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Abstract

This paper studies collective decision-making with interdependent valuations, where,
unlike the extant literature, the committee cannot commit to a majority rule, necessitating
it to be ex post optimal or “time-consistent”. We find that (1) a majority rule is time-
consistent if and only if the expected number of affirmative votes it generates is approx-
imately the rule itself; (2) the preference interdependence exacerbates the commitment
problem by creating incentives for strategic (pivotal) voting and in turn expanding the
set of time-consistent rules; in particular, any majority rule, including the unanimity, be-
comes time-consistent under pure common values; and (3) as the committee size grows
without bound, the commitment problem disappears owing to the dilution of incentives
for strategic voting.

JEL Classifications: C7, D7
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1 Introduction

Decision-making by committees is commonplace in modern organizations. Perhaps, the

greatest advantage of a committee is its ability to draw upon diverse opinions of its mem-

bers. To the extent that these opinions are successfully shared, the committee will make a

better decision. There are, however, two potential difficulties: First, information leading to

one’s opinion is likely to be private; and second, each member is likely to favor his own

∗I am grateful to the Associate Editor and two anonymous referees for comments that significantly improved
the paper. I thank Soroush Ghazikalahroudi, Dan Graham, Navin Kartik, Silvana Krasteva, Tracy Lewis, Benny
Moldovanu, Sergiu Ungureanu, Justin Valasek, and participants of Duke Theory Lunch as well as Midwest and
Public Economic Theory Conferences for discussions and suggestions. All remaining errors are mine.
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information. One source of such a “bias” could be representing a different constituency as

would be the case for members of an inter-disciplinary university committee or a Food and

Drug Administration (FDA) advisory panel composed of scientists and various industry and

consumer advocates. Another source of the bias could be individuals’ commonly known

cultural, psychological, and demographic backgrounds that distort their processing of oth-

ers’ information.1 Yet a third source of the bias could be one’s field of speciality as noted

by Moldovanu and Shi (2012). These authors cogently argue that the growing complexity of

issues in the modern world often requires decision-making by a committee of “specialists”.

Indeed, a multidisciplinary team approach is being increasingly recommended and adopted

in many areas of health care (Porter and Olmsted-Teisberg, 2007; Schuetz et al., 2010).2

While communication in real committees is probably more complicated, in this paper,

we follow the extensive literature on committees3 and assume that opinions are expressed by

binary votes.4 We depart from the literature by considering situations in which the committee

cannot commit to a decision rule; instead, given the votes, the committee takes the best action

that maximizes its members’ joint payoff. For instance, it is hard to imagine that: a team of

physicians would carry out a radical surgery when their opinions suggest a serious residual

risk for the patient’s health;5a university will start a new interdisciplinary program when the

votes still cast doubt on its value; or the FDA will approve a new drug when the advisory

panel’s votes do not fully eliminate the safety and efficacy concerns.6

Our model consists of a group of agents who vote whether or not to implement a “project”.

Each agent receives an independent private signal about the project, but his valuation of the

project is a weighted average of all the signals, placing a (weakly) greater weight on his own.

1A similar explanation is often used for why agents may “agree to disagree”; e.g. Morris (1995).
2Aside from the complexity of the cases, such an approach is also believed to alleviate the specialist bias.

For instance, Jang et. al (2010) report that one-third of prostate cancer patients who had only seen a urologist
underwent prostate surgery while radiation therapy was the most common treatment for those patients who
visited both a urologist and a radiation oncologist.

3See Gerling et al. (2005), and Li and Suen (2009) for reviews.
4Li et al. (2001) show that a general voting or scoring procedure can be the optimal mechanism to pool in-

formation in committees since absent side payments, an optimal decision rule mitigates members’ incentives to
manipulate private (continuous) information by “garbling” it almost everywhere. They also show that the gar-
bling categories depend on the degree of preference heterogeneity – the greater the heterogeneity is, the less fine
the categories are. In this sense, our restriction to binary or two-category voting is not without loss of generality,
but it is often used in practice and consistent with the literature.

5In fact, evidence suggests that the fear of malpractice liability drives physicians to adopt “defensive medicine”
(Kessler and McClellan, 1996).

6The FDA is not required to follow the panel’s advice, but it often does. According to one study, the FDA
overruled only 26% of such recommendations between 2007 and 2010 (Forbes, 10/12/2010). In this paper, if the
decision-maker is different from the committee, we will assume that her objective coincides with the committee’s.
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In the language of auction theory, agents have (linearly) interdependent valuations, ranging

from pure private values (with no regard for others’ signals) to pure common values (with

equal weight given to them).7 Agents simultaneously submit their votes to a utilitarian social

planner who values each signal equally, i.e., the committee as whole is less biased than each

of its members. The planner accepts the project if its expected payoff exceeds that of the status

quo, which amounts to choosing the majority rule conditional on the votes. In effect, agents

play a simultaneous game with each other as well as with the planner. Not surprisingly, only

the ex post optimal, or time-consistent, majority rules can emerge in equilibrium. Identifying

these rules is important because it relates to the commitment problem and affects information

aggregation in the committee.

We make three key observations. First, a majority rule k is time-consistent if and only

if the expected number of affirmative votes it generates is approximately k. Otherwise, if

the expected number were, say, much higher, then this would be indicative of too lenient a

standard for an affirmative vote and lead to the rejection –rather than the acceptance– of the

project upon receiving exactly k affirmative votes.

Second, as the degree of preference interdependence increases, the set of time-consistent

majority rules expands. This is due to an increased level of “strategic” voting: agents with

stronger interdependencies place a greater weight on the information gleaned from being

pivotal, making their votes more sensitive to the majority rule. This implies that the com-

mitment problem is more severe, the stronger the interdependencies are. For instance, the

planner would face no commitment problem if agents possessed pure private values since

they would always vote “sincerely”, i.e., based only on their own signals. In fact, we show

that ignoring integer problems, the unique time-consistent rule under pure private values is

the ex ante optimal one whereas any majority rule, including the unanimity, becomes time-

consistent under pure common values.

Third, as the committee size grows without bound, the only “percentage” rule that is

time-consistent is the one for pure private values. This makes sense: in a large group, each

agent has a sharper prediction of the average of others’ signals, which lowers the amount of

information that can be inferred from the pivotal event and in turn weakens the incentives

for strategic voting.

Related Literature. Building on the Condorcet Jury Theorem, there is an early literature

on voting as a means of information aggregation in committees, which is ably summarized

7See Krishna (2009) for a review.
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by Gerling et al. (2005), and Li and Suen (2009). Austen-Smith and Banks (1996) pointed out

that sincere voting assumed in this literature is unlikely to occur in equilibrium “even when

individuals have [such] a common preference.”8 Our analysis reveals that individuals with

a common preference may actually vote the most strategically. Feddersen and Pesendorfer

(1997, 1998) have investigated the consequences of strategic voting on information aggre-

gation in large common value elections; and in particular, they have demonstrated that the

unanimity rule performs poorly in this regard. Duggan and Martinelli (2001) extend their

results to a continuous signal space – a model we discuss in Section 5. Our investigation com-

plements these papers by also uncovering that without integer problems, the unanimity rule

is never ex ante optimal, but it is always time-consistent (or ex post optimal) under common

preferences.9 That is, if jurors were not told a voting rule, they could well form rational beliefs

about the unanimity being the rule and vote accordingly.

Our paper also relates to several recent studies on optimal decision rules in committees

with common values. Among them, Gerardi and Yariv (2008), Gersbach (1995), Gershkov and

Szentes (2009), Li (2001), and Persico (2004) show that the ex ante optimal rule is, in general,

ex post inefficient. This means that the social planner would face an ex post commitment

problem but only to incentivize agents to acquire costly information, which is not a feature of

our setting.

Finally, as in ours, Gruner and Kiel (2004), and Moldovanu and Shi (2012) also represent

committee members’ biases via interdependent valuations. These papers, however, fix deci-

sion rules; so their optimality or time-consistency are not at stake.10

The remainder of the paper is organized as follows. In the next section, we lay out the

model. In Section 3, we characterize equilibrium voting for a fixed majority rule. In Section 4,

we study time-consistent majority rules. We discuss the time-consistency within a Condorcet-

type model in Section 5, followed by a discussion of nonlinear interdependencies in Section

6. Section 7 concludes. Proofs that do not appear in the text are relegated to an appendix.

8Ali et al. (2008) offer some experimental evidence in favor of strategic voting in a Condorcet-type model.
9See also Costinot and Kartik (2007) for a complementary explanation as to the ex ante suboptimality of the

unanimity rule under common preferences.
10The time-consistency problem also arises in dynamic models of collective decision-making due to shocks to

the economy. See, e.g., Dal Bo (2006) and Riboni (2010) who show that supermajority rules can strike the right
balance between commitment and flexibility. These papers, however, assume commitment to the rule within each
period whereas our model is static and focuses on the commitment problem within the period.
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2 The Model

For concreteness, there is a committee that consists of n ≥ 2 “specialist” members who decide

whether to implement a “project”; e.g., undertaking an invasive surgery, hiring a job candi-

date, or approving a new drug. Based on his specialization or constituency, each member i

can evaluate only one attribute of the project, which yields a private signal θi independently

drawn from a common distribution F, with support [θ, θ] ⊆ R where θ < 0 < θ. F is assumed

twice differentiable, with a positive density f = F′ in its interior, and whose mean, E[θi], is

normalized to 0. Member i is biased toward his specialization but he also cares about other

attributes of the project. We capture this “conflict” by the following interdependent payoffs,

which is often exploited in the auction theory literature (see Krishna (2009) for a review):11

vi = (1− α+
α

n
)θi +

α

n ∑j 6=i θ j, (1)

where α ∈ [0, 1]. The parameter α measures the degree of interdependence in the committee;

in particular, α = 0 refers to pure private values whereas α = 1 refers to pure common values.

The reservation payoff from dismissing the project is 0. Given that E[vi] = 0, this implies no

status quo bias.12 For technical convenience, we will restrict attention to α ∈ (0, 1), though

one can always take the limits of α.

Based on their private signals, the committee members simultaneously submit “yes” or

“no” votes to a social planner. The planner accepts the project if and only if there are k or

more “yes” votes. The planner is a utilitarian agent who maximizes the committee’s welfare:

w ≡ ∑i vi

n
=

∑i θi

n
. (2)

Note that w is independent of α. That is, the degree of interdependence does not have a direct

effect on the committee’s welfare; but it will have an indirect effect through voting.

Remark 1 The social planner can be viewed as a fictitious player who weighs each attribute equally.

That is, committee members collectively agree that each piece of information should be treated equally

in the final decision even though they are personally biased toward their own except for the special case

of pure common values. The planner can also be viewed as a “real” player who delegates the decision

to the committee or shares its objective.

11We briefly discuss nonlinear payoffs in Section 6.
12Introducing a status quo bias, i.e., E[θi] 6= 0, does not change our qualitative results, as is clear from the proof

of Lemma A1, for instance.
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We begin the analysis by characterizing voting behavior for a fixed majority rule, and then

proceed to endogenizing the rule.

3 Equilibrium Characterization

Let the majority rule, k, be fixed and publicly known before votes are cast. Since signals are

independent and vi is strictly increasing in θi, it is readily verified that member i follows

a cutoff strategy such that he votes “yes” if θi > θ̂i, and “no” if θi < θ̂i for some signal

θ̂i.13 As is customary in the literature, we focus on symmetric (Bayesian-Nash) equilibrium in

undominated strategies throughout.14

Suppose that all members but i adopt a cutoff θ̂. In determining his, member i needs to

consider only the pivotal event in which there are exactly k − 1 “yes” and n − k “no” votes

except for his. Conditional on this event, member i’s expected payoff from (1) is:

v(θi; θ̂, k, n, α) ≡ (1− α+
α

n
)θi +

α

n

(
(k− 1)Ey[θ̂] + (n− k)En[θ̂]

)
,

where Ey[θ̂] ≡ E[θ|θ > θ̂] and En[θ̂] ≡ E[θ|θ < θ̂]. The symmetric cutoff θ̂ constitutes an

equilibrium if and only if it satisfies the following indifference condition:

v(θ̂; θ̂, k, n, α) = 0. (3)

Lemma 1 For any feasible k, n, and α, there exists a unique symmetric equilibrium, and it is interior,

i.e., θ < θ̂(k, n, α) < θ.

Proof. Let V(x; k, n, α) ≡ v(x; x, k, n, α). Since Ey[x] > En[x] for any x ∈ [θ, θ], V(x; k, n, α)

is strictly increasing in k. Together with E[θ] = 0, it follows that V(θ; k, n, α) ≤ V(θ; n, n, α) =

[1− (n− 1) α
n ]θ < 0, and V(θ; k, n, α) ≥ V(θ; 1, n, α) = [1− (n− 1) α

n ]θ > 0. In addition, since

(with appropriate limit arguments for x = θ and θ)

Ey′[x] =
f (x)

1− F(x)
(Ey[x]− x) > 0 and En′[x] =

f (x)
F(x)

(x− En[x]) > 0, (4)

it also follows that Vx(x; k, n, α) > 0, where subscripts of functions denote partial derivatives

throughout. From these three facts, there exists a unique and interior solution, θ̂(k, n, α), to

V(x; k, n, α) = 0.

13His decision when indifferent is immaterial as it is a zero probability event.
14It is well-known in the literature that under nonunanimity voting rules, there are also “unresponsive” sym-

metric equilibria, where agents adopt extremal cutoffs with probability one, irrespective of their private informa-
tion. These equilibria, however, involve weakly dominated strategies.
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The equilibrium existence is trivial. Its uniqueness follows from the fact that both trun-

cated means, Ey and En, are strictly increasing in the cutoff.

To perform comparative statics on the voting strategy, we first introduce the notion of

“sincere” or nonstrategic voting in our model. Agent i is said to vote sincerely if he conditions

his vote only on his private information (Austen-Smith and Banks, 1996). Absent any status

quo bias, sincere voting corresponds to adopting a cutoff of 0 in our model. Equilibrium

voting will, however, be strategic in general except (perhaps) for one specific majority rule.

Let k = ks(n) be this rule. Setting θ̂ = 0 in (3) and solving for k, we find:

ks(n) ≡ F(0) + (1− F(0))× n, (5)

where we use the fact that

F(x)× En[x] + (1− F(x))× Ey[x] = E[θ] = 0. (6)

ks(n) is generically noninteger, which means that equilibrium voting is generically strategic.

Proposition 1 shows the direction of this strategic behavior.

Proposition 1 In equilibrium,

(a) θ̂(k+ 1, n, α) < θ̂(k, n, α)

(b) θ̂α(k, n, α) =sign θ̂(k, n, α) =sign ks(n)− k

(c) En[θ̂(.)] < 0 < Ey[θ̂(.)].

Proof. From the proof of Lemma 1, recall that V(x; k, n, α) is strictly increasing in x and

in k. Moreover, in equilibrium V(θ̂(k, n, α); k, n, α) = 0. Thus, θ̂(k, n, α) must be strictly de-

creasing in k, i.e., θ̂(k + 1, n, α) < θ̂(k, n, α). To prove part (b), we differentiate both sides

of eq.(3) with respect to α: θ̂α(.) = −Vα(θ̂(.),.)
Vx(.)

. Next, we observe that Vα(θ̂(.), .) = − θ̂(.)
α .

Since Vx(.) > 0 and α > 0, we have θ̂α(k, n, α) =sign θ̂(k, n, α). Now, note that θ̂(1, .) =
n−1

n α
(

θ̂(1, .)− En[θ̂(1, .)]
)
> 0 and θ̂(n, .) = n−1

n α
(

θ̂(n, .)− Ey[θ̂(n, .)]
)
< 0. By part (a),

θ̂(k, n, α) is strictly decreasing in k, and thus the unique real number ks(n) in (5) solves:

θ̂(k, n, α) = 0. This means that θ̂(k, n, α) > 0 for k < ks(n), and θ̂(k, n, α) < 0 for k > ks(n).

To prove the last part, suppose, to the contrary, that Ey[θ̂(.)] ≤ 0. Given that En[x] < Ey[x],

we have En[θ̂(.)] < 0. Moreover, from (3), θ̂(k, n, α) > 0. But, this means Ey[θ̂(.)] > 0 – a

contradiction. Hence, Ey[θ̂(.)] > 0. A similar argument shows that En[θ̂(.)] < 0.
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Consistent with the strategic voting literature (e.g., Austen-Smith and Banks, 1996; Dug-

gan and Martinelli, 2001; Feddersen and Pesendorfer, 1997, 1998),15 part (a) says that as the

decision rule requires more affirmative votes for the project’s approval, individuals relax their

own standards due to holding a more positive view of others’ information in the event of be-

ing pivotal.

Part (b) has two implications: if the majority rule is less (resp. more) stringent than the

one that induces sincere voting, then members vote strategically by approving the project less

(resp. more) often than sincere voting would dictate; and in either case, a stronger interdepen-

dence leads to more strategic voting. The first implication follows from part (a) that voting

strategy is strictly decreasing in the majority requirement. The second implication follows

because with stronger interdependence, each member puts more weight on the information

deduced from the pivotal event and in turn adjusts his strategy further away from the sincere

one.

Armed with the equilibrium characterization for a fixed majority rule, k, we are ready to

investigate the optimal rules.

4 Time-Consistent Majority Rules

Note that for an arbitrary cutoff x the probability that there are exactly m “yes” and n − m

“no” votes is the binomial coefficient, b(x; m, n) = (n
m)[1 − F(x)]m[F(x)]n−m, and with this

vote profile, the ex post committee welfare from implementing the project is

w(x; m, n) ≡ mEy[x] + (n−m)En[x]
n

, (7)

and the ex ante committee welfare is

w(x; k, n) ≡∑n
m=k b(x; m, n)w(x; m, n). (8)

If the social planner can commit to the voting rule, then she will pick the one that maximizes

(8) while taking its impact on subsequent voting. Formally, the ex ante optimal rule solves:

ko = arg maxk w(θ̂(k, n, α); k, n).

Lemma 2 ko ∈ {bks(n)c, dks(n)e}.
15See Section 5 for a brief overview of the Duggan-Martinelli model.
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Proof. Lemma A1 in the appendix establishes that

wx(x; k, n) =sign − (x+ (k− 1)Ey[x] + (n− k)En[x]) .

Since the expression, x+ (k− 1)Ey[x] + (n− k)En[x], is strictly increasing in x by (4); strictly

negative at x = θ; and strictly positive at x = θ, it follows that w(x; k, n) is strictly quasi-

concave in x, with an interior maximum. Given the (equilibrium) constraint, x = θ̂(k, n, α),

this maximum occurs when wx(θ̂(k, n, α), k, n) = 0, or equivalently when θ̂(k, .)+ ((k− 1)Ey[θ̂(k, .)]+

(n − k)En[θ̂(k, .)]) = 0. Together with (3) and α ∈ (0, 1), the optimal cut-off must be xo =

θ̂(k, .) = 0. This means that ko satisfies: 0+ (ko − 1)Ey[0] + (n− ko)En[0] = 0, whose unique

solution is ko = ks(n), as defined in (5). Since ks(n)may be noninteger, ko ∈ {bks(n)c, dks(n)e}.

Lemma 2 is best understood when ks(n) is integer so that sincere voting is feasible in

equilibrium. Recall from (2) that the planner cares only about individuals’ signals – not the

degree of interdependence among them – and signals are most informative about the project

under sincere voting. Therefore, it is welfare-maximizing to set ko = ks(n). When ks(n) is

noninteger, the planner chooses the rule that is close to engendering sincere voting.

In the absence of ex ante commitment, the planner can only set the majority rule that best

responds to individuals’ voting strategies; and in anticipation, individuals best respond to

this rule as well as to each other’s voting strategy. Let (k∗, θ∗) be an equilibrium of this game,

which, by definition, lies at the intersection of the players’ best responses:

k∗ = arg maxk w(θ∗; k, n), and θ∗ = θ̂(k∗, n, α). (9)

Given θ∗, note that the ex post welfare w(θ∗; m, n) is strictly increasing in the number of

“yes” votes, m, since Ey(θ∗) > En(θ∗), and that b(θ∗; m, n) > 0 since θ∗ ∈ (θ, θ). Thus, the ex

ante welfare w(θ∗; k, n) is maximized with respect to k by including all the terms w(θ∗; m, n),

which are nonnegative. Formally, w(θ∗; k∗, n) ≥ 0 and w(θ∗; k∗ − 1, n) < 0.16 In words,

without the commitment power, k∗ must be ex post optimal or time-consistent. Lemma 3

offers a necessary and sufficient condition for time-consistent rules.

Lemma 3 The majority rule k is time-consistent if and only if 0 ≤ ∆(k, n, α) < 1, where ∆(k, n, α) ≡
k− [1− F(θ̂(k, n, α))]× n.

16Though nongeneric and unimportant for the analysis, we assume that the project is accepted whenever the
planner is indifferent.

9



Proof. Recall that k is time-consistent if and only if w(θ∗; k, n) ≥ 0 and w(θ∗; k− 1, n) <

0. Using (7), w(θ∗; k, n) ≥ 0 if and only if k ≥ −En(θ∗)
Ey(θ∗)−En(θ∗)n. By (6), it then follows that

w(θ∗; k, n) ≥ 0 if and only if k ≥ [1− F(θ∗)] × n; or equivalently ∆(k, n, α) ≥ 0 given that

θ∗ = θ̂(k, n, α) in equilibrium. An exact argument reveals that w(θ∗; k− 1, n) < 0 if and only

if k− 1 < [1− F(θ∗)]× n, or equivalently ∆(k, n, α) < 1. Combining the two inequalities, we

reach the desired conclusion.

According to Lemma 3, a majority rule is time-consistent as long as the expected number

of approval votes it generates is not too different from itself. If the expected number of ap-

proval votes were much higher, then it would mean that members have adopted too lenient

a standard for approval and the rule needs to be more stringent to rectify this. If, on the

other hand, the expected number of approval votes were much lower, then the rule should be

relaxed. Time-consistency curbs both incentives.

Remark 2 By re-writing the condition in Lemma 3, we also find bounds on the equilibrium probability

of an approval vote: k∗
n −

1
n ≤ 1− F(θ∗) < k∗

n . In particular, for a relatively large committee, the

probability of an approval vote is approximately equal to the percentage majority rule itself.

In order to sharpen our characterization of time-consistent rules, we ensure that ∆(k, n, α)

is increasing in k by imposing a monotonicity condition on the truncated means.

Condition M. (Ey[x]− x) is decreasing in x, and (x− En[x]) is increasing in x.

Condition M is mild. Bagnoli and Bergstrom (2005) record that if signal distribution has

an increasing hazard rate, i.e., d
dθ

[
f (θ)

1−F(θ)

]
≥ 0, or equivalently if 1− F is log-concave, then

Ey[x]− x is decreasing in x. On the other hand, if d
dθ

[
f (θ)
F(θ)

]
≤ 0, or equivalently if F is log-

concave, then x − En[x] is increasing in x.17 Both hazard rate conditions are satisfied if the

signal density, f , is log-concave; and many well-known probability densities such as the uni-

form and Normal are log-concave, as listed by Bagnoli and Bergstrom.

Condition M also has a natural interpretation. Given the cutoff x, Ey[x] − x > 0 is the

net informational value of an approve vote. It is reasonable that such a vote will contain

less information as the cutoff rises. Similarly, x − En[x] > 0 is the net informational value

of a disapprove vote, and such a vote will convey less information as the cutoff diminishes.

Under Condition M, we present the main result of this paper.

17Bagnoli and Bergstrom note that in Industrial Engineering, (Ey[x]− x) corresponds to the mean-residual-
lifetime function, and (x− En[x]) corresponds to the mean-advantage-over-inferiors.
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Proposition 2 Suppose that Condition M holds. Then, given α and n, there exist unique (real) cutoffs

k(α, n) < k(α, n) such that k is time-consistent if and only if k(α, n) ≤ k < k(α, n). In addition,

k(α, n) < ks(n) < k(α, n); and

• k(α, n) is strictly decreasing in α; and limα→0 k(α, n) = [1− F(0)]× n and limα→1 k(α, n) =

0.

• k(α, n) is strictly increasing in α; and limα→0 k(α, n) = 1+[1− F(0)]×n and limα→1 k(α, n) =

1+ n.

Proof. Suppose that Condition M holds. Then, by Lemma A2 in the appendix, ∆(k, n, α)

is strictly increasing in k. Let k and k be the unique (real) solutions to ∆(k, n, α) = 0 and

∆(k, n, α) = 1, respectively. By Lemma 1, k is time-consistent if and only if k ≤ k < k.

Moreover, since, by definition, θ̂(ks, n, α) = 0 and ks = F(0) + (1 − F(0)) × n, we have

∆(ks, n, α) = F(0) ∈ (0, 1), which implies that k < ks < k.

To prove the comparative statics, we first observe that ∆α(.) = n × f (θ̂(.))× θ̂α(.) =sign

ks − k by Proposition 1. Given k < ks, ∆α(.) > 0 and therefore k must be strictly decreasing in

α to satisfy ∆(k, n, α) = 0. As α → 0, θ̂(.) → 0 and k → [1− F(0)]× n. As α → 1, eq.(3) and

∆(k, n, α) = 0 require that Ey[θ̂(k, n, 1)] = θ̂(k, n, 1), which in turn requires that θ̂(k, n, 1) = θ.

Hence, k → 0 as α → 1. As for k, it must be strictly increasing in α to satisfy ∆(k, n, α) = 1

because ks < k and thus ∆α(.) < 0. Then, similar arguments to k confirm the limits for k.

Two corollaries help understand Proposition 2.

Corollary 1 Suppose that ks(n) is an integer. Then, the ex ante optimal rule ko is time-consistent for

all α. Moreover, for some α ∈ (0, 1), ko is the unique time-consistent rule if and only if α < α.

Proof. The first part is immediate from Proposition 2. For the second part, note that

1 < ks(n) < n since n ≥ 2 and ks(n) is integer. Let α1 and α2 be the (unique) solutions to

k(α, n) = ks(n)− 1 and k(α, n) = ks(n) + 1, respectively. Evidently, α1 ∈ (0, 1) and α2 ∈ (0, 1).

Defining α = min{α1, α2}, the result obtains.

Corollary 1 is explained by the intimate relationship between the ex post welfare and the

pivotal voting incentive. The ex ante rule ko dictates that the project be rejected in the marginal

event of ko − 1 “yes” and n− ko + 1 “no” votes; and this is what the pivotal voting incentive

implies. Recall that ko = ks(n) induces sincere voting, which requires that, in the pivotal

event, each individual has a zero expectation of n− 1 signals with ko− 1 “yes” and n− ko “no”

11



votes. Thus, with an additional “no” vote, the ex post welfare must be strictly negative and

lead to the project’s rejection. This reasoning holds for any degree of interdependence, α. If

individuals possess pure private values, i.e. α = 0, so that sincere voting becomes a dominant

strategy, the ex ante rule ko emerges as the unique time-consistent rule. Corollary 1 indicates

that by continuity of voting strategies in α, this uniqueness remains true for sufficiently weak

interdependencies.

For a sufficiently strong interdependency, α ≥ α, there are multiple time-consistent rules.

In fact, since k(α, n) is strictly decreasing and k(α, n) is strictly increasing in α, Proposition 2

reveals that the set of time-consistent voting rules grows with the degree of interdependence,

covering all feasible rules as payoffs approach pure common values.

Corollary 2 If k is time-consistent under α1, then it is also time-consistent under α2 > α1. In the

limit, as α→ 1, any k ∈ {1, ..., n} is time-consistent.

Proof. The limit result follows because k(α, n)→ 0 and k(α, n)→ 1+ n, as α→ 1.

The intuition for Corollary 2 follows from Proposition 1: agents with stronger interdepen-

dencies are more likely to tailor their strategies to the majority rule; and as a result, they can

hold rational beliefs for a wider range of majority rules. This suggests that the commitment

problem is more severe in a committee that exhibits stronger interdependencies. Somewhat

ironically it is the most severe when members have pure common values. We illustrate Propo-

sition 2 by an example.

Example 1 Consider a committee of 5 members, who each independently draw a signal from a uniform

distribution on [−1, 1]. Trivial algebra reveals that k = 25(1−α)
10−9α and k = 35−29α

10−9α . The ex ante optimal

rule is ko = 3, which remains the unique time-consistent rule for α < 5
7 . For 5

7 ≤ α < 15
16 , only

k = 2, 3, 4, and for α ≥ 15
16 , all k = 1, ..., 5 are time-consistent.

Remark 3 If F is symmetric about θ = 0, then clearly ko =
⌊ n+1

2

⌋
,
⌈ n+1

2

⌉
, and it is time-consistent

for all α. If F is not symmetric, then due to rounding issues, I could not prove or disprove that the

time-consistency of ko is generic. Nonetheless, since k(α, n) < ks(n) < k(α, n), Corollary 2 implies

that for sufficiently large α’s, ko must be time-consistent.

• Large Committees

Our investigation can also inform us how time-consistent rules change with committee

size, n. To distill the scale effect, however, we look at the percentage rule, k∗(α,n)
n , and let

θ∗(α, n) = θ̂(k∗(α, n), n, α).

12



Proposition 3 As n→ ∞, we have θ∗(α, n)→ 0 and k∗(α,n)
n → 1− F(0).

Proof. From Lemma 3, note that 0 ≤ k∗(α,n)
n − [1− F(θ∗(α, n))] < 1

n . Let l(α) ≡ limn→∞
k∗(α,n)

n .

The Sandwich Theorem implies that l(α) = 1− F(θ∗(α, ∞)). To determine θ∗(α, ∞), we eval-

uate eq.(3) as n→ ∞:

(1− α)θ∗(α, ∞) + α{l(α)× Ey[θ∗(α, ∞)] + [1− l(α)]En[θ∗(α, ∞)]} = 0. (10)

Inserting l(α) = 1− F(θ∗(α, ∞)), the term inside the curly bracket reduces to E[θ] = 0,

revealing that θ∗(α, ∞) = 0. Hence, limn→∞
k∗(α,n)

n = 1− F(0).

Proposition 3 says that as committee size grows without bound, the strategic voting incen-

tive vanishes completely and the ex ante optimal voting rule becomes the only time-consistent

rule. The reason is that the correlation between agents’ valuations gets weaker in a larger

committee18 because, by the logic of the law of large numbers, each agent has a sharper esti-

mate of the average signal of others, which diminishes the need to infer it in equilibrium. It

is worth remarking that if the voting rule did not adjust in equilibrium, sincere voting need

not obtain in a large committee. For instance, if we exogenously set k(n)
n = µ 6= 1− F(0), it is

clear from (10) that θ∗ 9 0. Note also that because it is a limit result, Proposition 3 does not

rely on Condition M.

5 Robustness

In this section, we discuss the robustness of our key findings under a traditional Condorcet

Jury model and under nonlinear interdependencies.

5.1 The Condorcet Jury

As alluded to in the Introduction, following the Condorcet’s jury theorem, there is a volu-

minous literature on group decision-making in which voters share a common interest but

they receive differential information about an unknown state of the world. While the stan-

dard Condorcet setup is not directly captured by our model, we demonstrate here that our

key results continue to hold; in particular, as with pure common values, any majority rule k

becomes time-consistent for the Condorcet jury, too.

To make our point, we adopt the jury model of Duggan and Martinelli (2001), hereafter

DM, because they allow for continuous signals as we do. Specifically, the jury consists of

18It is readily verified that Cov(vi, vj) =
α(2−α)

n .
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n ≥ 2 members who each vote whether to convict, C, or acquit, A, a defendant. The defen-

dant’s unknown state of innocence, I, or guilt, G, occurs with probabilities P(I) and P(G).

Conditional on the state, each juror i receives an independent private signal, si ∈ (S, S), from

distributions, F(s|I) and F(s|G), with respective densities f (s|I) and f (s|G). The jurors si-

multaneously vote to convict or acquit. The defendant is convicted if the number of convict

votes is k or more, and acquitted otherwise. Jurors’ preferences satisfy: u(C|G) = u(A|I) = 0

while u(C|I) < 0 and u(A|G) < 0. As in DM, let the relative ex ante cost of acquittal be

ρ =
u(A|G)
u(C|I)

P(G)
P(I)

.

We keep DM’s regularity assumptions A1-A4 about signal distributions; in particular, the

likelihood ratio, f (s|I)
f (s|G) is strictly decreasing in s ∈ (S, S). That is, higher signals are more

indicative of guilt than innocence. DM prove that voting strategies are of cutoff types: convict

if s > si, and acquit if s < si. Focusing on symmetric (and responsive) equilibrium, DM show

that the unique equilibrium cutoff, s∗ = ŝ(k, n, ρ), solves(
1− F(s∗|I)
1− F(s∗|G)

)k−1 ( F(s∗|I)
F(s∗|G)

)n−k f (s∗|I)
f (s∗|G) − ρ = 0. (11)

Since F(s|G) ≤ F(s|I) by the monotone likelihood ratio, it is readily verified that ŝ(.) is

decreasing in k, which is in line with our Lemma 1.

Time-Consistency. With homogenous jurors, the social planner’s objective coincides with

a representative juror’s. As before, we say that a majority rule k is time-consistent if, given

the voting strategy, s∗ = ŝ(k, n, ρ), (a) the planner convicts the defendant after receiving m ≥
k convict votes, and (b) she acquits him otherwise. Formally, letting bl(s; m, n) = (n

m)(1 −
F(s|l))m(F(s|l))n−m, l = I, G, the requirement (a) amounts to:

P(I)× u(C|I)× bI(s∗; m, n) ≥ P(G)× u(A|G)× bG(s∗; m, n),

which, given that u(C|I) < 0, reduces to:(
1− F(s∗|I)
1− F(s∗|G)

)m ( F(s∗|I)
F(s∗|G)

)n−m

≤ ρ for m ≥ k. (12)

Since F(s|G) ≤ F(s|I), (12) is satisfied if and only if(
1− F(s∗|I)
1− F(s∗|G)

)k ( F(s∗|I)
F(s∗|G)

)n−k

≤ ρ. (13)
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Similarly, the requirement (b) can be written as

P(I)× u(C|I)× bI(s∗; k− 1, n) < P(G)× u(A|G)× bG(s∗; k− 1, n),

which is equivalent to

ρ <

(
1− F(s∗|I)
1− F(s∗|G)

)k−1 ( F(s∗|I)
F(s∗|G)

)n−k+1

. (14)

Using (11), the inequalities (13) and (14) reveal that k is time-consistent if and only if

1− F(s∗|I)
1− F(s∗|G) ≤

f (s∗|I)
f (s∗|G) <

F(s∗|I)
F(s∗|G) . (15)

As also recorded in DM’s Lemma 0, the monotone likelihood ratio implies (15), which

leads us to

Proposition 4 Any majority rule k is time-consistent in the Jury model, as examined by Duggan and

Martinelli (2001).

Similar to Corollary 1, Proposition 4 follows from the direct connection between the piv-

otal voting incentive and the planner’s marginal decision ex post.

5.2 Nonlinear Interdependence

We now discuss to what extent our results generalize to a nonlinear payoff environment. For

consistency, we keep the same signal structure. Let agent i’s payoff be given by:

vi = u(θi, θ−i),

where u is twice continuously differentiable and symmetric in its last n− 1 components. To

ensure positive interdependence, we assume that ∂
∂θ j

u(.) > 0 for all j. Moreover, we set

Eθ[u(θ)] = 0 to eliminate the status quo bias, and set u(0) = 0 to guarantee that sincere

voting means choosing a cutoff of 0 as before. Note that the case of pure common values

refers to u(θ) that is symmetric in θ.

Proposition 5 In the nonlinear environment described so far, there exists a unique symmetric equi-

librium, and it is interior, i.e., θ < θ̂(k, n) < θ. In addition, (1) θ̂(k+ 1, n, α) < θ̂(k, n, α); and (2)

any majority rule k is time-consistent under pure common values.
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Proof. The symmetric cutoff θ̂(k, n) constitutes an equilibrium if and only if it solves

u(x, k− 1, n) ≡ u(x, Ey[x], ..., Ey[x]︸ ︷︷ ︸
k−1 times

, En[x], ..., En[x]︸ ︷︷ ︸
n−k times

) = 0. (16)

Since u(0) = 0, Ey[θ] = 0 and En[θ] < 0, we have u(θ, k− 1, n) < 0. With a similar argument,

u(θ, k − 1, n) > 0. By continuity of u, these imply that there is an interior solution to (16).

Moreover, since ux(x, k − 1, n) > 0, the solution is unique. Next, note that since Ey[x] >

En[x], u(x, k− 1, n) is strictly increasing in k. Thus, to satisfy (16), θ̂(k, n) needs to be strictly

decreasing in k, as proposed. Finally, under pure common values, majority rule k is time-

consistent if and only if

u(Ey[θ∗], ..., Ey[θ∗]︸ ︷︷ ︸
k times

, En[θ∗], ..., En[θ∗]︸ ︷︷ ︸
n−k times

) ≥ 0 and u(Ey[θ∗], ..., Ey[θ∗]︸ ︷︷ ︸
k−1 times

, En[θ∗], ..., En[θ∗]︸ ︷︷ ︸
n−k+1 times

) < 0,

where θ∗ = θ̂(k, n). But, given the facts that Ey[θ∗] > θ∗ > En[θ∗] and the monotonicity of u,

these inequalities immediately follow from (16).

Proposition 5 generalizes previous observations from Lemma 1 and Proposition 1. Inter-

estingly, it does not require that agent i be biased toward his own information, i.e., ∂
∂θi

u(θi, θ−i) ≥
∂

∂θ j
u(θi, θ−i) for j 6= i. But this is the familiar “single-crossing” condition in mechanism de-

sign, which implies that the ex post valuations of different agents will be ordered as their

signals (Krishna, 2009; p. 102) and that a truth-telling equilibrium is possible. This condition

plays an important role in determining time-consistent rules: if it did not hold, then every

majority rule could be time-consistent without requiring pure common values.19 The intu-

ition parallels Proposition 2: agents who are biased toward their own information vote less

strategically which in turn shrinks the set of time-consistent rules.

6 Concluding Remarks

Our analysis suggests that preference interdependence worsens the committee’s ability to

commit to a majority rule by increasing incentives for strategic voting. This is precisely be-

cause agents with stronger interdependencies care more about others’ information, making

19To see this, suppose, to the contrary, that ∂
∂θi

u(θi, θ−i) ≤ ∂
∂θ j

u(θi, θ−i) for j 6= i. Note that a majority rule k

is time-consistent if and only if w(θ∗; k, n) ≡ ku(Ey [θ∗ ],k−1,n)+(n−k)u(En [θ∗ ],k,n)
n ≥ 0 and w(θ∗; k − 1, n) < 0 where

θ∗ = θ̂(k, n) and u(θ∗, k− 1, n) = 0. Since Ey[θ∗] > θ∗ > En[θ∗], we have u(En[θ∗], k, n) ≥ u(Ey[θ∗], k− 1, n) > 0
and thus w(θ∗; k, n) ≥ 0. In addition, we have u(Ey[θ∗], k − 2, n) ≤ u(En[θ∗], k − 1, n) < 0, which implies that
w(θ∗; k− 1, n) < 0.
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their votes more sensitive to the rule. Understanding the extent of the commitment problem

is valuable as it relates to the set of ex ante suboptimal aggregation rules that can emerge

in equilibrium. Perhaps ironically, the commitment problem is most pronounced for com-

mittees with pure common values and indeed, any majority rule is possible in equilibrium

in such committees. Our analysis also suggests that given the preferences, the commitment

problem can be alleviated by increasing the committee size.

In closing, we note two issues that were not addressed here. The first one is pre-voting

communication. Although many committee voting models assume away such communica-

tion, recent papers have pointed out its potential importance on voting outcomes (Coughlan

2000; Gerardi and Yariv 2007). While some communication between voters can and does oc-

cur in reality, like Persico (2004), we believe that certain institutional and physical barriers

may still render it to be imperfect. Nonetheless, it would interesting to enrich the present

model with this dimension and see how it affects the commitment problem. Second, we did

not allow for “asymmetric” interdependence among members. It is, however, conceivable

that members may have heterogenous levels of biases or they value others’ opinions differ-

ently. In fact, it could even be the planner’s choice how to best form the committee when such

biases are commonly known. These issues await future research.
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7 Appendix

Lemma A1 The ex ante welfare stated in (8) satisfies

wx(x; k, n) = −b(x; k− 1, n− 1)× f (x)× ((k− 1)Ey[x] + (n− k)En[x] + x) ,

where b(x; m, n) = (n
m)[1− F(x)]m[F(x)]n−m.

Proof. We do not assume here E[θ] = 0 to demonstrate that it is inessential. Letting

p ≡ 1− F(x), we write

w(x; k, n) ≡ φ(p, x, k, n) ≡
n

∑
i=k

(
n
i

)
pi(1− p)n−i

(
iEy[x] + (n− i)En[x]

n

)

=
n

∑
i=k

(
n
i

)
pi(1− p)n−i

 i
n

∫ θ
x θdF(θ)

p
+

n− i
n

∫ x
θ θdF(θ)

1− p

 .

Since i
n (

n
i ) = (

n−1
i−1),

n−i
n (

n
i ) = (

n−1
i ), and

n

∑
i=k

(
n− 1
i− 1

)
pi−1(1− p)n−i =

n−1

∑
i=k−1

(
n− 1

i

)
pi(1− p)n−1−i,

we have

φ(p, x, k, n) =
∫ θ

x θdF(θ)

[
n−1

∑
i=k−1

(
n− 1

i

)
pi(1− p)n−1−i

]
+
∫ x

θ θdF(θ)

[
n−1

∑
i=k

(
n− 1

i

)
pi(1− p)n−1−i

]

= E[θ]
n−1

∑
i=k

(
n− 1

i

)
pi(1− p)n−1−i +

∫ θ
x θdF(θ)

[(
n− 1
k− 1

)
pk−1(1− p)n−k

]
.

Next, observe that

∂

∂p

n−1

∑
i=k

(
n− 1

i

)
pi(1− p)n−1−i = (n− 1)

(
n− 2
k− 1

)
pk−1(1− p)n−1−k.

Thus,

wx(x; k, n) = φp(.)×
∂p
∂x
+ φx(.)

= − f (x)
[

E[θ](n− 1)
(

n− 2
k− 1

)
pk−1(1− p)n−1−k

+

(
n− 1
k− 1

)(
(k− 1)pk−2(1− p)n−k − (n− k)pk−1(1− p)n−1−k

) ∫ θ
x θdF(θ)

]
+

(
n− 1
k− 1

)
pk−1(1− p)n−k(−x f (x)).
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Inserting the facts:
∫ θ

x θdF(θ) = pEy[x] and pEy[x] + (1− p)En[x] = E[θ], it follows that

wx(x; k, n) = − f (x)
{

E[θ](n− 1)
(

n− 2
k− 1

)
pk−1(1− p)n−1−k

+

(
n− 1
k− 1

)
pk−1(1− p)n−k [(k− 1)Ey[x] + (n− k)En[x]]

−
(

n− 1
k− 1

)
pk−1(1− p)n−k(n− k)

E[θ]
1− p

+

(
n− 1
k− 1

)
pk−1(1− p)n−kx

}
.

Note that the first and the third terms inside the curly brackets on the r.h.s. cancel out, leaving

wx(x; k, n) = − f (x)
{(

n− 1
k− 1

)
pk−1(1− p)n−k [(k− 1)Ey[x] + (n− k)En[x]]

+

(
n− 1
k− 1

)
pk−1(1− p)n−kx

}
= − f (x)

(
n− 1
k− 1

)
pk−1(1− p)n−k {(k− 1)Ey[x] + (n− k)En[x] + x} .

Substituting back for p ≡ 1− F(x), the desired result for wx(x; k, n) is then obtained.

Lemma A2 Suppose that Condition M holds. If 0 ≤ ∆(k, n, α) < 1 and 0 ≤ ∆(k+ 1, n, α) < 1,

then ∆(k+ 1, n, α) > ∆(k, n, α), where ∆(k, n, α) ≡ k− [1− F(θ̂(k, n, α))]× n.

Proof. Suppose that Condition M holds so that (Ey[x]− x) is decreasing and (x− En[x]) is

increasing in x. Let θ0 = θ̂(k, n, α) and θ1 = θ̂(k+ 1, n, α). From Proposition 1, θ1 < θ0. Since

0 ≤ ∆(k, n, α) < 1, Lemma 2 implies that w(θ0; k, n) ≥ 0 and w(θ0; k − 1, n) < 0. Similarly,

w(θ1; k + 1, n) ≥ 0 and w(θ1; k, n) < 0. Next, as noted in the proof of Lemma 2, since [1−
F(θ̂(k, n, α))]× n = −En[θ̂(.)]

Ey[θ̂(.)]−En[θ̂(.)]
n, ∆(k, n, α) can be written: ∆(k, n, α) ≡ k+ En[θ̂(.)]

Ey[θ̂(.)]−En[θ̂(.)]
n;

and therefore

∆(k+ 1, n, α)− ∆(k, n, α) = k+ 1+
En[θ1]

Ey[θ1]− En[θ1]
n−

(
k+

En[θ0]

Ey[θ0]− En[θ0]
n
)

= 1+
w(θ1; k, n)

Ey[θ1]− En[θ1]
− w(θ0; k, n)

Ey[θ0]− En[θ0]
.

Adding and subtracting θ1 and θ0 in denominators, we find:

∆(k+ 1, n, α)− ∆(k, n, α) = 1+
w(θ1; k, n)

Ey[θ1]− θ1 + θ1 − En[θ1]
− w(θ0; k, n)

Ey[θ0]− θ0 + θ0 − En[θ0]

≥ 1+
w(θ1; k, n)

Ey[θ0]− θ0 + θ1 − En[θ1]
− w(θ0; k, n)

Ey[θ0]− θ0 + θ1 − En[θ1]
(A-1)

= 1+
1

Ey[θ0]− θ0 + θ1 − En[θ1]
[w(θ1; k, n)− w(θ0; k, n)], (A-2)
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where (A-1) follows because Ey[θ1]− θ1 ≥ Ey[θ0]− θ0 and w(θ1; k, n) < 0; and because θ1 −
En[θ1] ≤ θ0 − En[θ0] and w(θ0; k, n) ≥ 0.

To sign (A-2), we employ (3), which reveals that

(1− α)θ1 +
α

n
(θ1 − En[θ1]) + αw(θ1; k, n) = 0,

(1− α)θ0 +
α

n
(θ0 − Ey[θ0]) + αw(θ0; k, n) = 0.

Then, w(θ1; k, n) − w(θ0; k, n) = 1−α
α (θ0 − θ1) − 1

n (E
y[θ0]− θ0 + θ1 − En[θ1]). Inserting this

fact into (A-2), we conclude:

∆(k+ 1, n, α)− ∆(k, n, α) ≥ 1+
1−α

α (θ0 − θ1)

Ey[θ0]− θ0 + θ1 − En[θ1]
− 1

n
> 0.

20



References

[1] Ali, N. S., J. K. Goeree, N. Kartik, and T. R. Palfrey. “Information Aggregation in Standing

and Ad Hoc Committees." American Economic Review P & P, 2008, 98(2), 181-6.

[2] Austen-Smith, D., and J. S. Banks.“Information aggregation, rationality, and the Con-

dorcet Jury theorem.” American Political Science Review, 1996, 90 (1), 34–45.

[3] Bagnoli, M., and T. Bergstrom. “Log-concave probability and its applications.” Economic

Theory, 2005, 26(2), 445-69.

[4] Costinot, A., and N. Kartik. “On Optimal Voting Rules under Homogeneous Prefer-

ences.” 2007, working paper.

[5] Coughlan, P. J. “In Defense of Unanimous Jury Verdicts: Mistrials, Communication, and

Strategic Voting." American Political Science Review, 2000, 94 (2), 375-93.

[6] Dal Bo, E., “Committees with Supermajority Voting Yield Commitment with Flexibility.”

Journal of Public Economics, 2006, 90, 573–99.

[7] Duggan, J. and C. Martinelli. “A Bayesian model of voting in juries.” Games Economic

Behavior, 2001, 37, 259–94.

[8] Feddersen, T.J., and W. Pesendorfer. “Voting behavior and information aggregation in

elections with private information.” Econometrica, 1997, 65 (5), 1029–58.

[9] Feddersen, T.J., and W. Pesendorfer. “Convicting the innocent: The inferiority of unani-

mous jury verdicts under strategic voting.” American Political Science Review, 1998, 92 (1),

23–35.

[10] Gerardi, D., and L. Yariv. “Deliberative voting." Journal of Economic Theory, 2007, 134 (1),

317-38.

[11] Gerardi, D., and L. Yariv. “Information acquisition in committees." Games and Economic

Behavior, 2008, 62, 436-59.

[12] Gerling, K., H. P. Grüner, A. Kiel, and E. Schulte. “Information acquisition and decision

making in committees: A survey,” European Journal of Political Economy, 2005, 21, 563-97.

21



[13] Gersbach, H. “Information efficiency and majority decisions,” Social Choice and Welfare,

1995, 12 (4), 363–70.

[14] Gershkov A., and B. Szentes. “Optimal voting schemes with costly information acquisi-

tion,” Journal of Economic Theory, 2009, 144 (1), 36-68.

[15] Gruner, H. P., and A. Kiel. “Collective decisions with interdependent valuations.” Euro-

pean Economic Review, 2004, 48 (5), 1147-68.

[16] Jang, T. et al. “Physician Visits Prior to Treatment for Clinically Localized Prostate Can-

cer.” Archives of Internal Medicine, 2010,170(5), 440-450.

[17] Kessler, D., and M. B. McClellan. “Do Doctors Practice Defensive Medicine?” Quarterly

Journal of Economics, 1996, 111(2), 353-90.

[18] Krishna, Vijay. Auction theory. San Diego, CA: Academic Press, 2009.

[19] Li, H. “A theory of conservatism.” Journal of Political Economy, 2001, 109 (3), 617–36.

[20] Li, H., S. Rosen and W. Suen. “Conflicts and Common Interests in Committees.” American

Economic Review, 2001, 91, pp. 1478-97.

[21] Li, H., and W. Suen. “Viewpoint: Decision-Making in Committees.” Canadian Journal of

Economics, 2009, 42(2), 359-92.

[22] Moldovanu, B., and X. Shi. “Search Committees.” 2012, working paper.

[23] Morris, S. “The Common Prior Assumption in Economic Theory,” Economics and Philoso-

phy, 1995, 11, 227–253.

[24] Persico, N. “Committee design with endogenous information.” Review of Economic Stud-

ies, 2004, 71 (1), 165–94.

[25] Porter, M. and E Olmsted-Teisberg. “How Physicians Can Change the Future of Health

Care.” Journal of the American Medical Association, 2007, 297(10), 1103-11.

[26] Riboni, A., “Committees as Substitutes for Commitment.” International Economic Review,

2010, 51(1), 213-36.

[27] Schuetz B, Mann E and Everett W. “Educating Health Professionals Collaboratively for

Team-Based Primary Care.” Health Affairs, 2010, 29(8), 1476-80

22


