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This supplementary appendix is organized as follows. First, we provide a set of def-

initions useful to understand our assumptions. Next, we provide asymptotic theory and

bootstrap theory for general two-stage M estimators under a set of high level conditions

(which include uniform laws of large numbers, central limit theorems and an asymptotic

linear representation for α̂n and α̂∗n). Next, we provide proof of Theorem 4.1 appearing in

Section 4.1 of the main paper. Then, we provide asymptotic theory and bootstrap theory

for general two-stage GMM estimators under a set of high level conditions. Finally, we

provide two auxiliary lemmas used in the proof of Theorem 4.4, followed by the proofs of

Theorems 4.3 and 4.4.

S1 De�nitions

In the following and throughout the appendix, K denotes a constant, which may change

from line to line and from (in)equality to (in)equality.

De�nition 1. We de�ne {Xt} to be Lq-NED on a mixing process {Vt} if E (Xq
t ) < ∞

and vk ≡ supt
∥∥Xt − Et+k

t−k (Xt)
∥∥
q
→ 0 as k → ∞. Here, ‖Xt‖p ≡ (E |Xt|p)1/p is the Lp

norm and Et+k
t−k (·) ≡ E

(
·|F t+kt−k

)
, where F t+kt−k ≡ σ (Vt−k, . . . , Vt+k) is the σ-�eld generated

by Vt−k, . . . , Vt+k. If vk = O
(
k−a−δ

)
for some δ > 0, we say {Xt} is Lq-NED of size −a.
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De�nition 2. {Vt} is strong mixing if

λk ≡ sup
m

sup
{A∈Fm−∞,B∈F∞m+k}

|P (A ∩B)− P (A)P (B)| → 0

as k →∞ suitably fast.

De�nition 3. A random function f : X×Θ→ R is Lipschitz continuous on Θ a.s.-P if for

all θ1 and θ2 ∈ Θ, |ft (x, θ1)− ft (x, θ2)| ≤ Lt (x) |θ1 − θ2| for all x in a set with probability

one, for some function Lt (x) such that supn {n−1
∑n

t=1E (Lt (x))} = O (1) .

De�nition 4. A sequence of random functions {ft : X ×Θ→ R} is r−dominated on Θ

uniformly in t if there exists Dt : X → R such that |ft (x, θ)| ≤ Dt (x) for all θ ∈ Θ and Dt

is measurable such that ‖Dt‖r ≤ ∆ <∞ for all t.

De�nition 5. A sequence of random functions {ft : X ×Θ→ R} is Lq-NED on {Vt} of

size −a on (Θ, ρ) if for each θ0 ∈ Θ there exists δ0 > 0 such that the random sequences{
f̄t (δ) = supη0(δ) ft (x, θ)

}
and

{
f
t
(δ) = infη0(δ) ft (x, θ)

}
are Lq-NED on {Vt} of size −a

for all 0 < δ ≤ δ0, where η
0 (δ) = {θ ∈ Θ : ρ (θ, θ0) < δ}.

S2 General results for two-step M-estimators

In this section, we provide results for a general two-step M estimator β̂n based on a �rst

step estimator α̂n which has an asymptotic linear representation. Speci�cally, in the �rst

step, we estimate α0 ∈ A ⊂ Rk with some asymptotically linear estimator α̂n (which does

not need to be an M estimator; e.g. it could be a GMM estimator). In the second step, we

estimate β0 with

β̂n = arg min
β∈B

Q2n (α̂n, β) ,
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where

Q2n (α̂n, β) ≡ n−1
n∑
t=1

q2t
(
X t, α̂n, β

)
,

and q2t : Rlt × A× B →R is an objective function that depends on β and α and

X t ≡ (X1, . . . , Xt−1, Xt). The two-step QMLE of Section 3 is a special case of β̂n when

q2t (X t, α̂n, β) = − log f2t (X t, α̂n, β), where f2t denotes the conditional likelihood function

of Xt given X
t−1, and α̂n is also a QMLE.

We follow White (1994) and Wooldridge (1994) and provide a set of high level conditions

that allow us to derive general results.

Assumption A.

A.1 Let (Ω,F , P ) be a complete probability space. The observed data are a realization

of a stochastic process
{
Xt : Ω→ Rl, t ∈ N

}
.

A.2 The functions {q2t (X t, α, β)} are such that q2t (·, α, β) is measurable for each (α, β) ∈

A×B, where A and B are compact subsets of Rk and Rp, respectively, and q2t (xt, ·, ·)

is continuous on A× B for all xt in some set Ft with P (Ft) = 1.

A.3 (i) α̂n →P α0 ∈ int (A).

(ii)
√
n (α̂n − α0) = n−1/2

∑n
t=1 ψt (X t, α0) + oP (1) , for some function {ψt (X t, α0)}

such that
√
n (α̂n − α0) = OP (1) .

A.4 (i) Q̄2 (α, β) ≡ limn→∞E (Q2n (α, β)) exists and is continuous on A× B.

(ii) β0 is the unique minimizer of Q̄2 (α0, β) ≡ limn→∞E (Q2n (α0, β)) on B.

(iii) β0 ∈ int (B) .

A.5 {q2t (X t, α, β)} satis�es a weak ULLN on A×B (i.e. supα,β
∣∣Q2n (α, β)− Q̄2 (α, β)

∣∣ =

oP (1) ).
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A.6 (i) {q2t (X t, α, β)} is twice continuously di�erentiable on int (A)× int (B) .

(ii) The functions
{

∂
∂α′
ϕ2t (X t, α, β)

}
and

{
∂
∂β′
ϕ2t (X t, α, β)

}
satisfy a weak ULLN

on A× B, where ϕ2t (X t, α, β) ≡ ∂
∂β
q2t (X t, α, β) .

A.7 (i) H0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂β′
ϕ2t (X t, α0, β0)

)
> 0.

(ii) F0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂α′
ϕ2t (X t, α0, β0)

)
<∞.

A.8 The function {ϕ2t (X t, α0, β0) + F0ψt (X t, α0)} satis�es the CLT, i.e.

n−1/2
n∑
t=1

(
ϕ2t

(
X t, α0, β0

)
+ F0ψt

(
X t, α0

))
→d N (0, J0) ,

where

J0 ≡ lim
n→∞

V ar

(
n−1/2

n∑
t=1

(
ϕ2t

(
X t, α0, β0

)
+ F0ψt

(
X t, α0

)))
> 0.

Assumption A.3(ii) assumes that α̂n admits an asymptotic linear representation, which

includes not only M-estimators but also other estimators such as GMM estimators.

Theorem S2.1. Under Assumptions A.1, A.2, A.3(i), A.4(i)-(ii) and A.5, β̂n →P β0.

Theorem S2.2. Under Assumptions A.1−A.8,
√
n
(
β̂n − β0

)
→d N

(
0, H−10 J0H

−1
0

)
.

Theorems S2.1 and S2.2 are well known in the literature (see e.g. White (1994), Newey

and McFadden (1994) and Wooldridge (1994)) and are only given here for completeness,

but their proof is omitted for brevity.

Next, we provide a set of general conditions for bootstrap validity. Suppose that the

bootstrap two-step M-estimator is de�ned as

β̂∗n = arg min
β∈B

Q∗2n (α̂∗n, β) ,
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where α̂∗n is the �rst-step bootstrap analogue of α̂n, and

Q∗2n (α̂∗n, β) ≡ n−1
n∑
t=1

q∗2t
(
X∗t, α̂∗n, β

)
,

and where for each β ∈ B, we let q∗2t (X∗t, α̂∗n, β) = q2,τt (Xτt , α̂∗n, β) with τt denoting

a set of indices chosen by the bootstrap. The �rst step bootstrap estimator α̂∗n is not

necessarily an M-estimator. All we require in Assumption B∗ below is that it has an

asymptotic linear representation of the same type as α̂n but with ψt (X t, α0) replaced with

ψ∗t (X∗t, α̂n) = ψτt (Xτt , α̂n). Thus, both α̂∗n and β̂∗n depend on the same set of bootstrap

indices {τt}.

Assumption B∗

B∗.1 (i) α̂∗n − α̂n →P ∗ 0, in prob-P.

(ii)
√
n (α̂∗n − α̂n) = n−1/2

∑n
t=1 ψ

∗
t (X∗t, α̂n) + oP ∗ (1) , in prob-P.

B∗.2 The functions {q∗2t (X∗t, α, β)} satisfy a bootstrap ULLN on A× B, i.e.

sup
α,β
|Q∗2n (α, β)−Q2n (α, β)| →P ∗ 0,

in prob-P.

B∗.3 The functions
{

∂
∂α′
ϕ∗2t (X∗t, α, β)

}
and

{
∂
∂β′
ϕ∗2t (X∗t, α, β)

}
satisfy a bootstrap ULLN

on A× B, where ϕ∗2t (X∗t, α, β) ≡ ∂
∂β
q∗2t (X∗t, α, β) .

B∗.4 n−1/2
∑n

t=1

(
ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0ψ

∗
t (X∗t, α̂n)

)
→d∗ N (0, J0) , in prob-P , where

J0 ≡ lim
n→∞

V ar

(
n−1/2

n∑
t=1

(
ϕ2t

(
X t, α0, β0

)
+ F0ψt

(
X t, α0

)))
> 0.
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Assumption B∗ imposes high level conditions on the bootstrap �rst step estimator and

on the bootstrap second step objective function and its derivatives. These conditions can

be veri�ed for any particular bootstrap method used to obtain α̂∗n and β̂∗n, where β̂
∗
n is a

QMLE estimator and α̂∗n is any estimator admitting an asymptotic linear representation (as

speci�ed by Assumption B∗.2). We verify these conditions for the two-step QMLE studied

in Section 3.

Theorem S2.3. Suppose Assumptions A.1, A.2, A.3(i), A.4(i)-(ii) and A.5 hold. If in

addition Assumptions B∗.1(i) and B∗.2 are satis�ed, then β̂∗n − β̂n →P ∗ 0, in prob-P.

Theorem S2.4. Suppose Assumptions A.1−A.8 hold. If in addition Assumptions B∗.1−

B∗.4 are satis�ed, then
√
n
(
β̂∗n − β̂n

)
→d∗ N

(
0, H−10 J0H

−1
0

)
, in prob-P.

Theorems S2.2 and S2.4 imply that

sup
x∈Rp

∣∣∣P ∗ (√n(β̂∗n − β̂n) ≤ x
)
− P

(√
n
(
β̂n − β0

)
≤ x

)∣∣∣→P 0,

as n → ∞, thus justifying the use of the bootstrap distribution of
√
n
(
β̂∗n − β̂n

)
as a

consistent estimator of the distribution of
√
n
(
β̂n − β0

)
.

S3 Proofs of Theorems S2.3, S2.4 and 4.1

Proof of Theorem S2.3. Let Q̃n (β) = Q2n (α̂n, β) = n−1
∑n

t=1 q2t (X t, α̂n, β) .We apply

Lemma A.2 of GW (2004) with Qn (·, θ) = Q̃n (β) .We can easily verify that Q̃n (β) satis�es

the �rst part of this lemma, implying that β̂n →P β0. Next, we verify that the function

Q̃∗n (β) = Q∗2n (α̂∗n, β)

satis�es the second part of Lemma A.2. First, note that β̂∗n = arg minβ Q̃
∗
n (β) , where Q̃∗n (β)

satis�es the measurability and continuity assumptions given in particular Assumptions A.2.
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Therefore, the result follows if we show that

sup
β∈B

∣∣∣Q̃∗n (β)− Q̃n (β)
∣∣∣→P ∗ 0, prob-P.

To see that this is the case, note that

sup
β∈B

∣∣∣Q̃∗n (β)− Q̃n (β)
∣∣∣ = sup

β∈B
|Q∗2n (α̂∗n, β)−Q2n (α̂n, β)|

≤ sup
β∈B
|Q∗2n (α̂∗n, β)−Q2n (α̂∗n, β)|+ sup

β∈B

∣∣Q2n (α̂∗n, β)− Q̄2 (α̂∗n, β)
∣∣

+ sup
β∈B

∣∣Q2n (α̂n, β)− Q̄2 (α̂n, β)
∣∣+ sup

β∈B

∣∣Q̄2 (α̂∗n, β)− Q̄2 (α̂n, β)
∣∣

≤ sup
α∈A,β∈B

|Q∗2n (α, β)−Q2n (α, β)|+ 2 sup
α∈A,β∈B

∣∣Q2n (α, β)− Q̄2 (α, β)
∣∣

+ sup
β∈B

∣∣Q̄2 (α̂∗n, β)− Q̄2 (α̂n, β)
∣∣ . (S3.1)

The �rst two terms are oP ∗ (1) and oP (1) , respectively, given B∗.2 and A.5. The third

term is oP ∗ (1) in prob-P , given the fact that Q̄2 (α, β) is continuous on A × B, where

A and B are compact subsets of �nite dimensional Euclidean spaces, and the fact that

α̂∗n − α̂n →P ∗ 0, in prob-P by Assumption B∗.1.

Proof of Theorem S2.4. By a mean value expansion of n−1/2
∑n

t=1 ϕ
∗
2t

(
X∗t, α̂∗n, β̂

∗
n

)
around β̂n,

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂∗n, β̂n

)
+

[
n−1

n∑
t=1

∂

∂β′
ϕ∗2t

(
X∗t, α̂∗n, β̈

∗
n

)]√
n
(
β̂∗n − β̂n

)
,

where β̈∗n lies between β̂
∗
n and β̂n. A second mean value expansion of n−1/2

∑n
t=1 ϕ

∗
2t

(
X∗t, α̂∗n, β̂n

)
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around α̂n yields

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂n, β̂n

)
+

[
n−1

n∑
t=1

∂

∂α′
ϕ∗2t

(
X∗t, α̈∗n, β̂n

)]√
n (α̂∗n − α̂n)

+

[
n−1

n∑
t=1

∂

∂β′
ϕ∗2t

(
X∗t, α̂∗n, β̈

∗
n

)]√
n
(
β̂∗n − β̂n

)
,

where α̈∗n lies between α̂
∗
n and α̂n. By a ULLN applied to ∂

∂α′
ϕ∗2t (X∗t, α, β) and ∂

∂β′
ϕ∗2t (X∗t, α, β)

(Assumption B∗.3), we have that

n−1
n∑
t=1

∂

∂α′
ϕ∗2t

(
X∗t, α̈∗n, β̂n

)
− n−1

n∑
t=1

∂

∂α′
ϕ2t

(
X t, α0, β0

)
→P ∗ 0, in prob-P,

which implies that

n−1
n∑
t=1

∂

∂α′
ϕ∗2t

(
X∗t, α̈∗n, β̂n

)
→P ∗ F0, in prob-P,

since α̂∗n →P ∗ α0, β̂n →P β0, and n
−1∑n

t=1
∂
∂α′
ϕ2t (X t, α0, β0)→P F0. Similarly,

n−1
n∑
t=1

∂

∂β′
ϕ∗2t

(
X∗t, α̂∗n, β̈

∗
n

)
→P ∗ H0, in prob-P,

since α̂∗n →P ∗ α0 and β̂
∗
n →P ∗ β0. It follows that

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0

√
n (α̂∗n − α̂n) +H0

√
n
(
β̂∗n − β̂n

)
+ oP ∗ (1) .

By Assumption B∗.1(ii),

√
n (α̂∗n − α̂n) = n−1/2

n∑
t=1

ψ∗t
(
X∗t, α̂n

)
+ oP ∗ (1) ,
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which implies that

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂n, β̂n

)
+F0

(
n−1/2

n∑
t=1

ψ∗t
(
X∗t, α̂n

))
+H0

√
n
(
β̂∗n − β̂n

)
+oP ∗ (1) .

Hence,

√
n
(
β̂∗n − β̂n

)
= −H−10 n−1/2

n∑
t=1

(
ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0ψ

∗
t

(
X∗t, α̂n

))
+ oP ∗ (1) .

The result now follows from Assumption B∗.4.

Proof of Theorem 4.1. We verify that the high level conditions of Theorem S2.4 are

satis�ed for the two-step QMLE under Assumption A as strengthened by Assumption B. In

particular, we can show that Assumption B∗.1(i) is satis�ed for α̂∗n = arg maxαQ
∗
1n (α) ≡

n−1
∑n

t=1 log f ∗1t (X∗t, α) by relying on GW (2004)'s Theorem 2.1 under Assumption A.1.,

A.6 and part (i) of Assumptions A.2-A.5 and A.7, A.8. Similarly, we can apply Theorem 2.2

of GW (2004) to conclude that B∗.1(ii) is veri�ed with ψ∗t (X∗t, α̂n) = −A−10 s∗1t (X∗t, α̂n) .

To verify Assumption B∗.2, we let q∗2t (X∗t, α, β) = − log f ∗2t (X∗t, α, β) and apply Lemmas

A.4 and A.5 of GW (2004). Assumptions A.4(ii) and A.5(ii) together with the requirement

that `n = o (n) su�ce to prove that B∗.2 holds. B∗.3 can be veri�ed similarly by showing

that a bootstrap ULLN applies to the derivatives of s∗2t (X∗t, α, β) with respect to α and

β under A.4(ii) and A.5(ii) and the rate condition on the block size `n. Finally, to check

that the bootstrap CLT (cf. Assumption B∗.4) holds for s∗t
(
α̂n, β̂n

)
≡ ϕ∗2t

(
X∗t, α̂n, β̂n

)
+

F0ψ
∗
t (X∗t, α̂n) = −s∗2t

(
X∗t, α̂n, β̂n

)
+ F0A

−1
0 s∗1t (X∗t, α̂n) we proceed as in the proof of

Theorem 2.2 of GW (2004). Speci�cally, we write

−n−1/2
n∑
t=1

s∗t

(
α̂n, β̂n

)
= n−1/2

n∑
t=1

(
s∗2t

(
α̂n, β̂n

)
− F0A

−1
0 s∗1t (α̂n)

)
≡ ξ1n + ξ2n + ξ3n + ξ4n,
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with

ξ1n = n−1/2
n∑
t=1

((
s∗2t (α0, β0)− F0A

−1
0 s∗1t (α0)

)
−
(
s2t (α0, β0)− F0A

−1
0 s1t (α0)

))
;

ξ2n = n−1/2
n∑
t=1

(
s2t

(
α̂n, β̂n

)
− s2t (α0, β0)

)
− F0A

−1
0 n−1/2

n∑
t=1

(s1t (α̂n)− s1t (α0)) ;

ξ3n = n−1/2
n∑
t=1

(
s∗2t

(
α̂n, β̂n

)
− s∗2t (α0, β0)

)
− F0A

−1
0 n−1/2

n∑
t=1

(s∗1t (α̂n)− s∗1t (α0)) ;

ξ4n = n−1/2
n∑
t=1

s2t

(
α̂n, β̂n

)
− F0A

−1
0 n−1/2

n∑
t=1

s1t (α̂n) .

By arguing exactly as in GW (2004), we can show that under Assumption A strengthened

by Assumption B, ξ1n →d∗ N (0, J0), in prob-P , and ξ2n + ξ3n = oP ∗ (1) in prob-P , whereas

ξ4n = oP (1) by the �rst order conditions that de�ne α̂n and β̂n.

S4 General results for two-step GMM-estimators

In this section, we provide results for a general two-step GMM estimator β̂n based on a

�rst step estimator α̂n which has an asymptotic linear representation. As in Section S2, in

the �rst step, we estimate α0 ∈ A ⊂ Rk with some asymptotically linear estimator α̂n ( e.g.

it could be an M estimator or a GMM estimator). In the second step, we now estimate β0

with a GMM estimator de�ne as:

β̂n = arg min
β∈B

Q2n (α̂n, β) ,

where

Q2n (α̂n, β) ≡ m̄′n (α̂n, β)Wnm̄n (α̂n, β) ,

such that m̄n (α̂n, β) ≡ n−1
∑n

t=1m2t (X t, α̂n, β) , m2t : Rlt × A× B →Rr is an objective

function that depends on β and α and X t ≡ (X1, . . . , Xt−1, Xt). The weighting matrix
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Wn is a r × r symmetric and positive de�nite (random) matrix. We make the following

assumptions.

Assumption AG.

AG.1 Let (Ω,F , P ) be a complete probability space. The observed data are a realization

of a stochastic process
{
Xt : Ω→ Rl, t ∈ N

}
.

AG.2 The functions {m2t (X t, α, β)} are such that m2t (·, α, β) is measurable for each

(α, β) ∈ A × B, where A and B are compact subsets of Rk and Rp, respectively,

and m2t (xt, ·, ·) is continuous on A× B for all xt in some set Ft with P (Ft) = 1.

AG.3 (i) α̂n →P α0 ∈ int (A).

(ii)
√
n (α̂n − α0) = n−1/2

∑n
t=1 ψt (X t, α0) + oP (1) , for some function {ψt (X t, α0)}

such that
√
n (α̂n − α0) = OP (1) .

AG.4 (i) Q̄2 (α, β) ≡ limn→∞E (Q2n (α, β)) exists and is continuous on A× B.

(ii) β0 is the unique solution in B to the equation E (m2t (X t, α0, β)) = 0, and the

weighting matrix Wn is such that Wn →P W, where W a non-random symmetric and

positive de�nite matrix.

(iii) β0 ∈ int (B) .

AG.5 supα,β
∣∣Q2n (α, β)− Q̄2 (α, β)

∣∣ = oP (1).

AG.6 (i) {m2t (X t, α, β)} is continuously di�erentiable on int (A)× int (B) .

(ii) The functions
{

∂
∂α′
m2t (X t, α, β)

}
and

{
∂
∂β′
m2t (X t, α, β)

}
satisfy a weak ULLN

on A× B.

AG.7 (i) Γ0≡ limn→∞E
(
n−1

∑n
t=1

∂
∂β′
m2t (X t, α0, β0)

)
is of full rank.

(ii) Φ 0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂α′
m2t (X t, α0, β0)

)
<∞.

11



AG.8 The function {m2t (X t, α0, β0) + Φ0ψt (X t, α0)} satis�es the CLT, i.e.

n−1/2
n∑
t=1

(
m2t

(
X t, α0, β0

)
+ Φ0ψt

(
X t, α0

))
→d N (0,Υ0) ,

where

Υ0 ≡ lim
n→∞

V ar

(
n−1/2

n∑
t=1

(
m2t

(
X t, α0, β0

)
+ Φ0ψt

(
X t, α0

)))
> 0.

Theorem S4.1. Under Assumptions AG.1, AG.2, AG.3(i), AG.4(i)-(ii) and AG.5, β̂n →P

β0.

Theorem S4.2. Under Assumptions AG.1−AG.8,

√
n
(
β̂n − β0

)
→d N

(
0, (Γ′0WΓ0)

−1
Γ′0WΥ0WΓ0 (Γ′0WΓ0)

−1
)
.

Next, we provide a set of general conditions for bootstrap validity. Suppose that the

bootstrap two-step GMM-estimator is de�ned as

β̂∗n = arg min
β∈B

Q∗2n (α̂∗n, β) ,

where α̂∗n is the �rst-step bootstrap analogue of α̂n,

Q∗2n (α̂∗n, β) ≡ m̄∗′n (α̂∗n, β)Wnm̄
∗
n (α̂∗n, β) ,

such that m̄∗n (α̂∗n, β) ≡ n−1
∑n

t=1 m
∗
2t (X∗t, α̂∗n, β) , and for each β ∈ B, we letm∗2t (X∗t, α̂∗n, β) =

m2,τt (Xτt , α̂∗n, β) − E∗
(
m2,τt

(
Xτt , α̂∗n, β̂n

))
with τt denoting a set of indices chosen by

the bootstrap. Note that recentering ensures that the bootstrap moment conditions

E∗
(
m̄∗n

(
α̂∗n, β̂n

))
= 0 hold (even when the model is overidenti�ed). For the �rst step

12



bootstrap estimator α̂∗n, all we require in Assumption BG∗ below is that it has an asymp-

totic linear representation of the same type as α̂n but with ψt (X t, α0) replaced with

ψ∗t (X∗t, α̂n) = ψτt (Xτt , α̂n). Thus, both α̂∗n and β̂∗n depend on the same set of bootstrap

indices {τt}.

Assumption BG∗

BG∗.1 (i) α̂∗n − α̂n →P ∗ 0, in prob-P.

(ii)
√
n (α̂∗n − α̂n) = n−1/2

∑n
t=1 ψ

∗
t (X∗t, α̂n) + oP ∗ (1) , in prob-P.

BG∗.2 supα,β |Q∗2n (α, β)−Q2n (α, β)| →P ∗ 0, in prob-P.

BG∗.3 The functions
{

∂
∂α′
m∗2t (X∗t, α, β)

}
and

{
∂
∂β′
m∗2t (X∗t, α, β)

}
satisfy a bootstrap

ULLN on A× B.

BG∗.4 n−1/2
∑n

t=1

(
m∗2t

(
X∗t, α̂n, β̂n

)
+ Φ0ψ

∗
t (X∗t, α̂n)

)
→d∗ N (0,Υ0) , in prob-P , where

Υ0 ≡ lim
n→∞

V ar

(
n−1/2

n∑
t=1

(
m2t

(
X t, α0, β0

)
+ Φ0ψt

(
X t, α0

)))
> 0.

Assumption BG∗ imposes high level conditions on the bootstrap �rst step estimator

and on the bootstrap second step objective function and its derivatives. These conditions

can be veri�ed for any particular bootstrap method used to obtain α̂∗n and β̂∗n, where β̂
∗
n is

a GMM estimator and α̂∗n is any estimator admitting an asymptotic linear representation

(as speci�ed by Assumption BG∗.2).

Theorem S4.3. Suppose Assumptions AG.1, AG.2, AG.3(i), AG.4(i)-(ii) and AG.5 hold.

If in addition Assumptions BG∗.1(i) and B∗.2 are satis�ed, then β̂∗n− β̂n →P ∗ 0, in prob-P.

Theorem S4.4. Suppose Assumptions AG.1 − AG.8 hold. If in addition Assumptions

BG∗.1−BG∗.4 are satis�ed, then
√
n
(
β̂∗n − β̂n

)
→d∗N

(
0, (Γ′0WΓ0)

−1 Γ′0WΥ0WΓ0 (Γ′0WΓ0)
−1)

, in prob-P.

13



Theorems S4.2 and S4.4 imply that

sup
x∈Rp

∣∣∣P ∗ (√n(β̂∗n − β̂n) ≤ x
)
− P

(√
n
(
β̂n − β0

)
≤ x

)∣∣∣→P 0,

as n → ∞, thus justifying the use of the bootstrap distribution of
√
n
(
β̂∗n − β̂n

)
as a

consistent estimator of the distribution of
√
n
(
β̂n − β0

)
.

S5 Proofs of Theorems S4.1, S4.2, S4.3 and S4.4

Proof of Theorem S4.1. UnderAG.2, {Q2n} is a sequence of measurable continuous func-

tions onA×B, a.s.-P . ByA.3(i), α̂n →P α0 ∈ A and byAG.5, supα,β
∣∣Q2n (α, β)− Q̄2 (α, β)

∣∣ =

oP (1), where Q̄2 (α, β) is continuous by AG.4(i). Hence, we can apply Theorem 3.7 of

White (1993) to conclude that Q2n (α̂n, β) − Q̄2 (α0, β) = oP (1) uniformly on B. Next,

let Q̃n (β) ≡ Q2n (α̂n, β) and note that Q̃n (β) satis�es the conditions of Theorem 3.4 of

White (1993). In particular, Q̃n (β) converges to Q̄2 (α0, β) uniformly on B, as just showed

above. Next, note that Assumption AG.4(ii) ensures that β0 is the unique minimizer of

Q̄2 (α0, β) on B. Thus, it follows that β̂n − β0 = oP (1).

Proof of Theorem S4.2. Given the �rst order condition of the GMM estimator β̂n,

we have (
∂

∂β′
m̄n

(
α̂n, β̂n

))′
Wn

√
nm̄n

(
α̂n, β̂n

)
= 0,

where m̄n

(
α̂n, β̂n

)
= n−1

∑n
t=1m2t

(
X t, α̂n, β̂n

)
. Next, we consider a mean value expan-

sion of
√
nm̄n

(
α̂n, β̂n

)
around β0. Thus, we have

0 =

(
∂

∂β′
m̄n

(
α̂n, β̂n

))′
Wn

(√
nm̄n (α̂n, β0) +

∂

∂β′
m̄n

(
α̂n, β̈n

)√
n
(
β̂n − β0

))
,

where β̈n lies between β̂n and β0 and the equality to zero holds with probability approaching
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one (w.p.a.1.) as n → ∞, because β̂n is interior to B w.p.a.1. by Assumption AG.4(iii).

Another mean value expansion of
√
nm̄n (α̂n, β0) around α0 yields

√
nm̄n (α̂n, β0) =

√
nm̄n (α0, β0) +

∂

∂α′
m̄n (α̈n, β0)

√
n (α̂n − α0) ,

where α̈n lies between α̂n and α0, implying that

0 =

(
∂

∂β′
m̄n

(
α̂n, β̂n

))′
Wn

(√
nm̄n (α0, β0) +

∂

∂α′
m̄n (α̈n, β0)

√
n (α̂n − α0)

)
+

(
∂

∂β′
m̄n

(
α̂n, β̂n

))′
Wn

∂

∂β′
m̄n

(
α̂n, β̈n

)√
n
(
β̂n − β0

)
.

By a ULLN applied to ∂
∂α′
m2t (X t, α, β) and ∂

∂β′
m2t (X t, α, β) (Assumption AG.6), we have

that

∂

∂α′
m̄n (α̈n, β0) = n−1

n∑
t=1

∂

∂α′
m2t

(
X t, α̈n, β0

)
→P lim

n→∞
E

(
n−1

n∑
t=1

∂

∂α′
m2t

(
X t, α0, β0

))
= Φ0,

∂

∂β′
m̄n

(
α̂n, β̈n

)
= n−1

n∑
t=1

∂

∂β′
m2t

(
X t, α̂n, β̈n

)
→P lim

n→∞
E

(
n−1

n∑
t=1

∂

∂β′
m2t

(
X t, α0, β0

))
= Γ0,

∂

∂β′
m̄n

(
α̂n, β̂n

)
= n−1

n∑
t=1

∂

∂β′
m2t

(
X t, α̂n, β̂n

)
→P lim

n→∞
E

(
n−1

n∑
t=1

∂

∂β′
m2t

(
X t, α0, β0

))
= Γ0.

since α̂n →P α0 and β̂n →P β0. Furthermore, note that by Assumptions AG.3(ii) and

AG.4(ii), we have

√
n (α̂n − α0) = n−1/2

n∑
t=1

ψt
(
X t, α0

)
+ oP (1) ,

and Wn →P W, where W a non-random symmetric and positive de�nite matrix, respec-
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tively. It follows that

Γ′0WΓ0

√
n
(
β̂n − β0

)
= −Γ′0Wn−1/2

n∑
t=1

(
m2t

(
X t, α0, β0

)
+ Φ0ψt

(
X t, α0

))
+ oP (1) .

Implying that,

√
n
(
β̂n − β0

)
= − (Γ′0WΓ0)

−1
Γ′0Wn−1/2

n∑
t=1

(
m2t

(
X t, α0, β0

)
+ Φ0ψt

(
X t, α0

))
+ oP (1) .

Note that because W is positive de�nite (and hence non singular) and Γ0 is of full rank

(Assumption AG.7(i)), ensure that Γ′0WΓ0 is non singular. The result now follows from

Assumption AG.8.

Proof of Theorem S4.3. Under our assume conditions, β̂n−β0 = oP (1), by Theorem

S4.1. Given that β̂∗n − β̂n =
(
β̂∗n − β0

)
−
(
β̂n − β0

)
, the desired result follows by showing

that β̂∗n − β0 = oP ∗ (1) , in prob-P. Under Assumption AG.4(ii), observed that β0 is the

unique minimizer of Q̄2 (α0, β) on B. Thus, for any ε > 0 such that |β − β0| > ε, there is

δ > 0 such that Q̄2 (α0, β)− Q̄2 (α0, β0) ≥δ > 0. It follows that

P
(
P ∗
(∣∣∣β̂∗n − β0∣∣∣) > ε

)
≤ 1

ε/2
P

(
2 sup

β

∣∣Q2n (α̂n, β)− Q̄2 (α0, β)
∣∣ > δ/2

)
+P

(
P ∗
(

2 sup
β
|Q∗2n (α̂∗n, β)−Q2n (α̂n, β)| > δ/2

)
> ε/2

)
,

where we use inequality (B.6) in Dovonon and Goncalves (2017), with QT (θ) = Q2n (α̂n, β) ,

Q∗T (θ) = Q∗2n (α̂∗n, β) , andQ (θ) = Q̄2 (α0, β) . Therefore, in order to have β̂∗n−β0 = oP ∗ (1) ,

in prob-P , it su�ces to show that the following hold: (a) supβ
∣∣Q2n (α̂n, β)− Q̄2 (α0, β)

∣∣ =

oP (1) and (b) supβ |Q∗2n (α̂∗n, β)−Q2n (α̂n, β)| = oP ∗ (1) , in prob-P. (a) by triangular in-

equality, we have

sup
β∈B

∣∣Q2n (α̂n, β)− Q̄2 (α0, β)
∣∣ ≤ sup

α∈A,β∈B
|Q2n (α̂n, β)−Q2n (α0, β)|+ sup

α∈A,β∈B

∣∣Q2n (α0, β)− Q̄2 (α0, β)
∣∣ .
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The �rst term is oP (1) , given the fact that Q2n (α, β) is continuous on A× B, where A

and B are compact subsets of �nite dimensional Euclidean spaces (by Assumption AG.2),

and the fact that α̂n − α0 →P 0, by Assumption AG.3. The second term is oP (1) given

AG.5. To obtain (b), we use similar arguments as in (S3.1). Speci�cally, note that we can

write

sup
β∈B
|Q∗2n (α̂∗n, β)−Q2n (α̂n, β)| ≤ sup

α∈A,β∈B
|Q∗2n (α, β)−Q2n (α, β)|+ 2 sup

α∈A,β∈B

∣∣Q2n (α, β)− Q̄2 (α, β)
∣∣

+ sup
β∈B

∣∣Q̄2 (α̂∗n, β)− Q̄2 (α̂n, β)
∣∣ ,

where the �rst two terms are oP ∗ (1) and oP (1) , respectively, given BG∗.2 and AG.5. The

third term is oP ∗ (1) in prob -P , given the fact that Q̄2 (α, β) is continuous on A × B,

where A and B are compact subsets of �nite dimensional Euclidean spaces, and the fact

that α̂∗n − α̂n →P ∗ 0, in prob-P by Assumption BG∗.1.

Proof of Theorem S4.4. The proof follows closely that of Theorem S4.2. Given the

�rst order condition of the GMM estimator β̂∗n, we have

(
∂

∂β′
m̄∗n

(
α̂∗n, β̂

∗
n

))′
Wn

√
nm̄∗n

(
α̂∗n, β̂

∗
n

)
= 0,

where m̄∗n

(
α̂∗n, β̂

∗
n

)
= n−1

∑n
t=1 m∗2t

(
X∗t, α̂∗n, β̂

∗
n

)
. Next, we consider a mean value expan-

sion of
√
nm̄∗n

(
α̂∗n, β̂

∗
n

)
around β̂n. Thus, we have

0 =

(
∂

∂β′
m̄∗n

(
α̂∗n, β̂

∗
n

))′
Wn

(√
nm̄∗n

(
α̂∗n, β̂n

)
+

∂

∂β′
m̄∗n

(
α̂∗n, β̈

∗
n

)√
n
(
β̂∗n − β̂n

))
,

where β̈∗n lies between β̂∗n and β̂n. A second mean value expansion of
√
nm̄n

(
α̂∗n, β̂n

)
around α̂n yields

√
nm̄∗n

(
α̂∗n, β̂n

)
=
√
nm̄∗n

(
α̂n, β̂n

)
+

∂

∂α′
m̄∗n

(
α̈∗n, β̂n

)√
n (α̂∗n − α̂n) ,
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where α̈∗n lies between α̂∗n and α̂n, implying that

0 =

(
∂

∂β′
m̄∗n

(
α̂∗n, β̂

∗
n

))′
Wn

(√
nm̄∗n

(
α̂n, β̂n

)
+

∂

∂α′
m̄∗n

(
α̈∗n, β̂n

)√
n (α̂n − α0)

)
+

(
∂

∂β′
m̄∗n

(
α̂∗n, β̂

∗
n

))′
Wn

∂

∂β′
m̄∗n

(
α̂∗n, β̈

∗
n

)√
n
(
β̂∗n − β̂n

)
.

By a ULLN applied to ∂
∂α′
m∗2t (X∗t, α, β) and ∂

∂β′
m∗2t (X∗t, α, β) (Assumption BG∗.3) , we

have that

n−1
n∑
t=1

∂

∂α′
m∗2t

(
X∗t, α̈∗n, β̂n

)
− n−1

n∑
t=1

∂

∂α′
m2t

(
X t, α0, β0

)
→P ∗ 0, in prob-P,

which implies that

∂

∂α′
m̄∗n

(
α̈∗n, β̂n

)
= n−1

n∑
t=1

∂

∂α′
m∗2t

(
X∗t, α̈∗n, β̂n

)
→P ∗ Φ0, in prob-P,

since α̂∗n →P ∗ α0, β̂n →P β0, and n
−1∑n

t=1
∂
∂α′
m2t (X t, α0, β0)→P Φ0. Similarly,

∂

∂β′
m̄∗n

(
α̂∗n, β̈

∗
n

)
= n−1

n∑
t=1

∂

∂β′
m∗2t

(
X∗t, α̂∗n, β̈

∗
n

)
→P ∗ Γ0, in prob-P,

∂

∂β′
m̄∗n

(
α̂∗n, β̂

∗
n

)
= n−1

n∑
t=1

∂

∂β′
m∗2t

(
X∗t, α̂∗n, β̂

∗
n

)
→P ∗ Γ0, in prob-P,

since α̂∗n →P ∗ α0 and β̂∗n →P ∗ β0. Furthermore, note that by Assumptions BG∗.1(ii) ,

AG.4(ii), and AG.7(i), we have

√
n (α̂∗n − α̂n) = n−1/2

n∑
t=1

ψ∗t
(
X∗t, α̂n

)
+ oP ∗ (1) ,

Wn →P W, where W a non-random symmetric and positive de�nite matrix, and Γ0 is of
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full rank, respectively. Hence

√
n
(
β̂∗n − β̂n

)
= − (Γ′0WΓ0)

−1
Γ′0Wn−1/2

n∑
t=1

(
m∗2t

(
X∗t, α̂n, β̂n

)
+ Φ0ψ

∗
t

(
X∗t, α̂n

))
+oP ∗ (1) .

The result now follows from Assumption BG∗.4.

S6 Auxiliary lemmas used in the proof of Theorem 4.4

The main goal of this section is to show that a bootstrap version of the Lp maximal

inequality stated in Assumption B6(iii) holds under our assumptions. In particular, we

show that for some p > 2+δ,
(
E |G∗n|

p
Nη

)1/p
≤ η holds when Nη is as de�ned in Assumption

B6(iii) and G∗n is de�ned as

G∗n (q2 (α0, β)− q2 (α0, β0))

= n−1
n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))− E∗
(
n−1

n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))

)
,

where q∗2t (α, β) is a MBB version of q2t (α, β) = log f2t (α, β). This result is as follows.

Lemma S6.1. Suppose that Assumption B6(iii) holds, and assume that {log f2t (α, β)}

satis�es a Lipschitz continuity condition on A × B, a.s.-P , with Lipschitz functions {Lt}

such that E |Lt|p < ∞ for p > 2 + δ, for some δ > 0. Then,
(
E |G∗n|

p
Nη

)1/p
≤ η for any

η > 0.

To prove Lemma S6.1, we rely on the following Lp multiplier inequality, which extends

Lemma 4.1 of Praestgaard and Wellner (1993) by allowing for p ≥ 1 rather than just p = 1.

To state this result, we need to introduce some notation. Recall that for a generic time

series {Xt : t = 1, . . . , n} , letting k = n
`
denote the number of blocks of size ` needed to

de�ne a MBB sample of size n and letting {Ij : j = 1, . . . , k} be an i.i.d. uniform sequence
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of indices distributed on {1, . . . , n− `+ 1} allows us to write the MBB average as

X̄∗n = n−1
n∑
t=1

X∗t = k−1
k∑
j=1

(
`−1
∑̀
t=1

X∗t+(j−1)`

)
= k−1

k∑
j=1

(∑̀
t=1

Xt+Ij−1

)
= n−1

k∑
j=1

ZIj .

Another way to write this average is as follows. Let N = n − ` + 1, and let WN =

(W1, . . . ,WN)′ denote a triangular array of weights whose distribution is the Multino-

mial (k, (N−1, . . . , N−1)) distribution1. Note that these are non-negative exchangeable

random variables. We can then think of X̄∗n as a weighted average of the block sums

Zj =
∑`

t=1Xt+j−1, weighted by Wj :

X̄∗n = n−1
N∑
j=1

WjZj,

where Wj denotes the number of times the jth block sum Zj is drawn in the bootstrap

sample. Note that if ` = 1, then N = k = n, and this way of writing the bootstrap

average is exactly the same as when studying the nonparametric i.i.d. bootstrap using the

Multinomial distribution (n, (n−1, . . . , n−1)). Thus, our framework is an extension of the

usual framework to the MBB. Our goal in Lemma S6.1 is to bound the Lp moment of the

bootstrap empirical process

G∗nf = n−1/2
n∑
t=1

(f ∗t − E∗ (f ∗t )) .

With this new notation, we can write

G∗nf = n−1/2
N∑
j=1

(Wj − EW (Wj))

(∑̀
t=1

ft+j−1

)
,

where EW (·) (and PW (·)) denotes expectation (and probability) with respect to the random
1For simplicity, we will drop the array notation and will write Wj rather than WN,j . Similarly, we will

omit the index n in the de�nition Nn.
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vector WN de�ned above. The Lp-multiplier we are about to state gives a bound on the Lp

moments of averages de�ned as n−1/2
∑N

j=1WjZj, where Zj will play the role of the block

sum
∑`

t=1 ft+j−1 in our application.

To state this result, de�ne the joint probability P = P × PW , which we wrote before

as P × P ∗, and let ‖W1‖2,1 =
∫∞
0

√
PW (W1 ≥ u)du. Some expressions below may be

non-measurable; probability and expectation of these expressions are understood in terms

of outer probability and outer expectation (see, e.g. van der Vaart and Wellner, 1996,

p. 6). Application of Fubini's theorem to such expectations requires additional care. We

assume that a measurability condition that restores the Fubini theorem is satis�ed in all

our applications below.

Lemma S6.2. Let WN = (W1, . . . ,WN)′ be an array of non-negative exchangeable random

variables such that, for every N, ‖W1‖2,1 =
∫∞
0

√
PW (W1 ≥ u)du < ∞, and let R denote

a random permutation uniformly distributed on ΠN , the set of permutations of 1, 2, . . . , N.

Let Z1, . . . , ZN be a sequence of random elements such that (WN , R) and (Z1, . . . , ZN) are

independent, and write ‖Zj‖ = sup
h∈F
|Zj (h)| . Then for any N0 such that 1 ≤ N0 < ∞ and

any N > N0, the following inequality holds for any p ≥ 1 :

(
E

∥∥∥∥∥n−1/2
N∑
j=1

WjZj

∥∥∥∥∥
p)1/p

≤ N0√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
(

1

N

N∑
j=1

E ‖Zj‖p
)1/p

+ ‖W1‖1/p2,1 ·

(
EZ,R

(
max

N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥
)p)1/p

,

where we let EZ,R (·) denote the expectation with respect to Z1, . . . , ZN and R jointly.

This result extends Lemma 4.1 of Praestgaard and Wellner (1993) from p = 1 to

p ≥ 1. As in Praestgaard and Wellner (1993), we do not assume any particular dependence

structure on the vector (Z1, . . . , ZN), the only assumption being that it is independent of

the pair (WN , R). This is in contrast with the Lp multiplier provided by Cheng (2015, p.
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17), which assumes Z1, . . . , ZN to be i.i.d., while also allowing for any p ≥ 1. The i.i.d.

assumption on the random functions Zj is too strong for our applications, where Zj will

be given by block sums of contributions to the log likelihood function. These are typically

serially dependent in the time series context and this is the reason for given Lemma S6.2,

a result that might be of independent interest.

Next, we prove Lemma S6.1 and then we prove Lemma S6.2.

Proof of Lemma S6.1 In the following '.' denote smaller than, up to an universal

constant K > 0. Recalling the de�nition of G∗nf , where f is in the function class Nη, and

the property of the MBB weights, in particular,
∑N

j=1Wj = k, implying that EW (Wj) = k
N
,

we can rewrite G∗nf as follows:

G∗nf = n−1/2
N∑
j=1

(Wj − EW (Wj))

(∑̀
t=1

ft+j−1

)

= n−1/2
N∑
j=1

(
Wj −

k

N

)(∑̀
t=1

ft+j−1

)
, since EW (Wj) =

k

N

= n−1/2
N∑
j=1

(
Wj −

k

N

)[(∑̀
t=1

ft+j−1

)
− E

(∑̀
t=1

ft+j−1

)]
,

since
∑N

t=1

(
Wj − k

N

)
= 0, and the expectation of E

(∑`
t=1 ft+j−1

)
is time invariant under

Assumption B6(i). For j = 1, 2, . . . , N, let

Yj (f) =
∑̀
t=1

ft+j−1 − E

(∑̀
t=1

ft+j−1

)
=
∑̀
t=1

(ft+j−1 − E (ft+j−1)) . (S6.1)

With this notation, G∗nf can be rewritten as

G∗nf = n−1/2
N∑
j=1

(
Wj −

k

N

)
Yj (f) . (S6.2)

Our goal is to bound the Lp moment of the supremum of this empirical process. To do so,
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we follow the same arguments as in Cheng (2015, p. 19) to show that

(
E ‖G∗n‖

p
Nη

)1/p
=

(
E

(
sup
f∈Nη

∣∣∣∣∣n−1/2
N∑
t=1

(
Wj −

k

N

)
Yj (f)

∣∣∣∣∣
)p)1/p

. 2

(
E

(
sup
f∈Nη

∣∣∣∣∣n−1/2
N∑
t=1

WjYj (f)

∣∣∣∣∣
)p)1/p

. (S6.3)

Next, we apply the Lp multiplier inequality in Lemma S6.2 (using (S6.3)) with Zj =

Yj (f) and F = Nη. This yields

(
E ‖G∗n‖

p
Nη

)1/p
.

N0√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
(

1

N

N∑
i=1

E ‖Zi‖pNη

)1/p

+
(
` ‖WN,1‖2,1

)1/p`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥
Nη

p1/p

. N0
`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
(

1

N`p

N∑
i=1

E ‖Zi‖pNη

)1/p

+

`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥
Nη

p1/p

. I + II. (S6.4)

for any 1 ≤ N0 <∞ and N > N0, (the second inequality follows because the MBB weight

veri�es the condition lim supN→∞ ` ‖WN,1‖2,1 <∞, where W1 = WN,1). We �rst bound the

�rst term in the preceding equation, then we bound the second term.

For the �rst term, note that

1

N`p

N∑
i=1

E ‖Zi‖pNη

≤ 1

N`p

N∑
j=1

`p−1
∑̀
t=1

E ‖(ft+j−1 − E (ft+j−1))‖pNη = n−1/2
√
n

N`

N∑
j=1

∑̀
t=1

E ‖(ft+j−1 − E (ft+j−1))‖pNη
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from Minkowski's inequality. Using the same arguments as in the proof of Theorem 4.4

(see equation (12))), it follows that (and given Assumption B6(iii)),

(
1

N`p

N∑
i=1

E ‖Zi‖pNη

)1/p

.

(
1

N`

N∑
j=1

∑̀
t=1

E ‖(ft+j−1 − E (ft+j−1))‖pNη

)1/p

=

(
EE∗

(
1

n

n∑
t=1

∥∥(f ∗t+j−1 − E (ft+j−1)
)∥∥p
Nη

))1/p

.

(n−1 n∑
t=1

E ‖(ft − E (ft))‖pNη

)1/p

+ ηO

(
`√
n

) ,(S6.5)

where the last term is asymptotically negligible given the condition ` = o (
√
n). Next, we

can show that (
n−1

n∑
t=1

E ‖(ft − E (ft))‖pNη

)1/p

. (E ‖Nη‖p)1/p , (S6.6)

where Nη is the envelope of the function class Nη. Given the Lipschitz continuity assump-

tion (cf. Assumption B6(iv)), we can show that (E ‖Nη‖p)1/p ≤ η. This implies

N0
`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
(

1

N`p

N∑
i=1

E ‖Zi‖pNη

)1/p

.

[
`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
]

︸ ︷︷ ︸
o(1)

(E ‖Nη‖p)1/p︸ ︷︷ ︸
.η

= o (η) ,

provided the second factor is o (1). Given that max1≤j≤N W
p
j ≥ 1, (EW |max1≤j≤N Wj|p)1/p ≤

EW
(
max1≤j≤N W

p
j

)
. Therefore, we have

`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p

.

√
N

n︸ ︷︷ ︸
→1

`√
N
EW

(
max
1≤j≤N

W p
j

)
.
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Next, we appeal to Lemma 4.7 of Praestgaard and Wellner (1993) to show that

`√
N
EW

(
max
1≤j≤N

W p
j

)
= o (1) .

To do so, we verify that `W p
1 satis�es the necessary conditions of Lemma 4.7 of Praestgaard

and Wellner (1993), i.e., the following two conditions

lim sup
N→∞

‖`W p
1 ‖2,1 <∞, (S6.7)

and

lim
λ→∞

lim sup
N→∞

sup
u≥λ

u2PW (`W p
1 > u) = 0, (S6.8)

where we recall that W1 is a an element of a triangular array, i.e. W1 = WN,1. As argued

by Cheng (2015), cf. his equation (29), a su�cient condition to obtain both conditions

(S6.7) and (S6.8) is that

lim sup
N→∞

EW

(
`W

(2+ε)p
1

)
<∞, (S6.9)

for some ε > 0, which in turn is implied by

lim sup
N→∞

EW
(
`W 5

1

)
<∞,

because for a small enough ε > 0, we can always choose p = 5/ (2 + ε) > 2. Using the
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property of multinomial distribution, we have

EW
(
W 5

1

)
=

k

Nn

+ 15
k (k − 1)

N2
n

+ 25
k (k − 1) (k − 2)

N3
n

+ 10
k (k − 1) (k − 2) (k − 3)

N4
n

+
k (k − 1) (k − 2) (k − 3) (k − 4)

N5
n

=

n
`n
N4
n + 15 n

`n

(
n
`n
− 1
)
N3
n + 25 n

`n

(
n
`n
− 1
)(

n
`n
− 2
)
N2
n

N5
n

+
10 n

`n

(
n
`n
− 1
)(

n
`n
− 2
)(

n
`n
− 3
)
Nn

N5
n

+

n
`n

(
n
`n
− 1
)(

n
`n
− 2
)(

n
`n
− 3
)(

n
`n
− 4
)

N5
n

.

Given the condition ` = o (
√
n) , it follows that

lim sup
N→∞

EW
(
`W 5

1

)
= 1 <∞.

We follow the same arguments as in Cheng (2015, p. 19) and write

EZ,R
 max
N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥
Nη

p1/p

.

EZ,R
 max
N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=1

ZR(i)

∥∥∥∥∥
Nη

p1/p

+

EZ,R
∥∥∥∥∥ 1√

N0

N∑
i=N0+1

ZR(i)

∥∥∥∥∥
Nη

p1/p

≤ 2

EZ,R
 max
N0≤k≤N

∥∥∥∥∥ 1√
k

k∑
i=1

ZR(i)

∥∥∥∥∥
Nη

p1/p

where the last inequality follows by the triangular inequality. Thus, the proof of Lemma

S6.1 is completed when

II .

`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥
Nη

p1/p

,
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holds for p > 2 + δ. Let

G̃k =
1√
k

k∑
i=1

ZR(i),

for N0 ≤ k ≤ N. It follows that when k = N, we have

G̃N =
1√
N

N∑
i=1

ZR(i),

Recall that for any positive random variable Y, the following holds

EY q =

∫ ∞
0

quq−1P (Y > u) du,

for any q > 0. The Levy inequality (see e.g., proposition A.1.2 of van der Vaart and Wellner

(1996)) implies that,

P

(
max
k≤N

∥∥∥G̃k

∥∥∥
Nη

> λ

)
≤ KP

(∥∥∥G̃N

∥∥∥
Nη

> λ

)
, (S6.10)

for every λ > 0. Hence, we can deduce that

II .

`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥
Nη

p1/p

. K1/p

(
`−1EZ,R

∥∥∥G̃N

∥∥∥p
Nη

)1/p

.

Proof of Lemma S6.2 The proof follows closely that of Lemma 4.1 in Praestgaard

and Wellner (1993). De�ne a random permutation S of {1, . . . , N} such thatWS(1) ≥ . . . ≥

WS(N), and ifWS(t) = WS(t+1) then S (t) < S (t+ 1) . Then, let R be a random permutation

uniformly distributed on ΠN (i.e., the set of permutations of 1, 2, . . . , N) and independent

of (W,S) . Using the same arguments as in Praestgaard and Wellner (1993), and given the
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exchangeability of WN , we have that

(
E

∥∥∥∥∥n−1/2
N∑
j=1

WjZj

∥∥∥∥∥
p)1/p

=

(
E

∥∥∥∥∥n−1/2
N∑
j=1

W(j)ZR(j)

∥∥∥∥∥
p)1/p

≤

(
E

∥∥∥∥∥n−1/2
N0∑
j=1

W(j)ZR(j)

∥∥∥∥∥
p)1/p

+

(
E

∥∥∥∥∥n−1/2
N∑

j=N0+1

W(j)ZR(j)

∥∥∥∥∥
p)1/p

≡ I (N0, N) + II (N0, N) .

where W(j) = WS(j). We can bound the term I(N0, N) by

I (N0, N) ≤ n−1/2
N0∑
j=1

(
E
∥∥W(j)ZR(j)

∥∥p)1/p by Minkowski's inequality

≤ n−1/2
N0∑
j=1

(
EW

∣∣W(j)

∣∣p)1/p (E∥∥ZR(j)

∥∥p)1/p by independence between W and R

≤
(
EW

(
n−1/2 max

1≤j≤N
Wj

)p)1/p N0∑
j=1

(
E
∥∥ZR(j)

∥∥p)1/p
=

(
EW

(
n−1/2 max

1≤j≤N
Wj

)p)1/p N0∑
j=1

(
1

N

N∑
i=1

E ‖Zi‖p
)1/p

by the properties of R

≤ N0√
n

(
EW

(
max
1≤j≤N

Wj

)p)1/p
(

1

N

N∑
i=1

E ‖Zi‖p
)1/p

.

Note in particular that

E
∥∥ZR(j)

∥∥p = EZER|Z
(∥∥ZR(j)

∥∥p) by the LIE

= EZ

(
1

N

N∑
i=1

‖Zi‖p
)

=
1

N

N∑
i=1

E ‖Zi‖p .

If E ‖Zi‖p does not depend on i, then this is equal to E ‖Z1‖p and we get that

I (N0, N) ≤ N0√
n

(
EW

(
max
1≤j≤N

Wj

)p)1/p

(E ‖Z1‖p)1/p ,
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which is what Cheng (2015) get.

Next, in order to bound the second term i.e., II(N0, N) , we follow Cheng (2015) and

write
N∑

j=N0+1

W(j)ZR(j) =
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)
Tj,

where Tj = j−1/2
∑j

i=N0+1 ZR(i) and W(N+1) = 0. Hence, following Cheng (2015),

II (N0, N)

=

(
E

∥∥∥∥∥n−1/2
N∑

j=N0+1

W(j)ZR(j)

∥∥∥∥∥
p)1/p

=

(
E

∥∥∥∥∥n−1/2
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)
Tj

∥∥∥∥∥
p)1/p

≤
(
EZ,R

∥∥∥∥ max
N0<k≤N

‖Tk‖
∥∥∥∥p)1/p

·

(
EW

∥∥∥∥∥n−1/2
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥
p)1/p

=

(
EZ,R

∥∥∥∥∥ max
N0<j≤N

∣∣∣∣∣ 1√
k

k∑
j=N0+1

ZR(j)

∣∣∣∣∣
∥∥∥∥∥
p)1/p

·

(
EW

∥∥∥∥∥n−1/2
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥
p)1/p

.

Thus, the proof is completed if we can show that

(
EW

∥∥∥∥∥n−1/2
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥
p)1/p

≤ n−1/2

(
EW

∥∥∥∥∥
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥
p)1/p

≤ n−1/2
(
n1/2 ‖W1‖1/p2,1

)
≤ ‖W1‖1/p2,1

i.e., if we can show that

EW

∥∥∥∥∥
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥
p

≤ np/2 ‖W1‖2,1 . (S6.11)

It is easy to see that the proof is completed by using exactly the same arguments as in

Cheng (2015) (cf. the proof of their equation (43)).
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S7 Proofs of Theorems 4.3 and 4.4

Proof of Theorem 4.3. For some small δ > 0,

E∗
∣∣∣√n(β̂∗1,n − β̂n)∣∣∣2+δ ≤ ∥∥∥Ĥ−1n ∥∥∥2+δ

1
E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

,

where ‖A‖1 is the spectral norm of a matrix A, i.e. ‖A‖21 = maxx 6=0
x′A′Ax
x′x

. Since Ĥn

is a symmetric matrix,
∥∥∥Ĥ−1n ∥∥∥2+δ

1
=
(
λ−1min

(
Ĥn

))2+δ
= OP (1) since λmin

(
Ĥn

)
→P

λmin (H0) 6= 0 by the assumption that H0 is nonsingular. Thus, it su�ces to show that

E∗
∣∣∣n−1/2∑n

t=1 s
∗
t

(
α̂n, β̂n

)∣∣∣2+δ = OP (1). Using the de�nition of s∗t , we can decompose this

expectation as

E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

≤ E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗2t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

+
∥∥∥F̂n∥∥∥2+δ ∥∥∥Â−1n ∥∥∥2+δ

1
E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗1t (α̂n)

∣∣∣∣∣
2+δ

.

Each of the bootstrap expectations on the RHS of the display can be shown to be OP (1) un-

der our assumptions. The arguments are similar to those used by GW (2005). Take e.g. the

second of these expectations. Adding and subtracting appropriately, we can bound it by I1+

I2, where I1 = 21+δE∗
∣∣n−1/2∑n

t=1 s
∗
1t (α0)

∣∣2+δ and I2 = 21+δE∗
∣∣n−1/2∑n

t=1 (s∗1t (α̂n)− s∗1t (α0))
∣∣2+δ.

Under Assumption B4′, E (s1t (α0)) = 0 and we can show that {s1t (α0)} is L2+δ-mixingale

with bounded mixingale constants and absolutely summable coe�cients given in particular

the L2+δ-NED assumption on the score function s1t (α) . Hence, by Lemma A.1 of GW

(2005), we have that E (I1) = O (1) + O

((
`2n
n

)(2+δ)/2)
= O (1) since `2n/n → 0 by as-

sumption. To show that I2 = OP (1), we rely on Assumption B5, the Lipschitz continuity

30



assumption on s1t (α). This assumption implies that

E∗

∣∣∣∣∣n−1/2
n∑
t=1

(s∗1t (α̂n)− s∗1t (α0))

∣∣∣∣∣
2+δ

≤

(
n−1

n∑
t=1

E∗ |L∗1t|
2+δ

)∣∣√n (α̂n − α0)
∣∣2+δ ,

where |
√
n (α̂n − α0)|

2+δ
= OP (1) and

n−1
n∑
t=1

E∗ |L∗t |
2+δ = n−1

n∑
t=1

|L1t|2+δ +OP

(
`n
n

)
.

where n−1
∑n

t=1E |L1t|2+δ = O (1) under Assumption B5. The proof that

E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗2t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

= OP (1)

follows under similar arguments.

Proof of Theorem 4.4. The result follows from the triangle inequality if

sup
n
E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ <∞ and sup

n
E
∣∣∣√n(β̂n − β0)∣∣∣2+δ <∞.

The moment condition on
√
n
(
β̂n − β0

)
holds by assumption. Then, the moment condition

on
√
n
(
β̂∗n − β0

)
follows by an argument similar to that used in Kato (2011). In particular,

note that for any positive random variable Z and any q ≥ 1, we can write E |Z|q =

q
∫∞
0
tq−1P (Z > t) dt. Hence,

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ = (2 + δ)

∫ ∞
0

t2+δ−1P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
dt.

We will show that P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
≤ Kt−p for p > 2 + δ and some constant K.
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This will imply the result since

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ ≤ K

∫ ∞
0

t2+δ−p−1dt <∞ if p > 2 + δ.

Let Q̃n (β) = Q2n (α̂n, β) = n−1
∑n

t=1 q2t (X t, α̂n, β) , such that q2t (X t, α̂n, β) = log f2t (X t, α̂n, β).

Note that β̂∗n = arg maxβ Q̃
∗
n (β) , where

Q̃∗n (β) = Q∗2n (α̂∗n, β) .

Partition the parameter space B into �shells� Sj,n = {β ∈ B : 2j−1 < |
√
n (β − β0)| ≤ 2j}

for any integer j ≥ 1. If
∣∣∣√n(β̂∗n − β0)∣∣∣ is larger than 2j0 for a given integer j0, then∣∣∣√n(β̂∗n − β0)∣∣∣ is in one of the shells Sj,n with j ≥ j0. In that case, the supremum of the

map β 7−→ Q̃∗n (β)− Q̃∗n (β0) must be nonnegative by the de�nition of β̂∗n. This implies

P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > 2j0

)
≤

∞∑
j=j0

P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)
. (S7.1)

Next decompose Q̃∗n (β)− Q̃∗n (β0) as follows:

Q̃∗n (β)− Q̃∗n (β0) = [Q∗2n (α̂∗n, β)−Q∗2n (α̂∗n, β0)]− [Q∗2n (α0, β)−Q∗2n (α0, β0)]

+Q∗2n (α0, β)−Q∗2n (α0, β0)− E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]

+E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]− E (E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)])

+E [E∗ (Q∗2n (α0, β)−Q∗2n (α0, β0))]

≡ I2-step,n (β) + I1,n (β) + I2,n (β) + I3,n (β) .
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Note that

E∗ (Q∗2n (α0, β)−Q∗2n (α0, β0)) = E∗

(
n−1

n∑
t=1

q∗2t (α0, β)− q∗2t (α0, β0)

)

=
n∑
t=1

γnt (q2t (α0, β)− q2t (α0, β0)) ,

where the weighting function γnt is de�ned as

γnt =


t

`n(n−`n+1)
, if t ∈ {1, . . . , `n}

1
n−`n+1

, if i ∈ {`n + 1, . . . , n− `n}
n−t+1

`n(n−`n+1)
, if i ∈ {n− `n + 1, . . . , n}

,

such that
∑n

t=1 γnt = 1. It follows that

I3n (β) =
n∑
t=1

γntE (q2t (α0, β)− q2t (α0, β0)) = Q̄2 (α0, β)− Q̄2 (α0, β0) ,

given the time homogeneity of the moments E (q2t (α, β)) (which is part of Assumption

B6(i)) and the fact that
∑n

t=1 γnt = 1. By the quadratic behavior assumption, we can

conclude that −I3,n (β) ≥ K |β − β0|2 ≥ K 22j−2

n
on Sj,n, for some K > 0. Then, for each j

the following inclusion holds

{
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

}

⊂

{
sup
β∈Sj,n

|I2-step,n (β)|+ sup
β∈Sj,n

|I1,n (β)|+ sup
β∈Sj,n

|I2,n (β)| ≥ K
22j−2

n

}
.

It follows that the right-hand side of (S7.1) i.e.,
∑∞

j=j0
P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)
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can be bounded by

∞∑
j=j0

P

(
sup
β∈Sj,n

|I2-step,n (β)| ≥ K
22(j−1)

n

)

+
∞∑
j=j0

P

(
sup
β∈Sj,n

|I1,n (β)| ≥ K
22(j−1)

n

)
+
∞∑
j=j0

P

(
sup
β∈Sj,n

|I2,n (β)| ≥ K
22(j−1)

n

)
.

Thus, by Markov's inequality (with p > 2 + δ) we have

∞∑
j=j0

P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)

≤ K


∑∞

j=j0

(
22(j−1)

n

)−p
E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

+
∑∞

j=j0

(
22(j−1)

n

)−p
E

(
sup
β∈Sj,n

|I1,n (β)|p
)

+
∑∞

j=j0

(
22(j−1)

n

)−p
E

(
sup
β∈Sj,n

|I2,n (β)|p
)


≤ K


∑∞

j=j0
2−2pjnpE

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

+
∑∞

j=j0
2−2pjnpE

(
sup
β∈Sj,n

|I1,n (β)|p
)

+
∑∞

j=j0
2−2pjnpE

(
sup
β∈Sj,n

|I2,n (β)|p
)
 ,

where the constant K has changed from the �rst to second inequality. The crucial part of

the proof is to bound each expectation by O (n−p2pj) . This will imply that

P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > 2j0

)
≤

∞∑
j=j0

P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)
≤ K

∑
j≥j0

2−pj

=
∑
j≥j0

(
1

2

)pj
= (1/2)pj0 + (1/2)p(j0+1) + . . .

=

(
1

2

)pj0 (
1 + (1/2)p + (1/2)2p + . . .

)︸ ︷︷ ︸
= 1

1−(1/2)p
<K

≤ K2−pj0 .

Since

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ = p

∫ ∞
0

t2+δ−1P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
dt,
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we can take the above result with j0 = log2 t. This implies

P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
≤ K2−p log2 t = K2log2 t

−p
= Kt−p,

and since p > 2 + δ, we can conclude

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ = p

∫ ∞
0

t2+δ−1P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
dt

≤ K

∫ ∞
0

t2+δ−1t−pdt = K

∫ ∞
0

t−1−(p−2+δ)dt <∞.

Bounding E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

: Recall that

I2-step,n (β) = [Q∗2n (α̂∗n, β)−Q∗2n (α̂∗n, β0)]− [Q∗2n (α0, β)−Q∗2n (α0, β0)]

= [Q∗2n (α̂∗n, β)−Q∗2n (α0, β)]− [Q∗2n (α̂∗n, β0)−Q∗2n (α0, β0)]

= n−1
n∑
t=1

(q∗2t (α̂∗n, β)− q∗2t (α0, β))− n−1
n∑
t=1

(q∗2t (α̂∗n, β0)− q∗2t (α0, β0))

By taking the Taylor series expansion of q2t around (α, β) = (α0, β0) , we have

q2t (α, β) = q2t (α0, β0) +
∂

∂α′
q2t (α0, β0) (α− α0) +

∂

∂β′
q2t (α0, β0) (β − β0) +R2 (α, β) ,

(S7.2)

such that

R2 =
1

2!

 (α− α0)
′ ∂
∂α∂α′

q2t
(
ᾱ, β̄

)
(α− α0) + (β − β0)′ ∂

∂β∂β′
q2t
(
ᾱ, β̄

)
(β − β0)

+ (α− α0)
′ ∂
∂α∂β′

q2t
(
ᾱ, β̄

)
(β − β0) + (β − β0)′ ∂

∂β∂α′
q2t
(
ᾱ, β̄

)
(α− α0)


where ᾱ lies between α and α0 and β̄ lies between β and β0.
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Then using (S7.2), we can write

q∗2t (α̂∗n, β)− q∗2t (α0, β) =
∂

∂α′
q∗2t (α0, β) (α̂∗n − α0)

+
1

2!
(α̂∗n − α0)

′ ∂

∂α∂α′
q∗2t (ᾱ1, β) (α̂∗n − α0)

where ᾱ1 lies between α̂
∗
n and α0. Similarly, we have

q∗2t (α̂∗n, β0)− q∗2t (α0, β0) =
∂

∂α′
q∗2t (α0, β0) (α̂∗n − α0)

+
1

2!
(α̂∗n − α0)

′ ∂

∂α∂α′
q∗2t (ᾱ2, β0) (α̂∗n − α0) ,

where ᾱ2 lies between α̂
∗
n and α. It follows that

I2-step,n (β) = n−1
n∑
t=1

(
∂

∂α′
q∗2t (α0, β)− ∂

∂α′
q∗2t (α0, β0)

)
(α̂∗n − α0)

+
1

2!
n−1

n∑
t=1

(α̂∗n − α0)
′
(

∂

∂α∂α′
q∗2t (ᾱ1, β)− ∂

∂α∂α′
q∗2t (ᾱ2, β0)

)
(α̂∗n − α0) .

Suppose that
{

∂
∂α′
q2t (α, β)

}
and

{
∂

∂α∂α′
q2t (α, β)

}
are Lipschitz continuous in (α, β) :

∣∣∣∣ ∂∂α′ q2t (α, β)− ∂

∂α′
q2t (α0, β0)

∣∣∣∣ ≤ L1t

(
X t
)

(|α− α0|+ |β − β0|) ,

and ∣∣∣∣ ∂

∂α∂α′
q2t (α, β)− ∂

∂α∂α′
q2t (α0, β0)

∣∣∣∣ ≤ L2t

(
X t
)

(|α− α0|+ |β − β0|) ,

where the functions L1t (X t) and L2t (X t) do not depend on α nor β. Thus, we have

∣∣∣∣ ∂∂α′ q∗2t (α0, β)− ∂

∂α′
q∗2t (α0, β0)

∣∣∣∣ ≤ L∗1t (|β − β0|) , (S7.3)
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and similarly,

∣∣∣∣ ∂

∂α∂α′
q∗2t (α1, β)− ∂

∂α∂α′
q∗2t (α2, β0)

∣∣∣∣ ≤ L∗2t (|ᾱ1 − ᾱ2|+ |β − β0|)

≤ L∗2t (|α̂∗n − α0|+ |β − β0|) , (S7.4)

where the last inequality follows because both ᾱ1 and ᾱ2 lie between α̂
∗
n and α0. Therefore

by the triangular inequality and using (S7.3) and (S7.4), we have

|I2-step,n (β)| ≤ n−1

(
n−1

n∑
t=1

L∗1t

)∣∣√n (α̂∗n − α0)
∣∣ ∣∣√n (β − β0)

∣∣
+n−3/2

1

2!

(
n−1

n∑
t=1

L∗2t

)∣∣√n (α̂∗n − α0)
∣∣2 (√n |α̂∗n − α0|+

∣∣√n (β − β0)
∣∣) .

Hence, successive applications of the Hölder's inequality yields

E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

≤ Kn−p
(
E
(∣∣√n (α̂∗n − α0)

∣∣εp)) 1
ε

E

(n−1 n∑
t=1

L∗1t

) ε
ε−1

p

sup
β∈Sj,n

∣∣√n (β − β0)
∣∣ ε
ε−1

p

 ε−1
ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣3εp)) 1
ε

E

(
n−1

n∑
t=1

L∗2t

) ε
ε−1

p
 ε−1

ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣2εp)) 1
ε

E

(n−1 n∑
t=1

L∗2t

) ε
ε−1

p

sup
β∈Sj,n

∣∣√n (β − β0)
∣∣ ε
ε−1

p

 ε−1
ε
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for some ε > 1. Note that for β ∈ Sj,n, we have |
√
n (β − β0)| ≤ 2j. This implies that

E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)
≤ Kn−p

(
E
(∣∣√n (α̂∗n − α0)

∣∣εp)) 1
ε 2pj

E

(n−1 n∑
t=1

L∗1t

) ε
ε−1

p
 ε−1

ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣3εp)) 1
ε

E

(
n−1

n∑
t=1

L∗2t

) ε
ε−1

p
 ε−1

ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣2εp)) 1
ε

2pj

E

(n−1 n∑
t=1

L∗2t

) ε
ε−1

p
 ε−1

ε

Suppose we assume that E
(
|
√
n (α̂∗n − α0)|

3εp
)
< ∞. If in addition we assume that

E
(
|L1t|

ε
ε−1

p
)
< ∞ and E

(
|L2t|

ε
ε−1

p
)
< ∞, we can show that the expectations of average

of the functions involving L∗1t and L
∗
2t are bounded. For instance,

E

(
n−1

n∑
t=1

L∗1t

) ε
ε−1

p

≤ Kn−1
n∑
t=1

E
(
|L∗1t|

ε
ε−1

p
)

= Kn−1
n∑
t=1

(
E
(
E∗
(
|L∗1t|

ε
ε−1

p
)))

= KEE∗

(
n−1

n∑
t=1

|L∗1t|
ε
ε−1

p

)

= KE

(
n∑
t=1

γnt |L1t|
ε
ε−1

p

)
<∞ if E

(
|L1t|

ε
ε−1

p
)
<∞.

Thus, under these assumptions

E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)
≤ Kn−p2pj,
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which implies

∞∑
j=j0

2−2pjnpE

(
sup
β∈Sj,n

|I2-step,n (β)|p
)
≤ K

∞∑
j=j0

2−2pj2pjnpn−p︸ ︷︷ ︸
=1

= K
∞∑
j=j0

2−pj

≤ K2−pj0 .

Bounding E

(
sup
β∈Sj,n

|I1,n (β)|p
)

: Note that by de�nition of I1,n (β), we have that

I1,n (β) = Q∗2n (α0, β)−Q∗2n (α0, β0)− E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]

= n−1
n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))− E∗
(
n−1

n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))

)
≡ n−1/2G∗n (q2 (α0, β)− q2 (α0, β0)) ,

where for a class of functions F = {f}, we de�ne the empirical process G∗nf as

G∗nf = n−1/2
n∑
t=1

(f ∗t − E∗f ∗t ) .

De�ne the Lp norm of G∗nf over F as

(E |G∗n|
p
F)

1/p
=

(
E
(

sup
f∈F
|G∗nf |

)p)1/p

.
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With this notation,

E

(
sup
β∈Sj,n

|I1,n (β)|p
)

= E

(
sup
β∈Sj,n

∣∣n−1/2G∗n (q2t (α0, β)− q2t (α0, β0))
∣∣p)

= n−p/2E

(
sup
β∈Sj,n

|G∗n (q2t (α0, β)− q2t (α0, β0))|p
)

= n−p/2


(
E

(
sup
β∈Sj,n

|G∗n (q2t (α0, β)− q2t (α0, β0))|p
))1/p


p

= n−p/2
((

E |G∗n|
p
Nδ

)1/p)p
,

where we let Nη = {q2 (α0, β)− q2 (α0, β0) : |β − β0| ≤ η, (α, β) ∈ A× B} . Lemma S6.2

shows that for any η > 0,
(
E |G∗n|

p
Nη

)1/p
≤ η holds under our assumptions. Thus, letting

η = 2j√
n
yields

(
E |G∗n|

p
Nη

)1/p
≤
(

2j√
n

)p
, implying that

E

(
sup
β∈Sj,n

|I1,n (β)|p
)
≤ n−p/2

2pj

np/2
= n−p2pj

It follows that

∞∑
j=j0

2−2pjnpE

(
sup
β∈Sj,n

|I1,n (β)|p
)
≤

∞∑
j=j0

2−2pjnpn−p2pj =
∞∑
j=j0

2−pj ≤ K2−pj0 ,

as above.

Bounding E

(
sup
β∈Sj,n

|I2,n (β)|p
)

: The argument is similar. By de�nition of I2,n (β),
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we have

I2,n (β) = E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]− E (E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)])

= n−1
n∑
t=1

E∗ (q∗2t (α0, β)− q∗2t (α0, β0))− n−1
n∑
t=1

E (E∗ (q∗2t (α0, β)− q∗2t (α0, β0)))

=
n∑
t=1

γnt [(q2t (α0, β)− q2t (α0, β0))− E (q2t (α0, β)− q2t (α0, β0))]

= n−1/2

(
n∑
t=1

√
nγnt [(q2t (α0, β)− q2t (α0, β0))− E (q2t (α0, β)− q2t (α0, β0))]

)
= n−1/2Gn,γ (q2 (α0, β)− q2 (α0, β0)) ,

where we de�ne the empirical process Gn,γ as

Gn,γf =
n∑
t=1

√
nγnt (ft − Eft) ,

with weights de�ned as above. Similarly, we de�ne the Lp norm of Gn,γf over F = {f} as

(
E |Gn,γ|pF

)1/p
=

(
E

(
sup
f∈F
|Gn,γf |

)p)1/p

.

With this notation

E

(
sup
β∈Sj,n

|I2,n (β)|p
)

= n−p/2
((
E |Gn,γ|pF

)1/p)p
.

It su�ces to bound
(
E |Gn,γ|pF

)1/p
. Assumption B6(ii) provides a bound on the Lp-norm

of the empirical process Gn, which di�ers from Gn,γ due to presence of the weights γnt. It

is well known that these weights are introduced by the fact that the MBB puts less weight

on the �rst and last ` observations in the sample. In particular, we can show that for any

function ft, the MBB expectation E∗
(
f̄ ∗n
)

=
∑n

t=1 γntft = n−1
∑n

t=1 ft + OP

(
`
n

)
. Using
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this insight, we can show that

Gn,γf =
n

n− `+ 1
Gnf −

n

n− `+ 1
R1nf −

n

n− `+ 1
R2nf,

where

R1nf =
1√
n

∑̀
t=1

(
1− t

`

)
(ft − Eft) ,

R2nf =
1√
n

∑̀
t=1

(
1− t

`

)
(fn−t+1 − Efn−t+1) .

By Minkowski's inequality,

(
E |Gn,γ|pF

)1/p ≤ n

n− `+ 1

{
(E |Gn|pF)

1/p
+ (E |R1n|pF)

1/p
+ (E |R2n|pF)

1/p
}

≤ K
(

(E |Gn|pF)
1/p

+ (E |R1n|pF)
1/p

+ (E |R2n|pF)
1/p
)
, (S7.5)

for some constant K since ` → ∞ such that ` = o (
√
n) under our assumptions. This

implies

E

(
sup
β∈Sj,n

|I2,n (β)|p
)

= n−p/2
((
E |Gn,γ|pF

)1/p)p
≤ Kn−p/2

(
(E |Gn|pF)

1/p
+ (E |R1n|pF)

1/p
+ (E |R2n|pF)

1/p
)p

≤ Kn−p/2
(

2jp

np/2
+ E |R1n|pF + E |R2n|pF

)
,

where we have used Assumption B6(ii) with η = 2j√
n
to bound (E |Gn|pF)

1/p
. The remainder

terms can be bounded by O
((
√̀
n

)p
2jp

np

)
using the Lipschitz condition given in Assumption

B6(iii), where the Lipschitz function for the log likelihood function {q2t (α, β)} has a �nite

pth order moment. Since ` = o (
√
n) by assumption, the contribution of the two remainder
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terms is smaller than that of the �rst term. We can then claim that

E

(
sup
β∈Sj,n

|I2,n (β)|p
)
≤ Kn−p/2

2jp

np/2
= Kn−p2jp,

and the proof follows as above.
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