Problem Set 1

1. Consider a lottery whose jackpot is $2000, and the probability of winning is .05. What is the maximum price you are willing to pay to play this lottery?

Now consider your choice between the following two lotteries: \(L \) has a jackpot of $2000, and the probability of winning is .01. \(L' \) has a jackpot of $x, and the probability of winning is .20. For what value of \(x \) would you be indifferent between buying the two lotteries?

From your answers to the questions above, determine whether or not your preferences satisfy the axioms of the von Neumann-Morgenstern expected utility theory.

2. Consider two simple lotteries \(L \) and \(L' \) in \(L \), where \(L \) is the space of all possible lotteries for a set of outcomes \(C \). Suppose that \(L \succ L' \) according to some preference relation \(\succeq \). Show that if this preference relation satisfies all the axioms of the von Neumann-Morgenstern expected utility theory, then

\[
\beta L + (1 - \beta)L' \succ \alpha L + (1 - \alpha)L'
\]

if and only if \(\beta > \alpha \).

3. Let \(\succeq \) be a preference relation on the lotteries in \(L \) which is the space of all possible lotteries for a set of outcomes \(C \). Assume that these preferences satisfy the von-Neumann-Morgenstern axioms. Let \(U : L \rightarrow \mathbb{R} \) be a vNM utility function that represents these preferences. Suppose \(\tilde{U} : L \rightarrow \mathbb{R} \) is a positive affine transformation of \(U \). Show that \(\tilde{U} \) also represents the preference relation \(\succ \). Show that \(\tilde{U} \) also has an expected utility form. Hint: use the fact that for any simple lottery \(L = (p_1, ..., p_N) \sum p_n = 1 \), and the fact that \(U \), being a von-Neumann-Morgenstern utility function, has an expected utility form (and let \(u() \) denote the corresponding function that assigns numbers to the outcomes in \(C \)).

5. An individual has a Bernoulli utility function \(u() \) which is strictly increasing and strictly concave. She is offered a bet with \(\frac{2}{3} \) probability of winning $x and probability \(\frac{1}{3} \) of losing $x dollars. Show that for \(x \) sufficiently small, the individual will take the bet.