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Abstract

We propose a new decomposition of the traditional market beta into four semibetas that

depend on the signed covariation between the market and individual asset returns. We

show that semibetas stemming from negative market and negative asset return covaria-

tion predict significantly higher future returns, while semibetas attributable to negative

market and positive asset return covariation predict significantly lower future returns.

The two semibetas associated with positive market return variation do not appear to be

priced. The results are consistent with the pricing implications from a mean-semivariance

framework combined with arbitrage risk driving a wedge between the risk premiums for

long and short positions. We conclude that rather than betting against the traditional

market beta, it is better to bet on and against the “right” semibetas.
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1. Introduction

The Capital Asset Pricing Model (CAPM) reigns supreme as the most widely-studied

and practically-used model for valuing speculative assets. In its basic form the model

predicts a simple linear relationship between the expected excess return on an asset

and the beta of that asset with respect to the aggregate market portfolio. While early

empirical evidence largely corroborated this prediction (e.g., Fama, Fisher, Jensen and

Roll, 1969; Blume, 1970), an extensive subsequent literature has called into question the

ability of the standard market beta to satisfactorily explain the cross-sectional variation

in returns, with the estimated risk premiums being too low, often insignificant, and

sometimes even negative (e.g., Roll, 1977; Bhandari, 1988; Fama and French, 1992).

Numerous explanations have been put forth for these findings, ranging from measurement

errors (e.g., Shanken, 1992; Hollstein, Prokopczuk and Simen, 2019), to agency problems

(Baker, Bradley and Wurgler, 2011), to the need for separate betas associated with cash-

flow and discount rate news (Campbell and Vuolteenaho, 2004), to leverage constraints

(Frazzini and Pedersen, 2014) and the need for separate liquidity and fundamental betas

(Acharya and Pedersen, 2005), to name but a few.

These “rescue attempts” notwithstanding, another strand of literature, tracing back

to the early work by Roy (1952), Markowitz (1959), Hogan and Warren (1972, 1974)

and Bawa and Lindenberg (1977), posits that the mean-variance, or quadratic utility,

framework underlying the basic CAPM and the resulting security market line and linear

beta pricing relationship is too simplistic. If investors are averse to volatility only when

it leads to losses, not gains, then the relevant measure of risk is not (total) variance but

rather the semivariance of negative returns.1 Intuitively, if investors only care about

downside variation, then the covariation associated with a positive aggregate market

return should not be priced in equilibrium. These same pricing implications also arise in

1This same basic idea also underlies the notion of loss aversion and the prospect theory pioneered
by Kahneman and Tversky (1979), as supported by an extensive subsequent experimental literature and
other empirical evidence.
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a setting with disappointment aversion preferences as in Gul (1991), and its generalization

in Routledge and Zin (2010), recently explored by Farago and Tedongap (2018).2

Consistent with these ideas, Ang, Chen and Xing (2006a) find that the downside

beta version of the CAPM does a better job than the traditional CAPM in terms of

explaining the cross-sectional variation in U.S. equity returns. The study by Post and

van Vliet (2004) reaches the same conclusion, and Lettau, Maggiori and Weber (2014)

similarly finds that a downside beta version of the CAPM better explains the variation

in the returns across other asset classes. By contrast, recent work by Atilgan, Bali,

Demirtas and Gunaydin (2018) has called into question the ability of downside betas to

satisfactorily explain the cross-sectional variation in more recent U.S. and international

equity returns. Levi and Welch (2020) also concludes that downside betas do not provide

superior cross-sectional return predictions compared to the predictability afforded by

traditional betas.

Set against this background, we propose a new four-way decomposition of the tradi-

tional market beta into four semibetas. Our decomposition relies on the newly-developed

semicovariance concept of Bollerslev, Li, Patton and Quaedvlieg (2020a). Letting r and

f denote the returns on some risky asset and the aggregate market portfolio, respectively,

the four semibetas are then defined as

β ≡ Cov(r, f)

V ar(f)
=
N + P +M+ +M−

V ar(f)
≡ βN + βP − βM+ − βM− . (1)

The N , P , M+ and M− semicovariance components refer to the respective portions of

total covariation Cov(r, f) defined by both returns being positive (the “P” state), both

returns being negative (“N”), mixed sign with positive market return (“M+”), and mixed

sign with negative market return (“M−”). Since the mixed-sign semicovariances are

always weakly negative numbers, with lower values indicating stronger covariation, to ease

the interpretation of the risk premium estimates in our empirical analyses, we purposely

2As shown by Anthonisz (2012), they may also be cast in a more traditional stochastic discount factor
pricing framework assuming a “kinked” pricing kernel.
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define the mixed-sign semibetas as βM
+ ≡ −M+/V ar(f) and βM

− ≡ −M−/V ar(f).

The traditional CAPM, of course, does not differentiate between any of the four

covariation components (N , P , M+ and M−), combining them into a single market

β and a single risk premium. The downside version of the CAPM, investigated in the

aforementioned studies, effectively combines the pricing of the two negative-market-return

covariation components (N and M−) into a single downside beta and the two positive-

market-return covariation components (P and M+) into a single upside beta, each with

their own individual risk premiums.3 Anticipating our empirical results, we strongly

reject these pricing restrictions in the data.

To help further intuit the main idea, Figure 1 depicts hypothetical bivariate contour

plots for the returns on the market and four different illustrative assets, each of which have

traditional CAPM beta equal to one.4 Since the CAPM betas are the same, the CAPM

predicts identical expected returns for all four assets. Meanwhile, consider the asset in

Panel A, which is jointly Normally distributed with the market, and the asset in Panel B,

which (contrary to most equity returns) has less correlation during market downturns and

greater correlation during market upturns (βN < βP). Using the semibeta model results

described in Section 4, the annual expected excess return for asset A is 9.45%, while only

7.09% for asset B, a finding consistent with investors being particularly averse to downside

risk, and thus willing to accept lower expected returns for an asset displaying a desirable

dependence structure. On the other hand, the asset depicted in Panel C, which is more

strongly correlated with the market during downturns than upturns (βN > βP), and so

is less desirable from a mean-semivariance perspective, has an expected return of 11.91%,

an increase of 2.5% relative to asset A, and 4.8% relative to asset B, two assets with

the exact same market beta. Finally, like asset C, the asset in Panel D is more strongly

correlated with the market during downturns than upturns (βN > βP), however, its

3As discussed further below, the scaling of the up and downside betas employed in some of the
aforementioned empirical studies differ from the scaling of the semibetas employed here. However, the
resulting cross-sectional fits are not affected by these differences in the scaling.

4The distributions are formed using standard Normal marginal distributions and Normal or Clayton
copulas to account for different non-Gaussian dependencies, see Supplemental Appendix S1 for details.
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Figure 1: Hypothetical Return Distributions. The figure presents isoprobability contours of the
bivariate PDFs for four hypothetical return distributions, all of which have standard Normal marginal
distributions and all of which imply a CAPM beta of one.
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mixed semicovariations (βM
−
> βM

+
) imbue it with superior hedging benefits relative to

asset C, and thus a lower expected return of 10.86%.

Counter to the intuition conveyed by Figure 1 and the implications stemming from the

idea that each of the four semibetas may be priced differently, in a frictionless financial

market, the risks associated with N and M− (P and M+) should be priced the same,

as a short position in an asset simply switches the signs of the corresponding semico-

variation components. However, as forcefully argued by Pontiff (1996) and Schleifer and

Vishny (1997), legal constraints and charters impede many institutional investors from

5



short-selling, and many individual investors are simply reluctant to sell short, effectively

creating limits-to-arbitrage and arbitrage risk (see also the discussion in Hong and Sraer,

2016). This arbitrage risk in turn induces a wedge between the pricing of the N and

M− (P and M+) semicovariation components, and the risk premiums associated with

the βN and βM
−

(βP and βM
+

) semibetas. Intuitively, assets that covary positively with

the market when the market is performing poorly will exacerbate downside return varia-

tion, while assets that covary negatively with the market when the market is performing

poorly help mitigate downside risk. Correspondingly, we find that the former types of

assets command higher risk premiums.

True betas and semibetas, of course, are not directly observable. Instead, guided by

the burgeoning realized volatility literature, and the in-fill asymptotic arguments cham-

pioned therein, we rely on so-called realized betas and semibetas constructed from higher

frequency returns over fixed time-intervals (Barndorff-Nielsen and Shephard, 2004).5

Based on these new measures, we offer three main empirical contributions.

Our initial empirical investigations are based on monthly realized semibetas con-

structed from daily stock returns over the 1963 to 2019 sample period. The estimated

semibetas clearly reveal the existence of asymmetric dependencies between the individual

stocks and the market beyond those of the linear dependencies captured by the traditional

market beta. More importantly, our results strongly support the hypothesis that these

non-linear dependencies are priced differently: stocks with higher βN are associated with

significantly higher subsequent daily returns; stocks with higher βM
−

are associated with

significantly lower subsequent daily returns; while neither βP nor βM
+

appear to carry

a significant risk premium. These findings remain robust to the inclusion of a long list

of other return predictor variables previously analyzed in the literature. Corroborating

the thesis that the difference in the risk premiums for βN and −βM− may be attributed

to market frictions and limits-to-arbitrage, we show that the rejection of the hypothesis

5For additional discussion of the realized beta concept along with empirical applications, see also
Andersen, Bollerslev, Diebold and Wu (2006) and Patton and Verardo (2012).
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that the two risk premiums are identical is stronger for portfolios made up of stocks with

higher arbitrage risk, as proxied by the level of idiosyncratic volatility (e.g., Pontiff, 1996;

Stambaugh, Yu and Yuan, 2015), and stocks that are more difficult to value, as proxied

by the rate of turnover (e.g., Harris and Raviv, 1993; Blume, Easley and O’Hara, 1994;

Kumar, 2009). Further underscoring the significance of this difference in the pricing of

the semibetas, the two-way decomposition of the traditional market beta into separate

up and downside betas previously advocated in the literature (Ang et al., 2006a) is also

strongly rejected against the four-way semibeta decomposition proposed here.

Second, hewing more closely to the the in-fill asymptotic arguments underlying the

statistical consistency of the realized measures, we construct daily realized semibetas

based on high-frequency intraday data. Our sample consists of all of the S&P 500 con-

stituent stocks over the 1993-2019 time period.6 Temporal aggregation generally tend

to mute non-linear dependencies in returns, and as such the daily semibetas may better

reveal the inherent asymmetric dependencies than the monthly beta measures constr-

cuted from coarser daily returns. In line with this thesis, using our high-frequency-based

beta measures, we arrive at qualitatively very similar, but economically and statistically

stronger, conclusions. βN and −βM− are priced differently, with estimated annualized

risk premiums of 18.10% and 7.82% respectively, while the estimated risk premiums for

βP and βM
+

are both statistically insignificant at conventional levels. By comparison,

the estimated risk premium for the traditional market beta is 4.49%. Further elaborat-

ing on the statistical significance of the results, we demonstrate how the daily realized

semibetas may also be used in predicting cross-sectional differences in returns over longer

weekly and monthly horizons.

Finally, we investigate whether these statistically significant differences in the compen-

sation for the different semibetas also translate into “economically significant” differences

in the performance of simple portfolio strategies. We find that a long-short semibeta strat-

egy generates average annual excess returns of 8.17%, and an annualized Sharpe ratio

6The start of this sample is governed by the availability of high-frequency data in the TAQ database.
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of 0.92. By comparison, similar portfolio strategies based on the standard CAPM betas

and the Ang, Chen and Xing (2006a) downside betas generate excess returns of 5.62%

and 7.11%, respectively, with Sharpe ratios of only 0.37 and 0.49. Using the four- and

five-factor models of Carhart (1997) and Fama and French (1993, 2015) to assess the

risk-adjusted performance, we find annualized alphas of 6.85% and 7.52% respectively,

with overwhelmingly significant t-statistics. By comparison, the traditional beta and the

downside beta portfolios produce much smaller and at best only borderline significant al-

phas. Hence, adding to the recent literature and debate about betting on or against beta

(see, e.g., Frazzini and Pedersen, 2014; Cederburgh and O’Doherty, 2016; Bali, Brown,

Murray and Tang, 2017; Novy-Marx and Velikov, 2018; Schneider, Wagner and Zechner,

2020), we conclude that it is better to bet on and against the “right” semibetas.

In addition to the previous studies on downside risk noted above, our empirical find-

ings are also related to the vast existing literature on asymmetric dependencies in stock

returns, including among others Longin and Solnik (2001), Ang and Chen (2002), Patton

(2004), Hong, Tu and Zhou (2006), Elkamhi and Stefanova (2014) and Engle and Mistry

(2014). They are also related to the more recent and rapidly growing literature on the

pricing of downside tail, or crash, risk, including Bali, Demirtas and Levy (2009), Boller-

slev and Todorov (2011), Kelly and Jiang (2014), Cremers, Halling and Weinbaum (2015)

Bollerslev, Li and Todorov (2016), Chabi-Yo, Ruenzi and Weigert (2018), Farago and

Tedongap (2018), Barunik and Nevrla (2019), Bondarenko and Bernard (2020), Chabi-

Yo, Huggenberger and Weigert (2019), Lu and Murray (2019) and Orlowski, Schneider

and Trojani (2019). In contrast to all of these studies, however, which rely on the use of

options and/or non-linear procedures for assessing the asymmetric joint tail dependencies

and the pricing thereof, we maintain a simple linear pricing relationship together with a

simple-to-implement additive decomposition of the traditional market beta into the four

semibeta components. Our new semibeta measures are also distinctly different from, and

much simpler to implement than, the entropy approach of Jiang, Wu and Zhou (2018)

designed to measure asymmetries in up and downside comovements.
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The semibetas, and the joint dependencies captured by them, are also related to

the notion of coskewness originally proposed by Kraus and Litzenberger (1976), and

the corresponding notion of cokurtosis, as investigated empirically by Harvey and Sid-

dique (2000), Dittmar (2002), Conrad, Dittmar and Ghysels (2013), Langlois (2020) and

Schneider, Wagner and Zechner (2020), among others. We find that the semibetas remain

highly significant for explaining the cross-sectional variation controlling for coskewness

and cokurtosis, while both of these co-dependency measures are rendered insignificant

by the inclusion of the semibeta measures. Our reliance on the new semicovariance con-

cept for decomposing the systematic market risk and defining the semibetas also sets our

analysis apart from other recent studies based on the semivariance concept for defining

and empirically investigating asset specific “good” and “bad” volatility measures and the

separate pricing thereof, as in, e.g., Feunou, Jahan-Parver and Okou (2018), Bollerslev,

Li and Zhao (2020b) and Feunou and Okou (2019).

The remainder of the paper is structured as follows. We begin in Section 2 by dis-

cussing our construction of the realized semibetas, along with a brief summary of their em-

pirical distributional features. Section 3 presents our key empirical findings related to the

pricing of the monthly realized semibetas based on firm level cross-sectional regressions.

Section 4 discusses our results based on daily semibetas estimated from high-frequency

intraday data. Section 5 considers the performance of simple semibeta-based portfolio

strategies, including comparisons to other similarly constructed beta-based portfolios.

Section 6 concludes. Additional empirical results and robustness checks are detailed in a

Supplemental Appendix.

2. Realized Semibetas

We begin by formally defining realized semibetas. We then briefly discuss the data

that we use in our main empirical investigations, followed by a summary of the salient

distributional features of the resulting realized semibeta estimates.
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2.1. Definitions

Let rt,k,i denote the “high-frequency” return on asset i over the kth time-interval

within some fixed time period t, with the concurrent “high-frequency” return for the

aggregate market denoted by ft,k. To fix ideas, and in accordance with our two separate

empirical analyses discussed below, think about k as a day and t as a month, or k as a

15-minute time-interval and t as a day. Define the signed intra-period asset returns by

r+
t,k,i ≡ max(rt,k,i, 0) and r−t,k,i ≡ min(rt,k,i, 0), with the signed intra-period market returns

defined analogously. The realized semibetas are then defined by:

β̂Nt,i ≡
∑m

k=1 r
−
t,k,if

−
t,k∑m

k=1 f
2
t,k

, β̂Pt,i ≡
∑m

k=1 r
+
t,k,if

+
t,k∑m

k=1 f
2
t,k

,

β̂M
−

t,i ≡
−
∑m

k=1 r
+
t,k,if

−
t,k∑m

k=1 f
2
t,k

, β̂M
+

t,i ≡
−
∑m

k=1 r
−
t,k,if

+
t,k∑m

k=1 f
2
t,k

,

(2)

where m denotes the number of higher-frequency return intervals within each time period.

The semibetas provide an exact four-way decomposition of the traditional realized market

beta:

β̂t,i ≡
∑m

k=1 rt,k,ift,k∑m
k=1 f

2
t,k

= β̂Nt,i + β̂Pt,i − β̂M
+

t,i − β̂M
−

t,i . (3)

As previously noted, we purposely change the sign on the two mixed semibetas, to make

them positive, thereby allowing for an easier interpretation of the correspondingly de-

composed risk premium estimates.

Let RV t and COV t,i denote the latent true period t market return variation and

covariation between the market return and the return on the individual asset i, with

the corresponding true semicovariation measures denoted by Pt,i, Nt,i, M+
t,i and M−

t,i,

respectively. Barndorff-Nielsen and Shephard (2004) show that for increasingly finer

sampled returns, or m→∞, realized betas consistently estimate the true latent betas:

β̂t,i
p−→ COV t,i
RV t

. (4)

Similarly, the in-fill asymptotic theory in Bollerslev, Li, Patton and Quaedvlieg (2020a)
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pertaining to realized semicovariances imply that the realized semibetas consistently es-

timate the true semibetas:

β̂Nt,i
p−→ Nt,i
RV t

, β̂Pt,i
p−→ Pt,i
RV t

, β̂M
+

t,i

p−→
−M+

t,i

RV t
, β̂M

−

t,i

p−→
−M−

t,i

RV t
. (5)

For ease of notation, in the remainder when not necessary we will drop the subscripts

and hats, and refer to these realized (semi)beta measures simply as β, βN , etc.

If the market and individual asset returns were jointly Normally distributed, the four

semibetas would convey no new information over and above the conventional market

beta. In particular, it follows that under joint Normality:

βN = βP =
1

2π

( √
σ2
r

σ2
f

− β2 + β arccos

(
−σf
σr
β

) )
,

βM
+

= βM
−

=
1

2π

( √
σ2
r

σ2
f

− β2 − β arccos

(
σf
σr
β

) )
.

However, if the market and individual asset returns are not Normally distributed, the

two concordant semibetas (βN and βP) and the two disconcordant semibetas (βM
+

and

βM
−

) will generally differ, and each of the four semibetas may convey additional useful

information to that of the standard market beta (β). As such, each of the semibetas may

also be priced differently.

2.2. Data and Summary Statistics

Our primary empirical investigations rely on daily data obtained from the Center for

Research in Securities Prices (CRSP) database spanning the period from January 1963

to December 2019. Including all common publicly traded stocks, leaves us with a total

of 273,823 firm-month observations.7

The top panel of Table 1 reports the time series averages of the cross-sectional means,

7Specifically, we consider all stocks with CRSP codes 10 and 11. In line with previous work, we
remove all “penny stocks” with prices less than five dollars, to help alleviate biases arising from price
discreteness; see, e.g., Harris (1994) and Amihud (2002).
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Table 1: Summary Statistics. The top panel reports the time series averages of the cross-sectional
means, medians and standard deviations for the monthly realized semibetas constructed from daily
returns. The bottom panel reports the time series averages of the cross-sectional correlations. The
estimates are based on all of the common, non-penny, stocks in the CRSP data base from January 1963
to December 2019.

β βN βP βM
+

βM
−

Mean 0.99 0.60 0.76 0.21 0.16
Median 0.92 0.54 0.67 0.15 0.10
St.Dev. 0.76 0.36 0.46 0.21 0.19

β 1.00 0.72 0.79 -0.30 -0.29
βN 1.00 0.42 0.10 -0.09
βP 1.00 -0.07 0.06

βM
+

1.00 0.23

βM
−

1.00

medians and standard deviations of the resulting monthly (semi)beta estimates averaged

across all of the stocks in the sample. The bottom panel gives the time series averages

of the cross-sectional correlations. Consistent with on average positive dependencies

between the market and each of the individual stocks, the two concordant semibetas (βP

and βN ) on average far exceed the two discordant semibetas (βM
+

and βM
−

). The two

concordant semibetas also correlated more strongly with the traditional market beta (β),

and more so than with each other. Nonetheless, the correlations with the traditional beta

are still far below unity, suggesting that the semibetas do convey different, and potentially

useful, information over and above that of the traditional market beta.

To help further visualize the differences in the betas, Panel A of Figure 2 depicts

their unconditional distributions across all of the days and stocks in the sample. The

distribution of conventional betas is centered around one, as expected, and is close to

symmetric. Meanwhile, the realized semibetas are all weakly positive by construction, and

thus unsurprisingly their distributions are right-skewed. Echoing the summary statistics

in Table 1, the semibeta distributions are all centered below unity. Also, the unconditional

distributions of the two concordant semibetas (βP and βN ) are almost indistinguishable,

as are the distributions of the two discordant semibetas (βM
+

and βM
−

).
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Figure 2: Unconditional Distributions and Autocorrelations. Panel A displays kernel density
estimates of the unconditional distribution of the monthly realized beta and semibetas averaged across
time and stocks. Panel B reports the average autocorrelation functions for the monthly realized beta
and semibetas averaged across stocks. The estimates are based on all of the common, non-penny, stocks
in the CRSP data base from January 1963 to December 2019.
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The average autocorrelation functions shown in Panel B of Figure 2 indicate a strong

degree of persistence for all of the semibetas, with the autocorrelations remaining in excess

of 0.4 at the annual 12th lag.8 Underpinning the cross-sectional return predictability

regressions that we rely on in our asset pricing investigations discussed next, the high

first-order autocorrelations of around 0.7 for each of the monthly semibetas, also imply

that this month’s realized semibetas for a given stock provide accurate predictions of next

month’s semibetas for that same stock.

3. Semibetas and the Cross-Section of Expected Returns

We begin our empirical investigations pertaining to the pricing of the non-linear de-

pendencies encoded in the realized semibeta by presenting the results from standard

Fama and MacBeth (1973) type cross-sectional predictive regressions. These regressions

conveniently allow for the simultaneous estimation of separate risk premiums for each

of the semibetas. In particular, for each month t = 1, ..., T − 1, and all of the stocks

8We rely on the instrumental variable approach of Hansen and Lunde (2014), using lags 4 through
10 as instruments, to adjust for measurement errors in the realized betas, thereby allowing for more
meaningful comparisons of the autocorrelation functions across the different betas.
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i = 1, ..., Nt, available for month t and t+ 1, we estimate the month t+ 1 risk premiums

(λs) for the different semibetas from the cross-sectional regression:

rt+1,i = λ0,t+1 + λNt+1β̂
N
t,i + λPt+1β̂

P
t,i + λM

+

t+1 β̂
M+

t,i + λM
−

t+1 β̂
M−
t,i + εt+1,i. (6)

Based on these T−1 cross-sectional estimates, we then estimate the average risk premiums

associated with each of the semibetas by the time series averages of the lambdas over all

of the months in the sample:

λ̂j =
1

T − 1

T∑
t=2

λ̂jt , j = N ,P ,M+,M−. (7)

The resulting annualized estimates, along with their t-statistics based on Newey-

West robust standard errors (using 10 lags), together with the time-series average of the

R2s from the first-stage cross-sectional regressions in equation (6), are reported in the

second row of Table 2. As a benchmark, the first row of the table reports the estimated

risk premium for the traditional CAPM realized beta. Consistent with the basic mean-

variance framework, the traditional beta carries a statistically significant risk premium

of 4.27% per year. This estimated risk premium is somewhat below the average annual

equity risk premium of 6.87% observed over the sample, corroborating the basic premise

underlying the “betting against beta” investment strategy (Frazzini and Pedersen, 2014).

Supporting the idea that the semibetas convey additional useful information, the

cross-sectional fit, reported in the final column, rises from 2.33% when using the standard

CAPM beta to 5.16% when using the semibetas. We can formally test whether this gain

in R2 is statistically significant by noting that the semibeta-based pricing model reduces

to the traditional CAPM model if the semibeta risk premiums satisfy:

HCAPM
0,t : λNt = λPt = −λM+

t = −λM−t . (8)

We reject this restriction at the 5% level for 46.1% of the 684 months in our sample,
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Table 2: Monthly Fama-MacBeth Regressions. The table reports the estimated annualized risk
premia and Newey-West robust t-statistics from overlapping monthly Fama-MacBeth cross-sectional
predictive regressions. The monthly semibetas are calculated from daily data. All of the control variables
are measured on the day prior to the monthly returns. The estimates are based on all of the common,
non-penny, stocks in the CRSP data base from January 1963 to December 2019.

β βN βP βM
+

βM
−

ME BM MOM REV RV IVOL ILLIQ R2

4.27 2.33
3.96

10.54 1.84 4.59 -6.00 5.16
4.51 1.17 1.32 -1.97
8.74 0.25 5.72 -13.55 -2.56 -0.64 0.05 10.55
3.61 0.16 1.51 -3.68 -5.05 -0.57 2.05
9.78 2.56 8.01 -11.84 -4.82 -1.14 0.06 -0.12 -0.71 0.52 -2.81 13.85
3.80 1.26 1.89 -3.03 -5.31 -1.00 2.22 -2.07 -1.87 0.39 -4.47

thus strongly refuting the traditional one-beta model in favor of a model that exploits

the additional information contained in the semibetas.

The risk premium estimates reported in the second row of Table 2 highlight the

richer pricing implications of the mean-semivariance framework: βN and βM
−

are both

associated with statistically significant risk premiums, while βP and βM
+

do not appear

to be priced in the cross-section. Underscoring not just the statistical significance of the

estimated risk premiums, but also the economic significance, a one standard deviation

increase in βN relative to its cross-sectional mean is associated with an increase in the

expected annual return of 3.80%, while a one standard deviation increase in βM
−

relative

to its’ cross-sectional mean lowers the expected return by 1.14%.

3.1. Standard Risk Factors and Controls

A plethora of other risk factors and firm characteristics have, of course, been put forth

in the literature as significant drivers of the cross-sectional variation in equity returns;

see, e.g., the recent account by Harvey, Liu and Zhu (2016). Focussing on some of

the more prominent variables that have received the most attention in the literature,

we consider size (ME) (Banz, 1981), book-to-market (BM) (Fama and French, 1993),

momentum (MOM) (Jegadeesh and Titman, 1993), return reversals (REV) (Jegadeesh,

1990), idiosyncratic volatility (IVOL) (Ang, Hodrick, Xing and Zhang, 2006b), realized
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volatility (RV) (Andersen, Bollerslev, Diebold and Ebens, 2001), and illiquidity (ILLIQ)

(Amihud, 2002); further details concerning the construction of each of these variables are

given in Appendix A.

The third row of Table 2 reports the average risk premium estimates from the cross-

sectional regressions that in addition to the semibetas include ME, BM and MOM, mim-

icking the popular Fama-French-Carhart four factor (FFC4) model. Consistent with the

extant literature and results with more recent data, the estimated risk premiums for ME

and MOM are both significant, while the premium for BM is insignificant at conventional

levels. Correspondingly, the inclusion of the three additional risk factors increases the av-

erage cross-sectional R2 from 5.16% for the regressions based solely on the four semibetas

to 10.55% for the semibeta+FFC-based model. Importantly, however, the risk premiums

associated with βN and βM
−

remain highly statistically significant.

The bottom row of Table 2 further incorporates REV, RV, IVOL and ILLIQ as ad-

ditional controls. This again further increases the average cross-sectional R2 to 13.85%.

But again, the inclusion of these additional controls does not meaningfully alter the large

and highly significant t-statistic associated with βN and βM
−

. Moreover, the risk pre-

mium estimates for βN and βM
−

also remain similar to the estimates obtained without

the inclusion of any controls reported in the second row, underscoring the robustness of

the semibeta pricing.

3.2. Arbitrage Risk and Semibeta Pricing

The semibeta risk premium estimates discussed above are based on the traditional

Fama-MacBeth cross-sectional regression approach in (6) involving the returns on long

positions in each of the individual stocks. However, it follows readily from the definition

of the semibetas in equation (2) that the β̂Nt,i (β̂Pt,i) of a long position in stock i equals

−β̂M−t,i (−β̂M+

t,i ) for a short position in stock i. Hence, in a frictionless market, in which

the expected return on a short position is equal to the negative of the expected return

on a long position, the risk premium associated with β̂Nt,i (β̂Pt,i) should be equal to the

16



negative of the risk premium associated with β̂M
−

t,i (β̂M
+

t,i ). Since most stocks can fairly

easily and cheaply be borrowed (see, e.g., D’Avolio (2002), and the more recent analysis

in Henderson, Jostova and Philipov (2019)), the difference in the absolute values of the

significant risk premiums for βN and βM− may seem puzzling.

However, as forcefully argued by Pontiff (1996) and Schleifer and Vishny (1997), with

legal restrictions and charters impeding many institutional investors from short-selling,

and many individual investors simply reluctant to sell short, this may effectively create

limits-to-arbitrage and related arbitrage risks (see also the discussion in Hong and Sraer,

2016). This arbitrage risk in turn may cause systematic risks associated with long and

short positions to be priced differently.9

To corroborate this conjecture, we follow the literature in using idiosyncratic volatility

(IVOL) as a proxy for arbitrage risk (e.g., Pontiff, 1996; Stambaugh, Yu and Yuan, 2015).

Intuitively, if arbitrageurs are able to neutralize their exposure to benchmark risks, then

IVOL, as opposed to total volatility, is naturally interpreted as a measure of arbitrage

risk, with higher IVOL implying greater impediment to price-correcting arbitrage. Ac-

cordingly, we split the cross-section of stocks into separate groups of stocks with high

and low IVOLs, and compare the risk premium estimates for each group. We rely on

the same calculation of IVOL as in Ang, Hodrick, Xing and Zhang (2006b) used in the

previous section.

To facilitate a direct test of the hypothesis that λN = −λM− for each of the two

separate IVOL groups, we reparameterize the cross-sectional regression in (6) as:

rt+1,i = λ0,t+1 +λNt+1(β̂Nt,i− β̂M
−

t,i )+λPt+1(β̂Pt,i− β̂M
+

t,i )+δM
+

t+1 β̂
M+

t,i +δM
−

t+1 β̂
M−
t,i + εt+1,i. (9)

This reparameterization does not change the fit of the regression. Conveniently, however,

it allows for the construction of a simple t-test for the hypothesis that the risk premiums

9Flights to liquidity and accompanying downward liquidity spirals, as discussed by Brunnermeier and
Pedersen (2009) and Anthonisz and Putnins (2017), might further exacerbate these pricing differences.
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for βN and −βM− are the same based on the time series average of the δM
−

t estimates:

δ̂M
−

=
1

T − 1

T∑
t=2

δ̂M
−

t . (10)

Implementing these cross-sectional regressions and accompanying simple t-test for the

50% of stocks with the lowest IVOL in each of the months in the sample results in an

estimate of δM
−

equal to 3.84, with an insignificant t-statistic of 1.02. On the other hand,

consistent with the thesis that the different risk premiums for βN and −βM− may be

attributed to arbitrage risk, the estimate for δM
−

for the 50% of stocks with the highest

IVOL equals 10.98, with a significant t-statistic of 2.59.10

To further buttress the role played by arbitrage risk and valuation uncertainty, we also

consider grouped estimates based on turnover (TO); see Appendix A for details on our

calculations of TO. Turnover is generally thought to be higher for stocks that are more

difficult to value and subject to greater investor disagreement (e.g., Harris and Raviv,

1993; Blume, Easley and O’Hara, 1994). As such, stocks with higher turnover arguably

also pose greater arbitrage price discrepancies (e.g, Kumar, 2009). Consistent with this

view, the estimation results for the TO groupings tell the same general story as the IVOL

groupings: the estimate (t-statistic) for δM
−

equals 8.38 (2.30) for the 50% stocks with

the highest TO, and hence more difficult to value stocks, compared to 5.60 (1.22) for the

50% of stocks with lower TO, and hence stocks subject to less arbitrage risk.

3.3. Upside and Downside Betas

In addition to the standard set of predictor variables included in Table 2, other beta

decompositions have also previously been found to improve upon the traditional CAPM.

Most closely related to the present analysis are the up and downside betas proposed in

the widely-cited study by Ang, Chen and Xing (2006a). Realized versions of the betas

10Additional estimation results for all of the parameters in (9) are available in Supplemental Appendix
S2. Naturally, the hypothesis that the (insignificant) risk premiums for βP and −βM+ are the same is

never rejected for any of the groups by the similarly defined t-statistics for δM
+

.
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advocated therein are naturally defined as:

β̂+
t,i ≡

∑m
k=1 rt,k,if

+
t,k∑m

k=1(f+
t,k)

2
, β̂−t,i ≡

∑m
k=1 rt,k,if

−
t,k∑m

k=1(f−t,k)
2
. (11)

In contrast to the semibetas proposed here, which account for joint asymmetric depen-

dencies by conditioning the covariation on both the signed market and individual asset

returns, the upside and downside betas condition only on the sign of the market return.

For ease of comparison, the first row in Table 3 repeats the baseline results for semi-

betas from Table 2. The second row in Table 3 reports the estimated average risk premi-

ums associated with the upside and downside betas. The results are broadly consistent

with the findings of Ang, Chen and Xing (2006a) in that only β− carries a significant risk

premium. The results are also in line with the estimated risk premiums for the semibetas

presented in the top row, which show that only βN and βM
−

, which account for negative

market comovements, are associated with significant risk premiums.

To more directly compare and contrast the pricing of the semibetas with the pricing

of the up and downside betas, the third row in Table 3 reports the estimates obtained by

including all of the six betas in the same cross-sectional regressions. Despite the relatively

high correlation between the semibetas and the up/downside betas,11 the estimated risk

premium for βN clearly stands out as the most significant with a t-statistic of 3.50,

followed by the premium for βM
−

with a t-statistic of -2.90. Meanwhile, the risk premium

for β− has a t-statistic of only 1.27, suggesting that the information contained in semibetas

effectively subsumes the information in the downside beta in terms of explaining the cross-

sectional variation in the returns. A joint test that all of the semibeta risk premiums are

zero, leaving only the up and downside betas with nonzero risk premiums, also strongly

rejects the null with a p-value of less than 0.01. By contrast, a joint test that both of

the up and downside beta premiums are zero, leaving only the semibetas with nonzero

11Correlations between all of the semibetas and the up/downside betas, along with the other controls,
are presented in Appendix B. The time series averages of the cross-sectional correlations between β+

and βP , and β− and βN , in particular, are as high as 0.91, thus hindering a precise estimation of each
of the individual risk premiums.
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Table 3: Monthly Fama-MacBeth Regressions and Other Measures. The table reports the
estimated annualized risk premia and Newey-West robust t-statistics from overlapping monthly Fama-
MacBeth cross-sectional predictive regressions. The monthly semibetas, up and downside betas, coskew-
ness and cokurtosis measures are calculated from daily data. The estimates are based on all of the
common, non-penny, stocks in the CRSP data base from January 1963 to December 2019.

βN βP βM
+

βM
−

β+ β− CSK CKT R2

10.54 1.84 4.59 -6.00 5.16
4.51 1.17 1.32 -1.97

1.21 3.23 3.41
1.85 3.84

11.53 -2.30 2.82 -11.20 -6.21 1.84 5.48
3.50 -0.55 1.34 -2.90 -0.97 1.27

5.44 2.13 1.68
3.05 2.77

18.03 -1.59 3.70 -11.32 12.13 -2.64 6.40
5.02 -0.76 1.09 -3.31 4.36 -3.41

premiums, fails to reject the null, with a p-value of 0.16.

To facilitate a more direct test of whether the semibetas provide superior cross-

sectional pricing predictions compared to the up and downside betas, notice that the

latter can be obtained as a weighted sum of the former:

β̂+
t,i = (β̂Pt,i − β̂M

+

t,i )

∑m
k=1 f

2
t,k∑m

k=1(f+
t,k)

2
,

β̂−t,i = (β̂Nt,i − β̂M
−

t,i )

∑m
k=1 f

2
t,k∑m

k=1(f−t,k)
2
.

Since the weights on the semibetas only involve functions of market returns, they do not

vary in the cross-section. Accordingly, the semibeta pricing model proposed here reduces

to the up and downside beta pricing model of Ang, Chen and Xing (2006a) if the following

restrictions hold on a per period basis:

HUP+DOWN
0,t : λNt = −λM−t ∩ λPt = −λM+

t . (12)

We find that this hypothesis is rejected at the 5% level for 42.0% of the 684 monthly

cross-sectional regressions (recall that the stricter CAPM restrictions in (8) were rejected
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at the 5% level for 46.1% of the months in the sample). Going one step further, we can

also test the stronger hypothesis that only downside beta risk is priced:

HDOWN
0,t : λNt = −λM−t ∩ λPt = −λM+

t = 0. (13)

We find that this hypothesis is rejected at the 5% level for 50.5% of the months in the

sample.

The period-by-period restrictions in (12) and (13) obviously imply that the same re-

strictions must hold on average. The simple t-statistics for testing the hypothesis that

λN = −λM− for the different groups of stocks discussed in Section 3.2 above already

pointed to arbitrage risk as the likely culprit behind the rejection of this hypothesis. In

other words, the presence of market frictions and limits-to-arbitrage implies that con-

sidering only downside betas entails a significant loss of information relative to a model

based on downside semibetas.

3.4. Coskewness and Cokurtosis

The semibetas succinctly account for non-Normally distributed systematic risks by

conditioning on the signed returns. A number of other, more statistically oriented, mea-

sures have been explored in the literature as a way to capture non-Normal asymmetric

joint return dependencies and the possible pricing thereof. Most notably among these is

arguably coskewness, as originally proposed by Kraus and Litzenberger (1976), and ana-

lyzed more extensively by Harvey and Siddique (2000) and Christoffersen, Honarvar and

Ornthanalai (2017) among others. Other studies have similarly argued that cokurtosis

appears to be priced in the cross-section; see, e.g., Dittmar (2002) and Ang, Chen and

Xing (2006a). Directly following these studies, we calculate monthly realized coskewness
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and cokurtosis measures for stock i by:

CSKt,i =
1
m

∑m
k=1(rt,k,i−r̄t,i)(ft,k−f̄t)2√

1
m

∑m
k=1(rt,k,i−r̄t,i)2 1

m

∑m
j=1(ft,k−f̄t)2

, (14)

CKTt,i =
1
m

∑m
k=1(rt,k,i−r̄t,i)(ft,k−f̄t)3√

1
m

∑m
k=1(rt,k,i−r̄t,i)2 ( 1

m

∑m
k=1(ft,k−f̄t)2)

3/2 , (15)

where f̄t and r̄t,i denote the month t average return on the market and stock i, respectively.

In line with the studies cited above, the estimated risk premiums for the monthly CSK

and CKT measures, reported in the fourth row of Table 3, are indeed both statistically

significant. Meanwhile, comparing the top row with the penultimate row, shows that

the semibeta pricing model fits the data much better than the coskewness/cokurtosis

model, with an average cross-sectional R2 of 5.16% compared to 1.68%. Combining all

six measures in a single model, as in the bottom row of the table, further improves the

R2 to 6.40%. Importantly, however, the t-statistics associated with βN and βM
−

both

remain strongly significant in the regression that includes CSK and CKT.

At the same time, joint tests that the semibeta premiums, or the coskewness/cokurtosis

premiums, are equal to zero are both rejected at the 5% level. As such, this indicates

that while coskewness and cokurtosis have substantially less cross-sectional explanatory

power than semibetas, they do contain additional information about non-linear depen-

dencies over and above the semibetas. This is perhaps not surprising, as coskewness

and cokurtosis are primarily driven by joint dependencies in the tails, and several recent

studies have argued that such systematic tail risks appear to be priced differently from

other risks (see, e.g., Kelly and Jiang, 2014; Bollerslev, Li and Todorov, 2016; Orlowski,

Schneider and Trojani, 2019; Chabi-Yo, Huggenberger and Weigert, 2019). By contrast,

the semibetas advocated here rely on a simple decomposition of the standard covariation

with the market and more “normal” systematic risks.
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4. High-Frequency Data and Daily Semibetas

It is well established that temporally aggregated returns tend to be closer to be-

ing Normally distributed than more finely sample returns (see, e.g., Campbell, Lo and

MacKinlay, 1997; Engle, 2011). As such, the monthly realized semibetas constructed from

daily returns that underlie the results discussed in the previous section may obscure more

subtle non-Normal dependencies that would be visible with daily realized semibetas con-

structed from higher frequency intraday returns. Of course, the theory underlying the

realized semibetas consistently estimating the true latent covariation components also

formally hinges on the use of ever finer sampled returns over fixed time intervals, which is

better mimicked empirically with the use of intraday returns as opposed to daily returns

in the construction of the betas.

Hence, we therefore extend our previous analysis by investigating the pricing of daily

semibetas constructed from high-frequency intraday data. Our analyses rely on high-

frequency data obtained from the Trades and Quotes (TAQ) database. We include all

of the S&P 500 constituent stocks during the January 1993 to December 2019 sample

period, resulting in a total of 6,799 trading days and 1,182 unique securities. We adopt

a 15-minute sampling scheme, or m = 26 return observations per day, in our calculations

of the realized semibeta measures. This choice strikes a judicious balance between biases

induced by market microstructure effects when sampling too finely versus the theoreti-

cal continuous-time arguments underlying the consistency of the realized semicovariance

measures.12 We further match the intraday TAQ data and sample of stocks to the CRSP

database to obtain the full-day returns for each of the stocks (this also ensures proper

handling of stock splits and dividends). All of our subsequent asset pricing investigations

12Although a finer 5-minute sampling frequency has often been used in the realized volatility literature
for the calculation of univariate realized volatility measures (see, e.g., Liu, Patton and Sheppard, 2015,
and the many references therein), market microstructure effects are further compounded in a multivari-
ate setting by the so-called Epps (1979) effect, which leads to a downward bias in realized covariation
measures stemming from asynchronous prices. Correspondingly, we resort to a coarser 15-minute sam-
pling frequency, also used by Bollerslev, Li, Patton and Quaedvlieg (2020a) in their analysis of realized
semicovariances for a similar sample of individual stocks.
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Table 4: Daily Fama-MacBeth Regressions The table reports the estimated annualized risk premia
and Newey-West robust t-statistics from daily Fama-MacBeth cross-sectional predictive regressions. The
daily semibetas are calculated from fifteen-minute intraday data. All of the control variables are measured
prior to the daily returns, as detailed in Appendix A. The estimates are based on all of the S&P 500
constituent stocks and days in the January 1993 to December 2019 sample.

β βN βP βM
+

βM
−

ME BM MOM REV RV IVOL ILLIQ R2

4.49 2.57
3.42

18.10 -0.23 -4.49 -7.82 5.42
5.40 -0.09 -1.14 -2.19

19.02 -4.10 -2.63 -11.41 -1.78 -2.01 0.09 8.62
5.86 -1.64 -0.73 -3.27 -3.63 -1.94 3.36

18.79 -1.57 2.33 -7.18 -2.70 -2.64 0.08 -0.43 0.43 -3.26 -0.83 11.23
5.87 -0.61 0.68 -2.02 -4.62 -2.55 2.83 -5.20 2.16 -4.45 -2.62

are based on these full-day and resulting longer weekly and monthly returns. We also

rely on the daily market capitalization for each of the individual stocks from the CRSP

database in our construction of the high-frequency value-weighted market index.

A full set of descriptive summary statistics for the resulting daily realized semibetas

are provided in Appendix B. The general features fairly closely mirror those of the

monthly semibetas discussed in Section 2.2 above. The average values of the two concor-

dant semibetas (βP and βN ) exceed the average values of the two discordant semibetas

(βM
+

and βM
−

), and βP and βN are also both more strongly correlated with the tra-

ditional market beta (β), than βP and βN . Underpinning our use of the daily realized

semibetas in daily predictive Fama-MacBeth regressions, the daily semibetas are even

more strongly autocorrelated than the monthly semibetas, with first-order autocorrela-

tions around 0.9.13

Turning to the daily Fama-MacBeth regressions, Table 4 reports the estimated annu-

alized risk premiums, along with their t-statistics based on Newey-West robust standard

errors (using 22 lags), together with the time-series average of the R2s from the first-stage

cross-sectional regressions. Consistent with the idea that the use of daily returns in the

13The autocorrelations for the daily semibetas are shown in the Supplemental Appendix S3. To further
highlight the additional information about asymmetric dependencies conveyed by the daily semibetas,
S4 in the Supplemental Appendix compares the estimated realized semibetas to the limiting values that
would obtain if the daily individual stock and market returns were jointly Normally distributed.
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estimation of monthly semibetas blurs some of the inherent asymmetric dependencies

captured by the daily realized semibetas, the daily semibetas reveal even stronger pre-

dictive pricing relationships than the corresponding results for the monthly semibetas in

Table 2. However, the same key findings remain true: the risk premiums for βN and βM
−

are both significant, while the risk premiums for βP and βM
+

are both insignificant. Fur-

ther mirroring the monthly results, the explanatory power of the semibeta pricing model

is again more than double that of the traditional CAPM reported in the top row, with an

average cross-sectional R2 of 5.42% compared to just 2.57%.14 Further corroborating the

robustness of the daily results, the bottom two rows of Table 4 show that the significance

of the risk premiums for the daily βN and βM
−

remain intact to the inclusion of the same

set of controls considered with the monthly semibetas in Table 2.

Our discussion in Section 3.2 pointed to arbitrage risk as a possible explanation for

the difference in the absolute values of the estimated risk premiums for the monthly βN

and βM
−

. To further bolster that conjecture, we repeat the same stratified estimation

approach for the daily semibetas, considering separate groups of stocks with high and

low arbitrage risks, formally comparing the resulting risk premium estimates with the

aid of the reparameterized regression in (9) and t-statistic for testing δM
−

equal to zero.

In particular, considering the 50% of stocks with the lowest IVOL for each of the days

in the sample, the estimate of δM
−

equals 2.58, with an insignificant t-statistic of 0.54,

while the estimate of δM
−

for the 50% of stocks with the highest IVOL equals 23.93, with

a highly significant t-statistic of 3.82.15 Partitioning the sample into the 50% stocks with

the highest and lowest daily turnover (TO), the estimates (t-statistics) for δM
−

equal

-3.89 (-0.79) and 8.04 (2.18), respectively. As such, these results again suggest that the

different risk premiums for βN and −βM− may at least in part be attributed to arbitrage

risk.

14Tests of the restriction that the risk premiums associated with the four semibetas are indeed the
same, corresponding to the HCAPM

0,t hypothesis in equation (8), are rejected at the 5% level for 70.0%
of the 6,799 days in the sample.

15Estimation results pertaining to all of the parameters in (9) are again available in Supplemental
Appendix S2.
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Table 5: Daily Fama-MacBeth Regressions on Other Measures The table reports the estimated
annualized risk premia and Newey-West robust t-statistics from daily Fama-MacBeth cross-sectional
predictive regressions. The daily semibetas, up and downside betas, and coskewness and cokurtosis
measures are calculated from fifteen-minute intraday data based on all of the S&P 500 constituent
stocks and days in the January 1993 to December 2019 sample.

βN βP βM
+

βM
−

β+ β− CSK CKT R2

18.10 -0.23 -4.49 -7.82 5.42
5.40 -0.09 -1.14 -2.19

-0.37 5.71 3.60
-0.38 5.32

15.84 -8.69 7.76 -11.13 -4.27 2.10 6.48
3.89 -1.03 0.78 -2.16 -1.05 0.78

-1.86 0.88 1.51
-0.71 0.96

26.21 -2.19 -5.06 -14.99 10.93 -3.71 6.31
6.28 -0.73 -1.20 -4.00 3.18 -3.68

In parallel to our analysis of the monthly semibetas in Section 3.3, Table 5 further

shows that the inclusion of daily equivalents to the up and downside betas and coskewness

and cokurtosis measures do not affect the significance of the daily semibetas. Consistent

with Ang, Chen and Xing (2006a), the estimates in the second row imply that only

downside beta risk is priced. However, the inclusion of the semibetas in the cross-sectional

regressions, reported in the third row of the table, again renders the estimated risk

premiums for both β+ and β− insignificant.16 In contrast to the monthly results in

Table 3, the estimated risk premiums for the daily CSK and CKT measures, reported in

the fourth row of Table 5, are both insignificant. Meanwhile, as shown in the last row

of the table, CSK and CKT both become significant when included together with the

semibetas. Importantly, however, the estimated risk premiums for the daily βN and βM
−

remain strongly significant in the cross-sectional regressions that include the daily CSK

and CKT measures.

16Hypothesis HUP+DOWN
0,t in equation (12), corresponding to symmetric pricing of the pairs of semi-

betas, is also rejected at the 5% level for 63.5% of the 6,799 daily cross-sectional regressions, while the
stronger HDOWN

0,t hypothesis in equation (13), corresponding to only downside beta risk being priced, is
rejected at the 5% level for an even larger 72.8% of the daily regressions.
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4.1. Daily Semibetas and Longer Investment Horizons

The strong predictive relationship between the daily realized semibetas and the cross-

sectional variation in the subsequent daily returns naturally raises the question of whether

this same predictive relationship based on daily semibetas carries over to longer invest-

ment horizons? To investigate this, we rely on the identical day t realized semibetas and

cross-sectional regression in (6) in which we replace the left-hand-side daily returns with

the cumulative returns from day t+ 1 to day t+h, setting h = 5 and h = 20, correspond-

ing to a “week” and a “month,” respectively.17 This effectively amounts to using daily

semibetas to predict multiple daily returns, and the sum thereof, further into the future,

and as such one might expect the longer horizon results to be weaker than the results for

the one-day-ahead return predictions.

Nonetheless, the results reported in Table 6 are generally in line with the daily return

predictions reported in Table 4. They are also consistent with the results for the monthly

semibetas and monthly forecast horizons for the wider sample of stocks discussed Section

3: the estimated risk premiums for βN and βM
−

are both highly statistically significant,

while neither βP nor βM
+

appear to be priced. Testing the restrictions implied by the

CAPM, as given by HCAPM
0,t in equation (8), we reject the null at the 5% significance

level for 67.2% and 63.3% of the weekly and monthly regressions, respectively. Testing

the symmetric pricing restriction, given by hypothesis HUP+DOWN
0,t in equation (12), we

reject the null at the 5% level for 61.5% and 59.0% of the weekly and monthly regressions,

respectively. Also, the hypothesis that the risk premiums for βN and βM
−

are the same

and that neither βP nor βM
+

is priced, as stipulated by HDOWN
0,t in equation (13), is

rejected at the 5% level for 69.4% and 66.3% of the weekly and monthly regressions,

respectively.

Further corroborating the findings in Table 4 based on a shorter daily investment

horizon, the weekly and monthly λN and λM
−

estimates both remain statistically signif-

17We purposely rely on overlapping return windows and appropriately adjusted standard errors and
t-statistics to enhance the efficiency of our inference. However, qualitatively similar findings are obtained
with non-overlapping return windows.
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Table 6: Daily Semibetas and Weekly and Monthly Investment Horizons. The table reports the
estimated annualized risk premia and Newey-West robust t-statistics from daily Fama-MacBeth cross-
sectional regressions for predicting the future weekly (5-days) and monthly (20-days) returns. The daily
semibetas are calculated from fifteen-minute intraday data on the last day preceding the return window.
All of the control variables are measured prior to the daily returns. The estimates are based on all of
the S&P 500 constituent stocks and days in the January 1993 to December 2019 sample.

β βN βP βM
+

βM
−

ME BM MOM REV RV IVOL ILLIQ R2

Panel A: Weekly

4.74 2.29
4.47

12.42 1.28 6.34 -12.30 5.09
5.98 0.79 2.72 -4.13

9.26 0.89 2.38 -12.38 -3.20 -2.77 0.08 -0.30 0.16 -0.99 -0.98 11.44
5.37 0.60 1.44 -4.33 -5.94 -2.84 2.74 -4.31 1.46 -1.55 -3.99

Panel B: Monthly

2.73 1.85
3.07

7.20 1.51 3.18 -3.66 4.41
4.45 1.24 1.70 -1.65

4.40 0.56 -0.23 -5.82 -2.82 -2.50 0.07 -0.23 -0.16 0.51 -0.62 11.19
3.53 0.53 -0.18 -2.80 -6.34 -2.96 2.61 -4.33 -1.93 0.92 -3.76

icant when including the same set of widely used control variables. At the same time,

comparing the magnitudes of the estimated semibeta risk premiums, the (annualized)

monthly estimates are naturally smaller than the (annualized) weekly estimates, as the

strength of the predictability afforded by the daily semibetas diminishes with the return

horizon.

5. Betting On, and Against, Semibetas

To help better assess not just the statistical, but also the economic significance of

the semibeta pricing, this section showcases the performance of various semibeta trading

strategies. In addition to portfolios that “bet on βN” and “bet against βM
−

,” we also

consider a combined semibeta strategy comprised of an equal-weighted combination of

“betting on βN” and “betting against βM
−

” portfolios. To most accurately capture the
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inherent non-linear dependencies underling the differential pricing of the semibetas, we

purposely rely on daily realized semibetas. For comparison purposes, we also include a

long-short strategy based on the traditional market beta.18

To avoid the critiques of Novy-Marx and Velikov (2018), we form the long-short

portfolios using well-established methods. Firstly, we estimate betas and semibetas using

standard, if modern, methods from high frequency econometrics, as detailed above. We

then take a value-weighted long position in the top quintile and a value-weighted short

position in the bottom quintile of stocks, rebalanced daily, to obtain zero-cost portfolios.

We rely on continuously-compounded, as opposed to arithmetic, returns to facilitate the

calculation of the cumulative portfolio returns over longer holding periods. We restrict

the sample of stocks to the constituents of the S&P 500 index, thus explicitly excluding

small, and potentially difficult to short micro-cap stocks. We use the popular four-factor

model of Fama and French (1993) and Carhart (1997) (FFC4) as well as the five-factor

model of Fama and French (2015) (FF5) to assess the risk-adjusted performance of the

portfolios.

The top panel of Table 7, reports the average returns, standard deviations and an-

nualized Sharpe ratios for the long-short portfolios. The average return on the Semi-β

portfolio is nearly double that of the beta portfolio, while the volatility is just over half

that of the beta portfolio, combining to yield a Sharpe ratio of 0.92 compared to 0.37

for the traditional market beta portfolio.19 The latter two columns show that both the

βN and βM
−

components of the Semi-β portfolio contribute to its superior performance:

the βN portfolio generates much higher returns and comparable volatility to the stan-

dard beta portfolio, while the βM
−

portfolio generates similar returns with much lower

volatility.

18The Supplemental Appendix contains additional results for a portfolio which takes long positions in
high βN stocks and short positions in high βM

−
stocks, and a portfolio based on long positions in low

βM
−

stocks and short positions in low βN stocks. The performance of these two additional betting on
and against semibeta portfolios are qualitatively similar to that of the semibeta portfolio presented here.

19Identical rankings of the four portfolios are obtained when using the sample mean of the squared
demeaned negative daily returns in place of the daily sample variance in the calculation of downside
Sharpe type ratios. Further details of these additional results are available in the Supplemental Appendix.
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Table 7: Betting On and Against Semibetas. The top panel reports annualized descriptive statistics
of the betting on and against (semi)beta strategies. The βN strategy bets on βN , the βM

−
strategy bets

against βM
−

, while the Semi-β strategy represents an equally weighted combination of the former two
strategies. All of the portfolios are self-financing based on value-weighted long-short positions rebalanced
daily. The bottom panel reports the time-series regression estimates and Newey-West robust t-statistics
for the FFC4 and FF5 factor models, along with the corresponding alphas in annualized percentage
terms. The estimates are based on all of the S&P 500 constituent stocks and days in the 1993-2019
sample.

β Semi-β βN βM
−

Avg ret 5.62 8.17 10.02 5.56
Std dev 15.37 8.86 15.78 7.80
Sharpe 0.37 0.92 0.63 0.71

α 2.52 3.94 6.84 7.52 6.89 8.59 6.02 5.68
1.21 1.98 5.92 6.49 3.31 4.22 3.93 3.65

βMKT 0.57 0.50 0.28 0.25 0.59 0.51 -0.02 -0.01
75.03 62.98 67.31 53.06 76.91 62.03 -3.22 -2.28

βSMB 0.27 0.15 0.31 0.24 0.39 0.26 0.23 0.22
18.94 10.67 38.92 28.43 27.12 17.78 21.88 19.12

βHML -0.01 0.22 -0.01 0.16 -0.06 0.20 0.04 0.12
-0.42 14.59 -1.10 17.85 -3.98 12.61 3.72 9.97

βMOM -0.21 -0.16 -0.22 -0.10
-20.47 -27.83 -21.16 -13.06

βRMW -0.42 -0.25 -0.46 -0.03
-21.65 -21.46 -22.80 -2.13

βCMA -0.33 -0.24 -0.40 -0.08
-14.01 -17.42 -16.37 -4.48

R2 56.11 58.20 55.83 56.68 58.98 61.96 10.19 8.02

The lower panel of Table 7 reports the estimated FFC4 and FF5 alphas and factor

loadings for the different portfolios. The traditional beta strategy generates an annualized

alpha of 3.94% according to the FF5 factor model, with a t-statistic of 1.98. The beta

strategy generates no significant alpha according to the FFC4 factor model. By contrast,

the Semi-β strategy, and both of its underlying components, generate large and significant

alphas, according to both the FFC4 and FF5 factor models. The annualized alphas range

from 5.68% to 8.59%, with the corresponding t-statistics between 3.31 and 6.49.20 These

20The inclusion of a betting against beta (BAB) factor in the FF3 model results in an even larger
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alphas will, of course, be reduced when accounting for transactions costs, and we analyze

this in more detail below.

Looking at the estimated factor loadings, the conventional long-short β portfolio and

the βN portfolio exhibit fairly similar FFC4 and FF5 systematic risk exposures. Mean-

while, the estimated factor loadings for the βM
−

portfolio are markedly different. In

contrast to the other portfolios, the βM
−

portfolio is close to market neutral. The FFC4

estimates further suggest that the portfolio contains a higher proportion of value stocks

than the other portfolios, while the FF5 estimates point to decidedly lower exposures

to the profitability and investment factors than any of the other portfolios. The com-

bined Semi-β strategy naturally reflects these different risk profiles of the βN and βM
−

portfolios.21

5.1. Betting On the Competition

To underscore the superiority of the semibeta portfolio, Table 8 reports the results

from analogously constructed up and downside beta, and coskewness and cokurtosis port-

folios. Given the pertinent discussion in Ang, Chen and Xing (2006a) and Harvey and

Siddique (2000), we consider value-weighted long-short positions based on the top and

bottom quintiles of stocks betting on β−, against β+, against CSK, and on CKT . In

parallel to the semibeta portfolios discussed above, we also consider equal-weighted com-

binations of the two respective pairs of portfolios, denoted “β−−β+” and “CKT−CSK”

alpha of 9.04% for the Semi β strategy, with a corresponding t-statistic of 8.42. To guard against
potential biases in the unconditional alphas arising from temporal variation in conditional betas (see,
e.g., Jagannathan and Wang (1996) and Lewellen and Nagel (2006)), we also calculated conditional
alphas following the approach of Cederburgh and O’Doherty (2016) (cf. Section II.B). The same general
conclusions remain true: the semibeta portfolios result in highly significant positive conditional alphas,
while the conditional alphas for the standard beta portfolios are always insignificant. The magnitudes
of the average conditional alphas for the Semi β and βN portfolios are also very similar to the values
reported in Table 7, while the average conditional alphas for the βM

−
portfolios are marginally lower.

Further details of these additional results are available in the Supplemental Appendix.
21To further explore these differences in risk profiles, we also calculated industry concentrations. The β

and βN portfolios again appear fairly similar along that dimension. Most noticeably, the βM
−

portfolio
on average invest less in HiTech firms and more in Non-durables than the other two portfolios. Moreover,
it is generally less concentrated with lower overall industry exposures. Further details are available in
the Supplemental Appendix.
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in the table.22

The top panel in Table 8 reveals that only the β− portfolio has a Sharpe ratio in excess

of the conventional beta sorted portfolio. However, the Sharpe ratio of 0.49 for the β−

portfolio is still substantially lower than the Sharpe ratios for all of the semibeta-based

strategies in Table 7. The lower panel in Table 8 further shows that the FFC4 and FF5

alphas for the CSK and CKT portfolios are all small and statistically insignificant. Only

the β− portfolio obtains significant alphas of 4.15% and 5.64% for the FFC4 and FF5

factor models, respectively. As one might expect, the estimated risk exposures for the β−

portfolio are fairly similar to the estimates for the semibeta portfolio reported in Table 7.

However, in spite of these similarities in risk profiles, the annualized FFC4 and FF5 alphas

for the combined Semi-β portfolio are both larger and much more strongly significant than

the alphas for the β− portfolio, again highlighting the superior performance of the betting

on and against semibeta strategy.

5.2. Longer Holding Periods

The daily rebalancing of the long-short (semi)beta strategies considered in Table 7

may be difficult to implement in practice. To alleviate this concern, we consider the

performance of the same portfolio strategies based on less frequent weekly and monthly

rebalancing, or equivalently longer weekly and monthly holding periods.

Table 9, in particular, shows that moving to weekly rebalancing adversely affects the

traditional beta strategy, with the the Sharpe ratio falling markedly from 0.37 to 0.16.

Moreover, the FF5 alpha that was borderline significant with daily rebalancing becomes

small and insignificant. By contrast, the Semi-β strategy reported in the second set of

columns continues to outperform. The Sharpe ratio does decrease from 0.92 to 0.59,

and the annualized alphas are also somewhat lower than the alphas obtained with more

22Ang, Chen and Xing (2006a) note that β+ tends to be positively correlated with β, leading to an
ambiguous prediction for the sign of the relationship between β+ and expected returns. To overcome
this, they suggest sorting on the “relative” β+, defined as β − β+. We also implemented this approach
and found that the resulting portfolio did indeed have a higher Sharpe ratio than the portfolio based
solely on β+. However, the FFC4 and FF5 alphas were small and statistically insignificant. We omit
these results in the interests of space.
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Table 9: Betting On and Against Semibetas with Weekly Rebalancing. The top panel reports
annualized descriptive statistics of the betting on and against (semi)beta strategies. The βN strategy bets

on βN , the βM
−

strategy bets against βM
−

, while the Semi-β strategy represents an equally weighted
combination of the former two strategies. All of the portfolios are self-financing based on value-weighted
long-short positions rebalanced weekly. The bottom panel reports the time-series regression estimates
and Newey-West robust t-statistics for the FFC4 and FF5 factor models, along with the corresponding
alphas in annualized percentage terms. The estimates are based on all of the S&P 500 constituent stocks
and days in the 1993-2019 sample.

β Semi-β βN βM
−

Avg ret 2.33 4.91 6.71 2.41
Std dev 14.24 8.31 14.57 7.44
Sharpe 0.16 0.59 0.46 0.32

α -0.29 0.95 3.83 4.45 4.21 5.49 2.74 2.71
-0.14 0.48 3.40 3.84 2.21 2.85 1.95 1.91

βMKT 0.50 0.44 0.24 0.20 0.50 0.44 -0.02 -0.03
66.99 56.06 57.40 43.90 71.40 56.45 -4.73 -4.81

βSMB 0.26 0.16 0.31 0.25 0.37 0.26 0.25 0.23
19.05 11.00 40.21 29.34 28.56 18.84 25.74 22.35

βHML -0.06 0.13 -0.04 0.09 -0.09 0.12 0.01 0.06
-4.14 8.38 -5.10 10.33 -6.93 8.48 1.15 5.25

βMOM -0.18 -0.13 -0.20 -0.06
-18.29 -23.50 -21.68 -8.09

βRMW -0.40 -0.22 -0.40 -0.05
-20.56 -19.68 -21.02 -3.74

βCMA -0.24 -0.18 -0.31 -0.05
-10.46 -12.98 -13.57 -2.79

R2 50.76 52.63 47.95 48.92 52.68 54.52 10.21 9.65

frequent daily rebalancing. However, both the FFC4 and FF5 alphas remain strongly

significant, with t-statistics of 3.40 and 3.84, respectively.

Table 10 presents the corresponding results based on even less frequent monthly port-

folio rebalancing. The Sharpe ratio for the traditional beta strategy decreases even further

to 0.01, and the corresponding FFC4 and FF5 alphas both become negative, albeit not

statistically significantly so. The Semi-β portfolio, on the other hand, retains its appeal.

The Sharpe ratio of 0.42 is obviously lower than the ratios obtained with daily and weekly

rebalancing, and the annualized FFC4 and FF5 alphas are also both less than the corre-

sponding daily and weekly alphas. Still, both of the alphas remain statistically significant,

consistent with the analysis in Section 4.1, and the relationship between semibetas and
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Table 10: Betting On and Against Semibetas with Monthly Rebalancing. The top panel reports
annualized descriptive statistics of the betting on and against (semi)beta strategies. The βN strategy bets

on βN , the βM
−

strategy bets against βM
−

, while the Semi-β strategy represents an equally weighted
combination of the former two strategies. All of the portfolios are self-financing based on value-weighted
long-short positions rebalanced monthly. The bottom panel reports the time-series regression estimates
and Newey-West robust t-statistics for the FFC4 and FF5 factor models, along with the corresponding
alphas in annualized percentage terms. The estimates are based on all of the S&P 500 constituent stocks
and days in the 1993-2019 sample.

β Semi-β βN βM
−

Avg ret 0.14 3.44 2.87 3.39
Std dev 13.52 8.10 13.87 7.16
Sharpe 0.01 0.42 0.21 0.47

α -2.10 -1.17 2.41 3.03 0.69 1.75 3.50 3.70
-1.09 -0.63 2.13 2.65 0.37 0.94 2.76 2.90

βMKT 0.45 0.41 0.22 0.19 0.45 0.40 0.00 -0.01
63.99 53.91 53.84 41.86 65.75 53.05 -0.50 -2.26

βSMB 0.23 0.13 0.31 0.25 0.36 0.25 0.27 0.25
17.68 9.32 40.62 30.25 28.21 18.72 31.07 26.98

βHML -0.07 0.09 -0.04 0.07 -0.06 0.14 -0.03 0.01
-5.21 5.97 -5.64 8.39 -4.89 9.85 -3.05 0.53

βMOM -0.18 -0.12 -0.21 -0.03
-19.35 -21.77 -22.74 -5.11

βRMW -0.38 -0.23 -0.39 -0.07
-20.67 -20.13 -21.24 -5.19

βCMA -0.16 -0.15 -0.26 -0.04
-7.12 -11.14 -11.88 -2.83

R2 46.84 47.90 46.72 47.86 49.71 50.86 12.76 12.94

future returns holding true at daily, weekly, and monthly horizons.

5.3. Transaction Costs

The analysis above pertaining to the profitability of the various betting on and against

(semi)beta strategies did not take into account the cost of actually implementing the

portfolio positions. Such costs are clearly important in practice. Hence, in this section

we explicitly consider the impact of transaction costs.

To better replicate empirical practice of not “trading too much,” we focus on the

Semi-β portfolio with monthly rebalancing. In parallel to existing work (e.g., Han, 2006;

DeMiguel, Garlappi and Uppal, 2009; Liu, 2009), we assume that the transaction costs
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are proportional to the turnover of the portfolio, with the portfolio turnover computed

simply as the sum of the turnover of the long and short legs of the portfolio. To provide

an empirically realistic upper bound (see, e.g., the transaction cost estimates in Novy-

Marx and Velikov, 2016), we simply fix the roundtrip trading costs at 0.5% for all of the

S&P 500 stocks in the sample.23

Rather than trading all the way to the positions that would be “optimal” in the

absence of transaction costs, several procedures have been developed in the literature to

help mitigate trading costs (e.g., Bertsimas and Lo, 1998; Engle and Ferstenberg, 2007;

Obizhaeva and Wang, 2013). These procedures are typically geared towards the specific

setting and strategy at hand and can be difficult to realistically implement. Instead, we

follow the simple-to-implement idea of Garleanu and Pedersen (2013) of only partially

adjusting the portfolio weights each period. Specifically, let ωFt denote the vector of

(fully-adjusted) semibeta portfolio weights in month t. The partially-adjusted portfolio

weights for month t are then obtained as:24

ωPt = λωPt−1 + (1− λ)ωFt , (16)

where the scalar parameter 0 < λ < 1 governs the speed of adjustment. While such a

partial-adjustment approach will help mitigate turnover, it will generally also dampen the

signal. As such, the benefits will depend in a complicated way on the interaction between

the particular strategy and the transaction costs that are incurred, and the best choice

of λ must therefore also be determined on a case-by-case basis. We do not attempt to

do so here. Instead, in line with similar uses of moving average filters in other situations,

volatility estimation included, we simply set λ = 0.95 and initialize the weights by fixing

23Additional results for other transaction costs assumptions are available in the Supplemental Ap-
pendix.

24This same approach has also recently been implemented by Bollerslev, Hood, Huss and Pedersen
(2018). Garleanu and Pedersen (2013) further suggest changing the “target portfolio” to one that is
part-way between the currently fully-adjusted optimal portfolio and the best estimate of next period’s
optimal portfolio. We have not attempted to implement this additional refinement here.
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Table 11: Betting On and Against Semibetas with Transaction Costs. The top panel reports
annualized descriptive statistics for the Semi-β portfolios, constructed as an equally weighted combination
of βN portfolios that bet on βN , and βM

−
portfolios that bet against βM

−
. The bottom panel reports

the time-series regression estimates and Newey-West robust t-statistics for the FFC4 and FF5 factor
models, along with the corresponding alphas in annualized percentage terms. All of the portfolios are
self-financing based on value-weighted long-short positions determined by the combined semibeta strategy
rebalanced monthly. The roundtrip transaction cost (T-cost) is set to 0.5%. The two left-most columns
are identical to the second set of columns in Table 10 with fully adjusted portfolio weights. The second
set of columns incorporate transaction costs. The right two sets of columns report the results based on
partially-adjusted portfolio weights as discussed in the main text, without and with transaction costs.
The estimates are based on all of the S&P 500 constituent stocks and days in the 1993-2019 sample.

Adjustment Full Full Partial Partial
T-cost No Yes No Yes

Avg ret 3.44 -2.75 3.75 3.46
Std dev 8.10 8.29 7.32 7.32
Sharpe 0.42 -0.33 0.51 0.47

α 2.41 3.03 -3.79 -3.15 2.22 3.65 1.93 3.36
2.13 2.65 -3.34 -2.75 2.45 4.12 2.12 3.79

βMKT 0.22 0.19 0.22 0.19 0.23 0.18 0.23 0.18
53.84 41.86 54.12 41.89 70.22 50.54 70.19 50.50

βSMB 0.31 0.25 0.32 0.25 0.28 0.23 0.28 0.23
40.62 30.25 40.84 30.27 46.11 35.67 46.09 35.64

βHML -0.04 0.07 -0.04 0.08 -0.10 -0.03 -0.10 -0.03
-5.64 8.39 -5.17 8.71 -15.62 -4.48 -15.60 -4.46

βMOM -0.12 -0.12 -0.01 -0.01
-21.77 -21.59 -2.80 -2.80

βRMW -0.23 -0.23 -0.22 -0.22
-20.13 -20.54 -25.11 -25.11

βCMA -0.15 -0.15 -0.17 -0.17
-11.14 -11.03 -16.22 -16.21

R2 46.72 47.86 44.81 46.08 50.91 56.90 50.89 56.89

ωP1 ≡ ωF1 .25

Table 11 summarizes the performance of the resulting partially-adjusted Semi-β port-

folios. For ease of comparison, the two left-most columns present the results using fully-

adjusted portfolio weights with no transaction costs, corresponding to the second set

of columns in Table 10. The second set of columns incorporate transaction costs. As

the numbers show, doing so severely affects the performance of the semibeta strategy,

25The Supplemental Appendix contains additional results for alternative choices of λ, further high-
lighting the trade-off in signal retention and transaction cost reduction. It also contains additional results
for alternative, more involved, procedures based on smoothing the semibeta estimates.

37



resulting in significantly negative alphas. To help combat this detrimental impact of

“too much trading,” the last two sets of columns present the results for the partially-

adjusted portfolios, with and without transaction costs. Interestingly, partially adjusting

the portfolio weights slightly improves the performance, even in the absence of transac-

tion costs. Compared to the numbers in the first sets of columns, the average return

is slightly higher, the volatility is slightly lower, resulting in an increase in the Sharpe

ratio from 0.42 to 0.51. Likewise, the alphas are also both more strongly significant for

the portfolio based on partially-adjusted weights. In other words, trading only part of

the way to the target not only reduces turnover, it seemingly also reduces the “noise”

in the semibeta estimates, thereby strengthening the signal, and in turn resulting in an

overall slightly better performing portfolio. The results in the last set of columns further

highlight the advantage of the partial adjustment approach in the presence of transaction

costs. Incorporating transaction costs naturally lowers the average returns and Sharpe

ratios compared to the partially-adjusted portfolio without transaction costs. However,

the performance of the partially-adjusted portfolio clearly beats that of the fully-adjusted

portfolio with transaction costs. The FFC4 and FF5 alphas for the partially-adjusted

semibeta portfolio also both remain positive and statistically significant, with t-statistics

of 2.12 and 3.79, respectively.

To visualize the timing of the returns, and more clearly contrast the performance of the

semibeta strategy with the returns based on a traditional long-short beta strategy, Figure

3 plots the cumulative returns from both. In both cases we rely on the partially-adjusted

portfolio weights. The solid lines depict the cumulative returns ignoring transaction costs.

The dashed lines show the returns that incorporate 0.5% roundtrip transaction costs. As

the figure shows, the semibeta strategy performs well throughout most of the sample

period, resulting in quite high cumulative returns at the end of the sample, even after

incorporating transaction costs. By contrast, and consistent with the idea of “betting

against beta” advocated by Frazzini and Pedersen (2014), the traditional beta strategy

performs poorly over much of the sample period, resulting in negative cumulative returns
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Figure 3: Cumulative Returns for Beta and Semibeta Long-Short Portfolio Strategies. The
figure plots the cumulative percentage returns of long-short strategies based on beta and semibeta sorted
value-weighted quintile portfolios. The semibeta portfolios are constructed as an equally weighted com-
bination of βN portfolios that bet on βN , and βM

−
portfolios that bet against βM

−
. The shaded region

represents NBER recession periods. The beta estimates and portfolio returns are based on all of the
S&P 500 constituent stocks and days in the 1993-2019 sample.
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by the end of the sample, even without incorporating transaction costs.

6. Conclusion

We propose a new additive decomposition of the traditional market beta into four

semibetas defined by the signed covariation between the market and individual asset

returns: β = βN + βP − βM+ − βM− . Consistent with the implications from a setup in

which investors only care about downside risk, we find that only the two semibetas asso-

ciated with negative market return variation are priced. At the same time, we strongly

reject that the risk premiums for βN and −βM− are the same, as would be implied by a

traditional downside beta model. We attribute this difference to arbitrage risk driving a

wedge between the compensation for long versus short positions.

The results from a variety of specifications and empirical analyzes, involving different

sampling frequencies, prediction horizons and a long list of additional controls, reveal

that the risk premium for βN is around double of that for −βM− , and close to three
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times the risk premium for the traditional market β. We further establish that simple

trading strategies that bet on βN and against βM
−

leads to Sharpe ratios that are more

than double that of the market. Accounting for transaction costs, these same long-

short semibeta strategies continue to produce economically large and strongly statistically

significant risk adjusted alphas. In conclusion: do not bet on or against beta, bet on and

against the “right” semibetas.
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Appendix A. Additional Control Variables

� Size (ME). Following Fama and French (1993), a firm’s size is measured by its

market value of equity: the product of closing price and the number of shares

outstanding. We use its natural logarithm to reduce skewness. In the CRSP sample,

we use end-of-month values. In the TAQ sample, the value is updated daily.

� Book-to-Market (BM). Following Fama and French (1992), Book-to-Market is com-

puted in June of year t, as the ratio of book value of common equity in fiscal year

t− 1 to the market value of equity in December of year t− 1. Book value of equity

is defined as book value of stockholder’ equity (SEQ), plus balance-sheet deferred

taxes (TXDB) and investment tax credit (ITCB, if available), minus book value of

preferred stock (PSTK). Book-to-Market is updated yearly in both the CRSP and

TAQ sample.

� Momentum (MOM). Following Jegadeesh and Titman (1993), momentum is the

compound gross return from 12 months to 1 month before the date, i.e. skipping

the short-term reversal month. For the CRSP sample we use the compounded t−12

to t−2 monthly returns. For the TAQ sample, we compound the gross return from

day t − 252 through day t − 21. The measure is computed only if a minimum of

100 days is available.

� Reversal (REV). Following Jegadeesh (1990) and Lehmann (1990), the short-term

reversal is the return for the previous month. For the CRSP sample we use the

lagged monthly return, while for the TAQ sample we compound the returns from

day t− 20 to day t− 1.

� Idiosyncratic Volatility (IVOL). Following Ang, Hodrick, Xing and Zhang (2006b),

this is calculated as the standard deviation of the day t− 20 to t− 1 residuals from
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the daily return regression:

rt,i − rft = αi + βi(ft − rft,i) + γiSMBt,i + φiHMLt,i + εt,i,

where rt,i and ft denote the daily stock and market return, rft denotes the risk free

rate, and SMBt,i and HMLt,i denote the daily size and value factors for stock i.

For the CRSP sample, we compute this value once per month based on the daily

returns within the month. For the TAQ sample, we update this value based on the

t− 20 to t− 1 daily returns.

� Realized Variance (RV). Following Andersen, Bollerslev, Diebold and Ebens (2001),

we calculate realized variances as:

RVt,i =
m∑
k=1

r2
t,k,i.

Mirroring our estimation of the realized betas, we set k to a day for the monthly

measures used with the CRSP sample, and 15-minutes for the daily measures used

with the TAQ sample.

� Illiquidity (ILLIQ). Following Amihud (2002), illiquidity for stock i is defined as:

ILLIQt,i =
1

Nt

Nt∑
j=1

(
|rt−j,i|

volumet−j,i × pricet−j,i

)
.

We take the logarithm to reduce the skewness and the impact of outliers. For the

CRSP sample we compute the measure based on daily data within the previous

month, while for the TAQ sample we use daily data from day t− 20 to day t− 1.

� Turnover (TO). Following Kumar (2009), we calculate turnover as volume divided

by shares outstanding. For the CRSP sample we use the past month’s volume and

shares outstanding, while for the TAQ sample we use the previous day’s volume

and shares outstanding.
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Appendix B. Additional Summary Statistics

Table B.1: Descriptive Statistics CRSP Sample. Panel A reports the time series averages of the

cross-sectional means, medians and standard deviations. Panel B reports the time series averages of

the cross-sectional correlations. The daily realized semibetas, up and donwside betas, coskewness and

cokurtosis measures are all constructed from fifteen minutes intraday returns. The sample consists of all

of the common, non-penny, stocks in the CRSP database from January 1963 to December 2019.

Panel A: Cross-Sectional Summary Statistics

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV RV IVOL ILLIQ

Mean 0.99 0.60 0.76 0.21 0.16 1.01 0.96 -0.03 1.28 14.26 0.72 14.99 1.45 5.36 1.51 -11.21

Median 0.92 0.54 0.67 0.15 0.10 0.91 0.90 -0.03 1.35 14.18 0.64 11.04 0.98 3.39 1.32 -11.22

StDev 0.76 0.36 0.46 0.21 0.19 0.99 1.09 0.29 0.82 1.33 0.49 32.17 8.68 8.24 0.83 1.25

Panel B: Cross-Sectional Correlations

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV RV IVOL ILLIQ

β 1.00 0.72 0.79 -0.30 -0.29 0.82 0.75 0.03 0.64 0.01 -0.08 0.07 -0.01 0.41 0.26 0.02

βP 1.00 0.42 0.10 -0.09 0.34 0.89 -0.28 0.40 -0.11 -0.08 0.06 0.02 0.50 0.43 0.11

βN 1.00 -0.07 0.06 0.91 0.33 0.29 0.39 -0.09 -0.08 0.05 -0.04 0.57 0.48 0.10

βM
+

1.00 0.23 -0.46 -0.02 -0.13 -0.44 -0.26 -0.01 -0.01 -0.01 0.33 0.47 0.19

βM
−

1.00 -0.03 -0.50 0.13 -0.44 -0.22 0.00 -0.01 -0.03 0.35 0.46 0.17

β+ 1.00 0.30 0.31 0.51 0.03 -0.06 0.05 -0.03 0.37 0.24 0.01

β− 1.00 -0.30 0.53 0.00 -0.07 0.05 0.02 0.27 0.17 0.02

CSK 1.00 0.03 0.01 -0.01 -0.02 -0.03 0.01 -0.01 -0.01

CKT 1.00 0.23 -0.06 0.04 0.01 -0.05 -0.23 -0.15

ME 1.00 -0.22 0.07 0.02 -0.25 -0.36 -0.80

BM 1.00 0.00 0.01 -0.05 -0.04 0.10

MOM 1.00 0.00 0.02 0.00 0.00

REV 1.00 -0.03 -0.03 -0.01

RV 1.00 0.90 0.17

IVOL 1.00 0.27

ILLIQ 1.00
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Table B.2: Descriptive Statistics TAQ Sample. Panel A reports the time series averages of the

cross-sectional means, medians and standard deviations. Panel B reports the time series averages of

the cross-sectional correlations. The daily realized semibetas, up and donwside betas, coskewness and

cokurtosis measures are all constructed from fifteen minutes intraday returns. The sample consists of all

S&P 500 constituent stocks from January 1993 to December 2019.

Panel A: Cross-Sectional Summary Statistics

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV RV IVOL ILLIQ

Mean 0.95 0.70 0.74 0.28 0.26 0.95 0.93 -0.01 1.38 15.59 0.48 16.46 1.39 8.68 1.57 -14.72

Median 0.86 0.59 0.63 0.17 0.15 0.85 0.84 -0.01 1.47 15.58 0.39 11.47 1.07 3.25 1.31 -14.63

StDev 1.06 0.47 0.50 0.37 0.35 1.34 1.42 0.39 1.25 1.36 0.81 41.01 9.61 60.86 0.99 1.66

Panel B: Cross-Sectional Correlations

β βP βN βM
+

βM
−

β+ β− CSK CKT ME BM MOM REV RV IVOL ILLIQ

β 1.00 0.65 0.67 -0.33 -0.33 0.78 0.76 0.00 0.65 0.05 -0.02 0.03 -0.01 0.13 0.12 -0.06

βP 1.00 0.44 0.20 0.06 0.27 0.82 -0.31 0.31 -0.14 -0.03 0.00 -0.08 0.47 0.35 0.00

βN 1.00 0.07 0.19 0.82 0.28 0.29 0.31 -0.13 -0.03 0.00 0.03 0.47 0.34 0.02

βM
+

1.00 0.38 -0.49 -0.04 -0.16 -0.42 -0.29 0.00 -0.05 -0.08 0.54 0.37 0.12

βM
−

1.00 -0.05 -0.49 0.17 -0.42 -0.27 0.00 -0.04 0.03 0.52 0.35 0.13

β+ 1.00 0.27 0.33 0.49 0.05 -0.02 0.02 0.07 0.11 0.10 -0.05

β− 1.00 -0.35 0.49 0.03 -0.02 0.02 -0.09 0.12 0.12 -0.07

CSK 1.00 -0.02 0.00 0.00 -0.01 0.01 0.00 0.00 0.00

CKT 1.00 0.22 -0.03 0.03 0.00 -0.13 -0.13 -0.12

ME 1.00 -0.10 0.09 0.03 -0.33 -0.36 -0.57

BM 1.00 -0.05 -0.01 -0.01 -0.04 0.02

MOM 1.00 0.03 -0.05 -0.03 0.02

REV 1.00 -0.03 0.04 0.03

RV 1.00 0.48 0.14

IVOL 1.00 0.09

ILLIQ 1.00
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