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Abstract

This supplement contains: (1) extensions of the theoretical results in the paper to multi-period
forecasting evaluation problem and multivariate forecast targets; (2) proofs to all theoretical
results in the paper; (3) additional empirical results.
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A Extensions

In this section, we extend the evaluation framework developed thus far in two key directions. The
first extension addresses the multi-period evaluation problem. The second extension generalizes
the methodology to handle multivariate forecast targets.

A.1 Confidence band and multi-period evaluation

The theory presented in Section 2 focused on the baseline inference problem for a single period ¢. In
practice, however, it is often necessary to jointly evaluate the performance of a sequence of forecasts
(F);e7 indexed by a finite set 7. This scenario corresponds to a multiple testing problem. In
this subsection, we extend the one-period framework to a multi-period setting. For simplicity, we
present the extension in the context of Proposition 2, noting that similar generalizations can be
applied to other settings in a straightforward manner. The following generalization of Assumption
3 accommodates the multi-period context:

Assumption 5 The following conditions hold: (i) (Ry/Ry)icT 4 (&t)ic where the joint distribu-
tion of the limit variables is known and continuous; (i) the loss function L(u, @) satisfies the same
condition as in Assumption 3.

The joint convergence imposed by condition (i) of the assumption is not restrictive. Indeed,
realized measures across different periods are often constructed from non-overlapping subsamples
of high-frequency returns, which renders the standardized estimators asymptotically independent.
As a result, joint convergence follows directly from marginal convergence. The limit variables may
also be dependent under more general constructions. For instance, in the context of Examples 1
and 2, the joint convergence can be derived when the spot estimators are based on overlapping
samples, using the coupling methods of Bollerslev et al. (2021) and Li et al. (2024).

Under the multi-period setting, we test the null hypothesis Hy : Ry = F; for allt € 7. A natural
test statistic is the “sup” statistic, maxyc7 L(F}, f%t), which captures the worst-case proxy loss over
7. Mirroring the discussion in Section 2.1, we reject the null hypothesis if max;c7 L(F, Rt) exceeds
the 1 — a quantile of the limit distribution of the “oracle” worst-case loss, maxe7 L( Ry, Rt) This
test can be inverted to construct a confidence set for the entire path (R;).c7. Proposition 4 details
the formal result.

Proposition 4 Let ( = maxer L (&). Under Assumption 5, the following holds:
P LRy, Re) < Qo | = 1—a.
(ItneaTX (Re, Rt) < Q¢ ) a

Furthermore, the confidence sets, (CS1—at)teT, defined as

CSl—a,t =

Ry Ry
E(La QC,lfa) ’ Q(L, Qc,lfa)

form a 1 — « level uniform confidence band satisfying

P(Rt € CSl_a,t,vt € T) —1—a. (2)



Compared to the single-period result in Proposition 2, the key distinction in the multi-period
setting is that the critical value Q¢ 11— is now determined as the quantile of the maximal limit
loss ¢ = maxe7 L(&), which is larger than its single-period counterpart. This inflated critical
value is necessary to account for the joint testing across periods, ensuring uniform coverage of the
confidence band.

A.2 The case with multivariate forecasting targets

The discussion so far has focused on the univariate case with a scalar-valued forecasting target.
In this subsection, we extend the framework to consider R; as a d-dimensional vector. Prominent
examples include the forecasting of (vectorized) integrated covariance matrices or integrated betas
(Barndorff-Nielsen and Shephard, 2004), which are particularly relevant in portfolio optimization
problems. This naturally aligns with the large-sample framework discussed in Section 2.2.' The
following generalization of Assumption 1 accommodates the multivariate setting:

Assumption 6 For some sequence a, — oo and estimator 3¢: (i) an(Ry — Ry) £ MN(0, %),

for some positive definite random matriz ¥y € R4 (ij) PN L .

Compared to the univariate setting, the multivariate case introduces a key subtlety related to
the trade-offs across different components of the vector forecast. This complexity is encoded in the
loss function. While many univariate loss functions are “locally equivalent,” as shown in Section
2.2, this equivalence no longer holds in the multivariate setting because multivariate loss functions
can differ significantly even in the R, ~ R, local neighborhood. Consequently, the formulation of
the loss function in (5), which was deliberately designed to highlight the local equivalence result, is
less relevant in the multivariate context. We instead consider a more general class of loss functions
specified in the following assumption.

Assumption 7 The loss function £ : R x R? — R, takes the following form:
L(u, ) = L(t — w;u, @) + G(u, @), (3)

where (i) L : RY xR x R — R, is continuous and satisfies NP L(z;u, @) = L(\x; u, @) for all X > 0
and some constant p > 0; (it) G(Ry, R) = op(an”) with a,, defined in Assumption 6.

Assumption 7 readily accommodates power-type losses via the leading term E() An important
special case where the residual term G(u, @) also plays a role is the Bregman divergence, defined
as:

L(u, ) = ¢(@) — $(u) = Vo(u) ' (i@ — u), (4)
for some three-times differentiable and strictly convex function ¢ : R? — R, where V¢(-) denotes
its gradient vector.? Indeed, expanding ¢ (@) around 4 ~ u via a Taylor expansion yields:

1
L(u,w) = §(u — )" Hy(u)(u — @) + G(u, @), (5)
1The existing literature on the small-sample framework has been almost exclusively focused on univariate problems,
primarily due to the difficulty of achieving finite-sample pivotalization.
2This class of loss functions was introduced by Bregman (1967) and further studied by Laurent et al. (2013)
for robust ranking of multivariate volatility forecasts. When ¢(u) = u' Wu for some positive-definite matrix W,
L(u, @) simplifies to (u— @) W (u— ), representing a general quadratic loss function with weighting matrix W. This
formulation encompasses distance metrics such as the Euclidean, Frobenius, and Mahalanobis distances. Additional
examples can be found in Laurent et al. (2013).




where Hy(-) is the Hessian matrix of ¢(-). Consequently, the Bregman divergence satisfies Assump-
tion 7 with L(z;u, @) = ' Hg(u)z/2, p = 2, and the implicitly defined residual term satisfying
G(Ry, Ry) = op(a;?) under Assumption 6.

Since presenting d-dimensional confidence sets is often impractical, we adopt the hypothesis
testing perspective. Proposition 5, below, provides a valid critical value for testing the null hy-
pothesis F; = R;, where Q1_4(%, u, @) denotes the 1 — o quantile of L(&4;u, @), with £ ~ N(0,X)
representing a d-dimensional Gaussian random vector.

Proposition 5 Under Assumptions 6 and 7, we have:
P(L(Re ) < Lia(R)) = 10,

where I_Ll_Aa(Rt) = a;le_a(it,Rt, Rt) Moreover, the result remains valid if L1_o(Ry) is replaced
by [_zlfa(Rt).

Similar to Proposition 1, Proposition 5 provides a rigorous framework for testing the hypothesis
Hy : Ry = F;, with both L; ,(F}) and El,a(Rt) serving as asymptotically valid critical values.
Unlike the univariate case, where many loss functions yield asymptotically equivalent inference,
inference in the multivariate setting is more nuanced. It depends on how forecasting errors across
different components are balanced and how their interdependencies are captured. In the special case
where £(u, @) = (u—)" W (u—1), this effect is governed by the matrix W, which encapsulates the
relative importance and interactions among the components. Consequently, distinct loss functions,
reflecting different local trade-offs, generally lead to different inferential outcomes.

B Proofs

Proof of Proposition 1. We first prove the claim in part (a). Under Assumption 2,

S (Rt, Rt) (%)pc(}zt, R)=1L

and recall that af,G(Ry, Rt) = 0p(1) by Assumption 2. Also, the homogeneity of L implies con-

tinuity on R. Then by Assumption 1 and the continuous mapping theorem, we further have

S(Ry, Rt)flt_p/z 55 (R, Ry) Et_p/z = Op(1), which implies that the last term of the above equation

is of order 0,(1). Meanwhile, a,,(R; — Rt)/i]tl/2 KN ¢ ~ N (0,1) by Assumption 1 and the properties

of stable convergence. By the continuous mapping theorem,

an (fzt - Rt) S (Rt, Rt)

- + -
Z;/Q E€/2

alG(Ry, Ry),

p
~ Qp, A
S (e 1) (El/g> L(Re.Re) 5 L(9).
t
Hence, with Ijlfa (Rt) = aEpQL(E)J_OCXAJf/Q/S(Rt, Rt) + G(Rt, ]:Zt),

Gn

P <£(Rt7Rt) <Li_q (Rt)> =P (5 (Rtaét) < S )pﬁ(Rt,Rt) < QL(g)Ja) —1-a
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The claim in part (b) is proved by observing
CSi_a = {r cL(r,Ry) < Li_q (7")}

L (Rt - T> < GEPQL(g),l—aif/z

- " S <7°, Rt) B S (7", Rt)
n R -
= <{r:L ag;mr) < QLe)1-a

To see the claim in part (c), we note that the pth-order homogeneity assumption on L implies that
L(z) = k-|2[P1z<oy +k+|2[P1iz>0y for some constants k_, k; > 0. Therefore, if L(x) is symmetric,
then L(z) o |z|P which is strictly increasing in |z|, and hence part (c) follows from the invariance
property of the confidence set. Q.E.D.

Proof of Proposition 2. The convexity of L implies continuity on R;. Therefore, by Assump-
tion 3 and the continuous mapping theorem, E(Rt,Rt) 4 (&), which leads to the first claim
P (L’(Rt, Ry) < QL(@J_Q) — 1 — «a by the assumed continuity of £&. By the convexity of L () and
the definitions of ¢ (L, Q) and ¢ (L, Q), we have

X R
{7" D L(r, Ry) < QL({),l—oc} = {7” :c (L, QL(g),1—a) <—'<e (L, QL(g),l—a)} ’

=
which implies the second claim. Q.E.D.

Proof of Proposition 3. By Assumption 4, L is pth order homogeneous hence continuous, and
the continuous mapping theorem implies that

Hence, by the assumed continuity of &,

P (E(Rh Ry)

i]p/Q < QL({),I—Q) —1-a,
t

which implies the first claim of the proposition. By the pth-order homogeneity of L, the confidence
set satisfy

Ry —r Ri—r  _
{7" L <t> < QL(g),la} = {7" :C (L7 QL({),lfa) < 51/2 <c (L; QL(g),1a)} )

ST

which implies the second claim of the proposition. The third claim follows from the same argument
as the proof to part (c) of Proposition 1. Q.E.D.



Proof of Proposition 4. Assumption 5 implies that, for each t € T we have:

L(Ry, By) % L(&), (6)
which further implies:

max L(Ry, B) % ¢, (7)

teT

and hence proves the first claim by the assumed continuity of &. The second claim follows from
the equality of events below and the definition of CS1_q ¢:

~

N R
{TT : %%Z(E(TtaRt) < Qg,l—a} = {TT ce(L,Qci—a) < Tt < (L, Qc1-a),Vt € T}
¢
={rr:r, € CSi_q4,Vt € T},

as desired. Q.E.D.

Proof of Proposition 5. By Assumptions 6 and 7 and the continuous mapping theorem, we have:
A ~ A A d ~ A
anh L(Re, Ry) = L(an(Re — Re); Re, Re) + 0p(1) — L(&a; Re, Ry), (8)

where &g ~ N (0,X;). Therefore, with L1 o(Ry) = a;le,a(ﬁt, Ry, Rt), the above convergence in
distribution and the consistency of 3; imply

P <£(Rt7 f%t) < I/lfa(Rt)) —-1-q

and the result is unaffected by replacing R; with its consistent estimator R, in Li_o(Ry). Q.E.D.

C Additional Empirical Results

We provide additional empirical results to supplement the main analysis. First, we replicate the
exercise from the main text using historical data from the SPY ETF as the source data. The
empirical results are presented in Table C1.

Building on the analysis of ARM, we then examine five additional stocks that recently began
trading and were later included in the S&P 500 index. Table C2 provides detailed information on
these stocks. Following the forecasting exercises in the main text, we assess the acceptance rates
of spot volatility forecasts for these stocks using the g-like loss function at a 95% confidence level,
with SPY ETF data as the source. The empirical results are presented in Table C3.



Table C1: Acceptance Rates by Horizon with SPY Data as Source

Model Forecast Horizon

5 min 1 hour 2 hour 4 hour
Panel A: Q-like Loss
MCGARCH 0.6875 0.6357 0.6171 0.6033
HAR 0.7479 0.5777 0.5603 0.5430
MCHAR 0.7769 0.7187 0.6972 0.6743
Panel B: Quadratic Loss
MCGARCH 0.7422 0.6883 0.6707 0.6566
HAR 0.7921 0.6414 0.6141 0.6023
MCHAR 0.8077 0.7577 0.7371 0.7100

Note: The table reports the acceptance rates of spot volatility forecasts for ARM stock using the MCGARCH, HAR,
and MCHAR models. The acceptance rate is defined as the proportion of forecasts falling within the 95% evaluation
confidence intervals, based on the g-like loss (Panel A) or the quadratic loss (Panel B), over a prediction sample
spanning 100 trading days after the company’s IPO on September 14, 2023. All models are trained using a 50-day
rolling window scheme with 3,900 high-frequency observations. A transfer learning scheme is employed, using SPY

ETF data as source data to augment the training sample prior to the IPO.

Table C2: Stock Information and Dates

Symbol

Company Name

Trading Start Date

S&P 500 Inclusion Date

GEV
KVUE
SOLV
SW
VLTO

GE Vernova Inc.
Kenvue Inc.

Solventum Corporation
Smurfit WestRock PLC
Veralto Corporation

March 27, 2024
May 4, 2023

March 26, 2024
July 8, 2024
September 27, 2023

April 2, 2024
August 9, 2023
April 1, 2024
July 8, 2024
October 2, 2023




Table C3: Acceptance Rates by Horizon for Different Target Data

Model Forecast Horizon

5 min 1 hour 2 hour 4 hour
Panel A: GEV
MCGARCH 0.6547 0.6204 0.6146 0.6056
HAR 0.7176 0.5674 0.5526 0.5470
MCHAR 0.7463 0.6963 0.6756 0.6585

Panel B: KVUE

MCGARCH 0.5941 0.5557 0.5406 0.5299
HAR 0.6479 0.5598 0.5408 0.5257
MCHAR 0.6602 0.6035 0.5880 0.5721

Panel C: SOLV

MCGARCH 0.5648 0.5361 0.5300 0.5297
HAR 0.6491 0.5371 0.5262 0.5278
MCHAR 0.6734 0.6325 0.6094 0.6071
Panel D: SW

MCGARCH 0.6006 0.5582 0.5352 0.5230
HAR 0.6956 0.5910 0.5835 0.5766
MCHAR 0.7197 0.6709 0.6574 0.6458

Panel E: VLTO

MCGARCH 0.6056 0.5764 0.5679 0.5576
HAR 0.6797 0.5694 0.5613 0.5573
MCHAR 0.7128 0.6745 0.6602 0.6535

Note: The table reports the acceptance rates of spot volatility forecasts for five recently listed stocks—GEV, KVUE,
SOLV, SW, and VLTO—using the MCGARCH, HAR, and MCHAR models. Each panel corresponds to a specific
stock, with forecasts evaluated using the g-like loss function at a 95% confidence level. The acceptance rate is defined
as the proportion of forecasts falling within the confidence intervals over a prediction sample spanning 100 trading
days after each stock’s trading debut. A transfer learning scheme is employed, utilizing SPY ETF data as source
data to augment the training sample prior to each stock’s listing.
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