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This supplementary appendix is organized as follows. First, we provide a set of def-
initions useful to understand our assumptions. Next, we provide asymptotic theory and
bootstrap theory for general two-stage M estimators under a set of high level conditions
(which include uniform laws of large numbers, central limit theorems and an asymptotic
linear representation for &, and &). Next, we provide proof of Theorem 4.1 appearing in
Section 4.1 of the main paper. Then, we provide asymptotic theory and bootstrap theory
for general two-stage GMM estimators under a set of high level conditions. Finally, we

provide two auxiliary lemmas used in the proof of Theorem 4.4, followed by the proofs of

Theorems 4.3 and 4.4.

S1 Definitions

In the following and throughout the appendix, K denotes a constant, which may change

from line to line and from (in)equality to (in)equality.

Definition 1. We define {X;} to be L,-NED on a mizing process {V:} if E(X{) < oo
and vy, = sup, | X, — E; 7} (Xt)Hq — 0 as k — oo. Here, | X;||, = (E|X,|")"'? is the L,
norm and E;Y (1) = E (|FY), where F7f = 0 (Vieg, ..., Viek) is the o-field generated

by Vigyo oo, Ving. If vy, =0 (k‘*“*‘s) for some § > 0, we say {X;} is L,-NED of size —a.



Definition 2. {V;} is strong mizing if

Ap = sup sup |P(ANB)—P(A)P(B)—0

m {AeF™  BeFX,,}
as k — oo suitably fast.

Definition 3. A random function f : X x© — R is Lipschitz continuous on © a.s.-P if for
all 0y and 05 € ©, |f; (x,01) — fi (x,02)| < Ly (x) |60y — Os| for all x in a set with probability

one, for some function L; (x) such that sup, {n=' > | E (L (z))} = O (1).

Definition 4. A sequence of random functions {f; : X x © — R} is r—dominated on ©
uniformly in t if there exists Dy : X — R such that | f; (x,0)| < Dy (x) for all 0 € © and D,

is measurable such that || D], < A < oo for all t.

Definition 5. A sequence of random functions {f; : X x © — R} is L,-NED on {V;} of
size —a on (O, p) if for each 0y € O there exists 09 > 0 such that the random sequences
{f: (0) = sup,o(s) ft (x,0)} and {L (0) = inf0() fi (:1:,6)} are L,-NED on {V;} of size —a
for all 0 < 6 < 8y, where n° (§) ={0 € © : p(6,6y) < 5}.

S2 General results for two-step M-estimators

In this section, we provide results for a general two-step M estimator Bn based on a first
step estimator &, which has an asymptotic linear representation. Specifically, in the first
step, we estimate oy € A C R* with some asymptotically linear estimator &, (which does
not need to be an M estimator; e.g. it could be a GMM estimator). In the second step, we
estimate 3y with

~

Bn = arg glelg Q2n (Oénaﬁ) )



where

Qan (G, B) =071 " gy (X, 6, B)
t=1

and ¢ : RY x Ax B —=R is an objective function that depends on S and « and
Xt = (Xy,..., X1, X;). The two-step QMLE of Section 3 is a special case of Bn when
g2t (X, &y, B) = —log for (Xt v, B), where fo; denotes the conditional likelihood function
of X; given X*~1 and &, is also a QMLE.

We follow White (1994) and Wooldridge (1994) and provide a set of high level conditions

that allow us to derive general results.

Assumption A.

A1l Let (Q,F,P) be a complete probability space. The observed data are a realization

of a stochastic process {Xt Q=R te N} :

A.2 The functions {qa (X', o, 3)} are such that go (-, v, 3) is measurable for each (a, 8) €
A x B, where A and B are compact subsets of R¥ and R?, respectively, and ¢o; (2, -, -)

is continuous on A x B for all z* in some set F; with P (F;) = 1.

A3 (i) &, =T ap € int (A).
(ii) V7 (G — a0) = n~ Y2370 by (X, ap) + op (1), for some function {1, (X*, ap)}

such that v/n (&, — ap) = Op (1).

A4 (i) Q2 (o, B) = limy, 00 £ (Qay (v, B)) exists and is continuous on A x B.
(ii) By is the unique minimizer of Qs (ap, 8) = limy, ;00 £ (Qay, (ap, 5)) on B.

(iii) By € int (B) .

A5 {qa (X' o, 5)} satisfies a weak ULLN on A x B (i.e. sup, 4 !QM (o, B) — Q2 (v, 5)’ =
op (1) ).



A6 (1) {g2 (X' o, 8)} is twice continuously differentiable on int (A) x int (B).
(ii) The functions {%gpzt (Xt «a, 6)} and {a%,gpgt (Xt «a, 5)} satisfy a weak ULLN

on A x B, where g (X', o, f) = 6—%th (X%, B).
AT () Ho = limy oo B (07 500, g (X', 00, 40)) > 0.

(11) FO = llmnﬁoo E (n‘l Z?:l %90% (Xt, Q, 60)) < Q.
A.8 The function {pa (X, oo, Bo) + Forr (X', o)} satisfies the CLT, i.e.

n'/? Z (2 (X', 0, Bo) + Fooy (X', 00)) =¥ N (0, Jo),
t=1

where

n—o0

Jo = lim Var (n_1/2 Z (¢2¢ (X', a0, Bo) + Foty (Xt,@o))> > 0.
t=1

Assumption A4.3(ii) assumes that &, admits an asymptotic linear representation, which

includes not only M-estimators but also other estimators such as GMM estimators.
Theorem S2.1. Under Assumptions A.1, A.2, A.3(i), A.4(i)-(ii) and A.5, B —=F Bo.
Theorem S2.2. Under Assumptions A.1 — A8, \/n <Bn — Bg) —I N (07 HO_IJOHO_I) )

Theorems S2.1 and S2.2 are well known in the literature (see e.g. White (1994), Newey
and McFadden (1994) and Wooldridge (1994)) and are only given here for completeness,
but their proof is omitted for brevity.

Next, we provide a set of general conditions for bootstrap validity. Suppose that the

bootstrap two-step M-estimator is defined as

~

B, = arg ggg Q5, (G, B),



where & is the first-step bootstrap analogue of &,, and
n
* Ak -1 * *t Ak
QQn(&n76):n Zq% (X t’anaﬁ)v
t=1

and where for each § € B, we let ¢, (X, &5, 8) = qor, (X™, 4%, 5) with 7, denoting
a set of indices chosen by the bootstrap. The first step bootstrap estimator & is not
necessarily an M-estimator. All we require in Assumption B* below is that it has an
asymptotic linear representation of the same type as &, but with ; (X*, o) replaced with
U (X* Gy) = 1y, (X™, Gy,). Thus, both & and 5 depend on the same set of bootstrap

indices {7;}.
Assumption B*
B*.1 (i) & — &, =" 0, in prob-P.
(i) vn (& — ) =n~ 1230 4f (X*, &,) + ops (1), in prob-P.

B*.2 The functions {q3, (X**, o, 3)} satisfy a bootstrap ULLN on A x B, i.e.

sup |Q3, (@, B) = Qan (a, B)] =" 0,

in prob-P.

B*.3 The functions {2 ¢3, (X", , 3) } and {a%/gozt (X, B)} satisfy a bootstrap ULLN

on A x B, where g3, (X*, a, ) = L a3, (X*, . )

B4 n 2 (@t (X*t,dn, Bn> + Fyr (X*t,ozn)) 4 N (0, J), in prob-P, where

Jo = lim Var (n_1/2 Z (902t (Xt,Oém@o) + Foiy (Xtaao))> > 0.

n—r00
t=1



Assumption B* imposes high level conditions on the bootstrap first step estimator and
on the bootstrap second step objective function and its derivatives. These conditions can
be verified for any particular bootstrap method used to obtain &) and BZ, where B;; is a
QMLE estimator and &7 is any estimator admitting an asymptotic linear representation (as
specified by Assumption B*.2). We verify these conditions for the two-step QMLE studied

in Section 3.

Theorem S2.3. Suppose Assumptions A.1, A.2, A3(i), A.4(i)-(ii) and A.5 hold. If in

addition Assumptions B*.1(i) and B*.2 are satisfied, then B;‘L — Bn —P"0, in prob-P.

Theorem S2.4. Suppose Assumptions A.1— A.8 hold. If in addition Assumptions B*.1—
B*.4 are satisfied, then \/n (BZ — Bn> —4 N (O, Ho’lJOHO’l), in prob-P.

Theorems S2.2 and S2.4 imply that

sup
r€RP

P (ﬁ(fﬁi—ﬁn) Sx)—P(\/ﬁ(Bn—ﬁo> Sx)‘—ﬂDO,

as n — oo, thus justifying the use of the bootstrap distribution of \/n (ﬁ; — Bn) as a

consistent estimator of the distribution of y/n (Bn — ﬁ0>.

S3 Proofs of Theorems S2.3, S2.4 and 4.1

Proof of Theorem S2.3. Let Q,, (8) = Qan (G, B) = 071320, ot (X, ) . We apply
Lemma A.2 of GW (2004) with Q,, (-,0) = Q,, (3) . We can easily verify that Q,, () satisfies

the first part of this lemma, implying that Bn —P B,. Next, we verify that the function

@, (B) = @3, (&, B)

satisfies the second part of Lemma A.2. First, note that B; = arg ming Q* (B), where Q* ()

satisfies the measurability and continuity assumptions given in particular Assumptions A.2.
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Therefore, the result follows if we show that

sup Q; (B) — Qn (B) P 0, prob-P.

BeB

To see that this is the case, note that

sup (@5, (8) = Gu ()] = sup |Q3, (63, 8) — Qan (G, B)|

peB peB
< zlellg‘an( n’B)_QQR (dnv )|+SUP|Q27—L n?ﬁ)_QQ (d:;aﬁ)’
+Sup‘Q2n O‘nyﬁ) Q2 Oén, | +Sup‘Q2 6)_622 (&naﬁ)‘
peBb BeB
< sSup ‘Q;n (Oéaﬁ)_QZn( Q, >’+2 sup }Q2n 7ﬁ)_Q2 (aaﬁ)l
acA,BeEB acA,BeEB
+sup Q2 (&, B) — Q2 (6w, B)] - (S3.1)

The first two terms are ops (1) and op (1), respectively, given 5*.2 and A.5. The third
term is op- (1) in prob-P, given the fact that Qs (o, 3) is continuous on A x B, where
A and B are compact subsets of finite dimensional Euclidean spaces, and the fact that
&' — &, =" 0, in prob-P by Assumption B*.1.

Proof of Theorem S2.4. By a mean value expansion of n=%/2Y"" | o, (X*t v ,6’*)

around Bn,

0= n—l/? Z szt (X*t, d* >
t=1

Y e (X )] Vi (52— ).

where 37 lies between 3% and 3,. A second mean value expansion of n~1/2 PN (X*t o 6n>



around ¢, yields

0 = 220 (X an, B +
t=1

n_l Z %@;t (X*t7 O-/;km Bn)] \/ﬁ (d;kz - dn)
t=1

= Vi (8= Bn).

n! tzn; a%,s@ét (X*t,évmﬁfi)

where @}, lies between a;, and &,. By a ULLN applied to 32703, (X*, a, ) and %03, (X*, a, §)

(Assumption B*.3), we have that

- - 8 * * ex A _ n a " .
e Z dar P2 <X t’a”’ﬁn> -n IZ Do P2 (X', a0, 80) =" 0, in prob-P,
=1 t=1

which implies that
n_liigp* (X*t ar B > —P" Fy. in prob-P
— 806/ 2t ) Sy M 9 )
since & =" ay, B, —F By, and n! Yoy %90275 (X1, ap, By) =7 Fp. Similarly,
nt z”: igp* (X*t ar 6*) —P" Hy, in prob-P,
pa 0ﬁ’ 2t s &y M 05 5
since & —7 g and 5% =" By. It follows that
_ ,—1/2 . * *t A A Ak oA 2% D
0=n2 %" 5, (X G, B ) + Fov/n (@, — @) + Hov/m (85 = B ) +op- (1).

t=1

By Assumption B*.1(ii),



which implies that

0=n""2% "} (X i, Bn) +Fy (n—“? > v (X, dn)> +Hov/n (B:; - Bn) +op- (1).
t=1

t=1
Hence,

Vit (B = ) = =H S (5 (X4 + Bt (X)) + o (1).

t=1

The result now follows from Assumption B*.4.

Proof of Theorem 4.1. We verify that the high level conditions of Theorem 52.4 are
satisfied for the two-step QMLE under Assumption A as strengthened by Assumption B. In
particular, we can show that Assumption B*.1(i) is satisfied for & = argmax, Q7F, (o) =
n~t> log fr, (X*, ) by relying on GW (2004)’s Theorem 2.1 under Assumption A.1.,
A.6 and part (i) of Assumptions A.2-A.5 and A.7, A.8. Similarly, we can apply Theorem 2.2
of GW (2004) to conclude that B*.1(ii) is verified with o} (X*, &,) = —Ay'st, (X*, &) .
To verify Assumption B*.2, we let ¢, (X*, o, 8) = —log f5, (X*', o, ) and apply Lemmas
A4 and A.5 of GW (2004). Assumptions A.4(ii) and A.5(ii) together with the requirement
that ¢, = o(n) suffice to prove that B*.2 holds. B*.3 can be verified similarly by showing
that a bootstrap ULLN applies to the derivatives of s%, (X*, «, 3) with respect to a and
f under A.4(ii) and A.5(ii) and the rate condition on the block size ¢,. Finally, to check
that the bootstrap CLT (cf. Assumption B*.4) holds for s} (dn, Bn) = 3, (X*t, Oy, Bn> +
Fouy (X*, &) = —sb, <X*t,6zn,3n> + FoAytst, (X, &,) we proceed as in the proof of

Theorem 2.2 of GW (2004). Specifically, we write

n n

~

—TL_I/Q Z 5: <één7 Bn) - n_1/2 Z <S§t (dm Bn) - FOA(;lSTt (@”>) = Sin + Son + &3+ San,y

t=1 t=1



with

n

& = nt/? Z ((S;g (a0, Bo) — Fo Ay 'sy, (040)) - ($2t (a0, Bo) — FoAy s (Oéo))) ;

t=1
Son = n~1/? Z (52t (fim Bn) — St (040, 50)) - FoAalnfl/Q Z (Slt (@n) — St (Oéo)) ;

t=1 t=1
n

G = 1Y (5 (G ) = s (00, B) ) = Fodg ™™ 2 Y (s (@) = s ()

t=1 t=1

6471 = n71/2 Z Sot (OAéna Bn) - ’{701461”71/2 Z S1¢ (&n> :

t=1 t=1

By arguing exactly as in GW (2004), we can show that under Assumption A strengthened
by Assumption B, &5, =% N (0, Jy), in prob-P, and &y, + &3, = op- (1) in prob-P, whereas

&4 = op (1) by the first order conditions that define &,, and Ba.

S4 General results for two-step GMM-estimators

In this section, we provide results for a general two-step GMM estimator Bn based on a
first step estimator ¢&,, which has an asymptotic linear representation. As in Section S2, in
the first step, we estimate ag € A C R with some asymptotically linear estimator a,, ( e.g.
it could be an M estimator or a GMM estimator). In the second step, we now estimate [,

with a GMM estimator define as:

~

Bn = arg min Qan (G, B)

where

QZn (dnu 6) = m; (@na ﬁ) ann (OAérm ﬁ) )

such that my, (&, ) = n ' Y1 mo (X &, B), ma : R x A x B —=R" is an objective

function that depends on 8 and a and X' = (Xi,..., X; 1, X;). The weighting matrix
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W, is a r x r symmetric and positive definite (random) matrix. We make the following

assumptions.

Assumption AG.

AG.1 Let (Q,F, P) be a complete probability space. The observed data are a realization

of a stochastic process {Xt Q=R te N} :

AG.2 The functions {mo; (X, o, )} are such that msy (-, o, 5) is measurable for each
(o, 3) € A x B, where A and B are compact subsets of R¥ and RP?, respectively,
and my, (2*,+,-) is continuous on A x B for all 2" in some set F; with P (F;) = 1.

AG.3 (i) &, =7 ag €int (A).
(ii) V1 (G — a0) = Y2370 by (X, ap) + op (1), for some function {1, (X*, ap)}
such that v/n (&, —ag) = Op (1).

AGA4 (i) Qz(a, ) = lim, o0 E (Qa, (a, B)) exists and is continuous on A x B.

(i) Bp is the unique solution in B to the equation E (mg; (X, ag,8)) = 0, and the
weighting matrix W, is such that W,, — W, where W a non-random symmetric and

positive definite matrix.

(iii) By € int (B).

AG.5 SUPy, g ‘QQH (Oé, 6) - QQ (Oé, /B)‘ =op (1)
AG.6 (1) {ma (X' a, )} is continuously differentiable on int (A) X int (B) .

(i) The functions {%mgt (X', o, 3)} and {a%,m% (Xt o, 6)} satisfy a weak ULLN

on A x B.

AG.7T (i) To=lim, .o F (n’l Yoy %,mgt (X, g, 50)> is of full rank.
(i) ®¢=lim, .o F (n‘l > %m% (X', a, 60)) < 00.

11



AG.8 The function {mg (X*, g, Bo) + o)y (X, )} satisfies the CLT, i.e.
n 2 Z (mar (X', a0, Bo) + oty (X', a0)) =7 N (0,Ty),

t=1

where

Ty = lim Var <n_1/2 Z (m2t (Xt,aojﬁo) + Qo (XtvO‘U))> > 0.

n—r00
t=1

Theorem S4.1. Under Assumptions AG.1, AG.2, AG.3(i), AG.A(i)-(ii) and AG.5, B, —F
Bo.

Theorem S4.2. Under Assumptions AG.1 — AG.8,
N (Bn _ 50) i N (0, (VW)™ DWW LW T, (rgwro)*l) .

Next, we provide a set of general conditions for bootstrap validity. Suppose that the

bootstrap two-step GMM-estimator is defined as

~

B: = arg Iﬁnelg an (dfw 5) )
where & is the first-step bootstrap analogue of &,,,
Q3 (67, 8) = my) (67, B) Wy, (67, 8) ,

such that m (&5, 8) = n~t > 1, ms, (X*, 4%, ), and for each B € B, we let m3, (X, &%, B) =

n’
mo, (X™, 45, 8) — E* <m27n (XTt,ész,Bn>) with 7; denoting a set of indices chosen by

) n’

the bootstrap. Note that recentering ensures that the bootstrap moment conditions

E* (m;; <d;‘;,@n>> = 0 hold (even when the model is overidentified). For the first step

12



bootstrap estimator &, all we require in Assumption BG* below is that it has an asymp-
totic linear representation of the same type as &, but with ¢, (X" «g) replaced with
U (X* Gy) = 1y, (X™,Gy). Thus, both & and 5 depend on the same set of bootstrap

indices {7;}.
Assumption BG*
BG*.1 (i) & — &, =7 0, in prob-P.
(ii) v/n (&5 — &,) = n~ V2370 W (X, éy) + op- (1), in prob-P.
BG*.2 sup, 5 |Q5, (o, B) — Qan (a, B)] —P" 0, in prob-P.

BG*.3 The functions {%mzt (X*, o, )} and {%,mgt (X*t,a,ﬁ)} satisfy a bootstrap

ULLN on A x B.

BG* 4 n 12 (m;t <X*t,dn, Bn) + Dy (X*t,@n)) 4 N (0,7,), in prob-P, where

n—00
t=1

Yo = lim Var <n1/2 Z (mar (X', a0, Bo) + Dot (Xt,OéO))> > 0.

Assumption BG* imposes high level conditions on the bootstrap first step estimator
and on the bootstrap second step objective function and its derivatives. These conditions
can be verified for any particular bootstrap method used to obtain & and B;‘L, where B;ﬁ is
a GMM estimator and & is any estimator admitting an asymptotic linear representation

(as specified by Assumption BG*.2).
Theorem S4.3. Suppose Assumptions AG.1, AG.2, AG.3(i), AG.4(i)-(ii) and AG.5 hold.

If in addition Assumptions BG*.1(i) and B*.2 are satisfied, then B:; — Bn —P70, in prob-P.

Theorem S4.4. Suppose Assumptions AG.1 — AG.8 hold. If in addition Assumptions
BG*1-BG* 4 are satisfied, then \/n (B; - Bn) 4N (0, (T W)~ THW YW, (T WT,) ™)

, in prob-P.
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Theorems S4.2 and S4.4 imply that

sup
r€ERP

P (Vi (B-8) <a) =P (Va(Bu-8) <o) | »70,

as n — oo, thus justifying the use of the bootstrap distribution of \/n (B,’: — Bn> as a

consistent estimator of the distribution of y/n (Bn — ﬁo).

S5 Proofs of Theorems S4.1, S4.2, S4.3 and S4.4

Proof of Theorem S4.1. Under AG.2, {Q2,} is a sequence of measurable continuous func-
tions on Ax B, a.s.-P. By A.3(i), &, =T ay € Aand by AG.5, Sup, g ‘an (a, B) — Q2 (a, 6)‘ =
op (1), where Qs (a, B) is continuous by AG.4(i). Hence, we can apply Theorem 3.7 of
White (1993) to conclude that Qs (Gn,8) — Q2 (ag, B) = op (1) uniformly on B. Next,
let Q, (8) = Qan (Gm, B) and note that Q, (B) satisfies the conditions of Theorem 3.4 of
White (1993). In particular, Q, (3) converges to Qs (ay, 8) uniformly on B, as just showed
above. Next, note that Assumption AG.4(ii) ensures that [, is the unique minimizer of
Q> (ap, B) on B. Thus, it follows that B, — Bo = op (1).

Proof of Theorem S4.2. Given the first order condition of the GMM estimator Bn,

we have
( 55" (an, Bn)> AN <an Bn) —0,

where m,, (dm ﬂn> =n iy my (Xt, Qs ﬂn> . Next, we consider a mean value expan-

sion of \/nm, (&n, Bn> around (3. Thus, we have

0= (a%mn (&n,ﬁn))/ (\/_mn (Gin, Bo) + 8ﬁ’ (%&) Vn (Bn - ﬁo)) :

where Bn lies between Bn and [y and the equality to zero holds with probability approaching

14



one (w.p.a.l.) as n — oo, because (3, is interior to B w.p.a.1. by Assumption AG.4(iii).

Another mean value expansion of \/nm,, (&,, By) around «q yields
. (9 .
\/ﬁmn (ana BO) \/_mn (CY(), 60) (C(na ﬁO) \/_ (an - Oéo) )

where &, lies between &,, and «g, implying that

0 = (i () ) W (Vi G )+ 2 i ) VT 0~ )

BYe
(aﬁfm” <O‘”’5”)>/ Wna%mn (n, B2) v (Bn ~h).

By a ULLN applied to 5 mgt( ,a, 3) and 86’ Zoma (X', «, B) (Assumption AG.6), we have

that

n—o0

0
fo!

0 - "9
aa/mn (CYna 50) = n_l Z Y, (Xt, dn;ﬁo) _>P lim F (n_l Z a&/mgt (Xt, ), 50)> = (I)()’
t=1 t=1

86 (%wﬁn) =n! Z 8—6,771215 (X Oén,ﬁn) —P nh_{I;OE ( ! Z a_B/mQt X Ozo,ﬁo)> =TI,

aiﬁ’mn (den> =n Z a_ﬁ’m% <X Qs Bn) —F nlggoE (n_l Z aiﬁlm% (Xt, 040750)> =TY.

since &, —° ap and B, = B;. Furthermore, note that by Assumptions AG.3(ii) and

AG .4(ii), we have

Vi (6, — o) =n ' Z% (X', a0) +0p (1),

t=1

and W,, = W, where W a non-random symmetric and positive definite matrix, respec-
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tively. It follows that

n

TyWTo/n (Bn - 50) = —TWn™ 2 " (my (X, a0, Bo) + Pt (X', 00)) +o0p (1)

t=1
Implying that,

n

Jn (Bn - 60) = — (OWTo) ' TyWn V23" (may (X', a0, Bo) + @0ty (X7, a0)) + 0p (1).

t=1

Note that because W is positive definite (and hence non singular) and Iy is of full rank
(Assumption AG.7(i)), ensure that I'yJW T is non singular. The result now follows from
Assumption AG.8.

Proof of Theorem S4.3. Under our assume conditions, 3, — 8y = op (1), by Theorem
S4.1. Given that B,*L — Bn = (B; — 60) — (Bn — 50> , the desired result follows by showing
that B;; — Bo = op« (1), in prob-P. Under Assumption AG.4(ii), observed that [, is the
unique minimizer of Qs (ag, 3) on B. Thus, for any € > 0 such that |3 — 8| > ¢, there is

§ > 0 such that Qs (ag, 8) — Q2 (ag, Bo) >6 > 0. Tt follows that

P(P*( -

) > 5) < iP (281;p|@2n (G, B) = Q2 (0, B)| > 5/2>

+7 (P (2500105, (65.6) ~ Qan (0 9] > 0/2) > 2/2).

where we use inequality (B.6) in Dovonon and Goncalves (2017), with Qr () = Qay, (&, 5) ,

Q5 (0) = Q3 (45, 8),and Q (0) = Qs (aw, B) . Therefore, in order to have 3 —5y = op~ (1),

in prob-P, it suffices to show that the following hold: (a) supg ’QQn (Gin, B) — Q2 (g, B ’ =
op (1) and (b) supg |Q5,, (&;,, ) — Q2n (&, B)| = op+ (1), in prob-P. (a) by triangular in-

equality, we have

sup ‘QQn (G, B) — Q2 (a075)| < sup |Qan (G, B) — Qan (o, B)|+ sup |Q2n (a0, B) — Q2 (Oéo,ﬁ)| .

peB acA,BeEB acA,peB
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The first term is op (1), given the fact that Qo, (a, 8) is continuous on A x B, where A
and B are compact subsets of finite dimensional Euclidean spaces (by Assumption AG.2),
and the fact that &, — g =7 0, by Assumption AG.3. The second term is op (1) given
AG.5. To obtain (b), we use similar arguments as in (S3.1). Specifically, note that we can

write

?31612 ’an (&mﬁ) - QQn (dmﬁ)’ < sup ’Q;n (aaﬁ) - QQn (0475)‘ +2 Sup ’QQn (Oéaﬁ) - QZ (Oéaﬂ)’

acA,BeEB acA,BeB

—l—SUp |Q2 (d;kpB) - QQ (dnaﬁ)| )

BeB

where the first two terms are op- (1) and op (1), respectively, given BG*.2 and AG.5. The
third term is op- (1) in prob -P, given the fact that Qs (,3) is continuous on A x B,
where A and B are compact subsets of finite dimensional Euclidean spaces, and the fact
that & — &, =% 0, in prob-P by Assumption BG*.1.

Proof of Theorem S4.4. The proof follows closely that of Theorem S4.2. Given the

first order condition of the GMM estimator B;‘L, we have
0 A ! 5
(a—@mi (642752)) W/, (a5, 5;) =0,

= % AkooQx\ o o—1 n * wt A% % 3
where m (an, Bn> =n"'> ., mj (X , o, 5n> . Next, we consider a mean value expan-

n

sion of \/nm} (d;, ﬁ*) around f,. Thus, we have

_ <8%/m;; (@;,B;)),Wn ( nin (an n) + a%,m; (anﬁn) Vvn (BZ - @)) ,

where (3* lies between % and (8,. A second mean value expansion of /nm, (&Z,Bn)

around ¢&,, yields

0
oo/

i (a;;, Bn) = Vnmt (dn, Bn) o (an Bn) Vi (&, — ),

17



where @) lies between &}, and &,, implying that

By a ULLN applied to 2m3, (X*, o, 8) and 85,77121‘/ (X*, a, B) (Assumption BG*.3) , we

have that

X ao,ﬁo) —¥70, in prob-P,

n P .
2 e (X ) < Z

which implies that

g (5,5:) = _12":88/

: (X*f,oz;;,Bn) P By, in prob-P,

since & =" ag, B, = Bo, and 13 Lomay (X', g, Bo) = @. Similarly,
9 =k [ Ak "* —1 *t o Q% P :
8_B’m" ( ) Z 65’ (X 6n> — Ty, in prob-P,

0 _x [ A o 71 *t Ax D% P .

a_ﬁ/mn ( Qs ﬁ > Z a_ﬁ,mQt (X y Qs ﬂn) — FOa m prOb'Pa

since & —F" ag and B,*L —F" By. Furthermore, note that by Assumptions BG*.1(ii) ,

AG.4(ii), and AG.7(i), we have
V(65— ) =072 Cur (XA ) 4 ope (1),
t=1

W,, —¥ W, where W a non-random symmetric and positive definite matrix, and Iy is of

18



full rank, respectively. Hence

Vi (B = ) = = (TowTo) ™ TyWwn /2 zn: (e (X7, B ) + Bt (X, 60) ) +op- (1)

t=1

The result now follows from Assumption BG*.4.

S6 Auxiliary lemmas used in the proof of Theorem 4.4

The main goal of this section is to show that a bootstrap version of the L, maximal

inequality stated in Assumption B6(iii) holds under our assumptions. In particular, we
1/p

show that for some p > 249, (E |G;§|§’Vn) < 1 holds when W, is as defined in Assumption

B6(iii) and G is defined as

G, (¢

-1

(a0, B) — 2 (a0, Bo))
(¢3¢ (0, B) — @3 (o, Bo)) — E* (n_l > (g5 (a0, B) — a3 (040»50))> :

t=1

[\

I
N
i

where ¢3, (o, 8) is a MBB version of ¢y (, ) = log for (v, 5). This result is as follows.

Lemma S6.1. Suppose that Assumption B6(iii) holds, and assume that {log for (c, B)}

satisfies a Lipschitz continuity condition on A x B, a.s.-P, with Lipschitz functions {L;}
1/p

such that E |L;|" < oo for p > 2+, for some § > 0. Then, <]E \G;“L\ﬁfn) < n for any

n > 0.

To prove Lemma S6.1, we rely on the following L, multiplier inequality, which extends
Lemma 4.1 of Praestgaard and Wellner (1993) by allowing for p > 1 rather than just p = 1.

To state this result, we need to introduce some notation. Recall that for a generic time
series {X;:t=1,...,n}, letting k = % denote the number of blocks of size ¢ needed to

define a MBB sample of size n and letting {/; : j = 1,...,k} be an i.i.d. uniform sequence
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of indices distributed on {1,...,n — ¢+ 1} allows us to write the MBB average as

n k y4 k V4 k
Xp=nT')y Xi=k" (ﬁ‘l > lewz) =k ( ij—l) =n"'> 7,
t=1 j=1 1 =1

j=1 t=1 t=

Another way to write this average is as follows. Let N = n — /¢ + 1, and let Wy =
(W1,...,Wy)" denote a triangular array of weights whose distribution is the Multino-
mial (k,(N"!,...,N71)) distribution'. Note that these are non-negative exchangeable

random variables. We can then think of X as a weighted average of the block sums

Z; = Zle Xi4j—1, weighted by W :

N

X* = n_l ZWij

n
j=1

where W, denotes the number of times the j block sum Z; is drawn in the bootstrap
sample. Note that if /£ = 1, then N = k = n, and this way of writing the bootstrap
average is exactly the same as when studying the nonparametric i.i.d. bootstrap using the
Multinomial distribution (n, (n™!,...,n')). Thus, our framework is an extension of the

usual framework to the MBB. Our goal in Lemma S6.1 is to bound the L, moment of the
bootstrap empirical process
Grf =n"2) (Ff = E*(f)).
t=1

With this new notation, we can write

N ¢

Gf =n"'2Y (W, — Bw (W;)) <Z ft+j1> 7
t=1

J=1

where Eyy (+) (and Py (+)) denotes expectation (and probability) with respect to the random

1For simplicity, we will drop the array notation and will write W; rather than Wy ;. Similarly, we will
omit the index n in the definition N,,.
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vector Wy defined above. The L, -multiplier we are about to state gives a bound on the L,
moments of averages defined as n~'/2 Zjvzl W;Z;, where Z; will play the role of the block
sum Zle ft+j—1 in our application.

To state this result, define the joint probability P = P x Py, which we wrote before
as P x P*, and let [[Will,; = [;7+/Pw (Wi > u)du. Some expressions below may be
non-measurable; probability and expectation of these expressions are understood in terms
of outer probability and outer expectation (see, e.g. van der Vaart and Wellner, 1996,
p. 6). Application of Fubini’s theorem to such expectations requires additional care. We
assume that a measurability condition that restores the Fubini theorem is satisfied in all

our applications below.

Lemma S6.2. Let Wy = (W1, ..., W) be an array of non-negative exchangeable random

variables such that, for every N, |[Willy, = [;° v/ Pw (W1 > u)du < oo, and let R denote

a random permutation uniformly distributed on Iy, the set of permutations of 1,2,..., N.

Let Zy,...,Zn be a sequence of random elements such that (W, R) and (Zy,...,Zy) are

independent, and write || Z;|| = iug|Zj (h)|. Then for any Ny such that 1 < Ny < oo and
€

any N > Ny, the following inequality holds for any p > 1 :
p\ L/p 1/ N 1/p
N, p) p < 1
E < : = > E|Z]|P
( ) \/ﬁ N Jj=1

p\ 1/p
+HW1||;/1P (EZ,R< max ) ) s

No<k<N
where we let Ey g () denote the expectation with respect to Zy, ..., Zy and R jointly.

N
n—l/? Z WyZ]
7j=1

AN
|
~
S
S

1 k
7 > Zng

i=Np+1

This result extends Lemma 4.1 of Praestgaard and Wellner (1993) from p = 1 to
p > 1. Asin Praestgaard and Wellner (1993), we do not assume any particular dependence
structure on the vector (Z1,...,Zy), the only assumption being that it is independent of

the pair (Wy, R). This is in contrast with the L, multiplier provided by Cheng (2015, p.
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17), which assumes Z,...,Zy to be i.i.d., while also allowing for any p > 1. The i.i.d.
assumption on the random functions Z; is too strong for our applications, where Z; will
be given by block sums of contributions to the log likelihood function. These are typically
serially dependent in the time series context and this is the reason for given Lemma S6.2,
a result that might be of independent interest.

Next, we prove Lemma S6.1 and then we prove Lemma S6.2.

Proof of Lemma S6.1 In the following <’ denote smaller than, up to an universal
constant K > 0. Recalling the definition of G, f, where f is in the function class N, and
the property of the MBB weights, in particular, Zjvzl W; = k, implying that Ey (W;) = %,

we can rewrite G f as follows:

N
G,f = nil/ZZ(W Ew (W (Z Jerj— 1)

3 (1 5 (S ) -
|

j=1
Jj=1

since Zivzl (W; — £) =0, and the expectation of E (Zle ft+j_1> is time invariant under

Assumption B6(i). For j =1,2,... N, let

¢ ¢ ¢
f)= thﬂ—l —FE (Z ft+j1> Z frvj-1 = E(firj-1)) - (S6.1)

With this notation, G} f can be rewritten as
al k
Gif =Y (W 1) V0, (562

Our goal is to bound the L, moment of the supremum of this empirical process. To do so,
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we follow the same arguments as in Cheng (2015, p. 19) to show that

p\ 1/p
(ElIG;I,) - (E (;;A% n WZ(W —%)E(f)) )
p\ 1/p
2( (f;/% mZWY ) ) . (S6.3)

Next, we apply the L, multiplier inequality in Lemma S6.2 (using (S6.3)) with Z; =

N

Y; (f) and F = N,,. This yields

1/p

max W
1<j<N

1/p Ny
EG*p> < (g
(ElG; 12, Nﬁ(w

p 1/p 1N
p
) ¥ o EIZ,
1/p
+ (eIwally, ) { ¢

14
Noﬁ (EW

p\ 1/p

\FZZR

Z.R
’ N0<k<N N
1=INo

N

AN

p 1/17 1 N 1/p
. - P
Jnax W ) (N@,EEIIZZIM,)

+ (¢ Eyr | max
T No<k<N

< I+1L (S6.4)

for any 1 < Ny < 0o and N > Ny, (the second inequality follows because the MBB weight
verifies the condition limsupy_,o ¢ ||[Wn||,, < 00, where Wi = Wy 1). We first bound the
first term in the preceding equation, then we bound the second term.

For the first term, note that

1 N
WZE 1Z:i |
=1

N 1
1 - J—
< N 2 D ENFegor = E(frag-))ly, =0
Jj=1 t=1

2\3

N ¢
Z Z E ||(ft+j—1 - F (ftJrjfl))’ :7%,
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from Minkowski’s inequality. Using the same arguments as in the proof of Theorem 4.4

(see equation (12))), it follows that (and given Assumption B6(iii)),

1 N 1/p . N ¢ 1/p
(W > E ||Zz'|\5’vn> S (2 2Bl — E <ft+j_1>>||§fn>
=1

j=1 t=1

- (e (3310 2 fmm))w

1/p ’
< ZEH fo— ft))“N) +n0 <%> (56.5)

AN

where the last term is asymptotically negligible given the condition ¢ = o (y/n). Next, we

can show that

1/p
7,> S (BN, 1M, (56.6)

(n_IZEII(ft —E ()l

where N, is the envelope of the function class N,. Given the Lipschitz continuity assump-

tion (cf. Assumption B6(iv)), we can show that (E HNan)l/p <. This implies

p 1/p 1 N l/p
) ¥ 2 EI4,

¢
NO% (EW 121%}5\[ W;
/ p\ 1/p 1p
< | (B oy wi ) | @130 =0,
A ~~ g r\/’r]

o(1)

provided the second factor is o (1). Given that max;<j<y W7 > 1, (Ew [max;<j<n Wj|p)1/p <

Ew (maxlngN I/Vf) . Therefore, we have

p\ 1/p N /
<t/——=FEw [ max W?].
n /N 1<j<N Y
——
—1

max W
1<j<N

7 (o
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Next, we appeal to Lemma 4.7 of Praestgaard and Wellner (1993) to show that

To do so, we verify that (W7} satisfies the necessary conditions of Lemma 4.7 of Praestgaard

and Wellner (1993), i.e., the following two conditions

lim sup [[(W7],, < oo, (S6.7)
N—o00 ’
and
lim lim sup supu®Py ((W? > u) =0, (56.8)
A—00 N—00 u>\

where we recall that 1/, is a an element of a triangular array, i.e. W7 = Wy ;. As argued
by Cheng (2015), cf. his equation (29), a sufficient condition to obtain both conditions
(S6.7) and (S6.8) is that

lim sup Ew <€W1(2+€)p> < 00, (S6.9)

N—oo
for some € > 0, which in turn is implied by
lim sup Ew (KWIB) < 00,

N—oo

because for a small enough € > 0, we can always choose p = 5/(2+¢) > 2. Using the
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property of multinomial distribution, we have

By (W) — Ni+15k(lj\[;1)+25k(k—]1\23(k—2)+10k(k—1)(lj\;2)(k—3)
+Z(k—1)(kn_2)(k—3)(k—f) '
N
gzvg+15eﬂn<&—1)zvg+25gﬂ(%—1) (ﬁ—2>N2
_ v

Joa (e 1) (2 -2) (@ -9) v

N
e (e (@) (E-9) (&)
+ N

Given the condition ¢ = o (y/n), it follows that

lim sup Ew (EWIE’) =1 < o0.

N—oo

We follow the same arguments as in Cheng (2015, p. 19) and write

. L p\ 1/p
Ezp | max —kiz();lzl%(l) ;
. ) 71]0 1/p . N p\ 1/p
S | Ezr R W;ZR(” . + | Ezr H \/WOZ»:%.:HZR(Z) .
X . p\ 1/p
< 2| Bzp| max ﬁ;ZR(z) y
= n

where the last inequality follows by the triangular inequality. Thus, the proof of Lemma

S6.1 is completed when




holds for p > 24 9. Let

k

~ 1

Gy = kg ZR(i)
=1

S

for Ny < k < N. It follows that when £ = N, we have
- 1 &
GN = = ZRi )
7 & o
Recall that for any positive random variable Y, the following holds
EY? = / qu? P (Y > u) du,
0

for any ¢ > 0. The Levy inequality (see e.g., proposition A.1.2 of van der Vaart and Wellner

(1996)) implies that,

P (maXH@k‘

k<N

i )\) <KP (H@N‘ > )\) , (56.10)

for every A > 0. Hence, we can deduce that

p\ 1/p

H< | Eyp | max
"\ No<k<N

p \ /P
Nn) ’

< K (e—lEZ,R H@N‘

1
7 > Zna

i=Np+1

Proof of Lemma S6.2 The proof follows closely that of Lemma 4.1 in Praestgaard
and Wellner (1993). Define a random permutation S of {1,..., N} such that Wgy > ... >
Ws(ny, and if Wey) = W) then S () < S (¢4 1). Then, let R be a random permutation
uniformly distributed on Iy (i.e., the set of permutations of 1,2,..., N) and independent

of (W,S). Using the same arguments as in Praestgaard and Wellner (1993), and given the
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exchangeability of Wy, we have that

p\ 1/p N p\ 1/p
<IE ) = (E n=2Y W) Zag) )

j=1

N
n71/2 Z WJZ]
7=1

No p\ 1/p N p\ 1/p
- (E 2y W Zo) ) +<E n Y Wi Zng) >
j=1 j=Nop+1
= I(Ny,N) +1II(Ng, N).
where W) = Ws(;. We can bound the term I(Ny, V) by
No
L(No,N) < 02N (E||WipyZaey||")" by Minkowski's inequality
j=1
BT "YIP(E || Zrep|[”)* by independence b W and R
< n Z (EW }W(M ) ( H R(j)H ) v independence between an
j=1
1/2 PP »\1/p
< (Ew <n 1@1&%)) ZI(EHZR(J*)H)
J:
1/2 NP1 & o
— - X _ I :
= (EW <n max, I/Vj) ) z; N 21: E|Z] by the properties of R
j= i=
1/p
<

NO p l/p 1 N »
NG (EW (mN Wﬂ') ) v 2 ElZ
- =1

Note in particular that

E||Zrp)|” = EzErz(||Zr|”) by the LIE
1 & » 1 & )
= bz <N;|\Ziu ) = N;EHZiH .

If E||Z;||” does not depend on i, then this is equal to F || Z;]|” and we get that

1<j<N

No e p\1/p
I(No, N) < 7 Ly | max WW; (B Z7),
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which is what Cheng (2015) get.
Next, in order to bound the second term i.e., II(Ny, N), we follow Cheng (2015) and

write

N N
> WoZegy = >, Vi Wy —Wien) T,

J=No+1 J=No+1

where Tj = j=1/2 3 Zg(y and Win41) = 0. Hence, following Cheng (2015),

i=Np+1
p> 1/p

N
= (E 2N G (W) = W) T

J=No+1
p\ 1/p
) (e

k
1
7 Z ZR(j)

j=Nop+1

11 (Ny, N)

N
= (E n2 N Wiy Zrg

J=No+1

p) 1/p

N
n2 NG (W = W)

j=No+1
p\ 1/p
) | (EW

Thus, the proof is completed if we can show that

p) 1/p

N
n 2N G (W) = W)

j:N()+1

< (EZ,R max_||Ti

No<k<N

No<j<N

p) 1/p

= (EZ,R max

N p\ 1/p N p\ 1/p
(Ew VG (W) = W) ) < n'? (EW > Vi Wy = W) )
j=No+1 j=No+1
— 1 1
< 2 (2 W) < WAl
i.e., if we can show that
N p
Ew |l > Vi(Wy = Wem)|| <P IWall,,. (56.11)
j=No+1

It is easy to see that the proof is completed by using exactly the same arguments as in

Cheng (2015) (cf. the proof of their equation (43)).

29



S7 Proofs of Theorems 4.3 and 4.4

Proof of Theorem 4.3. For some small 6 > 0,

2+4

n

Y s (60 )

t=1

2+6
<

y ~ 1 2446 .
E - E
1

Vi (B = B)

where ||A|, is the spectral norm of a matrix A, ie. [|A|? = max,. 442 Since H,

'z

‘QH = (A;ﬁln (]:In>>2+6 = Op (1) since Apin (]:In> —F

1

~

Hfl

n

is a symmetric matrix,
Amin (Hg) # 0 by the assumption that Hj is nonsingular. Thus, it suffices to show that

L\ (246
E* |n7V250 st <dn, ﬁn> = Op (1). Using the definition of s}, we can decompose this
expectation as

n 246
E* |n~Y? g sy <dn, n)
t=1
246 246

n . L 28 ) . (240 n

< E* —-1/2 * [ A -1 E* —-1/2 * (A

< n S5t | O, B + || £ n ), n s1¢ (Gn)
= t=1

Each of the bootstrap expectations on the RHS of the display can be shown to be Op (1) un-
der our assumptions. The arguments are similar to those used by GW (2005). Take e.g. the
second of these expectations. Adding and subtracting appropriately, we can bound it by I;+
25T (s () = st (00) [

Under Assumption B4, E (s1; (ap)) = 0 and we can show that {sy; (ag)} is Lo, s-mixingale

Iy, where I} = 219" [n=1/2%" 5%, (Oéo)‘%(s and I, = 2" E*

with bounded mixingale constants and absolutely summable coefficients given in particular

the Lo s-NED assumption on the score function sy; (o). Hence, by Lemma A.1 of GW

n

2\ (2+9)/2 .
(2005), we have that E (I;) = O(1) + O ( ") = O(1) since ¢2/n — 0 by as-

sumption. To show that I, = Op (1), we rely on Assumption B5, the Lipschitz continuity

30



assumption on sy; (). This assumption implies that

n 2490

E*|n1/? Z (81t (Gn) — 87 ()

t=1

LINS e (7 i 245
< (n ‘D E ILulQ”) Vi (60 = ao)[
t=1
where |\/1 (&, — ag)|*"* = Op (1) and
n n g
— * * 1 - 9 n
nY B LY =0 Ly + Op (g)
t=1 t=1

where ™ty 0 | F |L1,|*™° = O (1) under Assumption B5. The proof that

246

E* = Op (1)

n
—1/2 * ~ D
2y s (an,5n>
t=1

follows under similar arguments.

Proof of Theorem 4.4. The result follows from the triangle inequality if

2+4
< Q.

sng ‘\/ﬁ (BZ — ﬁ0> )QM < 00 and S?LpE ‘\/ﬁ <Bn — 50>

The moment condition on y/n (Bn — ﬁg) holds by assumption. Then, the moment condition
on \/n (B;“L - ﬁo) follows by an argument similar to that used in Kato (2011). In particular,
note that for any positive random variable Z and any ¢ > 1, we can write F |Z|? =

q [;Ct17 P (Z > t)dt. Hence,
E ‘\/ﬁ (/3; - 50) ‘2+6 =(2+90) /oot2+51P (’\/ﬁ <5:L _ 50)‘ . t) 0t

0

We will show that P (’\/ﬁ (BT*L — 50)‘ > t> < Kt7P for p > 2+ 0 and some constant K.
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This will imply the result since
. 245 00
E)ﬁ(ﬁ;—ﬁoﬂ < K/ 251G < oo if p> 2+ 6.
0

Let Qn (5) = QQn (d’na 6) - nil Z?:l G2t (Xta dna ﬁ) ) such that g2t (Xt7 drm 5) = log f2t (Xt7 dna 6)

Note that 3% = arg maxs Q (8), where

Q; (8) = @3, (@, 8).
Partition the parameter space B into “shells” S;, = {f € B: 271 < |\/n(8— )| < 27}

for any integer j > 1. If ‘\/ﬁ (B;‘L — 50)

‘\/ﬁ (B;: - 50>) is in one of the shells S;, with j > jo. In that case, the supremum of the

is larger than 27° for a given integer j,, then

map 3 — Q% () — Q% (fy) must be nonnegative by the definition of B;; This implies

2 (v (4 - oo)| > 2") < > < sup { @1 (8) — Q; (Bo) } = o> S 5T

Jj=Jjo BESjn
Next decompose Q* () — Q* (5B,) as follows:

Qn (B) — @ (Bo) = [Q3, (a7, 8) — @3, (6, Bo)] — [Q5, (0, B) — Q5 (0, o)
+Q5, (a0, 8) = @5, (0, Bo) — E* @5, (0, B) — @3, (@0, Fo)]
+E @5, (0, 8) = @, (0, Po)] = E (E" [Q5, (a0, B) — Q5 (0, Fo)])
+E[E" (Q, (o0, ) — @3, (a0, o))]

[2—step,n (5) + [l,n (5) + [2,n (5) + IS,n (6) :
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Note that

E (@3, (a0, B) — @3, (@0, Bo0)) = E7 (n_l > g (a0, 8) — a3 (a0>50)>
t=1

= Z Ynt (@2 (0, B) — qat (w0, Bo))
t=1
where the weighting function 7, is defined as

m, if t6{1,7£n}

Vnt = #ﬂﬂ it ie{l,+1,....,n—10,}

such that Y1 | v, = 1. It follows that

I3, (5) = Z’YntE (q2t (CYO> 5) — g2t (0407 50)) = QQ (Oéo, 5) - Q2 (Oéo, ﬂo) )

t=1

given the time homogeneity of the moments E (go; (o, 5)) (which is part of Assumption

B6(i)) and the fact that > . v, = 1. By the quadratic behavior assumption, we can

conclude that —15,, (5) > K |5 — 50|2 > K272 on Sjn, for some K > 0. Then, for each j

n

the following inclusion holds

{ sup {Q;(8) = @ (B | > o}

BES]"n

22]’—2
- {sup [astepn (B)| + sup |11, (B)] + sup [Iy, (B)] > K }
BES;n BES)n BES)m n

J=Jjo

It follows that the right-hand side of (S7.1) i.e.,, > = . P ( sup {@:‘L (B) —Qr (ﬂo)} > 0)
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can be bounded by

s 22(3-1)
ZP sup | Iosiepn (8)] = K

j=jo  \PE€5in "
00 92(j—1) o0 22(j—1)
+Y P sup L1, (B)] > K +Y P sup |La(B) > K .
j=jo  \PESin " j=jo  \PESin "

Thus, by Markov’s inequality (with p > 2 + §) we have

> ( sup {Q3(8) ~ Qi (B} > o>

J=Jo PESjn

00 G-\ P
Zj:jo <22 n 1 > E ( sup |]2—step,n (ﬁ)|p

Besj,n >
p
E

< K
00 2(j-1)\ P o 2(j—1)
+oR, (550) E ( sup |1 (ﬁ)l”) I, (55) (sup Fo (ﬁ)lp>
| ﬁesj,n ﬁESj,n
Z:;')ijo 2P R, ( S%p | Lo-step,n (6)’19)
S K ﬁe 7,m

+352, 27 PR ( sup |11, (ﬁ)|p) + 2005, 2R ( sup |12, (5)|p>

BGS]',” BESjyn

where the constant K has changed from the first to second inequality. The crucial part of

the proof is to bound each expectation by O (nP2%7). This will imply that

P(jva(5-m)|>2) < iP(sup {QZ(B)—@Z(BO)}ZO>§K22—M

Jj=jo J=Jjo
1 pJ ) )
Jj=Jjo
1 pJo ]
— (5) (1+(1/2)" + (1/2)% +...) < K277,
:ﬁ<[(

Since

E|va (B - ) = p/OOO 240 (| (B 0) | > 1) d,
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we can take the above result with jo = log,t. This implies

P (‘\/ﬁ (B:Z - BO)‘ > t) < Ko7Plogat — frologat™ — fry—p

and since p > 2 + §, we can conclude

E|vi (B; - ) \M p/ooo P (Vi (B - 60) | > 1) at

< K/Oot““tpdt:K/ootl<p2+5)dt<oo.
0 0

Bounding F ( sup |Jlo-step.n (6)]”) : Recall that

Ipstepn (B) = (@3, (G, B) — @3, (a7, Bo)] — [Q3,, (a0, B) — @3, (0, Bo))]
= (@5, (67, 8) — @3, (a0, B)] — [@3, (@n,ﬁo) — @3, (a0, Bo)]
=N 12 oy (O — @5 (0, B)) — 1 12 5 (&, Bo) — a3 (00, Bo))
t=1

By taking the Taylor series expansion of gy, around (a, 8) = (v, o) , we have

O 1ot (00, Bo) (B — fo) + Ba (s B).

qot (@, B) = qot (v, Bo) + B (a0, Bo) (o — ) + a5’
(S7.2)
such that
R 1 (Ck - Oéo) aaaa/ dot (55 ) o — Oéo 5 60) 55%ﬂ/ qot ( ) ﬁ BO
y = —
2 + (Cl{ - 0 3a35/ Ja08 42t ( ) 6 60 (B BO 868a' 2Boa 42t ( ) o — Oé()

where @ lies between o and « and 3 lies between 3 and f,.
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Then using (S7.2), we can write

* [ A% * 0 * ~ %
Q5 (G, B) — @5 (0, B) = 7o 2 (a0, B) (G;, — ap)
1 A% / * — ~ %
+o (&, — ) Fada Lt (a1, 8) (G;, — ap)

where @; lies between & and «p. Similarly, we have

* A % * a * Ak
@3, (&, Bo) — a3 (0, Bo) = 7o 2 (a0, Bo) (&5, — )

1
+

E q>2kt (6&27 BD) (d:; - aO) )

y 2
Oado!

(@7, — o
where @ lies between & and «. It follows that

n 0 0
Iaeon () = n°l (—,q; (a0, ) — 2L <ao,ﬂo>) (& — )
p tzl Oo! % Oa’ 2

1 —1 - A % / a * (= a * (= A x
+5n Z (47, — a) (qut (a1, B) — qut (042750)) (G, — ao).-

Suppose that {%qzt (a,ﬁ)} and {%Q% (Oz,ﬁ)} are Lipschitz continuous in (a, f) :

0
‘aafq% (0,) = g2t (@0, o) | < Lo (X7) (Je = aol + 15 — Bl
and
0 9 < Lo (X*
Do 2 (a, B) — i 2t (a0, Bo)| < Lot (X') (Ja — | + |8 — Bol)

where the functions Li; (X*) and Loy (X*) do not depend on « nor . Thus, we have

J . J .
’@Q% (0407 5) - %%t (040, 50)

< L3 (18 = Bol) (57.3)
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and similarly,

0 » 0 . . /1 _
m%t (041,6) - m(bt (042750) < Ly (|O‘1 - O‘2| + |5 - /60|)

< L, (|a;, — aol + 8 = Bol) (S7.4)

where the last inequality follows because both &; and as lie between & and . Therefore

by the triangular inequality and using (S7.3) and (S7.4), we have

|[2—step,n (5)‘ S n_l (n_l Z LTt) |\/ﬁ(d;; - O‘O)‘ ‘ﬂ(ﬁ - 60)‘

e (”_12%:) [V (&, = ao)|” (17, = ol + [V (8 = Bo)])
: t=1

Hence, successive applications of the Holder’s inequality yields

E < sup |]2-step,n (B)|p>

BESn
e—1
B n =P . c
< Kn?(E(|Vn(a, —a0)|”)" | E (n‘IZLTt> Sup [V (B~ fo) [
t=1 €24m
e—1
, 1 n =P €
+En% (B (|Vi(a; - ao)[))" [ E n*ZL;t>
t=1

1
€

+Kn_37p (E (‘\/ﬁ(éc:; - Oéo)fap)) E (n_l i th) ElpﬁSup ‘\/ﬁ(ﬁ — Bo) =P E

37




for some £ > 1. Note that for 8 € S;,,, we have |v/n (8 — 5y)| < 27. This implies that

E (ﬁsgp | L2-stepn (6)|”> < Kn?(E(|Va(a, —a0)|”)) 27 [E <n‘1ZL1}>
€2j,n t=1

1
€

YKn¥ (E (|\/ﬁ(oz;; - ao)\:””)) E <n—1 i L§t>

1 n s—lp
+Kn~ % <E (h/ﬁ(éz; — Ozo)‘er)) o [ E (nl ZL§t>
=1

Suppose we assume that E <]\/ﬁ(&: - ozo)|3€p) < oo. If in addition we assume that
E (|Ly

of the functions involving L}, and L3, are bounded. For instance,

ﬁp) < oo and F <|L2t ﬁp) < o0, we can show that the expectations of average

[

n 5711’ n
E (n_IZL’{t> < Kn_lz]E <|L>{t|ﬁp)
t=1 t=1

— Kn™! > (£ (£ (1z1577)))
551;7)

— KEE* <nlz|L’;ty
t=1
— KE (Z%t yL1t|af1p> <ooif E (\L1t|€f1p> < 0.

t=1

Thus, under these assumptions

E sup ’IQ—Step,n (ﬁ)|p < anp2pj’
/Besj,n
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which implies

Z 2—2pjan ( sup |]2-step,n (ﬁ)|p> < K Z 2—2pj2pjnpn—p

J=jo BESjn =10 =

- kY
J=Jo
< K9~ Pio

Bounding E < sup |I1, (ﬁ)|p> : Note that by definition of I, (3), we have that
Besj,n

Il,n (5) = Q;n (OéO?ﬁ) - Q;n (Oé(), 60) - E* [Q;n (Oé(bﬁ) - QZn (040,6(])]
= n (¢3¢ (0, B) — g3 (o, Bo)) — E” (nl Z (¢3¢ (0, B) — a5 (cxo, 50))>

t=1 t=1

= n_l/zGZ (q2 (a0, B) — q2 (w0, Bo)) ,

where for a class of functions F = {f}, we define the empirical process G} f as

n

Gof =n"'?> (ff —E*f}).

t=1

Define the L? norm of G} f over F as

o\ 1/p
(E |G = (E (suplGilf!) ) .
feEF
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With this notation,

E ( sup |11 (5)|p) = E ( sup |[n"’G} (qae (o0, B) — g (aoaﬁo))‘p>

BES)n BES)n

nP?E ( sup |G, (qat (o, B) — qou (ao,ﬂo))|p>

IBESj,n

1/p\ P
— p P2 <IE ( sup |Gy, (g (@0, B) — qa (040750))’10))

€Sjn

= w72 ((EIG;,)"")

where we let NV, = {q2 (o, ) — ¢2 (a0, Bo) : |6 — Bol <, (a,B) € Ax B}. Lemma S6.2

1/p
shows that for any n > 0, (E |(Gj;|f\/n> < 7 holds under our assumptions. Thus, letting

2J . % |D 1/p 27 P, .
n== yields (E ’an\fn) < (\/—5> , implying that

orj )
E ( sup |Iin (ﬁ)\p> < n’pﬂﬂ = n P2V

It follows that
Z 9=2pj PR ( sup |1, (ﬁ)‘ﬂ) < Z 9=2p]j Py —POPI — Z 27PI < Kprjo,
i=do PESin j=do i=do

as above.

Bounding F ( sup |Ioy, (6)|p) : The argument is similar. By definition of I, (8),

Besj,n
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we have

L, (B) = E*[Q5, (a0, B) — Q3, (ao, Bo)] — E(E" @5, (a0, B) — Q5,, (0, Bo)])
= n! Z E* (g3 (a0, B) — ¢35 (0, Bo)) — n! Z E(E" (g3 (a0, B) — ¢5; (a0, o))

t=1
n

= Z’Ynt [(q2¢ (0, B) — qat (vo, fo)) — E (g2t (0, B) — g2t (a0, Bo))]

t=1

= p /2 (Z \/E”Ynt [(q2t (0, B) — qat (w0, o)) — E (g2t (0, B) — qar (o, 50))])

= n_l/QGnﬁ (q2 (Ozo, B) — {2 (Oéo, 60)) )

where we define the empirical process G,, ., as

Gn,'yf = Z \/ﬁ%mt (ft - Eft) )
t=1

with weights defined as above. Similarly, we define the L” norm of G,,,f over F ={f} as

_ p G p\ 1/p
(El nmlf) = | £ sup] n7f| .
feF

With this notation

E ( sup |1, (ﬁ)|”> =072 ((B|Gasl5) ")

It suffices to bound (E |Gn,7|’})l/p. Assumption B6(ii) provides a bound on the L,-norm
of the empirical process G,,, which differs from G,, , due to presence of the weights .. It
is well known that these weights are introduced by the fact that the MBB puts less weight
on the first and last ¢ observations in the sample. In particular, we can show that for any

function f;, the MBB expectation E* (f7) = Y0 yfe = n >, fr + Op (f) Using

n
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this insight, we can show that

n n n
- Gof-— Ry, f——R
Gn,’yf n_€+1an n—€—|—1 1nf n_£+1 anv

where

1 < t
Ri.f = %; (1 - Z) (fi— Ef.),
1 & t
Ran = % Z 1 - Z) (fnftJrl - Efnft+1) .

ﬁ
Il
A

By Minkowski’s inequality,

1/ n 1/ 1/ 1/
(B1Gn, )" < —= {(BIG.)"" + (B [Ruu)'"” + (B |Ranl}) "}
< K ((BIGu5)" + (B[Rl + (B Ranf5)'7) | (57.5)

for some constant K since ¢ — oo such that ¢ = o(y/n) under our assumptions. This

implies

E ( sup | (ﬁ)\”) = w2 ((B[G, 1))

Besj,n

p
< En 2 ((BIG5)' + (B [Rufp) " + (E [Raul})'")

B 2Jp
< Kn?? (W —l—E\RmV}‘f‘E‘R%V}) ’

where we have used Assumption B6(ii) with n = \2/—% to bound (E |Gn|’})l/p. The remainder
P .

terms can be bounded by O <(\/iﬁ> QTLJ—,f) using the Lipschitz condition given in Assumption

B6(iii), where the Lipschitz function for the log likelihood function {gs (c, )} has a finite

p'" order moment. Since ¢ = o (y/n) by assumption, the contribution of the two remainder
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terms is smaller than that of the first term. We can then claim that

2Jp _
E ( sup |, <5>|”) < Kn™P?= o = Knr2,

6€Sj,n np 2

and the proof follows as above.
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