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Abstract

This appendix contains the technical lemmas used in the proofs of the main theorems.

SA Proofs

Throughout the proofs, we use K to denote a generic finite constant that may change from line to
line. For p > 1, let || ||, denote the L, norm for random variables. For notational simplicity, we
write >, in place of >} ;.

SA.1 Technical lemmas for Theorem 1

Lemma S1. Under Assumptions 1 and 2, we have for any R > 0,

sup n 'Y [P(X;(0) = POX)IP = Op(¢Fuman™),
0eBy,(R) 7

PR - PEH|T = 0p(Gaman™,
t
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Proof. Fix some constant 7 > 0. Since the variables (Lx ;)1<i<n are Ly-bounded, we can use a

maximal inequality to deduce E [maxi<¢<n |Lx || < nl/p maxj<¢<n HLX,th < Kn'/P. Note that

X X < Kn~'? Lx| = Oy(n'/P71/2).
962“%)113?2%” t(0) — X7 < Kn ggl xt| = Op(n )

Hence, there exists some constant C' > 0 such that

P () <n/2, where Q, = Sup - max X () — X} < ont/r-1/2
9B (R) 1SS

In particular, X; (6) € X ® Cn/P~1/2 for all t and § € B,, (R) in restriction to €, and hence,

sup n IZIIP (X¢ (0)) — P(X])|
0eBnr(R)

= Ssup n 122‘8]71 XGt Xt(a)_X;)z

0€Bn(R) =1

< sup n ZZHapz Xoo)|* 11X (0) — X7

0eBn(R
< K¢ ,mpn”! ( ‘1ZL ) o (CF aman ™),

where Xp; is some mean value between X; () and X, the first inequality is by the Cauchy—
Schwarz inequality, and the second inequality is by Assumptions 1 and 2. Therefore, there exists

some constant K > 0 such that

P ({ sup n 12 |P(X; (0)) — P(X})|* > KCinmnn_l} N Qn> <n/2.

0eBn(R)

Hence,

P( sup n IZIIP (X¢ (6)) = P(X])|? >K612,nmnn_1>

0€ By (R)

<P { sup n ! Z |P(X; (0)) — P(X})|* > Kginmnn—l} N Qn> +P(QS) <7
0eB,(R)

This proves the first assertion of the lemma. Since 6, = 6* + Op(n_l/ 2), the second assertion

readily follows from the first. Q.E.D.

Below, we denote



Lemma S2. Suppose that Assumptions 1 and 2 hold. Then, we have for any R > 0,

= Op(dgm + Cl,nm£/2”71/2) = o0p(1),

SuP HQ" ~Qn S

0eBn(
|Gn =@, = OplGan+Grami/*n™%) = o,(1).
Proof. Note that @Z = @n(e*). By the triangle inequality,
|@n o) - w3 P (X)(P(X, (8)) = P (X))
nt Y P (X7 (P(X(9)) — P(X)T (S.1)
t
By the Cauchy—Schwarz inequality and Lemma S1, we have uniformly in 6 € B, (R),
2
n~t Y (P(X:(0)) = P(X))(P(X: (0) = P(XP)"
t
- 2
< <n SO S (X (9)) —pl<X:>>2) — Op(¢ m2n72). (5.2)
I=1 t
In addition, we have uniformly in 6 € B,(R),
2
n~t Y P(X]) (P(X: (0)) — P(X7)"
tmn )
=Y | D P(XE) (X (0)) = pi (X7))
=1 t
< Anax (@) D07 D (X (8)) — pr (X7))? = Op((F yman ™), (S.3)
=1 t

where the bound on the last line follows from Lemma S1 and )\max(@;) = Op(1), with the latter
implied by Assumption 2. By (S.1), (S.2), and (S.3), we have uniformly in 6 € B,,(R),

= Op(Gpman™ + Guamy/*n~1/?)

= Op(GLamy*n™7?) = 0y(1),

|@n) - @

where the second line follows from (; ,,m., V2172 = 0(1) which is implied by Assumption 2(ii).
The first assertion of the lemma thus follows from the estimate above and the assumption that

1Q% — Qulls = O, (8g.n)- The second assertion then follows from 6, = 8* + O, (n‘l/Q). Q.E.D.

Lemma S3. Under Assumption 1, we have for each R > 0,

sup 0 E Y (Za(0) — Ziy)? = Op(n™ V).
0eBn(R) ¢



Proof. Fix any R > 0. Note that for each 6 € B, (R), f;(6*) — Rn~Y2L; < fi (9) < f:(8*) +

Rn~12L,. and hence,

1241(0) = Zia () = viazion — L <o | U U7, (S.4)

where we set U = Loy, 1 <fi(6*)+Bn-1/2L,}- Therefore,

sup 'Y (Zea(0) — Zea (00)2 <7D (UF U ). (S.5)

0€Bn(R) 7 7
Recall that Fy ), (-) is the Fy-conditional distribution function of Y;41. By Assumption 1,

E[US U |F] = Fiap (ft (67) + an/th) = Fipape (ft (%) — Rnil/th)
< 2Rn'LZ. (S.6)

Since L; is Lo-bounded, E [UtJr — Ut_] < Kn~Y/2. The assertion of the lemma then readily follows
from this estimate and (S.5). Q.E.D.

Lemma S4. Suppose that Assumptions 1 and 2 hold. Then, we have for any R > 0,

= 0p(n~ Y2 + mY2(C1an™* + Coun™3%).

w -1 Z P(X4(0))(Zi+1(0) — Zf11)

0eBn(R

Proof. Step 1. By Lemma S2, supgcp,, (r) 100 (8) — Q| = op(1). Since the eigenvalues of @, are

bounded from above and away from zero, we further deduce

AL (Qn(0)) + Amax(Qn(6)) = Op(1), uniformly in 6 € B, (R). (S.7)

Recall that Zy11 (0) = Fyyqp (f¢ (0)) — ¢ is the Fy-conditional mean of Z;41(6). Let Z41(0) =
Zi41(0)— Zgy1 (0), which forms a martingale difference sequence with respect to JF; by construction.

By the triangle inequality,

sup ||n1 Y P(X4(0))(Zi21(0) — Zf41)
0eBn(R) i
< Sup - Z P(X4(0))(Zt41 (0) — Zia (9*))H
HeBn
sup |[n7t ZP (X4(0))(Zy41(0) — Ztﬂ(e*))H . (S.8)
eeBn(R




The first term on the majorant side of (S.8) can be bounded as follows

2
sup "> P(Xi(0))(Zy14 (0) = Ziga (%))
0eBn(R) 7
< sup Amax(@n(0)) sup 0P (Zy4 (0) — Ziga (69))
0€Bn(R) 0€Bn(R) t

< Op(1)- sup {n_l Z (Haezt—i-l @) 110 = 0% + Let (16 — 9*’2>2}
t

0eBn(R)
= Op(nil)a

where the first inequality is obtained by using the contraction property of least-square projections,
the second inequality is due to Assumption 1, and the last line follows from the Lo-boundedness

of HE?(;Z,; (9*)H and L;. This estimate further implies that

sup
0€B,(R)

nt Z P(Xt(e))(ZtJr1 (0) — Z1 (0*))“ - Op(n—l/z).

Hence, to prove the assertion of the lemma, it remains to show that the second term on the

majorant side of (S.8) satisfies

sup
0eBn(R)

ntYy P(Xu(0)(Zi(0) - Ze+1(9*))H = Op(m,*(CLan ™ + Qoan ™). (S.9)
t

Below, we prove (S.9) in two steps.

Step 2. For ease of notation, we set for each [ € {1,...,m,},
() =2 > p(X(0)) (Zi1(0) = Zu41(67)), 6 €O.
t
In this step, we establish the following technical estimate:
710 (01) = T (02), < K (CLnn ™2 + Con) (101 — 0af|"/*, for 61,02 € Bu(R). (S.10)
Recall that Zy1(0) = Zyy1 () — E[Zi1 (0) | F). Tt is then easy to see that
E [ (Zi(6) = Zua (0| 7] SE[(Zi1 (6) = Zin (6] 7]

By (S.4) and (S.6), the majorant side of the above inequality can be further bounded by Kn~'/2L?
uniformly in 6 € B, (R). Hence,

E [(ZH(H) - Zﬂ(e*))?‘ ft] < Kn~V2L2. (S.11)



For 61,62 € B,(R), we can decompose
T (1) — T (B2) = n™Y/2 Z [0 (X:(01)) — pr (Xe(02))] (Ze11(01) — Zi41(0%))
+n 2 " py (X1(02)) (Zegr (01) — Ziga (62)). (S.12)

We now derive Ly-bounds for the two terms on the right-hand side of (S.12). By (S.11), Burkholder’s

7

inequality, and Holder’s inequality, we have

E

n2N o (Xe(01) — o1 (X2(02))] (Ze41(61) — Zega (67))

p/2]

n”! Z [(pr (X1(01)) — pr (X¢(02))]) n~ /212

p/2]

Since E[L% ,L}] < K by Assumption 1, we can bound the Ly-norm of the first term in the decom-

< Kn PR {

(E 1161 — 627 (n_l > L?x,@?)
t

ke[

01 — 02"

position (S.12) as follows

< Kn Y4, 101 — 6o . (S.13)
p

n2S (o (Xi(01)) = P (Xe(02))] (Zi1(01) — Ziga (6%))
t
Turning to the second term in the decomposition (S.12), we note that

(Zi41(01) = Ze41(02))* < Ly <0u(00) 415 01)— £1(02) [} — L{¥in <52 (01)— 12 (01) (62}

Hence,
E[(Zin1(01) = Zer1 (02)2| o] < 2L i (62) = i (02)] < 207 161 — 0] (S.14)

Y P (Xi(0))E [ (Ze1(01) — Zisa (02)] F]

p/2
_Isz (Xe(602))

< K¢, 00— 020" n Y EILY) < K, 1161 — 627
t

By (S.14), Burkholder’s inequality, and Holder’s inequality,

E

V23T P (X0(02)) (Zesa (01) — Zsa(62))

p/2

<KH01 — 65 |p/2




Hence,

02N P (Xi(02)) (Ze41(01) = Zeya (02))|| < Ko [|61 — 6]/ (S.15)
t

p
Since ||6; — 62]] < Rn~'/2, the assertion in (S.10) readily follows from (S.13) and (S.15).

Step 3. We shall use a chaining argument to establish (S.9). Construct nested sets ©g, C
©14 -+ C Bp(R) such that Oy, = {#*} and for each j > 1, ©;,, is a maximal set of points such
that each pair of distinct elements in ©;,, has distance greater than Rn~1/2277. Note that the
number of points in ©; is less than C(27)% for some constant C' > 0 that does not depend on j.
Link every point ;.1 € ©;11 to a unique 0; € ©; such that [|0;1 — 0;]] < Rn='/2277. Then for
any J >0 and 0541 € © 511, we can construct a chain 6;,1,...,0p to 8p = 6*, and hence, by the
triangle inequality

J J
71 (0530 = | Y [Tin(0541) = ma(67)]| <D max mp(0511) — 70 (65)] (S.16)
=0 =0

where, for each j, the maximum is taken over all links (6,11, 6;) from ©,; to ©; (with the total

number less than C(2/71)9). We then observe

J
plax |71, (0 ) JZ;HIH&X!FM 0j11) — mn(05)11,
J
< K Y ()% max |[mn(011) = ma(6))]],

7=0

\1/2
2] do/p( (Cran™ 1/2 + Com )(Rn—l/QQ—J> /

”M“

< K(C17nn73/4 + Co,nnfl/‘l)

where the first inequality is by (S.16); the second inequality is by a maximal inequality under
the Lp-norm; the third inequality follows from (S.10); and the last inequality holds because
Zj(2j)d9/” (2‘j)1/2 < oo as implied by p > 2dy. Since the stochastic process 7, (6) indexed
by 6 is separable, by letting J — oo, we further have

< K (Can 8/ + Goun 4. (S.17)
p

sup |mn(0)]
0€B,(R)

Finally, note that [|n=12 3", P(X;(8))(Zi11(0) — Ze1 (0*)|? = 7™ 71.,(6)%. Therefore,

2 o 2
E| sup ||n7"2Y " P(Xi(0)(Zir1(8) — Zina(67)|| | < sup [m.q(6)|
0€B,(R) 0eBn(R) »
The assertion in (S.9) then readily follows from this estimate and (S.17). Q.E.D.



Lemma S5. Suppose that Assumptions 1 and 2 hold. Under the null hypothesis, we have for any
R >0,

sup
0eB,(R)

n=t Y (P(X4(0)) — P(Xe(67))ui

=0, ((an}/Qn_l) .

Proof. We set m;,,(0) = n~ 23", (m(X:(0)) — pi(X:(6%)))uf. Note that under the null hypothesis,
(pi(X(0)) — pi(X(6%)))u; forms a martingale difference sequence. For any 601, 62 € ©, we observe

p/2

IN

E[|7m1,(01) — m1,n(02) "] KE |[n™" > (m(Xi(61)) — pu(X:i(62)))?

IN

K, 160 — 02" n™" Y E[LR ] < KCP (161 — 62,
t

where the first inequality is by Burkholder’s inequality and the boundedness of uy, and the second

line follows from Assumptions 1 and 2. Hence,

170, (01) = 710 (02)[],, < KCn (|01 — 62| (S.18)

Construct ©g,, C O1,,--- C By(R) as in step 3 in the proof of Lemma S4. Using the same
chaining argument but with (S.10) replaced by (S.18), we deduce that

0
o2 |mi.n ()]

J
< Z |max |7, (04+1) — 7Tl,n(‘gj)wp
P j=0

J
< K ()P max w0 (0541) — 0 (60))]1,
—0

J

J
< I(vgl,nnil/2 Z(Qij)lidg/p < KCl,nnil/%
=0

Sending J — oo, we further deduce

sup  |mn(0)]| < K¢nan V2 (S.19)

0eBy,(R)

P
Finally, note that ||n=!Y",(P(X:(0)) — P(X:(0)))ur||> = Y12 m1..(0)2. Therefore,

2 2

E| sup ("2 (P(Xu(0)) = P(Xe(0))ui| | <D || sup |min(6)]
0€eBn(R) P =1 0€eBn(R) »
The assertion of the lemma then readily follows from (S.19). Q.E.D.



Lemma S6. Suppose that Assumptions 1 and 2 hold. Then, we have Hgn — b || = Op(6p,n), where

771,11/271_1/2 under the null,
6b,n =
Cl,nm711/2n_1/2 + Co7nm7ll/2n_3/4 in general.

Proof. By Lemma S2, ||©n —Qnlls = 0p (1). Since the eigenvalues of @,, are bounded from above

and away from zero, we further have
)\I;nln(@n) + Amax (Qn) = Op(1). (S.20)

Recall that uf = Z},, — E [Z},,|X}]. By the definition of by, we can decompose

eth = 03 (o e ) 47 (v SP-p x|

+Qu'n Y P(X)(h(X]) = P(X,)T8})

+Q," (n_l ZP()AQ)(ZSH - Zt*+1)) : (S.21)

It remains to bound the four terms on the right-hand side of this decomposition.

First, recall that 4, = Var(n~/23, P(X{)u;) has bounded eigenvalues (Assumption 2).
Hence, E[|n~Y/2Y", P(X;) uf||?] = Trace (A,) < Km,, which, combined with (S.20), implies
that

03 (w7 P00 ) = 0yt (522
t

Second, by the Cauchy—Schwarz inequality, the boundedness of u}, and Lemma S1,

2

< kn Y|P -P ()|

= OP(C%,nmnnil)‘

n~t Y (P(X) =P (X])uf

In addition, under the null hypothesis, we can apply Lemma S5 to get

" 3PP (X7))ui = Oy (Gami/*n ™). (S.23)

~ ~ Op Clmmqlzﬂn*l under the null,
Q' <n1 > (P(Xy)—P (X?))UI> = ( ) (S.24)
O, (Q,nmql@ﬂn*lﬂ) in general.



Third, we note that

2

< r:un A _1 Z Xt)Tb*)

< 2221 (Qn) *IZ P(X;) "b5)?

H@Eln_l Y PX)(h(X}) = P(X,) b))

221 (Qn n*lz X)) — h(X}))2.
t

Define €2, as in the proof of Lemma S1, so that )?t € X @ e, for some &, =< n'/P~Y/2 in restriction
to €,. By (S.20) and Assumption 2, A= (Qu)n 1Y, (A(X) — P(X,)Tb)% = O,(n~1). Moreover,

since h (-) is continuously differentiable, it is Lipschitz on the compact set X @ &,,. Therefore,

Amin(@n) *12 hXH)? < 0p(1)n 1Y (X — X7)?

- oo (rT)

= Op(n7").

Combining the three estimates above yields

=0, (n*1/2) : (S.25)

o7 3 P - PO
t
On the other hand, under the null hypothesis, we have h(-) = 0 and b}, = 0. We thus have

~ 1 ~ ST 0 under the null,
Qu'n~t Y PX)(WX]) - P(X0) ') = (S.26)
¢ O, (n_l/ 2) in general.

Finally, by Lemma S4,
Q' <n—1 > P (Zie ~ Zz;l)) = Op(n™" %+ 2 (Guan ™ + Goan ™). (8.27)
t
Combining (S.22), (S.24), (S.26), and (S.27), we deduce that

Op(m71/21f1/2 + Clmm}/ 1y Co, ml/2 *3/4) under the null,

Op(C1nm =12 4 + Co,.nmn 12 n=3/4) in general.

Under the maintained rate condition on (y, and (i, (see Assumption 2), we can further reduce

the rates displayed above into those asserted in the lemma. Q.E.D.

10



Lemma S7. Suppose that Assumptions 1 and 2 hold. Then,

Oy ((5,47” + C1,nm71/2n71/2 + Co,nm}/Qn*l/4> under the null,

HA\TL_ATL

O, ((5,4 n + o, nml/Q —1/4 4 Co,nflmmnn*lﬂ) in general.
In particular, | A, — Aplls = op(1).
Proof. Step 1. We outline the proof in this step. Recall that A* = n~! S utP (X)) P (x5 "

By the triangle inequality,

A, — A*

n

i

IN

(S.28)

Below, we bound the three terms on the majorant side of (S.28) in turn.
We start with the first two terms. Note that uy is bounded. By the triangle inequality, the

Cauchy—Schwarz inequality, and Lemma S1,

n”! Zu P(X))(P(X;) = P(X7)T

<Kn 'Y HP(Xt) —Pxp)|| = 0p(Eman). (S.29)

Using Lemma S1, we can also deduce that

RSP (XE) (P(X) - P (X))

9\ 1/2

mn

D

=1

1/2
(Z )\max Q* pl Xt — Dl Xt H >

1/2
<0,(1)- <n1 Z HP(X::) — P(XY) 2)

= 0, (Cram?n=1/2). (S.30)

n Ty u?P(XE) (p(Xy) — pu (X7))

IN

11



Turning to the third term on the majorant side of (S.28), we note that

2 2

L

=2

=1

nt Z —u?)P(X)P(Xy)" n Y P(X)p(Xy) (@7 — up?)

t

< Z max Qn lzpl t - u;2)2
=1
< C()nmn max Qn _IZ _Ut 2- (831)
In steps 2—4, below, we shall show that
*1§:z%-ut = Op(n™Y2 + 62, + B imndi ). (S.32)

Then (S.31) and (S.32) imply

nt Z(u? —u)P(X)P(Xy) "

= 0y (G214 {20+ Gt
t

= 0y (Gonmll>n ™V + Goum/?0,,) (5.33)

where 5, is defined in Lemma S6, and the second line follows from Co,nm,l/ 251)7” = o(1) which is

implied by Assumption 2. Therefore, by (S.29), (S.30), and (S.33),

=0, (Clynm}/Qn_l/Q + Co,nfrn}/?n_l/4 + Co,nm}/Q(Sbm) . (S.34)

Recalling the definition of dp,,, from Lemma S6, we can further simplify the rate in (S.34) via some

elementary calculations, yielding

HE T O, (C07nm}/2n_1/4 + C17nm}/2n_1/2> under the null,

(Q) nm1/2 “U4 4 Co,ng‘l,nmnn_l/Q) in general.

The assertion of the lemma then follows from this estimate and the assumption that | AX — A, |ls =
Op(64,n). The remaining steps, below, are devoted to proving (S.32).
Step 2. We collect some technical estimates in this step. Since [|6,, — 6*|| = Op(n~'/?), we can

apply Lemma S3 to get
~ 2
n Y |2 = 2| = 0071, (3.35)
t

Since Ztﬂ and Zf, | are bounded, this estimate further implies

~ 4 —~ 2
WY 2o = Zia| <0 |2 - 2| = 0y, (5.36)
t t

12



Denote hy, (-) = P(-)" b%. By Lemma S6 and (S.20),

~ |2

— (R)|” < A (@) =0, (82,). (3.37)

‘En b

Note that for some g, < nl/p*1/2, {)?t :1 <t <n}eXDe, with probability arbitrarily close to
one and, in restriction to this event, we have HP()@)H2 < ngnmn by the definition of (g . Then,
by Lemma S6 and (S.37), we have

~ o~ ,\‘4

< By |[Bn ~ha(Z)| = 0y (@umadt,) . (838)

Finally, we note that (recalling Uy = Z11 — ﬁn()?t) and uj = Z; | — h(X}))

Uy —up| < ‘ZtJrl Zia B (X1) — hn()?t)‘

(X)) — WX (S.39)

+ ‘h()?t) —h(xp)|.

Step 3. In this step, we prove (S.32) under the null hypothesis. In this case, h(-) = 0 and
hy (-) = 0. Hence, by (S.39), [ — uf| < |Zip1 — Zf1| + [ha(Xe) — ha(X4)]. By (S.35) and (S.37),

we have

DY il < Kn S |2 — Zi P+ Kn %) = (X))
t = op(n—l/tQ) +0p (04) - (S.40)
Similarly, by (S.36) and (S.38), we have
U iy —uf|t = 0p(n %) + 0, (G amndy,) - (S.41)
t
Consider the following elementary inequality: for any |z| <1 and y € R,
(t+)? - m2)2 = 2y +17)° <8a%y? + 2t <K (2 +4Y). (S.42)
Applying this inequality with z = u} and y = u; — u}, we deduce
_12 2 _u?)? < Kn_lzﬁit—uf]2+Kn_1Z]ﬂt—uf4
t t
= Op(n Y2+ 6%, + G umndy ). (S.43)

This finishes the proof of (S.32) under the null hypothesis.

13



Step 4. In this step, we prove (S.32) in the general case without imposing the null hypothesis.
We first observe that

Y[R - n(x)

IN

nl Zt: (h()?t) —n(xp)|
_1ZL +=0,(n7h), (S.44)

IN

where the first inequality holds because h (-) is bounded, and the second inequality follows from
the Lipschitz continuity of A () and || X (0) — X}|| < Lx+||0 — 6*||. By (S.39), we have for ¢ = 2

or 4,

n—lz\ﬂt—uﬂq S Kn—lz‘2t+1 t+1‘ —|—KTL
t

Xt)’

Xt)‘ +Kn’12‘h (X)) - h(xH)|

Then, by (S.35), (S.37), (S.44), and Assumption 2(ii), we deduce
Y i —uf P = Op(n 2 467, (S.45)
t
Similarly, by (S.36), (S.38), (S.44), and Assumption 2(ii), we deduce
n i = uf|t = 0p (VP 4 G umndy ). (S.46)
t

Using (S.42), (S.45), and (S.46), we derive

*12 (u? —u?)? < Knilzmt—u?|2+Kn712|ﬂt—uf4
¢ t
= Op(n_l/2 + 52@ + Cg,nmnag,n)
This finishes the proof of (S.32), and hence, the assertion of the lemma. Q.E.D.

Lemma S8. Suppose that Assumptions 1 and 2 hold. Then

P(@)Qy'n 2 2y P(X0)(Zia = Zi1)
sup = 0,((logn)~1/?).
TEX O'n(l’)

Proof. Step 1. We outline the proof in this step. Recall Z;11 (0) = E[Z;11(0)|F:] and set
Zy41(0) = Zi11(0) — Zyi1 (8). For ease of notation, we denote Z] 1 = 0pZy41 (0%). Our proof relies
on the following decomposition:

P()T Q' 2, P(X))(Zisr — 284y i

on()

Rjn. (S.47)

7,n

J=1
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P(2)TQ, 'n 2 P(Xy)(Zisr (Bn) — Zia (60))

Ri,(z) = o |

P(z)TO; 12y, {p()?t)(ZtH(én) C Ze (0°) — P(X?)Zt’ll(@n—e*)}
e oal®) |
Fante) = PG PODIL )

By (S.9), we have

n~t? ZP()AQ)(Z&H(én) - ZH(Q*))H =0y (Clﬂﬂn}/zrf?’/‘1 + Comm}L/zn’l/‘l) ,
t
which further implies

sup |Ri.n(@)] < Oy (Cnma/2n=3/% + Coumifn=1/) = 0,((10g m) /%), (S.48)
xe

In steps 2 and 3, below, we show that

sug\Rj,n(x)\ = 0,((logn)™1/2), for j=2,3. (S.49)
S

The assertion of the lemma then follows from (S.47), (S.48), and (S.49).
Step 2. In this step, we prove (S.49) for the j = 2 case. We first observe that, for any R > 0,

|P@)T QY2 5 P(R)(Z01(0) = Zuoa (07) — ZIT1(0-07))|
sup sup

0€Bn(R) z€X on()

(n8n) " X PR (Ze1(6) - 21 (0) ~ 21 (0-0) H

<Op(1)- sup
0€Bn(R)

1/2
<Op(1)- sup (Z (Zt+1(9) — Zi41 (07) — 2211(9—9*))2>

9€Bn(R) \
1/2
<0, (1) (WZL?) = 0 (n712) = 0,((1ogm)~/?),
t

where the first inequality follows from the fact that Apin(¥,) is bounded away from zero; the
second inequality follows from the contraction property of the least-square projection; and the last
line follows from the definition of B,, (R) and the Lo-boundedness of L;. Since 8,, —0* = 0,(n=1/2),
this estimate further implies

P(2)"Qp 2 52, P(X0)(Zy41 (0n) = Zer (6%) = 2111 (00—67)

sup = 0,((logn)~1/%). (S.50)
zeX Un(l‘)

15



We further observe that

. |P@)T@ PR - POX) 2L

rEX On(x)

nt Z(P()A(t) - P(X;))ZL{II

)\ /2 1/2
<o, (w5 - rcn|[ ) (w Sz

= Op(Cuamy/*n~1/%) = 0,((logn)~/?),

<0, (1)

where the first inequality follows from the fact that )\min(@n) and Apin (25,) are bounded away from
zero with probability approaching 1; the second inequality is by the Cauchy—Schwarz inequality;

and the last line follows from Lemma S1. Then, by the Cauchy—-Schwarz inequality, we further

deduce
P(a)TQp ™2 52, (P(Xy) = P(X7))0Zes1 (607) " (B — 6%) iy
21612 @) = op((logn) ). (S.51)

The claim in (S.49) for the case j = 2 readily follows from (S.50) and (S.51).
Step 3. In this step, we prove (S.49) for the j = 3 case. Recall the definition 7, = Zt’ﬂ —
E [Z],,|X}]. We then observe, for each j € {1,...,dp},

2
E =n"'"Trace <Var <n1/2 Z P(Xt*)nj7t>> < Kmun™',  (S.52)

t

n=ty  PX ),
t

which further implies that |[n=1 >, P(X/)n,| = Op(m}@mn_lm). Hence,

|P@)T QY2 5, POX )] (0,—07)
sup

TEX O'n($)

nt Y Pl
t

< 0,(1) = Op(mY/*n=1%) = 0,((logn)~/?). (S.53)

Recall that g (X7) = ]E[Zt’_H\X,f]. Hence, IE[Hg(Xt*)||2] < IE[HZ£+1||2] < K and

n=t Y g7 = 0p(1). (S.54)

16



By (S.54) and Lemma S2,
P@)T(@:" - QY2 L, P(XE)9(X7)T (0a—07)
sup

TeEX O'n(ﬁ)

< 0, (V)]|Qn = @u|, | 3 P9
t

S
1/2
<0, (1) HQn = Q| (n‘l > Ig(Xt*)|!2>
t
= 0p(6g.n + CLam/?n=Y?) = 0,((logn)~/?). (S.55)

Using (S.53), (S.55), and the triangle inequality, we further deduce that
P(2)'Qytn 2 52, POXF) 211, (0 - 67)
su
e o ()
P(2)" Q'™ 2 35, P(X})g(X) " (6,—6")

on ()

= 0,((logn)~1/?). (S.56)

Next, for each j € {1,...,dp}, let gjn (-) = P ()" v;n and observe that
|P(x)"Q, 'n ' 35, P(X})g;(XF) — g5 ()]

sup
zeX Un(x)
< up [P@ T, PXO(95(X0) = g5 XO)| | (  19:(@) = 9 (@)
TeX on(z) TeX on(z)

1/2
<0, (1) (n‘l > (g5(X7) - gj,n(Xt*))2> + K sup |g;(@) — gjn()|
¢ xe
= 0p((logn)~"/?),

where the last line follows Assumption 1(v). This estimate further implies

P(a) Q2 5, POXA)9(X) T (Ba—b7) — 1 29(2)T (Bu—0")

sup

reX Un(x)
< /2 H@ —6*|| sup [P(2)" Q' n™" 30, P(X)g(X}) — g()
- " zeX O'n(l‘)
= 0,((logn)~/2). (S.57)

Finally, since sup,cy | P(z)|| " = o((logn)~/2) under Assumption 1(vii),

ni/2g(2)T (B —0")|

g ()] -1/2
sup <0, (1) sup = 0,((logn . S.58
s N PSR P orteen) ) (55%)
Combing (S.56), (S.57), and (S.58), we derive (S.49) for j = 3 as claimed. This finishes the proof
of the lemma. Q.E.D.
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SA.2 Technical lemmas for Theorem 2

In this subsection, we prove Theorem 2 in the main text. We first explicitly introduce some

notation for various bootstrap quantities:
Q=0 Y PRNPRNT. Bh= (@) (n ZP@:)Z*H) ,
t
=2~ PX)', A =aTt Y PPN @)L 8= (@) AL@Q) T
¢
We need some technical lemmas before proving Theorem 2. Below, we use D,, to denote the

o-field generated by data and use P* (resp. E*[-]) to denote the conditional probability (resp.

expectation) given data.
Lemma S9. Under Assumptions 1 and 2,
|@:-a.

Proof. Denote D; = P()?;‘)P()?;‘)T — E* [P()?;k)P(}?f)T] We further set

5 = Op(ggm(log(mn)mnn_l)lﬂ) = Op(l)'

~ 12 ~ ~ 12
Rpn =2 max P(Xt)’ . b= nAax(Qn) i P(Xt)H .
It is easy to see that
* * * Tk 2
1I£ta§Xn D¢ ls < Rp s ‘ Z;E [D; Dy] . < 0Dm- (S.59)

Since the matrix-valued variables (D} );>1 are i.i.d. with zero mean conditional on data, by (S.59),
we can invoke the matrix Bernstein inequality (see, e.g., Theorem 1.4 in Tropp (2012)) to deduce

that, for any finite constant C' > 1,

v (o

_p <‘

< > C\/log(mn)RD,nn1>

2. Di
t

>C log(mn)RDmn)
S

< O log(my) Rpun 2
S My, exXp 02 —|—C(10 1/2 3/2 1/2
Don g(my)) /2Ry, nt/2/3
< my, exp —Clog(mn)/2 (S.60)
- Amax (Qn) + (log(mp) Rp nn1)/2 ) 7

where the second inequality is by U%),n < nAmaX(@n)RD’n. Under Assumptions 1 and 2, Rp, =
Op(C5 ymn) and
log(mn)Rpan~t =0, (log(mn)gﬁnmnnfl) = o0p(1).

18



By Lemma $2, Amax(Qn) = Op (1). We can then deduce from (S.60) that

_ 2 -1
= Oy <\/log(mn)gh0,nmnn ) .
which finishes the proof. Q.E.D.

Lemma S10. Under Assumptions 1 and 2, we have HZZ —/b\nH = Op(6;,,,) where

i} m%/Qn_l/Q under the null,
6b,n =
Con log(mn)1/2771%/271_1/2 in general.
Proof. Since E*[P(X;)Z; 1] = n 'Y, P(Xy)Zi1, we have

b b, = Q1) <‘1ZP (X7) m)—(@n)—l (n‘lZP@)ZH)
t

~

= (@) ( _IZ (X2, — IE*[P()?E‘)ZLI}))
+((@1*1)71 - (@n)fl) (nl ZP(Xt)ZH) . (S.61)

By (S.20) and Lemma S9,
mm(Qn) max(@i) = Op(l)- (S.62)

Note that n~! Zt(P()?f)sz —E*[P(X}] )Zt+1]) is an average of D,-conditionally i.i.d. zero-mean

elements. Therefore,

<n”? Z P()?t)‘r =n"Trace(Qn) = Op (myn™1), (S.63)

where the second inequality is by |Z +1| < 1 for any ¢ and E*[HP(Xt W =n"ty, IP(X,)|2, and
the last equality is by (S.20). Combining the results in (S.62) and (S.63), we get

(Q5)~ (—12 X)) 2 — E*[P(Az‘mm)=op<mi/2n—1/2>. (S.64)
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Since |2§<+1] <1 for any ¢, by (S.20) we obtain

2
S Amax(@n)n_l Z 21&24-1 = Op(l)
t

1’L_1 Z P()A(t)ZH
t

Hence, by Lemma S9,

~

(@) = (@)™ <n‘12P(E)ZtH> = Op(Con(log(mn)man=")'?). (S-65)

t

Combining (S.64) and (S.65), we prove the assertion of the lemma in the general case.

If we further impose the null hypothesis, we see that

~ ~ -~

(@7 = (@)™ (n > P@t)?m) = (@)1 = (@) )Q@abn = 0 (mln12),

where the second equality follows from Lemma S6. This estimate and (S.64) imply the assertion

of the lemma under the null. Q.E.D.

Lemma S11. Under Assumptions 1 and 2, we have || AX — A, = op (1). In addition, under the
null hypothesis, H}l\;’; - EHHS =0, (Co,nmnn_1/2).

Proof. We decompose u; = ZTH - P()?f)T/l;j; as

U = Zjpy — P(X) b — P(X) " (by, — bn).

n

Therefore,
A, = oty PEDPENT (@)
t
= Y PP (ZE = P(XT) Thy)?
t
207! D2 PIXNPRN) (Zia = PR o) PXT)T (B, ~ Ba)
t

+n T P(XH)PX) T (PX]) T (b, — ba))?

n

Rl,n - 2R2,n + RS,n- (866)
We analyze these terms in turn, starting with the (leading) term R; ,, defined as

Rin=n""Y PX/P(X))(Zf, — P(X})ba)?.
t
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Note that gn is Dp,-measurable (where D,, is the o-field generated by data) and R; ,, is the average

of conditionally i.i.d. variables. The conditional mean of each summand term is
E° | P(XD)P(XN) (Zy = PIXT) Tha)?
=n"! ZP(Xt)P(Xt)T(ZH — P(X;)by)?
t
=n"' > P(X)P(X) 0} = A, (S.67)
t
and the conditional second moment of each centered summand term satisfies

2

E* | |n~' Y0 POXNPXD) (Zi — PXP) T0a)? — Ay
t

mn N N . . . 2
<nt 30 B | (R0 (R0 B - PEDTE?)]
I la=1

2

=n"" Z Zn (pll ()?t)plz ()?t)(z\t—i—l - P<5(:t)TZn)2>

t I1,le=1

—n2}) ‘ P()?t)H4 al. (S.68)

Next, we observe that
-2 |14 A4
oyl s
¢
~ 4 ~ |14
<Kn Y HP(Xt)H (W) + Kn =2y HP(Xt)H (T — )t
t t
~ 12
< KGuman™ Y | P(R0)|| + @ am2n =" (@ — up)’
¢ t

= Oy (Gmin™) + Op (Ghaminn ™) Op(n™'2 + ¢ ymndy )

= Op(¢Gman"), (5.69)

where the second inequality follows from |uj| < K and ||P (Xy) | < C(],nm,l/ ? the first equality

follows from (S.46), and the last line is implied by the maintained rate conditions in Assumption
2. Therefore,

HRl,n - A\n

= 0p(Conman~?). (S.70)

Next, we analyze

Ron=n"'Y P(X))PX]) T (Zf1 — P(X7) o) (P(X])T (B, = bn)).-
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Consider any a, € R™" with ||a,|| = 1. Observe that

T p2 _
a, R27nan =

n"t Y P(X)PX]) Tan(Z7 1 — P(XD) T00) (P(X7) T (B, — bn))

< Amax( @)D (P(XD) Tan) (25, — PXT) Tha) 2 (PX]) T (B — bn))?

~ ~ ~ ~ 112 ~ ~
< * * ® —1 *\ T * _ *\ T 2
= )\max(Qn) 1r£ta§Xn P( t) bn bn n Z(P( t) an) ( t+1 P( t) bn)
< Oy (Gumnl07,)?) max (Zoy — P(X) 0)?, (8.71)

where the last line follows from Lemma S10. In addition, since Z\f 1~ h(X}) is bounded and

maxi<i<n [h(X}) — P(X;)Tb%] = 0,(1),

max |Z; 1 — P(X;) by

<  max )Z;l —h()?f)‘ + max

1<t<n 1<t<n 1<t<n
+ max |P(X7)T (b — b7)
= 0p(1+ Co.nm/28,,) = O,(1). (S.72)
Hence, (S.71) further implies that
1Ro,nllg = Op(Commy/?63 ) (S.73)

It remains to study the term

Ryn=n' S PX)P(XD) (PR (0 — b))
t

Consider any a, € R™" with ||a,|| = 1. Then by the Cauchy-Schwarz inequality

2

ay R} an = |0 P(XHP(X]) an(P(X))T (0}, — bn))?
t

~

< Amax(@)n D (P(X) Tan)H(PX)) T (B — ba))?
t

< (Amax(@)))? )| 5 -5

>~ ( maX(Qn)) %ltagxn ( t) n__Yn

S Op (Cg,nmgz(él;k,n)4) 9

where the last line follows from (S.62) and Lemma S10. Hence,

| R3.n

‘S = Op(C&nmn(SZ’Qn). (S.74)
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Finally, collecting the estimates in (S.70), (S.73), and (S.74), we get

|-

IN

.
= Op(Commnn ™2 + Comi 265, + (3 nmndi)

= Op (CO,nm}zﬂ(sl;k,n) .

"l g n S+2||R2,n||s+||R3,n||s

The assertions of the lemma then follows from the definition of 5;;71 in Lemma S10, and the fact that

g,n log(mp)Y?mun~12 = o(1) which is implied by the maintained rate conditions in Assumption

2. Q.E.D.
Lemma S12. Suppose that Assumptions 1 and 2 hold. Then under the null hypothesis,

Hﬁ,’; — A, = Op (Co,nmnn_1/2> ,

where Hy; = E*[(Z,1)?P(X;)P(X;)T] = E*[Z; P(X})E [P(X}) T Z{ ).

Proof. Note that

E*(P(X])Z;) =" P(X1)Zi1 = Quby. (S.75)
t=1

Under the null hypothesis, A(z) = 0 and b} = 0. By (S.20) and Lemma S6,
Qubn = Op(my/*n=112), (.76)
which together with (S.75) implies that

|

Since ﬂt = /Z\t+1 — P(Xt) bn,

B2t PRE (X)) Z )| = Oplman™). (8.77)

E[( :‘H)?P(X:)P(X:)T - 4,

= IZ Zt+1 Xt) ()?t)T_An

= —12 by, +)*P(Xy)P(Xy) T — A,

= —12 (X0) ") *P(X)P(X0)" + 2071 Y G(P(X) Tbn) P(X1)P(Xy) T, (S.78)
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Let a,, € R™ be such that ||a,| = 1. By Assumption 2, (S.20), and (S.76),

2
( *12 (X)) Tbn)2P( t)P(Xt)T> an

~ o\ 2 ~

n SO PR) (PR ) (PR Tan)

t
~ 2
Amax Qn -1 Z (P > (P(Xt)Tan>
t

~

< (Amax(@n))? max (P(Xt)Tbn)

2

1<t<n
< ~ 4, -2
= ()\maX(Qn)) 1121?2(” H ‘ COnm n=),
which implies that
”71Z(P(Xt)Tgn)QP(Xt)P(Xt)T = Op(Cg,nm%nfly (S.79)
t S

Turning to the second term in (S.78), we note that by (S.20), Lemma S7, and (S.76), we have

2
( - Zut P(Xt)P()?t)T> an

< Amax(Qn) Amax (An) max ||P = 0y(G,min7"), (S-80)
which implies that
n > W P(Xy) 0 P(X)P(X) || = Op(Comman™ /). (S.81)
t S
The assertion of the lemma then follows from (S.77), (S.78), (S.79), and (S.81). Q.E.D.
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