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CHAPTER 9

Models with self-selectivity

9.1 Introduction

There are many problems in which the data we have are generated by
individuals making choices of belonging to one group or another (i.e.,
by individual self-selection). An early discussion of this problem of self-
selectivity was that of Roy (1951), who discussed the problem of indi-
viduals choosing between two professions, hunting and fishing, based on
their productivity in each. The observed distribution of incomes of
hunters and fishermen was determined by these choices.

Suppose Y}; is the output of the ith individual in hunting and Y,; tlﬁ
output in fishing. Individual i/ will choose to be a hunter if ¥;;> Y;;. Out-
put here is defined in dollar terms. Assume that (Y;,Y;) have a joint
normal distribution, with means (u,, #;) and covariance matrix
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=Y —p, w=Y,—p, o =Var(y —u),
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The condition Y,>Y, implies u<Z. The mean income of hunters is
given by '
(Z)

E(Y,|u<Z) =M CuTg 7y
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258 9 Models with self-selectivity

where ¢, =Cov(u;,u) and ¢(-) and $(-) are, respectively, the density
function and the distribution function of the standard normal. The
mean income of fishermen is given by

#(Z)
E(Y,lu>2) = —_—— .
( 2|u ) #2+02M I—Q(Z) (92)
where 0,,=Cov(u,, u). Because
—g? 2_
o, = 279 g oy = 2012
g

we have 0,,—0,,>0. We can now consider different cases.
Case 1. 0,,<0, 05,>0. In this case the mean income of hunters is
greater than p; and the mean income of fishermen is greater than na;
that is, those who chose hunting are better than average hunters, and
those who chose fishing are better than average fishermen.

’Case 2. 01, <0, 0,,<0. In this case the mean income of hunters is greater

than g, and the mean income of fishermen is less than g,. In this case
those who chose hunting are better than average in both hunting and
fishing, but they are better in hunting than in fishing. Those who chose
fishing are below average in both hunting and fishing, but they are
better in fishing than in hunting.

\ ..
Case 3. ¢,,>0, 0,,>0. This is the reverse of case 2.

Case 4. 0,,>0, 0,,<0. This is not possible, given the definitions of Oy
and g,,.

Note that case 2 typically occurs if o, is very large compared with 0,.
Thus, the individuals with better skills go into the profession with higher
variance in earnings.

The more detailed analysis of this model can be found in the work of
Roy (1951). The important thing to note here is the importance of the
covariance terms oy, and g, in the interpretation of the results. We shall
see later how they play an important role in discussions of selectivity

bias.

The econometric discussion of the consequences of self-selectivity
began with the studies by Gronau (1974), Lewis (1974), and Heckman
(1974). In this case the problem is about women choosing to be in the
labor force or not. The observed distribution of wages is a truncated dis-
tribution. It is the distribution of wage offers truncated by reservation
wages. The Gronau-Lewis model consisted of two equations:
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WO = XB] + u]
er—_—XﬁZ-’- U, (9.3)

We observe W=W, if and only if W, 2 W,. Otherwise, W=0. We dis-
cussed the estimation of this model in Chapter 8, and we shall not repeat
it here. The term selectivity bias refers to the fact that if we estimate
equation (9.3) by OLS, based on the observations for whi;h we have
wages W, we get inconsistent estimates of the parameters. Note that

. 2
lu <I>(Z)

where Z=(XB,—XB;)/0 and the other terms are as defined earlier.
Hence, we can write (9.3) as

_, 82
lu @(Z)

where E(V) =0. A test for selectivity bias is a test for ¢, =0. Heckman
(1976b) suggested a two-stage estimation method for such models. First,
get consistent estimates for the parameters in Z by the probit method
applied to the dichotomous variable (in the labor force or not). Then
estimate equation (9.4) by OLS, using the estimated values Z for Z. This
two-stage method has been discussed in detail in Chapter 8.

The self-selectivity problem has more recently been analyzed in dif-
ferent contexts by several people. Lee and Trost (1978) applied it to the
problem of housing demand, with choices of owning and renting. Willis
and Rosen (1979) applied the model to the problem of education and
self-selection. These are all switching regression models. Griliches et al.
(1978) and Kenny et al. (1979) considered models with both selectivity
and simultaneity. These models are switching simultaneous-equations
models. As for mcthods of estimation, both two-stage and maximum-
likelihood methods have been used. For two-stage methods, the study by
Lee et al. (1980) gave the asymptotic covariance matrices when the selec-
tivity criterion was of the probit and tobit types (see Chapter 8).

In the literature on self-selectivity, a major concern has been with
testing for selectivity bias. These are tests for 0,,=0 and 0, =01in equa-
tions of the form (9.1) and (9.2). However, a more important issue con-
cerns the signs and magnitudes of these covariances, and often not much
attention is devoted to this. In actual practice, we ought to have
0y, — 01,> 0, but gy, and 0,3, can have any signs.! It is also important to

E(u | W, 2 W,) =

W= XB, +V (9.4)

! Trost (1981) discussed this point in reference to returns from college
education.
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estimate the mean values of the dependent variables for the alternative
choice. for instance, in the case of college education and income, we
should estimate the mean income of college graduates had they chosen
not to go to college and the mean income of non-coliege-graduates had
they chosen to go to college. In the example of hunting and fishing, we
should compute the mean income of hunters had they chosen to be
fishermen and the mean income of fishermen had they chosen to be
hunters. Such computations throw light on the effects of self-selection
and also reveal deficiencies in the model that are not revealed by simple
tests for the existence of selectivity bias. In the example concerning

hunting and fishing, the mean income of hunters, had they chosen

fishing, would be cor {

E(Y,|Y,>Y;) = E(Y,|u, > Z)
o (Z)

=Wpy — 02“—@(—2)-

and the mean income of fishermen, had they chosen hunting, would be

%(Z)
1-9(Z)

Also, if we denote by ¥; and Y, the actual mean incomes of hunters and
fishermen, then from (9.1) and (9.2) we have

W 3D 8(2)
“"$(2) M _9(2)

If o), and o,, are both negative, then Y;—Y, is an upward-biased
estimate of u;—pu,. If gy, and o,, are both positive, then ¥, - Y, is a
downward-biased estimate of p; — ;. If 0,, <0 and o,,> 0, the direction
of bias is not unambiguous.?

The foregoing discussion generalizes easily to models with explana-
tory variables. All we do is substitute p; =8{X; and p,=8;X, in all the
expressions.

E(Y,| Y, <Y)) =p + o0y,

CEY -V =p -y~

9.2 Self-selection and evaluation of programs

One major use of the self-selection models is in evaluating the benefits
of social programs. To evaluate the benefit from a program, a model
commonly employed is the following:

Y=XB+al+u 9.5)

2 Some illustrative examples are given by Maddala (19774). Because the
examples can be worked out easily, they will not be repeated here.
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where Y is the outecome (test score, earnings, etc.), X is a vector of
exogenous personal characteristics, and I is a dummy variable (/=1 if
the individual participates in the program; =0 otherwise). For this
model, the effect of the program is measured by the estimate of «.
However, the dummy variable I cannot be treated as exogenous if the
decision of an individual to participate or not participate in the program
is based on individual self-selection. If the variable 7 is endogenous,
equation (9.5) must be estimated by instrumental-variable techniques.

The foregoing model is very restrictive, because the program may
create interaction effects with observed or unobserved personal charac-
teristics; a more general model is the following:

Y= X;B; + uy; (for participants)
bi = XiB2 + uy;  (for nonparticipants)
"I = Z;y=¢; (participation decision function)

Ii - 1 lff 1“. > O

L=0 iff It <0
The observed y; is defined as

yi=yu iff Ii=1

Yi=yy iff ;=0

Cov(uy;, Uy, €;) = | 011 012 Oy

012 022 02
Ol 02 1
To evaluate the benefit of the program that has already been created, we
need to consider the total gross benefit for all the participants. For each
participant with characteristics X; and Z;, we can compare the outcome
yy; in the program and the expected potential outcome without the
program, that is, E(yy|l;=1). Under the normality assumption, the
gross benefit for participants i is
to d(Zy)
26 Q(Z )

The total benefit is the summation of (9.6) over all the participants.
Thus, to evaluate the success of a program from the cost- benefit point
of view, the conditional expectation of u,; for the partlclpants needs to

be evaluated. Note that, under self-selection, those individuals who have
a comparative advantage with the program_will be joining the program

and thus will benefit more. from it than would a randomly selected indi-
vidual with the same characteristics: The expected gross benefit for par-

ticipant i is

i— Eil L =1) = y;; — XiBy (9.6)
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o (Z;v)
@(Z,‘Y) P B

-

E(y| =) —E(yyu|fi=1) = Xi(B;—B8y) + (03— 0y) ;9.7
If self-selection is based on comparative advantage, a§ in 'ROT/’E example
on hunting and fishing in the preceding section, o,,— g, is greater than
zero.? Thus, the program will produce greater benefit under self-selection
than under a random assignment. The difference is measured by the
summation of the last term in (9.7) over all participants.

The preceding discussion assumes that there are only two groups of
individuals, one participating in the program (treatment group) and the
other not participating (control group), and the assignment of indi-
viduals to the two groups is by’ self-selection rather than by random
assignment. There can be other types of self-selection. Suppose that
there is a social experiment (say a time-of-day pricing experiment) for
which we draw a random sample. Some of the individuals in the sample
may not wish to participate. Among those who participate, the assign-
ment to the control or treatment group could be a random assignment.
In this case the self-selection is at the stage of entering an experiment.
What one will do is estimate an equation of the form (9.5) using the
method of the censored or truncated regression models described in
Chapter 6. What we have is a model of the form

I"=27Zvy—¢ (9.8)

The individual is in the experiment, and /=1 if and only if I*> 0. Other-
wise, the individual is not in the experiment. Also,

Y=XB+aD+u 9.9)

where D=1 if the individual is in the treatment group and D=0 if in the
control group. Because the assignment to the treatment and control
groups is random, D is an exogenous dummy variable. However, there is
censoring or truncation produced by (9.8). If data on Z are available on
all individuals, we shall estimate (9.9) as a censored regression model. If
data on Z are available only for the participants in the experiment, we
shall estimate equation (9.9) as a truncated regression model. If the
residuals € and u in equations (9.8) and (9.9) are independent, of course
we can estimate (9.9) by the OLS method. The important thing, how-
ever, is that D is exogenous, because individuals are randomly assigned
to the control and treatment groups.

What if there is self-selection at the stage of choosing whether or not
to participate in the experiment and also at the stage of choosing

3 See also the work of Lee (1979b) on self-selection and comparative
advantage.
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between the treatment and control groups. There is the question whether
we want to treat this as a trichotomous-choice model or a sequential self-
selection model. In the trichotomous-choice model, the individual has to
choose among three altenatives: to belong to the treatment group, to
belong to the control group, not to participate in the experiment at all.
In the sequential self-selection model, the individual first chooses
whether or not to participate in the experiment, and those who decide to
participate then decide whether to go into the treatment group or the
control group. Such selectivity models with polychotomous choices and
sequential choices will be discussed later in this chapter (section 9.4).

A third alternative is where the assignment of individuals to the con-
trol and treatment groups is made by the program administrator on the
basis of a screening variable that is itself correlated with X in equation
(9.9)." Goldberger (1972) analyzed this problem and pointed out that
there are some misconceptions about the biases in the estimates of treat-
ment effects in such cases. For example, suppose the selection procedure
is to put lower-ability students into the treatment group and higher-
ability students into the control group, as in the Head Start compensa-
tory educational programs. Because ability is not measurable, the pro-
gram administrator uses the pretest score, say Z (measured as deviations
from the mean). So the assignment is

D=1 if Z<0
D=0 otherwise 9.10)

After completion of the program, one looks at the posttest score Y. If Y
is then regressed on Z and D, that is

Y=8Z+ aD+ ¢ (9.11)

and the estimate of « is not significantly different from zero, it is often
argued that this is not really proof that the program is not working,
because the students assigned to the treatment group are students with
lower ability. What Goldberger pointed out is that the estimation of
equation (9.11) nevertheless produces an unbiased estimate of «, the
coefficient of D, or the treatment effect. The reasoning behind this fact
is that controlling for Z eliminates any correlation of D with the other
variables.

The formal argument runs as follows: Let us denote the unobserved
ability variable by X. Because it affects the posttest score Y, we have

Y=%vX+aD+¢ 9.12)
The pretest score Z also depends on ability. Hence,

Z=vX+ e (9.13)
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Suppose ability X is indeed measurable. Then, of course, estimation of
(9.12) by OLS will give inconsistent estimates of the parameters vy, and «
so long as €, and ¢, are correlated. But we also know the methods of
obtaining consistent estimates of the parameters in this case by correct-
ing for the selection bias. Consider now the case in which X is not
observed, but we know its determinants W, so that

X=0W+v

Substituting this in equations (9.12) and (9.13), we get equations of the
form

Y= 01W+ aD+ul (9.14)
Z=6,W+u 9.15)

Again, estimation of (9.14) by OLS gives inconsistent estimates of the
parameters if ¥, and u, are correlated, but again we know how to get
consistent estimates. The model is again a model with sample selectivity
that has been considered earlier. This is the case considered by Barnow
et al. (1981).

Consider, finally, the case in which all we have are equations (9.12)
and (9.13) and X is not observable; that is, we have pretest score, post-
test score, and the dummy variable D, which is itself determined by the
Spretest score. Eliminating X, we get

Y=L(Z—ez)+aD+el -
Y2
=~vZ+ aD + (¢ — ve3) (9.16)

where y=7,/v,. Now the question is what we can say about the estimate
of o when (9.16) is estimated by OLS. The answer, as shown by Gold-
berger (1972), is that Plima=a.

The preceding discussion referred to the program administrator’s
assignment of individuals to the treatment and control groups. In prac-
tice, in many programs with eligibility requirements and so on, we can
have the twin problems of individual decision whether or not to partici-
pate and the program administrator’s decision whether or not to choose.
This is a sequential-decision model with partial observability, and we
shall discuss it in a later section. There are two decision variables, /; and
I, and we observe the variable Y if and only if 1;>0 and 1,>0. In such
problems there is the further complication that the pool of applicants
may be only a self-selected subsample of all those who wish to partici-
pate, because many may not apply if they know that there is a long wait-
ing list. However, there is no easy way to deal with this problem of the
discouraged applicants. "

1
;
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Yet another complication is that of attrition of dropout of people
from the experiment. Some participants inevitably drop out of the
experiment before the treatment response is measured. One way of
modeling this phenomenon is as follows: Define

I'=2,vy—¢ b

A =Z5—

Yii= X8+ e .
Y,i=X3By+aT + ¢ 9.17)

where ‘
I;=1 and the individual participates in the experiment iff I} > 0
I, =0 otherwise )

-

\

A;=1 and the individual continues in the experiment iff A7 >0
A; =0 otherwise (the individual drops out)

If I;=0, neither Y}; nor Y,; is observed. If I;=1, A;=0, we observe only
Y,;. If =1, A;=1, we observe both Y); and Y,;.

An example of the estimation of this model is that of Venti and Wise
(1980). We shall discuss some limitations of such models later in the sec-
tion on multiple criteria of selectivity. :

In summary, in evaluating the effects of several social programs, we
must consider the selection and truncation that can occur at different
levels. We can depict the situation by a decision tree (Figure 9.1). In
practical situations, one must assume randomness at certain levels, or
else the model can get too unwieldy to be of any use. As to the level at
which selection and truncation bias needs to be introduced, this is a
question that depends on the nature of the problem. Further, in Figure
9.1 the individual’s decision to participate preceded the administrator’s
decision to select. This situation can be reversed, or the decisions can be
simultaneous. Problems of sequential versus joint selection will be dis-
cussed in section 9.6. Another problem is that caused by the existence of
multiple categories, such as no participation, partial participation, or
full participation, or different types of treatment. These cases fall in the
class of models with polychotomous choice and selectivity that will be
discussed in scction 9.5.

Finally, there is the problem of truncated samples. Very often we do
not have data on all the individuals, participants and nonparticipants. If
the data involve only participants in a program, but we know neverthe-
less that there is self-selection and we have data on the variables deter-
mining the participation decision function, then we can still correct for
selectivity bias, although the two-stage methods described in the pre-
vious chapters are not applicable. What we have is the model



266 9 Models with self-selectivity

Total sample

/N

Individual decision Individual decision
to participate not to participate in
experiment

Administrator’s Administrator’s decision
decision to sclect not to select

/N

Control group Treatment group
Drop out Continue Drop out Continue

Figure 9.1. Decision tree for evaluation of social experiments

Yu=XiB +uy
It =Ziy— ¢

As before,
IL=1 iff I >0
I, =0 otherwise

We are given only those observations for which /;=1, and for these we
observe y,;, X;, and Z;. The probit estimates of v cannot be obtained
because we do not have the observations corresponding to /;=0. Thus,
we cannot use the two-stage methods. But we can use the ML method to
correct for the selectivity bias. The model is different from the truncated
regression model considered in section 6.9 in that the truncation is now
based on an unobserved indicator I} rather than the variable y,;.
The likelihood function for the model is

L___I—I s_wf(ulnf,)dfl
i Prob(/l;=1)

where f(u,, €) is the joint density function of u, and e. If we assume that
u, and e are jointly normally distributed, with mean vector zero and
covariance matrix

L= [ ot poy ]
PO 1
then by writing f(u;,€) as fi(u;) - f2(e| u;), we can simplify the likeli-
hood function as

1 1
L= H [‘i)(zi')‘)]n1 eXp[— -~ (yli_Xiﬁl)Z:I
i (] 201
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[(Ziv—p(i—XiB)]/o
<o g

The first expression is Prob(f;=1). The second is f;(#;). The third is
Prob(e< Zv), derived from the conditional density f;(e| %;). Note that
Var(e) =1, by normalization. '

The problem of truncated samples can be handled in a similar manner
with the other problems of self-selection and hence will not be elaborated
here. The important thing to note is that although, theoretically, trunca-
tion does not change the identifiability of the parameters, there is never-
theless a loss of information. It is usually the case that even though we
are able to correct for the selectivity bias in the OLS estimates 8;, the
estimates of the parameters v in the selectivity criterion are not reliable.
Muthén and Joreskog (1981) reported the results of some simulated”
experiments they did with a simple selectivity model with truncated data
and censored data. They conducted two studies, one with a sample size
of 1,000 and the other with a sample size of 4,000. For each study they
considered two cases. In case 1 the proportion of observations with ;=1
was roughly 50%. In case 2 the proportion of observations with I;=1
was roughly 75%. The difference between the censored and truncated
samples was that in the case of the censored sample, data were assumed
to be available on the variable Z for all observations, whereas in the
truncated case, data were assumed to be available on only the subsample
for which 7;=1. In both cases, data on X; were assumed to be available
for only the subsample for which I;=1. Their finding was that even with
such large samples, in the truncated case it was not possible to get good
estimates of the parameters v in the selectivity criterion, although it was
possible to correct for selectivity bias in the 8 coefficients. Table 9.1
presents the results for the case in which N=1,000 and I;=1 for about
50% of the observations.

In summary, even if the available data are for subgroups and are thus
truncated samples, one can try to correct for the selectivity bias in the
OLS estimates by using the ML method described here, provided one
has a clear notion of what variables affect the selectivity criterion. How-
ever, one cannot expect to have good estimates for the parameters in the
selectivity criterion itself.

9.3 Selectivity bias with nonnormal distributions

In the preceding sections, and in the several examples in Chapter 8, we
discussed the selectivity-bias problem under the assumption that the dis-
turbances are normally distributed. We shall now consider methods of
relaxing this assumption.
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Table 9.1. Estimation of selectivity models from truncated and
censored samples (simulated data)

Population OLS Probit ML (truncated ML (censored

Parameter value estimates estimates sample) sample)

By 0.0 -0.373 -0.209 0.074
(0.054) 0.119) 0.179)

B, 1.0 0.788 0.931 1.033
(0.052) (0.095) (0.114)

o} 1.0 0.985 0.982 1.126
(0.065) (0.076) (0.131)

Yo 0.0 0.011 0.991 0.013
(0.046) (1.599) (0.046)
27 -1.0 -1.033 —3.448 —-1.040
(0.067) (4.542) (0.068)
p -0.5 —0.248 -0.522
(0.413) 0.164)

Note: Standard errors in parentheses. N=1,000 and /;=1 for 503 observations.

Source: Muthén and Joreskog (1981, Table 3).

Consider the simple two-equation model
Y=XB+u (9.18)
Y*=Zy—e¢ 9.19)
where X and Z are exogenous variables. Equation (9.19) is the selectivity
criterion. The dependent variable Y* is never observable, but it has a
dichotomous realization I that is related to Y* as follows:
I=1 iff Y*20
I=0 otherwise
The dependent variable Y; conditional on X and Z has a well-defined
marginal distribution, but Y, is not observed unless Y*>0. Thus, the
observed distribution of Y; is truncated.
Regarding the disturbances, we assume that
E(ul|X,Z2)=0, V(ulX,Z2) = o2, Cov(u,e|X,Z) = po,o0,
E(e|X,Z)=p,, and V(e|X,Z)=o?
In all the examples in the preceding section, as well as in Chapter 8, we
assumed g, =0 and o, =1. But here we shall not make that assumption as

yet. Following Olsen (19804), we also assume that the conditional expec-
tation of u, given e, is linear, so that
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U= p:" (e—p)+v (9.20)

€

and E(v|e) =0 and Var(v|e) =o2(1—p?).
Consider now the censored sample of Y;. From (9.20) we get

E(Y,|I=1) = X8 + E(ule<Zy) = XB+ 2 [g(Zy)~n]  ©9:21)
where g(Zv) is the truncated mean E(e|e<Zy). Also,
2 2

V(Y| I=1) = "0‘;“ Viele< Zy) + 02(1—p?) 9.22)

€

In the usual selectivity model we have been discussing, p,=0 and
o.=1. Further, ¢ is assumed to be normal, so that

_ 9(Zv)
®(Zv)

and V(e|e<Zy)=1—NZy—N\). Hence, equations (9.21) and (9.22)
become
E(Y,|I=1) = XB+ po, N (9.24)
V(Y | I=1) = o[1-p*NZy—N)] 9.25)

Note that in the derivation of (9.24) and (9.25) we have not made any
assumption about the distribution of . The only assumptions made are
that e is normal and that the conditional expectation of u, given e, is
linear, as given in equation (9.20). If u and e are bivariate normal, this
condition follows automatically.

One question we might ask is how well the expression A, defined in
(9.23) under the assumption of normality, approximates the true trun-
cated mean g(Zvy) if e is not normal. Goldberger (1980a) made some
calculations with alternative error distributions and showed that the
normal selection-bias adjustment is quite sensitive to departures fgom
normality. This suggests that one should use a more general functiénal
form for the truncated mean function in practice.

Before we move on to the generalized functional forms, we should
note two points about the selectivity-bias adjustment:

1. One problem that has often been pointed out is that if Z includes
some variables in X (or variables highly correlated with those in X),
then given that the function g(Zv) is a nonlinear function of Z, it is
likely to pick up any nonlinear terms omitted in equation (9.18), and the
variable g(Zv) could be significant, thus indicating the presence of
selection bias, even when there is no selection bias. The solution to this
problem is to include nonlinear terms in (9.18), if that does indeed make

g(Zv) = =\ (say) (9.23)
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economic sense, and then examine whether or not the variable g(Zv) is
significant.

2. Another problem occurs when (Zv) is constant. In this case the
two-stage method described in Chapter 8 breaks down if there is a con-
stant term in (9.18), because g(Zvy) is constant for all observations.*
However, the ML estimator does exist if we make the assumption that u
and e are jointly normally distributed, and thus one can test for the
presence of selectivity bias.

Returning to the question of nonnormal distributions, Olsen (1982a)
suggested that the distribution of € in (9.19) be assumed to be generated
from a bivariate normal (e, v), with v truncated so that v< KX, a given
constant. (Here v is another variate introduced to produce nonnormal-
ity.) By varying K, we get a variety of skewed distributions. Specifically,
what he suggested is to consider the distribution of (u,e,v) to be tri-
variate normal, with correlation matrix

1 p )
ol p1P2
p2 pipy 1

The extent and direction of selection are governed by p;. The parameters
p, and K allow for nonnormality. The model falis in the category of
multiple criteria of selectivity, because what it implies is that Y; is
observed if and only if e<Zvy and v< K. We shall be discussing these
models in the next section. Because K is a constant, we have to use the
ML method of estimation, and thus will involve evaluation of double
integrals.

In another study, Olsen (1980a) suggested the use of uniform distri-
bution for e in the range (0, 1). In this case, E(e¢) =1/2, and v(e) =1/12.
Hence, using equation (9.20), we get

E(ule< Zvy) =E[—‘—’1“—<e— i)
P 2

€

e<Zy]

_poy (Zy 1) _ V2 g
- & <2 2>-pau(3) (Zy - 1)
Thus,

E(Y,[I=1) = XB + po,(3)"2(Zy—1) (9.26)

4 There are some cases that the two-stage method would break down
when Z is a combination of dichotomous variables (not just the case in
which Zv is a constant).
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Also,

V(Y [ I=1) = o2(1-p?) + p20i(ZY)? 9-27)

Given this specification of ¢, the preliminary consistent estimates of Zy
can be obtained from the linear probability model, and then the model
derived from equation (9.26) that is estimated by ordinary least squares
after substituting Z¥ for Zvy is

YI=XB8+a(Z¥—-1)+ v
where

o= po,(3)'"?
and

v=—aZ(y—v)+n

Olsen derived the asymptotic covariance matrix for these two-stage esti-
mates of 8 and «a.

One important distinction between the corrections for selectivity bias
based on the linear probability model and the probit model is that in the
probit model the function g(Zv) in (9.23) is a nonlinear function of Z,
whereas in the linear probability model it is a linear function of Z.
Hence, for the selectivity-bias adjustment when the probit model is used,
we can have Z contain the same variables as in X and not cause any
problems of identification, but when we use the linear probability model
we cannot have the same variables as in X. If we believe that the same
variables are important in both equations (9.18) and (9.19), we have to
use nonlinear functions of these variables in Z. On the other hand, if X
contains nonlinear functions of these variables, we shall have some
problems of identification even if the probit method is used. Thus, in a
practical sense, problems of identification will arise even if the probit
model is used for the selectivity-bias adjustment. In the empirical illus-
tration that Olsen (1980a) used, the two models (probit and linear prob-
ability) gave similar results.

Finally, there are the implications about the distributions of ¥ and € in
equations (9.18) and (9.19). Assuming ¢ to be uniform, and assuming
that the conditional expectation of u, given e, is linear in ¢, implies some
outrageous assumptions about the distribution of u. If u is assumed to
be a convolution of a uniform density and a normal density, the distri-
bution of u will be symmetric, but with a broader peak and narrower
tails. If |p| <0.5, this distribution does not differ much from the normal,
and in the extreme case |p|=1 the distribution is uniform, which is a
very unlikely distribution for a regression model.
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9.4 Some general transformations to normality

In the preceding section we considered some particular alternatives to
the probit method of correcting for selectivity bias. We shall now discuss
some general transformations to normality suggested by Lee (1982c,
in press).

Consider the model given in equations (9.18) and (9.19). Let G(u)
and F(e) be the distribution functions of u and e. Let ®(-) be the distri-
bution function of the standard normal, and let B(-, -;p) be the bivar-
iate normal distribution, with zero means, unit variances, and correla-
tion coefficient p. Because the distributions of e and u are specified, each

of them can be transformed to a standard normal random variable
N(0,1). Let

e* =Jy(e) = I [F(e)] (9.28)
u* = J(u) = & '[G(u)) (9.29)

Then €* and u* have N(0,1) distributions. The transformations J, and
J, involve the inverse of the standard normal distribution function.
Computationally simple and accurate methods involving the use of
approximation functions for this can be found in Appendix IIC of Bock
and Jones (1968) and in the work of Hildebrand (1956). Errors of
approximation for these methods are less than 3 x 104,

A bivariate distribution having the marginal distributions F(e) and
G (u) can be specified as

H(e,u;p) = B[Jy(e),J5(u); p] (9.30)

If f(e) and g(u) are the marginal density functions of e and wu, respec-
tively, then the joint density function of e and u corresponding to the
distribution function (9.30) is

h(e,u;p) = (1—p2)~V2f(e)g(u)
X exp(—p[2(1—p*) ]~ {p[J}(€) + JZ(u)] —2J1(e) o (u)})
9.31)

When the marginal distributions of u and € are normally distributed, the
foregoing bivariate distribution will be a bivariate normal distribution.

With this specification, one can easily derive the likelihood function
for the censored regression model in (9.18) and (9.19). Let us denote the
observations on Y| for I=1 by Y. Then, for this group, we have e< Z~y
and u=Y - X3. But

Zy 2
S h(e, Y—XB) = m H(e,u;p)
by S
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_ B[ J,(€), J3(u); pl . g(u)

= 9.32
8J,(u) olJ2(u)] u=Y-X8 ¢ )
e=2y
where ¢(-) is the standard normal density function. Because
dB(t,s50) 1 <I>< t—ps )
ds ¢(s)  \ (1—pH)?
the expression in (9.32) simplifies to
JZ(y) —pJ,(Y—XPB)
@( 1 ‘Y(l—pi)l/z > 'g(Y‘—XB) (9'33)

The log-likelihood function can therefore be written as
IOgL(B’ Y 01,02,[))

N
=Y {Ii logg(Y;—X;B) + Iilog‘l’(
i=1

Ji(Ziv) — ol (Y1, — X;B)
(1_p2)1/2

-~

+(1-1) log[l—F(Zi'y)]} 9.34)

where 8, and 6, are the unknown parameters in F(e) and G(u), respec-
tively. The maximum-likelihood method can be applied to this likelihood
function.

One can also use two-stage estimation methods to obtain initial con-
sistent estimates. Specifically, assume that u are N(0, ¢%), whereas the
distribution of ¢ is arbitrary. In this case, J,(u)=u/0, and g(u) =
(1/0)¢(u/o). For the ML estimation, we make these substitutions in
(9.34). For two-stage estimation, note that

I=16e<Zy

Also, Prob(I=1)=®[J,(Zy)]=F(Zv). The usual methods of two-
stage estimation (discussed in Chapter 8) apply by substituting J,(Zy)
for Zy. Thus, conditional on I=1, we can write

Y= X8 = ap¢[J\(Z¥)]/F(Zv) + 7 (9.36)
where E(n|I=1,X,Z) =0 and
Var(n|I=1,X,2Z) = 02— (0p)*{J(Zv) + ¢[J,(Z¥)]/F(Z~))
x ¢[J,(Zv)]/F(Zv)

We have substituted F(Zvy) for ®[J;(Zv)]. In the two-stage method, we
first estimate -y by maximizing the likelihood function

N
log Ly (v) = gl ;log F(Z;v) + (1—-1;) log[1-F(Z;v)]}
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Let 4 be the ML estimate of y. We then substitute ¥ for v in (9.36) and
estimate the equation by ordinary least squares. The asymptotic covari-
ance matrix of the two-stage estimates are the same as those presented in
Chapter 8, with J,(Zv) replacing Zvy throughout. Because this can be
derived easily, it will not be presented here.

If ¢ follows the normal distribution, then we have the usual probit
method of correction for selectivity bias. If F(e) is the logistic distri-
bution, then we have the logit method of correction for selectivity bias.
In this case the estimation of (9.36) gives us the logit two-stage esti-
mates. The methods that can be used to estimate (9.36) are thus very
general. However, as explained in the preceding section, the two-stage
estimation method does not depend on the assumption of normality of
u. The only assumption needed is linearity of the conditional-expectation
function, as in equation (9.20). A general class of dependence models
suggested by Lee (1982¢) that can be used in connection with equations
(9.21) and (9.22) is the following: Let J be a specified strictly increasing
transformation, so that

e< Zy e J(e) <J(Zy)
Also let

ny = D[J(€)]
o} = VIJ(e)]

A general specification for the distribution of u is
u=MNJ(e) — p;] +v

where v and J(e) are independent. If A=0, then ¢ and u will be uncor-
related. If we write

M, = E{J(e) | J(e) < J(Zv)]
M, =E[J*(e) | J(e) < J(Zy)]

then equations (9.21) and (9.22) can be written as

PO, Ml )
Y=X8+ —_ - + 9.37
B o (F(Z'y) py)+m (9.37)

where

EM|X,Z,I=1)=0

pzas l M2 < 1“1 >2‘ 2 2
y n X,Z,I=1)= - + —
( | s &y ) 2 F(Z ) F(Z ) Ou(l P )

The transformation to normality given by equation (9.28) is one con-
venient candidate for J. The equation (9.37) is more general and can be
used if some other transformations are considered.
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The foregoing discussion shows that correction for selectivity bias
and estimation of models with selectivity can be done with very general
error distributions. The additional computational burden involved is
that of computing the transformations in (9.28) and (9.29).

9.5 Polychotomous-choice models and selectivity bias

Throughout the preceding discussion we considered the case of two
choices and a potential regression equation in each category. We shall
now consider generalizations of this to multiple choices. An illustration
of the multiple-choice problem was provided by Hay (1980). The example
considered by Hay involved simultaneous estimation of specialty choice
and specialty income for physicians. He considered a model with three
alternatives: GP (general or family practice), IM (internal medicine),
and OT (all other specialties).

There are two approaches to the analysis of polychotomous-choice
models with mixed continuous and discrete data.® The first approach.is
to formulate them as models with multiple binary-choice rules\;kd
partial observations. The second approach depends on order statistics
for polychotomous-choice models. We shall now elaborate both these
approaches.

Consider the following polychotomous-choice model, with M
categories and one potential regression outcome in each category:

ysi=xs,'Bs+us,- (S=l,2,-..,M)

IS‘-i:zsi’y‘.-nsi (i=ls2""1N)
The subscript i refers to the ith observation; x; and 2, are exogenous
variables; E(u,|Xx;,z;) =0; y, is observed only if the sth category is
chosen. Let I be a polychotomous variable with values 1 to M and I=sif
the sth category is chosen.
I=s iff zpy—z;y>n—ny forall j=1,2,...,.M (j#s) (9.38)

This formulation relates the polychotomous-choice model as a model

with M~ 1 binary-decision rules (9.38) with partial observations. This is

the approach followed by Hay (1980) and Dubin and McFadden (1980).
In the second formulation we write

I=s iff I >MaxI} (j=1,2,...,M, j#s) (9.39)
Let

es=MaxI' —n, (j=1,2,...,M, j#s) (9.40)
It follows that

5 The subsequent discussion here is based on the work of Lee (1982c¢).
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I=s iff ¢ <z;y (9.41)

This second approach leads to tractable results if the distribution func-
tion of ¢ can be specified. For example, suppose that n; (j=1,2,..., M)
are independently and identically distributed, with the type 1 extreme-
value distribution with cumulative distribution function.

F(n; < ¢) = exp[—exp(—c)]

Then, as shown in section 3.1, or as shown by Domencich and
McFadden (1975),

exp(z7)

Prob(e; < z,v) = Prob(I =) =
(€5 sY) ( ) L, exp(z;7)
Thus, the distribution function of ¢, is given by

F(€) = Prob(e; < ¢) = exp(e)

(9.42)

.....

Thus, what we have is that for each choice s we now have the model
Vs = X85 + U

where y; is observed if and only if e;<z;y. The distribution function of
¢, is given by (9.42). The estimation is now exactly the same as in the
binary-choice model discussed in the preceding section. We consider a
transformation as in (9.28):

6;= Js(e) = Q‘I[Fs(f)]

The condition ¢, <z;y © €;<Js(2sv), and we estimate a model like (9.36)
by the two-stage method. We estimate the equation

Vs = X85 — 050505 (271 / Fs(257) + vs (9.43)

by ordinary least squares after substituting 4 for v; o= Var(u,), and p,
is the correlation coefficient betweefi u; and ¢;. |

The only difference between this estimation of the polychotomous-
choice model and the estimation of the binary-choice model considered
in the preceding section is that the preliminary estimate of v is obtained
by the conditional logit model (described in Chapter 3).

Returning to the first approach, as followed by Hay (1980) and given
by equation (9.38), let us define

wg;=n;— 1, and - f;=z;v¥ — 2z (9.44)

so that the condition (9.38) becomes w; <f,;. If we assume, as before,
that 9; are independently and identically distributed, with the type I




9.5 Polychotomous-choice models 277

extreme-value distribution, then the M~ 1 random variables wg; will have
the multivariate logistic distribution of Gumbel (1961). The joint distri-
butien is®

F(ws]vwst--yws_s_hws's,,.],...,wsm)

-1
= [1 + )) exp(—wsj)] (9.45)
J=1.2,...m
j#s
If I'=(1,1,...,1) is an M—1 vector with all 1’s, the covariance matrix
~of the M—1 variables wy; is
2
T
L,=—U+1I
w= g ( )

Consider now the two-stage estimation method. For simplicity of
notation, let us consider choice 1. We have the equations

I =x6,+ u

and y, is observed if and only if w;;<ty; (j=2,3,...,M), where wy;
follow the distribution (9.45). Denoting the vector (w;y,w;3,. - oo titig)’
by w; we next write, as in section 9.3,

uy = Cov(uy, wy)[Var(w)] ey —E(w))] + v,
M
= .EZ Njwij + vy (9.46)
!=

where E(v, | w;) =0 and E(w,;) =0. Hence,

M
E(y|w;<ty)=x8 + _Ez)\jE(“’ljlwlk < tix)
j=
(Jj=2,3,.... M, k=2,3,...,. M) 9.47)

Once we evaluate the conditional expectation in (9.47), we can use the
equation for two-stage estimation. For this, we use the following result:’
If v, v,,..., v, have a multivariate logistic distribution

J -1

F(Ul,vz,...,vj)=<l+ Ze_"!) (9.48)
j=1

then

¢ Further details of this distribution can be found in Chapter 42 of
Johnson and Kotz (1972).

7 See the study by Lee (1982¢), where E(v), E(v?), and E(v;v;) are
presented. The variance and covariance terms are needed for deriving
the correct asymptotic covariance matrices of the two-stage estimates.
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E(v|vy<x,v,<Xy,...,0;<Xy)
= [I - e'X'F(xl,xz,...,XJ)]_l
X [log F(x,%,...,%;) — xe MF(x;,X3,...,X)] (9.49)

Thus, (9.47) can be written as
E(y | w<ty)) = x84
+ %’:2 )\j[l_eytuF(’l)]_l[IOgF(tl)_tlje—’ljF(tl)]
" (/j=2,3,....M) (9.50)

where F(1))=F(t}3,43,..-,ipr) and F(-) is the multivariate logistic
distribution (9.48). Note that f;; are functions of z;y. Thus, we first esti-
mate v using the conditional logit model. We substitute the estimate 4 of

~ydn ¢y, calculate the values of the variables with coefficients \; in (9.50),

and estimate this equation by ordinary least squares to get estimates of
By and N\; (j=2,3,...,N). This procedure is repeated for each of the
variables y, (s=1,2,...,M).

The expressions for the asymptotic covariance matrices of the two-
stage estimates are very complicated and will not be presented here.?
Clearly, this approach is more cumbersome than the alternative approach
based on equations (9.41) through (9.43).

9.6 Multiple criteria for selectivity

There are several practical instances in which selectivity can be due to
several sources, rather than just one, as considered in the examples in
the preceding section. Griliches et al. (1978) cited several problems with
the NLS data on young men that could lead to selectivity bias. Prominent
among these are attrition and other missing-data problems. In such cases
we need to formulate the model as a switching regression model or a
switching simultaneous-equations model, where the switch depends on
more than one criterion function. One such example is that by Abowd
and Farber (1982), who considered the union-and-wages example of Lee
(1978). The model consists of a union-wage equation (Y;) and a
nonunion-wage equation (Y;). There are two decision functions: the
decision of individuals to join a queue for union jobs (/7) and the deci-

8 Dubin and McFadden (1980) derived the covariance matrix for the case
of M alternatives and corrected some slips in Hay’s (1980) calculation.
Lee (1982¢) gave expressions for the second moments of the truncated
multivariate logistic distribution.
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sion of employers to draw individuals from the queue (/7). The specifi-
cation of the model is

Yi=X8 + y 9.51)
Y, = X,8, + u, 9.52)
It =2,v,— ¢ (9.53)
B=2Zv;- e 9.54)

If I >0, the individual decides to join the queue for union jobs. If I} >0,
the individual is chosen from the queue for a union job. Here we observe
Y, only if I} >0 and I3 >0. In this example, the set I} <0 and I} > 0 will
be empty.

When we talk of multiple criteria for selectivity, we should distinguish
two cases: the joint case and the sequential case. In the joint-decision
model, (9.53) and (9.54) are defined over the entire set of observations.
In the sequential-decision model, (9.54) is defined over only the subset
of observations for which I > 0. In this example, the choice of dra\ﬁng
from the queue arises only for those who are in the queue.

We also have to consider whether the choices are completely observed
or partially observed. Define the indicator variables

L=1 iff It >0
I, =0 otherwise
L=1 iff >0
I, =0 otherwise

The question is whether we observe I, and I, separately or only as a
single indicator variable /=1,1,. The latter is the case with the example
of Abowd and Farber. Poirier (1980) also considered a bivariate probit
model with partial observability, but his model was a joint model, not a
sequential model as in the example of Abowd and Farber. An example
of a joint model is that of estimating the probability that an on-the-job
trainee will be retained by the sponsoring agency after training. In this
situation the employer must decide whether or not to make a job offer,
and the applicant must decide whether or not to seek a job offer. We do
not observe these individual decisions. What we observe is whether or
not the trainee continues to work after training. If either the employer or
the employee makes his decision first, then the model will be a sequential
model.

Tunali et al. (1980) also considered a sequential-decision model, given
by (9.51), (9.53), and (5.54). Here, y, is observed only if /; =1 and I, =1.
However, in their model, both 1, and 7, are observed. Their example was
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one of labor-force participation by women in Managua, Nicaragua. Of
the 1,247 women in the sample, only 579 were labor-force participants.
Of these, only 525 reported earnings. The first decision is whether or not
to participate in the labor force, and the second decision is whether or
not to report earnings.

In the joint-decision model with partial observability (i.e., where we
observe /=1, - I, only, not I, and 1, individually), the parameters -, and
v, in equations (9.53) and (9.54) are estimable only if there is at least one
nonoverlapping variable in either one of Z, and Z,. Because V(e,) =
V(e;) =1, by normalization, let us define Cov(e, ;) =p. Also, write

Prob(lf >O, I; >0) = Prob(fl <Zl'yl,62<2272)
=F(Z,v1,2372,0)

Then the ML estimates of v, y, and p are obtained by maximizing the
likelihood function

L= I_I_IIF(ZI'YlyZZ'Yz:P) . II_IO[I—F(ZIM,Zz'Yz,P)] (9.55)

With the assumption of bivariate normality of ¢, and ¢,, this involves
the use of bivariate probit analysis.

In the sequential-decision model with partial observability, if we
assume that the function (9.54) is defined only on the subpopulation
I, =1, then, because the distribution of e, that is assumed is considered
on ¢; <Z,v,, the likelihood function to be maximized will be

L= ,_H1 [2(Z,7)#(Z,7,)] - T1 [1-8(Z,7)(Z,7,)] (9.56)

Again, the parameters y, and vy, are estimable only if there is at least one
nonoverlapping variable in either one of Z; and Z, (otherwise, we would
not know which estimates refer to vy, and which refer to v,). In their
example on job queues and union status of workers, Abowd and Farber
(1982) obtained their parameter estimates using the likelihood function
(9.56). One can, perhaps, argue that even in the sequential model the
appropriate likelihood function is still (9.55), not (9.56). It is possible
that there are persons who do not join the queue (f; =0) but to whom
employers would want to offer union jobs. The reason we do not observe
these individuals in union jobs is because they decided not to join the
queue. But we also do not observe in the union jobs all those with I, =0.
Thus, we can argue that I} exists and is, in principle, defined even for
the observations I; =0. If the purpose of the analysis is to examine what
factors influence an employer’s choice of employees for union jobs, then




9.6 Multiple criteria for selectivity 281

possibly the parameter estimates should be obtained from (9.55). The
difference between the two models is in the definition of the distribution
of €;. In the case of (9.55), the distribution of ¢, is defined over the
whole population. In the case of (9.56), it is defined over the subpopula-
tion I; =1. The latter allows us to make only conditional inferences.’ The
former allows us to make both conditional and marginal inferences. To
make marginal inferences, we need estimates of v,. To make conditional
inferences, we consider the conditional distribution f(e;| ¢, <Z;7,),
which involves v, v,, and p. We shall discuss this issue of marginal
versus conditional inferences in the next section.

Yet another type of partial observability arises in the case of trun-
cated samples discussed earlier in section 9.2. An example is that of
measuring discrimination in loan markets. Let I} refer to the decision of
an individual whether or not to apply for a loan, and let I} refer to the
decision of the bank whether or not to grant the loan.

I, =1 if the individual applies for a loan ‘
I, =0 otherwise '
I, =1 if the applicant is given a loan /

I, =0 otherwise

Rarely do we have data on the individuals for whom 7; =0. Thus, what
we have is a truncated sample. We can, of course, specify the distri-
bution of I3 only for the subset of observations I, =1 and estimate the
parameters <y, by, say, the probit ML method and then examine the sig-
nificance of the coefficients of race, sex, age, and so forth to see if there
is discrimination by any of these variables. This does not, however, allow
for self-selection at the application stage, say for some individuals not
applying because they feel they will be discriminated against. For this
purpose, we define I3 over the whole population and analyze the model
from the truncated sample. The argument is that, in principle, I3 exists
even for the nonapplicants. The parameters v,, v;, and p can be esti-
mated by maximizing the likelihood function

L=1I F(Z,v1,2372,0) ®(Zv1) = F(Zv1, 2372, 0)
et ®(Z,v,) L=0 ®(Z,711)

In this model, the parameters vy, v;, and p are, in principle, estimable

9.57)

9 The conditional model does not permit us to allow for the fact that
changes in Z, also might affect the probability of being in the queue.
Also, the decision whether or not to join the queue can be influenced by
the perception of the probability of being drawn from the queue.
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even if Z, and Z, are the same variables. In practice, however, the esti-
mates are not likely to be very good.™

Fishe et al. (1981) considered a two-decision model, but it is a model
of joint decisions, and with both I; and I, observed. The model is one
that determines wages of young women, some of whom have college
education and some of whom do not. The two decision equations (9.53)
and (9.54) refer to the decisions whether or not to go to college and
whether or not to join the labor force.

The analysis of the model in equations (9.51) and (9.54) will depend
crucially on whether the two decisions are independent or correlated,
that is, whether or not Cov(e;, €;)=0. In the case Cov(e,€;) =0, we
can easily extend the Heckman-Lee two-stage estimation methods to this
model. We define

)\,’j=COV(ui,€j) (i=1,2, j=1,2)
Then,

o (Z,vy) - &(Z>7,)
(Z,v)) 2 (Z,7,)

Thus, we get preliminary consistent estimates of v, and v, by estimating
equations (9.53) and (9.54) by the probit method. Next, we regress Y, on
X, and the constructed variables

*(Z,%)) and #(Z,%32)
®(Z11) ®(Z; %)
In case ¢; and e, are correlated, so that Cov(ey, €;) =0}, the expressions

get very messy. In this case we have to use bivariate probit methods to
estimate v, 7v;, and o,. Further,

E(u | I:>0, I} >0) = -\, (9.58)

E(u | I$ >0, Iy > 0) = Ny M, + Ny My,
where
M= (1 —o}) " U(P;— 0, P))

p = Sz_‘l‘ Z_ll' € f(€1€3) de; de,
! F(Z,v1,257,)

(9.59)

10 See the evidence presented in section 9.2 on estimation of the param-
eters in the selectivity criterion from truncated samples. See also the
work of Bloom et al. (1981), who reported that attempts at estimating
this model did not produce good parameter estimates.
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These expressions can still be evaluated numerically."

Fishe et al. estimated the parameters in equatiions (9.53) and (9.54)
by the bivariate probit method and evaluated expressions of the form
(9.59) by numerical methods. They then used the extension of the
Heckman-Lee two-stage method.

9.7 Endogenous switching models and mixture-distribution
models

The models of self-selection discussed in this chapter (as well as the dis-
equilibrium models discussed in the next chapter) fall in the general class
of switching models with endogenous switching (Maddala and Nelson,
1975). In a recent study, Poirier and Rudd (1981) argued that there has
been substantial confusion in the econometric literature over switching
regression models with endogenous switching and that this confusion
can cause serious interpretation problems when the model is employed in
applied work. They argued that the problems of interpretation arise
because there is an observational equivalence between two fundamentally
different specifications: the mixture model of conditional densities ar;d/
the switching regression model with endogenous switching. Because their
study can convey misleading impressions about the practical usefulness
of the models discussed in this chapter, we shall discuss the two models
here.

The switching regression model with endogenous switching is defined
as follows:

i = X1By + wy; (9.60)
Y2i = X3iBy + g 9.61)
I'=2Zvy—-¢ (9.62)
L=1 iff I}>0
L=0 iff I} <0 (9.63)

The observed y; is defined as

yi=y iff [=1
Yi=yyu it ;=0 (9.64)
(41, up,€)" ~ N(O,E)

11 Gee the work of Rosenbaum (1961) for moments of a truncated bivari-
ate normatl distribution. These are also reported in the Appendix at the
end of the book.
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with
L=1oy o o

Oj2 Oy Oy
Ole 07 1

If 0,,=0,,=0, we have the switching regression model with exogenous
switching. Otherwise, we have endogenous switching.

Equations (9.60) and (9.61) define the marginal distributions of yy;
and y,;."”” From the specification of the model we can derive the condi-
tional distributions f(y;| I;=1) and f(»,;|I;=0). For instance,

Zy
Sl 1= = |7 fne) des@(zy)

and writing f(ue) =f(u)- f(e| u), we can write

fH=1) = [#(Zy)] o 2ol oi 2 (3 — X181)]
02 —1/2 p
x@[(l— le) [Z’Y— Le (}’1_X131)]}
(ST (1]

S 1=0) = (1-¥(Z7)] 05" *dl 05" > (12— X, 8,)]

U% -1/2 a
X (1 - d{(l - —i> [Z’Y + = (}’z—Xzﬁz)] })
922 022

(9.65)

Similarly,

We can decompose the error terms u,;, u,;, and ¢; into a set of correlated
and noncorrelated components. We can write

i = Xiiby + g+ wy;
Vi = XoiBy + i+ wy;
I'=Ziy+ a3+ wy; (9.66)

where w/= (wy;, wy;, w3;) ~N(0,Q) and a/=(ay;, ay;, a3;) ~N(0, A) and
w/ are independent of «/. @ is a diagonal matrix

2 Poirier and Rudd claimed that some studies have defined (9.60) and
(9.61) as conditional on I;=1 and I;=0, respectively. However, we need
not go into this issue in detail, because those who read the studies care-
fully can see that equations (9.60) and (9.61) were always meant to be
marginal distributions, with the observed y; being defined by (9.64).
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This method is identical with that for the model in equations (9.60)
through (9.62), with

Mitog =0, Aptwp=o0y, Agtep=1,
AM2=013, N3=0, and Ay =0, (9.67)

Note that the models given by (9.66) and (9.60) through (9.62) are not
different models.”® The «; now capture the correlations between the
residuals, and conditional on «;, the variables y;;, y,;, and I* are
independent.

The mixture-distribution model that Poirier and Rudd considered is

Wil =1, 0) ~ N(X;8) + ay;, wyp)
il Ii=0, 0;) ~ N(X5;8 + oz, w33)
(I} | o) ~ N(Ziy + a3, w33) (9.68)

where a;~N(0, A), as before. They showed that, unconditional on «;,
we have

I} ~ N(Z;v,1)

and that f(y,;]| [;=1) and f(y,;| I;=0) are the conditional densities given
by (9.65), with the parameter equivalence (9.67). From this, they argued
that it is possible to construct two different observationally equivalent
models, which produces an ambiguity in inferences. They argued that
‘‘although the interpretations of the parameters in each formulation are
entirely different, the observed data cannot distinguish between these
two different interpretations’’ (Poirier and Rudd, 1981, p. 255).
However, as can be seen from the equivalence of models (9.66) and
(9.60) through (9.63), there are not two different models. They are just
two different ways of writing the same model. Thus, there is no ambi-

13 The likelihood function for this model is presented in equation (8.8) in
Chapter 8. As noted there, the parameter o), is not estimable.
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guity of inferences. Note that although it appears from (9.68) as though
Poirier and Rudd defined only the conditional distributions, this is not
so. Because, as mentioned earlier, conditional on a;, the variables yy;,
¥5i, and I} are independent, equations (9.66) and (9.68) are exactly
equivalent. That is,

Snila, L=1) = f(yla;, I} >0)
=fOnila)

Thus, it is not true that Poirier and Rudd constructed a different model
based on a specification of conditional distributions that gives the same
likelihood function.

Another argument Poirier and Rudd made (1981, p. 250) was that
“‘the contrast between a trivariate model and bivariate data suggests a
major limitation of the model.”” Note, however, that the data do refer to
three variables, each of which is partially observed. I* is observed as a
dichotomous variable; y; is observed only when I* >0, and y; is observed
only when I* <0. The only problem that arises is that y, and y, are not
observed simultaneously. As a consequence, oy, is not estimable. But
apart from this, there are no identifiability problems.'* Thus, the prob-
lem is not one of a trivariate model and bivariate data, but one of partial
observability, and there are many such models that are of practical use.

Poirier and Rudd also seem to have argued that because ), is
observed only if /=1, and y, only if /=0, we should model only these
conditional distributions. As shown earlier, the conditional specification
they suggested is not indeed a specification of the distributions over the
subpopulations. In the next section we shall discuss such a specification.
However, just because y, is observed only if /=1 does not mean that we
should specify the distribution of y; only on this subset. To push the
analogy further, consider the tobit model: Just because y; is observed if
and only if y;>0 does not mean that the distribution of the disturbance
term need be specified for this subpopulation alone! In the case of
sequential-decision models, of course, we might specify distributions of
residuals on subpopulations only.

Of more practical importance is the issue raised by Poirier and Rudd
concerning the interpretation of coefficient estimates. The selectivity

14 Some other identification problems arise in the model in which only y,
or y, is observed (see section 8.4). The fact that gy, is not estimable
means that there can be any number of models with different values of
correlations between u, and u, in equations (9.60) and (9.61) that are
observationally equivalent. But the problem is not one of conditional
versus marginal distributions, but one of covariance between the errors
of marginal distributions.
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model permits two types of inferences: conditional and marginal. For
instance, with respect to the parameters in equation (9.60), we can con-
sider dE(,;)/8X); for inferences from the marginal distribution and
dE(y,;| I;=1)/3X,; for inferences from the conditional distributions.
The former are given by the estimates of the parameter B; in (9.57). For
the latter, we note that under the assumptions of normality of the
residuals,

oZ;v)
E(y | L=1)=X;8 — —_—
(yh| i ) 1161 Ole @(2‘7)
where o,,=Cov(u;,€) and ¢(-) and ®(-) are, respectively, the density
and distribution functions of the standard normal.
If there'is a variable that appears in both X;; and Z; (say in the jth
position for each), then ;

EWYylLi=1) _ .  &Zv) ([, ¢(Zi‘Y)>
Pt N gz, (z'” ®(Z)

Note that the sign changes on ¢, in our equations, as compared with
those in the study of Poirier and Rudd, arise from the way equation
(9.63) is defined.

Poirier and Rudd pointed out that given that sex is a variable included
in both X,; and Z;, Lee and Trost (1978, p. 374) incorrectly argued from
the sign of B8); that “‘females tend to spend more than males if they own
houses.”” However, a reading of Lee and Trost’s study indicates that
what they had in mind all along was potential expenditures, and thus
they meant to say *‘if they were to own houses’’ rather than “‘if they own
houses.’’ There is, thus, no confusion or misinterpretation. The substan-
tive issue here is what type of inference is of practical interest in this
problem. Is it inference from the marginal distribution (potential expendi-
tures on housing) or from the conditional distributions (actual expendi-
tures on housing)? The answer to this question is that it depends on the
problem at hand. If we are considering the effects of tax incentives, as
did Rosen (1979), then we have to consider potential as well as actual
expenditures. Poirier and Rudd (1981, p. 283) argued that if only condi-
tional inferences are needed, then one should model directly the condi-
tional densities and not bother about the selectivity model. But certainly
the housing-decision model that they cited is not one in which our inter-
est is only in conditional inferences. We can perhaps find examples in
which only conditional inferences are of interest. In the next section we
shall give examples in which the selectivity model makes sense but the
mixture model does not.
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9.8 When can the selection model be used, but not the
mixture model?

In the preceding section we argued that the main difference between the
selection model and the mixture model is in the specification of the dis-
tributions of the disturbances over the entire population versus subpopu-
lations. We shall now give examples of cases in which the mixture model
is not applicable.

To be specific, the selection model (S) is

I"=2Z2vy—¢
Y = X8+ y
Y2=X232+ 125)

where ¢, u;, and u, have well-defined distributions on the whole popula-
tion. The mixture-distribution model (M) is

I"=Zy—¢
Y1 =X8+u
Y,=X,8,+ u,

where ¢ has a well-defined distribution on the whole population. The
distribution of u, is defined only on the subpopulation for which I=1,
and the distribution of u, is defined only on the subpopulation for which
I1=0.

The M model is not appropriate for modeling the problems in which
», and y, are explicitly factors in the decision process, as in the union-
decision model of Lee (1978). Here we have

I" =a(y, —y;) +Zy—¢ (9.69)
This implies
I = a(X,8) — X3B,) + Zy—v

where v=¢— a(u, —u,). The disturbance term v does not have a well-
defined distribution in the M model, because the distributions of u; and
u, are defined only on subpopulations. The main interest in such models
centers on the decision process, in particular the significance or nonsig-
nificance of « in (9.69); see, for instance, the work of Willis and Rosen
(1979). These situations can be modeled only by the selection models,
not the mixture models. For each individual, y,;—»,; represents the net
gain (or net loss) from the choice between the two options. If y,; is the
return of the outcome from choosing option 1, y,; will be the foregone
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outcome from option 2 (and vice versa). Any econometric models in-
volving discrete choice and foregone outcomes (or earnings) are mean-
ingless to be modeled as M models. The selection model is the appro-
priate one to be used.

The selection models are also useful for evaluating many government
programs. These cannot be analyzed by the mixture-distribution model.
These problems have been discussed in section 9.2.

In many activities (or choices) involving productivity or earnings,
such as job choices, we observe that individuals engage in one activity
rather than others. A possible reason from the productivity (or earnings)
point of view, as suggested by Roy (1951), Sattinger (1975), Rosen
(1978), and Willis and Rosen (1979), is that the individual has compara-
tive advantage in an activity that, as compared with the other options,
increases the well-being of the individual. To infer the implications of
comparative advantage in discrete-choice behavior, one needs to have
information on the potential outcomes from the unchosen alternative
options. For this purpose, the selectivity model is useful. The mixture-
distribution model does not permit any inferences to be made in such
- cases. An example cited by Roy (1951) was discussed in section 9.1.

9.9 Summary ahd conclusions

The preceding discussion suggests the usefulness of the selectivity model
in a number of situations. The selectivity model has been applied in the
following types of studies, among others:

1. Studies of participation in the labor force: Heckman (1974, 1979), Nel-
son (1977), Cogan (1980), Hanoch (1980a, b)

2. Studies of retirement decisions: Gordon and Blinder (1980)

3. Studies of returns to education: Griliches et al. (1978), Kenny et al.
(1979), Willis and Rosen (1979)

4. Studies of the effects of unions on wages: Lee (1978), Abowd and
Farber (1982)

5. Studies of the effects of employment services: Katz (1977)

Studies of migration and income: Nakosteen and Zimmer (1980)

7. Studies of physician behavior: Poirier (1981); studies of lawyer behav-

ior: Weisbrod (1980)

Studies of electric utility rates: Roberts et al. (1978)

9. Studies of tenure choice and the demand for housing: Trost (1977), Lee
and Trost (1978), Rosen (1979), King (1980)

o

%

We shall discuss the union-and-wages problem in Chapter 11. The
studies on labor supply are far too numerous to review here. Regarding
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the area of tenure choice and demand for housing, the traditional litera-
ture treats the discrete tenure choice and the continuous housing-demand
choice separately. Trost (1977), Lee and Trost (1978), and Rosen (1979)
recognized that the two decisions are interdependent, and they specified
error terms of the discrete- and continuous-choice models to be corre-
lated. King (1980) extended this analysis further in two important direc-
tions. First, he noted that because tenure choice and housing demand are
based on maximization of the same utility function, the two models can
involve some of the same parameters. In that case, joint estimation will
involve imposing cross-equation constraints on the parameters of the
tenure-choice and housing-demand equations, as well as recognizing that
error terms are correlated. Second, King incorporated into the model
estimates of the impact of rationing in the mortgage market and in the
local-authority rental market in the United Kingdom. Because going
through these aspects would involve reproducing most of King’s study,
it will not be done here.






