all singletons, and those are moved into the two-digit SIC groups 13, 37, 37, 42, and 60, respectively.
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data-driven assignment of stocks to groups, rather than assignments based on SIC codes.12

The optimal number of estimated groups, according to the BIC, is 21, which is coincidentally

the same as the number of two-digit SIC groups.13 We note that the BIC curve is relatively flat

near the optimum, indicating that choosing G between 20 and 25 leads to approximately the same

fit; i.e., there is some robustness to the specific choice of G.

[ INSERT FIGURE 2 ABOUT HERE ]

Table 4 presents the estimated group assignments for the 110 stocks in our sample, along with

each stock’s SIC code. Some of the estimated groups line up closely with a two-digit SIC group.

For example, the largest group (Group 1) is comprised of 13 stocks, ten of which have SIC code 28

(“Chemical & Allied Products”manufacturing). The three other stocks (Baxter, Medtronic and

United Health) have different SIC codes, but are clearly broadly in the same category as the rest of

this group. Group 5, as another example, looks clearly like a “Tech”group, and all but two members

have SIC code 73 (“Business Services”). The two listed with other codes are Apple (listed as 35,

“Industrial Machinery & Equipment”manufacturing) and Netflix (listed as 78, “Motion Pictures”).

Despite the different SIC codes, most investors would agree that Apple and Netflix fit neatly in a

cluster containing Google, Amazon and Ebay. Among the smaller clusters, we see some obvious

pairs of stocks grouped together: AT&T and Verizon, Lowes and Home Depot; Mastercard and

Visa; McDonalds and Starbucks.

Overall, the group assignments in Table 4 look economically plausible, in addition to represent-

ing a much better statistical fit according to the BIC. In Section 5.4 we conduct formal out-of-sample

forecast comparison tests to determine whether the improved in-sample fit leads to significantly

better out-of-sample forecasts.

[ INSERT TABLE 4 ABOUT HERE ]

12Opschoor et al. (2020) compare cluster assignments based on SIC codes with those based on some other common
characteristics: market capitalization (size), the book-to-market ratio (value), and past returns (momentum). They
find that SIC-based assignments easily dominates these alternatives.
13We used a set of 100 random starting values for Γ, the cluster assignment vector, in estimation, and did not use

information from SIC codes at all in the EM-based model.
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5.3 Estimated dependence time series

We now compare the fitted dependence time series from the two-digit SIC factor copula model and

the factor copula model with estimated group assignments. We use rank correlations as a summary

measure for the strength and direction of the dependence between assets implied by these models.

With a fully-specified copula model such as the ones employed here, it is also possible to extract

other dependence measures, such as tail dependence or probabilities of joint tail events, see e.g.

the measures in Giesecke and Kim (2011) and Oh and Patton (2018).

The complete rank correlation matrix is 110×110, and even just focusing on the blocks implied

by the factor structure embedded in the model the matrix is 21 × 21. As an initial summary

measure, we firstly consider the conditional rank correlation for pairs in the same group. Figure 3

plots these for three groups, along with the two-digit SIC group that best matches the estimated

group.14 ,15 The top panel compares estimated group 3 with SIC group 13. We observe that the two

conditional rank correlation paths track each other quite closely, but the rank correlations based on

estimated group assignments appear to adjust more quickly to news, and the SIC-based estimates

look somewhat like a rolling average of the path from the model with estimated group assignments.

A similar picture arises in the middle panel, comparing estimated group 7 with SIC group 36. It

appears that by getting group assignments that better match the data, the model is more quickly

able to react to information that suggests dependence has gone up or down.

The lower panel of Figure 3 compares estimated group 9 and SIC group 49, and represents a

particularly interesting comparison. Group 9 contains six members, and all of them are from SIC

group 49 (“Electric, Gas, & Sanitary Services,”in the “Transportation & Public Utilities”group).

There is just one other SIC group 49 stock in our sample (Williams, ticker WMB), and this stock

was estimated to belong to group 3, which is dominated by SIC group 13 members (SIC 13 is “Oil

& Gas Extraction”in the “Mining”group). From the firm’s description on its website, it conducts

a mix of activities captured by these SIC labels, and it turns out that our cluster assignment

14Figures S1-S2 in the supplemental appendix present other comparisons of fitted rank correlations from the two
models.
15For example, estimated Group 3 has eleven members, including all eight of the SIC group 13 stocks. Estimated

Group 7 has seven members including all five members of SIC group 36. Estimated Group 9 has six members and
all of them belong to SIC group 49; the single other SIC group 49 member was estimated to belong to Group 3.
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algorithm estimates it to be a better match with mining firms than with utilities firms. The lower

panel of Figure 3 shows that by removing just this one stock the within-group rank correlation rises

from around 0.55 to around 0.68. Moreover, we again see that the conditional rank correlations are

more dynamic in the model with estimated group assignments.

[ INSERT FIGURE 3 ABOUT HERE ]

The plots of conditional rank correlations in Figure 3 allow us to see differences in pairwise

dependence implied by the two models. For a more complete depiction of the differences implied

by the model in the upper panel of Figure 4 we plot the QLIKE distance measure between the full

110× 110 rank correlation matrices implied by the two models.16 When this measure is lower, the

rank correlation matrices are more similar. We see that the difference is largest in mid 2011, and

also large in late 2015, while it was relatively low in 2012. The middle panel of Figure 4 presents

the normalized sum of the first 22 eigenvalues of the model-implied rank correlation matrices. Both

of the models are based on a 22-factor model (one common factor and 21 group-specific factors),

and the sum of the first 22 eigenvalues provides a summary for how informative the factors are.17

We see that the sum is uniformly greater for the model with estimated group assignments than for

the model based on SIC group assignments. Note that the period when the two sums are furthest

apart corresponds to the period when the QLIKE distance is also the greatest, indicating that this

is one reason for the increased QLIKE distance. The lower panel of Figure 4 plots cross-sectional

dispersion in pairwise rank correlations. We see that this dispersion has been broadly increasing

over the sample period, and that periods when the two models differ most in the degree of dispersion

also correspond to times when the QLIKE distance is larger.

[ INSERT FIGURE 4 ABOUT HERE ]

16The QLIKE distance between two (N ×N) matrices is QLIKE (A,B) = tr
(
A−1B

)
− log

∣∣A−1B∣∣−N.
17Figure S3 in the supplemental appendix presents corresponding results using just the largest eigenvalue, or the

sum of the first three eigenvalues. The largest eigenvalues from each of the models are roughly equal, although similar
to the pairwise rank correlation plots, the time series from the model with estimated group assignments appears more
dynamic. The plot of the sum of the largest three eigenvalues reveals not only more dynamics, but a slight gap in
the level, though it is not as large and not uniform as it is for the sum of the first 22 eigenvalues.
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5.4 Out-of-sample forecast performance comparisons

Finally, we compare the out-of-sample (OOS) forecasts of the factor copula models using SIC-based

group assignments with those using estimated group assignments. To do so, we split our sample

period in half, using data from 2010 to 2014 to estimate the models, and data from 2015 to 2019 to

evaluate the models. Given the computational complexity of the models, we estimate the models

only once, on the last day of the in-sample period, and retain those parameters throughout the OOS

period. We compare the models using their out-of-sample likelihoods, which is a consistent scoring

rule for ranking density forecasts, see Gneiting and Raftery (2007). We test for the significance

of the differences in OOS likelihoods using a Diebold and Mariano (1995)/Giacomini and White

(2006) test, with a Newey-West (1987) estimator of the standard error based on 10 lags.

In Table 5 we use OOS forecast performance to determine the optimal shape of the copula

(Gaussian, t, or skew t), as well as the optimal choice of dynamics (static vs. GAS).18 We do this

for a range of choices for the number of groups, to determine the robustness of the conclusions,

and also for the two SIC-based group assignments. The left panel of Table 5 clearly indicates that

including GAS dynamics in the model improves the fit: in all cases the t-statistic is positive, and

the smallest t-statistic across all configurations is 6.5, indicating strong evidence in favor of the

GAS model over the static model.

In the right panel of Table 5 we adopt GAS dynamics in all cases, and we compare the choice

of copula shape across various choices the number of groups. We find in all cases that the t and

skew t models out-perform the Gaussian factor copula, with t-statistics all greater than 7.7. This

is consistent with previous work in the literature (see, e.g., Patton, 2004, 2013, and Amengual and

Sentana, 2020) that the Normal copula is not a good description of equity return dependence. In

the last column of Table 5 we compare the t and skew t copulas, and we find that the t-statistics

are all negative, and generally significant, indicating that the estimation of the additional skewness

parameter in the skew t copula leads to worse OOS performance than the symmetric t factor copula.

This is in contrast with the in-sample parameter estimates (presented in Tables S2 and S3 in the

18 In addition to being economically interesting in their own right, using OOS forecast performance to make these
comparisons allows us to conduct formal statistical tests without having to make assumptions about the error rate
in the cluster assignment estimation step (see Section 3.2) that cannot be verified.

19



supplemental appendix) where the copula asymmetry parameter is significantly negative.19 These

conflicting results can be reconciled by the fact that OOS forecast comparisons tend to carry a

strong implicit penalty for estimation error, and so unless the new parameter is far from zero and

precisely estimated, better forecasts may be obtained by setting it to zero.

[ INSERT TABLE 5 ABOUT HERE ]

In Table 6 we compare the OOS performance of t factor copulas with GAS dynamics that use

different numbers of groups. Consistent with the BIC rankings of models presented in Figure 2, the

model based on one-digit SIC groupings is beaten by every other model except the estimated group

assignment model with only 3 groups. Similarly, the model based on two-digit SIC groupings is

beaten by every other model except the estimated group assignment models with only 3 or 4 groups,

and the one-digit SIC model. Amongst the models with estimated group assignments, the model

with G = 20 groups performs the best in terms of OOS likelihoods, significantly beating every

other model, including the G = 21 model which was selected as being optimal over the full sample

according to the BIC. That the optimal model for OOS forecasting is smaller than the optimal

model for in-sample fitting is consistent with the abovementioned predilection of OOS forecasts for

parsimonious models.

[ INSERT TABLE 6 ABOUT HERE ]

6 Conclusion

This paper proposes a new dynamic factor copula model for use in high dimensional time series

applications. Our model does not require variables to be grouped according to ex ante information,

like SIC industry codes or similar; instead we estimate the optimal assignment of variables to groups

from the data using a k -means type approach. Our clustering method exploits the fact that clusters

19These two tables present parameter estimates and standard errors for models using one-digit SIC codes (seven
clusters) or using estimated cluster assignments (using the BIC-optimal number of clusters, 21). In both cases we see
that the copula asymmetry parameter is significantly negative. Standard errors in this table are computed assuming
that estimation error from cluster assignments is negligible.
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can be estimated from a static version of the copula model, rather than the more computationally-

challenging dynamic version that is of primary interest, making the clustering problem feasible. We

show via an extensive simulation study that group assignments can be accurately estimated in finite

samples. In an application to 110 U.S. equity returns over the period 2010-2019 we find evidence

that a model with estimated group assignments significantly outperforms an otherwise identical

model with group assignments determined using SIC codes. The improvement in fit appears to

come from a better assignment of stocks that are labeled with one SIC code but comove more like

stocks from a different SIC code, which allows the dynamic model to react to new information more

quickly.

Appendix

A.1 The probability density of the skewed t copula

We adopt the skewed t copula discussed in Demarta and McNeil (2005) and Christoffersen et

al. (2012). Specifically, it is the copula embedded in the multivariate skewed t distribution of Xt,

where:

Xt =
√
WtZt + ζWt (16)

where ζ is a N × 1 asymmetry parameter vector filled with an identical scalar ζ, Wt is an inverse

gamma variable Wt ∼ IG
(
ν
2 ,

ν
2

)
, Zt is a N × 1 normal variable Zt ∼ N (0,Rt), and Wt and Zt are

independent. The probability density function of the skewed t copula is given by

c (xt; Rt, ν, ζ) =

2
(ν−2)(N−1)

2 K ν+N
2

(√(
ν + x′tR

−1
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t ζ

)
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t ζ

)
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)
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t ζ
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×
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i=1

(√(
ν + x2
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)
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2
(

1 +
x2it
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) ν+1
2

K ν+1
2

(√(
ν + x2

it

)
ζ2
)

exp (xitζ)

where Γ̈ is the Gamma function, K (·) is the modified Bessel function of the third kind (also

called the modified Bessel function of the second kind, or the modified Hankel function), and xt =
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[x1,t, · · · , xN,t]′ =
[
T−1
skew (u1,t; ν, ζ) , · · · , T−1

skew (uN,t; ν, ζ)
]′
are obtained by applying the inverse of

the univariate skewed t distribution from equation (16) defined by

Tskew (y; ν, ζ) =

∫ y

−∞

21−0.5(ν+1)K ν+1
2

(√
(ν + x2) ζ2

)
exp (xζ)

Γ
(
ν
2

)√
πν

(√
(ν + x2) ζ2

)− ν+1
2 (

1 + x2

ν

) ν+1
2

dx.

Since T−1
skew (·; ν, ζ) is not available in closed form, we generate 1,000,000 random draws from equa-

tion (16) and use linear interpolation to approximate T−1
skew (·; ν, ζ) on (0, 1). Note that Tskew (·; ν, ζ)

is identical across the cross sectional dimension and also over time because the shape parameters

of this distribution are assumed constant, this means that we can approximate T−1
skew just once per

parameter set [ν, ζ] and apply it to all copula inputs {ut}Tt=1, making the likelihood evaluation of

the skewed t copula very fast.

A.2 Derivation of the score

From equation (17), the log-likelihood of the skewed t copula is obtained by

log cSkewt,t (xt; Rt, ν, ζ) = −1

2
log |Rt| −

ν +N

2
log

(
1 +

1

ν
x′tR

−1
t xt

)
(18)

+ log

(
K ν+N

2

(√(
ν + x′tR

−1
t xt

)
ζ′R−1

t ζ

))
+x′tR

−1
t ζ +

ν +N

2
log

(√(
ν + x′tR

−1
t xt

)
ζ′R−1

t ζ

)
+ const (ν, ζ)

where const (ν, ζ) contains any components that do not depend on Rt, and recall that

Rt = L̃′tL̃t + Dt, L̃t =
[
λ̃1,t, . . . , λ̃N,t

]
, Dt = diag

(
σ2

1,t, . . . , σ
2
N,t

)
where

λ̃i,t =
λi,t√

1 + λ′i,tλi,t
, σ2

i,t =
1

1 + λ′i,tλi,t

To derive the score, we first define Lt = (λ1,t, . . . ,λN,t) ∈ Rk×N where λi,t is a k × 1 vector of

factor loadings for variable i. In the example of equation (7), the number of factors denoted by k
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is G + 1 and if the variable i belongs to Group 3, then λi,t = [λM,3,t, 0, 0, λ3,3,t, 0, . . . , 0]′. By the

chain rule, the derivative of equation (18) with respect to ηt can be written as product of three

factors

∂ log cSkewt,t (xt; Rt, ν, ζ)

∂η′t︸ ︷︷ ︸
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=
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(19)

where vec (·) stacks the columns of the matrix on top of one another to form a vector. The first

factor of equation (19) can be written as
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Two useful formulas from the matrix differentials are

d
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and
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where M is a symmetric non-singular matrix, and v and w are vectors conformable with M. With

those formulas we calculate each component separately to obtain
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where
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As ζ → 0, equation (20) boils down to the derivative of the log density of the Student t copula,
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and in addition, as ν →∞, it becomes that of the Gaussian copula,
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To derive the second and third factors in equation (19) we closely follow the logic and notations

of Opschoor, et al. (2020). The second factor is re-written as
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with another useful formula
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where M ∈ Rm×n , and Jm,n ∈ Rmn×mn is the vectorized transpose matrix, i.e. vec (M′) =
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Jm,nvec (M). Furthermore, we have
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We define Tdiag as a N2×N transformation matrix such that vec (A) = Tdiag ·a where A is a N×N

diagonal matrix with a N × 1 vector a on the diagonal. Then,

∂vec (Dt)

∂vec (Lt)
′ = Tdiag ·

∂
[
σ2

1,t, . . . , σ
2
N,t

]′
∂vec (Lt)

′ = Tdiag ·


−2λ′1,t

(1+λ′1,tλ1,t)
2 · · · 0

0
. . . 0

0 · · · −2λ′N,t

(1+λ′N,tλN,t)
2

 . (23)

For the last factor in equation (19), recall that ηt in equation (9) is a vector of distinct factor

loadings and ηt,i denotes i-th element of ηt. Lt is written as

Lt =
2G∑
i=1

ηt,i · S′i
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Si =



δ1,iιN1 δG+1,iιN1 0 · · · 0

δ2,iιN2 0 δG+2,iιN2
...

...
...

. . . 0

δG,iιNG 0 · · · 0 δ2G,iιNG


∈ RN×(G+1)

where ιp is a p× 1 vector filled with ones, δi,j = 1 if i = j and zero otherwise, Ng for g = 1, . . . , G

is the number of members in group g such that N =
∑G

g=1Ng. Then

∂vec (Lt)

∂η′t
=

(
vec (S′1) , . . . , vec (S′G) , vec

(
S′G+1

)
, . . . , vec (S′2G)

)
∈ R(G+1)N×2G. (24)

Thus, the score expressed in equation (19) is obtained by combining equation (20), (21), (22), (23),

and (24).

A.3 Variance targeting

The number of parameters to estimate in the proposed skewed t copula with GAS dynam-

ics is 2G + 6, and when G is large estimating all the parameters at once is not feasible. We

adopt a two-step approach, so-called “variance targeting,” to eliminate the need to numerically

optimize over the intercept parameters
[
ωM1 , . . . , ωMG , ω

C
1 , . . . , ω

C
G

]
. Specifically, under the station-

arity assumption, the unconditional expectation of all distinct factor loadings in equation (8),

ηt = [λM,1,t, . . . , λM,G,t, λ1,1,t, . . . , λG,G,t]
′ is

η̄ = ω + B · η̄

where η̄ ≡ E [ηt] , ω ≡
[
ωM1 , . . . , ωMG , ω

C
1 , . . . , ω

C
G

]′
and B = diag

(
βM , · · · , βM , βC , · · · , βC

)
∈

R2G×2G, so if η̄ is estimated from data in a first step, ω can be replaced with (I2G −B) ̂̄η and only[
αM , βM , αC , βC , ν, ζ

]
are left to be estimated numerically in a second step.
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Define a (G+ 1)×G matrix L̄ filled with elements of η̄ as

L̄′ =



E[λM,1,t]
v1

E[λ1,1,t]
v1

0 · · · 0

E[λM,2,t]
v2

0
E[λ2,2,t]
v2

· · · 0

...
...

...
. . .

...
E[λM,G,t]

vG
0 0 · · · E[λG,G,t]

vG



where vi ≡
√

1 + E [λM,i,t]
2 + E [λi,i,t]

2, then the model implied correlation matrix of within- and

across-group is obtained by L̄′L̄. The corresponding unconditional correlation matrix based on

samples xit = Φ−1 (uit) is denoted by Ω̂ ∈ RG×G where the g-th diagonal element is the average

correlation of any pair of variables belonging to group g and a (i, j) element is the average correlation

of any pair of variables belonging to group i and group j. Then η̄ is estimated by minimizing the

difference between the sample (Ω̂) and model-implied correlation matrices:

̂̄η = arg min
η̄

[
vech

(
Ω̂− L̄′L̄

)]′
vech

(
Ω̂− L̄′L̄

)

In most variance targeting applications, the estimation of the intercept can be done analytically.

Here it requires numerical optimization, however it is extremely fast.

A.4 Proof of Theorem 1

Firstly, define the profile estimator

θ̃T (Γ) = arg max
θ

1

T

T∑
t=1

log c (ut;θ,Γ) (25)

Assumptions 1, 2(a) and 3(a) are suffi cient for θ̃T (Γ)
p→ θ̃

∗
(Γ) for each Γ ∈ G, see White (1994,

Theorem 3.5) for example. Next define the sample and population profile likelihoods as:

Q̄T (Γ) =
1

T

T∑
t=1

log c
(
ut; θ̃T (Γ) ,Γ

)
Q∗ (Γ) ≡ E

[
log c

(
ut; θ̃

∗
(Γ) ,Γ

)]
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Define the infeasible version of the sample likelihood using the population copula parameter as

Q̇T (Γ) ≡ 1

T

T∑
t=1

log c
(
ut; θ̃

∗
(Γ) ,Γ

)

Consider a mean-value expansion of the sample objective function:

log c
(
ut; θ̃T (Γ) ,Γ

)
= log c

(
ut; θ̃

∗
(Γ) ,Γ

)
+∇θ log c

(
ut; θ̃

∗
(Γ) ,Γ

)′ (
θ̃T (Γ)− θ̃∗ (Γ)

)
(26)

+
1

2

(
θ̃T (Γ)− θ̃∗ (Γ)

)′
∇θθ log c

(
ut; θ̈

∗
,Γ
)(
θ̃T (Γ)− θ̃∗ (Γ)

)
where θ̈

∗
= λθ̃T (Γ) + (1− λ) θ̃

∗
(Γ) for some λ ∈ [0, 1]

Then summing the equation above over t = 1, ..., T we have

Q̄T (Γ)− Q̇T (Γ) =

(
1

T

T∑
t=1

∇θ log c
(
ut; θ̃

∗
(Γ) ,Γ

))′ (
θ̃T (Γ)− θ̃∗ (Γ)

)
+ (27)

+
1

2

(
θ̃T (Γ)− θ̃∗ (Γ)

)′ 1

T

T∑
t=1

∇θθ log c
(
ut; θ̈

∗
,Γ
)(
θ̃T (Γ)− θ̃∗ (Γ)

)

Assumption 2(b) and 3(a) imply that 1
T

∑T
t=1∇θ log c

(
ut; θ̃

∗
(Γ) ,Γ

)
p→ 0, as usual for M -

estimation. Assumption 3(c) ensures the Hessian term has a finite limit. Thus we have Q̄T (Γ) −

Q̇T (Γ) = op (1) . Further, by Assumptions 1 and 2(a) we also have Q̇T (Γ) − Q∗ (Γ) = op (1) ,

and so we have Q̄T (Γ) − Q∗ (Γ) = op (1) . Thus the sample objective function is pointwise (in Γ)

consistent for the population objective function. Since the parameter space is discrete, uniform

convergence simplifies to pointwise convergence (see, e.g., Choirat and Seri, 2012). This implies

the estimator obtained by maximizing the sample objective function is consistent for the parameter

that maximizes the population objective function, i.e., Γ̂T
p→ Γ0 as T →∞, completing the proof.
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Table 1: Simulation results for static copulas

Panel A: Parameter estimation accuracy

Gaussian t skew t
True Mean Std Dev Mean Std Dev Mean Std Dev

βM1 0.25 0.245 0.076 0.253 0.089 0.276 0.062
βM2 0.50 0.508 0.071 0.509 0.075 0.473 0.068
βM3 0.75 0.755 0.053 0.744 0.056 0.740 0.066
βM4 1.00 1.000 0.052 1.002 0.048 0.954 0.189
βM5 1.25 1.246 0.033 1.243 0.035 1.246 0.040
βM6 1.50 1.500 0.021 1.498 0.034 1.501 0.035
βM7 1.75 1.747 0.020 1.752 0.027 1.755 0.036
βM8 2.00 2.001 0.021 1.998 0.027 1.996 0.030
βM9 2.25 2.253 0.019 2.252 0.028 2.255 0.031
βM10 2.50 2.496 0.020 2.502 0.029 2.502 0.030
βC1 2.50 2.499 0.026 2.495 0.030 2.503 0.031
βC2 2.25 2.248 0.023 2.246 0.031 2.251 0.036
βC3 2.00 2.001 0.031 2.003 0.030 1.998 0.038
βC4 1.75 1.749 0.030 1.747 0.034 1.771 0.065
βC5 1.50 1.497 0.030 1.501 0.029 1.497 0.031
βC6 1.25 1.246 0.028 1.252 0.026 1.252 0.030
βC7 1.00 1.005 0.023 0.999 0.023 1.003 0.019
βC8 0.75 0.756 0.022 0.749 0.023 0.743 0.018
βC9 0.50 0.504 0.019 0.499 0.023 0.499 0.026
βC10 0.25 0.241 0.039 0.234 0.048 0.230 0.050
ν 5.00 5.007 0.069 4.858 0.369
ζ -0.10 -0.095 0.015

Panel B: Group assignment estimation accuracy
Number incorrect
0 100 100 100
≥1 0 0 0

Panel C: Estimation details
Time (hours) 4.74 4.74 4.72
EM iterations 87.61 87.72 87.76

Notes: This table presents results from 100 simulations from a static Gaussian, t, and skew t factor
copula, with 10 groups. Panel A presents results on estimation accuracy of the copula parameters, Panel B
presents results on estimation accuracy of the group assignments, and Panel C presents average estimation
time based on a machine with 28 cores.
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Table 2: Simulation results for time-varying copulas

Panel A: Parameter estimation accuracy

Gaussian t skew t
True Mean Std Dev Mean Std Dev Mean Std Dev

ωM1 0.04 0.042 0.007 0.042 0.007 0.044 0.008
ωM2 0.04 0.042 0.007 0.042 0.007 0.044 0.008
ωM3 0.04 0.042 0.007 0.042 0.007 0.043 0.007
ωM4 0.04 0.042 0.007 0.042 0.007 0.044 0.008
ωM5 0.04 0.042 0.007 0.042 0.007 0.043 0.007
ωM6 0.04 0.042 0.007 0.042 0.007 0.044 0.008
ωM7 0.04 0.042 0.006 0.042 0.007 0.043 0.008
ωM8 0.04 0.041 0.007 0.041 0.007 0.044 0.008
ωM9 0.04 0.042 0.007 0.042 0.007 0.044 0.008
ωM10 0.04 0.042 0.007 0.042 0.007 0.044 0.008
ωC1 0.04 0.043 0.007 0.043 0.007 0.042 0.007
ωC2 0.04 0.043 0.007 0.043 0.008 0.042 0.007
ωC3 0.04 0.042 0.007 0.043 0.007 0.042 0.007
ωC4 0.04 0.043 0.007 0.044 0.008 0.042 0.007
ωC5 0.04 0.043 0.007 0.043 0.008 0.041 0.007
ωC6 0.04 0.043 0.007 0.043 0.007 0.042 0.007
ωC7 0.04 0.043 0.008 0.043 0.007 0.041 0.006
ωC8 0.04 0.043 0.007 0.043 0.008 0.042 0.006
ωC9 0.04 0.043 0.008 0.043 0.007 0.042 0.007
ωC10 0.04 0.043 0.007 0.043 0.006 0.041 0.007
αM 0.02 0.020 0.002 0.020 0.002 0.020 0.002
βM 0.90 0.894 0.015 0.894 0.014 0.893 0.017
αC 0.02 0.020 0.002 0.020 0.002 0.020 0.002
βC 0.90 0.896 0.016 0.894 0.016 0.898 0.014
ν 5.00 5.014 0.071 5.016 0.108
ζ -0.10 -0.100 0.007

Panel B: Group assignment estimation accuracy
Number incorrect
0 100 100 100
≥1 0 0 0

Panel C: Estimation details
Time (hours) 6.15 6.48 6.64
EM iterations 93.8 95.8 95.9

Notes: This table presents results from 100 simulations from a Gaussian, t, and skew t factor copula
with GAS dynamics, each with 10 groups. Panel A presents results on estimation accuracy of the copula
parameters, Panel B presents results on estimation accuracy of the group assignments, and Panel C presents
average estimation time based on a machine with 28 cores.
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Table 3: Summary statistics

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Panel A: Marginal moments

Mean 0.001 0.000 0.001 0.001 0.001 0.001
Std 0.016 0.010 0.012 0.015 0.018 0.023
Skewness -0.081 -0.748 -0.310 -0.091 0.092 0.648
Kurtosis 9.939 5.154 6.411 8.087 10.923 22.803

Panel B: Marginal model parameters

Constant 0.001 0.000 0.001 0.001 0.001 0.001
AR(1) -0.019 -0.068 -0.041 -0.017 0.000 0.031

$ × 104 0.009 0.002 0.003 0.006 0.011 0.025
α 0.025 0.000 0.009 0.019 0.033 0.077
κ 0.099 0.029 0.064 0.095 0.131 0.179
β 0.885 0.756 0.864 0.904 0.932 0.958
ξ 5.089 3.401 4.234 4.846 5.798 7.256
ψ -0.027 -0.087 -0.051 -0.025 -0.004 0.020

Panel C: Correlations of standardized residuals

Pearson 0.322 0.170 0.256 0.314 0.378 0.492
Spearman 0.360 0.197 0.295 0.356 0.418 0.531

Notes: This table presents summary statistics on the 110 daily equity return series used in this paper.
The sample period is January 2010 to December 2019. Panel A presents a summary of the cross-sectional
distribution of the first four moments of these returns, Panel B presents a summary of the estimated AR(1)-
GJR GARCH(1,1)-skew t model used for the marginal distributions, and Panel C presents a summary of
the 5,995 pairwise correlations of the standardized residuals.
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Table 4: Estimated group assignments

Group Ticker Name SIC Group Ticker Name SIC

1 ABT Abbott Lab. 28 7 CSCO Cisco Sys 36
AGN Actavis 28 HPQ Hewlett Pac 35
AMGN Amgen 28 INTC Intel 36
BAX Baxter 38 MSFT Microsoft 73
BIIB Biogen 28 NVDA Nvidia 36
BMY Bristol-Myers 28 QCOM Qualcomm 36
GILD Gilead 28 TXN Texas Instru 36
JNJ Johnson & J 28
LLY Lilly Eli 28 8 AIG Ame Inter Group 63
MDT Medtronic 38 ALL Allstate 63
MRK Merck 28 CMCSA Comcast 48
PFE Pfizer 28 DIS Disney Walt 48
UNH Unitedhealth 63 F Ford 37

GE Gen Electric 35
2 BAC Bank Of Am 60 XRX Xerox 35

BK Bank Of NY 60
C Citigroup Inc 60 9 AEP Ame Elec Pow 49
COF Capital One 60 DUK Duke Energy 49
GS Goldman Sachs 62 ETR Entergy Corp 49
JPM Jpmorgan 60 EXC Exelon 49
MET Metlife 63 NEE Nextera Energy 49
MS Morgan Stanley 60 SO Southern Co 49
RF Regions Fin 60
USB U S Bancorp 60 10 COST Costco 53
WFC Wells Fargo 60 CVS C V S Health 59

TGT Target 53
3 APA Apache 13 WBA Walgreens 59

BHI Baker Hughes 35 WMT Walmart 53
COP Conocophillips 13
CVX Chevron 13 11 GD Gen Dynamics 37
DVN Devon 13 LMT Lockheed Martin 37
HAL Halliburton 13 RTN Raytheon 38
NOV Nat. Oilwell 35
OXY Occidental 13 12 AMT American Tower 48
SLB Schlumberger 13 SPG Simon Property 67
WMB Williams Co 49 WY Weyerhaeuser 8
XOM Exxon Mobil 13

13 BA Boeing 37
4 CAT Caterpillar 35 FCX Freeport Mcmo 10

EMR Emerson Ele 35 NKE Nike 30
FDX Fedex 45
HON Honeywell Int 37 14 ACN Accenture 67
MMM 3M 38 IBM IBM 35
NSC Norfolk South 40 ORCL Oracle 73
UNP Union Pacific 40
UPS United Parcel 42 15 AXP Amex 60

BLK Blackrock 62
5 AAPL Apple 35

ADBE Adobe 73 16 DHR Danaher 38
AMZN Amazon 73 TMO Thermo Fisher 38
CRM Salesforce 73
EBAY Ebay 73 17 T A T & T 48
GOOGL Google 73 VZ Verizon 48
NFLX Netflix 78
PCLN Priceline 73 18 AVP Avon Products 28

SNS Steak N Shake 58
6 CL Colgate Palmo 28

CPB Campbell Soup 20 19 MA Mastercard 73
KO Coca Cola 20 V Visa 61
MDLZ Mondelez 20
MO Altria 21 20 MCD Mcdonalds 58
PEP Pepsico 20 SBUX Starbucks 58
PG Procter Gamble 28
PM Philip Morris 21 21 HD Home Depot 52

LOW Lowes 52

Notes: This table presets the estimated group assignments based on the BIC-optimal number of groups,
G=21. The groups are ordered by the number of members.
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Table 5: Comparing different copula specifications

Static vs. GAS Copula shape

Gaussian t skew t G vs. t G vs. skew t t vs. skew t

SIC 1 digit 7.861 12.067 11.552 9.288 8.596 -2.975
SIC 2 digit 9.887 15.730 16.501 8.938 8.465 -2.849
3 groups 6.528 6.636 6.761 8.339 7.711 -2.257
4 groups 7.681 10.059 9.412 9.121 8.381 -2.351
5 groups 7.548 10.804 10.913 9.236 9.088 -1.717
18 groups 10.571 16.052 15.711 9.295 7.945 -3.550
19 groups 9.806 15.457 15.259 9.553 8.847 -2.065
20 groups 10.908 16.193 14.741 9.426 7.995 -3.797
21 groups 10.916 16.626 17.321 9.474 8.670 -2.366
22 groups 10.732 16.891 16.802 9.688 8.962 -2.714
25 groups 11.817 19.001 19.140 9.475 8.569 -2.355
27 groups 10.725 15.836 15.794 9.591 8.951 -1.676
30 groups 10.917 17.169 15.917 9.697 8.717 -2.962

Notes: This table presents Diebold-Mariano t-statistics on pairwise comparisons of models using their
out-of-sample log-likelihood. The left panel compares models assuming no dynamics with those using GAS
dynamics, for three different copula shapes (Gaussian, t, and skew t) and for a variety of choices for the
number of groups. The right panel compares the different copula shapes, using GAS dynamics in all cases,
across a variety of choices for the number of groups. In a comparison labeled “A vs B,”a positive t-statistic
indicates that B is preferred; a negative t-statistic indicates that A is preferred. Note that there are 7 groups
of firms using the 1-digit SIC, and 21 groups using the 2-digit SIC.
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Figure 1: This figure presents random draws from four joint distributions, all with standard Normal
margins. Panel (a) uses a Gaussian copula, Panel (b) uses a Student’s t copula, Panel (c) uses a
skew Normal copula, Panel (d) uses a skew t copula. For all four copulas the correlation parameter
is set to 0.5. For both t copulas the degrees of freedom parameter is set to 5. For both skewed
copulas the skewness parameter is set to -0.1.
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Figure 2: Plot of BIC value as a function of the number of groups (G) for the EM-estimated model.
The BIC values for the 1-digit and 2-digit SIC-based groups are also reported for comparison; these
models have 7 and 21 groups respectively. As usual, lower BIC values are preferred. (Note the
y-axis has been scaled by 10−4 for ease of presentation.)
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Figure 3: Time series plots of model-implied within-group rank correlations. The upper panel
presents estimated group 3 and SIC group 13; the middle panel presents estimated group 7 and SIC
group 36; the lower panel presents estimated group 9 and SIC group 49.
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Figure 4: The upper panel presents the QLIKE distance between the conditional rank correlation
matrices implied by the 2-digit SIC-based model and the optimal EM-based factor copula model, both
of which have a total of 22 factors. The middle panel presents the sum of the 22 largest eigenvalues
of the conditional rank correlation matrices, divided by 110, the number of assets. The lower panel
presents the difference between the 90% and 10% cross-sectional quantiles of all 5,995 pairwise rank
correlations.
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