Q1. \(z \) is the certain income in current period. \(y(r) \) is random second period income, \(y(r) \sim F(y \mid r) \) on \([0, z]\). An increase in \(r \) represents increase in risk of \(y \), in the sense of mean preserving spread (MPS): \(Eg(r) = w, \forall r \).

\(u'() > 0, u''() < 0, u'(0) = \infty, u'(z) = 0. \) Individual is prudent: \(-\frac{u'''(\cdot)}{u''(\cdot)} > 0, \) i.e. \(u'''(\cdot) > 0. \)

a) Show \(0 < s^*(r) < w. \)

\[
\max_r V(r, s) = u(w - s) + \int_0^z u(y + s)f(y \mid r)dy, \quad s.t. \ 0 \leq s(r) \leq w
\]

\[
FOC : \phi(r, s) = \int_0^z u'(y + s)f(y \mid r)dy - u'(w - s)
\]

\[
\phi(r, s^*) \leq 0 \quad \text{for} \quad s^* = 0
\]

\[
\phi(r, s^*) = 0 \quad \text{for} \quad 0 < s^* < w
\]

\[
\phi(r, s^*) \geq 0 \quad \text{for} \quad s^* = w
\]

i)

\[
\phi(r, 0) = \int_0^z u'(y)f(y \mid r)dy - u'(w)
\]

\[
= Eu'(y) - u'(Ey), \quad \text{since} \ Eg(r) = w, \forall r \ \text{by MPS}
\]

By prudence \(u'''(\cdot) > 0, \) we know \(u'(\cdot) \) is convex. Jensen’s Inequality implies \(Eu'(y) > u'(Ey). \) Thus \(\phi(r, 0) > 0. \) Hence, \(s^*(r) > 0. \)

ii)

\[
\phi(r, w) = \int_0^z u'(y + w)f(y \mid r)dy - u'(0)
\]

\[
< 0, \quad \text{since} \ u'(0) = \infty
\]

Hence, \(s^*(r) < w. \) Combining i) and ii) gives \(0 < s^*(r) < w. \) In the following, we will use \(\phi(r, s^*) = \int_0^z u'(y + s^*)f(y \mid r)dy - u'(w - s^*) = 0, \) which defines \(s^*(r) \) as a function of \(r. \)

Preliminaries

An increase in \(r \) represents increase in risk of \(y, \) in the sense of mean preserving spread. Explicitly, let \(F(y \mid r') \) be a MPS of \(F(y \mid r), \) then

\[
\int_0^z [F(x \mid r') - F(x \mid r)]dx
\]

\[
= x[F(x \mid r') - F(x \mid r)]_0^z - \int_0^z x[f(x \mid r') - f(x \mid r)]dx
\]

\[
= 0 \quad \text{by MPS}
\]
\[A + C = B + D \text{ for MPS} \]

That is, the areas below the two distributions are the same over the interval \([0, z]\). Figure:

\[
\int_0^y [F(x \mid r') - F(x \mid r)]dx \geq 0, \forall y \in [0, z], \forall r' > r
\]

\[
\Rightarrow \int_0^y \frac{F(x \mid r') - F(x \mid r)}{r' - r}dx \geq 0
\]

taking limit \Rightarrow \int_0^y F_r(x \mid r)dx \geq 0, \forall y \in [0, z], \forall r' > r

\[
\int_0^z [F(x \mid r') - F(x \mid r)]dx = 0, \forall r > r'
\]

\[
\Rightarrow \int_0^z \frac{F(x \mid r') - F(x \mid r)}{r' - r}dx = 0
\]

taking limit \Rightarrow \int_0^z F_r(x \mid r)dx = 0, \forall r' > r

Alternatively, to see \(\int_0^z F_r(x \mid r)dx = 0 \).

\(F(0 \mid r) = 0, F(z \mid r) = 1, F_r(0 \mid r) = 0, F_r(z \mid r) = 0, \forall r \)
Thus,

\[
E(y \mid r) = \int_0^z y f(y \mid r) dy = y F(y \mid r) \bigg|_0^z - \int_0^z F(y \mid r) dy
\]

\[
= z F(z \mid r) - 0 F(0 \mid r) - \int_0^z F(y \mid r) dy = z - \int_0^z F(y \mid r) dy
\]

\[
= \int_0^z dy - \int_0^z F(y \mid r) dy = \int_0^z [1 - F(y \mid r)] dy
\]

\[
= w \text{ by MPS}
\]

\[
\frac{\partial E(y \mid r)}{\partial r} = - \int_0^z F_r(y \mid r) dy = 0
\]

\[
\frac{d s^*(r)}{dr} > 0.
\]

\[
\frac{d s^*(r)}{dr} = - \frac{\partial \phi(r, s^*)}{\partial r} \text{ / } \partial \phi(r, s^*) / \partial s \text{ By Implicit Function Theorem,}
\]

\[
\text{sign } \frac{d s^*(r)}{dr} = \text{ sign } \frac{\partial \phi(r, s^*)}{\partial r}
\]

since \(\frac{\partial \phi(r, s^*)}{\partial s} = \int_0^z u''(y + s^*) f(y \mid r) dy + u''(w - s^*) < 0 \)

\[
\frac{\partial \phi(r, s^*)}{\partial r} = \int_0^z u'(y + s^*) F_r(y \mid r) dy
\]

\[
= u'(y + s^*) F_r(y \mid r) \bigg|_0^z - \int_0^z u''(y + s^*) F_r(y \mid r) dy
\]

\[
= u'(z + s^*) F_r(z \mid r) - u'(s^*) F_r(0 \mid r) - \int_0^z u''(y + s^*) F_r(y \mid r) dy
\]

\[
= - \int_0^z u''(y + s^*) F_r(y \mid r) dy \text{ since } F_r(z \mid r) = F_r(0 \mid r) = 0
\]

\[
= - \int_0^z u''(y + s^*) dy \int_0^y F_r(x \mid r) dx
\]

\[
= -u''(y + s^*) \int_0^y F_r(x \mid r) dx \bigg|_0^z + \int_0^z u''(y + s^*)[\int_0^y F_r(x \mid r) dx] dy
\]

\[
= -u''(z + s^*) \int_0^z F_r(x \mid r) dx + \int_0^z u''(y + s^*)[\int_0^y F_r(x \mid r) dx] dy
\]

\[
= \int_0^z u''(y + s^*)[\int_0^y F_r(x \mid r) dx] dy \text{ since } \int_0^z F_r(x \mid r) dx = 0
\]

\[
> 0 \text{ since } u''(y + s^*) > 0 \text{ and } \int_0^y F_r(x \mid r) dx \geq 0
\]

Thus, \(\frac{d s^*(r)}{dr} > 0 \)
Q2. Investment of l has a random gross return of \(U(l) \), where \(U'' > 0, U' < 0 \), and \(x \) is the realization of a random variable \(X(r) \) with distribution \(F(x \mid r) \) on \([0, 1]\). An increase in \(r \) represents an increase in riskiness of future income in the sense of a MPS.

Suppose individual has to choose \(i \) before observing \(U \):

\[
\max_i -i + \int_0^1 xR(i) f(x \mid r) dx, \text{ s.t. } 0 < i(r) < \infty
\]

\[
\text{FOC}_1 : \int_0^1 xR'(i^*(r)) f(x \mid r) dx - 1 = 0
\]

Note: optimal \(i^*(r) \) conditional on risk \(r \)

Suppose individual can choose \(i \) after observing \(U \):

\[
\max_i -i + xR(i), \text{ s.t. } 0 < i(x) < \infty
\]

\[
\text{FOC}_2 : xR'(i^{**}(x)) - 1 = 0
\]

Note: optimal \(i^{**}(x) \) conditional on observed \(x \)

Value of information:

\[
V(r) = \int_0^1 [xR(i^{**}(x)) - i^{**}(x) - (xR(i^*(r)) - i^*(r))] dF(x \mid r)
\]

Show \(V'(r) > 0 \). Write \(V(r) = \int_0^1 W(x, r) dF(x \mid r) \). To show \(V'(r) > 0 \), follow two steps:

a) Show that \(W(x, r) = [xR(i^{**}(x)) - i^{**}(x) - (xR(i^*(r)) - i^*(r))] \) is convex in \(x \).

\[
\frac{\partial W(x, r)}{\partial x} = R(i^{**}(x)) + xR'(i^{**}(x)) \frac{\partial i^{**}(x)}{\partial x} - \frac{\partial i^{**}(x)}{\partial x} - R(i^*(r))
\]

\[
= R(i^{**}(x)) - R(i^*(r)) + [xR'(i^{**}(x)) - 1] \frac{\partial i^{**}(x)}{\partial x}
\]

\[
= R(i^{**}(x)) - R(i^*(r)) \text{ by FOC}_2
\]

\[
\frac{\partial^2 W(x, r)}{\partial x^2} = R'(i^{**}(x)) \frac{\partial i^{**}(x)}{\partial x} > 0
\]

\[\implies W(x, r) \text{ is convex in } x \]

since \(R'(i^{**}(x)) > 0 \), and \(\frac{\partial i^{**}(x)}{\partial x} = -\frac{R'(i^{**}(x))}{R'(i^{**}(x))} > 0 \) by FOC$_2$

b) Show that \(\int_0^1 v(x) f(x \mid r) dx \) is increasing in \(r \) for any convex function \(v(x) \). Let \(S(r) = \int_0^1 v(x) f(x \mid r) dx \)
\[(*) \quad S'(r) = \int_0^1 v(x) f_r(x \mid r) dx \]

\[= v(x) F_r(x \mid r) \bigg|_0^1 - \int_0^1 v'(x) F_r(x \mid r) dx \]

\[= v(1) F_r(1 \mid r) - v(0) F_r(0 \mid r) - \int_0^1 v'(x) F_r(x \mid r) dx \]

\[= - \int_0^1 v'(x) F_r(x \mid r) dx, \text{ since } F_r(1 \mid r) = F_r(0 \mid r) = 0 \]

\[= - \int_0^1 v'(x) d\int_0^x F_r(y \mid r) dy \]

\[= -v'(x) \int_0^x F_r(y \mid r) dy \bigg|_0^1 + \int_0^1 v''(x) \int_0^x F_r(y \mid r) dy dx \]

\[= -v'(1) \int_0^1 F_r(y \mid r) dy + \int_0^1 v''(x) \int_0^x F_r(y \mid r) dy dx \]

\[= \int_0^1 v''(x) \int_0^x F_r(y \mid r) dy dx \text{ since } \int_0^1 F_r(y \mid r) dy = 0 \text{ by MPS} \]

\[> 0 \text{ since } \int_0^1 F_r(y \mid r) dy \geq 0 \text{ for } x \in (0, 1) \]

In our particular case, \(v(x) = W(x, r) \)

\[V(r) = \int_0^1 [xR(i^*(x)) - i^*(x) - (xR(i^*(r)) - i^*(r))] f(x \mid r) dx \]

\[V'(r) = \int_0^1 [xR(i^*(x)) - i^*(x) - (xR(i^*(r)) - i^*(r))] f_r(x \mid r) dx \]

\[= \int_0^1 \frac{\partial}{\partial r}(i^*(r)) \left(\frac{\partial}{\partial r} f(x \mid r) \right) dx \]

\[= \int_0^1 W(x, r) f_r(x \mid r) dx - \frac{\partial}{\partial r} \int_0^1 [xR'(i^*(r)) - 1] f(x \mid r) dx \]

\[= \int_0^1 W(x, r) f_r(x \mid r) dx \text{ since } FOC_1 : \int_0^1 xR'(i^*(r)) f(x \mid r) dx - 1 = 0 \]

Since \(W(x, r) \) is convex in \(x \), we are back in \((*) \) in part b). Therefore \(V'(r) > 0 \).