On Uniform Inference in Nonlinear Models with Endogeneity

Shakeeb Khan
Department of Economics, Duke University
Denis Nekipelov
Department of Economics, UC-Berkeley

This version: September 24, 2013

ABSTRACT

This paper explores the uniformity of inference for parameters of interest in nonlinear models with endogeneity. The notion of uniformity is fundamental in these models because due to potential endogeneity, the behavior of standard estimators of these parameters is shown to vary with where they lie in the parameter space. Consequently, uniform inference becomes nonstandard in a fashion that is loosely analogous to inference complications found in the unit root and weak instruments literature, as well as the models recently studied in Andrews and Cheng (2012a), Andrews and Cheng (2012b) and Chen, Ponomareva, and Tamer (2011). We illustrate this point with two models widely used in empirical work. The first is the standard sample selection model, where the parameter is the intercept term. (Heckman (1990), Andrews and Schafgans (1998) and Lewbel (1997a)). We show that with selection on unobservables, asymptotic theory for this parameter is not standard in terms of there being nonparametric rates and non-gaussian limiting distributions. In contrast if the selection is on observables only, rates and asymptotic distribution are standard, and consequently, an inference method that is uniform to both selection on observables and unobservables is required.

As a second example, we consider the well studied treatment effect model in program evaluation- (Rosenbaum and Rubin (1983) and Hirano, Imbens, and Ridder (2003)), where a parameter of interest is the ATE. Asymptotic behavior for existing estimators varies between standard and nonstandard across differing levels of treatment heterogeneity, thus also requiring new inference methods.

JEL Classification: C12, C13, C14, C15.
Keywords: Selection on observables and unobservables, uniform inference, fixed and drifting sequences of parameters.

1We are grateful to seminar participants at UW-Madison, Penn State, HKUST, SHUFE, SMU, NUS and conference participants at CEME in Cornell, for helpful comments. Support from the NSF is gratefully acknowledged.
1 Introduction

Endogeneity and sample selectivity are frequently encountered in econometric models, and failure to correct for it appropriately can result in incorrect inference. In linear models, with the availability of appropriate instruments, two-stage least squares (2SLS) yields consistent estimates without the need for making parametric assumptions on the error disturbances. Unfortunately, it is not theoretically appropriate to apply 2SLS to non-linear models, as the consistency of 2SLS depends critically upon the orthogonality conditions that arise in the linear-regression context.

Until recently, the standard approach for handling endogeneity in certain non-linear models such as discrete choice, censored or bivariate selection has required parametric specification of the error disturbances (see, e.g. Heckman (1990)). A more recent literature in econometrics has developed methods that do not require parametric distributional assumptions, which is more in line with the 2SLS approach in linear models. In one sense, this semiparametric, or “distribution-free” approach can be roughly divided into two groups, depending on the source of endogeneity that arises in the nonlinear model.

In one group the data available to the econometrician is selected nonrandomly, resulting in what is now well known as sample selection bias (Gronau (1973), Heckman (1974)). Original inference methods were based on standard procedures such as MLE or NLLS but consistency of these approaches were based on the parametric specification of the unobserved components making such methods undesirable, and motivating the distribution free methods proposed in Powell (1986), Ahn and Powell (1993), Lewbel (1997a).

In the other group, the source of endogeneity is the explanatory variables themselves. As mentioned, correct inference on the coefficients of these endogenous regressors at first required parametric specification on the unobserved components of the model, but fortunately, more recent work such as Blundell and Powell (2003), Vytlacil and Yildiz (2007), Khan and Nekipelov (2011) proposed semiparametric, distribution free methods which are robust to misspecification of the distribution of the unobserved components of the model.

In both groups, the the proposed semiparametric inferences are a welcome addition to the literature when compared to parametric methods. However, in this paper we point out that the inference problem in these models with endogeneity has not yet been adequately solved since they have yet to propose an inference method that is uniform in the parameters of the model. By this we simply mean that the large sample properties of these proposed semiparametric models to address endogeneity will vary depending on the values of the unknown parameters of the model. This will make inference of the parameters of interest more complicated than suggested by existing semiparametric inference methods. This paper aims to fill this gap in the literature by proposing inference methods for the parameters of interest for nonlinear models with endogeneity that are uniform in the unknown parameter values. In the examples we consider the notion of uniformity is directly linked to the endogeneity in the model. This is because, as we will show, the large sample properties of the
existing semiparametric inference procedures will vary substantially with the degree of endogeneity as well as the parameter values themselves. In that sense that makes valid inference in these models complicated in a way that is loosely analogous to that found in the unit roots and weak instruments literatures.

The rest of the paper is organized as follows. The next section illustrates our main nonuniformity problem by reconsidering the semiparametric sample selection model (Ahn and Powell (1993), Lewbel (1997a), Andrews and Schafgans (1998)). Here we show that the large sample behavior of propose estimation and inference methods varies discontinuously with the degree of selection on unobserved variables, with the extreme case being when selection is on observed variables only, as well as propose an inference procedure that is uniformly valid across all types of selection.

Section 3 of the paper explores another example where we consider inference in treatment effect models often seen in the program evaluation literature - see, e.g. Rosenbaum and Rubin(1983) and Hirano Imbens and Ridder(2000). Here we show that properties of standard estimation procedures for the ATE, a fundamental parameter of interest varies discontinuously in how varying the treatment effects are across individuals in the sample, with the extreme case being when treatment is constant for everyone. To address this discontinuity we propose a new inference method for the ATE that is uniformly valid across varying levels of treatment heterogeneity.

Section 4 explores the finite sample properties of our new inference methods in two ways. First we consider a simulation study, simulating the models considered in Sections 3 and 4, and reporting finite sample properties of estimation and testing procedures. Second, we apply the new inference method proposed in Section 3 to study the slope coefficients in a female labor supply curve, using the data set introduced in Mroz (1987). Section 5 concludes by summarizing our results and suggesting areas for future research that will aim to primarily address the unresolved issues in this paper. An Appendix collects all the proofs of the main theorems in the paper.

2 Identification and Inference in the Sample Selection model

In this paper we study a class of econometric models that turn out to be related in terms of the quality of identification of the parameter of interest and the properties of consistent estimators for this parameter. Despite this commonality, we choose to first demonstrate this property for a concrete model, specifically, the sample selection model. Then we will show several examples of models with the same property and indicate how the results that we establish for the sample selection model extend to those examples as well.

Estimation of economic models is often confronted with the problem of sample selectivity, which is well known to lead to specification bias if not properly accounted for. Sample selectivity arises from nonrandomly drawn samples which can be due to either self-selection by the economic agents under investigation, or by the selection rules established by the econometrician. In labor economics, the most studied example of sample selectivity is the estimation of the labor supply curve, where hours
worked are only observed for agents who decide to participate in the labor force. Examples include the seminal works of Gronau (1974) and Heckman (1976, 1979). It is well known that the failure to account for the presence of sample selection in the data may lead to inconsistent estimation of the parameters aimed at capturing the behavioral relation between the variables of interest.

Econometricians typically account for the presence of sample selectivity by estimating a bivariate equation model known as the sample selection model (or using the terminology of Amemiya (1985), the Type 2 Tobit model). The first equation, typically referred to as the “selection” equation, relates the binary selection rule to a set of regressors. The second equation, referred to as the “outcome” equation, relates a continuous dependent variable, which is only observed when the selection variable is 1, to a set of possibly different regressors.

We consider inference in the following model:

\[
D = 1\{Z - V \geq 0\} \\
Y = DY^* = D \cdot (\theta_0 + U)
\]

(2.1)

Where \(\theta_0 \in \mathbb{R}\) is the unknown parameter of interest, \(Z\) is the observed instrumental variable, and \(U, V\) are unobserved disturbances, which are independent of the instrument, but not necessarily independent of each other. The observed dependent variable \(D\) in the selection equation is binary, with \(1\{\cdot\}\) denoting the usual indicator function, and the dependent variable of the outcome equation, \(Y^*\), is only observed when \(D = 1\).

The above model is in one sense a condensed version what is often estimated in practice. The standard setup usually includes additional covariates, denoted by the observed random vector \(x_i\) in the second equation, where \(y_i^*\) would be expressed as

\[
y_i^* = \theta_0 + x_i'\beta_0 + u_i
\]

in which case \(z_i\) would also be a vector whose dimension would usually exceed that of the dimension of \(x_i\), and \(\beta_0\) would also be a parameter to conduct inference on- see, e.g. Ahn and Powell (1993).

Our focus is on the condensed model and \(\theta_0\) only, for the following reasons. First, \(\theta_0\) is the parameter of interest in much of the treatment effects literature as it relates to the average treatment effect- see, e.g. Heckman (1990) and Andrews and Schafagans (1998). As discussed there the economic interpretation of an estimated sample selection model makes inference on the intercept particularly important. It is required for the evaluation of the wage gap between unionized and nonunionized workers or between two different socioeconomic groups- see, e.g. Oaxaca (1973), Smith and Welch (1986), Baker et al. (1993). In the program evaluation literature the intercept permits evaluation of the net benefit of a social program by permitting comparisons of the actual outcome of participants with the expected outcome had they not chosen to participate.

Second, \(\theta_0\) is the parameter for which inference on becomes varying with the degree of selection, measured by the correlation between \(u_i\) and \(v_i\), and thus the problem of uniformity arises. This is
generally not the case for inference on β_0 as we will explain further below. Thus inference on β_0 can be handled by existing methods since estimators for it will behave similarly across varying degrees of selection in the model.

What makes inference complicated for θ_0 is that how well we can estimate θ_0 depends on the type of selection in the model, something which is unknown to the econometrician. For example, if the selection in the model is completely on observables only, which corresponds to u_i, v_i being uncorrelated with each other, than θ_0 can be consistently estimated at the standard parametric rate by, for example OLS or WLS only using the observations where $d_i = 1$. However, both OLS and WLS will be inconsistent if there is any amount of selection on unobservables. An alternative estimator would be to take into account selection on unobservables. One such estimator is proposed in Andrews and Schafagans(1998). We propose a new one in this paper that is analogous to the estimation procedure used for a different model discussed in the next section, so that we can draw parallels between the two parts of the paper.

Interestingly, neither the Andrews and Schafagans (AS) estimator nor the new estimator (KN) we propose will have standard asymptotic properties (i.e parametric rates of convergence, limiting Gaussian distributions). These nonstandard properties will continue to hold even in the case when selection on observables only. In other words these estimators are not adaptive to the type of section. The comparison of both the AS and KN estimators to the standard OLS and WLS estimators represents the classical robustness-efficiency tradeoff; OLS,WLS is not robust to selection on unobservables, but is more efficient than AS or KN if selection is on observables only.

To discuss an inference procedure that allows for both types of selection we consider the behavior of the KN estimator under locally drifting parameter sequences. For the problem at hand we consider sequences where the correlation between u_i and v_i converges to 0, so that in the limit, the selection is on observables only.

The following subsection formalizes these statements with the statement and proofs of various theorems concerning the large sample properties of the various estimators under various types of selection. To facilitate this discussion we will distinguish between realizations of the random variables from a random sample and the random variables themselves. Our notation will be conventional in the sense that lower case letters with a subscript i will denote realizations from a random sample of n observations, and capitalized letters will denote the random variables themselves. So for example, in the above base model described, d_i, z_i, v_i, y_i, u_i will denote realizations of draws from the random variables D, Z, V, Y, U.

The element that may complicate the estimation procedure in this context is the unknown joint distribution of U and V. In this case, one may have a temptation to pre-test for the correlation between the error terms in the two equations, and in case it becomes clear that the error terms are uncorrelated, one may use the mean of the linear outcome whenever the dummy D is not equal to zero, as an estimate for θ. By the standard CLT, this mean will converge to expectation at a
parametric rate. However, if one establishes that \(U \) and \(V \) are correlated, than the full distribution of \(U \) and \(V \) needs to be explored and thus the estimator for \(\theta \) may need to employ an estimated unknown function leading to a slow rate of its convergence. This means that the properties of the estimator for \(\theta \) are non-uniform in the distribution of the error terms. As we find out, the major determinant of the non-uniform behavior of the estimator is the tail structure of the distribution of \(U \) and \(V \). It turns out that we can find two distributions of \(U \) and \(V \) which will be close in the mean square norm defined by the probability measure associated random variable \(Z \), however, the corresponding estimator for the parameter of interest \(\theta \) may have drastically different performance both in the rate of convergence and in the structure of the asymptotic distribution for these close distributions of error terms. In the practical terms this implies that a small amount of contamination in the data leading to a small correlation between \(U \) and \(V \) may have a substantial impact on the properties of the estimator for the parameter of interest.

We structure our discussion by analyzing the estimators arising in the two cases: when \(U \) and \(V \) are correlated and when they are not and then we design the procedure that bridges the gap between the two distributions.

Before starting the formal analysis we present the general assumptions that we impose on the structure of the distribution of error terms and the covariates.

ASSUMPTION 1

(i) \(Z \) has a full support on \(\mathbb{R} \) with the density \(f_Z(\cdot) \) that is absolutely continuous and such that \(1/f_Z(\cdot) \) is absolutely integrable on any bounded subset of \(\mathbb{R} \).

(ii) \(U \) and \(V \) have absolutely continuous strictly positive joint density supported on \(\mathbb{R} \times \mathbb{R} \) such that \((U,V) \perp Z \) and \(E[|U|^2|V=v] < \infty \) uniformly over \(v \in \mathbb{R} \).

(iii) The conditional density \(f_{U|V}(\cdot|v) \) is well defined for each \(v \in \mathbb{R} \), it is bounded in \(L_1 \) norm for each \(v \).

In the subsequent discussion we re-center the parameter of interest \(\theta \) at zero which can be done without loss of generality. In case where the true parameter is not zero our results apply for the deviation of the estimated parameter from the true parameter.

First, we establish the general identification result for the parameter of interest. We note that our only selected normalization is \(E[U] = 0 \). In this case the expectation of the “combined” error term \(UD \) in the main equation of the selection model is not equal to zero and, while there is no information is available regarding the structure of correlation between \(U \) and \(V \), the marginal distribution of \(V \) which may be recovered from the selection equation is not informative for the conditional distribution of \(U \) given \(V \).

In this case the previous identification argument works only in the limit. In fact, we note that

\[
E[Y|D = 1, Z = z] = \theta + E[U|V \leq z]
\]
Alternatively, we can write

\[\theta = \frac{E[Y \mid Z = z]}{P(z)} - E[U \mid V \leq z], \]

where \(P(z) = E[D \mid Z = z] \). Then given the assumption that support of \(z \) is large, we can see that

\[\lim_{z \to +\infty} P(z) = 1 \quad \text{and} \quad \lim_{z \to +\infty} E[U \mid V \leq z] = E[U] = 0, \]

therefore

\[\theta = \lim_{z \to +\infty} E[Y \mid Z = z]. \]

We note that this expresses the parameter of interest in terms of the observable conditional expectation \(E[Y \mid Z] \). Thus, this demonstrates the identification of this parameter under Assumption 1 which does not require the knowledge of any features of the joint distribution of \((U, V)\). However, without further assumptions the identification is based on the limiting values of the "instrument" \(Z \). This is why parameters identified in this manner are frequently referred to as \textit{identified at infinity}.

Heckman (1990) and Andrews and Schafgans (1998) develop semiparametric inference procedures for the intercept parameter in the selection model. However, these inference procedures rely on a high-level assumption regarding the tail behavior of the joint density of error terms in the main and the selection equation. Further we demonstrate that there exists a simple analog estimator that does not rely on any tail assumptions and thus remains consistent uniformly in the class of selection models induced by the joint distribution of error terms and the instrument that have absolutely continuous densities with full support. This estimator has a similar structure to the estimator considered by Lewbel (1998) who studied the estimation of the intercept of the binary choice model under mean restriction imposed on the error term. We find, however, that this estimator has undesirable properties with \(t \)-ratios not converging to a pivotal distribution. We also show under some regularity conditions imposed on the density of the instrument, the estimator will converge to a non-standard distribution at the sub-parametric rate. It turns out that the smoothness of the density or the dimensionality of the instrument play no role in determining this rate.

We also show that under stronger assumptions regarding the distribution of the error terms there exist estimators with a faster convergence rate than our analog estimator. In particular, we consider the case where the error terms in the main and the selection equation are conditionally independent. In that case the regular sample mean computed from the non-censored sample is a \(\sqrt{n} \) - consistent estimator. As with the estimator in Andrews and Schafgans (1999), the corresponding estimator will be inconsistent if the assumption regarding the joint distribution of \((U, V)\) is not satisfied.

Then we investigate whether imposing an assumption on the distribution structure of the error terms is the only option to generate estimators that converge to the pivotal distribution at the known rate. We find that any estimator that is consistent over large classes of distributions of error terms will have a rate of convergence that discontinuously changes with the tail assumptions making the construction of pivotal statistics impossible. Also, traditional approaches of constructing confidence sets such as bootstrap are invalid.
As an alternative, we propose the idea of *locally uniform inference*. We start with some restriction on the joint density \((U, V)\) that ensures that the uniformly consistent estimator for the intercept exhibits regular behavior: we choose the assumption of conditional independence between \(U\) and \(V\).\(^1\) Then we approximate the joint distribution of the error terms with a drifting family of distributions which in the limit converges to the distribution that satisfies the imposed tail condition. We find that with an appropriately chosen drifting sequence, the resulting estimator will have an asymptotic distribution that can be characterized as a sum of the normal distribution component and a component that is characterized by the finite-dimensional distribution of the Levy process. This structure ensures that many estimators become available and that the inference becomes robust to deviations from the imposed distributional assumption.

2.1 Conditionally exogenous selection

We start our analysis with the familiar model with “selection on observables”. In this model the mean of the error in the main equation is zero conditional on the error term in the selection equation: \(E[U | V] = 0\). Provided the independence of the “instrument” \(Z\) from the error terms, this also means that the mean of the error in the main equation is zero uniformly over the values of \(Z\). We note that in this case we can directly use the system of equations of interest to show identification. In particular, we note that the mean independence condition implies that \(E[U | V \leq z] = 0\), if the corresponding conditional density is well-defined. Then we also note that

\[
E[U D | Z = z] = E[U | V \leq z].
\]

For convenience of the further discussion we introduce a propensity score function

\[
P(z) = E[D | Z = z].
\]

Then we can write

\[
E[Y | D = 1, Z = z] = \theta + E[U | D = 1, Z = z] = \theta.
\]

We note that conditioning on \(Z\) in this case is informative because even though the first moment of \(U\) conditional on \(V\) does not vary with \(V\), the second moment may. As a result, conditioning on \(Z\) may be used, for instance, to account for heteroskedasticity. We then can re-cast the identifying conditional moment for \(\theta\) as

\[
\theta = E\left[\frac{Y}{P(Z)} \bigg| Z = z\right]. \tag{2.2}
\]

The structure of the estimator as a conditional moment of variable \(Y/P(Z)\) allows us to accumulate the information over \(Z\) and the resulting estimator will not be affected by the observations where the propensity score takes values close to zero or one.

\(^1\)Alternatively, one can use one of the tail conditions considered in Andrews and Schafgans (1998).
in Appendix E we derive the semiparametric efficiency bound for the estimator of θ which amounts to

$$I^\theta = E \left[\frac{P(Z)}{E[Y^2|D = 1, Z]} \right]^{-1}.$$

We note that by our assumption $1/E \left[Y^2 | D = 1, Z \right]$ has a finite expectation, meaning that the efficiency bound is strictly above zero.

The structure of the semiparametric efficiency bound suggests the form of the efficient nonlinear instrument $\zeta(z) = \frac{P(z)}{E[Y^2|D = 1, Z = z]}$. The corresponding unconditional moment determining θ can be written as

$$\theta = E [\zeta(Z)]^{-1} E \left[\frac{Y}{P(Z)} \zeta(Z) \right].$$

Thus, the semiparametrically efficient estimator for θ can be written as

$$\hat{\theta}_0 = \left(\frac{1}{n} \sum_{i=1}^n \frac{\hat{P}(z_i)}{E[Y^2|D = 1, Z = z_i]} \right)^{-1} \frac{1}{n} \sum_{i=1}^n \frac{y_i}{E[Y^2|D = 1, Z = z_i]}$$

(2.3)

This means that

$$\sqrt{n} I^\theta \hat{\theta}_0 \xrightarrow{d} N(0, 1).$$

Therefore, in case where the error term in the main equation is mean independent from the error term in the selection equation, the estimator for the parameter(s) of the first equation converges at the parametric rate.

Although estimator (2.2) provides a data-driven expression for the parameter of interest, this estimator is not robust to deviations from the “selection on observables” assumption. In case where the errors are not mean independent, the estimator will be biased and this bias cannot be estimated at a sufficiently fast rate. As a result, we consider the estimator that is not based on the efficient weighting.

Another purpose of this alternative representation is to link the case where the error term in the main equation is mean independent from the error term in the second equation and the case where the two error terms are correlated. In particular, we first note that

$$E[Y \mid Z = z] = \theta P(z)$$

can be rewritten as

$$\theta f_\nu(z) = \frac{\partial E[Y \mid Z = z]}{\partial z},$$

where the derivatives are well-defined under Assumption 1. Therefore

$$\theta = \frac{\frac{\partial E[Y \mid Z = z]}{\partial z}}{f_\nu(z)}.$$
We note that once we characterized the parameter of interest in this form, the form of the corresponding semiparametric efficient estimator is implied by Newey (1994) and Brown and Newey (1998) and has the same weighted structure as before.

2.2 A uniformly consistent estimator for the intercept in the sample selection model

Now suppose that the only assumption that is imposed on the error terms is that \(E[U] = 0 \). As we previously established, this assumption is sufficient to identify the intercept in the main equation under the full support assumption. The intercept can be expressed as

\[
\theta = \lim_{z \to +\infty} E[Y \mid Z = z].
\]

We note that by the dominated convergence theorem \(\lim_{z \to -\infty} E[Y \mid Z = z] = 0 \). Provided that working with pointwise limits of functions is not convenient, we propose the following transformation that allows us to express the parameter of interest directly from the elements of the model:

\[
\theta = \lim_{z \to +\infty} \int_{-\infty}^{z} \frac{\partial E[Y \mid Z = z]}{\partial z} dz.
\]

Taking the limit, we find that the parameter of interest can be represented as an improper integral

\[
\theta = \int_{-\infty}^{+\infty} \frac{\partial E[Y \mid Z = z]}{\partial z} dz.
\]

We re-arrange this equation using the Fubbini theorem, and make the estimator take a form similar to that where the error term in the main equation is mean independent from the error term in the selection equation. Thus, we can obtain that under Assumption 1

\[
\theta = \int_{-\infty}^{+\infty} \frac{\partial E[Y \mid Z = z]}{\partial z} \frac{1}{f_Z(z)} dz = E \left[\frac{\partial E[Y \mid Z]}{\partial z} \frac{1}{f_Z(Z)} \right].
\]

We note that this identification argument leads to a similar expression to that in Lewbel (1997b), Lewbel (1997a), Lewbel (1998). This indicates an intrinsic relationship between the inverse density-weighted estimators and parameters "identified at infinity" such as the intercept in the sample selection model. As we show further, we can establish a similar relationship between the inverse density weighted estimation and the average treatment effect as well as the consistent estimator for the interaction parameters in the model of the static game of complete information studied in Tamer (2003).

Therefore, we can introduce random variable \(W = f_Z(Z)^{-1} \frac{\partial E[Y \mid Z]}{\partial z} \) and the estimator is constructed as a sample average of the draws of this random variable:

\[
\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} w_i. \tag{2.4}
\]
This case clearly contrasts with the case where the error term in the main equation is mean independent from the error term in the selection equation and the estimator was written in a weighted form. We note that in both cases the variables forming the sum have a finite first moment. In particular, we note that $E[W] = \lim_{z \to \infty} E[Y | Z = z] < \infty$. However, while we established that $M(Z)W$ has a finite second moment, provided that the density of the “instrument” Z is in the denominator in random variable W, the second moment of W itself may not exist. The convergence properties of the corresponding improper integral are determined by the tail behavior of random variable $\frac{\partial E[Y | Z]}{f_Z(Z)}Y$.

We note that under the i.i.d. assumption, we can apply Kolmogorov’s strong law of large numbers and establish that

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} w_i \overset{a.s.}{\longrightarrow} 0,$$

because we re-centered the true parameter value at zero. Thus, estimator $\hat{\theta}$ possesses some considerable “stability” properties. Provided that our results so far do not give any information regarding the characterization of the distribution of the constructed estimator, we would want to use some common method, such as bootstrap to characterize its asymptotic distribution. However, as the following result demonstrates, the traditional non-adaptive bootstrap fails in this case.

Consider a bootstrap procedure which takes the i.i.d. sample of variables $W_i = \frac{\partial E[Y_i | Z_i]}{f_Z(Z_i)} Y_i$. Then we take an array $\{I^{(n)}_1, \ldots, I^{(n)}_n\}, n \geq 1$ that is independent from W_n and such that for each n the element $I^{(n)}_i$ is uniformly distributed on $\{1, \ldots, n\}$. Then the bootstrap sample of size n is generated as $W^*_i = W_{I^{(n)}_i}$.

THEOREM 1 Suppose that identification Assumption 1 holds and one uses the bootstrap sample W^*_i to characterize the distribution of estimator (2.4). The bootstrap distribution fails to converge to true limiting distribution of the partial sum.

Further in this subsection we will be able to characterize the actual limit of the bootstrap distribution under additional structural assumptions regularizing the tail behavior of the instrument.

Another approach to inference with estimators that have non-standard properties is based on using pivotal inference. Of interest frequently is the behavior of the t-statistic corresponding to parameter $\hat{\theta}$. In fact, this approach was proposed in Andrews and Schafagans (1998) for the selection model and Khan and Tamer (2010) as a method for analysis of parameters ”identified at infinity”. See Hill and Chaudhuri (2012) for another example of this approach. In all of these papers the inference approach can be considered as “robust” in the sense that it permits valid inference across a class of bivariate distributions. However, validity is based on certain tail conditions which ensured a Lindeberg type condition was satisfied.

Our next result shows that without such tail conditions, the estimator (2.4), which is consistent uniformly over the distributions satisfying Assumption 1, is not compatible with pivotal inference.
THEOREM 2 Suppose that Assumption 1 holds and $E[U] - 0$. Then the empirical distribution of

$$
\hat{T}_\theta = \frac{\frac{1}{n} \sum_{i=1}^{n} w_i}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} w_i^2}}
$$

is non-pivotal. In other words, for any $\delta > 0$ there exist two distributions of (U, V, Z) denoted $F_{U,V,Z}^1$ and $F_{U,V,Z}^2$ satisfying Assumption 1 such that

$$
Pr\left(\hat{T}_\theta \leq t\right) \xrightarrow{F_{U,V,Z}^k} F_k(t), \ k = 1, 2
$$

and

$$
\sup_{t \in \mathbb{R}} |F_1(t) - F_2(t)| > \delta.
$$

Finally, one can try to use an estimator that is consistent under a particular distributional assumption regarding (U, V) and then just correct the bias using some additional information that can be observed from the actual tail behavior. The following theorem establishes the fact that bias correction is infeasible: bias cannot be estimated at the rate that is faster than the required $n^{-1/4}$.

THEOREM 3 Suppose for $\theta = E[W]$

$$
Pr(\{\omega : \theta - E[W \mid Z(\omega)] \neq 0\}) > 0.
$$

Then the estimator (2.3) is biased. Then, unless the tail behavior of (U, V) is known a priori, the bias of estimator (2.3) cannot be estimated at the rate faster than $n^{-1/4}$. Therefore, bias correction is infeasible.

In light of all these negative results, the main question remains as to what are the origins of this behavior of the estimator and whether there are ways of characterizing its actual asymptotic behavior.

Our asymptotic theory is based on the theory of stable distributions considered in Zolotarev (1986), Samorodnitsky and Taqqu (1994), Nolan (2003), Resnick (2006). The idea of the theory of stable distributions is the following. Suppose that X_1, X_2, \ldots, X_n is the sequence of random variables and $S_n = \sum_{i=1}^{n} X_i$ is the partial sum of this sequence. Then we consider some numerical sequences a_n and b_n with $a_n \to \infty$ as $n \to \infty$ and consider a normalized and re-centered partial sum $T_n = S_n/a_n - b_n$. It is then proposed to consider a family of distributions whose characteristic functions have the following structure

$$
\psi(t) = \begin{cases}
\exp \left(-\sigma^\alpha |t|^\alpha \left(1 - i \beta \text{sign}(t) \tan \frac{\pi \alpha}{2}\right) + i \mu t\right), & \text{if } \alpha \neq 1, \\
\exp \left(-\sigma |t| \left(1 + \frac{2i \beta}{\sqrt{2}} \text{sign}(t) \log |t|\right) + i \mu t\right), & \text{if } \alpha = 1.
\end{cases}
$$

(2.5)
with \(\alpha \in (0, 2], \sigma \geq 0, |\beta| \leq 1 \) and \(\mu \in \mathbb{R} \). Parameter \(\alpha \) is called an index of \(\alpha \)-stable distribution.

The following theorem, which is a result by Khinchine and Gnedenko, establishes why the class of distributions with characteristic functions (2.5) is of interest.

THEOREM 4 (Zolotarev (1986)) Let \(G \) be the class of all distributions that can be weak limits of distributions of random variables \(T_n \) as \(n \to \infty \). Then distribution \(G \in G \) if and only if its characteristic function can be written in the form (2.5)

Theorem 4 states that the limits of partial sums of any partial sums of random variables that converge to a distribution can be characterized by a distribution from family (2.5), therefore, called stable distributions.

Then the class of distributions \(F \) of variables \(X_i \) for which random variables \(T_n \xrightarrow{d} T \) with distribution \(F_T(\cdot) \) whose characteristic function is described by (2.5) is called the \(\alpha \)-stable domain of attraction (denoted as \(S_\rho(\sigma, \beta, \mu) \)). The properties of the characteristic functions of limiting distributions in \(S_\alpha \) turn out to be closely related to the properties of functions of regular variation.

DEFINITION 1 A measurable function \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) is regularly varying at \(\infty \) with index \(\alpha \in \mathbb{R} \) (written as \(f \in RV_\alpha \)) if for \(x > 0 \),

\[
\lim_{t \to \infty} \frac{f(tx)}{f(t)} = x^\alpha,
\]

where \(\alpha \) is called the exponent of variation.

In case where \(\alpha = 0 \), function \(f(\cdot) \) is called slowly varying. E.g. function \(f(t) = \log t \) is slowly varying. It turns out that the cumulants of distributions in \(S_\alpha(\sigma, \beta, \mu) \) of a transformed argument \(1/t \) are regularly varying with index \(-\alpha \).

The rates for the normalizing sequence \(a_n \) and the bias-correction terms \(b_n \) turn out to depend on the tail structure of the distribution of \(X_i \). The following theorem establishes the rate.

THEOREM 5 (Samorodnitsky and Taquq (1994)) Sequence \(T_n = \sum_{i=1}^n X_i/a_n - b_n \) with i.i.d. copies of random variable \(X \sim F(\cdot) \), converges to stable law \(S_{\alpha}(1, \beta, 0) \) if \(x^\alpha(1 - F(x) + F(-x)) \) is slowly varying at infinity and

\[
\lim_{x \to \infty} \frac{F(-x)}{1 + F(-x) - F(x)} = \frac{1 - \beta}{2}.
\]

Sequence \(a_n \) stabilizes the tails of \(F(\cdot) \) such that:

\[
\lim_{n \to \infty} n (1 - F(a_n) + F(-a_n)) = \begin{cases}
 \Gamma(1 - \alpha) \cos \frac{\pi \alpha}{2}, & \text{if } \alpha \in (0, 1), \\
 2/\pi, & \text{if } \alpha = 1, \\
 \Gamma(2-\alpha) \left|\cos \frac{\pi \alpha}{2}\right|, & \text{if } \alpha \in (1, 2),
\end{cases}
\]
and

\[b_n = \begin{cases}
0, & \text{if } \alpha \in (0, 1), \\
na_n \int_{-\infty}^{+\infty} \sin \left(\frac{x}{na_n} \right) dF(x), & \text{if } \alpha = 1, \\
n \int_{-\infty}^{+\infty} x dF(x), & \text{if } \alpha \in (1, 2).
\end{cases} \] (2.7)

This theorem suggests that the tail index of the distribution of random variable allows us to evaluate quickly the corresponding rate of convergence for its partial sums. In particular, we always obtain

\[a_n = n^{1/\alpha} l(n), \]

where \(l(\cdot) \) is a function slowly varying at infinity. This leads to familiar \(\propto \sqrt{n} \) normalizations for distributions with stable Gaussian limits where the characteristic function \(\psi(t) \propto \exp(-|t|^2) \).

Having described the general distribution theory for partial sums of i.i.d. random variables that may not have finite moments, we will apply this theory to analyze the distribution of the estimator of the intercept in the main equation of the selection model. We start by making the following structural assumption.

ASSUMPTION 2 Suppose that function \(\phi(t) = |t| \Pr \left(f_x(Z) \left| \frac{\partial E[Y | Z]}{\partial z} \right|^{-1} < |t|^{-1} \right) \) is non-increasing in \(t \) for all \(|t| > C \) for some large constant \(C \) and \(\phi \in RV_{-\gamma} \) for some \(\gamma > 0 \).

We note that this assumption is satisfied for all parametric distributions of \((U, V, Z)\) that are commonly used in applications ranging from Normal to Cauchy. This is the assumption which will allow us to develop the exact asymptotic theory for the estimator of the intercept and understand the source of the negative results that we established earlier.

It may be convenient to express the estimation procedure in terms of expectations with respect to the distribution of the propensity score. In fact, the propensity score is a sufficient statistic in the identification argument. In fact, conditioning on the propensity score leads to

\[E[Y | P(Z) = \pi] = \theta \pi + E[U \mathbb{1}\{P(V) \leq \pi\}]. \]

Then in case where the error term in the main equation is mean independent from the error term in the selection equation, we use the law of iterated expectation to establish that

\[\theta = \frac{E[Y | P(Z) = \pi]}{\pi}, \quad \forall \pi \in [0, 1]. \]

Thus if we consider random variable \(P = P(Z) \), then the mean-independent case can be represented as

\[\theta = E\left[\frac{Y}{P} \mid P = \pi \right] \]
In case where error terms U and V are correlated, we can identify parameter of interest asymptotically:

$$\theta = \lim_{\pi \to 1} E[Y \mid P = \pi].$$

Then we can apply the same technique that we applied before to replace the limit with an expectation, which leads to the expression

$$\theta = E\left[\frac{\partial E[Y \mid P]}{\partial P} \right] f_P(P) \quad (2.8)$$

This provides an alternative representation for the parameter of interest.

The behavior of $\hat{\theta}$ in case where the errors in the two equations are uncorrelated is determined by the tail behavior of random variable W. We consider the tail probability $Pr(|W| > w)$. Given that the expectation of W is finite by assumption, the tail index of the distribution of W is at least one (otherwise, the first moment would not exist).

Here we can provide a basic intuition for establishing the tail behavior of random variable W. In particular, under Assumption 1 the “score” $\frac{E[Y \mid Z]}{\partial z}$ has a finite second moment. Then for $w \to +\infty$

$$P\left(\left| \frac{\partial E[Y \mid Z]}{\partial z} \right| > w \right) \leq P\left(\left| \frac{\partial E[Y \mid Z]}{\partial z} \right| > w \right) + P\left(\left| \frac{1}{f_Z(Z)} \right| > w \right) \leq E\left[\left| \frac{\partial E[Y \mid Z]}{\partial z} \right|^2 \right] + P\left(\frac{1}{f_Z(Z)} > w \right)$$

We can then evaluate

$$P\left(\frac{1}{f_Z(z)} > w \right) = \int f_Z(z) 1 \left\{ f_Z(z) < \frac{1}{w} \right\} dz = 1 - F_Z(f_Z^{-1}(w^{-1})) + F_Z(-f_Z^{-1}(w^{-1})).$$

In particular, if Z is a univariate standard normal random variable, then $f_Z^{-1}(w^{-1}) \propto \sqrt{\log w}$. Also asymptotically, $F_Z(z) \propto \frac{z^{-1/2}}{z}$. As a result

$$P\left(\frac{1}{f_Z(z)} > w \right) \propto \left(w \sqrt{\log w} \right)^{-1}.$$

Provided that function $\log w$ is slowly varying at infinity, the tail distribution of W is stable with the tail index 1. This means that the selection models where the “instrument” Z has normal distribution, the convergence rate for the parameter in the main equation can be as slow as $\sqrt{\log n}$.

It is also important to note that (2.8) allows us to provide a quick evaluation of the tail index of the distribution of W using the density of the distribution of the propensity score at 1. In fact, assuming that the variance of the “score” $\frac{\partial \log f_Y(Y \mid P)}{\partial P}$ is finite, the tail probability is determined by the probability of large deviations of $1/f_P(P)$. We can then evaluate this probability as

$$Pr(|W| > w) = \int_{f_P(p) < 1/w} f_P(p) dp + O(w^{-2}) = O\left(w^{-1} (1 - f_P^{-1}(w^{-1})) \right).$$
We note that, unlike the case of the estimation of treatment effects that we consider further, the distribution of W will be “worse”, the less the distribution of the propensity score is concentrated around one. Thus if the propensity score concentrates such that $f_P(1 - z) \propto (1 - z)^{-\delta}$ with some δ as $z \to 0$, then $\Pr(|W| > w) = O\left(\frac{1}{w^{1+1/\delta}}\right)$, leading to the tails compatible with $1 + 1/\delta$-stable distribution. We note that, the thinner is the density of the propensity score at 1 (corresponding to a larger positive value of parameter δ), the lower is the tail index of W. In particular, if we the distribution of the propensity score is exponentially thin around 1, then the tail index of W will be 1.

We note that the exact convergence rate and the bias-correcting sequence needs to be computed on a case-by-case level. We can provide the following result.

THEOREM 6 Suppose that Assumptions 1 and 2 hold. Consider the sequence of i.i.d. random variables $W_i = \frac{\partial \mathbb{E}[Y_i | Z_i]}{f_Z(Z_i)}$ and let sequences a_n and b_n defined by (2.6) and (2.7) correspond to the distribution of W_1. Then the estimator $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} w_i$ is consistent and:

$$\frac{n}{a_n} \hat{\theta} - b_n \xrightarrow{d} L_{1+\gamma}(1),$$

where $L_{1+\gamma}(\cdot)$ is a $(1 + \gamma)$-stable Lévy process on $[0, 1]$.

We recall that the α-stable Lévy process is the stochastic process driven by the measure with the tail property of the Lévy measure $\nu(x) = c_\pm \|x\|^{-\alpha}$ as $x \to \pm \infty$.

Thus the coefficients in the main equation of the selection model (unless a special structure is imposed where U is mean independent of V) converges at the rate n/a_n to the distribution determined by the limiting stable Lévy process. Stable Lévy process has jumps, unlike the standard Browninan motion. As a result, characterization of the corresponding distribution becomes complicated.

The natural temptation in this case is to consider trimming W to obtain random variables that have a finite second moment for each n. Such a solution has been offered in Andrews and Schafgans (2001) where it was assumed that the tail behavior of the distribution of W is given. However, in many practical settings, the tail behavior of the unobserved component of the model is unknown. Then the tail index of this unknown distribution becomes an ancillary parameter that itself has to be estimated. The convergence rate of this estimator may be extremely slow and thus its behavior will dominate the behavior of the remaining components of the trimmed estimator, see e.g. McCulloch (1986), McCulloch (1997). To give a concrete example, we can consider the so-called Hill estimator for the tail index of the distribution of W. This estimator is based on k highest-order statistics of W: $W_{(1)} \geq W_{(2)} \geq \ldots W_{(n)}$. It is constructed as

$$H_{k,n} = \frac{1}{k} \sum_{i=1}^{k} \log \frac{W_{(i)}}{W_{(k+1)}}.$$
This estimator has poor small sample properties and its convergence, in general, requires random centering.

THEOREM 7 Suppose that the distribution of W is regularly varying with the tail index α, then
\[
\sqrt{k} \left(H_{k,n} - \int_{W(k)}^{\infty} \frac{n}{k} F_W(s) \frac{ds}{s} \right) \Rightarrow \frac{1}{\alpha} \int_0^1 W(s) \frac{ds}{s}
\]

Thus, this estimator, first of all, requires random re-centering that is based on the sample order statistic k. Second, its convergence rate is determined by the number of the order statistic selected and would require conditions beyond $k/n \to \infty$.

This demonstrates that the estimators based on the oracle properties of the distribution, such as the estimator based on trimming are infeasible or they may invoke a slow adaptive rate that incorporates the fact that the tail behavior should itself be estimated. One particular result that is relevant in this context is the performance of the estimator (2.3) in case where the model exhibits the selection on unobservables. In that case estimator (2.3) is biased and one may attempt to still use it but then correct the bias. The following theorem establishes the fact that bias correction is infeasible: bias cannot be estimated at the rate that is faster than the required $n^{-1/4}$.

THEOREM 8 Suppose for $\theta = E[W]$
\[
Pr(\{\omega : \theta - E[W | Z(\omega)] \neq 0\}) > 0.
\]
Then the estimator (2.3) is biased. Then, unless $\phi(t) = |t| Pr \left(f_z(Z) \left| \frac{\partial E[Y|Z]}{\partial Z} \right|^{-1} < |t|^{-1} \right)$ is non-increasing in t for all $|t| > C$ for some large constant C and $\phi \in RV_{-\gamma}$ and γ is known a priori, the bias of estimator (2.3) cannot be estimated at the rate faster than $n^{-1/4}$. Therefore, bias correction is infeasible.

We have previously demonstrated a general failure of bootstrap for approximation of the distribution of the estimator (2.4). We can further study the limit of the bootstrap procedure. Consider a bootstrap procedure which takes the i.i.d. sample of variables $W_i = \frac{\partial E[Y_i|Z_i]}{f_Z(Z_i)} Y_i$. Then we take an array \{$(I_1^{(n)}, \ldots, I_n^{(n)})$, $n \geq 1$\} that is independent from W_n and such that for each n the element $I_i^{(n)}$ is uniformly distributed on $\{1, \ldots, n\}$. Then the bootstrap sample of size n is generated as $W_i^{*} = W_{I_i^{(n)}}$.

THEOREM 9 Suppose that assumptions of Theorem 10 hold. Take η_1, \ldots, η_n be i.i.d. Poisson random variables with parameter $\lambda = 1$ and J_i be homogeneous unit rate Poisson points. Then defining the probability by the class of Poisson random measures over the set of all probability measures
on the space of Radon measures on $[0, +\infty) \setminus \{0\}$, for each measurable subset M in the set of Radon measures
\[P \left(\sum_{i=1}^{n} \delta_{W_i^*/a_n} \in M \right) \Rightarrow P \left(\sum_{i=1}^{n} \eta_i \delta_{J_i^{1/(1+\gamma)}} \in M \right), \]
as $n \to \infty$.

We have previously established the failure of the distribution of t-statistic to converge to a pivotal distribution for a general class of distributions satisfying Assumption 1. In the following result we demonstrate the case where the t-statistic will be asymptotically normal whenever the tail behavior of W is sufficiently close to the case where W has finite second moments.

THEOREM 10 Suppose that Assumption 1 holds, function $\psi(t) = |t|^2 \Pr \left(f_{\beta(Z)} \left[\frac{\partial \mathbb{E}[Y|Z]}{\partial z} \right]^{-1} < |t|^{-1} \right)$ is non-decreasing in t for all $|t| > C$ for some large constant C and $\psi(\cdot)$ is slowly varying at infinity. Then if the expectation $E[W] = 0$ then
\[\widehat{T}_\theta = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_i \Rightarrow N(0,1). \]

We note that this result is a pointwise result that is only valid when tails of distribution of W are “sufficiently” close to the tails that guarantee the finite second moment. In other words, the trimmed variance $E[W^21\{|W| < w\}]$ can only be a function slowly varying at infinity (thus, it cannot diverge to infinity at the geometric rate or faster). Thus, we cannot consider γ belonging to some small neighborhood of 1 to be able to apply Theorem 10. In other words, the distribution of the t-statistic does not converge uniformly to normal distribution for any $\delta > 0$:
\[\lim_{n \to \infty} \sup_{t \in \mathbb{R}} \sup_{\gamma \in [1-\delta, 1]} \left| \Pr \left(\widehat{T}_\theta \leq t \right) - \Phi(t) \right| \not\to 0, \]
where $\Phi(\cdot)$ is the standard normal cdf.

3 General properties for consistent estimators for the intercept

Although the importance transformation delivers a convenient approach to deliver a feasible consistent estimator for the intercept in the selection model, it is in general not obvious whether one can find a “better” estimator. The observable distribution of the data is fully characterized by distributions $\Pr(Y \leq y \mid D = 1 \mid Z = z, X = x)$, $F_X(\cdot)$ and $F_Z(\cdot)$. Without loss of generality for simplicity of exposition we do not analyze the case with the covariates in the selection of equation. Denote $\eta = (\Pr(Y \leq y \mid D = 1 \mid Z = z), F_Z(\cdot))$ the infinite-dimensional element of the model. Let $\mathcal{H} \ni \eta$
be a pseudometric space with a pseudometric \(\rho(\cdot, \cdot) \). A typical choice of the pseudometric is an \(L_p \) pseudometric or a Sobolev pseudometric that also takes into considerations the derivatives. We have established that the intercept parameter in the linear selection is identified in \(\mathcal{H} \):

\[
\theta = \lim_{z \to \infty} E [Y | D = 1, Z = z].
\]

Let \(\theta(\eta) \) be the intercept associated with a particular distribution structure \(\eta \) and let \(\hat{\theta}(\eta) \) be an estimator for \(\theta(\eta) \). We call this estimator uniformly consistent in \(\mathcal{H} \) if for any \(\eta \in \mathcal{H} \):

\[
\hat{\theta}(\eta) \xrightarrow{p} \theta(\eta).
\]

Our first result shows that the process associated with a rate-normalized estimator \(\hat{\theta}(\eta) \) cannot be stochastically equivontinuous for any “practical” choice of \(\mathcal{H} \).

THEOREM 11 Let \(\hat{\theta}(\eta) \) be a uniformly consistent estimator for the intercept parameter and the pseudometric \(\rho \) is dominated by an \(L_\infty \) pseudometric. Then for any \(\eta \in \mathcal{H} \), any \(r_n \) such that

\[
r_n/n \to 0 \quad \text{and} \quad r_n(\hat{\theta}(\eta) - \theta(\eta)) = O_p(1) \quad \text{(where the limit is allowed to be degenerate at zero)}, \quad \text{and any} \quad \epsilon > 0 \quad \text{and} \quad \Delta > 0 \quad \text{there exist} \quad \eta' \in \mathcal{H} \quad \text{such that} \quad \rho(\eta, \eta') < \epsilon \quad \text{and}
\]

\[
Pr \left(r_n(\hat{\theta}(\eta') - \theta(\eta')) > \Delta \right) \to 1.
\]

In other words, this theorem establishes that for each uniformly consistent estimator, in any neighborhood of a particular distribution of observable variables, we can find another distribution such that the estimator under that distribution has both a drastically different convergence rate and a drastically different asymptotic distribution.

In the next two corollaries we show that essentially there is no remedy from the observed non-uniform behavior.

COROLLARY 1 Suppose that \(S_n(\eta) \) is a statistic such that \(\hat{\theta}(\eta)/S_n(\eta) \) converges in distribution to a non-degenerate limit \(F_\eta(\cdot) \) for each \(\eta \in \mathcal{H} \). Then for any \(\eta \in \mathcal{H} \) and any \(\epsilon > 0 \) there exist \(\eta' \in \mathcal{H} \) such that \(\rho(\eta, \eta') < \epsilon \), set \(A(\eta, \epsilon) \) and a constant \(\Delta(\eta, \epsilon) \) so that

\[
|F_\eta(A) - F_{\eta'}(A)| > \Delta.
\]

This corollary states that any self-normalization will not lead to a construction of a pivotal statistic. In other words, the pivotization of any uniformly consistent estimator is impossible.

3.1 Local asymptotics with small deviations from “selection on observables”

We note that in case where the model is compatible with selection on observables (the error terms are mean-independent in the main and selection equations) \(\hat{\theta}_0 \) is a consistent estimator for the parameter of interest in the main equation which converges at the parametric rate to the true parameter regardless of the tail behavior of the covariate density \(f_Z(\cdot) \). On the other hand, for any distribution of error terms that fails to assure that the error term in the main equation is mean
independent of the error term in the selection equation, we need to use estimator \(\hat{\theta} \) that uses a simple unweighted average of \(w_i \). We recall that \(\hat{\theta}_0 \) converges at a parametric \(\sqrt{n} \) rate while \(\hat{\theta} \) converges at a slow rate \(n^{\gamma/(1+\gamma)}/l(n) \) (where \(l(\cdot) \) is a function slowly varying at infinity).

In this context it may seem attractive to use some form of pre-testing to establish whether the given model exhibits selection on unobservables. This naturally leads us to the estimator that has the structure of the Hodges estimator:

\[
\hat{\theta}^H = \begin{cases}
\hat{\theta}, & \text{if } |\hat{\theta} - \hat{\theta}_0| > C/\sqrt{n}, \\
\hat{\theta}_0, & \text{if } |\hat{\theta} - \hat{\theta}_0| \leq C/\sqrt{n}.
\end{cases}
\]

This estimator however, exhibits a non-uniform behavior. In fact, for any distribution of error terms that is compatible with selection on observables we can find another distribution that will be arbitrarily close to the original distribution in the \(L_2 \) norm defined by the probability measure associated with random variable \(Z \), but it will not be compatible with mean independence. The rate of convergence of the consistent estimator for \(\theta \) under that distribution may be as slow as \(\log n^\kappa \) for some \(\kappa > 0 \). Moreover, the structure of the asymptotic distribution of the consistent estimator for these two close distributions of error terms is dramatically different: while it is normal in the model with selection on observables, it is may be represented by the distribution of a stable Lévy process in the model with selection on unobservables.

It is important to note that the estimator that is based on unweighted averaging over the realizations of \(W \) is consistent in both the case of selection on observables and the selection on unobservables. The estimator that is based on the weighted average is inconsistent where the error terms in two equations are correlated. As we noticed it before, in case where the density of the instrument \(Z \) has thin tails, the rate of convergence and the asymptotic distribution of the estimator \(\hat{\theta} = \frac{1}{n} \sum_{i=1}^n w_i \) relies on the tail behavior of this density. An estimation procedure that is adaptive both to the convergence rate and the shape of the asymptotic distribution is hard to construct, especially of the distribution of \(Z \) has a small tail probability. On the other hand, the procedure that is based on the weighted averages of \(W \) (leading to estimator \(\hat{\theta}_0 \)) in general requires bias-correction. Bias correction in this case will again require the analysis of the tail behavior of the inverse density of the instrument and will lead to the same difficulties as adaptive inference for the unweighted estimator \(\hat{\theta} \).

An approach to bridge the gap between these two asymptotics is to consider a family of distributions of instruments \(Z \) that are compatible with finite (constant) second moments of random variables \(W \). Provided that we assume that the data are i.i.d. we can apply the standard Central Limit Theorem to establish the asymptotic normality. Then we consider a distribution of instruments “local to” the distribution that has finite second moments. Formally, this means that we find a heavy tail distribution that is contiguous to the distribution that delivers the finite second moments. The Hellinger and \(L_2 \) distance between these two distributions converges to zero as the sample size increases. This approach may be attractive for two reasons. First, we approximate the distribution of \(W \) in the area of the support of \(Z \) that has the highest probability mass with the distribution that
has finite second moments. Thus, it delivers the parametric convergence rate for the unweighted sample mean characterizing \(\hat{\theta} \). Second, given that we control the choice of contiguous heavy-tail distributions we can choose the family of contiguous distributions to be sufficiently simple and thus estimation of the asymptotic distribution of \(\hat{\theta} \) will not require estimation of the tail behavior of \(W \).

Provided that our estimator is fully characterized by the joint distribution of \((Y, Z)\) which then determines random variable \(W = \frac{\partial E[Y | Z]}{f_Z(Z)} Y \), we concentrate on analyzing this distribution.

First of all, we introduce the class of distributions of \((Y, Z)\) that are compatible with asymptotic normality of estimator \(\hat{\theta} \). This is class of distributions which must contain the distribution of \((Y, Z)\) when a particular parameter that is “identified at infinity” is claimed to converge at a parametric rate to asymptotic normal distribution.

DEFINITION 2 Suppose that the joint distribution \((Y, Z)\), denoted \(F_{YZ}(\cdot, \cdot) \) is defined by model (2.1). where random elements satisfy Assumption 1. Define the class of distributions \(\mathcal{N} = \{ F_{YZ}(\cdot, \cdot) : E \left[\left(\frac{\partial E[Y | Z]}{f_Z(Z)} \right)^2 \right] < \infty \} \).

Also define the class \(\mathcal{N}_2 = \{ F_{YZ}(\cdot, \cdot) : \arg\sup \left\{ \beta \in (0, +\infty), \ E \left[\left(\frac{Y \frac{\partial E[Y | Z]}{f_Z(Z)}}{Z} \right)^\beta \right] < \infty \right\} = 2 \} \).

The defined class of distributions \(\mathcal{N} \) is fundamental because it delivers the validity of the Central Limit Theorem. The class \(\mathcal{N}_2 \) is on the boundary of \(\mathcal{N} \) in the sense that distributions in \(\mathcal{N} \) can be compatible with the second and higher finite moments of \(W \) while for the distributions in \(\mathcal{N}_2 \), the second moment is the highest moment that exists for \(W \).

LEMMA 1 Suppose that Assumption 1 is satisfied and \(\Pr \left(\left| \frac{\partial E[Y | Z]}{f_Z(Z)} \right| > w \right) \) is regularly varying at infinity with tail index \(-(1 + \gamma)\). Then, whenever \(\gamma \geq 1 \), distribution \(F_{YZ}(\cdot, \cdot) \in \mathcal{N} \). Moreover, if \(\gamma = 1 \) then \(F_{YZ}(\cdot, \cdot) \in \mathcal{N}_2 \).

Now suppose that \(F_{YZ}(\cdot, \cdot) \in \mathcal{N}_2 \). We consider the distribution of \(W \), denoted \(F_W(\cdot) \) implied by such a distribution \(F_{YZ}(\cdot, \cdot) \). By definition of class \(\mathcal{N}_2 \), we note that \(\int w^2 f_W(w) dw < \infty \) while the integral \(\int w^\beta f_W(w) dw \) diverges for any \(\beta > 2 \). One practical example where the distribution of \(W \) belongs to \(\mathcal{N}_2 \) is the case where \(E[U|V] = 0 \).

LEMMA 2 Suppose that Assumption 1 is satisfied, distribution \(Z \) has finite second moments and \(E[U|V] = 0 \) then \(\Pr \left(\left| \frac{\partial E[Y | Z]}{f_Z(Z)} \right| > w \right) \) is regularly varying at infinity with tail index \(-2\). In other words, the case where the errors are uncorrelated generates the distribution of \(W \) for which \(F_{YZ}(\cdot, \cdot) \in \mathcal{N}_2 \).
The idea behind the construction of a heavy tailed distribution local to each element of \(\mathcal{N}_2 \) will be the following. Note that
\[
\int |w|^{1+c}\text{sign}(w)f_{W}(w)\,dw
\]
is a measure defined on Borel subsets of the real line for each \(c \in [0, 1) \). Our further logic will be based on the following considerations. As a “first-order approximation” we assume that distribution of \(W \) has a finite second moment. Under this approximation we can characterize the part of the asymptotic distribution around \(E[W] \). Then we consider the “second-order approximation” which is taken to be an additional component that vanishes pointwise as the sample size increases, much which characterizes the extreme tail behavior of the distribution of \(W \).

Then for each \(F_{YZ} \in \mathcal{N}_2 \) the corresponding density \(f_{W}(\cdot) \) will be used to construct the “first order” approximation to the asymptotic distribution. After an appropriate normalization,
\[
|\cdot|^c f_{W}(|\cdot|^{1+c})
\]
is a valid density, but given that \(F_{YZ} \in \mathcal{N}_2 \), this density will have heavy tails and we will use the corresponding distribution to approximate the tail behavior.

Distribution \(F_{W}(\cdot) \) has tail index 2, while distribution with density \(f_{W}(\cdot) \cdot |\cdot|^{1/(1+c)} \) has tail index \(2/(1+c) \). Then if \(c = 0 \), then the latter distribution has exactly two finite first moments while if \(c = 1 \) this distribution has only finite first moment. Now we characterize the local asymptotics for the partial sum characterizing the estimator of interest
\[
\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} w_i.
\]
Let
\[
S_{W}(w) = \frac{1}{2} F_{W} \left(\text{sign}(w)|w|^{1/(1+c)} \right) + \frac{1}{2} \left(1 - F_{W} \left(\text{sign}(-w)|w|^{1/(1+c)} \right) \right)
\]
and \(s_{W}(\cdot) \) be the corresponding density. For \(\rho_n = n^{c/(1+c)} \) consider the local distribution for \(W \) using the density \(f_{W}(\cdot) \) with the finite second moment up to normalization as:
\[
f_{W}(w) = f_{W}(w) + \frac{h_c}{\rho_n} \left(s_{W}(w) - f_{W}(w) \right),
\]
where \(0 < h_c \leq 1 \) and \(h_c \to 0 \) as \(c \to 0 \). Note that this requirement is imposed on \(h_c \) to ensure that \(f_{W}(\cdot) \) is a valid density and that it converges uniformly in \(w \) and \(n \) to \(f_{W}(\cdot) \) as \(c \to 0 \).

THEOREM 12 If random variable \(W \) is distributed according to \((3.9) \) then we can establish that the limiting distributions of partial sums has the following limit:
\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_i \overset{d}{\to} \sigma B(1) + h_cL_{2/(1+c)}(1),
\]
where \(B(\cdot) \) is the standard Browninan motion and \(L_{2/(1+c)}(\cdot) \) is the \(2/(1+c) \)-stable Lévy process with \(c \in [0, 1] \). In other words, the asymptotic distribution is a mixture of the normal distribution and the stable distribution.

\(^2 \)We note that this constructed measure may exhibit non-regular behavior at the point \(W = 0 \) where function \(|W|^{1+c} \) is not differentiable. We alleviate this problem by employing a technique referred to as the one-point uncompactification, which is based on re-defining the topology on \(\mathbb{R} \) that avoids intersections of the elements of this topology with the origin.
Thus, the advantage of this constructed local asymptotics is that, first of all, the convergence to asymptotic distribution will occur at parametric rate. As a result, there is no need to design an estimation procedure that will adapt both to the convergence rate and to the asymptotic distribution (as is necessary in case of standard heavy tail asymptotics). Second, our structure has a clear interpretation where the normal component characterizes the asymptotic distribution close to the expected value of W while the Lévy process component is responsible for the tail behavior of that asymptotic distribution.

The tail behavior of the asymptotic distribution as c varies from 0 to 1 changes from the case where this distribution has a finite second moment and thus asymptotically normal, to the case where this distribution only has a finite first moment and no higher moments. The object of interest will be the quality of the approximation of the asymptotic distribution uniformly over $c \in [0, 1)$. The following result establishes the uniform normality of the asymptotic distribution for the t-statistic constructed for $\hat{\theta}$.

THEOREM 13 Suppose that Assumption 1 holds and we choose normalization $E[W] = 0$. Let $F^{c}_{\mathcal{T}}(w)$ be the distribution of random variable constructed as

$$T^{c} = \frac{\sigma B(1) + h_c L_{2/(1+c)}(1)}{\sqrt{\sigma^2 + h_c^2 L_{1/(1+c)}(1)}}$$

where $L_{1/(1+c)}(\cdot)$ is the $1/(1+c)$-stable Lévy process defined on $\mathbb{R} \setminus \{0\}$. Then the distribution of random variable T^{c} uniformly approximates the distribution of the t-statistic

$$\hat{T}^{c} = \frac{\frac{1}{n} \sum_{i=1}^{n} w_i}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} w_i^2}},$$

such that for some $\delta > 0$

$$\lim_{n \to \infty} \sup_{c \in [0, 1-\delta]} \sup_{t \in \mathbb{R}} \left| F^{c}_{\hat{T}}(t) - Pr(T^{c} \leq t) \right| = 0.$$

We note the difference between this result and the distribution results usually obtained for the local asymptotics in the autoregressive time series models. While in the autoregressive models statistic $\frac{1}{n} \sum_{i=1}^{n} w_i^2$ has asymptotic distribution which is determined by the integrated square of the process that drives statistic $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_i$, in our case it is characterized by the sum of independent stable processes defined on the positive part of the real line. The denominator in this expression is represented by the process that has heavier tails than the numerator. Thus, we can establish that as $c \to 0$, then $T^{c} \Rightarrow N(0, 1)$

3.2 Approaches to inference

As we mentioned this previously, one of the difficult components of inference for the parameter of interest is in the construction of its distribution theory that requires the estimation of the tail index
of its domain of attraction. This index determines both the rate of convergence and the shape of the confidence set for the parameter of interest. Politis, Romano, and Wolf (1999) provide a subsampling approach that allows one to construct a valid confidence set for studentized parameter of interest. The studentized parameter will not be pivotal as we mentioned in the previous section.

Consider subsampling with subsample block size b and let $\hat{\theta}_{n,b,i}$ be the parameter estimate in the i-th subsample and $\hat{\sigma}_{n,b,i}$ be the standard deviation computed in that subsample.

THEOREM 14 (Politis, Romano, and Wolf (1999)) Suppose that the tail index $1 + \gamma$ is fixed. The subsampling approximation $L^*_n,b = \frac{1}{N_n} \sum_{i=1}^{N_n} 1 \left\{ \sqrt{b} \left(\hat{\theta}_{n,b,i} - \bar{\theta} \right) / \hat{\sigma}_{n,b,i} \leq x \right\}$ converges uniformly to the distribution of variable U/V if $b \to \infty$ and $b/n \to 0$ as $n \to \infty$, where U is the domain of stable attraction of partial sums of W and V is the domain of stable attraction of partial sums of W^2.

This is a very useful result allowing to construct approximation for the asymptotic distribution of pivotized variable without requiring the estimation of the tail index. We can note though that the quality of subsampling approximation will deteriorate when the tail index $1 + \gamma$ approaches 1. The reason for that is that the standard deviation will be converging to the stable law with tail index $(1 + \gamma)/2$ (meaning that the corresponding distribution does not have a mean) and thus the constructed statistic will be highly variable across the subsamples. This may require a more conservative inference method. The method that we propose allows one to construct such conservative bounds under local asymptotics.

THEOREM 15 Consider local asymptotics with a sequence of distributions (3.9). The subsampling approximation $L^*_n,b = \frac{1}{N_n} \sum_{i=1}^{N_n} 1 \left\{ \sqrt{b} \left(\hat{\theta}_{n,b,i} - \bar{\theta} \right) / \sigma \leq x \right\}$ converges uniformly to standard normal distribution if $b \to \infty$ and $n/\log b \to \infty$ as $n \to \infty$.

Thus, under the local asymptotics, the subsampling distribution converges to a pivotal normal distribution. The reason for that is that the component of the limiting distribution which is responsible for the “outliers” is vanishing faster than the subsample size. The distribution then converges to the non-vanishing normal limit. The subsampling is used to estimate the correct variance σ^2 of the normal component of the limiting distribution mixture.

The structure of the local distribution gives the idea for the non-conservative and conservative inference based on the extracted normal distribution quantiles. The non-conservative inference will correspond to using the extracted normal quantiles for inference. The conservative inference will suggest using the “worst-case scenario” distribution for the outliers meaning that we need to take $h_c = 1$ and $L_c(\cdot)$ to be the standard stable Levy process with $c = 1$. The resulting conservative confidence set will be the sum of the normal confidence set and the confidence set constructed from adding a standard Levy process scaled by σ.

23
4 Further examples

4.1 Average treatment effect

We have shown that under standard identification conditions and the regularity conditions imposed on the primitive of the sample selection model the rate of convergence and the asymptotic distribution of the uniformly consistent estimator for the intercept of the main equation of this model are discontinuous in the underlying distribution of error terms and the instrument.

The main reason for that is that the general identification condition for the intercept describes it as a limit of the conditional expectation and thus the identification argument relies on the behavior of the instrument in the area where it takes values with a very small probability. In this section we demonstrate two other commonly used econometric models where the statistical object of interest has a similar property. We start with the illustration analyzing the performance of the average treatment effect estimator.

A central problem in evaluation studies is that potential outcomes that program participants would have received in the absence of the program is not observed. Letting d_i denote a binary variable taking the value 1 if treatment was given to agent i, and 0 otherwise, and letting y_{0i}, y_{1i} denote potential outcome variables, we refer to $y_{1i} - y_{0i}$ as the treatment effect for the i'th individual. A parameter of interest for identification and estimation is the average treatment effect, defined as:

$$\theta = E[Y_1 - Y_0]$$ (4.10)

As in the previous section our notation will be to denote realizations of random variables by lower case letters and the random variables themselves by capital letters. One identification strategy for θ was proposed in Rosenbaum and Rubin(1983), under the following assumption:

ASSUMPTION 3 (ATE under Conditional Independence) Let the following hold:

(i) There exists an observed variable X s.t.

$$D \perp (Y_0, Y_1) | X$$

(ii) $0 < P(D = 1 | X = x) < 1 \ \forall x$

See also Hirano Imbens Ridder(2000). The above assumption can be used to identify θ as

$$\theta = E [E[Y|D = 1, X] - E[Y|D = 0, X]]$$

or

$$\theta = E_P [E[Y|D = 1, P(X)] - E[Y|D = 0, P(X)]]$$ (4.11)
where \(P(X) = P(D = 1|X) \). The above parameter can be written as:

\[
\theta = E\left[\frac{Y(D - p(X))}{p(X)(1 - p(X))} \right]
\]

This parameter is a weighted moment condition where the denominator gets small if the propensity score approaches 0 or 1. Also, identification is lost when we remove any region in the support of \(X \) (so, fixed trimming will not identify \(\theta \) above).

Khan and Tamer(2010) established an impossibility theorem for this parameter, indicating that it could not be estimated at the parametric rate under standard conditions. Furthermore, they showed that the estimator proposed in by Hirano Imbens and Ridder(2000), which is based on the sample analog of the above moment condition has rates that vary with unknown tail behavior of observables and unobservables. We refer to this estimator as HIR throughout the rest of this section.

Note that the estimator based on (4.11) is constructed directly from the identification argument and does not rely on any additional assumptions regarding the propensity score function. Therefore, it remains uniformly consistent over large classes of distributions of the primitives \((Y_1, Y_2, D, X)\). We can demonstrate a direct parallel of the estimator (4.11) with the estimator (2.4).

We start with (4.11) and replace the expectation of the \(X \) with the expectation over the propensity score with density \(f_\pi(\cdot) \):

\[
\theta = \int_0^1 \left(\frac{E[YD|P(X) = p] - E[Y(1-D)|P(X) = p]}{p - (1 - p)} \right) f_\pi(p) \, dp.
\]

Note that if either of the limits \(\lim_{p \to 0} f_\pi(p)/p \) or \(\lim_{p \to 1} f_\pi(p)/(1 - p) \) does not exist, then the integral under consideration is improper and only defined as the limit

\[
\theta = \lim_{\delta \to 0} \psi_1(\delta) + \lim_{\delta \to 1} \psi_2(\delta),
\]

where

\[
\psi_1(t) = \int_0^t \left(\frac{E[YD|P(X) = p] - E[Y(1-D)|P(X) = p]}{p - (1 - p)} \right) f_\pi(p) \, dp,
\]

and

\[
\psi_2(t) = \int_t^1 \left(\frac{E[YD|P(X) = p] - E[Y(1-D)|P(X) = p]}{p - (1 - p)} \right) f_\pi(p) \, dp,
\]

for some \(\tilde{\pi} \) bounded away from zero and one. Provided that the estimator is defined as a limit of a nonparametrically estimated function, the parameter of interest is “identified at infinity”. Then we can apply the importance sampling transformation technique that we used before to construct a
feasible estimator
\[
\lim_{\delta \to 0} \psi_1(\delta) = \int_0^\bar{\pi} \frac{\partial \psi_1(p)}{\partial p} dp
\]
\[
= E_p \left(\frac{\partial \psi_1(p)}{f_\pi(p)} \mathbf{1}\{p \leq \bar{\pi} \} \right)
\]
\[
= E_p \left[\left(\frac{E[YD | P(X) = p]}{p} - \frac{E[Y(1-D) | P(X) = p]}{1-p} \right) \mathbf{1}\{p \leq \bar{\pi} \} \right]
\]

We can provide a similar qualification for the second part of the expression. In other words, we can relate the average treatment effect estimator to the inverse density weighted estimators.

This is completely analogous to what we had in the previous section. Here we wish to conduct an inference method for \(\theta \) that is valid for both cases, varying versus constant treatment. To do so, we will explore the properties of HIR under a sequence of DGP’s converging to the constant treatment case. This will enable us to conduct inference for \(\theta \) that is uniform across varying levels of treatment heterogeneity.

Now we formalize the statements just outlined, by consider asymptotic properties of various estimators. Non uniformity arises because we can see that in the case where the subjects respond to treatment in the same way is a special point in this context: for instance, if we establish that non of the treated subjects respond to the treatment, we know a priori that the ATE is equal to zero. As we demonstrate further, this leads to a discontinuous change in the convergence rate and the asymptotic distribution of the ATE. There will always exist the distributions which are arbitrarily close to the distribution that is delivering the constant response to treatment in the mean-square norm, but that have a drastically different convergence rate and the asymptotic distribution for the ATE.

In our further analysis we proceed in two steps. First, we analyze the properties of the conditional treatment effect estimator. Second, we analyze the properties of the standard ATE without strong tail conditions. This will allow us to show the contrast in the convergence rate and the distribution structure in those two cases.

As a baseline scenario we consider the case where the treatment assignment is uniform making the model closely related to evaluation of averages in the missing at random case. In this case \(P(X) = \bar{P} > 0 \), thus variables \(YD/P(X) \) and \(Y(1-D)/(1-P(X)) \) are square integrable with respect to the probability measure on \(Y \times \{0,1\} \times X \). We can consider small perturbations to the propensity score \(P(\cdot) \) in the \(L_2 \) norm, thus consider propensity scores \(\bar{P}(\cdot) \) such that \(E_X \left[(\bar{P}(X) - P(X))^2 \right]^{1/2} < \epsilon \).

We note that if the distribution of \(X \) is concentrated in the part of its support where \(P(\cdot) \) is bounded away from either zero or one, then deviations of \(\bar{P}(\cdot) \) from \(P(\cdot) \) in the mean-square norm in the “tails” of the distribution of \(X \) will not be leading to large changes in the \(L_2 \)-distance between \(P(\cdot) \) and \(\bar{P}(\cdot) \). However, random variables \(YD/P(X) \) and \(Y(1-D)/(1-P(X)) \) will be extremely sensitive to
the tail deviations of the propensity score. In fact if random variable \(1/P(X)\) does not have the first moment, then random variable \(YD/P(X)\) may not have the first moment as well in non-degenerate cases. However, this does not mean that the random variable \(\left(\frac{YD}{P(X)} - \frac{Y(1-D)}{1-P(X)}\right)\) is not well-defined. Our goal now is to characterize the behavior of this random variable in the “pathological” case and then further we will use the described behavior to characterize the distribution theory for the ATE for the class of distributions contiguous to the distribution with \(P(X) = \bar{P}\) but which permit “small” deviations of the propensity score in the \(L_2\) norm from the constant.

First of all, it is clear that though expectation \(E_X[1/P(X)]\) may not exist, random variable \(W = YD/P(X) - Y(1-D)/(1-P(X))\) is well-defined and we denote its characteristic function \(\psi_\theta(t)\).

To evaluate the index of the stable distribution generated by the elements of the ATE, we note that the key element is the evaluation of the tail probability \(Pr(|W| > w)\). Without loss of generality, we concentrate on one element of this formula and consider the tail probability. Provided that the explosive tail behavior comes from the relatively thin tails of the distribution of \(x\), we analyze the tail probability conditional on the values of \(D\). We note that provided that \(E[W] < \infty\), which is guaranteed by the fact that \(f_X|D(\cdot|D = d) \propto f_X(x) (dP(x) + (1-d)(1-P(x)))\). As a result, we know a priori that the tail index of \(W\) is at least 1, meaning that we expect its partial sums to converge to a stable law with \(\alpha \geq 1\). Without loss of generality, consider \(Pr(|W| > w | D = 1)\). Then for \(w \to +\infty\)

\[
P\left(\left|\frac{Y}{P(X)}\right| > w | D = 1\right) \leq P\left(|Y| > w | D = 1\right) + P\left(\left|\frac{1}{P(X)}\right| > w | D = 1\right)
\]

\[
\leq E\left[\frac{|Y|^2}{D = 1}\right] + P\left(\frac{1}{P(X)} > w | D = 1\right)
\]

We then note that \(f_X|D(x | D = 1) = \frac{P(x)f_X(x)}{E_X[P(X)]}\) and denote \(\bar{P} = E_X[P(X)]\). We can evaluate

\[
P\left(\frac{1}{P(X)} > w | D = 1\right) = \bar{P}^{-1}\int P(x)1\left\{P(x) < \frac{1}{w}\right\} f_X(x) dx = \bar{P}^{-1} E\left[P(X)1\left\{P(X) < \frac{1}{w}\right\}\right].
\]

To fix the ideas, suppose that \(X\) is a scalar and consider the distribution of random variable \(\mathcal{P} = P(X): F_\mathcal{P}(z) = Pr(P(X) < z) = F_X(P^{-1}(z))\). Using this new random variable we can express

\[
P\left(\frac{1}{P(X)} > w | D = 1\right) = \bar{P}^{-1} E_\mathcal{P}\left[\mathcal{P}1\left\{\mathcal{P} < \frac{1}{w}\right\}\right].
\]

Then if the distribution of \(X\) “offsets” the explosive behavior of the propensity score, e.g. \(P(z) = F_X(z), F_\mathcal{P}(z) = z1\{z \in [0, 1]\}\), then

\[
E\left[\mathcal{P}1\left\{\mathcal{P} < \frac{1}{w}\right\}\right] = O\left(\frac{1}{w^2}\right),
\]

meaning that \(Pr(|W| > w | D = 1) = O\left(\frac{1}{w^2}\right)\) and thus the tail behavior corresponds to the Gaussian distribution \((\alpha = 2)\).
We notice that if the density of \(X \) does not “offset” the propensity score as \(x \to \infty \), then \(P(X) \) is likely to take values arbitrarily close to 0 or 1. In this case function \(F_X (P^{-1}(z))/z \) is decreasing in \(z \). More generally, we can consider the density of the propensity score \(f_P(\cdot) \). Then

\[
\Pr(|W| > w \mid D = 1) = \int_0^{1/w} p f_P(p) dp + O(w^{-2}) = O(w^{-2} f_P(w^{-1})�)
\]

In this case if the distribution of the propensity score concentrates at zero with \(f_P(z) \sim z^{-\gamma} \) with \(\gamma < 2 \) as \(z \to 0 \), then \(\Pr(|W| > w \mid D = 1) = O \left(\frac{1}{w^{\gamma}} \right) \), leading to the tails compatible with \(2 - \gamma \)-stable distribution.

We note that the exact convergence rate and the bias-correcting sequence needs to be computed on a case-by-case level. We can provide the following result.

THEOREM 16 Suppose that Assumption 3 holds, functions \(\phi_0(t) = |t| \Pr(DP(X)/Y < |t|^{-1}) \) and \(\phi_1(t) = |t| \Pr((1-D)(1-P(X))/Y < |t|^{-1}) \) are non-increasing in \(t \) for all \(|t| > C \) for some large constant \(C \) and \(\phi_0, \phi_1 \in RV_{-\gamma} \) for some \(\gamma \in [0,1] \). Consider the sequence of i.i.d. random variables \(W_i = \frac{Y_i D_i}{P(X_i)} - \frac{Y_i (1-D_i)}{1-P(X_i)} \) constructed as i.i.d. copies of random variable \(W \) and let sequences \(a_n \) and \(b_n \) defined by (2.6) and (2.7) correspond to the distribution of \(W_1 \). The normalized de-meaned partial sum process for sequence \(\{W_i\}_{i=1}^n \) :

\[
\frac{n}{a_n} \hat{\alpha} - b_n \overset{d}{\to} L_{1+\gamma}(1),
\]

where \(L_{1+\gamma}(\cdot) \) is a \((1 + \gamma) \)-stable Lévy process on \([0,1]\).

Thus the ATE parameter, in general, converges at the rate \(n/a_n \) to the distribution determined by the limiting stable Lévy process. The construction of this process empirically is usually very hard using bootstrap. In fact, since in practice the distribution of \(W_i \) is unknown, the normalizing sequences \(a_n \) and \(b_n \) need to be estimated. This can be achieved if the bootstrap sample \(m \ll n \) to assure that \(m \to \infty \) and \(m/n \to 0 \) as \(n \to \infty \).

We note that the distribution properties of the ATE in this case will resemble the distributional properties of the estimator for the selection model considered in the previous section (for a given tail index of the asymptotic distribution).

We note that all of our results that we established for the estimator of the intercept in the selection model become valid for the considered ATE parameter. In particular, without further high level assumptions regarding the behavior of the propensity score close to 0 or 1, the bootstrap distribution of the ATE will not be asymptotically valid. Moreover, pivotal inference will be impossible. One solution is to consider "local" distributions that are close to some assumption regarding the propensity score such as an assumption of the constant treatment or the treatment that is bounded away from 0 and 1 by some (known) constant. Then the local distribution sequences will be constructed in such a way that they approach to the distribution inducing the bounded treatment as the sample size becomes larger.
4.2 Static games of complete information

Another example where the structure of the identification argument has a similar flavor to that in the selection model is a 2-player discrete game with complete information (e.g. Bjorn and Vuong (1985) and Tamer (2003)).

A simple binary game of complete information is characterized by the players’ deterministic payoffs, strategic interaction coefficients, and random payoff components \(u \) and \(v \). There are two players \(i = 1, 2 \) and the action space of each player consists of two points \(A_i = \{0, 1\} \) with the actions denoted \(y_i \in A_i \). The payoff of player 1 from choosing action \(y_1 = 1 \) can be characterized as a function of player 2’s action:

\[
y_1^* = z_1' \gamma_0 + \alpha_1 y_2 - u,
\]

and the payoff of player 2 from choosing action \(y_2 = 1 \) is characterized as

\[
y_2^* = z_2' \delta_0 + \alpha_2 y_1 - v.
\]

For convenience of analysis we change notation to \(x_1 = z_1' \gamma_0 \) and \(x_2 = z_2' \delta_0 \). We normalize the payoff from action \(y_i = 0 \) to zero and we assume that realizations of covariates \(X_1 \) and \(X_2 \) are commonly observed by the players along with realizations of the errors \(U \) and \(V \), which are not observed by the econometrician and thus characterize the unobserved heterogeneity in the players’ payoffs. Under this information structure the pure strategy of each player is the mapping from the observable variables into actions: \((u, v, x_1, x_2) \mapsto 0,1 \). A pair of pure strategies constitute a Nash equilibrium if they reflect the best responses to the rival’s equilibrium actions. The observed equilibrium actions are described by random variables (from the viewpoint of the econometrician) characterized by a pair of binary equations:

\[
\begin{align*}
Y_1 &= 1\{X_1 + \alpha_1 Y_2 - U > 0\}, \\
Y_2 &= 1\{X_2 + \alpha_2 Y_1 - V > 0\},
\end{align*}
\]

where errors \(U \) and \(V \) are correlated with each other with an unknown distribution. In particular, we are interested in determining when the strategic interaction parameters \(\alpha_1, \alpha_2 \) can or cannot be estimated at the parametric rate.

ASSUMPTION 4 Suppose that

(i) \(X_1 \) and \(X_2 \) have a continuous distribution with full support on \(\mathbb{R}^2 \) (which is not contained in any proper one-dimensional linear subspace);

(ii) \((U, V) \) are independent of \((X_1, X_2) \) and have a continuously differentiable density with the full support on \(\mathbb{R}^2 \).

As noted in Tamer (2003), the system of simultaneous discrete response equations (4.12) has a fundamental problem of indeterminacy as it may have the regions where it has multiple solutions.
or no solutions at all. If we require the signs of \(\alpha_1 \) and \(\alpha_2 \) to be the same, then the region where multiple solutions can occur is where the values of \(|X_1|\) and \(|X_2|\) are close to those of \(\alpha_1 \) and \(\alpha_2 \). The way to identify the parameters of interest \(\alpha_1 \) and \(\alpha_2 \) as proposed in Tamer (2003) is to use the asymptotic regions where the solution is unique, thus forming a system of asymptotic equations:

\[
F_U(x_1 + \alpha_1) = \lim_{x_2 \to +\infty} P(Y_1 = 1 \mid X_1, X_2),
\]

\[
F_V(x_2 + \alpha_2) = \lim_{x_1 \to +\infty} P(Y_2 = 1 \mid X_1, X_2).
\]

Thus, under the mean normalization \(E[U] = E[V] = 0 \) provided that Assumption 4 holds, we can identify the parameters of interest through the explicit expressions:

\[
\alpha_1 = \lim_{x_2 \to +\infty} \int_{-\infty}^{+\infty} x_1 \frac{\partial}{\partial x_1} P(Y_1 = 1 \mid x_1, x_2) \, dx_1,
\]

\[
\alpha_2 = \lim_{x_1 \to +\infty} \int_{-\infty}^{+\infty} x_2 \frac{\partial}{\partial x_2} P(Y_2 = 1 \mid x_1, x_2) \, dx_2.
\]

This expression clearly demonstrates that the parameters of interest are "identified at infinity" in the same sense as the intercept in the sample selection model and the average treatment effect parameter. As a result, we can apply our previous results to demonstrate that any uniformly consistent estimator for these parameters (i.e. the one that does not rely on an assumption regarding a particular tail structure of the distribution \((U, V)\)) will have the properties analogous to those of the uniformly consistent estimator for the intercept. In particular, the bootstrap will not deliver a consistent approximation for the asymptotic confidence sets, and the \(t \)-statistics will not converge to the pivotal distribution. We can however, provide valid inference methods in case where the distribution of the error terms belongs to a drifting sequence which converges to the distribution with particular tail properties as the sample becomes larger. In particular, we can use the case where the error terms are independent as a focal point and construct an approximation via the drifting sequence that converges to the distribution where the joint density is equal to the product of marginal densities.

The use of the importance sampling transformation allows us to replace the limits with integrals:

\[
\alpha_1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 \frac{\partial^2}{\partial x_1 \partial x_2} P(Y_1 = 1 \mid x_1, x_2) \, dx_1 \, dx_2,
\]

\[
\alpha_2 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_2 \frac{\partial^2}{\partial x_1 \partial x_2} P(Y_2 = 1 \mid x_1, x_2) \, dx_1 \, dx_2.
\]

Then the final expression takes the form:

\[
\alpha_1 = E \left[\frac{X_1 \frac{\partial^2}{\partial x_1 \partial x_2} P(Y_1 = 1 \mid X_1, X_2)}{f_{X_1, X_2}(X_1, X_2)} \right],
\]

\[
\alpha_2 = E \left[\frac{X_2 \frac{\partial^2}{\partial x_1 \partial x_2} P(Y_2 = 1 \mid X_1, X_2)}{f_{X_1, X_2}(X_1, X_2)} \right].
\]

We note that this estimator has the same inverse density structure as the estimator (2.4) for the intercept in the sample selection model.
5 Simulation Results

In this section we explore some of the finite sample implications of the main theorems in this paper. To do so we simulate data from the sample selection models, and we report summary statistics intended to characterize the finite sample performance of both the existing and new estimators whose asymptotic properties we established.

Simulation results are for sample sizes of 100, 400, 400 and 800 observations where we report mean bias, median bias, and RMSE and median absolute deviation (MAD) from 3000 replications. For the sample selection model we estimate the parameter of interest using the newly proposed density weighted estimator. In addition to tabulating the statistics such as mean bias and RMSE\(^3\) we also explore the sampling distribution of these estimators. We do this by creating histograms for the estimates attained from the 3000 replications. The graphs after the Appendix are for these histograms, where the pictures report values of the estimator divided by the square root of the sample size. We set axis bounds as follows: for the horizontal axis the bounds where ± 5 times the standard deviation of the estimator, divided by the square root of the sample size. The vertical axis bounds were 0 and 3 times the standard deviation the estimator value, divided by the square root of the sample size.

The graphs are for all sample sizes mentioned for both estimators, for varying distributions of both the observed and unobserved random variables.

For our design in the sample selection model we assumed the bivariate distribution was standard bivariate normal. The selection equation has a single instrument for which we considered two designs-one where it was distributed standard normal and the other where it was distributed standard cauchy. To allow for fixed and drifting parameter sequences we adjusted the correlation between the two error terms in the selection model. For fixed parameters we simulated using 4 distinct values of this correlation- 0, 0.5, 0.75 and 1. For drifting parameters we divided these 4 different constants by the square root of the sample size.

Our finite sample results generally agree with our asymptotic theory. Specifically, the distribution of the estimator has a Gaussian component but also exhibits noticeably fat tails. Furthermore as the correlation between the two errors gets further away from 0, the distribution of the estimator has a noticeably skewed distribution, most notably when the instrument is Gaussian. Furthermore as we see the RMSE and MSE increase with the sample size when scaled by the square root of the sample size, indicating the estimator does not converge at the parametric rate.

To compare the finite sample procedures of various estimators we also provide histograms for different designs. These designs include different bivariate distributions of u, v, with marginals being normal, logistic or cauchy, with varying levels of correlation. These bivariate distributions were generated using the Gaussian copula.

\(^3\)The tables report the RMSE and MAD multiplied by the square root of the sample size to help us indicate if the estimator converges at the parametric rate.
We also explore the finite sample properties of our new procedure as well as others from a hypothesis testing perspective. Table 5 reports size and power by listing acceptance and rejection probabilities using the t-test for various null hypotheses when the data is generated with the true intercept being 0. These probabilities are reported for OLS, Heckman 2-step, Andrews and Schafagans, and our procedure. For the case where $H_0 : \alpha_0 = 0$ the probabilities reported are those of accepting the null, whereas for the case $H_0 : \alpha = 0.5$ the probabilities reported are rejection probabilities. Tables 6 and 7 explore the properties of the bootstrap for inference. here we report the fraction of times (from 300 bootstrapped replications and 100 simulations) that true value lies in the 95%bootstrap interval. This is done for 4 estimators (OLS, Heckman 2-Step, Andrews and Schafagans, inverse weighting) and two designs of the bivariate error distribution (bivariate normal, and marginal cauchy with Gaussian copula).

As the graphs and tables indicate, many of the conclusions from our limiting distribution theory are reflected in finite sample outcomes. For many designs the estimators converge very slowly, and the distributions are very nongaussian for all sample sizes. These graphs indicate the merits of our suggested method for conducting uniform inference for the parameters of interest in these models. The estimator appears to have a skewed distribution for large values of the correlation between the two errors, when the instrument has a gaussian distribution, but not when it has a cauchy distribution.

6 Application to Mroz Data

In this section we illustrate the use of our proposed inference methods by applying them to the well known Mroz (1987) labor supply data set. This data set was also used in (Ahn and Powell (1993)) and (Newey, Powell, and Walker (1990)) to compare parametric and semiparametric methods. However, in those papers the focus was on the slope coefficients of the outcome equation, whereas here we focus on the intercept term.

In the (Mroz (1987)) study, the sample consists of measurements on the characteristics of 753 married women (428 employed and 325 unemployed). The dependent variable in the outcome equation, the annual hours of work, is specified to depend upon the wage rate, household income less the woman’s labor income, indicators for young and older children in the household, and the woman’s age and years of education. Mroz’s study also used the square of experience and various interaction terms as instrumental variables for the wage rate, and were also included in his probit analysis of employment status, resulting in 18 parameters to be estimated in the first equation. Ahn and Powell (1993) use the same conditioning variables in the first equation but only the original 10 variables in their first stage kernel regression to attain estimators of the slope coefficients in the outcome (hours worked) equation.

Our approach here will be to used their estimates of these parameters combined with our density weighted estimator to estimate the intercept term. Specifically, we will treat the 6 slope coefficients
in the outcome equation as known (using the values attained in Ahn and Powell (1993)) for the coefficients on log wage, nonwife income, young children, older children, age and education), and estimate the intercept term using our density weighted expression. Recall our expression involved estimating the density of the index from the selection equation. Following Ahn and Powell (1993), we use 10 conditioning variables, but in contrast, we estimate their coefficients by estimating a Probit model. With these estimated coefficients, we can construct estimated values of the index, to which we apply kernel density estimation, using a normal kernel function and cross validation for the bandwidth, to estimate the density function of the selection equation index. Following Newey, Powell, and Walker (1990) we treat previous labor market experience, measured in total years experience, as the excluded variable that is in the employment equation but not the outcome equation.

Our estimator of α_0 is based on the moment condition:

$$\alpha_0 + E[x_i' \beta_0] = E[Z \frac{d}{dz} E[y|z]] f_X(z)$$

where $f_X(z)$ denotes the density function of z_i and $\frac{d}{dz} E[y|z]$ denotes the derivative of the regression function of $E[y|z]$.

To estimate α_0, note the right hand side of the above equation can be estimated by

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}'(z_i) / \hat{f}(z_i)$$

where $\hat{\mu}'(z_i)$ is a local linear estimator of the derivative of the regression function and $\hat{f}(z_i)$ is a kernel estimator of the density function.

so our estimator of α_0 is

$$\hat{\alpha} = \hat{\theta} - \frac{1}{n} \sum_{i=1}^{n} x_i' \hat{\beta}$$

Using the standard bootstrap we were able create a histogram for the standardized estimator as well as provide a quantile plot.

As a comparison, we estimated α_0 from the parametric Heckman model assuming bivariate normality of the unobserved disturbances. For the parametric estimator we also to create histogram of the standardized estimator as well as quantile plots. Histograms and quantile plots are after the Appendix as well.

The attained results are interesting, notably that contrast between conclusions drawn from the parametric and semi parametric approaches. The parametric point estimator for α_0 is three time
slaggier in magnitude than the semi parametric point estimator, though both point estimates are positive. Exploring the bootstrapped confidence regions, the results from the two approaches are even more strikingly different. As the quantiles plots reveal, from the parametric approach the intercept is positive at all significant levels, whereas from the semi parametric quantile plot the intercept is not significantly different from 0 at most standard significance levels (0.025, 0.05, 0.1). This demonstrates how sensitive the results can be to parametric assumptions.

To conduct inference, we use the limiting distribution theory established in this paper attained with our “bridging” asymptotics to allow for both selection on observables and selection on unobservables. We construct confidence intervals for the intercept based on three approximations of the limiting mixture distribution. First, we attain a confidence interval based only on the Gaussian component of the mixture distribution. This can be considered as the “least conservative” approach. Second, we consider a conservative approach where set the tail index parameter equal to 0 in our mixture distribution. Finally, we report the “in between” case where we use an estimator of the tail index parameter in the mixture distribution. We compare these results with those attained from the parametric specification in (Mroz (1987)).

7 Conclusions

This paper considers inference for parameters of interest in nonlinear models with endogeneity. Inference becomes quite complicated for these parameters as the limiting distribution of conventional estimators is non uniform over the parameter space. To address this problem we propose a new inference procedure based on a drifting parameter sequence so that the data generating process can “bridge” different models, loosely analogous to the “local to unity” asymptotics in the unit roots literature. We deriving the limiting distribution theory which we show can be used to conduct uniformly valid inference for the parameters of interest. This method is illustrate in two very relevant models in microeconometrics- the sample selection model and treatment effect models used in the program evaluation literature.

The work here suggests areas for future research. Many other nonlinear models will fit into this framework, so we aim to suggest uniform inference procedures for other parameters of interest. For example the triangular and non triangular models studied in Khan and Nekipelov (2011) were shown to suffer from difficult identification and nonstandard asymptotics for the coefficients of discrete endogenous variables and these are the parameters of interest in both the treatment effects, static games, and peer effects literatures. We aim to extend our uniform inference procedures in this paper to those models as well.

References

Appendix

A Proof of Theorem 10

In the proof of Theorem 13 we demonstrate that if we define the process of partial sums

$$L_n(t) = \sum_{i=1}^{\lfloor nt \rfloor} \left(\frac{W_i}{a_n} - \lfloor nt \rfloor E \left[\frac{W_i}{a_n} 1\{ |W_i|/a_n \leq 1 \} \right] \right),$$

36
We note that

\[H \]

then \(L_n(\cdot) \Rightarrow L_{1+\gamma}(\cdot) \) where \(L_{1+\gamma}(\cdot) \) is the stable Lévy process on \([0,1] \).

We note that

\[nE \left[\frac{W}{a_n} 1\{|W|/a_n \leq 1 \} \right] \to b_n. \]

Applying the continuous mapping theorem, we conclude that

\[\sum_{i=1}^{k} \frac{W_i}{a_n} - b_n \xrightarrow{d} \sum_{i=1}^{k} \left(\frac{W_i}{a_n} - [n k/n]E \left[\frac{W_i}{a_n} 1\{|W|/a_n \leq 1 \} \right] \right) \]

Therefore, \(\sum_{i=1}^{k} \frac{W_i}{a_n} - b_n \xrightarrow{d} L_{1+\gamma}(1). \)

B Proof of Theorem 10

Consider function \(H(w) = E \left[W^2 1\{|W| \leq w \} \right] \). Provided that \(\psi(t) = |t|^2 \Pr \left(f_{\omega}(Z) \left| \frac{\partial E[Y|Z]}{\partial z} \right|^{-1} < |t|^{-1} \right) \)

is slowly varying at infinity. In this case we can define function \(H(w) = E \left[W^2 1\{|W| \leq w \} \right] \) which is slowly varying at infinity. Next, we apply directly Theorem 2.1. in Peligrad and Sang (2011) and establish the result of our theorem.

C Proof of Theorem 12

Imposing the normalization for \(E[|W|] \) at zero, we conclude that the characteristic function corresponding to \(f_W(\cdot) \) \(\phi_W(t) \) admits the representation in the neighborhood of \(t = 0 \) as \(\phi_W(t) = \exp(-\frac{1}{2} \sigma^2 t^2 + o(t^2)) = 1 - \frac{1}{2} \sigma^2 t^2 + o(t^2) \). The second component corresponds to the density of the heavy tail distribution, and the re-centering allows us to provide a simple expression for its characteristic function \(\phi_c(t) \) in the neighborhood of 0 as \(\phi_c(t) = \exp(-\frac{1}{2} \kappa^2 |t|^{2/(1+c)}) \). The Fourier transform of the difference \((1+c)|w|^c f_W(\text{sign}(w)|w|^{1+c}) - f_W(w) \) (if \(c > 0 \)) can be represented as

\[1 - \frac{1}{2} \kappa^2 |t|^{2/(1+c)} - 1 + o(|t|^{1/(1+c)}) = -\frac{1}{2} \kappa^2 |t|^{2/(1+c)} + o(|t|^{1/(1+c)}). \]

Now consider the random variable \(\eta_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} W_i^c \), with \(W_i^c \) being the i.i.d. copies of random variable \(W^c \) with local distribution (3.9). Then

\[E \left[\exp(it\eta_n) \right] = \prod_{i=1}^{n} \int \exp \left(iw_i^c \frac{t}{\sqrt{n}} \right) f_W^c(w_i^c) \, dw_i^c = \left(1 - \frac{t^2 \sigma^2}{2n} - \frac{1}{2 \rho_n n^{1/(1+c)}} \kappa^2 |t|^{2/(1+c)} + o(\rho_n^{-2/(1+c)}) \right)^n \]

\[= \exp \left(-\frac{t^2 \sigma^2}{2} \right) \exp \left(-\frac{\kappa^2 |t|^{2/(1+c)}}{2} \right) + o(1). \]

Thus, as \(n \to \infty \) the characteristic function of the partial sum distribution under the local distribution \(f_W(\cdot) \) converges to the product of the characteristic function of a Gaussian random variable
with variance σ^2 and a random variable with a stable distribution with tail index $2/(1+c)$. By the Leévy convergence theorem, it follows that we can characterize the asymptotic distribution as a distribution of the sum of a Gaussian random variable with variance σ^2 and an independent random variable with a stable distribution. This result is formalized in the following theorem.

D Proof of Theorem 13

Provided Theorem 37.1 in Samorodnitsky and Taqqu (1994), if $\phi(\cdot) \in RV_{-\gamma}$, then for $\nu_{1+\gamma}(\cdot)$-$(1+\gamma)$-stable Lévy measure on \mathbb{R} with tail behavior $\nu_{1+\gamma}(x, +\infty) = x^{-(1+\gamma)}$ for some $C > 0$ and all $x > C$ and b_n selected as in Theorem 5, for all Borel subsets of \mathbb{R}_+ denoted B,\[n\Pr \left(\frac{W}{b_n} \in B \right) \Rightarrow \nu_{1+\gamma}(\cdot) \]

Then we consider the random measure associated with the infinite sequence of draws from the distribution of W and by Theorem 6.3. in Resnick (2006) it follows that\[\sum_{i=1}^{\infty} \delta_{(\frac{W_i}{b_n}, W_i/b_n)} \Rightarrow \Lambda(\text{Leb} \times \nu_{1+\gamma}), \]

where δ_x is the distribution with point mass at x, $\Lambda(\cdot, \cdot)$ is the Poisson random measure with the support on the space of Radon point measures on $\mathbb{R}_+ \times ([0, +\infty] \setminus \{0\})$ where $[0, +\infty] \setminus \{0\}$ is the set of non-negative reals that is locally uncompatified by defining a topology on its subsets that exclude the origin. Leb is the Lebesque measure of length and $\nu_{1+\gamma}$ is the $(1+\gamma)$-stable Lévy measure. Denote $U = [0, +\infty] \setminus \{0\}$ and the set of Radon point measures on A by $M_r(A)$.

We consider the map $m : M_r([0, +\infty) \times U) \rightarrow M_r([0, +\infty) \times [\epsilon, +\infty))$, where ϵ is chosen to be the point of continuity of function $f(w) = \nu_{1+\gamma}(\{w, +\infty\})$. This map is almost surely continuous with respect to $\Lambda(\text{Leb} \times \nu_{1+\gamma})$ by Feigin, Kratz and Resnick (1996). Also, consider functional\[\sum_i \delta_{(\tau_i, J_i)} \Rightarrow \sum_{\tau_i \leq \cdot, J_i} \]

mapping from $M_r([0, +\infty) \times U)$ into $D([0, 1], \mathbb{R})$ (Skorohod space of functions defined on $[0, 1]$ with values in \mathbb{R}) that represents summations. This function is almost surely continuous with respect to $\Lambda(\text{Leb} \times \nu_{1+\gamma})$ by Feigin, Kratz and Resnick (1996).

As a result, we notice that\[\sum_i 1\{|W_i|/a_n > \epsilon\}\delta_{(i/n, W_i/a_n)} \Rightarrow \sum_i 1\{j_i > \epsilon\}\delta_{(t_i, j_i)}, \]

where j_i is the increment of the Poisson process defined by $\Lambda(\text{Leb} \times \nu_{1+\gamma})$ at the instant t_i. This result follows from the convergence of the empirical point measure to the Poisson random measure and the continuity of the map m (restricting the support of the Lévy measure to $[\epsilon, +\infty)$.
Also from the continuity of the summation functional, it follows that
\[
\sum_{t_i \leq t} \frac{W_i}{a_n} 1 \{ |W_i|/a_n > \epsilon \} \Rightarrow \sum_{t_i \leq t} j_i 1 \{ |j_i| > \epsilon \}, \quad t \in [0, 1]
\]
in \(D([0, 1], \mathbb{R})\).

Also, by continuity of the summation functional
\[
\sum_{t_i \leq t} \frac{W_i}{a_n} 1 \{ 1 \geq |W_i|/a_n > \epsilon \} \Rightarrow \sum_{t_i \leq t} j_i 1 \{ 1 \geq |j_i| > \epsilon \}, \quad t \in [0, 1]
\]
in \(D([0, 1], \mathbb{R})\). Taking expectations, we obtain that
\[
[nt]E \left[\frac{W_i}{a_n} 1 \{ 1 \geq |W_i|/a_n > \epsilon \} \right] \to t \int_{\epsilon < w < 1} w d\nu_{1+\gamma}(dw).
\]

Consider process of trimmed partial sums
\[
L^n_\epsilon(t) = \sum_{t_i \leq t} \left(\frac{W_i}{a_n} 1 \{ |W_i|/a_n > \epsilon \} - [nt]E \left[\frac{W_i}{a_n} 1 \{ |W_i|/a_n \leq 1 \} \right] \right)
\]
By the previous results, we conclude that
\[
L^n_\epsilon(\cdot) \Rightarrow L^{\epsilon}_{1+\gamma}(\cdot),
\]
where \(L^{\epsilon}_{1+\gamma}(\cdot)\) is the “restricted” \(1 + \gamma\)-stable Lévy process such that
\[
L^{\epsilon}_{1+\gamma}(t) = \sum_{t_i \leq t} j_i 1 \{ 1 \geq |j_i| > \epsilon \} - t \int_{\epsilon < w < 1} w d\nu_{1+\gamma}(dw).
\]
Then, using the Itô representation of the Lévy process:
\[
L^{\epsilon}_{1+\gamma}(t) \to L_{1+\gamma}(t)
\]
almost everywhere on \(w\) locally uniformly it \(t \in [0, 1]\) as \(\epsilon \to 0\) If \(d_s(\cdot, \cdot)\) is the Skorohod metric on \(D([0, +\infty))\) then provided that local uniform convergence implies Skorohod convergence, we see that
\[
d_s \left(L^{\epsilon}_{1+\gamma}(\cdot), L_{1+\gamma}(\cdot) \right) \to 0
\]
almost surely as \(\epsilon \to 0\). As a result, given that almost sure convergence implies weak convergence, then
\[
L^{\epsilon}_{1+\gamma}(\cdot) \Rightarrow L_{1+\gamma}(\cdot)
\]
Consider the process or regular partial sums
\[
L_n(t) = \sum_{t_i \leq t} \left(\frac{W_i}{a_n} - [nt]E \left[\frac{W_i}{a_n} 1 \{ |W_i|/a_n \leq 1 \} \right] \right)
\]
Next we demonstrate the stochastic equicontinuity. Consider the following sequence of expressions:

\[
\Pr\left(\sup_{t \in [0,1]} \|L_n^\prime(t) \cdot - L_n(t) \| > \delta \right) \\
\leq \Pr\left(\sup_{t \in [0,1]} \left| \sum_{i=1}^{[nt]} \left(\frac{W_i}{a_n} 1\{|W_i|/a_n < \epsilon\} - E\left[\frac{W_i}{a_n} 1\{1 \geq |W_i|/a_n < \epsilon\} \right] \right) \right| > \delta \right) \\
= \Pr\left(\max_{0 \leq k \leq n} \left| \sum_{i=1}^{k} \left(\frac{W_i}{a_n} 1\{|W_i|/a_n < \epsilon\} - E\left[\frac{W_i}{a_n} 1\{1 \geq |W_i|/a_n < \epsilon\} \right] \right) \right| > \delta \right)
\]

Applying Doob’s inequality, we conclude that

\[
\Pr\left(\sup_{t \in [0,1]} \|L_{1+\gamma}^\prime(t) \cdot - L_{1+\gamma}(t) \| > \delta \right) \\
\leq \frac{\Var \left(\frac{W}{a_n} 1\{|W|/a_n < \epsilon\} \right)}{\delta^2}
\]

Next we note that

\[
E\left[\frac{W}{a_n} 1\{|W|/a_n < \epsilon\} \right] \rightarrow \int_{|w| \leq \epsilon} w^2 \nu_{1+\gamma}(dw) = O(\epsilon^{1-\gamma}) = o(1)
\]

as \(\epsilon \rightarrow 0 \). Therefore, for any \(\delta > 0 \) we show that

\[
\lim_{\epsilon \rightarrow \infty} \limsup_{n \rightarrow \infty} P \left(\sup_{t \in [0,1]} \|L^\prime_n(t) \cdot - L_n(t) \| > \delta \right) = 0.
\]

This implies that

\[
\lim_{\epsilon \rightarrow \infty} \limsup_{n \rightarrow \infty} P \left(d_s \left(L_n^\prime(\cdot), L_n(\cdot) \right) > \delta \right) = 0.
\]

This leads us to conclusion that \(L_n(\cdot) \Rightarrow L_{1+\gamma}(\cdot) \).

E Semiparametric efficiency bound for the model with selection on observables

We can construct a semiparametrically efficient estimator for \(\theta \) from (2.2). Consider a projection of the conditional moment equation representing \(\theta \) on \(Z \) using function \(M(\cdot) \). In this case \(E [M(Z)] \theta = E \left[M(Z) \frac{Y}{P(z)} \right] \). Without loss of generality, we re-center the true \(\theta \) at zero. Then we consider the likelihood

\[
\ell(y,d,z) = f_{Y|D,Z}(y|d,x)P(z)^d (1 - P(z))^{1-d} f_Z(z).
\]

We consider a smooth parameterization of the likelihood using a single-dimensional parameter \(t \). Then the score of the parametric submodel can be expressed as

\[
S^t(y,d,z) = s^t_{Y|D,Z}(y|d,z) + \bar{P} t \left(\frac{d}{P(z)} - \frac{1-d}{1-P(z)} \right) + s^t_Z(z).
\]
We now evaluate the derivative of the parameter of interest along the parameterization path denoting it \(\dot{\theta} \):

\[
E[M(Z)] \dot{\theta} = E \left[M(Z) \frac{Y}{P(Z)} s_{Y|D,Z}(Y|D,Z) \right] - E \left[M(Z) \frac{Y}{P(Z)^2} \dot{P} \right].
\]

The efficient influence function for \(\theta \), denoted \(\Psi^\theta_Y(\cdot, \cdot, \cdot) \), can be found as a solution of

\[
\dot{\theta} = E \left[\Psi^\theta_Y(Y, D, Z) S^\theta(Y, D, Z) \right].
\]

Provided that \(E[s_{Y|D,Z}(Y|D,Z)|D,Z] = 0 \) and \(E[D - P(Z)|Z] = 0 \), we notice that the solution of interest is

\[
\Psi^\theta_Y(Y, D, Z) = E[M(Z)]^{-1} M(Z) \frac{Y}{P(Z)}.
\]

The variance of the efficient influence function is

\[
\text{Var} \left(\Psi^\theta_Y(Y, D, Z) \right) = E \left[M(Z)^2 \frac{E[Y^2|D = 1, Z]}{P(Z)} \right].
\]

Now we recall that we chose function \(M(\cdot) \) to be arbitrary. Now we can minimize the variance by appropriately choosing \(M(\cdot) \). This provides the information for parameter of interest expressed as

\[
I^\theta = \inf_{M \in L^2(X)} \text{Var} \left(\Psi^\theta_Y(Y, D, Z) \right) = E \left[M^2(Z) \frac{P(Z)}{E[Y^2|D = 1, Z]} \right],
\]

with the “efficient instrument” \(M(z) = \frac{P(z)}{E[Y^2|D = 1, Z = z]} \). Thus, the semiparametrically efficient estimator for \(\theta \) can be written as

\[
\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^{n} \frac{\hat{P}(z_i)}{E[Y^2|D = 1, Z = z_i]} \right)^{-1} \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{E[Y^2|D = 1, Z = z_i]}
\]

This means that

\[
\sqrt{n} \hat{\theta} \xrightarrow{d} N(0, 1).
\]

Therefore, in case where the error term in the main equation is mean independent from the error term in the selection equation, the estimator for the parameter(s) of the first equation converges at the parametric rate.

F Efficiency bound for the uniform ATE estimator

\[
\ell(y, d, x) = f_{Y|D,X}(y | d, x)P(x)^d (1 - P(x))^{1-d} f_X(x).
\]
We consider a smooth parameterization of the likelihood using a single-dimensional parameter θ. Then the score of the parametric submodel can be expressed as

$$S^\theta(y, d, x) = s^\theta_{Y|D,X}(y|d, x) + \hat{p}^\theta\left(\frac{d}{\mathcal{P}(x)} - \frac{1 - d}{1 - \mathcal{P}(x)}\right) + s^\theta_X(x).$$

As it is more convenient to work with an unconditional moment model, we transform the model for the original parameter by projecting it on an arbitrary fixed measurable function $M(\cdot)$ to obtain

$$E \left[M(X) \left(\frac{YD}{\mathcal{P}(X)} - \frac{Y(1 - D)}{1 - \mathcal{P}(X)} - \alpha_0 \right) \right] = 0.$$

We now evaluate the derivative of the parameter of interest along the parameterization path denoting it $\dot{\alpha}^\theta_0$:

$$E \left[M(X) \right] \dot{\alpha}^\theta_0 = E \left[M(X) \left(\frac{YD}{\mathcal{P}(X)} - \frac{Y(1 - D)}{1 - \mathcal{P}(X)} - \alpha_0 \right) s^\theta_{Y|D,X}(Y|D, X) \right]$$

$$- E \left[M(X) \left(\frac{YD}{\mathcal{P}(X)^2} + \frac{Y(1 - D)}{(1 - \mathcal{P}(X))^2} \right) \hat{p}^\theta \right].$$

The efficient influence function for α_0, denoted $\Psi^\theta_0(\cdot, \cdot, \cdot)$, can be found as a solution of

$$\dot{\alpha}^\theta_0 = E \left[\Psi^\theta_0(Y, D, X) S^\theta(Y, D, X) \right].$$

Provided that $E[s^\theta_{Y|D,X}(Y|D, X)|D, X] = 0$ and $E[D - \mathcal{P}(X)|X] = 0$, we notice that the solution of interest is

$$\Psi^\theta_0(Y, D, X) = E \left[M(X) \right]^{-1} M(X) \left(\frac{YD}{\mathcal{P}(X)} - \frac{Y(1 - D)}{1 - \mathcal{P}(X)} - \alpha_0 \right).$$

The variance of the efficient influence function is

$$\text{Var} \left(\Psi^\theta_0(Y, D, X) \right) = E \left[M(X) \right]^{-2} E \left[M^2(X) \left(\frac{E[Y^2|D = 1, X]}{\mathcal{P}(X)} + \frac{E[Y^2|D = 0, X]}{1 - \mathcal{P}(X)} - \alpha_0^2 \right) \right].$$

Now we recall that we chose function $M(\cdot)$ to be arbitrary. Now we can minimize the variance by appropriately choosing $M(\cdot)$.

$$I^{\alpha_0} = \left(\inf_{M \in L_2(X)} \text{Var} \left(\Psi^\theta_0(Y, D, X) \right) \right)^{-1} = E \left[\left(\frac{E[Y^2|D = 1, X]}{\mathcal{P}(X)} + \frac{E[Y^2|D = 0, X]}{1 - \mathcal{P}(X)} - \alpha_0^2 \right)^{-1} \right].$$
TABLE 1
Design 1: normal instruments, fixed parameters

<table>
<thead>
<tr>
<th></th>
<th>Mean Bias</th>
<th></th>
<th>Median Bias</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
</tr>
<tr>
<td>c = 0.00</td>
<td>-0.1983</td>
<td>-0.1374</td>
<td>-0.2712</td>
<td>0.0822</td>
<td>-0.0012</td>
<td>0.0009</td>
<td>0.0068</td>
<td>0.0086</td>
<td>-0.0012</td>
<td>0.0009</td>
</tr>
<tr>
<td>c = 0.50</td>
<td>-0.0005</td>
<td>0.0074</td>
<td>0.0506</td>
<td>-0.1461</td>
<td>-0.2205</td>
<td>-0.2211</td>
<td>-0.2190</td>
<td>-0.2222</td>
<td>-0.3237</td>
<td>-0.3279</td>
</tr>
<tr>
<td>c = 0.75</td>
<td>0.0986</td>
<td>0.1790</td>
<td>0.0587</td>
<td>-0.2609</td>
<td>-0.3237</td>
<td>-0.3279</td>
<td>-0.3300</td>
<td>-0.3370</td>
<td>-0.0012</td>
<td>0.0009</td>
</tr>
<tr>
<td>c = 1.00</td>
<td>0.2057</td>
<td>0.2835</td>
<td>0.1700</td>
<td>-0.3762</td>
<td>-0.4326</td>
<td>-0.4322</td>
<td>-0.4400</td>
<td>-0.4570</td>
<td>0.0072</td>
<td>0.0043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RMSE</th>
<th></th>
<th>MAD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
</tr>
<tr>
<td>c = 0.00</td>
<td>38.3796</td>
<td>72.5744</td>
<td>157.8260</td>
<td>106.4073</td>
<td>3.1213</td>
<td>3.6428</td>
<td>4.7534</td>
<td>5.9159</td>
<td>3.2291</td>
<td>3.6671</td>
<td>4.2015</td>
<td>6.0014</td>
</tr>
<tr>
<td>c = 0.75</td>
<td>36.9827</td>
<td>72.4332</td>
<td>157.7312</td>
<td>106.6476</td>
<td>4.4494</td>
<td>5.8431</td>
<td>7.8785</td>
<td>11.2825</td>
<td>3.3033</td>
<td>3.6770</td>
<td>4.2129</td>
<td>6.0072</td>
</tr>
</tbody>
</table>

TABLE 2
Design 1: normal instruments, drifting parameters

<table>
<thead>
<tr>
<th></th>
<th>Mean Bias</th>
<th></th>
<th>Median Bias</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
</tr>
<tr>
<td>c = 0.00</td>
<td>-0.0242</td>
<td>-0.1534</td>
<td>-0.2182</td>
<td>0.0517</td>
<td>-0.0015</td>
<td>0.0072</td>
<td>0.0043</td>
<td>0.0102</td>
<td>-0.0257</td>
<td>0.0067</td>
<td>0.0070</td>
<td>-0.0015</td>
</tr>
<tr>
<td>c = 0.50</td>
<td>-0.0436</td>
<td>0.1685</td>
<td>0.2293</td>
<td>-0.0438</td>
<td>-0.0355</td>
<td>-0.0134</td>
<td>0.0124</td>
<td>-0.0016</td>
<td>-0.0501</td>
<td>-0.0239</td>
<td>0.0152</td>
<td>-0.0063</td>
</tr>
<tr>
<td>c = 0.75</td>
<td>0.0535</td>
<td>0.1759</td>
<td>0.2358</td>
<td>-0.0397</td>
<td>-0.0357</td>
<td>-0.0239</td>
<td>0.0152</td>
<td>-0.0063</td>
<td>0.0072</td>
<td>0.0043</td>
<td>0.0102</td>
<td>0.0102</td>
</tr>
<tr>
<td>c = 1.00</td>
<td>0.0640</td>
<td>0.1835</td>
<td>0.2403</td>
<td>-0.0357</td>
<td>-0.0501</td>
<td>-0.0239</td>
<td>0.0152</td>
<td>-0.0063</td>
<td>0.0072</td>
<td>0.0043</td>
<td>0.0102</td>
<td>0.0102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RMSE</th>
<th></th>
<th>MAD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
<td>n = 100</td>
<td>n = 200</td>
<td>n = 400</td>
<td>n = 800</td>
</tr>
<tr>
<td>c = 0.50</td>
<td>27.3730</td>
<td>134.2254</td>
<td>146.0701</td>
<td>237.0692</td>
<td>3.2690</td>
<td>3.6758</td>
<td>4.2004</td>
<td>6.0276</td>
<td>3.2707</td>
<td>3.6993</td>
<td>4.2025</td>
<td>6.0233</td>
</tr>
<tr>
<td>c = 0.75</td>
<td>27.4384</td>
<td>134.2950</td>
<td>146.0883</td>
<td>237.0829</td>
<td>3.3033</td>
<td>3.6770</td>
<td>4.2129</td>
<td>6.0072</td>
<td>3.3033</td>
<td>3.6770</td>
<td>4.2129</td>
<td>6.0072</td>
</tr>
<tr>
<td>c = 1.00</td>
<td>27.3751</td>
<td>134.2166</td>
<td>146.0793</td>
<td>237.0718</td>
<td>3.3033</td>
<td>3.6770</td>
<td>4.2129</td>
<td>6.0072</td>
<td>3.3033</td>
<td>3.6770</td>
<td>4.2129</td>
<td>6.0072</td>
</tr>
</tbody>
</table>
TABLE 3

Design 3: cauchy instruments, constant parameters

<table>
<thead>
<tr>
<th>Mean Bias</th>
<th>Median Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$c = 0.00$</td>
<td>0.2714</td>
</tr>
<tr>
<td>$c = 0.50$</td>
<td>0.4334</td>
</tr>
<tr>
<td>$c = 0.75$</td>
<td>0.5207</td>
</tr>
<tr>
<td>$c = 1.00$</td>
<td>0.5971</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RMSE ($10^3 \times$)</th>
<th>MAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$c = 0.00$</td>
<td>0.4116</td>
</tr>
<tr>
<td>$c = 0.50$</td>
<td>0.43730</td>
</tr>
<tr>
<td>$c = 0.75$</td>
<td>0.4384</td>
</tr>
<tr>
<td>$c = 1.00$</td>
<td>0.4751</td>
</tr>
</tbody>
</table>

TABLE 4

Design 3: cauchy instruments, drifting parameters

<table>
<thead>
<tr>
<th>Mean Bias</th>
<th>Median Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$c = 0.00$</td>
<td>-1.5227</td>
</tr>
<tr>
<td>$c = 0.50$</td>
<td>-1.5394</td>
</tr>
<tr>
<td>$c = 0.75$</td>
<td>-1.5472</td>
</tr>
<tr>
<td>$c = 1.00$</td>
<td>-1.5554</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RMSE ($10^3 \times$)</th>
<th>MAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$c = 0.00$</td>
<td>0.2484</td>
</tr>
<tr>
<td>$c = 0.50$</td>
<td>0.2487</td>
</tr>
<tr>
<td>$c = 0.75$</td>
<td>0.2487</td>
</tr>
<tr>
<td>$c = 1.00$</td>
<td>0.2489</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>$H_0 : \alpha_0 = 0$</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>0.949</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.514</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>0.153</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>Heckman</td>
</tr>
<tr>
<td></td>
<td>$H_0 : \alpha_0 = 0$</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>0.812</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.803</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>0.794</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.738</td>
</tr>
<tr>
<td></td>
<td>Andrews Schafagans 1</td>
</tr>
<tr>
<td></td>
<td>$H_0 : \alpha_0 = 0$</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>0.972</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.979</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>0.940</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.911</td>
</tr>
<tr>
<td></td>
<td>Andrews Schafagans 2</td>
</tr>
<tr>
<td></td>
<td>$H_0 : \alpha_0 = 0$</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>0.981</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.978</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>0.980</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.980</td>
</tr>
<tr>
<td></td>
<td>IVW</td>
</tr>
<tr>
<td></td>
<td>$H_0 : \alpha_0 = 0$</td>
</tr>
<tr>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>0.775</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.782</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>0.785</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.791</td>
</tr>
</tbody>
</table>
Table 6
Bootstrap Coverage Probabilities

Design 1: Bivariate normal, correlation ρ

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Andrews and Schafagans

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 7
Bootstrap Coverage Probabilities

Design 1: Marginal cauchy, Gaussian Copula correlation ρ

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>0.90</td>
<td>0.90</td>
<td>0.89</td>
<td>0.85</td>
<td>0.71</td>
<td>0.70</td>
<td>0.76</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.86</td>
<td>0.82</td>
<td>0.83</td>
<td>0.83</td>
<td>0.77</td>
<td>0.71</td>
<td>0.60</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>0.86</td>
<td>0.83</td>
<td>0.87</td>
<td>0.87</td>
<td>0.67</td>
<td>0.65</td>
<td>0.61</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.85</td>
<td>0.84</td>
<td>0.88</td>
<td>0.89</td>
<td>0.57</td>
<td>0.57</td>
<td>0.53</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Andrews and Shafagans

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
<td>$n = 100$</td>
<td>$n = 200$</td>
<td>$n = 400$</td>
<td>$n = 800$</td>
</tr>
<tr>
<td>$\rho = 0.00$</td>
<td>0.66</td>
<td>0.83</td>
<td>0.72</td>
<td>0.77</td>
<td>0.91</td>
<td>0.90</td>
<td>0.89</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>$\rho = 0.5$</td>
<td>0.75</td>
<td>0.71</td>
<td>0.65</td>
<td>0.54</td>
<td>0.86</td>
<td>0.82</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>0.65</td>
<td>0.62</td>
<td>0.40</td>
<td>0.20</td>
<td>0.904</td>
<td>0.83</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>$\rho = 0.95$</td>
<td>0.62</td>
<td>0.40</td>
<td>0.14</td>
<td>0.03</td>
<td>0.95</td>
<td>0.85</td>
<td>0.88</td>
<td>0.89</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Figure 1: Normal Approximation, Fixed Parameters

![Graphs showing Normal Approximation for different values of \(c \) and \(N \).]
Figure 2: Normal Approximation, Drifting Parameters
Figure 3: Normal Approximation, Cauchy Instrument, Fixed Parameters
Figure 4: Normal Approximation, Cauchy Instrument, Drifting Parameters
Figure 5: Results for other Estimators, Gaussian Disturbances(1)

(a) OLS

(b) Heckman

(c) Andrews and Schafgans

(d) Bridge estimator
Figure 6: Results for other Estimators, Gaussian Disturbances (2)

(a) OLS
(b) Heckman
(c) Andrews and Schafgans
(d) Bridge estimator
Figure 7: Results for other Estimators, Gaussian Disturbances (3)

(a) OLS

(b) Heckman

(c) Andrews and Schafgans

(d) Bridge estimator
Figure 8: Results for other Estimators, Logistic Disturbances(1)
Figure 9: Results for other Estimators, Logistic Disturbances(2)

(a) OLS
(b) Heckman
(c) Andrews and Schafgans
(d) Bridge estimator
Figure 10: Results for other Estimators, Logistic Disturbances (3)

(a) OLS

(b) Heckman

(c) Andrews and Schafgans

(d) Bridge estimator
Figure 11: Results for other Estimators, Cauchy Disturbances (1)

(a) OLS
(b) Heckman
(c) Andrews and Schafgans
(d) Bridge estimator
Figure 12: Results for other Estimators, Cauchy Disturbances (2)

(a) OLS
(b) Heckman
(c) Andrews and Schafgans
(d) Bridge estimator
Figure 13: Results for other Estimators, Cauchy Disturbances(3)

(a) OLS
(b) Heckman
(c) Andrews and Schafgans
(d) Bridge estimator
Figure 14: Parametric Estimation Results using Mroz Data
Figure 15: **Semiparametric Estimation Results using Mroz Data**

Histogram for Bootstrap Distribution of Semiparametric Estimator

Quantile Plot for Bootstrap Distribution of Semiparametric Estimator
Figure 16: Comparison of Parametric and Semiparametric Results using Mroz data