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1 Introduction

Asynchronous-move repeated games have been generating considerable interest

in the game theory literature since the seminal papers of Maskin and Tirole

(1988a, 1988b), and more recently in empirical industrial organization (Arcidia-

cono et al. (2010), Doraszelski and Judd (2012)). The theoretical interest stems

from the fact that the predictions obtained from these games are often very dif-

ferent than those from standard repeated games with simultaneous moves.1 In

empirical applications, as Arcidiacono et al. (2010) points out, the main ad-

vantage of asynchronous-move models is that their computational complexity

is greatly reduced relative to standard models. This facilitates structural esti-

mation and counterfactual policy-simulations in complicated dynamic models

with a large number of state variables. Furthermore, as pointed out in Schmidt-

Dengler (2006) and Einav (2010), in many situations asynchronicity of moves is

a more realistic modeling assumption.

This paper analyzes battle of the sexes games (introduced by Luce and Raiffa

(1957) as the simplest class of games in which players want to coordinate, but

their interests differ in which outcome to coordinate on) in an infinite-horizon

continuous-time framework, in which players accumulate payoffs continuously,

but they can only change their actions at random discrete times, governed by

independent Poisson processes.2 Despite the stage game has two strict pure

1For example, while Markov perfect equilibria in standard infinitely repeated games are
simply infinite repetitions of Nash equilibria of the stage game, there can be nontrivial strategic
dynamics in Markov perfect equilibria of asynchronous-move games - see Maskin and Tirole
(1988a, 1988b) and Lagunoff and Matsui (1997). Another feature distinguishing asynchronous
games from the standard model is that expected subgame-perfect equilibrium payoffs can be
strictly below players’ minimax values in the stage game - see for example Takahashi and Wen
(2003).

2This implies that the probability of two players changing their actions exactly at the same
time is 0. As Maskin and Tirole (1988a) points out, these games are closely related to deter-
ministic alternating-move games, if one restricts attention to Markovian strategies. There is a
recent string of papers using similar continuous-time random-arrival models. Ambrus and Lu
(2010) investigate multilateral bargaining with a deadline in such a context, while Kamada
and Kandori (2011), and Calgano, Kamada, Lovo and Sugaya (2012) examine situations in
which players can publicly modify their action plans before playing a normal-form game. Am-
brus et al. (2012) and Kamada and Sugaya (2011) use similar frameworks to analyze on-line
auctions and policy announcement games, respectively. Similar models were first considered
in the macroeconomics literature, on sticky prices (Calvo (1983)) and in the search litera-
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Nash equilibria (each strictly preferred by one of the players), we show that

there is an intermediate range of discount rates for which for a full dimensional

specification of stage game payoffs asynchronicity of moves leads play in every

subgame perfect Nash equilibrium (SPNE) to the same stage game equilibrium

outcome, no matter what the starting actions are.

Our result complements the findings of Lagunoff and Matsui (1997), who

show that in an asynchronous-move repeated game framework the Pareto-dominant

equilibrium gets selected in a class of pure coordination games for high enough

discount factors.3 The main difference is that in battle of the sexes games unique

selection occurs for intermediate levels of patience, not for high ones. This also

implies that there is no tension between our result and the folk theorem, which

was shown to hold in generic asynchronous-move games by Dutta (1995) and

Yoon (1999),4 and that unique selection is a phenomenon that is robust to any

small perturbations of payoffs and discount rates.

Analyzing equilibrium possibilities for intermediate levels of patience in re-

peated games is a notoriously difficult task, and for this reason we only provide

a set of necessary conditions, and another set of sufficient conditions, for one of

the stage game equilibria be the unique limit outcome in any SPNE.

We obtain necessary conditions by providing a complete characterization

of Markov perfect equilibria (MPE) in asynchronous-move battle of the sexes

games. These are SPNE in which players’ strategies only depend on the payoff-

relevant state, meaning that at any point of time a player gets the chance

to choose an action, her choice only depends on the current action choice of

ture explaining price and wage dispersion (Burdett and Judd (1983), Burdett and Mortensen
(1998)).

3See also Farrell and Saloner (1985) and Dutta (2003) for similar results in finite-horizon
asynchronous-move coordination games, and Takahashi (2005) in a class of common interest
games encompassing both finite and infinite horizons. More closely related to the current
paper is Calgano et al. (2012), who show that in generic finite horizon battle of the sexes
games with asynchronous moves there is a unique SPNE, obtained by backward induction.
The infinite horizon games we investigate in the current paper require different techniques to
analyze, and indeed the results are very different.

4Lagunoff and Matsui (2001) point out that the genericity or non-genericity of anti-folk
theorems depends on the order limits are taken, as for any discount factor close to 1, there is
a full-dimensional set of coordination-games for which all spne payoffs have to be very close
to the payoffs in the Pareto-dominant equilibrium of the stage game.
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the other player. As Lagunoff and Matsui (1997) show, there always exists

an MPE (on mixed strategies). Hence, a necessary condition for a unique limit

outcome in SPNE is that there is a unique limit outcome in MPE. Our complete

characterization of MPE in these games is also of independent interest from the

main point of the paper, revealing for example that one action profile (when

both players play the action corresponding to their least preferred equilibrium

in the stage game) cannot be part of an absorbing cycle in any SPNE, for any

discount rate.5

We show by example that uniqueness of the limit outcome in MPE does not

imply uniqueness of the limit outcome in SPNE. Hence, the above necessary

conditions are not sufficient for the result. For this reason, we provide a differ-

ent set of sufficient conditions for play to converge to a given player’s favored

Nash equilibrium outcome in the stage game, in any SPNE. We also show, by

example, that these conditions still do not uniquely pin down equilibrium strate-

gies: there can be multiple SPNE profiles, with different expected payoffs, with

the feature that they all converge to the same stage game outcome. We provide

an additional condition that guarantees the uniqueness of SPNE strategies as

well (not just limit outcomes). Finally, we investigate that for which payoff

specifications there exists a range of discount rates with unique limit outcome.

The intuition for why unique selection occurs for certain specifications is

simple. If the off-equilibrium stage game payoff when both players play the

strategies corresponding to their favored equilibria is particularly bad for one

of the players, labeled the weak player, then for a not too high level of patience

the latter player is better off giving in when getting the chance, and switch play

to the other player’s favored outcome, no matter what continuation play she

expects. But then if the same out-of-equilibrium outcome is not as bad for the

other player, labeled the strong player, and the level of impatience is not too low,

the strong player can force play to ultimately switch to her favored equilibrium

5For foundations for MPE in asynchronous-move games see Bhaskar and Vega-Redondo
(2002) and Bhaskar et al. (2012). For certain properties of MPE of these games see Haller
and Lagunoff (2000, 2006).
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outcome, by choosing the corresponding strategy. Actual equilibrium dynamics

might be more complicated, and might require mixing at certain histories.

The above intuition also reveals why the level of patience has to be from an

intermediate range for a unique limit outcome. If players are too impatient then

either of the stage game equilibrium outcomes become absorbing states. And

if players are too patient then neither of them can force the other one to play

the strategy corresponding to the first player’s favored equilibrium, and in the

limit the folk theorem applies.

Which player becomes strong (for a range of discount rates) depends on both

on- and off-equilibrium payoffs of the stage game. Increasing a player’s payoff

in off-equilibrium outcomes, as well as increasing her payoff in her favored Nash

equilibrium makes her stronger. On the other hand, increasing her payoff in her

dispreferred Nash equilibrium makes her weaker, as it makes it more attractive

for her to stay in that outcome.

2 The model

Consider the following 2× 2 game, referred to below as the stage game:

α2 β2

α1 a, u b, v
β1 c, w d, x

Table 1: Stage Game

with the parameter restrictions a > c, d > b, u > v, x > w, a > d and

x > u. The restrictions imply that the game has two strict Nash equilibria,

(α1, α2) and (β1, β2), with player 1 (P1) preferring the first one and player 2

(P2) preferring the second.

We consider a continuous-time dynamic game with asynchronous moves, in

which players play the above stage game indefinitely, and accumulate payoffs

continuously, but they can only change their actions at random discrete times
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that correspond to realizations of random arrival processes. More precisely,

assume that the action profile at time 0, a0, is given exogenously. The players

are associated with independent Poisson arrival processes with arrival rate λ. A

player can only change her action in the game at the realizations of her arrival

process, hence in between two arrival events she is locked into the action chosen

at the former one. Let at denote the action profile played at time t. Player i’s

payoff in the dynamic game is then defined as
∞∫
0

e−rui(a
t)dt, where ui() stands

for player i’s payoff in the stage game and r is the discount rate (assumed to be

the same for the two players, for simplicity).

Note that the independence of the arrival processes implies that it is a 0

probability event that there is a point of time when both players can change their

actions. We assume that the realizations of the arrival processes are regular,

and such simultaneous arrivals indeed never happen. Hence players, when they

choose actions, know what action the opponent will be locked in for a random

amount of time.

We assume that arrivals are publicly observed, hence a publicly observed

history of the game at time t, labeled as ht, consists of the path of the action

profile on [0, t) and the set of realizations of each players’ arrival processes on

[0, t). Let Ht be the set of such ht. Strategies are measurable mappings from

Ht to {α1, β1} and {α2, β2} respectively, with the value at ht interpreted as the

action that the given player would choose at time t if she had an arrival at that

time and the history at that time was ht.

We are interested in both all SPNE of the above game, and the set of MPE,

in which a player’s strategy when choosing an action only depends on the payoff

relevant state, which is simply the action currently played by the other player.

More precisely, there can be 8 different states (types of continuation histories

from which the continuation game looks the same) at any point of time: (α1, α2),

(α1, β2), (β1, α2), (β1, β2), (., α2), (., β2), (α1, .) and (β1, .). The first four

correspond to points of time when neither player has an arrival (and one of four

possible action profiles are played). The next two corresponding to points of
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time when P1 receives an arrival and P2 is locked into playing one of his two

actions - these are the only histories at which P1 chooses an action. Finally,

the last two correspond to points of time when P2 receives an arrival - the only

histories at which P2 chooses an action. Hence, for each player there can only be

two states (two types of continuation games) at times when she has to choose an

action. From now on, whenever it does not cause confusion, instead of (α1, α2)

and (β1, β2) we will simply write (α) and (β).

Lastly, we note that we can essentially map the game back to a model in

discrete time, the following way. Fix a strategy profile in the dynamic game,

and let ωt,ji denote the continuation payoff of player i in the continuation game

starting at t in case the very first arrival in the game is at time t by player j.

Then we can write player i’s expected payoff at time 0 as:

∞∫
0

λe−2λτ
(

(1− e−rτ )ui(a
0) + e−rτwτ,1i

)
dτ+

∞∫
0

λe−2λτ
(

(1− e−rτ )ui(a
0) + e−rτwτ,2i

)
dτ.

This simplifies to:

r

2λ+ r
ui(a

0) +
2λ

2λ+ r

1

2

∞∫
0

(2λ+ r)e−(2λ+r)τ (wτ,1i + wτ,2i )dτ

 .

Therefore effectively, the discount factor is 2λ/(2λ+ r).

3 Example of unique limit outcome

Consider the following stage game:

α2 β2

α1 4, 2 1,−4
β1 −2, 3 2, 4

with discount rate r = 1 and arrival rate λ = 1.

In this example, we show that α must always be the unique limit outcome

regardless of the initial state in any SPNE. More strongly, the set of SPNE is

unique and Markovian with a unique absorbing state at α.
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The reason that the example induces a unique limit outcome is due to the

following simple reason. We first demonstrate that P2 must always play α2

whenever he obtains an opportunity to revise his action when P1 is currently

playing α1 in any SPNE. To show this, note first that the worst payoff that P1

can obtain in any SPNE with initial state α is u = 2. This is because P2 can

guarantee himself a payoff of 2 by always playing α2 at all histories, regardless

of P1’s strategy. We compare this to the best payoff that P2 could get in any

SPNE beginning at the state (α1, β2). Let us denote this payoff by V (α1, β2).

Then we can show that this payoff must be bounded above by either

r

λ+ r
v +

λ

λ+ r
x =

1

2
(−4) +

1

2
4 = 0 < 2

or

r

2λ+ r
v +

2λ

2λ+ r

(
1

2
vα +

1

2
x

)
=

1

3
(−4) +

2

3

(
1

2

11

4
+

1

2
4

)
=

1

12
< 2,

where vα corresponds to the payoff of P2 with initial state α corresponding to

the strategy profile in which P1 plays β1 regardless of the history and P2 plays

the action that P2 is currently playing. The first expression corresponds to the

expected payoff that P2 would get if he chose to play β2 regardless of history

and P1 played β1 whenever P2’s currently played action was β2.

Note we are not stating that such strategy profiles constitute SPNE. Rather

we are only providing an upper bound on the payoff V (α1, α2).6 In the example,

both of the expressions above are strictly less than u, the best payoff that P2

can obtain in any SPNE at state α. Therefore in any SPNE, P2 must play α2

at any history in which P1’s currently played action is α1.

This however means that P1 should play α1 at any history in which P2 is

currently playing α2, because by doing so, P1 can obtain his best payoff. Simple

calculations reveal that the best ex ante payoff that P1 can obtain in any SPNE

beginning at state (β1, β2) is strictly less than

r

λ+ r
b+

λ

λ+ r
a.

6If we indeed examine whether such a strategy can constitute an SPNE, we can likely
sharpen the sufficient conditions that we currently have.
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However this is the payoff that P1 can obtain by playing α1 at all histories,

provided that P2 always plays α2 when P1’s current action is α1. Therefore,

this shows that P1 must always play α1 regardless of the history in any SPNE.

Therefore this example shows that starting at any state, the play of the game

must eventually absorb at (α) almost surely, in any SPNE. The remainder of

the paper examines the set of parameter values in battle of the sexes games for

which this is the case.

4 Markov perfect equilibria

First we characterize the set of MPE for all possible payoff configurations and

discount rates. This in particular yields a necessary and sufficient condition

for all MPE of the game (irrespective of the initial action profile) having the

property that play is eventually absorbed in the same action profile. For ease

of exposition, we refer to this property as having a unique limit outcome in

MPE. The condition is then also a necessary condition for having a unique limit

outcome in SPNE.

If strategies are Markovian, at times when there is no arrival event, each

player can only have four continuation values, corresponding to the four possible

action profiles in the stage game. Let vi(., .) denote player i’s continuation payoff

as a function of the action profile.

We start the analysis by establishing a lemma on the relationship between

continuation payoffs at different states in any MPE, which will be useful to

narrow down possible strategy profiles in MPE.

Lemma 1 Suppose that v1(α1, β2) ≥ v1(β). Then in any Markovian equilib-

rium, we must have v1(α) > v1(β1, α2). Similarly if v2(α1, β2) ≥ v2(α) then we

must have v2(β) > v2(β1, α2).

Proof. Suppose that v1(β1, α2) ≥ v1(α). Then we can write

v1(α) ≥ r

2λ+ r
a+

2λ

2λ+ r

(
1

2
v1(α) +

1

2
(pv1(α) + (1− p)v1(α1, β2))

)
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v1(α1, β2) =
r

2λ+ r
b+

2λ

2λ+ r

(
1

2
v1(α1, β2) +

1

2
(pv1(α) + (1− p)v1(α1, β2))

)
for some p ∈ [0, 1]. Note that the above relies on the condition that P2 conditions

his play only on the opponent’s currently played action. The first is an inequality

since if P1 obtains an arrival at state α, he has an incentive to play β1. These

expressions then imply that

v1(α)− v1(α1, β2) ≥ r

λ+ r
(a− b).

Now next we can write the value functions when the currently played action

of P1 is β1:

v1(β1, α2) =
r

2λ+ r
c+

2λ

2λ+ r

(
1

2
v1(β1, α2) +

1

2
(qv1(β1, α2) + (1− q)v1(β))

)
v1(β) ≥ r

2λ+ r
d+

2λ

2λ+ r

(
1

2
v1(β) +

1

2
(qv1(β1, α2) + (1− q)v1(β))

)
.

This then implies

v1(β)− v1(β1, α2) ≥ r

λ+ r
(d− c).

Then this means that

v1(α)− v1(β1, α2) = (v1(α)− v1(α1, β2)) + (v1(α1, β2)− v1(β)) + (v1(β)− v1(β1, α2))

≥ r

λ+ r
(a− b) +

r

λ+ r
(c− d)

=
r

λ+ r
(a− c+ d− b) > 0.

This is a contradiction. Therefore we must have v1(α) > v1(β1, α2).

Note that the lemma implies that (β1, α2) cannot be part of an absorbing

cycle of the Markovian dynamics in any MPE. Because of the restrictions on

payoffs (u > v, d > c) it is also impossible that an absorbing cycle consists of

(α1, β2) and at most one of the stage game strict Nash equilibria. Hence, for

any specification of the game, we only have the following possibilities for the

Markovian dynamics implied by any MPE: (i) (α) is the unique absorbing state;

(ii) (β) is the unique absorbing state; (iii) (α) and (β) are both absorbing states;

(iv) there is a unique absorbing cycle involving (α1, α2), (α1, β2) and (β1, β2).
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Our central interest is characterizing the set of parameter values for which

one of the stage game Nash equilibria is the unique absorbing state in every

MPE. Without loss of generality we conduct this for (α). We do it by charac-

terizing all parameter values in which there is an MPE with an absorbing cycle

containing (β), and then taking the complement of this set. Lemma 1 implies

that the latter is indeed the set of parameter values in which (α) is the unique

absorbing state.

First we characterize the parameter region in which there is an MPE in

which (β) is an absorbing state, and then the parameter region in which there

is a nonsingleton absorbing cycle. Since this requires a tedious case by case

analysis, the proof of the following two lemmas are in the Appendix.

Lemma 2 The necessary and sufficient conditions for the existence of an

equilibrium with (β) as a unique absorbing state to exist are:

1.

r

λ+ r
v+

λ

λ+ r
x ≥ u.

2.

a+
λ

λ+ r
b ≤ c+

λ

λ+ r
d,

v +
λ

λ+ r
x ≥ u+

λ

λ+ r
w.

Additionally if r
λ+rv + λ

λ+rx < u and d ≥ r
λ+r b + λ

λ+ra an equilibrium in

which both (α) and (β) are absorbing states exist.

Note that the above implies that for r sufficiently close to zero, there always

exists a Markovian equilibrium with (β) as a unique absorbing state (symmet-

rically, this is also true for α).

Lemma 3 The necessary and sufficient conditions for the existence of an

MPE with a unique absorbing cycle involving (α1, α2), (α1, β2) and (β1, β2)
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are:
r

λ+ r
v +

λ

λ+ r
x > u

and
r

λ+ r
b+

λ

λ+ r
a > d.

We can use the previous lemmas to characterize the set of parameter val-

ues for which (α) is the unique limit outcome in MPE. Symmetric conditions

characterize the parameter region in which (β) is the unique limit outcome in

MPE.

Theorem 1: The necessary and sufficient conditions for (α) to be the unique

absorbing state in any MPE are:

r

λ+ r
v +

λ

λ+ r
x < u

r

λ+ r
b+

λ

λ+ r
a > d

and one of the following:

1.

a+
λ

λ+ r
b > c+

λ

λ+ r
d

2. or

v +
λ

λ+ r
x < u+

λ

λ+ r
w.

Proof. Lemmas 2 and 3 imply that the parameter region in the statement is

exactly the set of parameters for which there does not exist an MPE in which

(β) is an absorbing state and there does not exist an MPE in which there is an

absorbing cycle involving (α1, α2), (α1, β2) and (β1, β2). Lemma 1 then implies

that this is exactly the set of parameter values for which in all MPE the unique

absorbing state is (α).

Intuitively, the first two conditions require that it is better for P2 if play

stays in (α) forever than transitioning to (α1, β2) (even if P1 chooses β1 with
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probability 1 at state (., β2)), and that if P2 chooses α2 with probability 1 at

state (α1, .) then it is better for P1 to transition from state (α) than staying

there forever. And either of the last two conditions guarantee that there is no

MPE in which P1 transitions from (α) because of the fear that otherwise P2

would transition away from this state.

Increasing a, b, u and w, and decreasing c, d, v and x make the inequalities

in the statement of Theorem 1 easier to satisfy. The comparative statics in r

and λ are nonmonotonic, and in fact both for low enough values of r and λ, and

for high enough values of r and λ one of the conditions are violated.

5 General subgame perfect equilibria

First we demonstrate by an example that a unique limit outcome in MPE does

not imply the uniqueness of limit outcome in SPNE. Then we provide a set of

sufficient conditions for the uniqueness of a limit outcome in SPNE. Lastly, we

provide stronger sufficient conditions for the uniqueness of SPNE strategies as

well.

5.1 Example: unique limit outcome in MPE does not im-
ply unique limit outcome in SPNE

Consider the following stage game.

α2 β2

α1 10, 1 −12,−1
β1 9, 1 1, 2

Let λ and r be such that

2λ

2λ+ r
=

3

4
,

λ

λ+ r
=

3

5
.

Note first that with these parameters, no Markovian equilibrium with β as

an absorbing state exists. However we show that the following non-Markovian
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strategy profile with β as an absorbing state is an equilibrium. As long as no

deviations by P2 have occurred,

• P1 always plays β1.

• P2 plays β2 whenever play immediately preceding the arrival is (β1, α2),

or (β1, β2).

• P2 plays β2 when play immediately preceding the arrival is (α1, α2) if

either there have been no arrivals in the game or the last player to arrive

was P1. Otherwise P2 plays α2.

• P2 plays α2 when play immediately preceding the arrival is (α1, β2).

If P2 has deviated, then players revert to the unique Markovian equilibrium

with an absorbing state at (α).

Let us illustrate how the incentives can be checked. First suppose that P2

has deviated. Then incentives to follow the Markovian equilibrium is trivial.

Therefore let us suppose that P2 has not deviated. Consider an arrival by P1

at state (·, α2). Then playing β1 yields a payoff of

2

5
· 9 +

3

5
· 1 =

21

5
= 4.2.

Suppose by way of contradiction that playing α1 is indeed optimal. This then

gives a payoff of:

V =
2

5
· 10 +

3

5

(
1

4
(−12) +

3

4

(
1

2
· 1 +

1

2
vα

))
=

973

250
= 3.892

where

vα =
2

5
· 10 +

3

5

(
2

5
· 9 +

3

5
· 1
)

=
163

25
.

Thus upon arrival when P2 is currently playing α2, P1 strictly prefers to play

β1 because of the threat of P2 moving to (α1, β2). This threat is large enough

to provide incentives for P1 to play β1 as soon as she gets the chance.

A necessary condition for this to hold is that for P1, the path

(β1, α2)→ (β1, β2)
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is strictly preferable to the path

(α1, α2)→ (α1, β2)→ (α1, α2)→ (β1, α2)→ (β1, β2).

Otherwise P1 would have an incentive to play α1 at states (·, α2). Straight-

forward calculations establish that this is indeed the case, and that P1 strictly

prefers to play β1 whenever P2’s currently played action is β2.

P2’s incentives to play β2 when P1’s currently played action is β1 are trivial.

Furthermore, incentives to play α2 when the strategy calls for it are also trivial.

Thus it remains only to show that it is in her interest to play β2 at state (·, α2).

Note that by staying at α2, P2 has deviated and thus receives only a continuation

payoff of 1.

However if he moves to β2, then P2 is rewarded by P1 following a strategy

in the future that calls for the play of β1 everywhere on the equilibrium path.

The game was constructed in such a way to make this strictly greater than 1.

The computations yield a payoff of

1

4
(−1) +

3

4

(
1

2
· 2 +

1

2
vα

)
=

589

200
= 2.945 > 1.

Thus we have shown that the above strategy profile is indeed an equilibrium.

The essential feature of the above example is that it is too costly for P2

to transition from (α1, α2) to (β1, β2) via (β1, α2), even if P1 plays β1 with

probability 1 whenever P2 plays β2. However, P2 is willing to transition to

from (α1, α2) to (β1, α2) if along the equilibrium path he can transition back

to (α1, α2) if he gets the next arrival as well, provided that P1 is willing to

transition from (α1, α2) to (β1, α2). The latter is indeed the case because tran-

sitioning via (β1, α2), is too costly for P1 as well, and it is in her interest to

prevent it. Lastly, P2 is willing to make the temporary transition to (β1, α2)

because otherwise he would trigger the MPE as the continuation equilibrium.

5.2 Uniqueness of limit outcome in SPNE

First we provide sufficient conditions for P2 to choose action α2 in any history at

which P1 is currently playing α1, in any SPNE. If this is the case then the best
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response of P1 is also choosing action α1 whenever P2 is currently playing α2,

establishing that (α1, α2) is an absorbing state in every SPNE. Subsequently,

we will add a further condition that guarantees that it is the unique absorbing

state.

To shorten notation define

vα =
r

λ+ r
u+

λ

λ+ r

(
r

λ+ r
w +

λ

λ+ r
x

)
.

We will split the parameter space into two regions (w ≥ u and w < u), and first

consider the easier case.

Lemma 4 Suppose w ≥ u and that:

u >
r

λ+ r
v +

λ

λ+ r
x, and

u >
r

2λ+ r
v +

2λ

2λ+ r

(
1

2
x+

1

2
vα

)
,

then in any SPNE, P2 must play α2 whenever P1’s currently played action is

α1.

Proof. Note first that in any equilibrium, at state (α1, α2), P2 can guarantee

himself a payoff of at least u by playing α1 upon any arrival. We now compute

an upper bound on the payoff that P2 can obtain at state (α1, β2).

To do this, denote V (α), V (α1, β2), and V (β1, α2) the best possible P2

SPNE payoffs at the respective states. Note that we do not require that V (α),

V (α1, β2), and V (β1, α2) be the payoffs at their respective states in the same

SPNE. We use these values to bound the continuation payoffs at the state

(α1, β2) in any SPNE.

Note that

V (α1, β2) ≤ r

2λ+ r
v +

2λ

2λ+ r

(
1

2
max{V (α1, β2), V (α)}+

1

2
x

)
.

Suppose first that V (α1, β2) ≥ V (α). Then we have

V (α1, β2) ≤ r

λ+ r
v +

λ

λ+ r
x < u.
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Therefore the best possible payoff is less than the payoff that P2 could guarantee

at the state (α). Thus we have shown that P2 must play α2 with probability

one upon arrival when the currently played action of P1 is α1 in any SPNE.

Suppose now that V (α) > V (α1, β2). Let us bound the payoff V (α):

V (α) ≤ r

2λ+ r
u+

2λ

2λ+ r

(
1

2
max{V (α), V (α1, β2)}+

1

2
max{V (α), V (β1, α2)}

)
=

r

2λ+ r
u+

2λ

2λ+ r

(
1

2
V (α) +

1

2
max{V (α), V (β1, α2)}

)
.

Let us assume first that V (α) ≥ V (β1, α2). Then the above implies that

V (α) ≤ u.

However this means that

V (α1, β2) ≤ r

2λ+ r
v +

2λ

2λ+ r

(
1

2
u+

1

2
x

)
< u.

Thus again it must be that P2 plays α2 with probability one upon arrival in

any SPNE when the currently played action of P1 is α1.

Finally assume that V (α) > V (α1, β2) and V (β1, α2) > V (α). Then

V (β1, α2) ≤ r

2λ+ r
w +

2λ

2λ+ r

(
1

2
V (β1, α2) +

1

2
x

)
.

This implies that

V (β1, α2) ≤ r

λ+ r
w +

λ

λ+ r
x.

This immediately implies that

V (α1, β2) ≤ r

2λ+ r
v +

2λ

2λ+ r

(
1

2
vα +

1

2
x

)
< u.

Thus in this case again, P2 must play α2 with probability one whenever the

currently played action of P1 is α1 in any SPNE.

The case when w < u is a bit more subtle. In the previous case, we used a

punishment scheme by which all players transition to the Markovian equilibrium

in which (α1, α2) is an absorbing state. However this only yields a punishment
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payoff of u for P2. This is an effective punishment against P2 when w ≥ u

due to the fact that P1 can indeed guarantee himself a payoff of u at the state

(α1, α2). However when w < u this might not be the case anymore. Therefore

it may be possible to indeed punish P2 using strategies that are non-Markovian

that lower the payoff to P2 to some payoff strictly below u.

This leads to an additional problem that was non-existent in w ≥ u. Suppose

that the state is (α1, α2) and if P2 obtains an arrival and decides to stay at

(α1, α2) then he gets “punished” with a continuation payoff that is strictly

smaller than u. However note that this may create an incentive for P2 to play

α2 since then he may be rewarded by transitioning to an MPE with (α) as an

absorbing state. Thus we must ensure against such a deviation.

Lemma 5 Suppose w < u and that

r

λ+ r
u+

λ

λ+ r
w >

r

λ+ r
v +

λ

λ+ r
x, and

r

λ+ r
u+

λ

λ+ r
w >

r

2λ+ r
v +

2λ

2λ+ r

(
1

2
x+

1

2
max{vα, u}

)
.

Then in any SPNE, P1 must play α2 in any history at which P2 is currently

playing α1.

Proof. The proof follows along the same lines as the previous lemma. Define

as in the previous lemma the payoffs V (α), V (α1, β2), and V (β1, α2). We show

that it must always be the case that

V (α1, β2) <
r

λ+ r
u+

λ

λ+ r
w.

Suppose first that V (α1, β2) ≥ V (α). Then

V (α1, β2) ≤ r

2λ+ r
v +

2λ

2λ+ r

(
1

2
V (α1, β2) +

1

2
x

)
.

This then implies that

V (α1, β2) ≤ r

λ+ r
v +

λ

λ+ r
x <

r

λ+ r
u+

λ

λ+ r
w.

Next let V (α) > V (α1, β2). Thus

V (α) ≤ r

2λ+ r
u+

2λ

2λ+ r

(
1

2
V (α) +

1

2
max{V (α), V (β1, α2)}

)
.
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Suppose that V (α) ≥ V (β1, α2). Then the above implies that

V (α) ≤ u.

This then means that

V (α1, β2) ≤ r

2λ+ r
v +

2λ

2λ+ r

(
1

2
u+

1

2
x

)
<

r

λ+ r
u+

λ

λ+ r
w.

Finally suppose that V (β1, α2) > V (α) > V (α1, β2). Then it is easy to see

that

V (α1, β2) ≤ r

2λ+ r
v +

2λ

2λ+ r

(
1

2
x+

1

2
vα

)
<

r

λ+ r
u+

λ

λ+ r
w.

Thus we have shown that V (α1, β2) < r
λ+ru + λ

λ+rw. Therefore since P2 can

always guarantee a payoff of

r

λ+ r
u+

λ

λ+ r
w

at state (α) by always playing α2 in the future, P2 must always play α2 when

P1 is currently playing α1.

Next we investigate the issue of what further conditions are needed for (α)

to be the unique absorbing state.

Theorem 2 Suppose that

r

λ+ r
b+

λ

λ+ r
a > d,

min

{
u,

r

λ+ r
u+

λ

λ+ r
w

}
>

r

λ+ r
v +

λ

λ+ r
x, and

min

{
u,

r

λ+ r
u+

λ

λ+ r
w

}
>

r

2λ+ r
v +

2λ

2λ+ r

(
1

2
x+

1

2
max{vα, u}

)
.

Then in every subgame perfect equilibrium σ,

Prσ({h : ∃ T s.t. ht = α ∀t ≥ T} | h0 = a0) = 1

for any initial state a0. That is, the history must become absorbed at state α in

finite time almost surely.
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Proof. By the previous lemma, we know that α must be an absorbing state.

Suppose by way of contradiction that

Prσ({h : ∃ T s.t. ht = α ∀t ≥ T} | h0 = a0) < 1

for some a0. Clearly a0 cannot be α.

Note that a history encodes three pieces of information. First it specifies

the arrival times: t1, t2, . . . which specify at what time some player obtains a

revision opportunity. Secondly it specifies the action chosen at each of these

arrival times a1, a2, . . .. Finally it specifies the player who has arrived at each

of these times. We ignore this third piece of information for the purposes of the

proof. Thus we denote a history h by:

h = (a0, (tk, ak)∞k=1)

where a0 is the initial state. Note first that we can restrict to h such that

tk is an infinite sequence since histories with finitely many arrivals occur with

probability zero under Poisson arrivals. To ease notation, let us define the

following set:

Hk = {h ∈ H : ∃tk
′
≥ k s.t. ak

′
6= α}.

Define

Hk(a) = {h ∈ H : ∃tk
′
≥ k s.t. ak

′
= a}

and

H(a) =

∞⋂
k=0

Hk(a).

Then the above implies that

Prσ

( ∞⋂
k=0

Hk

)
> 0.

But then note that

Prσ (H(α1, β2) ∪H(β1, β2 \ (H(β1, α2) ∪H(α1, β2))) ∪H(β1, α2)) ≥ Prσ

( ∞⋂
k=0

Hk

)
> 0
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which is less than

Prσ(H(α1, β2)) + Prσ(H(β1, β2) \ (H(β1, α2) ∪H(α1, β2))) + Prσ(H(β1, α2)).

But note that Prσ(H(α1, β2)) = Prσ(H(β1, α2)) = 0 since state (βi, α−i),

player i plays αi with probability one. Thus the above implies that

Prσ(H(β1, β2) \ (H(β1, α2) ∪H(α1, β2))) > 0.

But if h ∈ H(β1, β2) \ (H(β1, α2) ∪H(α1, β2)), there exists some T such that

ht = (β1, β2) for all t ≥ T . Here we are using the assumption of asynchronous

nature of moves. This is because play cannot transition from (β1, β2) to (α1, α2)

without passing through either (α1, β2) or (β1, α2). But if this is the case,

consider the subgame induced at time T . P1 is receiving a payoff of d. However

he can deviate to playing α1 receiving a payoff of

r

λ+ r
b+

λ

λ+ r
a

which is strictly better than d. Therefore we have arrived at a contradiction.

We would like to point out that the conditions in Theorem 2 do not guarantee

that play is surely absorbed in (α) if both players had a certain number of

arrivals (even in a specific order). This is because there can be mixing in an

SPNE at histories at which play has not reached yet the limit outcome.

5.3 Uniqueness of strategies in SPNE

First we show that uniqueness of a limit outcome in SPNE does not imply

uniqueness of SPNE. Consider the following example. Suppose that the stage

game is the following:

α2 β2

α1 2, 1 ε,−4
β1 1, 0 1, 2
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with ε > 0 and let λ = 1 and r = 1
2 . We choose ε > 0 so that

1

2
· 1 +

1

4
· 1 +

1

4
· 2 > 1

2
· 2 +

1

2
ε > 1.

Due to the lemma above, we know that in any SPNE both players play αi

whenever the opponent is currently playing α−i.

In the above equilibrium, there exists a Markovian equilibrium with the

following dynamics.

• Both players play αi with probability one whenever the opponent’s pre-

pared action is α−i.

• P1 plays α1 with probability 9/11 whenever the opponent’s prepared ac-

tions is β2.

• P2 plays α2 with probability 3ε/(2−ε) whenever the opponent’s prepared

action is β1.

One can easily check that these strategies constitute a SPNE. Furthermore

it is easy to see that the payoffs at each state must be the following:

V (α1, α2) = (2, 1)

V (α1, β2) =

(
1

2
ε+ 1,−4

3

)
V (β1, α2) =

(
1

3
ε+

4

3
,

1

2

)
V (β1, β2) =

(
1

2
ε+ 1,

1

2

)
.

In fact the above is the unique MPE for this set of parameters.

However there also exists the following non-Markovian equilibrium that

makes use of the above Markovian strategy upon deviations.

• Both players play αi upon arrival as long as everyone has thus far played

αj upon arrival.

• If at some point, a deviation occurred, then players play according to the

Markovian equilibrium above.
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Note that this non-Markovian equilibrium raises the payoff of P1 at an initial

state (β1, β2) beyond what he can achieve in the Markovian equilibrium. This

is because for P1, going through the path

(β1, β2)→ (β1, α2)→ (α1, α2)

on the way from (β1, β2) to (α1, α2) is better than moving to α1 and using the

path

(α1, β2)→ (α1, α2)

as long as P2 is moving to α2 with probability one upon arrival. In the above

strategy profile when the state is (β1, β2), either P1 arrives first giving him

a payoff equal to the Markovian payoff at state (β1, β2) of V1(β1, β2) or with

strictly positive probability P2 arrives first giving a payoff strictly better than

V1(β1, β2). Note that the “punishment” via reversion to the Markovian equi-

librium is necessary since otherwise, players would find it beneficial to simply

wait at (β1, β2) for the other player to arrive and move out for him instead of

moving out himself.

We conclude this section by providing sufficient conditions for uniqueness of

SPNE strategies, besides uniqueness of a limit outcome in SPNE.

Theorem 3 Suppose that

r

λ+ r
b+

λ

λ+ r
a > d,

min

{
u,

r

λ+ r
u+

λ

λ+ r
w

}
>

r

λ+ r
v +

λ

λ+ r
x, and

min

{
u,

r

λ+ r
u+

λ

λ+ r
w

}
>

r

2λ+ r
v +

2λ

2λ+ r

(
1

2
x+

1

2
max{vα, u}

)
.

Suppose further that

b+
λ

λ+ r
a > d+

λ

λ+ r
c

or

w +
λ

λ+ r
u < x+

λ

λ+ r
v.

Then there exists a unique SPNE. Furthermore the unique SPNE must be the

unique MPE.
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Proof. We have already shown that the first two inequalities imply that P2

must play α2 at any history when P1 is currently playing α1 and P1 must

play α1 at states when P2 is currently playing α2. We proceed again as in the

previous proofs.

Suppose that the first inequality holds. The case for which the second in-

equality holds proceeds along the same lines and so we omit the proof. We will

show that

V1(β) <
r

λ+ r
b+

λ

λ+ r
a.

Suppose first that V1(β) ≤ V1(β1, α2). Then

V1(β1, α2) ≤ r

λ+ r
c+

λ

λ+ r
d.

If V1(β) ≥ V1(α1, β2) then this implies that

V1(β) ≤ r

λ+ r
d+

λ

λ+ r

(
r

λ+ r
c+

λ

λ+ r
a

)
.

But clearly the above is strictly less than

r

λ+ r
b+

λ

λ+ r
a.

Suppose next that V1(β) ≤ V1(β1, α2) and V1(β) < V1(α1, β2). Again we

have

V1(β1, α2) ≤ r

λ+ r
c+

λ

λ+ r
a.

Additionally

V1(α1, β2) ≤ r

λ+ r
b+

λ

λ+ r
a.

This then implies that

V1(β) ≤ r

2λ+ r
d+

2λ

2λ+ r

(
1

2
V1(α1, β2) +

1

2
V1(β1, α2)

)
<

r

λ+ r
b+

λ

λ+ r
a.

Finally let us assume that V1(β) > V1(β1, α2). Therefore

V1(β) ≤ r

2λ+ r
d+

2λ

2λ+ r

(
1

2
V1(β) +

1

2
max{V1(β), V1(α1, β2)}

)
.
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One can show that this is less than r
λ+r b+ λ

λ+ra.

Thus we have shown that in all of these cases,

V1(β) <
r

λ+ r
b+

λ

λ+ r
a.

However the right hand side of the above inequality denotes the payoff that P1

can guarantee when she transitions play to (α1, β2). Therefore it must be that

in any SPNE, P1 must play α1 with probability one at any history in which P2

is currently playing β2. This establishes the claim.

6 Discussion

Payoff specifications compatible with unique limit outcome

The conditions we provided for the uniqueness of limit outcome imply re-

strictions jointly on the payoffs and the discount rate. A natural question to ask

is whether it is true for generic payoff specifications of the battle of the sexes

game that there is an intermediate range of discount rates such that there is a

unique limit outcome in SPNE.

The answer to this question is negative. Consider the following battle of

sexes games:

α2 β2

α1 1, 0 − 3
2 ,−1

β1 −2, 34 0, 1

Our characterization of MPE establishes that there is no discount rate at

which there is a unique limit outcome in MPE. Moreover, this remains true for

all small perturbations of stage game payoffs, too.

More generally, a simple manipulation of our necessary and sufficient condi-

tion for unique limit outcome reveals that the limit outcome cannot be unique

in MPE for any discount rate whenever:

u2(β1, β2) + u2(α1, β2) < u2(β1, α2) + u2(α1, α2)

u1(α1, β2) + u1(α1, α2) > u1(β1, β2) + u1(β1, α2).
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That is, if for both players it is true that the strategy corresponding to the

player’s least preferred stage game Nash equilibrium is risk-dominant, then there

is always multiplicity of limit outcomes in equilibrium.

Expected equilibrium payoffs when there is a unique limit outcome

Because uniqueness of the limit outcome occurs at an intermediate range of

discount rates, the strong player (whose favored stage game Nash equilibrium is

selected as the limit outcome) is not necessarily better off. To see this, consider

again the example in Section 3:

α2 β2

α1 4, 2 1,−4
β1 −2, 3 2, 4

Following the arguments of Section 3, we can show that the unique SPNE

is Markovian and follows the following set of dynamics with α as the unique

absorbing state.

However, the ex ante payoffs of P1 at state (β) is:

r

2λ+ r
d+

2λ

2λ+ r

(
1

2

(
r

λ+ r
c+

λ

λ+ r
a

)
+

1

2

(
r

λ+ r
b+

λ

λ+ r
a

))
=

1

3
· 2 +

2

3

(
1

2

(
1

2
(−2) +

1

2
(4)

)
+

1

2

(
1

2
(1) +

1

2
4

))
=

11

6
< 2.

That is, not only P2 but also P1 is worse off at state (β) than if play stayed

forever at state (β).

Possible extensions

Our analysis could be easily extended to allowing for different discount rates

and/or arrival rates for the players. Intuitively, increasing one of the player’s

discount rate makes the player weaker, making it more likely that the other

player’s favorite stage game equilibrium becomes the unique limit outcome in

SPNE. Increasing the arrival rate of a player also makes that player weaker, as
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it makes the other player more like a Stackelberg leader in the game, since that

player is credibly locked into playing her current action for a relatively longer

time.

Characterizing MPE and providing a sufficient condition for unique limit

outcome in SPNE could be done similarly as in our basic setting, at the cost

of more complicated notation and more complicated equilibrium conditions.

As the additional qualitative insights from this exercise are limited, we do not

pursue this direction formally here.

A much less straightforward direction would be extending the investigation

beyond battle of the sexes games, and characterizing more generally the set of

games for which there is an intermediate range of discount rates for which the

limit outcome is unique in SPNE. As we showed above, such a range might not

exist even for games within the battle of the sexes class, suggesting that this

extension might be difficult.
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A Appendix

A.1 Proof of Lemma 2

Below we first provide necessary conditions for existence of MPE in which

(β1, β2) is the unique absorbing state. Then it is trivial to show that these

necessary conditions are also sufficient. We find it convenient to describe the

type of equilibrium graphically. The arrow connecting two states between which

one of the players can transition play indicates the player’s action conditional

on the other player playing the action consistent with these states. If the arrow

points to one state, it implies choosing the corresponding action with proba-

bility 1, otherwise mixing between the two actions. The states colored in blue

represent the elements of the unique absorbing cycle.

Generically, note first that there are only three possible types of dynamics

for any MPE with (β1, β2) as the unique absorbing state:

a, u

c, w d, x

b, v a, u

c, w d, x

b, v a, u

c, w d, x

b, v

It is easy to see that the first set of dynamics exist if and only if

c+
λ

λ+ r
d ≥ a+

λ

λ+ r
b

v +
λ

λ+ r
x ≥ u+

λ

λ+ r
w.

Similarly the second set of dynamics exist if and only if

r

λ+ r
v +

λ

λ+ r
x ≥ u

a+
λ

λ+ r
b ≥ c+

λ

λ+ r
d.
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The necessary and sufficient conditions for existence of the third set of dynamics

are only slightly more subtle. First for P1 to mix, we need

c+
λ

λ+ r
d ≥ a+

λ

λ+ r
b.

This is because if P2 plays α2 with probability one whenever he is playing α1,

then the unique best response for P1 is to play α1 whenever P2 is playing α2.

For him to have an incentive to play β1 when P2’s current action is α2, P1

needs to prefer playing β1 when P2 plays β2 with probability one regardless of

the history. This is exactly the condition above.

Note that this is the first condition that is necessary and sufficient for the

first set of dynamics. Since if we also have

v +
λ

λ+ r
x ≥ u+

λ

λ+ r
w,

we showed necessary and sufficient conditions for existence of equilibria of the

form of the first kind, let us assume the contrary. We have thus far,

c+
λ

λ+ r
d ≥ a+

λ

λ+ r
b

v +
λ

λ+ r
x < u+

λ

λ+ r
w.

With these conditions, similar to the argument we use for P1, in order for P2

to have incentives to mix, he must be willing to play β2 when P1 plays α1 with

probability one whenever his prepared action is α2. This means that

u <
r

λ+ r
v +

λ

λ+ r
x.

So the set of parameters for which the third kind of dynamics can occur as an

MPE that are not covered by the first case is exactly

c+
λ

λ+ r
d ≥ a+

λ

λ+ r
b

v +
λ

λ+ r
x < u+

λ

λ+ r
w

u <
r

λ+ r
v +

λ

λ+ r
x.
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Taking the union of these sets of parameters gives us the set of parameters in

the statement of Lemma 2.

We can perform a similar analysis to determine the set of parameters for

which there exists an MPE in which both (α) and (β) are the absorbing states.

a, u

c, w d, x

b, v

The necessary and sufficient conditions for this to occur are:

u ≥ r

λ+ r
v +

λ

λ+ r
x

d ≥ r

λ+ r
b+

λ

λ+ r
a.

A.2 Proof of Lemma 3

By lemma 1, the only possible set of dynamics supporting an MPE with (α),

(α1, β2), and (β) as elements of the absorbing cycle is the following:

a, u

c, w d, x

b, v

For P1 to mix, it must be that

r

λ+ r
b+

λ

λ+ r
a > d.

Otherwise P1, would play β1 with probability one whenever P2’s currently

played action is β2 regardless of what P1 plays when P2’s currently played

action is α1.
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Similarly for P2 to have an incentive to mix, it must be that

r

λ+ r
v +

λ

λ+ r
x > u.

Thus the necessary conditions are

r

λ+ r
b+

λ

λ+ r
a > d

r

λ+ r
v +

λ

λ+ r
x > u.

It is easy to see that these conditions are indeed also sufficient.
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