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Abstract

This appendix contains the technical lemmas used in the proofs of the main theorems.

SA Proofs

Throughout the proofs, we use K to denote a generic finite constant that may change from line to

line. For p ≥ 1, let ‖ · ‖p denote the Lp norm for random variables. For notational simplicity, we

write
∑

t in place of
∑n

t=1.

SA.1 Technical lemmas for Theorem 1

Lemma S1. Under Assumptions 1 and 2, we have for any R > 0,

sup
θ∈Bn(R)

n−1
∑
t

‖P (Xt (θ))− P (X?
t )‖2 = Op(ζ

2
1,nmnn

−1),

n−1
∑
t

∥∥∥P (X̂t)− P (X?
t )
∥∥∥2

= Op(ζ
2
1,nmnn

−1).
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Proof . Fix some constant η > 0. Since the variables (LX,t)1≤t≤n are Lp-bounded, we can use a

maximal inequality to deduce E [max1≤t≤n |LX,t|] ≤ n1/p max1≤t≤n ‖LX,t‖p ≤ Kn
1/p. Note that

sup
θ∈Bn(R)

max
1≤t≤n

‖Xt (θ)−X?
t ‖ ≤ Kn−1/2 max

1≤t≤n
|LX,t| = Op(n

1/p−1/2).

Hence, there exists some constant C > 0 such that

P (Ωc
n) < η/2, where Ωn ≡

{
sup

θ∈Bn(R)
max

1≤t≤n
‖Xt (θ)−X?

t ‖ ≤ Cn1/p−1/2

}
.

In particular, Xt (θ) ∈ X ⊕ Cn1/p−1/2 for all t and θ ∈ Bn (R) in restriction to Ωn, and hence,

sup
θ∈Bn(R)

n−1
∑
t

‖P (Xt (θ))− P (X?
t )‖2

= sup
θ∈Bn(R)

n−1
mn∑
l=1

∑
t

∣∣∣∂pl(X̄θ,t)
>(Xt (θ)−X?

t )
∣∣∣2

≤ sup
θ∈Bn(R)

n−1
mn∑
l=1

∑
t

∥∥∂pl(X̄θ,t)
∥∥2 ‖Xt (θ)−X?

t ‖
2

≤ Kζ2
1,nmnn

−1

(
n−1

∑
t

L2
X,t

)
= Op(ζ

2
1,nmnn

−1),

where X̄θ,t is some mean value between Xt (θ) and X?
t , the first inequality is by the Cauchy–

Schwarz inequality, and the second inequality is by Assumptions 1 and 2. Therefore, there exists

some constant K > 0 such that

P

({
sup

θ∈Bn(R)
n−1

∑
t

‖P (Xt (θ))− P (X?
t )‖2 > Kζ2

1,nmnn
−1

}
∩ Ωn

)
< η/2.

Hence,

P

(
sup

θ∈Bn(R)
n−1

∑
t

‖P (Xt (θ))− P (X?
t )‖2 > Kζ2

1,nmnn
−1

)

≤ P

({
sup

θ∈Bn(R)
n−1

∑
t

‖P (Xt (θ))− P (X?
t )‖2 > Kζ2

1,nmnn
−1

}
∩ Ωn

)
+ P (Ωc

n) < η.

This proves the first assertion of the lemma. Since θ̂n = θ? + Op(n
−1/2), the second assertion

readily follows from the first. Q.E.D.

Below, we denote

Q̂n(θ) ≡ n−1
∑
t

P (Xt (θ))P (Xt (θ))>.
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Lemma S2. Suppose that Assumptions 1 and 2 hold. Then, we have for any R > 0,

sup
θ∈Bn(R)

∥∥∥Q̂n(θ)−Qn
∥∥∥
S

= Op(δQ,n + ζ1,nm
1/2
n n−1/2) = op(1),∥∥∥Q̂n −Qn∥∥∥

S
= Op(δQ,n + ζ1,nm

1/2
n n−1/2) = op(1).

Proof . Note that Q̂?n = Q̂n(θ?). By the triangle inequality,∥∥∥Q̂n (θ)− Q̂?n
∥∥∥ ≤

∥∥∥∥∥n−1
∑
t

(P (Xt (θ))− P (X?
t ))(P (Xt (θ))− P (X?

t ))>

∥∥∥∥∥
+2

∥∥∥∥∥n−1
∑
t

P (X?
t ) (P (Xt (θ))− P (X?

t ))>

∥∥∥∥∥ . (S.1)

By the Cauchy–Schwarz inequality and Lemma S1, we have uniformly in θ ∈ Bn(R),∥∥∥∥∥n−1
∑
t

(P (Xt (θ))− P (X?
t ))(P (Xt (θ))− P (X?

t ))>

∥∥∥∥∥
2

≤

(
n−1

mn∑
l=1

∑
t

(pl(Xt (θ))− pl(X?
t ))2

)2

= Op(ζ
4
1,nm

2
nn
−2). (S.2)

In addition, we have uniformly in θ ∈ Bn(R),∥∥∥∥∥n−1
∑
t

P (X?
t ) (P (Xt (θ))− P (X?

t ))>

∥∥∥∥∥
2

=

mn∑
l=1

∥∥∥∥∥n−1
∑
t

P (X?
t ) (pl(Xt (θ))− pl (X?

t ))

∥∥∥∥∥
2

≤ λmax(Q̂?n)

mn∑
l=1

n−1
∑
t

(pl(Xt (θ))− pl (X?
t ))2 = Op(ζ

2
1,nmnn

−1), (S.3)

where the bound on the last line follows from Lemma S1 and λmax(Q̂?n) = Op(1), with the latter

implied by Assumption 2. By (S.1), (S.2), and (S.3), we have uniformly in θ ∈ Bn(R),∥∥∥Q̂n(θ)− Q̂?n
∥∥∥ = Op(ζ

2
1,nmnn

−1 + ζ1,nm
1/2
n n−1/2)

= Op(ζ1,nm
1/2
n n−1/2) = op(1),

where the second line follows from ζ1,nm
1/2
n n−1/2 = o(1) which is implied by Assumption 2(ii).

The first assertion of the lemma thus follows from the estimate above and the assumption that

‖Q̂?n −Qn‖S = Op (δQ,n). The second assertion then follows from θ̂n = θ? +Op
(
n−1/2

)
. Q.E.D.

Lemma S3. Under Assumption 1, we have for each R > 0,

sup
θ∈Bn(R)

n−1
∑
t

(Zt+1(θ)− Z?t+1)2 = Op(n
−1/2).

3



Proof. Fix any R > 0. Note that for each θ ∈ Bn (R), ft(θ
?) − Rn−1/2Lt ≤ ft (θ) ≤ ft(θ

?) +

Rn−1/2Lt, and hence,

|Zt+1(θ)− Zt+1(θ?)|2 =
∣∣1{Yt+1≤ft(θ)} − 1{Yt+1≤ft(θ?)}

∣∣ ≤ U+
t − U

−
t , (S.4)

where we set U±t ≡ 1{Yt+1≤ft(θ?)±Rn−1/2Lt}. Therefore,

sup
θ∈Bn(R)

n−1
∑
t

(Zt+1(θ)− Zt+1(θ?))2 ≤ n−1
∑
t

(
U+
t − U

−
t

)
. (S.5)

Recall that Ft+1|t (·) is the Ft-conditional distribution function of Yt+1. By Assumption 1,

E
[
U+
t − U

−
t |Ft

]
= Ft+1|t

(
ft (θ?) +Rn−1/2Lt

)
− Ft+1|t

(
ft (θ?)−Rn−1/2Lt

)
≤ 2Rn−1/2L2

t . (S.6)

Since Lt is L2-bounded, E
[
U+
t − U

−
t

]
≤ Kn−1/2. The assertion of the lemma then readily follows

from this estimate and (S.5). Q.E.D.

Lemma S4. Suppose that Assumptions 1 and 2 hold. Then, we have for any R > 0,

sup
θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

P (Xt(θ))(Zt+1(θ)− Z?t+1)

∥∥∥∥∥ = Op(n
−1/2 +m1/2

n (ζ1,nn
−5/4 + ζ0,nn

−3/4)).

Proof. Step 1. By Lemma S2, supθ∈Bn(R) ‖Q̂n(θ)−Qn‖ = op(1). Since the eigenvalues of Qn are

bounded from above and away from zero, we further deduce

λ−1
min(Q̂n(θ)) + λmax(Q̂n(θ)) = Op(1), uniformly in θ ∈ Bn (R) . (S.7)

Recall that Z̄t+1 (θ) = Ft+1|t (ft (θ))− q is the Ft-conditional mean of Zt+1(θ). Let Z̃t+1(θ) ≡
Zt+1(θ)−Z̄t+1 (θ), which forms a martingale difference sequence with respect to Ft by construction.

By the triangle inequality,

sup
θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

P (Xt(θ))(Zt+1(θ)− Z?t+1)

∥∥∥∥∥
≤ sup

θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

P (Xt(θ))(Z̄t+1 (θ)− Z̄t+1 (θ?))

∥∥∥∥∥
+ sup
θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

P (Xt(θ))(Z̃t+1(θ)− Z̃t+1(θ?))

∥∥∥∥∥ . (S.8)
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The first term on the majorant side of (S.8) can be bounded as follows

sup
θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

P (Xt(θ))(Z̄t+1 (θ)− Z̄t+1 (θ?))

∥∥∥∥∥
2

≤ sup
θ∈Bn(R)

λmax(Q̂n(θ)) sup
θ∈Bn(R)

n−1
∑
t

(Z̄t+1 (θ)− Z̄t+1 (θ?))2

≤ Op(1) · sup
θ∈Bn(R)

{
n−1

∑
t

(∥∥∂θZ̄t+1 (θ?)
∥∥ ‖θ − θ?‖+ L̄t+1 ‖θ − θ?‖2

)2
}

= Op(n
−1),

where the first inequality is obtained by using the contraction property of least-square projections,

the second inequality is due to Assumption 1, and the last line follows from the L2-boundedness

of
∥∥∂θZ̄t (θ?)

∥∥ and L̄t. This estimate further implies that

sup
θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

P (Xt(θ))(Z̄t+1 (θ)− Z̄t+1 (θ?))

∥∥∥∥∥ = Op(n
−1/2).

Hence, to prove the assertion of the lemma, it remains to show that the second term on the

majorant side of (S.8) satisfies

sup
θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

P (Xt(θ))(Z̃t+1(θ)− Z̃t+1(θ?))

∥∥∥∥∥ = Op(m
1/2
n (ζ1,nn

−5/4 + ζ0,nn
−3/4)). (S.9)

Below, we prove (S.9) in two steps.

Step 2. For ease of notation, we set for each l ∈ {1, . . . ,mn},

πl,n(θ) ≡ n−1/2
∑
t

pl (Xt(θ)) (Z̃t+1(θ)− Z̃t+1(θ?)), θ ∈ Θ.

In this step, we establish the following technical estimate:

‖πl,n(θ1)− πl,n(θ2)‖p ≤ K(ζ1,nn
−1/2 + ζ0,n) ‖θ1 − θ2‖1/2 , for θ1, θ2 ∈ Bn(R). (S.10)

Recall that Z̃t+1(θ) = Zt+1 (θ)− E [Zt+1 (θ) |Ft]. It is then easy to see that

E
[

(Z̃t+1(θ)− Z̃t+1(θ?))2
∣∣∣Ft] ≤ E

[
(Zt+1 (θ)− Zt+1(θ?))2

∣∣∣Ft] .
By (S.4) and (S.6), the majorant side of the above inequality can be further bounded by Kn−1/2L2

t

uniformly in θ ∈ Bn (R). Hence,

E
[

(Z̃t+1(θ)− Z̃t+1(θ?))2
∣∣∣Ft] ≤ Kn−1/2L2

t . (S.11)
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For θ1, θ2 ∈ Bn(R), we can decompose

πl,n (θ1)− πl,n (θ2) = n−1/2
∑
t

[pl (Xt(θ1))− pl (Xt(θ2))] (Z̃t+1(θ1)− Z̃t+1(θ?))

+n−1/2
∑
t

pl (Xt(θ2)) (Z̃t+1(θ1)− Z̃t+1(θ2)). (S.12)

We now derive Lp-bounds for the two terms on the right-hand side of (S.12). By (S.11), Burkholder’s

inequality, and Hölder’s inequality, we have

E

[∣∣∣∣∣n−1/2
∑
t

[(pl (Xt(θ1))− pl (Xt(θ2))] (Z̃t+1(θ1)− Z̃t+1(θ?))

∣∣∣∣∣
p]

≤ KE

∣∣∣∣∣n−1
∑
t

[(pl (Xt(θ1))− pl (Xt(θ2))]2 n−1/2L2
t

∣∣∣∣∣
p/2


≤ Kn−p/4E

∣∣∣∣∣ζ2
1,n ‖θ1 − θ2‖2

(
n−1

∑
t

L2
X,tL

2
t

)∣∣∣∣∣
p/2


≤ Kn−p/4ζp1,nE

[
n−1

∑
t

LpX,tL
p
t

]
‖θ1 − θ2‖p .

Since E[LpX,tL
p
t ] ≤ K by Assumption 1, we can bound the Lp-norm of the first term in the decom-

position (S.12) as follows∥∥∥∥∥n−1/2
∑
t

[(pl (Xt(θ1))− pl (Xt(θ2))] (Z̃t+1(θ1)− Z̃t+1(θ?))

∥∥∥∥∥
p

≤ Kn−1/4ζ1,n ‖θ1 − θ2‖ . (S.13)

Turning to the second term in the decomposition (S.12), we note that

(Zt+1(θ1)− Zt+1(θ2))2 ≤ 1{Yt+1≤ft(θ1)+|ft(θ1)−ft(θ2)|} − 1{Yt+1≤ft(θ1)−|ft(θ1)−ft(θ2)|}.

Hence,

E
[

(Z̃t+1(θ1)− Z̃t+1(θ2))2
∣∣∣Ft] ≤ 2Lt |ft (θ1)− ft (θ2)| ≤ 2L2

t ‖θ1 − θ2‖ . (S.14)

By (S.14), Burkholder’s inequality, and Hölder’s inequality,

E

[∣∣∣∣∣n−1/2
∑
t

pl (Xt(θ2)) (Z̃t+1(θ1)− Z̃t+1(θ2))

∣∣∣∣∣
p]

≤ KE

∣∣∣∣∣n−1
∑
t

pl (Xt(θ2))2 E
[

(Z̃t+1(θ1)− Z̃t+1(θ2))2
∣∣∣Ft]

∣∣∣∣∣
p/2


≤ K ‖θ1 − θ2‖p/2 E

∣∣∣∣∣n−1
∑
t

pl (Xt(θ2))2 L2
t

∣∣∣∣∣
p/2


≤ Kζp0,n ‖θ1 − θ2‖p/2 n−1
∑
t

E[Lpt ] ≤ Kζ
p
0,n ‖θ1 − θ2‖p/2 .
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Hence, ∥∥∥∥∥n−1/2
∑
t

pl (Xt(θ2)) (Z̃t+1(θ1)− Z̃t+1(θ2))

∥∥∥∥∥
p

≤ Kζ0,n ‖θ1 − θ2‖1/2 . (S.15)

Since ‖θ1 − θ2‖ ≤ Rn−1/2, the assertion in (S.10) readily follows from (S.13) and (S.15).

Step 3. We shall use a chaining argument to establish (S.9). Construct nested sets Θ0,n ⊂
Θ1,n · · · ⊂ Bn(R) such that Θ0,n = {θ?} and for each j ≥ 1, Θj,n is a maximal set of points such

that each pair of distinct elements in Θj,n has distance greater than Rn−1/22−j . Note that the

number of points in Θj is less than C(2j)dθ for some constant C > 0 that does not depend on j.

Link every point θj+1 ∈ Θj+1 to a unique θj ∈ Θj such that ‖θj+1 − θj‖ ≤ Rn−1/22−j . Then for

any J ≥ 0 and θJ+1 ∈ ΘJ+1, we can construct a chain θJ+1, . . . , θ0 to θ0 = θ?, and hence, by the

triangle inequality

|πl,n(θJ+1)| =

∣∣∣∣∣∣
J∑
j=0

[πl,n(θj+1)− πl,n(θj)]

∣∣∣∣∣∣ ≤
J∑
j=0

max |πl,n(θj+1)− πl,n(θj)| (S.16)

where, for each j, the maximum is taken over all links (θj+1, θj) from Θj+1 to Θj (with the total

number less than C(2j+1)dθ). We then observe∥∥∥∥ max
θ∈ΘJ+1

|πl,n(θ)|
∥∥∥∥
p

≤
J∑
j=0

‖max |πl,n(θj+1)− πl,n(θj)|‖p

≤ K
J∑
j=0

(2j)dθ/p max ‖πl,n(θj+1)− πl,n(θj)‖p

≤ K
J∑
j=0

(2j)dθ/p(ζ1,nn
−1/2 + ζ0,n)

(
Rn−1/22−j

)1/2

≤ K(ζ1,nn
−3/4 + ζ0,nn

−1/4)

where the first inequality is by (S.16); the second inequality is by a maximal inequality under

the Lp-norm; the third inequality follows from (S.10); and the last inequality holds because∑
j(2

j)dθ/p
(
2−j
)1/2

< ∞ as implied by p > 2dθ. Since the stochastic process πl,n(θ) indexed

by θ is separable, by letting J →∞, we further have∥∥∥∥∥ sup
θ∈Bn(R)

|πl,n(θ)|

∥∥∥∥∥
p

≤ K(ζ1,nn
−3/4 + ζ0,nn

−1/4). (S.17)

Finally, note that ‖n−1/2
∑

t P (Xt(θ))(Z̃t+1(θ)− Z̃t+1(θ?))‖2 =
∑mn

l=1 πl,n(θ)2. Therefore,

E

 sup
θ∈Bn(R)

∥∥∥∥∥n−1/2
∑
t

P (Xt(θ))(Z̃t+1(θ)− Z̃t+1(θ?))

∥∥∥∥∥
2
 ≤ mn∑

l=1

∥∥∥∥∥ sup
θ∈Bn(R)

|πl,n(θ)|

∥∥∥∥∥
2

p

.

The assertion in (S.9) then readily follows from this estimate and (S.17). Q.E.D.
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Lemma S5. Suppose that Assumptions 1 and 2 hold. Under the null hypothesis, we have for any

R > 0,

sup
θ∈Bn(R)

∥∥∥∥∥n−1
∑
t

(P (Xt(θ))− P (Xt(θ
?)))u?t

∥∥∥∥∥ = Op

(
ζ1,nm

1/2
n n−1

)
.

Proof. We set πl,n(θ) ≡ n−1/2
∑

t(pl(Xt(θ))−pl(Xt(θ
?)))u?t . Note that under the null hypothesis,

(pl(Xt(θ))− pl(Xt(θ
?)))u?t forms a martingale difference sequence. For any θ1, θ2 ∈ Θ, we observe

E [|πl,n(θ1)− πl,n(θ2)|p] ≤ KE

∣∣∣∣∣n−1
∑
t

(pl(Xt(θ1))− pl(Xt(θ2)))2

∣∣∣∣∣
p/2


≤ Kζp1,n ‖θ1 − θ2‖p n−1
∑
t

E[LpX,t] ≤ Kζ
p
1,n ‖θ1 − θ2‖p ,

where the first inequality is by Burkholder’s inequality and the boundedness of u?t , and the second

line follows from Assumptions 1 and 2. Hence,

‖πl,n(θ1)− πl,n(θ2)‖p ≤ Kζ1,n ‖θ1 − θ2‖ . (S.18)

Construct Θ0,n ⊂ Θ1,n · · · ⊂ Bn(R) as in step 3 in the proof of Lemma S4. Using the same

chaining argument but with (S.10) replaced by (S.18), we deduce that∥∥∥∥ max
θ∈ΘJ+1

|πl,n(θ)|
∥∥∥∥
p

≤
J∑
j=0

‖max |πl,n(θj+1)− πl,n(θj)|‖p

≤ K
J∑
j=0

(2j)dθ/p max ‖πl,n(θj+1)− πl,n(θj)‖p

≤ Kζ1,nn
−1/2

J∑
j=0

(2−j)1−dθ/p ≤ Kζ1,nn
−1/2.

Sending J →∞, we further deduce∥∥∥∥∥ sup
θ∈Bn(R)

|πl,n(θ)|

∥∥∥∥∥
p

≤ Kζ1,nn
−1/2. (S.19)

Finally, note that ‖n−1
∑

t(P (Xt(θ))− P (Xt(θ
?)))u?t ‖2 =

∑mn
l=1 πl,n(θ)2. Therefore,

E

 sup
θ∈Bn(R)

∥∥∥∥∥n−1/2
∑
t

(P (Xt(θ))− P (Xt(θ
?)))u?t

∥∥∥∥∥
2
 ≤ mn∑

l=1

∥∥∥∥∥ sup
θ∈Bn(R)

|πl,n(θ)|

∥∥∥∥∥
2

p

.

The assertion of the lemma then readily follows from (S.19). Q.E.D.
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Lemma S6. Suppose that Assumptions 1 and 2 hold. Then, we have ‖b̂n − b?n‖ = Op(δb,n), where

δb,n =


m

1/2
n n−1/2 under the null,

ζ1,nm
1/2
n n−1/2 + ζ0,nm

1/2
n n−3/4 in general.

Proof. By Lemma S2, ‖Q̂n−Qn‖S = op (1). Since the eigenvalues of Qn are bounded from above

and away from zero, we further have

λ−1
min(Q̂n) + λmax(Q̂n) = Op (1) . (S.20)

Recall that u?t = Z?t+1 − E
[
Z?t+1|X?

t

]
. By the definition of b̂n, we can decompose

b̂n − b?n = Q̂−1
n

(
n−1

∑
t

P (X?
t )u?t

)
+ Q̂−1

n

(
n−1

∑
t

(P (X̂t)−P (X?
t ))u?t

)
+Q̂−1

n n−1
∑
t

P (X̂t)(h(X?
t )− P (X̂t)

>b?n)

+Q̂−1
n

(
n−1

∑
t

P (X̂t)(Ẑt+1 − Z?t+1)

)
. (S.21)

It remains to bound the four terms on the right-hand side of this decomposition.

First, recall that An = V ar(n−1/2
∑

t P (X?
t )u?t ) has bounded eigenvalues (Assumption 2).

Hence, E[‖n−1/2
∑

t P (X?
t )u?t ‖2] = Trace

(
An
)
≤ Kmn, which, combined with (S.20), implies

that

Q̂−1
n

(
n−1

∑
t

P (X?
t )u?t

)
= Op(m

1/2
n n−1/2). (S.22)

Second, by the Cauchy–Schwarz inequality, the boundedness of u?t , and Lemma S1,∥∥∥∥∥n−1
∑
t

(P (X̂t)−P (X?
t ))u?t

∥∥∥∥∥
2

≤ Kn−1
∑
t

∥∥∥P (X̂t)−P (X?
t )
∥∥∥2

= Op(ζ
2
1,nmnn

−1).

In addition, under the null hypothesis, we can apply Lemma S5 to get

n−1
∑
t

(P (X̂t)−P (X?
t ))u?t = Op

(
ζ1,nm

1/2
n n−1

)
. (S.23)

Hence,

Q̂−1
n

(
n−1

∑
t

(P (X̂t)−P (X?
t ))u?t

)
=


Op

(
ζ1,nm

1/2
n n−1

)
under the null,

Op

(
ζ1,nm

1/2
n n−1/2

)
in general.

(S.24)
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Third, we note that∥∥∥∥∥Q̂−1
n n−1

∑
t

P (X̂t)(h(X?
t )− P (X̂t)

>b?n)

∥∥∥∥∥
2

≤ λ−1
min(Q̂n)n−1

∑
t

(h(X?
t )− P (X̂t)

>b?n)2

≤ 2λ−1
min(Q̂n)n−1

∑
t

(h(X̂t)− P (X̂t)
>b?n)2

+2λ−1
min(Q̂n)n−1

∑
t

(h(X̂t)− h(X?
t ))2.

Define Ωn as in the proof of Lemma S1, so that X̂t ∈ X ⊕ εn for some εn � n1/p−1/2 in restriction

to Ωn. By (S.20) and Assumption 2, λ−1
min(Q̂n)n−1

∑
t (h(X̂t)−P (X̂t)

>b?n)2 = Op(n
−1). Moreover,

since h (·) is continuously differentiable, it is Lipschitz on the compact set X ⊕ εn. Therefore,

λ−1
min(Q̂n)n−1

∑
t

(h(X̂t)− h(X?
t ))2 ≤ Op (1)n−1

∑
t

(X̂t −X?
t )2

≤ Op (1)

(
n−1

∑
t

L2
X,t

)∥∥∥θ̂n − θ?∥∥∥2

= Op
(
n−1

)
.

Combining the three estimates above yields∥∥∥∥∥Q̂−1
n n−1

∑
t

P (X̂t)(h(X?
t )− P (X̂t)

>b?n)

∥∥∥∥∥ = Op

(
n−1/2

)
. (S.25)

On the other hand, under the null hypothesis, we have h(·) = 0 and b?n = 0. We thus have

Q̂−1
n n−1

∑
t

P (X̂t)(h(X?
t )− P (X̂t)

>b?n) =


0 under the null,

Op
(
n−1/2

)
in general.

(S.26)

Finally, by Lemma S4,

Q̂−1
n

(
n−1

∑
t

P (X̂t)(Ẑt+1 − Z?t+1)

)
= Op(n

−1/2 +m1/2
n (ζ1,nn

−5/4 + ζ0,nn
−3/4)). (S.27)

Combining (S.22), (S.24), (S.26), and (S.27), we deduce that

∥∥∥b̂n − b?n∥∥∥ =


Op(m

1/2
n n−1/2 + ζ1,nm

1/2
n n−1 + ζ0,nm

1/2
n n−3/4) under the null,

Op(ζ1,nm
1/2
n n−1/2 + ζ0,nm

1/2
n n−3/4) in general.

Under the maintained rate condition on ζ0,n and ζ1,n (see Assumption 2), we can further reduce

the rates displayed above into those asserted in the lemma. Q.E.D.
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Lemma S7. Suppose that Assumptions 1 and 2 hold. Then,

∥∥∥Ân −An∥∥∥
S

=


Op

(
δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4

)
under the null,

Op

(
δA,n + ζ0,nm

1/2
n n−1/4 + ζ0,nζ1,nmnn

−1/2
)

in general.

In particular, ‖Ân −An‖S = op(1).

Proof. Step 1. We outline the proof in this step. Recall that Â?n ≡ n−1
∑

t u
?2
t P (X?

t )P (X?
t )>.

By the triangle inequality,∥∥∥Ân − Â?n∥∥∥ =

∥∥∥∥∥n−1
∑
t

û2
tP (X̂t)P (X̂t)

> − n−1
∑
t

u?2t P (X?
t )P (X?

t )>

∥∥∥∥∥
≤

∥∥∥∥∥n−1
∑
t

u?2t (P (X̂t)− P (X?
t ))(P (X̂t)− P (X?

t ))>

∥∥∥∥∥
+2

∥∥∥∥∥n−1
∑
t

u?2t P (X?
t ) (P (X̂t)− P (X?

t ))>

∥∥∥∥∥
+

∥∥∥∥∥n−1
∑
t

(û2
t − u?2t )P (X̂t)P (X̂t)

>

∥∥∥∥∥ . (S.28)

Below, we bound the three terms on the majorant side of (S.28) in turn.

We start with the first two terms. Note that u?t is bounded. By the triangle inequality, the

Cauchy–Schwarz inequality, and Lemma S1,∥∥∥∥∥n−1
∑
t

u?2t (P (X̂t)− P (X?
t ))(P (X̂t)− P (X?

t ))>

∥∥∥∥∥
≤ Kn−1

∑
t

∥∥∥P (X̂t)− P (X?
t )
∥∥∥2

= Op(ζ
2
1,nmnn

−1). (S.29)

Using Lemma S1, we can also deduce that∥∥∥∥∥n−1
∑
t

u?2t P (X?
t ) (P (X̂t)− P (X?

t ))>

∥∥∥∥∥
=

mn∑
l=1

∥∥∥∥∥n−1
∑
t

u?2t P (X?
t ) (pl(X̂t)− pl (X?

t ))

∥∥∥∥∥
2
1/2

≤

(
mn∑
l=1

λmax(Q̂?n)n−1
∑
t

∥∥∥u?2t (pl(X̂t)− pl (X?
t ))
∥∥∥2
)1/2

≤ Op (1) ·

(
n−1

∑
t

∥∥∥P (X̂t)− P (X?
t )
∥∥∥2
)1/2

= Op(ζ1,nm
1/2
n n−1/2). (S.30)
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Turning to the third term on the majorant side of (S.28), we note that∥∥∥∥∥n−1
∑
t

(û2
t − u?2t )P (X̂t)P (X̂t)

>

∥∥∥∥∥
2

=

mn∑
l=1

∥∥∥∥∥n−1
∑
t

P (X̂t)pl(X̂t)(û
2
t − u?2t )

∥∥∥∥∥
2

≤
mn∑
l=1

λmax(Q̂n)n−1
∑
t

pl(X̂t)
2(û2

t − u?2t )2

≤ ζ2
0,nmnλmax(Q̂n)n−1

n∑
t=1

(û2
t − u?2t )2. (S.31)

In steps 2–4, below, we shall show that

n−1
∑
t

(û2
t − u?2t )2 = Op(n

−1/2 + δ2
b,n + ζ2

0,nmnδ
4
b,n). (S.32)

Then (S.31) and (S.32) imply∥∥∥∥∥n−1
∑
t

(û2
t − u?2t )P (X̂t)P (X̂t)

>

∥∥∥∥∥ = Op

(
ζ0,nm

1/2
n n−1/4 + ζ0,nm

1/2
n δb,n + ζ2

0,nmnδ
2
b,n

)
= Op

(
ζ0,nm

1/2
n n−1/4 + ζ0,nm

1/2
n δb,n

)
, (S.33)

where δb,n is defined in Lemma S6, and the second line follows from ζ0,nm
1/2
n δb,n = o(1) which is

implied by Assumption 2. Therefore, by (S.29), (S.30), and (S.33),∥∥∥Ân − Â?n∥∥∥ = Op

(
ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4 + ζ0,nm

1/2
n δb,n

)
. (S.34)

Recalling the definition of δb,n from Lemma S6, we can further simplify the rate in (S.34) via some

elementary calculations, yielding

∥∥∥Ân − Â?n∥∥∥ =


Op

(
ζ0,nm

1/2
n n−1/4 + ζ1,nm

1/2
n n−1/2

)
under the null,

Op

(
ζ0,nm

1/2
n n−1/4 + ζ0,nζ1,nmnn

−1/2
)

in general.

The assertion of the lemma then follows from this estimate and the assumption that ‖Â?n−An‖S =

Op(δA,n). The remaining steps, below, are devoted to proving (S.32).

Step 2. We collect some technical estimates in this step. Since ‖θ̂n − θ?‖ = Op(n
−1/2), we can

apply Lemma S3 to get

n−1
∑
t

∣∣∣Ẑt+1 − Z?t+1

∣∣∣2 = Op(n
−1/2). (S.35)

Since Ẑt+1 and Z?t+1 are bounded, this estimate further implies

n−1
∑
t

∣∣∣Ẑt+1 − Z?t+1

∣∣∣4 ≤ n−1
∑
t

∣∣∣Ẑt+1 − Z?t+1

∣∣∣2 = Op(n
−1/2). (S.36)
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Denote hn (·) = P (·)> b?n. By Lemma S6 and (S.20),

n−1
∑
t

∣∣∣ĥn(X̂t)− hn(X̂t)
∣∣∣2 ≤ λmax(Q̂n)

∥∥∥b̂n − b?n∥∥∥2
= Op

(
δ2
b,n

)
. (S.37)

Note that for some εn � n1/p−1/2, {X̂t : 1 ≤ t ≤ n} ∈ X ⊕ εn with probability arbitrarily close to

one and, in restriction to this event, we have ‖P (X̂t)‖2 ≤ ζ2
0,nmn by the definition of ζ0,n. Then,

by Lemma S6 and (S.37), we have

n−1
∑
t

∣∣∣ĥn(X̂t)− hn(X̂t)
∣∣∣4

≤ ζ2
0,nmn

∥∥∥b̂n − b?n∥∥∥2
n−1

n∑
t=1

∣∣∣ĥn(X̂t)− hn(X̂t)
∣∣∣2 = Op

(
ζ2

0,nmnδ
4
b,n

)
. (S.38)

Finally, we note that (recalling ût = Ẑt+1 − ĥn(X̂t) and u?t = Z?t+1 − h(X?
t ))

|ût − u?t | ≤
∣∣∣Ẑt+1 − Z?t+1

∣∣∣+
∣∣∣ĥn(X̂t)− hn(X̂t)

∣∣∣
+
∣∣∣hn(X̂t)− h(X̂t)

∣∣∣+
∣∣∣h(X̂t)− h(X?

t )
∣∣∣ . (S.39)

Step 3. In this step, we prove (S.32) under the null hypothesis. In this case, h (·) = 0 and

hn (·) = 0. Hence, by (S.39), |ût − u?t | ≤ |Ẑt+1 − Z?t+1|+ |ĥn(X̂t)− hn(X̂t)|. By (S.35) and (S.37),

we have

n−1
∑
t

|ût − u?t |
2 ≤ Kn−1

∑
t

|Ẑt+1 − Z?t+1|2 +Kn−1
∑
t

∣∣∣ĥn(X̂t)− hn(X̂t)
∣∣∣2

= Op(n
−1/2) +Op

(
δ2
b,n

)
. (S.40)

Similarly, by (S.36) and (S.38), we have

n−1
∑
t

|ût − u?t |
4 = Op(n

−1/2) +Op
(
ζ2

0,nmnδ
4
b,n

)
. (S.41)

Consider the following elementary inequality: for any |x| ≤ 1 and y ∈ R,(
(x+ y)2 − x2

)2
=
(
2xy + y2

)2 ≤ 8x2y2 + 2y4 ≤ K
(
y2 + y4

)
. (S.42)

Applying this inequality with x = u?t and y = ût − u?t , we deduce

n−1
∑
t

(û2
t − u?2t )2 ≤ Kn−1

∑
t

|ût − u?t |
2 +Kn−1

∑
t

|ût − u?t |
4

= Op(n
−1/2 + δ2

b,n + ζ2
0,nmnδ

4
b,n). (S.43)

This finishes the proof of (S.32) under the null hypothesis.
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Step 4. In this step, we prove (S.32) in the general case without imposing the null hypothesis.

We first observe that

n−1
∑
t

∣∣∣h(X̂t)− h(X?
t )
∣∣∣4 ≤ n−1

∑
t

∣∣∣h(X̂t)− h(X?
t )
∣∣∣2

≤ K
∥∥∥θ̂n − θ?∥∥∥2

n−1
∑
t

L2
X,t = Op(n

−1), (S.44)

where the first inequality holds because h (·) is bounded, and the second inequality follows from

the Lipschitz continuity of h (·) and ‖Xt (θ) −X?
t ‖ ≤ LX,t‖θ − θ?‖. By (S.39), we have for q = 2

or 4,

n−1
∑
t

|ût − u?t |
q ≤ Kn−1

∑
t

∣∣∣Ẑt+1 − Z?t+1

∣∣∣q +Kn−1
∑
t

∣∣∣ĥn(X̂t)− hn(X̂t)
∣∣∣q

+Kn−1
∑
t

∣∣∣hn(X̂t)− h(X̂t)
∣∣∣q +Kn−1

∑
t

∣∣∣h(X̂t)− h(X?
t )
∣∣∣q .

Then, by (S.35), (S.37), (S.44), and Assumption 2(ii), we deduce

n−1
∑
t

|ût − u?t |
2 = Op(n

−1/2 + δ2
b,n). (S.45)

Similarly, by (S.36), (S.38), (S.44), and Assumption 2(ii), we deduce

n−1
∑
t

|ût − u?t |
4 = Op(n

−1/2 + ζ2
0,nmnδ

4
b,n). (S.46)

Using (S.42), (S.45), and (S.46), we derive

n−1
∑
t

(û2
t − u?2t )2 ≤ Kn−1

∑
t

|ût − u?t |
2 +Kn−1

∑
t

|ût − u?t |
4

= Op(n
−1/2 + δ2

b,n + ζ2
0,nmnδ

4
b,n).

This finishes the proof of (S.32), and hence, the assertion of the lemma. Q.E.D.

Lemma S8. Suppose that Assumptions 1 and 2 hold. Then

sup
x∈X

∣∣∣P (x)>Q̂−1
n n−1/2

∑
t P (X̂t)(Ẑt+1 − Z?t+1)

∣∣∣
σn(x)

= op((log n)−1/2).

Proof. Step 1. We outline the proof in this step. Recall Z̄t+1 (θ) = E[Zt+1(θ)|Ft] and set

Z̃t+1(θ) = Zt+1(θ)− Z̄t+1 (θ). For ease of notation, we denote Z̄ ′t+1 = ∂θZ̄t+1 (θ?). Our proof relies

on the following decomposition:

P (x)>Q̂−1
n n−1/2

∑
t P (X̂t)(Ẑt+1 − Z?t+1)

σn(x)
=

3∑
j=1

Rj,n(x), (S.47)
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where

R1,n (x) ≡
P (x)>Q̂−1

n n−1/2
∑

t P (X̂t)(Z̃t+1(θ̂n)− Z̃t+1(θ?))

σn(x)
,

R2,n(x) ≡
P (x)>Q̂−1

n n−1/2
∑

t

{
P (X̂t)(Z̄t+1(θ̂n)− Z̄t+1 (θ?))− P (X?

t )Z̄ ′>t+1(θ̂n−θ?)
}

σn(x)
,

R3,n (x) ≡
P (x)>Q̂−1

n n−1/2
∑

t P (X?
t )Z̄ ′>t+1(θ̂n−θ?)

σn(x)
.

By (S.9), we have∥∥∥∥∥n−1/2
∑
t

P (X̂t)(Z̃t+1(θ̂n)− Z̃t+1(θ?))

∥∥∥∥∥ = Op

(
ζ1,nm

1/2
n n−3/4 + ζ0,nm

1/2
n n−1/4

)
,

which further implies

sup
x∈X
|R1,n(x)| ≤ Op

(
ζ1,nm

1/2
n n−3/4 + ζ0,nm

1/2
n n−1/4

)
= op((log n)−1/2). (S.48)

In steps 2 and 3, below, we show that

sup
x∈X
|Rj,n(x)| = op((log n)−1/2), for j = 2, 3. (S.49)

The assertion of the lemma then follows from (S.47), (S.48), and (S.49).

Step 2. In this step, we prove (S.49) for the j = 2 case. We first observe that, for any R > 0,

sup
θ∈Bn(R)

sup
x∈X

∣∣∣P (x)>Q̂−1
n n−1/2

∑
t P (X̂t)(Z̄t+1(θ)− Z̄t+1 (θ?)− Z̄ ′>t+1(θ−θ?))

∣∣∣
σn(x)

≤ Op (1) · sup
θ∈Bn(R)

∥∥∥∥∥(nQ̂n)−1/2∑
t

P (X̂t)
(
Z̄t+1(θ)− Z̄t+1 (θ?)− Z̄ ′>t+1(θ−θ?)

)∥∥∥∥∥
≤ Op (1) · sup

θ∈Bn(R)

(∑
t

(
Z̄t+1(θ)− Z̄t+1 (θ?)− Z̄ ′>t+1(θ−θ?)

)2
)1/2

≤ Op (1) ·

(
n−2

∑
t

L̄2
t

)1/2

= Op

(
n−1/2

)
= op((log n)−1/2),

where the first inequality follows from the fact that λmin(Σn) is bounded away from zero; the

second inequality follows from the contraction property of the least-square projection; and the last

line follows from the definition of Bn (R) and the L2-boundedness of L̄t. Since θ̂n−θ? = Op(n
−1/2),

this estimate further implies

sup
x∈X

∣∣∣P (x)>Q̂−1
n n−1/2

∑
t P (X̂t)(Z̄t+1(θ̂n)− Z̄t+1 (θ?)− Z̄ ′>t+1(θ̂n−θ?))

∣∣∣
σn(x)

= op((log n)−1/2). (S.50)
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We further observe that

sup
x∈X

∥∥∥P (x)>Q̂−1
n n−1

∑
t(P (X̂t)− P (X?

t ))Z̄ ′>t+1

∥∥∥
σn(x)

≤ Op (1)

∥∥∥∥∥n−1
∑
t

(P (X̂t)− P (X?
t ))Z̄ ′>t+1

∥∥∥∥∥
≤ Op (1)

(
n−1

∑
t

∥∥∥P (X̂t)− P (X?
t )
∥∥∥2
)1/2(

n−1
∑
t

∥∥Z̄ ′t+1

∥∥2

)1/2

= Op(ζ1,nm
1/2
n n−1/2) = op((log n)−1/2),

where the first inequality follows from the fact that λmin(Q̂n) and λmin(Σn) are bounded away from

zero with probability approaching 1; the second inequality is by the Cauchy–Schwarz inequality;

and the last line follows from Lemma S1. Then, by the Cauchy–Schwarz inequality, we further

deduce

sup
x∈X

∣∣∣P (x)>Q̂−1
n n−1/2

∑
t(P (X̂t)− P (X?

t ))∂θZ̄t+1 (θ?)> (θ̂n − θ?)
∣∣∣

σn(x)
= op((log n)−1/2). (S.51)

The claim in (S.49) for the case j = 2 readily follows from (S.50) and (S.51).

Step 3. In this step, we prove (S.49) for the j = 3 case. Recall the definition ηt ≡ Z̄ ′t+1 −
E
[
Z̄ ′t+1|X?

t

]
. We then observe, for each j ∈ {1, . . . , dθ},

E

∥∥∥∥∥n−1
∑
t

P (X?
t )ηj,t

∥∥∥∥∥
2
 = n−1Trace

(
V ar

(
n−1/2

∑
t

P (X?
t )ηj,t

))
≤ Kmnn

−1, (S.52)

which further implies that ‖n−1
∑

t P (X?
t )ηt‖ = Op(m

1/2
n n−1/2). Hence,

sup
x∈X

∣∣∣P (x)>Q̂−1
n n−1/2

∑
t P (X?

t )η>t (θ̂n−θ?)
∣∣∣

σn(x)

≤ Op(1)

∥∥∥∥∥n−1
∑
t

P (X?
t )η>t

∥∥∥∥∥ = Op(m
1/2
n n−1/2) = op((log n)−1/2). (S.53)

Recall that g (X?
t ) = E[Z̄ ′t+1|X?

t ]. Hence, E[‖g(X?
t )‖2] ≤ E[‖Z̄ ′t+1‖2] ≤ K and

n−1
∑
t

‖g(X?
t )‖2 = Op(1). (S.54)
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By (S.54) and Lemma S2,

sup
x∈X

∣∣∣P (x)>(Q̂−1
n −Q−1

n )n−1/2
∑

t P (X?
t )g(X?

t )>(θ̂n−θ?)
∣∣∣

σn(x)

≤ Op (1)
∥∥∥Q̂n −Qn∥∥∥

S

∥∥∥∥∥n−1
∑
t

P (X?
t )g(X?

t )>

∥∥∥∥∥
≤ Op (1)

∥∥∥Q̂n −Qn∥∥∥
S

(
n−1

∑
t

‖g(X?
t )‖2

)1/2

= Op(δQ,n + ζ1,nm
1/2
n n−1/2) = op((log n)−1/2). (S.55)

Using (S.53), (S.55), and the triangle inequality, we further deduce that

sup
x∈X

∣∣∣∣∣P (x)>Q̂−1
n n−1/2

∑
t P (X?

t )Z̄ ′>t+1(θ̂n − θ?)
σn(x)

−
P (x)>Q−1

n n−1/2
∑

t P (X?
t )g(X?

t )>(θ̂n−θ?)
σn(x)

∣∣∣∣∣ = op((log n)−1/2). (S.56)

Next, for each j ∈ {1, . . . , dθ}, let gj,n (·) = P (·)> γj,n and observe that

sup
x∈X

∣∣P (x)>Q−1
n n−1

∑
t P (X?

t )gj(X
?
t )− gj(x)

∣∣
σn(x)

≤ sup
x∈X

∣∣P (x)>Q−1
n n−1

∑
t P (X?

t )(gj(X
?
t )− gj,n(X?

t ))
∣∣

σn(x)
+ sup
x∈X

|gj(x)− gj,n(x)|
σn(x)

≤ Op (1)

(
n−1

∑
t

(gj(X
?
t )− gj,n(X?

t ))2

)1/2

+K sup
x∈X
|gj(x)− gj,n(x)|

= op((log n)−1/2),

where the last line follows Assumption 1(v). This estimate further implies

sup
x∈X

∣∣∣P (x)>Q−1
n n−1/2

∑
t P (X?

t )g(X?
t )>(θ̂n−θ?)− n1/2g(x)>(θ̂n−θ?)

∣∣∣
σn(x)

≤ n1/2
∥∥∥θ̂n−θ?∥∥∥ sup

x∈X

∥∥P (x)>Q−1
n n−1

∑n
t=1 P (X?

t )g(X?
t )− g(x)

∥∥
σn(x)

= op((log n)−1/2). (S.57)

Finally, since supx∈X ‖P (x)‖−1 = o((log n)−1/2) under Assumption 1(vii),

sup
x∈X

∣∣∣n1/2g(x)>(θ̂n−θ?)
∣∣∣

σn(x)
≤ Op (1) sup

x∈X

‖g (x)‖
‖P (x)‖

= op((log n)−1/2). (S.58)

Combing (S.56), (S.57), and (S.58), we derive (S.49) for j = 3 as claimed. This finishes the proof

of the lemma. Q.E.D.
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SA.2 Technical lemmas for Theorem 2

In this subsection, we prove Theorem 2 in the main text. We first explicitly introduce some

notation for various bootstrap quantities:

Q̂∗n = n−1
∑
t

P (X̂∗t )P (X̂∗t )>, b̂∗n =
(
Q̂∗n

)−1
(
n−1

∑
t

P (X̂∗t )Ẑ∗t+1

)
,

û∗t = Ẑ∗t+1 − P (X̂∗t )>b̂∗n, Â∗n = n−1
∑
t

P (X̂∗t )P (X̂∗t )> (û∗t )
2 , Σ̂∗n = (Q̂∗n)−1Â∗n(Q̂∗n)−1.

We need some technical lemmas before proving Theorem 2. Below, we use Dn to denote the

σ-field generated by data and use P∗ (resp. E∗ [ · ]) to denote the conditional probability (resp.

expectation) given data.

Lemma S9. Under Assumptions 1 and 2,∥∥∥Q̂∗n − Q̂n∥∥∥
S

= Op(ζ0,n(log(mn)mnn
−1)1/2) = op(1).

Proof. Denote D∗t ≡ P (X̂∗t )P (X̂∗t )> − E∗[P (X̂∗t )P (X̂∗t )>]. We further set

RD,n ≡ 2 max
1≤t≤n

∥∥∥P (X̂t)
∥∥∥2
, σ2

D,n ≡ nλmax(Q̂n) max
1≤t≤n

∥∥∥P (X̂t)
∥∥∥2
.

It is easy to see that

max
1≤t≤n

‖D∗t ‖S ≤ RD,n,

∥∥∥∥∥∑
t

E∗ [D∗tD
∗
t ]

∥∥∥∥∥
S

≤ σ2
D,n. (S.59)

Since the matrix-valued variables (D∗t )t≥1 are i.i.d. with zero mean conditional on data, by (S.59),

we can invoke the matrix Bernstein inequality (see, e.g., Theorem 1.4 in Tropp (2012)) to deduce

that, for any finite constant C ≥ 1,

P∗
(∥∥∥Q̂∗n − Q̂n∥∥∥

S
≥ C

√
log(mn)RD,nn−1

)
= P∗

(∥∥∥∥∥∑
t

D∗t

∥∥∥∥∥
S

≥ C
√

log(mn)RD,nn

)

≤ mn exp

 −C2 log(mn)RD,nn/2

σ2
D,n + C(log(mn))1/2R

3/2
D,nn

1/2/3


≤ mn exp

(
−C log(mn)/2

λmax(Q̂n) + (log(mn)RD,nn−1)1/2

)
, (S.60)

where the second inequality is by σ2
D,n ≤ nλmax(Q̂n)RD,n. Under Assumptions 1 and 2, RD,n =

Op(ζ
2
0,nmn) and

log(mn)RD,nn
−1 = Op

(
log(mn)ζ2

0,nmnn
−1
)

= op(1).
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By Lemma S2, λmax(Q̂n) = Op (1). We can then deduce from (S.60) that∥∥∥Q̂n − Q̂∗n∥∥∥
S

= Op

(√
log(mn)ζ2

0,nmnn−1
)
.

which finishes the proof. Q.E.D.

Lemma S10. Under Assumptions 1 and 2, we have ‖b̂∗n − b̂n‖ = Op(δ
∗
b,n) where

δ∗b,n =


m

1/2
n n−1/2 under the null,

ζ0,n log(mn)1/2m
1/2
n n−1/2 in general.

Proof. Since E∗[P (X̂∗t )Ẑ∗t+1] = n−1
∑

t P (X̂t)Ẑt+1, we have

b̂∗n − b̂n = (Q̂∗n)−1

(
n−1

∑
t

P (X̂∗t )Ẑ∗t+1

)
− (Q̂n)−1

(
n−1

∑
t

P (X̂t)Ẑt+1

)

= (Q̂∗n)−1

(
n−1

∑
t

(P (X̂∗t )Ẑ∗t+1 − E∗[P (X̂∗t )Ẑ∗t+1])

)

+((Q̂∗n)−1 − (Q̂n)−1)

(
n−1

∑
t

P (X̂t)Ẑt+1

)
. (S.61)

By (S.20) and Lemma S9,

λ−1
min(Q̂∗n) + λmax(Q̂∗n) = Op(1). (S.62)

Note that n−1
∑

t(P (X̂∗t )Ẑ∗t+1−E∗[P (X̂∗t )Ẑ∗t+1]) is an average of Dn-conditionally i.i.d. zero-mean

elements. Therefore,

E∗
∥∥∥∥∥n−1

∑
t

(P (X̂∗t )Ẑ∗t+1 − E∗[P (X̂∗t )Ẑ∗t+1])

∥∥∥∥∥
2


= n−1E∗
[∥∥∥P (X̂∗t )Ẑ∗t+1 − E∗[P (X̂∗t )Ẑ∗t+1]

∥∥∥2
]

≤ n−1E∗
[∥∥∥P (X̂∗t )Ẑ∗t+1

∥∥∥2
]

≤ n−2
∑
t

∥∥∥P (X̂t)
∥∥∥2

= n−1Trace(Q̂n) = Op
(
mnn

−1
)
, (S.63)

where the second inequality is by |Ẑ∗t+1| ≤ 1 for any t and E∗[‖P (X̂∗t )‖2] = n−1
∑

t ‖P (X̂t)‖2, and

the last equality is by (S.20). Combining the results in (S.62) and (S.63), we get

(Q̂∗n)−1

(
n−1

∑
t

(P (X̂∗t )Ẑ∗t+1 − E∗[P (X̂∗t )Ẑ∗t+1])

)
= Op(m

1/2
n n−1/2). (S.64)
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Since |Ẑ∗t+1| ≤ 1 for any t, by (S.20) we obtain∥∥∥∥∥n−1
∑
t

P (X̂t)Ẑt+1

∥∥∥∥∥
2

≤ λmax(Q̂n)n−1
∑
t

Ẑ2
t+1 = Op(1).

Hence, by Lemma S9,

((Q̂∗n)−1 − (Q̂n)−1)

(
n−1

∑
t

P (X̂t)Ẑt+1

)
= Op(ζ0,n(log(mn)mnn

−1)1/2). (S.65)

Combining (S.64) and (S.65), we prove the assertion of the lemma in the general case.

If we further impose the null hypothesis, we see that

((Q̂∗n)−1 − (Q̂n)−1)

(
n−1

∑
t

P (X̂t)Ẑt+1

)
= ((Q̂∗n)−1 − (Q̂n)−1)Q̂nb̂n = op

(
m1/2
n n−1/2

)
,

where the second equality follows from Lemma S6. This estimate and (S.64) imply the assertion

of the lemma under the null. Q.E.D.

Lemma S11. Under Assumptions 1 and 2, we have ‖Â∗n − Ân‖S = op (1). In addition, under the

null hypothesis, ‖Â∗n − Ân‖S = Op
(
ζ0,nmnn

−1/2
)
.

Proof. We decompose û∗t = Ẑ∗t+1 − P (X̂∗t )>b̂∗n as

û∗t = Ẑ∗t+1 − P (X̂∗t )>b̂n − P (X̂∗t )>(̂b∗n − b̂n).

Therefore,

Â∗n = n−1
∑
t

P (X̂∗t )P (X̂∗t )> (û∗t )
2

= n−1
∑
t

P (X̂∗t )P (X̂∗t )>(Ẑ∗t+1 − P (X̂∗t )>b̂n)2

−2n−1
∑
t

P (X̂∗t )P (X̂∗t )>(Ẑ∗t+1 − P (X̂∗t )>b̂n)P (X̂∗t )>(̂b∗n − b̂n)

+n−1
∑
t

P (X̂∗t )P (X̂∗t )>(P (X̂∗t )>(̂b∗n − b̂n))2

≡ R1,n − 2R2,n +R3,n. (S.66)

We analyze these terms in turn, starting with the (leading) term R1,n defined as

R1,n ≡ n−1
∑
t

P (X̂∗t )P (X̂∗t )>(Ẑ∗t+1 − P (X̂∗t )>b̂n)2.
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Note that b̂n is Dn-measurable (where Dn is the σ-field generated by data) and R1,n is the average

of conditionally i.i.d. variables. The conditional mean of each summand term is

E∗
[
P (X̂∗t )P (X̂∗t )>(Ẑ∗t+1 − P (X̂∗t )>b̂n)2

]
= n−1

∑
t

P (X̂t)P (X̂t)
>(Ẑt+1 − P (X̂t)

>b̂n)2

= n−1
∑
t

P (X̂t)P (X̂t)
>û2

t = Ân, (S.67)

and the conditional second moment of each centered summand term satisfies

E∗
∥∥∥∥∥n−1

∑
t

P (X̂∗t )P (X̂∗t )>(Ẑ∗t+1 − P (X̂∗t )>b̂n)2 − Ân

∥∥∥∥∥
2


≤ n−1
mn∑

l1,l2=1

E∗
[(
pl1(X̂∗t )pl2(X̂∗t )(Ẑ∗t+1 − P (X̂∗t )>b̂n)2

)2
]

= n−2
∑
t

mn∑
l1,l2=1

(
pl1(X̂t)pl2(X̂t)(Ẑt+1 − P (X̂t)

>b̂n)2
)2

= n−2
∑
t

∥∥∥P (X̂t)
∥∥∥4
û4
t . (S.68)

Next, we observe that

n−2
∑
t

∥∥∥P (X̂t)
∥∥∥4
û4
t

≤ Kn−2
∑
t

∥∥∥P (X̂t)
∥∥∥4

(u?t )
4 +Kn−2

∑
t

∥∥∥P (X̂t)
∥∥∥4

(ût − u?t )4

≤ Kζ2
0,nmnn

−2
∑
t

∥∥∥P (X̂t)
∥∥∥2

+ ζ4
0,nm

2
nn
−2
∑
t

(ût − u?t )4

= Op
(
ζ2

0,nm
2
nn
−1
)

+Op
(
ζ4

0,nm
2
nn
−1
)
Op(n

−1/2 + ζ2
0,nmnδ

4
b,n)

= Op(ζ
2
0,nm

2
nn
−1), (S.69)

where the second inequality follows from |u?t | ≤ K and ‖P (Xt) ‖ ≤ ζ0,nm
1/2
n , the first equality

follows from (S.46), and the last line is implied by the maintained rate conditions in Assumption

2. Therefore, ∥∥∥R1,n − Ân
∥∥∥ = Op(ζ0,nmnn

−1/2). (S.70)

Next, we analyze

R2,n ≡ n−1
∑
t

P (X̂∗t )P (X̂∗t )>(Ẑ∗t+1 − P (X̂∗t )>b̂n)(P (X̂∗t )>(̂b∗n − b̂n)).
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Consider any an ∈ Rmn with ‖an‖ = 1. Observe that

a>nR
2
2,nan =

∥∥∥∥∥n−1
∑
t

P (X̂∗t )P (X̂∗t )>an(Ẑ∗t+1 − P (X̂∗t )>b̂n)(P (X̂∗t )>(̂b∗n − b̂n))

∥∥∥∥∥
2

≤ λmax(Q̂∗n)n−1
∑
t

(P (X̂∗t )>an)2(Ẑ∗t+1 − P (X̂∗t )>b̂n)2(P (X̂∗t )>(̂b∗n − b̂n))2

≤ λmax(Q̂∗n) max
1≤t≤n

∥∥∥P (X̂∗t )
∥∥∥2 ∥∥∥b̂∗n − b̂n∥∥∥2

n−1
∑
t

(P (X̂∗t )>an)2(Ẑ∗t+1 − P (X̂∗t )>b̂n)2

≤ Op
(
ζ2

0,nmn(δ∗b,n)2
)

max
1≤t≤n

(Ẑ∗t+1 − P (X̂∗t )>b̂n)2, (S.71)

where the last line follows from Lemma S10. In addition, since Ẑ∗t+1 − h(X̂∗t ) is bounded and

max1≤t≤n |h(X̂∗t )− P (X̂∗t )>b?n| = op(1),

max
1≤t≤n

∣∣∣Ẑ∗t+1 − P (X̂∗t )>b̂n

∣∣∣ ≤ max
1≤t≤n

∣∣∣Ẑ∗t+1 − h(X̂∗t )
∣∣∣+ max

1≤t≤n

∣∣∣h(X̂∗t )− P (X̂∗t )>b?n

∣∣∣
+ max

1≤t≤n

∣∣∣P (X̂∗t )>(̂bn − b?n)
∣∣∣

= Op(1 + ζ0,nm
1/2
n δb,n) = Op(1). (S.72)

Hence, (S.71) further implies that

‖R2,n‖S = Op(ζ0,nm
1/2
n δ∗b,n). (S.73)

It remains to study the term

R3,n ≡ n−1
∑
t

P (X̂∗t )P (X̂∗t )>(P (X̂∗t )>(̂b∗n − b̂n))2.

Consider any an ∈ Rmn with ‖an‖ = 1. Then by the Cauchy–Schwarz inequality

a>nR
2
3,nan =

∥∥∥∥∥n−1
∑
t

P (X̂∗t )P (X̂∗t )>an(P (X̂∗t )>(̂b∗n − b̂n))2

∥∥∥∥∥
2

≤ λmax(Q̂∗n)n−1
∑
t

(P (X̂∗t )>an)2(P (X̂∗t )>(̂b∗n − b̂n))4

≤ (λmax(Q̂∗n))2 max
1≤t≤n

∥∥∥P (X̂∗t )
∥∥∥4 ∥∥∥b̂∗n − b̂n∥∥∥4

≤ Op
(
ζ4

0,nm
2
n(δ∗b,n)4

)
,

where the last line follows from (S.62) and Lemma S10. Hence,

‖R3,n‖S = Op(ζ
2
0,nmnδ

∗2
b,n). (S.74)
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Finally, collecting the estimates in (S.70), (S.73), and (S.74), we get∥∥∥Â∗n − Ân∥∥∥
S
≤

∥∥∥R1,n − Ân
∥∥∥
S

+ 2 ‖R2,n‖S + ‖R3,n‖S
= Op(ζ0,nmnn

−1/2 + ζ0,nm
1/2
n δ∗b,n + ζ2

0,nmnδ
∗2
b,n)

= Op(ζ0,nm
1/2
n δ∗b,n).

The assertions of the lemma then follows from the definition of δ∗b,n in Lemma S10, and the fact that

ζ2
0,n log(mn)1/2mnn

−1/2 = o(1) which is implied by the maintained rate conditions in Assumption

2. Q.E.D.

Lemma S12. Suppose that Assumptions 1 and 2 hold. Then under the null hypothesis,∥∥∥Ĥ∗n − Ân∥∥∥
S

= Op

(
ζ0,nmnn

−1/2
)
,

where Ĥ∗n ≡ E∗[(Ẑ∗t+1)2P (X̂∗t )P (X̂∗t )>]− E∗[Ẑ∗t+1P (X̂∗t )]E∗[P (X̂∗t )>Ẑ∗t+1].

Proof. Note that

E∗[P (X̂∗t )Ẑ∗t+1] = n−1
n∑
t=1

P (X̂t)Ẑt+1 = Q̂nb̂n. (S.75)

Under the null hypothesis, h(x) = 0 and b?n = 0. By (S.20) and Lemma S6,

Q̂nb̂n = Op(m
1/2
n n−1/2), (S.76)

which together with (S.75) implies that∥∥∥E∗[Ẑ∗t+1P (X̂∗t )]E∗[P (X̂∗t )>Ẑ∗t+1]
∥∥∥ = Op(mnn

−1). (S.77)

Since ût = Ẑt+1 − P (X̂t)
>b̂n,

E∗
[
(Ẑ∗t+1)2P (X̂∗t )P (X̂∗t )>

]
− Ân

= n−1
∑
t

(Ẑt+1)2P (X̂t)P (X̂t)
> − Ân

= n−1
∑
t

(P (X̂t)
>b̂n + ût)

2P (X̂t)P (X̂t)
> − Ân

= n−1
∑
t

(P (X̂t)
>b̂n)2P (X̂t)P (X̂t)

> + 2n−1
∑
t

ût(P (X̂t)
>b̂n)P (X̂t)P (X̂t)

>. (S.78)
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Let an ∈ Rmn be such that ‖an‖ = 1. By Assumption 2, (S.20), and (S.76),

a>n

(
n−1

∑
t

(P (X̂t)
>b̂n)2P (X̂t)P (X̂t)

>

)2

an

=

∥∥∥∥∥n−1
∑
t

P (X̂t)
(
P (X̂t)

>b̂n

)2 (
P (X̂t)

>an

)∥∥∥∥∥
2

≤ λmax(Q̂n)n−1
∑
t

(
P (X̂t)

>b̂n

)4 (
P (X̂t)

>an

)2

≤ (λmax(Q̂n))2 max
1≤t≤n

(
P (X̂t)

>b̂n

)4

≤ (λmax(Q̂n))2 max
1≤t≤n

∥∥∥P (X̂t)
∥∥∥4 ∥∥∥b̂n∥∥∥4

= Op(ζ
4
0,nm

4
nn
−2),

which implies that ∥∥∥∥∥n−1
∑
t

(P (X̂t)
>b̂n)2P (X̂t)P (X̂t)

>

∥∥∥∥∥
S

= Op(ζ
2
0,nm

2
nn
−1). (S.79)

Turning to the second term in (S.78), we note that by (S.20), Lemma S7, and (S.76), we have

a>n

(
n−1

∑
t

ût(P (X̂t)
>b̂n)P (X̂t)P (X̂t)

>

)2

an

=

∥∥∥∥∥n−1
∑
t

P (X̂t)ût

(
P (X̂t)

>b̂n

)(
P (X̂t)

>an

)∥∥∥∥∥
2

≤ λmax(Q̂n)n−1
∑
t

(
P (X̂t)

>b̂n

)2 (
ûtP (X̂t)

>an

)2

≤ λmax(Q̂n)λmax(Ân) max
1≤t≤n

∥∥∥P (X̂t)
∥∥∥2 ∥∥∥b̂n∥∥∥2

= Op(ζ
2
0,nm

2
nn
−1), (S.80)

which implies that ∥∥∥∥∥n−1
∑
t

ûtP (X̂t)
>b̂nP (X̂t)P (X̂t)

>

∥∥∥∥∥
S

= Op(ζ0,nmnn
−1/2). (S.81)

The assertion of the lemma then follows from (S.77), (S.78), (S.79), and (S.81). Q.E.D.
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