Topic 3:
Moral Hazard and Principal-Agent Problems

- The Principal-Agent Problem
 - Basic Economic Environment
 - The Interaction Between P and A
 - The Profit-Maximizing Contract
 - Full Information Case
 - Hidden Action Case
 - Risk-Neutral Agent
 - Risk-Averse Agent
 - Continuous Effort: The First Order Approach

- Principal-Agent with Hidden Information
 - Basic Environment
 - Benchmark: Public Information
 - Private Information Case
The Issue

Main Issue: Actions of agents are hidden from other parties to a transaction.

Principal-Agent problem: the principal wants the agent to perform an action costly to the agent, but the action is not directly observed by the principal.

Examples:

Owners (shareholders) of a firm and firm’s manager.

Landowner and sharecropper.

Manufacturer and retailer.
The Principal-Agent Problem

Basic Economic Environment:

A risk-neutral firm owner (the principal) only cares about profits.

Let $e \in E$ be the level of effort exerted by the manager (the agent).

Profits are a random variable π, with (continuous) distribution function $F(\pi \mid e)$ on $[\underline{\pi}, \overline{\pi}]$, and associated density $f(\pi \mid e)$.
The Principal-Agent Problem (cont.)

Basic assumptions:

(i) \(f(\pi \mid e) > 0 \) for all \(\pi \in [\underline{\pi}, \overline{\pi}] \) and \(e \in E \).

(ii) For \(e_1 > e_2 \), \(F(\pi \mid e_1) \leq F(\pi \mid e_2) \) for all \(\pi \in [\underline{\pi}, \overline{\pi}] \).

Then:

\[
\int_{\underline{\pi}}^{\overline{\pi}} \pi \cdot f(\pi \mid e_1) d\pi \geq \int_{\underline{\pi}}^{\overline{\pi}} \pi \cdot f(\pi \mid e_2) d\pi.
\]
(iii) The manager has Bernoulli utility function

\[u(w, e) = v(w) - g(e) \]

with \(v' > 0, v'' \leq 0, \) and \(g' > 0. \)

(iv) The manager has reservation utility of \(\bar{u}. \)
The Principal-Agent Problem (cont.)

Information assumptions:

(i) e is not observable to the principal (or if observable it is non-verifiable).

(ii) π is observable and verifiable.

Implication of (i) and (ii): the parties can only contract on π, not on e. We consider wage/compensation schedules of the form $w(\pi)$.

(iii) $F(\pi \mid e)$ is common knowledge.

(iv) $u(w, e)$ and \bar{u} are common knowledge.
The Interaction Between P and A

1. The owner offers the manager a compensation schedule $w(\pi)$.

2. The manager accepts or rejects this schedule.

 If the manager rejects, he earns his reservation value \bar{u}, the owner earns 0 profits and the interaction is over.

3. If the manager accepts, then he chooses a level of effort e, which generates a distribution over profits $F(\pi \mid e)$.

4. The profits of the firm are then realized and the manager is paid according to the schedule $w(\pi)$.
Manager’s Effort Choice

If the manager accepts $w(\pi)$, her expected payoffs are:

$$\bar{\pi} \int [v(w(\pi)) \cdot f(\pi \mid e) \, d\pi] - g(e)$$

If the manager accepts she will choose $\hat{e}(w(\pi))$ where:

$$\hat{e}(w(\pi)) = \arg \max_{\hat{e}} \bar{\pi} \int [v(w(\pi)) \cdot f(\pi \mid \hat{e}) \, d\pi] - g(e)$$

Consequently, she will accept the contract iff:

$$\bar{\pi} \int [v(w(\pi)) \cdot f(\pi \mid \hat{e}) \, d\pi] - g(\hat{e}) \geq \bar{u}$$
Principal’s Design of Contract

The principal must consider the agent’s effort choice, since she will earn:

\[
\int_{\pi}^{\bar{\pi}} [\pi - w(\pi)] \cdot f(\pi \mid \tilde{e}) d\pi.
\]

The principal’s problem is to find the contract \(w(\pi) \) that maximizes her expected profits, taking into consideration:

1. whether the agent will accept the contract.

2. the agent’s choice of effort given the contract; that is \(\tilde{e}(w(\pi)) \).
Profit-Maximizing Contract for Two Effort Levels

Only two possible effort levels: $e_H > e_L$.

Assume $F(\pi \mid e_H) \leq F(\pi \mid e_L)$ and $g(e_H) > g(e_L)$.

The principal faces the following optimization problem:

$$\max_{w(\pi), e \in \{e_L, e_H\}} \int_{\pi}^{\pi} [\pi - w(\pi)] \cdot f(\pi \mid e) d\pi$$

s.t.

$$\int_{\pi}^{\pi} [\nu(w(\pi)) \cdot f(\pi \mid e) d\pi] - g(e) \geq \bar{u}.$$

(Individual Rationality (IR))

and

$$e = \arg \max_{\bar{e}} \int_{\pi}^{\pi} [\nu(w(\pi)) \cdot f(\pi \mid \bar{e}) d\pi] - g(\bar{e})$$

(Incentive Compatibility (IC))
The Profit-Maximizing Contract (cont.)

Two-stage solution method:

First, for each effort level \((e_H \text{ and } e_L) \), find the \(w(\pi) \) which maximizes the principal’s expected profits subject to:

(1) the agent will accept the contract (IR constraint),

(2) the agent will choose the intended effort level (IC constraint).

Second, compare the profits obtained in each case \((e_H \text{ vs. } e_L) \), and induce the agent to choose the effort level yielding the highest expected profits.