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Abstract

We present methods to evaluate risk forecasts “online,” enabling the analyst to determine in

real time whether a forecasting model is producing “statistically acceptable” forecasts. We use

the asymptotic distribution of the volatility proxy used for forecast evaluation to construct a

confidence set for the true, latent, risk measure and we use the inclusion, or not, of the forecast

in that set as a formal measure of acceptability. We consider the construction of the confidence

sets in both large- and small-sample settings, allowing us to consider forecasts of quantities like

integrated variance and spot volatility. We illustrate the method by evaluating spot volatility

forecasts for a newly listed stock, including on the day of its IPO.
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1 Introduction

Economic forecasts are being produced and acted upon at an ever-increasing pace: algorithmic

traders place buy and sell orders at speeds below a millisecond; A/B tests run by online retailers

can conclude within hours of starting; advances in natural language processing allow economists

and traders to make financial decisions in just seconds after a lengthy statement is released by the

Federal Reserve Board.1 The need for methods to evaluate forecasts in an accurate and timely

manner is more pressing than ever.

Economic forecasts are typically evaluated using the average predictive loss over a pseudo-out-

of-sample, or test sample, of data, usually spanning a significant period of time (e.g., see Diebold

and Mariano, 1995 and West, 1996). Complicating matters, in financial forecasting the targets are

often measures of risk, such as volatility or correlation, which are not directly observable. This

presents a significant challenge, as the accuracy of forecasts cannot be directly assessed. Over the

past two decades, the standard practice has been to approximate these latent targets using “realized

measures” derived from high-frequency asset price data. Researchers commonly rely on technical

conditions to argue that the proxy error is “asymptotically negligible,” enabling them to evaluate

forecasts as if the realized measures were the true targets (Hansen and Lunde, 2006; Patton, 2011;

Li and Patton, 2018).

We propose a new period-by-period, or “online,” evaluation methodology for forecasts of latent

risk measures, enabling researchers to determine whether a forecast is “statistically acceptable,” in

a sense defined precisely below, after a single realization of the target. This approach reveals two

equivalent formal interpretations: as a hypothesis test for oracle forecasts, or a construction of loss-

induced “evaluation confidence sets” for the latent risk measure. Unlike conventional approaches,

our framework explicitly accounts for the sampling uncertainty in the realized proxy, making it

especially useful for evaluating forecasts of quantities like spot (or instantaneous) volatility, where

the proxy error can be substantial.

We explore two distinct asymptotic settings for implementing this methodology. The first

assumes that the realized measure is constructed from a “large” number of high-frequency ob-

1See Lewis (2014), Kohavi et al. (2020) and Saret and Mitra (2016) for examples.
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servations, resulting in standard large-sample asymptotics. This setting encompasses most high-

frequency estimators, including various integrated functionals of volatility, jumps, and microstruc-

ture noise (Andersen et al. (2003); Barndorff-Nielsen et al. (2008); Jacod and Rosenbaum (2013); Li

(2013); Wang and Mykland (2014); Jacod et al. (2019)). The second setting adopts a small-sample

framework, where the realized measure is based on a “fixed” number of observations. As advocated

by Bollerslev et al. (2021), the latter approach provides more reliable inference for spot estima-

tors, making it well-suited for evaluating forecasts of spot volatility and spot beta. Extensions to

multivariate and multi-period frameworks are also discussed.

The theoretical high-frequency econometrics literature has predominantly focused on deriving

the asymptotic properties of the estimation error in various volatility proxies, while the forecasting

literature, which is one of the most popular applications of high frequency volatility measures,

has, for the most part, made little use of these results, instead treating the estimation error as

“negligible.” This paper represents a bridge between these two literatures, using the theoretical

insights of the former to obtain novel and useful methods for the latter.

The rest of the paper is organized as follows. Section 2 introduces the conceptual framework for

online forecast evaluation and details its implementation under both large-sample and small-sample

asymptotic frameworks. Section 3 presents an empirical application of the method, evaluating spot

volatility forecasts immediately following the initial public offering (IPO) of a firm. Section 4

concludes. The Supplemental Appendix contains all proofs and extensions of the methodology to

multivariate settings and multi-period forecast horizons, as well as additional empirical results.

2 Online forecast evaluation

2.1 Motivation and framework

Let Rt denote the true latent forecast target, such as integrated volatility or spot volatility of an

asset, and let Ft represent the corresponding forecast. Additionally, consider a realized measure

R̂t, typically constructed as an estimator of Rt using high-frequency asset price data (Foster and

Nelson, 1996; Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004). If Rt were observable,
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forecast accuracy would ideally be evaluated using a loss function L(Ft, Rt), which quantifies the

error between the forecast and the true latent target. However, since Rt is unobservable in practice,

the proxy loss L(Ft, R̂t) is commonly employed. This approach assumes that the estimation error

in R̂t can be ignored under certain conditions on the loss function and technical assumptions about

the proxy R̂t (Hansen and Lunde, 2006; Patton, 2011; Li and Patton, 2018). These assumptions,

however, can be difficult to validate in practice, particularly when R̂t exhibits finite-sample bias or

has a slow rate of convergence.

Forecast evaluation typically relies on the average loss over a “testing” sample, expressed as

T−1
∑T

t=1 L(Ft, R̂t). The conventional approach (Diebold and Mariano, 1995; West, 1996) employs

a long-span asymptotic framework, assuming T → ∞. Inference based on the average loss pertains

to the expected loss E[L(Ft, R̂t)], which reflects the “long-run” performance of the forecast relative

to the proxy target. In academic work, this method is frequently applied to “pseudo out-of-sample”

observations, comprised of a subsample of recent observations. In practice, however, the focus is

on genuine out-of-sample performance, and new data typically arrives only slowly.

While the standard “long-run” approach offers valuable insights into average forecast perfor-

mance, it falls short in scenarios requiring immediate responses to new or changing conditions. To

address this, we propose a complementary “online” evaluation framework that evaluates forecasts

on a period-by-period basis. This method provides timely and actionable feedback by statistically

assessing whether the observed proxy loss in a single period is “statistically acceptable” relative to

a theoretical threshold. Such granularity is crucial for identifying abrupt shifts in data patterns,

allowing practitioners to adapt their strategies in real time.

To formalize this framework, we test the null hypothesis H0 : Rt = Ft, which represents

the “oracle” scenario where the latent target Rt perfectly matches the forecast Ft. Since Rt is

unobserved, we measure the gap between Rt and Ft using the proxy loss L(Ft, R̂t), which serves

as a test statistic. At a significance level α, we aim to derive an asymptotically valid critical value

function L̄1−α(·) such that:

P(L(Ft, R̂t) > L̄1−α(Ft)) → α under H0 : Rt = Ft. (1)
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A forecast Ft is considered “acceptable” if the proxy loss L(Ft, R̂t) does not exceed the tolerance

level L̄1−α(Ft). Allowing the critical value to depend on Ft simplifies the construction of certain

confidence sets in subsequent analysis.

By the duality between hypothesis tests and confidence sets, the methodology can also be

interpreted through a confidence set for Rt. Under the null restriction Rt = Ft, condition (1) can

be reformulated as:

P(L(Rt, R̂t) ≤ L̄1−α(Rt)) → 1− α, (2)

implying that:

CS1−α ≡ {r : L(r, R̂t) ≤ L̄1−α(r)} (3)

is an asymptotic 1 − α confidence set for the latent risk measure Rt, satisfying P(Rt ∈ CS1−α) →

1−α. The forecast Ft is deemed “acceptable” if and only if it lies within the confidence set CS1−α.

The two interpretations—hypothesis testing and confidence sets—provide complementary per-

spectives, offering flexibility based on the context. For practitioners, the confidence-set approach

is particularly intuitive, as it shifts the focus from achieving an exact point target to ensuring fore-

casts fall within an acceptable range that accounts for the estimation noise in the proxy R̂t. This

represents a fundamental departure from conventional methods, which often disregard the error

introduced by the proxy.

The confidence set for Rt defined in (3) notably depends on the choice of the loss function,

reflecting the decision maker’s economic preferences. This also contrasts sharply with confidence

intervals for high-frequency estimators commonly discussed in the literature, which are primarily

designed to minimize length.

It is useful to note, however, that the confidence set is invariant under strictly increasing trans-

formations of the loss function.2 As a direct consequence, both the absolute deviation loss, |Ft−R̂t|,

and the quadratic loss, (Ft − R̂t)
2, produce the same confidence set. This invariance highlights the

ordinal nature of the proposed evaluation framework, in contrast to conventional evaluation pro-

2If L′(·, ·) is another loss function such that L′(·, ·) = g(L(·, ·)) for some strictly increasing function g(·), then
g(L̄t,1−α(Ft)) serves as the critical value for L′(Ft, R̂t), and the associated confidence set {r : L′(r, R̂t) ≤ g(L̄t,1−α(r))}
is identical to {r : L(r, R̂t) ≤ L̄t,1−α(r)}.
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cedures based on average loss, which adopt a cardinal perspective akin to expected utility theory.

By focusing on ordinal properties, our framework emphasizes the “statistical acceptability” of fore-

casts as an alternative interpretation of forecast rationality (cf. Granger (1969)) rather than the

expected predictive loss, offering a fundamentally different and complementary approach to forecast

evaluation.

In Sections 2.2 and 2.3, we provide a precise characterization of the confidence set under more

specific assumptions about the asymptotic properties of the high-frequency estimator R̂t. Section

2.2 examines a classic setting (Foster and Nelson, 1996; Andersen et al., 2003; Barndorff-Nielsen

and Shephard, 2004; Jacod and Protter, 2012) where R̂t is constructed using a “large” number of

observations, resulting in its concentration within an asymptotically shrinking neighborhood of the

true value. In this context, only the local shape of the loss function is relevant. When the loss

function is symmetric, the resulting confidence interval aligns with conventional length-minimizing

confidence intervals. By contrast, Section 2.3 explores an alternative setting where R̂t is constructed

using a “small” (i.e., fixed) number of high-frequency observations. This approach is particularly

relevant for inference on instantaneous, or “spot,” quantities estimated over short time windows

(Bollerslev et al., 2021). In this setting, the global, rather than local, behavior of the loss function

becomes important, leading to loss-driven confidence sets that generally differ from conventional

confidence intervals. We now turn to the details.

2.2 The case with a large number of high-frequency observations

In this subsection, we implement the general inference procedure in a setting where R̂t is constructed

from a “large” number, n → ∞, of high-frequency observations. A prominent example is the realized

variance estimator for integrated variance, defined as the sum of squared intraday high-frequency

returns (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004) over a day, which exhibits

asymptotic mixed normality with a
√
n convergence rate.

Other estimators explicitly addressing microstructure noise have also been proposed, achieving

asymptotic mixed normality but with slower convergence rates, such as n1/4 or lower (Zhang et al.,

2005; Barndorff-Nielsen et al., 2008; Jacod et al., 2009; Da and Xiu, 2021). Kernel-based nonpara-
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metric estimators for spot volatility exhibit asymptotic mixed normality but converge at a slower,

nonparametric rate (Foster and Nelson, 1996; Kristensen, 2010).

The following high-level condition is designed to accommodate these classic examples and related

cases, with an representing the estimator’s rate of convergence and
L-s−→ denoting stable convergence

in law.3

Assumption 1 For some real sequence an → ∞ and estimator Σ̂t: (i) an(R̂t−Rt)
L-s−→ MN (0,Σt)

for some strictly positive random variable Σt; (ii) Σ̂t
P→ Σt.

Part (a) of Assumption 1 states that R̂t consistently estimates Rt at rate an, with the scaled

error following an asymptotically mixed Gaussian distribution with conditional variance Σt. Be-

sides the aforementioned examples, this condition is satisfied by many other estimators for general

integrated volatility or jump functionals (Jacod and Protter, 2012; Jacod and Rosenbaum, 2013)

and estimators for “deep” parameters such as integrated leverage effect and volatility-of-volatility

(Wang and Mykland, 2014; Kalnina and Xiu, 2017; Li et al., 2022).4 Part (b) ensures that Σ̂t

consistently estimates Σt, enabling feasible inference.

Together, these conditions imply the “standard” 1−α confidence interval for Rt that is routinely

employed in practice:

CI1−α = [R̂t − q1−αΣ̂
1/2
t /an, R̂t + q1−αΣ̂

1/2
t /an], (4)

where q1−α denotes the 1 − α quantile of the absolute value of a standard normal variable. This

standard benchmark will be contrasted with the loss-driven confidence set proposed in (3).

To analyze the properties of the confidence set, we focus on loss functions that can be expressed

in a structured form, consisting of a leading term and a “residual” term:

L(u, û) = L(û− u)

S (u, û)
+G (u, û) , (5)

3Stable convergence in law is a stronger notion than the usual weak convergence, often employed in high-frequency
econometric analysis to account for the randomness of the asymptotic variance in limit theorems. See Jacod and
Protter (2012) for theoretical details.

4Important exceptions include realized semivariance and covariance measures (Barndorff-Nielsen et al., 2010;
Bollerslev et al., 2020), which do not admit a central limit theorem due to second-order biases.
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where the components of the loss function are required to satisfy the following assumption.

Assumption 2 The loss function has the form (5) such that (i) L (·) is pth order homogeneous

for some constant p > 0; (ii) S (·, ·) is continuous and S (Rt, Rt) > 0; (iii) G(Rt, R̂t) = op(a
−p
n )

with an defined in Assumption 1.

Assumption 2 accommodates most commonly used loss functions. For example, when S(u, û) ≡

1, G(u, û) ≡ 0, and L(x) = |x|p, the resulting loss function L(u, û) = |û − u|p includes both the

absolute deviation loss (p = 1) and the quadratic loss (p = 2). Asymmetric loss functions, such as

the lin-lin loss, are covered by setting L(x) = |x|p1{x≥0} + λ|x|p1{x<0}. The scaling factor S(u, û)

can be introduced to ensure scale invariance; for instance, when S(u, û) ≡ |u|p and L(x) = |x|p, we

have L(u, û) = |û/u − 1|p, which is useful for analyzing “scale quantities” such as volatility. The

residual term G(u, û) further broadens the class of loss functions. For example, the q-like loss

L(u, û) = (û/u)− log(û/u)− 1 (6)

satisfies this assumption, with a leading term proportional to |û/u−1|2, the scale-invariant quadratic

loss.

Proposition 1, below, characterizes the confidence set defined in (3) under Assumptions 1 and

2, where QZ,1−α denotes the 1− α quantile of a generic random variable Z.

Proposition 1 Let ξ denote a standard normal random variable. Under Assumptions 1 and 2, the

following statements hold true:

(a) P
(
L(Rt, R̂t) ≤ L̄1−α (Rt)

)
→ 1− α holds for

L̄1−α (Rt) =
a−p
n QL(ξ),1−αΣ̂

p/2
t

S(Rt, R̂t)
+G(Rt, R̂t). (7)

(b) The confidence set defined in (3) can be expressed as

CS1−α ≡

r : L

an

(
R̂t − r

)
Σ̂
1/2
t

 ≤ QL(ξ),1−α

 .
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(c) If x 7→ L (x) is symmetric, the confidence set coincides with the “standard” confidence

interval defined in (4).

Comment. Part (a) establishes a valid critical value function L̄1−α(·), as defined in (7). Under

Assumption 2(iii), the adjustment term G(Rt, R̂t) = op(a
−p
n ) is asymptotically negligible compared

to the leading term, which is of order Op(a
−p
n ). While this adjustment term is not strictly required

for the derivation in part (a), its inclusion simplifies the confidence set expressions in parts (b) and

(c) and reveals the underlying common structure across seemingly distinct problems.

The proposition demonstrates that many seemingly distinct loss functions belong to the same

“equivalence class” in terms of the resulting confidence set. Specifically, loss functions that share

the same L(·) up to a strictly increasing transformation yield identical confidence sets. For instance,

widely used loss functions such as absolute deviation and quadratic losses (with or without scale-

invariance normalization), and q-like loss are equivalent in this sense. This equivalence arises

because, in the large-sample setting, the asymptotic analysis is governed solely by the local behavior

of the loss function near R̂t ≈ Rt, where many globally distinct loss functions exhibit similar local

properties.

By contrast, the next subsection examines a setting where the large-sample assumption no

longer applies, leading to distinct inference results and highlighting the importance of the global

properties of the loss function.

2.3 The case with a small number of high-frequency observations

We now turn to an alternative asymptotic framework where the estimator R̂t is constructed using a

fixed number, k, of high-frequency observations. This small-sample setting, introduced by Bollerslev

et al. (2021) for spot volatility estimation, has since been extended to various contexts (Li et al.,

2024; Bollerslev et al., 2024a). By avoiding the assumption of a “large” sample size, the fixed-k

approach minimizes nonparametric estimation biases and addresses distortions that arise from the

inadequacy of conventional asymptotic Gaussian approximations in small samples. This framework

is particularly well-suited for “local” estimation problems, such as those involving spot volatility

and similar quantities.
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Unlike in the large-sample setting, where R̂t closely approximates Rt and only the local behavior

of the loss function near R̂t ≈ Rt matters, the fixed-k framework depends on the global behavior of

the loss function. This distinction arises because R̂t, based on a fixed number of observations, can

no longer be claimed as a consistent estimator for Rt. Furthermore, as illustrated in the examples

below, the fixed-k limit distribution of R̂t is generally nonstandard and not mixed Gaussian, further

distinguishing this framework from the large-sample asymptotics discussed in Section 2.2.

Following the existing literature, we analyze two estimation settings. The first focuses on cases

where Rt represents a positive “scale parameter,” such as volatility or idiosyncratic variance. To

facilitate this analysis, we impose the following regularity conditions:

Assumption 3 The following conditions hold: (i) R̂t/Rt
d→ ξ for some continuous random variable

ξ with a known distribution; (ii) the loss function takes the form L(u, û) = L(û/u) for a non-

constant convex loss function L : R+ → R+.

Condition (i) describes the asymptotic property of the R̂t estimator through the “self-normalized”

quantity R̂t/Rt. This formulation differs from the central limit theorems typically encountered in

large-sample analysis as seen in Assumption 1, reflecting the distinctive features of small-sample

frameworks. The resulting limit distribution in these settings is often nonstandard, as illustrated

in the examples below. The self-normalized limit theorem naturally aligns with the scale-invariant

loss function specified in condition (ii). Moreover, the additional convexity requirement on the loss

function, satisfied by many commonly used examples, enables the simplification of confidence sets

into confidence intervals.

Example 1 (Return-based Spot Variance Estimator). Let (ri)1≤i≤k be high-frequency

asset returns sampled at frequency ∆n → 0 near time t. The standard spot variance estimator

is given by R̂t = (k∆n)
−1

∑k
i=1 r

2
i . Let Rt denote the asset’s spot variance at time t. With the

sample size k fixed, Bollerslev et al. (2021) exploited the local Gaussianity property of the standard

Itô semimartingale model and employed a coupling argument to establish that R̂t/Rt
d→ ξ ∼ χ2

k/k,

where χ2
k/k represents a scaled chi-squared distribution with k degrees of freedom. □

Example 2 (Candlestick-based Spot Volatility Estimator). Li et al. (2024) proposed
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the Best Linear Unbiased Estimator (BLUE) for spot volatility using high-frequency candlestick

observations. By leveraging the richer information in candlesticks, this estimator is substantially

more accurate than those based only on returns. Let wi denote the price range associated with

the return ri for the ith time interval. The BLUE takes the form R̂t = k−1∆
−1/2
n

∑k
i=1(0.811wi −

0.369|ri|), where the weights are chosen to minimize asymptotic variance. Let Rt be the asset’s

spot volatility. These authors show that R̂t/Rt
d→ ξ, where the limit variable is represented as

ξ =
1

k

k∑
i=1

{
0.811 · sup

s,u∈[0,1]
|B(i)

s −B(i)
u | − 0.369 · |B(i)

1 |

}
,

for independent copies of standard Brownian motions, (B(i))1≤i≤k. Bollerslev et al. (2024a) extend

this framework to study optimal estimators without shape restrictions and established similar con-

vergence results for risk-minimizing estimators. We omit the discussion on their more complicated

estimators for brevity. □

Proposition 2, below, characterizes the confidence set under Assumption 3. As noted earlier,

the convexity of L(·) enables the simplification of confidence sets into confidence intervals. To

formalize this, we introduce the following notation: for a threshold level Q > 0, the lower level set

{x : L(x) ≤ Q}, if nonempty, forms a closed interval, denoted as [c(L,Q), c(L,Q)].

Proposition 2 Under Assumption 3, P(L(Rt, R̂t) ≤ L̄1−α) → 1 − α where L̄1−α = QL(ξ),1−α.

Moreover, the corresponding confidence set defined in (3) can be expressed as:

CS1−α =

[
R̂t

c
(
L,QL(ξ),1−α

) , R̂t

c
(
L,QL(ξ),1−α

)] .
The analysis thus far has focused on cases where the forecast target Rt is a “scale parameter,”

such as spot volatility. While Assumption 3 is tailored for this class of problems, it is not suitable

for other types of forecast targets. A notable example is spot beta, as examined in Bollerslev et al.

(2024b). To extend the framework to accommodate a broader range of applications, we introduce

the following assumption.
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Assumption 4 The following conditions hold: (i) (R̂t−Rt)/Σ̂
1/2
t

d→ ξ for some continuous random

variable ξ with a known distribution and some estimator Σ̂t; (ii) the loss function takes the form

L(u, û) = L(û−u) for a pth-order homogeneous loss function L : R → R+ for some constant p > 0.

Condition (i) specifies the asymptotic behavior required for the R̂t estimator, representing a

significant departure from Assumption 1. Unlike the large-sample framework, no scaling factor

(e.g., an) is introduced, and R̂t is not assumed to converge to Rt. Additionally, Σ̂t is not required

to consistently estimate any “asymptotic variance,” which is irrelevant in the small-sample context,

particularly because the limit distribution is not (mixed) Gaussian.

A notable example within this framework is spot beta, the small-sample behavior of which has

been studied by Bollerslev et al. (2024b). In this case, Rt is the spot beta of a stock relative to a

market portfolio and R̂t is obtained by regressing the asset’s high-frequency returns on the market

portfolio’s returns over a sample of size k. The variance estimator Σ̂t is defined as proportional to

the ratio of the asset’s spot idiosyncratic variance estimator to the market’s spot variance estimator,

ensuring that (R̂t−Rt)/Σ̂
1/2
t corresponds to the t-statistic of the regression coefficient. By coupling

the nonparametric spot beta estimation problem with a finite-sample Gaussian linear regression

limit experiment, Bollerslev et al. demonstrated that this t-statistic converges in distribution to a

random variable ξ following a t-distribution with k − 1 degrees of freedom.

The loss function in condition (ii) of Assumption 4 supports a broad class of location-invariant

possibly asymmetric polynomial losses. In contrast to Assumption 3, scale-invariant losses are not

considered here, as such restriction is less relevant for quantities like spot beta. Like convex losses,

this type of scale-homogeneous loss functions also permits the characterization of confidence sets

as confidence intervals, as described in the following proposition.

Proposition 3 Under Assumption 4, P(L(Rt, R̂t) ≤ L̄1−α) → 1− α where L̄1−α = Σ̂
p/2
t QL(ξ),1−α.

Moreover, the accompanying confidence set defined in (3) can be expressed as

CS1−α =
[
R̂t − Σ̂

1/2
t c

(
L,QL(ξ),1−α

)
, R̂t − Σ̂

1/2
t c

(
L,QL(ξ),1−α

)]
.

If x 7→ L (x) is symmetric, then the confidence set simplifies to CS1−α = [R̂t − Σ̂
1/2
t Q|ξ|,1−α, R̂t −

12



Σ̂
1/2
t Q|ξ|,1−α].

Comment. In comparison to the “standard” confidence interval (4), the confidence intervals de-

scribed in Proposition 3 may be asymmetric unless the loss function L(·) is symmetric. Even under

symmetry, these intervals differ because the limit variable ξ may follow a non-Gaussian distribution

(e.g., t-distribution), resulting in a different critical value than in the “standard” case.

2.4 Extensions

The previous subsections have focused on single-period and univariate settings. The same concep-

tual framework for forecast evaluation can also be applied in more general settings. In Supplemental

Appendix A, we present extensions in two key directions: multi-period evaluation and multivariate

forecasting targets.

The multi-period extension enables the joint evaluation of forecast performance across a se-

quence of time periods, effectively addressing a multiple testing problem. This extension introduces

confidence bands to assess the overall accuracy of forecast paths and provides a formal framework

for hypothesis testing over extended time horizons. The methodology incorporates a “sup” statistic,

capturing the worst-case proxy loss across multiple periods, ensuring robust and uniform coverage

of confidence bands.

The multivariate extension generalizes the framework to vector-valued forecast targets, such as

integrated covariance matrices and spot betas. This extension highlights the subtleties of trade-offs

across forecast components and introduces a broader class of loss functions to accommodate the

added complexity. The interplay between components and their weighting, as governed by the loss

function, leads to distinct inferential outcomes compared to the univariate setting.

3 Spot volatility forecasting for newly IPO’d stocks

3.1 The empirical setting

To highlight the novelty of the proposed evaluation framework in an empirical setting, we consider

forecasting the spot volatility of a stock immediately after its initial public offering (IPO), when
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it first starts trading on the stock market. This is an extreme scenario where historical data

is inherently limited for both model training and forecast evaluation, but it is an economically

important one given that there are an average of over 200 IPOs in the U.S. per year.5 Since the

new method is designed for real-time forecast evaluation with short samples, this setting naturally

highlights its key advantages. We emphasize that the method proposed in this paper is also valuable

when the available sample is “effectively short,” such as after major corporate events like mergers,

spin-offs, index inclusions or exclusions, and other structural shifts that alter a firm’s characteristics.

We analyze forecasts for Advanced RISC Machines (ARM), a British semiconductor and soft-

ware design company, as our leading example. ARM’s IPO on September 14, 2023, was one of

the most significant market events of the year, drawing widespread investor attention. Indeed, this

firm was included in the NASDAQ 100 index on June 24, 2024, less than a year after its IPO.6

We consider the problem faced by an analyst tasked with forecasting the spot volatility of ARM’s

stock price immediately after it begins trading, and evaluating the quality of those forecasts in real

time. As high-frequency transaction data accumulate, we compute spot volatility estimates (i.e.,

R̂t) progressively on a granular 5-minute time grid and assess whether the corresponding forecasts

are “statistically acceptable” at a given confidence level using the proposed inference method.

It is worth noting that constructing spot volatility forecasts in this empirical scenario is a non-

standard and challenging task, due to the lack of historical data for model training. In particular,

when forecasting for the first trading day, the analyst in this scenario has no prior data for the newly

listed stock. To address this issue we adopt a simple transfer learning framework with a dynamic

scale-adjustment mechanism. Specifically, historical data from the QQQ ETF, which tracks the

NASDAQ 100 index, serve as “source data” for training the forecasting models.7 As new stock data

accumulate, its own “target data” gradually replace the “source data” within the rolling window

for parameter estimation. Recognizing the scale differences between source and target data, we

5Source: https://site.warrington.ufl.edu/ritter/files/IPO-Statistics.pdf.
6In the supplemental appendix, we conduct similar analyses for five other recently IPO’d stocks that were later

included in the S&P 500 index.
7To assess the robustness of our approach, we also consider an alternative specification where historical data from

the SPY ETF, which tracks the S&P 500 index, are used as the source data. The results, reported in Supplemental
Appendix C, show that this alternative choice leads to minimal differences, suggesting that the proposed method is
not sensitive to the specific selection of source data.
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dynamically adjust the source data scale to align with the target data as the latter becomes pro-

gressively available. We emphasize, however, that our primary contribution is the new evaluation

framework, not the transfer learning approach we adopt. The latter is employed primarily as a

practical tool for constructing forecasts in a short-sample setting, and its further refinement is left

for future research.

We obtain high, low, open, and close observations (also known as “candlestick” observations) on

ARM at a 5-minute frequency (∆n = 5) from PiTrading Inc., covering the period from September

14, 2023, to February 7, 2024. Each candlestick is used to estimate spot volatility at 5-minute

granularity using the candlestick-based BLUE estimator proposed in (Li et al., 2024). The rolling

window size is set to 50 trading days, comprising 3,900 5-minute observations. We consider a range

of forecast horizons, τ , from five minutes to one trading day.

We consider three forecasting models. The first is the multiplicative component GARCH (MC-

GARCH) model, proposed by Engle and Sokalska (2012). This model decomposes spot volatility

into daily, diurnal, and stochastic intraday components, providing a flexible framework for model-

ing volatility dynamics both across days and within intraday periods. Specifically, the stock return

over the ith high-frequency observation interval on day t is modeled as follows for 1 ≤ i ≤ n and

1 ≤ t ≤ T :

rt,i =
√
htsiqt,iϵt,i, where ϵt,i ∼ N (0, 1),

where ht represents the daily variance component, si captures the diurnal (intraday seasonal)

pattern, qt,i is the high-frequency volatility component, and ϵt,i is the error term. For identification

we impose E(qt,i) = 1 and E(si) = 1/n.

Following Engle and Sokalska (2012), we estimate the daily conditional variance, ht, using a

realized variance estimator, ĥt,i−1, defined as the sum of the 78 squared high-frequency returns

ending in the previous intradaily interval.8 The diurnal variance component, si, is then estimated

8In the first interval of the day, this estimator corresponds to the familiar open-to-close realized variance for
the previous trade day. For other intradaily intervals, it is an realized variance measure over the same number of
observations, but ending at the start of the interval of interest.
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as

ŝi =
1

T

T∑
t=1

r2t,i

ĥt
,

for each intraday timestamp i. Finally, the normalized returns, zt,i = rt,i/
√
ĥtŝi, are mod-

eled as having the conditional distribution N (0, qt,i), where the conditional variance qt,i follows

a GARCH(1,1) model:

qt,i = (1− α− β) + αz2t,i−1 + βqt,i−1.

The estimated GARCH model is then used to compute a τ -period-ahead forecast, q̂T,i+τ , based on

the training sample. The corresponding spot volatility forecast is given by
√
ĥT ŝi+τ q̂T,i+τ/q̄, where

the normalizing factor q̄ is the sample average of qt,i over the training sample.

The second forecasting method is adapted from the heterogeneous autoregressive (HAR) model

(Corsi, 2009), originally developed to forecast daily integrated volatility using lagged moving av-

erages over daily, weekly, and monthly intervals. We modify the HAR model to predict spot

volatility as follows. Let R̂t,i denote the realized spot volatility at day t and interval i, computed

using the candlestick-based BLUE estimator from Li et al. (2024). The τ -period-ahead HAR model

is specified as

R̂t,i+τ = β0 + βsR̂
(s)
t,i + βmR̂

(m)
t,i + βlR̂

(l)
t,i + ϵt,i, (8)

where R̂
(s)
t,i , R̂

(m)
t,i , and R̂

(l)
t,i are backward-looking moving-averages of short-term (5 minutes), medium-

term (1 hour), and long-term (1 day) volatility, respectively.

Finally, we note that compared to MCGARCH, a key limitation of the HAR model is its failure

to explicitly account for intradaily seasonality in volatility dynamics. While this shortcoming

is inconsequential in applications where HAR is used for daily volatility forecasting, it becomes

relevant when forecasting intraday spot volatility. This motivates us to propose a new variant, the

multiplicative component HAR (MCHAR). We estimate the daily volatility component and the

diurnal component as in the MCGARCH model described above, and we model the normalized

spot volatility component, Ẑt,i = R̂t,i/(ĥt,i−1ŝi), using a HAR model analogous to equation (8).
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Figure 1: Spot Volatility Forecasts on the IPO Date

The figure presents 5-minute-ahead spot volatility forecasts of ARM based on the MCGARCH,
HAR, and MCHAR models, along with 95% evaluation confidence intervals derived from the q-like
loss, for ARM’s IPO date, September 14, 2023. Like most IPOs, trading commenced at noon and
not the usual opening time of 9:30am. Volatility is expressed in percentage terms per day.

3.2 Results

As an initial illustration, Figure 1 presents the 5-minute-ahead spot volatility forecasts from the

three models described above, along with the 95% evaluation confidence intervals9 derived in Propo-

sition 2, throughout the day of ARM’s IPO, September 24, 2023. This is obviously an atypical day,

due to the very limited information available about ARM’s stock price dynamics, the late start of

trading (noon rather than 9:30am), and the elevated level of volatility generated by investors seek-

ing to determine the equilibrium price for this asset. Nevertheless, this day represents a fascinating

example of the usefulness of the proposed method: we see that aside from the very first forecast,

when no historical data on this stock was available at all, for about the first 45 minutes all of the

three methods produce “statistically acceptable” forecasts, perhaps predominantly due to the very

wide confidence intervals for spot volatility during those first few periods of this stock’s trading life.

As the trading day progresses the level of volatility falls (from around 20% at the open to around

9For all confidence intervals we use the q-like loss function from equation (6); results based on quadratic loss are
very similar and are omitted for brevity.
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Figure 2: Spot Volatility Forecasts on a Representative Day

The figure presents 5-minute-ahead spot volatility forecasts of ARM based on the MCGARCH,
HAR, and MCHAR models, along with 95% evaluation confidence intervals derived from the q-like
loss, for November 29, 2023. Volatility is expressed in percentage terms per day.

5% an hour before the close) and the confidence intervals tighten, and we observe some forecasts

falling outside of the confidence interval, representing a forecast failure, and one that is detected

in (almost) real time.

In Figure 2 we next consider a more representative day for this stock, November 29, 2023,

about two months after its IPO.10 Although each confidence interval is constructed from a single

high-frequency candlestick observation, they remain reasonably tight, consistent with the theoreti-

cal result that optimal candlestick-based spot volatility estimators are substantially more accurate

than those based solely on returns at the same frequency (Li et al., 2024; Bollerslev et al., 2024a).

Furthermore, the confidence intervals appear informative enough to distinguish among the alter-

native forecasts. Specifically, forecasts from the two HAR-type models generally fall within the

evaluation confidence intervals, indicating their statistical acceptability. In contrast, MCGARCH

forecasts more frequently fall outside the confidence intervals, suggesting the model’s relative infe-

riority for short-horizon (τ = 5 minutes) forecasting.

10The selected day is representative because the average acceptance rates of the forecasts on this day closely align
with the overall sample averages, making it a suitable depiction of the forecasts’ typical performance.
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Figure 3: Spot Volatility Forecasts on a Representative Day over Multiple Horizons

The figure presents the τ -period-ahead spot volatility forecasts of ARM based on the MCGARCH,
HAR, and MCHAR models, formed at the start of a representative trading day, November 29, 2023,
with τ ranging from 5 minutes to 6.5 hours throughout the day. The shaded area represents 95%
evaluation confidence intervals derived from the q-like loss. Volatility is expressed in percentage
terms per day.

For the same day, Figure 3 presents forecasts over different horizons, all formed at 9:30 a.m.

These forecasts illustrate the expected spot volatility paths throughout the day based solely on

information available at the market open. This task is inherently more challenging than that in

Figure 2, as the latter involves only short-horizon forecasts and benefits from continuously updated

intraday information. Nevertheless, forecasts from the MCGARCH and MCHAR models, which

incorporate built-in mechanisms for capturing intraday seasonality in spot volatility dynamics,

perform well, as they generally fall within the evaluation confidence intervals. In contrast, the

“plain” HAR model, which does not explicitly account for diurnal patterns, produces distinct and

noticeably poor volatility forecasts at longer horizons. In contrast with standard forecast evaluation

methods that use long out-of-sample periods and focus on long-run average prediction errors, this

forecast failure is detectable in a formal statistical manner using the proposed method in real time,

on the very day of the failure.

To evaluate the performance of the alternative forecasting methods over a longer sample Table
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Table 1: Acceptance Rates for the Alternative Forecasts

Model Forecast Horizon
5 min 1 hour 2 hour 4 hour

Panel A: Q-like Loss
MCGARCH 0.6906 0.6418 0.6216 0.6077
HAR 0.7478 0.5760 0.5556 0.5385
MCHAR 0.7825 0.7298 0.7071 0.6862

Panel B: Quadratic Loss
MCGARCH 0.7456 0.6926 0.6748 0.6624
HAR 0.7907 0.6377 0.6114 0.5963
MCHAR 0.8113 0.7640 0.7453 0.7185

Note: The table reports the acceptance rates of spot volatility forecasts for ARM stock using the MCGARCH, HAR,
and MCHAR models. The acceptance rate is defined as the proportion of forecasts falling within the 95% evaluation
confidence intervals, based on the q-like loss (Panel A) or the quadratic loss (Panel B), over a prediction sample
spanning 100 trading days after the company’s IPO on September 14, 2023. All models are trained using a 50-day
rolling window scheme with 3,900 high-frequency observations. A transfer learning scheme is employed, using QQQ
ETF data as source data to augment the training sample prior to the IPO.

1 reports the “acceptance rates” for each model, defined as the proportion of forecasts falling within

the evaluation confidence intervals. A higher acceptance rate indicates better performance. The

analysis is conducted under both the scale-invariant q-like loss and the quadratic loss, presented

in Panels A and B respectively. It is important to note that a perfect forecast would result in an

acceptance rate of 95%, aligning with the confidence level. Consistent with the patterns observed in

Figures 2 and 3, HAR outperforms MCGARCH at the short 5-minute horizon, but underperforms

MCGARCH at longer intraday horizons. Meanwhile, MCHAR consistently outperforms both HAR

and MCGARCH, achieving an acceptance rate close to 80% at the short horizon and remaining

mostly above 70% across various intraday horizons.11

The analysis above reveals that an intraday version of the HAR model of Corsi (2009) under-

performs at longer horizons due to its lack of diurnal adjustment, while the MCGARCH of Engle

and Sokalska (2012) underperforms at short horizons despite capturing intraday seasonality. In

contrast, a new model that combines elements of both, dubbed the “MCHAR” model, is the best-

performing model across all forecast horizons. Supplemental Appendix C presents corresponding

analyses for another five stocks that IPO’d in 2023-24 and were later included in the S&P 500

11We also used the test of Diebold and Mariano (1995) to determine whether, for each pair of models at a given
forecast horizon, the acceptance rates are significantly different. In all cases the p-values for the tests were less than
0.001, revealing that the differences reported in Table 1 are statistically significant at all conventional levels.
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index, and reports similar empirical findings to those for ARM presented above.

4 Conclusion

This paper proposes a new method to evaluate risk forecasts period-by-period, or “online,” en-

abling the analyst to determine in real time whether or not a given forecasting model is producing

“statistically acceptable” forecasts. We do this by acknowledging and exploiting the sampling error

in the volatility proxy that is used for forecast evaluation. We show how to construct a confidence

set for the true, latent, risk measure and we use the inclusion, or exclusion, of the forecast in that

set as a formal measure of “acceptability.” We construct evaluation confidence sets in both large-

and small-sample settings, allowing us to consider forecasts of quantities like integrated variance

(large samples) and spot volatility (small samples). The theory reveals how these confidence sets

depend on the local or global shape of loss functions and possibly nonstandard limit distributions

of the realized measures. We also consider extensions to multivariate forecast evaluation, allowing

us to consider forecasts of covariance matrices for example, and multi-period forecast evaluation.

We demonstrate the utility of our method by applying it to forecasting the volatility of a newly

listed stock. This application shows that our framework is effective even in environments with very

limited historical data, where traditional evaluation methods fall short. Our results indicate that

forecast evaluation can begin on the first day data become available, that forecast breakdowns can

be detected almost in real time, and that long-term performance can be compared by examining

the average acceptance rate of the forecasting model.
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