CHAPTER 21

Linear Panel Models: Basics

21.1. Introduction

Panel data are repeated observations on the same cross section, typically of individu-
als or firms in microeconomics applications, observed for several time periods. Other
terms used for such data include longitudinal data and repeated measures. The focus
is on data from a short panel, meaning a large cross section of individuals observed for
a few time periods, rather than a long panel such as a small cross section of countries
observed for many time periods.

A major advantage of panel data is increased precision in estimation. This is the
result of an increase in the number of observations owing to combining or pooling
several time periods of data for each individual. However, for valid statistical infer-
ence one needs to control for likely correlation of regression model errors over time
for a given individual. In particular, the usual formula for OLS standard errors in a
pooled OLS regression typically overstates the precision gains, leading to underesti-
mated standard errors and ¢-statistics that can be greatly inflated.

A second attraction of panel data is the possibility of consistent estimation of the
fixed effects model, which allows for unobserved individual heterogeneity that may
be correlated with regressors. Such unobserved heterogeneity leads to omitted vari-
ables bias that could in principle be corrected by instrumental variables methods using
only a single cross section, but in practice it can be difficult to obtain a valid instru-
ment. Data from a short panel, with as few as two periods, offers an alternative way
to proceed if the unobserved individual-specific effects are assumed to be additive and
time-invariant.

Most disciplines in applied statistics other than microeconometrics treat any unob-
served individual heterogeneity as being distributed independently of the regressors.
Then the effects are called random effects, though a better term is purely random ef-
fects. Compared to fixed effects models this stronger assumption has the advantage
of permitting consistent estimation of all parameters, including coefficients of time-
invariant regressors. However, random effects and pooled estimators are inconsistent
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LINEAR PANEL MODELS: BASICS

if the true model is one with fixed effects. Economists often view the assumptions for
the random effects model as being unsupported by the data.

A third attraction of panel data is the possibility of learning more about the dynam-
ics of individual behavior than is possible from a single cross section. Thus a cross
section may yield a poverty rate of 20% but we need panel data to determine whether
the same 20% are in poverty each year. As a related example, panel data may determine
whether high serial correlation of individual earnings or unemployment spell length is
due to an individual specific tendency to have high earnings or a long unemployment
spell, or whether it is a consequence of having past high earnings or unemployment.
This topic is deferred to Chapter 22.

The linear panel data models and associated estimators are conceptually simple,
aside from the fundamental issue of whether or not fixed effects are necessary. The
considerable algebra used to derive the properties of panel data estimators should not
distract one from an understanding of the basics: The statistical properties of panel
data estimators vary with the assumed model and its treatment of unobserved effects.
Furthermore, much of the algebra does not generalize to nonlinear panel models.

The current chapter presents the basic estimators for various linear panel] data mod-
els. A lengthy introduction in Sections 21.2 and 21.3 provides, respectively, the com-
monly used models and estimators and an application to the relationship between an-
nual hours worked and wages. The important distinction between fixed and random
effects models is studied in Section 21.4. Sections 21.5-21.7 present additional detail
on estimation for, respectively, pooled models, individual-specific fixed effects mod-
els, and individual-specific random effects models. Section 21.8 considers other basic
aspects such as inference and prediction in linear panel data models.

21.2. Overview of Models and Estimators

Panel data provide information on individual behavior both across time and across
individuals.

Even for linear regression, standard panel data analysis uses a much wider range of
models and estimators than is the case with cross-section data. Several standard models
are presented in Section 21.2.1, followed by several estimators presented in Section
21.2.2. Table 21.1 gives a summary that also indicates that several of the estimators
are inconsistent if the dgp is the individual-specific fixed effects model.

Obtaining correct standard errors of estimators is also more complicated than in
the cross-section case. One needs to control for correlation over time in errors for a
given individual, in addition to possible heteroskedasticity. This topic is covered in
Section 21.2.3.

21.2.1. Panel Data Models

A very general linear model for panel data permits the intercept and slope coefficients
to vary over both individual and time, with

’ .
Yit = @j; +x,‘tﬂ,‘g + Ui, 1 = 1,
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21.2. OVERVIEW OF MODELS AND ESTIMATORS

Table 21.1. Linear Panel Model: Common Estimators and Models”

Assumed Model
Pooled Random Effects Fixed Effects
Estimator of 3 (21.1) (21.3) and (21.5) (21.3) Only
Pooled OLS (21.1) Consistent Consistent Inconsistent
Between (21.7) Consistent Consistent Inconsistent
Within (or Fixed Effects) (21.8) Consistent Consistent Consistent
First Differences (21.9) Consistent Consistent Consistent
Random Effects (21.10) Consistent Consistent Inconsistent

a This table considers only consistency of estimators of 3. For correct computation of standard errors see Sec-
tion 21.2.3.

where y;, is a scalar dependent variable, x;, isa K x 1 vector of independent variables,
u;, is a scalar disturbance term, i indexes individual (or firm or country) in a cross
section, and ¢ indexes time.

This model is too general and is not estimable as there are more parameters to
estimate than observations. Further restrictions need to be placed on the extent to which
aj; and 3;, vary with i and ¢, and on the behavior of the error u;;.

Pooled Model

The most restrictive model is a pooled model that specifies constant coefficients, the
usual assumption for cross-section analysis, so that

Yi =+ X:-tﬂ + u. - (21.1)

If this model is correctly specified and regressors are uncorrelated with the error then
it can be consistently estimated using pooled OLS. The error term is likely to be cor-
related over time for a given individual, however, in which case the usual reported
standard errors should not be used as they can be greatly downward biased. Further-
more, the pooled OLS estimator is inconsistent if the fixed effects model, defined in

the following, is appropriate.

Individual and Time Dummies

A simple variant of the model (21.1) permits intercepts to vary across individuals and
over time while slope parameters do not. Then y;; = a; + ¥ + X, B + u;s, or

N T
Vi = Y ejdji+ Y Vsdsie + X0, (21.2)
j=1 s=2

where the N individual dummies d; ;, equal one if i = j and equal zero otherwise,
the (T — 1) time dummies d; ;, equal one if £ = s and equal zero otherwise, and it is
assumed that x;, does not include an intercept. (If an intercept is included then one of
the N individual dummies must be dropped).
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This model has N + (T — 1) + dim[x] parameters that can be consistently esti-
mated if both N — oo and T — oo. We focus on short panels where N — ocobut T
does not. Then the y; can be consistently estimated, so the (T — 1) time dummies are
simply incorporated into the regressors x;;. The challenge then lies in estimating the
parameters 3 controlling for the N individual intercepts «;. One possibility is to in-
stead have dummies for groups of observations, such as grouping by region, in which
case the clustering methods of Chapter 24 are relevant. Here instead we specify a full
set of N individual intercepts, which causes problems as N — ooc.

Fixed Effects and Random Effects Models

The individual-specific effects model allows each cross-sectional unit to have a dif-
ferent intercept term though all slopes are the same, so that

Yie = o; +X;,8 + &ir, (21.3)

where ¢;; is iid over { and ¢. This is a more parsimonious way to express model (21.2),
with any time dummies included in the regressors x;,. The ¢; are random variables that
capture unobserved heterogeneity, already studied in Sections 18.2-18.5 and 20.4.

Throughout this chapter we make the assumption of strong exogeneity or strict
exogeneity

E[s;,lai, Xity oo X,'T] =0, t=1,.. .., T, (214)

so that the error term is assumed to have mean zero conditional on past, current, and
future values of the regressors. Chamberlain (1980) gives a detailed discussion of ex-
ogeneity assumptions and tests for exogeneity for panel data. Strong exogeneity rules
out models with lagged dependent variables or with endogenous variables as regres-
sors; these models are deferred to Chapter 22.

One variant of the model (21.3) treats «; as an unobserved random variable that is
potentially correlated with the observed regressors x;,. This variant is called the fixed
effects (FE) model as early treatments modeled these effects as parameters ¢, ..., ey
to be estimated. If fixed effects are present and correlated with x;, then many estima-
tors such as pooled OLS are inconsistent. Instead, alternative estimation methods that
eliminate the «; are needed to ensure consistent estimation of 3 in a short panel.

The other variant of the model (21.3) assumes that the unobservable individual ef-
fects a; are random variables that are distributed independently of the regressors. This
model is called the random effects (RE) model, which usually makes the additional
assumptions that

a; ~ [a, 02], (21.5)

Eir ™ [0, 0'52] s

so that both the random effects and the error term in (21.3) are assumed to be iid. Note
that no specific distributions have been specified in (21.5). A more precise term for this
model is the one-way individual-specific random effects model, or more simply the
random intercept model, to distinguish the model with more general random effects
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21.2. OVERVIEW OF MODELS AND ESTIMATORS

models such as the mixed linear models presented in Section 22.8. Yet another name
is the random components model.

The term fixed effect is potentially misleading and the term random effect is more
precisely a purely random effect. To avoid such confusion, M-J. Lee (2002) calls a
fixed effect a “related effect” and a random effect an “unrelated effect.” We use the
traditional notation and terminology, but it should be clear that q; is a random variable
in both fixed and random effects models.

Equicorrelated Model

The RE model can be viewed as a specialization of the pooled model, as the o; can
be subsumed into the error term. Then (21.3) can be viewed as regression of y;; on x;,
with composite error term u;; = @; + &;;, and (21.5) implies that

o2 t#s,

a?

21.6
02+02, t=s. (@16)

Covl(a; + &ir), (@i + €i5)] = {
The RE model therefore imposes the constraint that the composite error u;, is equicor-
related, since Cor{u;,, u;;] = 02/[02 + 62] for t # s does not vary with the time dif-
ference t — 5. Clearly, pooled OLS will be consistent but inefficient under the RE
model. The random effects model is also called the equicorrelated model or ex-
changeable errors model.

Fixed versus Random Effects Models

The fundamental distinction is between models with and without fixed effects. The
modern econometrics literature emphasizes fixed effects, but we also provide details
for the random effects model.

Some authors, including Chamberlain (1980, 1984) and Wooldridge (2002), use the
notation

Y =¢ +X,B+ ¢

in (21.3) to make it very clear that the individual effect is a random variable in both
fixed and random effects models. Both models assume that

Elyiclci, Xi] = ¢; +x;,8.

The individual-specific effect ¢; is unknown and in short panels cannot be consis-
tently estimated, so we cannot estimate E[y;|c;, X;;]. Instead, we can eliminate ¢; by
taking the expectation with respect to ¢;, leading to

Ely; |x;;] = Elci %] + x;, 8.

For the RE model it is assumed that E[c;|x;/] = @, so E[y;|x;;] = o + x],/3 and hence
it is possible to identify E[y;|x;;]. In the FE model, however, E[c;|x;,] varies with
x;; and it is not known how it varies, so we cannot identify E[y;|x;;]. It is nonethe-
less possible to consistently estimate 3 in the FE model with short panels (as will be
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discussed in the following). Thus it is possible in the FE model to identify the marginal
effect

B = 0Elyilci, X1/ 09X,

even though the conditional mean is not identified. For example, it is possible to iden-
tify the effect on earnings of an additional year of schooling, controlling for individual
effects, even though the individual effects and the conditional mean are not identified.
In short panels the FE model permits only identification of the marginal effect
8E[yi|ci, Xi:1/8X;;, and even then only for time-varying regressors, so the marginal
effect of race or gender, for example, is not identified. The RE model permits iden-
tification of all components of 3 and of E[y;|x;], but the key RE assumption that
Elc;|x;;] is constant is viewed as untenable in many microeconometrics applications.

21.2.2. Panel Data Estimators

We now introduce several commonly used panel data estimators of 3, with further
detail provided in Sections 21.5-21.7. The estimators differ in the extent to which
cross-section and time-series variation in the data are used, and their properties vary
according to whether or not the fixed effects model is the appropriate model.

A regressor x;; may be either time-invariant, with x;; = x; fort=1,...,T, or
time-varying. For some estimators, notably the within and first differences estimators
defined in the following, only the coefficients of time-varying regressors are identified.

Pooled OLS

The pooled OLS estimator is obtained by stacking the data over i and ¢ into one long
regression with NT observations, and estimating by OLS

yi=a+x,B+uy, i=1,...,N, t=1,...,T.

If Cov[u;,, X;;] = 0 then either N — oo or T — oo is sufficient for consistency.

The pooled OLS estimator is clearly consistent if the pooled model (21.1) is ap-
propriate and regressors are uncorrelated with the error term. The usual OLS variance
matrix based on iid errors, however, is not appropriate here as the errors for a given
individual i are almost certainly positively correlated over ¢. The NT correlated obser-
vations have less information than NT independent observations.

To understand this correlation, note that for a given individual we expect consid-
erable correlation in y over time, so that Cor{y;,, yis] is high. Even after inclusion of
regressors Cor[u;,, u;s] may remain nonzero, and it often can still be quite high. For
example, if a model overpredicts individual earnings in one year it may also overpre-
dict earnings for the same individual in other years. The RE model accommodates this
correlation, with Cor[u;,, u;s] = 02/[02 + o2 for t # s from (21.6).

The usual OLS output treats each of the T years as independent pieces of informa-
tion, but the information content is less than this given the positive error correlation.
This leads to overstatement of estimator precision that can be very large, as illustrated
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21.2. OVERVIEW OF MODELS AND ESTIMATORS

in Section 21.3.2 and formally demonstrated in Section 21.5.4. One therefore needs to
use panel-corrected standard errors (see Section 21.2.3) whenever OLS is applied in
a panel setting. Many corrections are possible, depending on the correlation and het-
eroskedasticity structure assumed for the errors and whether the panel is short or long
(see Section 21.5).

The pooled OLS estimator is inconsistent if the true model is the fixed effects
model. To see this, rewrite the model (21.3) as

Yo =a+X,8+ (@ —a+e,).

Then pooled OLS regression of y;, on x;, and an intercept leads to an inconsistent
estimator of 3 if the individual effect o; is correlated with the Tegressors X;;, since
such correlation implies that the combined error term (o; — a + g;)is correlated with
the regressors.

In summary, pooled OLS is appropriate if the constant-coefficients or random ef-
fects models are appropriate, but panel-corrected standard errors and z-statistics must
be used for statistical inference. Pooled OLS is inconsistent if the fixed effects model
is appropriate.

Between Estimator

The pooled OLS estimator uses variation over both time and cross-sectional units to
estimate 3.

The between estimator in short panels instead uses Jjust the cross-sectional variation.
Begin with the individual-specific effects model (21.3). Averaging over all years yields
yi = a; + X3 + &;, which can be rewritten as the between model

yi=a+XB+(—a+5&), i=1,..., N, L7

where y; = T™! }:, Vi, & =T7! Z, g, and X; = T~1 2 Xir.

The between estimator is the OLS estimator from regression of y; on an intercept
and X;. It uses variation between different individuals and is the analogue of cross-
section regression, which is the special case T = 1.

The between estimator is consistent if the regressors ¥; are independent of the com-
posite error (o; — & + ;) in (21.7). This will be the case for the constant-coefficients
model and the random effects model. In contrast, for the fixed effects model the be-
tween estimator is inconsistent as o; is then assumed to be correlated with X;; and
hence X;.

Within Estimator or Fixed Effects Estimator

The within estimator is an estimator that, unlike the pooled OLS or between estimators,
exploits the special features of panel data. In a short panel it measures the association
between individual-specific deviations of regressors from their time-averaged values
and individual-specific deviations of the dependent variable from its time-averaged
value. This is done using the variation in the data over time.
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Specifically, begin with the individual-specific effects model (21.3), which nests
(21.1) as the special case @; = a. Then taking the average over time yields y; = o; +
X0 +&. Subtracting this from y;, in (21.3) yields the within model

Yie =3 =i —%YB+(en~2), i=1,...,N, 1=1, . T (21.8)

as the a; terms cancel.

The within estimator is the OLS estimator in (21.8). A special feature of this esti-
mator is that it yields consistent estimates of 3 in the fixed effects model, whereas the
pooled OLS and between estimators do not.

From Section 21.6 the within estimator has several interpretations. It is called the
fixed effects estimator as it is the efficient estimator of 3 in the model (21.3) if o;
are fixed effects and the error &ir 1s iid. This chapter focuses on a literature that treats
fixed effects as nuisance parameters that can be ignored since interest lies solely in
estimation of 3. If instead the fixed effects are of interest they can also be estimated.
In short panels these estimates of the individual o; are inconsistent, though their distri-
bution or their variation with a key variable may be informative, If N is not too large
an alternative and simpler way to compute the within estimator is by least-squares
dummy variable estimation. This directly estimates (21.2) by OLS regression of y;,
on X;; and the N individual dummy variables and yields the within estimator for B,
along with estimates of the N fixed effects (see Section 21.6.4). Yet another interpreta-
tion of the within estimator is the covariance estimator. Finally, taking deviations from
individual-specific averages is equivalent to taking residuals from auxiliary regression
of y;; and x;, on individual dummies and then working with the residuals.

A major limitation of within estimation is that the coefficients of time-invariant
regressors are not identified in the within model, since if x;, = x; then Xi = Xx; SO
(xir — %) =0. Many studies seek to estimate the effect of time-invariant regressors.
For example, in panel Wage regressions we may be interested in the effect of gender or
race. For this reason many practitioners prefer not to use the within estimator. Pooled
OLS or random effects estimators permit estimation of coefficients of time-invariant
regressors, but these estimators are inconsistent if the fixed effects model is the correct
model.

First-Differences Estimator

The first-differences estimator also exploits the special features of panel data. In a short
panel it measures the association between individual-specific one-period changes in
regressors and individual-specific one-period changes in the dependent variable.

Specifically, begin with the individual-specific effects model (21.3). Then lagging
one period yields Yir—1 =o; + x,f,,_l B+ei,1. Subtracting this from Yir in (21.3)
yields the first-differences model

Yit = Yiu—1 = it = Xi,1) B+ (6i — £;,_1), = LN, 1=2,...,T, 219

as the «; terms cancel.
The first-differences estimator is the OLS estimator in (21.9). Like the within esti-
mator, this estimator yields consistent estimates of 3 in the fixed effects ‘model, though
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the coefficients of time-invariant regressors are not identified. The first-differences es-
timator is less efficient than the within estimator for T > 2 if &;; 18 iid.

Random Effects Estimator

The random effects estimator is an estimator that also exploits the special features of
panel data.

Begin with the individual-specific effects model (21.3), but assume a random effects
model where ¢; and ¢;, are iid as in (21.5). Pooled OLS is consistent but pooled GLS
will be more efficient. The feasible GLS estimator (see Section 4.5.1) of the RE
model, called the random effects estimator, can be calculated from OLS estimation
of the transformed model

Yit = A% = (1 = + (X — 2%;)' B + vir, (21.10)

where v;; = (1 — ’):)a,- + (&ir — 3:;:,-) is asymptotically iid, and X is consistent for

A=1--——2 (21.11)

Vo2 +To?
Section 21.7 provides a denvatlon of (21.10) and ways to estlmate o2 and o? and
hence to estimate A. Note c that x=0 corresponds to pooled OLS, A= 1 corresponds
to within estimation, and X — 1 as T — oo. This is a two- -step estimator of 3.
The RE estimator is fully efficient under the RE model, though the efficiency gain
compared to pooled OLS need not be great. It is inconsistent, however, if the fixed
effects model is the correct model.

21.2.3. Panel-Robust Statistical Inference

The various panel models include error terms denoted Ui, Eir, and o;. In many microe-
conometrics applications it is reasonable to assume independence over i . However, the
errors are potentially (1) serially correlated (i.e., correlated over ¢ for given i) and/or
(2) heteroskedastic. Valid statistical inference requires controlling for both of these
factors.

The White heteroskedastic consistent estimator of Section 4.4.5 is easily extended
to short panels since for the ith observation the error variance matrix is of finite dimen-
sion T x T while N — oo. Thus panel-robust standard errors can be obtained without
assuming specific functional forms for either within-individual error correlation or het-
eroskedasticity. More efficient estimators using GMM are deferred to Section 22.2.3.

It is crucial to note that frequently the panel commands in many computer packages
calculate default standard errors assuming iid model errors, leading to erroneous in-
ference. In particular, for pooled OLS regression of yi: on X;; without any control for
individual effects it is very likely that Cov{[u;,, u;;] > 0 for ¢ # s. Ignoring this serial
correlation can lead to greatly underestimated standard errors and over-estimated -
statistics, as demonstrated in the Section 21.3 data example and shown algebraically in
Section 21.5.4. Once fixed or random individual-specific effects are included the serial
correlation in errors can be greatly reduced, but it may not be completely eliminated.
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Additionally, one may need to control for potential heteroskedasticity as is routinely
done for cross-section data.

Panel-Robust Sandwich Standard Errors

The panel estimators of Section 21.2.2 can be obtained by OLS estimation of & in the
pooled regression

Vir = Wi, 0 + Ui, (21.12)

where different panel estimators correspond to different transformations ¥;;, W;;, and
Ui of yir, W), =[1 x,), and u;,. The key is that ¥ is a known function of only
i1, - - - » YiT, and similarly for Wi, and W;;.

In the simplest case of pooled OLS, no transformation is necessary and 6 = [« AY.
For the within estimator i = i — ¥i» Wiz = (% — %;), where only time-varying re-
gressors appear, and 6 equals the coefficients of the time-varying regressors. For first-
differences estimation ¥;; = yir — Yi,r—1» Wi = (X;; — X;;—1) and again only coefffi-
cients of time-varying regressors are identified. For random effects y;; = yir — ’)Tj',- and
W, = (Wi — AW;) and @ = [a B']. Such transformations can induce serial correlation
even if underlying errors are uncorrelated.

It is convenient to stack observations over time periods for a given individual, lead-
ing to

’S;i =W19 +ﬁi7

where ¥; is a T x 1 vector in the preceding examples, except for the first-differences
model where itis (T —1) x 1, and W;isa T x ¢ matrix or, for the first-differences
model, a (T — 1) x g matrix. Further stacking over the N individuals yields

y=Wo+1.
Three representations of the OLS estimator are therefore

OoLs

where in the third expression the sum is from ¢t =2to T in the case of the first-
differences estimator. The most convenient representation to use varies with the
context.

To consider consistency, note that if the model is correctly specified then the usual
algebra yields 8ors = 0 + [W’ W)W or

N
Bois = 0 + [Z w,-/w,-]
i=l1
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21.2. OVERVIEW OF MODELS AND ESTIMATORS

Given independence over i the essential condition for consistency is E[V~V,-’ﬁ,~] =0.
This generally requires a stronger assumption than E[ui:|Wi;] = 0. A sufficient as-
sumption is that of strong exogeneity given in (21.4). See Chapter 22 for estimation
under assumptions weaker than strong exogeneity that permit, for example, lagged
dependent variables as regressors.

The asymptotic variance of @oLs is then

=

N -1 N -1
V{Bois] = [z Wi/wi] ZwilErﬁiﬁ;lwi]Wi [Z i,wi} ,

i=1 i=1 i=1
given independence of errors over i. Consistent estimation of V[60Ls] in this panel
setting is analogous to the cross-section problem of obtaining a consistent estimate of
V[§OLS] that is robust to heteroskedasticity of unknown form. The only complication
is the appearance of a vector u; rather than a scalar u;, which poses no problem if the
panel is short as then the dimension of u; is finite.

This leads to a panel-robust estimate of the asymptotic variance matrix of the

pooled OLS estimator, one that controls for both serial correlation and heteroskedas-
ticity, given by

N -1y -1
Vifois] = [Z Wi/Wx] Zwi'ﬁimwi [Zwi/wi] , (21.13)
i=1

i—1

where U; = =5 - W,6. The estimator in (21.13) assumes independence over i
and N — 00, the case for short panels, but otherwise permits V{u;] and Coviu;,, u is)
to vary with i, 1, and s. An equivalent expression i8

Vi{Bois] = {

i=1 1=}

where %, = Yir — W ,5. This estimator was proposed by Arellano (1987) for the fixed
effects estimator.

Panel-robust standard errors based on (21.13) can be computed by use of a regular
OLS command, if the command has a cluster-robust standard error option (see Sec-
tion 24.5.2). Since the clustering here is on the individual one selects the identifier for
individual i as the cluster variable. This method was used to obtain the panel-robust
standard errors given in Table 24.1.

The term “robust” standard error can cause confusion. A common error made in
pooled regression is to estimate the OLS regression (21.12) using the standard robust
standard error option (see Section 4.4.5). However, this only adjusts for heteroskedas-
ticity, and in practice in a panel setting it is much more important to correct for the
correlation in individual errors. Another common efror, though one that has smaller
impact, is to use cluster-robust standard errors that assume homoskedasticity so that
E[u;u!] is constant over i.
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Panel Bootstrap Standard Errors

The bootstrap method provides an alternative way to obtain panel-robust st
errors. The key assumption is that observations are independent over i, so onc (-
a bootstrap pairs procedure that resamples with replacement over i and uses all .

served time periods for a given individual. For data {(yi, Xi),i =1,..., N} this vich
B pseudo-samples and for each pseudo-sample one performs OLS regression ol
on W;,, yielding B estimates 8,,b =1, ... , B.
The panel bootstrap estimate of the variance matrix is then
~ - 1 & s = s =y
vBom[e]:B—_-]—;(eb—e) (8,-9), Qi

where @ = B! > éb. This bootstrap provides no asymptotic refinement (scc .-
tion 11.2.2). Given independence over i the estimate is consistent as N — oo, i «
asymptotically equivalent to the estimate (21.13), just as in the cross-section c:i-.
bootstrap pairs are asymptotically equivalent to White’s heteroskedastic consistent
timate. This bootstrap does not offer an asymptotic refinement though bootstrap w il
asymptotic refinement is possible (see Section 11.6.2).

This bootstrap method can be applied to any panel estimator that relies o
independence over i and N — oo, including the pooled feasible GLS estimators o
Section 21.5.2 for short panels. The key is to resample over i only, and not over boil,
iand:.

Discussion

The importance of correcting standard errors for serial correlation in errors at the il
vidual level cannot be overemphasized. Computer packages currently do not autom
ically do this. Bertrand, Duflo, and Mullainathan (2004) illustrate the resulting down
ward bias in standard error computation, in the context of difference-in-differences ¢«
timation (see Section 22.6). They find that the panel-robust and panel bootstrap meih
ods work well, even though in their application with state-year data N (the number o
states) is relatively small whereas the asymptotic theory uses N — oo.

The following example (see Table 21.2) also shows the importance of correcting
standard errors for any error serial correlation and autocorrelation.

21.3. Linear Panel Example: Hours and Wages

An important issue in labor economics is the responsiveness of labor supply to wages.
The standard textbook model of labor supply suggests that for people already working
the effect of a wage increase on labor supply is ambiguous, with an income effccl
pushing in the direction of less work offsetting a substitution effect in the direction of
more work.

Cross-section analysis for adult males finds a relatively small positive response (o
hours worked. However, it is possible that this association is spurious, merely reflect-
ing a greater unobserved desire to work being positively associated with higher wages.
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Panel data analysis can control for this, under the assumption that the unobserved de-
sire to work is time-invarjant. For example, the within estimator does so by measuring
the extent to which an individual works above-average (or below-average) hours in
periods with above-average (or below-average) wages.

The data on 532 males for each of the 10 years from 1979 to 1988 come from Ziliak
(1997). The variable of interest is Inhrs, the natural logarithm of annual hours worked.

The single explanatory variable is Inwg, the natural logarithm of hourly wage. We
consider the regression model

Inhrs;, = o + ﬁll’leit + €is,

where the individual-specific effect o; is simplified to « in some models and B mea-
sures the wage elasticity of labor supply. The error term s;, is assumed to be indepen-
dent over i, but it may be correlated over ¢ for given i. As noted we expect B, the labor
supply elasticity, to be small and positive,

Ziliak (1997) additionally included a quadratic in age, number of children, and an
indicator variable for bad health. These regressors and year dummies make relatively
small difference to the estimate of B and its standard error, and for simplicity they are
omitted here. In Chapter 22 we consider more general models that permit Inwg to be
endogenous and permit lags of Inhrs to appear as a regressor.

21.3.1. Data Summary

For the 5,320 observations, the sample means of Inhrs and Inwg are respectively 7.66
and 2.61, implying geometric means of 2,120 hours and $13.60 per hour. The sam-
ple standard deviations are respectively 0.29 and 0.43, indicating considerably greater
variability in percentage terms in wages rather than hours.

For panel data it is useful to know whether variability is mostly across individuals

or across time. The total variation of a series x;; around its grand mean ¥ can be
decomposed as

N T

Z Z(xir - j7)2 =

i=1 t=1 j

T

Z[(Xiz — %)+ & — 1))

1

—
~

M=

T T
= @i =5+ )Y (% — %),
i=1 =1 i=] =1

as the cross-product term sums to zero. In words, the total sum of squares equals
the within sum of squares plus the between sum of squares. This leads to within
standard deviation sy and between standard deviation sg, where

2 1 N =22
Sw = mZZ(xit = X)

i=1 =1

z

-

and

1 N
2 _ E"-._—Z
SB—ﬁiZI(x, X) .
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Table 21.2. Hours and Wages: Standard Linear Panel Model Estimators®

POLS Between  Within  First Diff RE-GLS RE-MLE

o 7.442 7.483 7.220 .001 7.346 - 7.346
6] .083 .067 168 .109 119 120
Robust se® (.030) (.024) (.085) (.084) (.051) (.052)
Boot se [.030] [.019] [.084] [.083] [.056] [.058]
Default se {.009} {.020} {.019} {.021} {.014} {.014}
R? .015 .021 .016 .008 .014 .014
RMSE 283 177 233 .296 233 233
RSS 427.225 0.363  259.398 417.944 288.860  288.612
TSS 433.831 17.015  263.677 420.223 293.023 292.773
O .000 181 161 162
O 283 232 233 233
A 0.000 - 1.000 - .585 .586
N 5320 532 5320 4788 5320 5320

4 Shown are pooled OLS (POLS), between, within, first-differences, random effects (RE) GLS and MLE linear
panel regression of Inhrs on Inwg. Standard errors for the slope coefficients are panel robust in parentheses,
panel bootstrap in square brackets, and default estimates that assume iid errors in curly braces. The R?, root
mean square error (RMSE), residual sum of squares (RSS), total sum of squares (TSS), and sample size come
from the appropriate regression given in Section 21.2. The parameter A is defined after (21.11).

se, standard error.

b

The within and between sample standard deviations are, respectively, 0.22 and 0.18
for Inhrs and 0.19 and 0.39 for Inwg. The larger total variation in wages compared to
hours is therefore due to between individual variation being much higher for wages.
Within individuals the variation is actually somewhat smaller for wages than it is for
hours.

21.3.2. Comparison of Panel Data Estimators

Table 21.2 summarizes results from application of the standard panel estimators de-
fined in Section 21.2.2 to these data, along with three different estimates of the stan-
dard errors. As detailed in the following, statistical inference should use either the
panel-robust standard error or the panel bootstrap standard error.

Slope Parameter Estimates

The estimate of the slope parameter 8 differs across the different estimation methods.
The between estimate that uses only cross-section variation is less than the pooled OLS
estimate. The within or fixed effects estimate of 0.168 is much higher than the pooled
OLS estimate of 0.083 and is borderline statistically significant using a two-tailed test
at 5% and standard error estimate of 0.084 or 0.085. The first-differences estimate of
0.109 is also higher than that of pooled OLS but is considerably less than the within
estimate, which also uses only time-series variation. The RE estimates of 0.119 or
0.120 lie between the between and within estimates. This is expected, as RE estimates
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21.3. LINEAR PANEL EXAMPLE: HOURS AND WAGES

can be shown to be a weighted average of between and within estimates. The two
RE estimates are very close to each other as here the estimates of the variances 2 and
o2 are similar, leading to similar values % = 0.585 and A = 0.586 in the regression
(21.10). The RE estimates are surprisingly less efficient than the pooled OLS estimates,
a sign that the RE model fails to model the error correlation well.

Which estimates are preferred? The within and first-difference estimators are con-
sistent under all models (pooled, RE, and FE) whereas the other estimators are in-
consistent under the fixed effects model. The most robust estimates are therefore the
within or first-differences estimates of 0.168 or 0.109.

There is, however, an efficiency loss in using these more robust estimators, with
standard errors of 0.83 to 0.85 that are much larger than those from pooled OLS and
RE estimates. A formal Hausman test (see Section 21.4.3 for details and discussion)
can be used to test whether or not the individual effects are fixed. Given the relative
imprecision of estimation in this example, the Hausman test does not reject the null
hypothesis of random effects, despite the large difference between FE and RE esti-
mates. So the more efficient random effects estimates could be used here. Another
advantage of random effects estimation is that it permits estimation of the coefficients
of time-invariant estimators.

Standard Error Estimation

We now turn to comparison of the standard error estimates. From Section 21.2.3, in-
ference should be based on panel-robust standard errors that permit errors to be corre-
Jated over time for a given individual and to have variances and covariances that differ

across individuals. Also, as detailed in later sections, the standard errors for estimators
based on deviations from means, such as (21.8) and (21.10), need to account for loss
of N + K rather than K degrees of freedom.

The first standard error estimate is computed by the panel-robust method given in
(21.13), and the second is computed by the panel bootstrap given in (21.14) with 500
replications. For brevity these estimates are called panel robust, though they are addi-
tionally robust to heteroskedasticity. The two estimates are very close, aside from the
random effects models where the panel-robust standard errors are underestimated be-
cause they are computed for the regression (21.10), which ignores estimation error in A.

The third standard error estimate is the standard default computer output that is
based on the assumption of iid errors. In this example the correctly estimated standard
errors are a remarkable three to four times as large as the default standard errors. The
one exception is the between estimator, an estimator with standard errors that need
only correction for heteroskedasticity since it uses only cross-section variation.

For example, for the pooled OLS estimator of B the default standard error is 0.09,
leading to incorrect z-statistic of 9.07. The panel-robust standard error is a much
larger 0.30, leading to correct ;-statistic of a much smaller 2.83. Default standard er-
rors assume independence of model errors over ¢ for given i when in practice they
are likely to be positively correlated. This erroneous assumption overestimates the
benefit of additional time periods, leading to downward bias in standard errors (see
Section 21.5.4). Additionally, ignoring heteroskedasticity in errors also leads to bias,
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though this bias could be in either direction. For these data a failure to control for
heteroskedasticity also imparts a large downward bias: The standard error of 5P0Ls
controlling for heteroskedasticity, but not for correlation over ¢ for given i, is 0.020.
For other data, correction for heteroskedasticity is usually much less important than
the correction for panel correlation.

For the within and between estimators inclusion of the term «; should control for
some of the correlation in the error across time for a given individual. For these data,
however, the differences between panel-robust and nonrobust standard errors remain
large, in part because of failure to additionally control for heteroskedasticity.

Clearly panel-robust standard errors should be used.

21.3.3. Graphical Analysis

It is insightful to perform a graphical comparison of overall, between, and fixed effects
(within or first-differences) regressions. Such plots are rarely performed in panel data
regression, but they are easily applied here as there is only one regressor.

All plots include a nonparametric regression curve using the Lowess smoother (see
Section 9.6.2) and a linear regression curve that corresponds to the estimates given in
Table 21.2.

Figure 21.1 plots Inhrs against Inwg for all firms in all years (5,320 observations).
The plot suggests a positive relationship, roughly linear except at the extreme ends,
and from Table 21.2 the line has slope 0.083 with a low R? = 0.015.

The between estimator (21.7) regresses ¥; on %;. The corresponding plot for the
Inhrs—Inwg data is given in Figure 21.2 and again shows a positive relationship.

The within or fixed effects estimator (21.8) regresses (yi; — ¥i) on (xj; — X;).
Figure 21.3 gives the related plot of (yir — ¥ + ¥) on (xiy — X; + X), where y =

N7'Y, 9 and ¥ = N~! }_; %; are the grand means of y and x. Comparison with Fig-
ure 21.1 shows that differencing the individual mean leads to a considerable decrease
in the range of variability in Inwg, with less of a decrease in the variability of Inhrs.

Pooled (Overall) Regression

Log annual hours

Original data
Nonparametric fit
Linear fit

T T

4
Log hourly wage
Figure 21.1: Hours and wages: pooled (overall) regression. Natural logarithm of annual
hours worked plotted against natural logarithm of hourly wage. Data for 532 U.S. males for
each of the ten years 1979-88.
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8.5

Between Regression

8
I

75

7
1

Log annual hours

Averages
Nonparametric fit
Linear fit

6.5

—
5

Log hourly wage

Figure 21.2: Hours and wages: between regression. Ten-year average of log hours plotted
against ten-year average of log wage for 532 men. Same sample as Figure 21.1,

The slope does appear steeper than that for pooled OLS, and from Table 21.2 the slope
increased from 0.083 to 0.168.

The first-differences estimator (21.9) regresses (y;; — Yir—1) on (x;; — x;,_;). The
corresponding plot for the Inhrs — Inwg data is given in Figure 21.4. The figure is
qualitatively similar to Figure 21.3.

The conclusion of the preceding analysis is that there is greater response to wage
changes using time-series variation than using cross-section variation.

21.3.4. Residual Analysis

It is instructive to consider the autocorrelation patterns of the data and of residuals. For
example, for residuals %;, = Yir — ¥, the autocorrelation between period s and period
t is calculated as Pst = Cyt //CssCut, s, =1, ..., T, where the covariance estimate
Cor =N = D7 3@ — )@y — ) and %, = N1 Y .

Within (Fixed Effects) Regression

Log annual hours

Deviations from average
Nonparametric fit
wemmeseess Linear fit

T T

2 3
Log hourly wage
Figure 21.3: Hours and wages: within (fixed effects) regression. Deviation of log hours

from ten-year average plotted against deviation of log wage from ten-year average using
ten years of data for 532 men. Same sample as Figure 21.1,
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First Differences Regression

Log annual hours

First differences
Nonparametric fit

wemeemeseen Linear fit

T T ]

0 1 2 3
L.og hourly wage
Figure 21.4: Hours and wages: first differences regression. First difference of log hours

plotted against first difference of log wage using ten years of data for 532 men. Same
sample as Figure 21.1.

Table 21.3 gives the residual autocorrelations after pooled OLS regression of Inhrs
on Inwg. The autocorrelations generally lie between 0.2 and 0.4 for data two to nine
periods apart. The decay rate is very slow, and the autocorrelations appear closer to a
random effects model that assumes that Cor{u;,, u;;] is constant for ¢t # s than to an
AR(1) model that has exponential decay.

The autocorrelations for Inhrs before regression are very similar to those given in
Table 21.3, since %;; ~ y;; as evident from the poor explanatory power of pooled OLS
with R2 = 0.015. The autocorrelations for the regressor Inwg, not tabulated here, are
much higher, ranging from approximately 0.9 at one lag, to 0.7 at nine lags.

The correlations of the residuals from the within regression are given in Table 21.4.

If the original errors ¢, in (21.3) are iid then it can be shown that the transformed
errors ¢;; — §; have autocorrelations at all lags equal to —1/(T — 1) = —0.11. There
is some departure from this here, particularly for the first lag, which is always positive.

Table 21.3. Hours and Wages: Autocorrelations of Pooled OLS Residuals®

u79 u80 usl u82 u83 u84 u8s u86 u87 uss

upols79  1.00

upols80 33 1.00

upols81 44 40 1.00

upols82 .30 31 57 1.00

upols83 21 23 .37 47  1.00

upols84 20 23 32 34 64 100

upols85 24 32 41 35 .39 58 1.00

upols86 20 .19 28 25 31 35 40 100

upols87 .20 32 33 29 31 34 39 35 1.00
upols88 16 .25 30 26 .21 .25 34 55 53 1.00

a Note: Autocorrelations of residuals are from pooled OLS regression of Inhrs on inwg for 532 men in 10 years.
The autocorrelations die slowly.
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Table 21.4. Hours and Wages: Autocorrelations of Within Regression Residuals®

u79 uso usl u82 us3 us4 uss u86 u87

ufe79 1.00

ufe80 10 1.00

ufe81 21 .08 1.00

ufe82 00 -.04 260 1.00

ufe83 —-26 -—-.27 .21 .01 1.00

ufe84 -26 -27 -30 -.20 32 1.00

ufe85 —-.18 -.10 -.11 —17 -.16 17 0 1.00

ufe86 —-.19 -25 -26 -27 —-17 -.14 —08 1.00

ufe87 —-15 -05 -16 -20 -24 —-21 —.09 -.09 1.00
ufe88 -—-.17 —-11 -14 -.18 —-38 -—.31 13 24 24 1.00

¢ Autocorrelations of residuals are from within (fixed effects) regression of Inhrs on Inwg for 532 men in 10
years.

The correlations of the residuals from random effects regression are quite simi-
lar to those for fixed effects given in Table 21.4. The correlations of residuals from
first-differences regression are qualitatively similar to the theoretical result that if the
original errors &;, in (21.3) are iid then the transformed errors &;, — €;,_; have autocor-
relations of 0.5 at lag one and 0 at other lags.

21.4. Fixed Effects versus Random Effects Models

The fixed effects model has the attraction of allowing one to use panel data to establish
causation under weaker assumptions (presented in Section 21.4.1) than those needed
to establish causation with cross-section data or with panel data models without fixed
effects, such as pooled models and random effects models.

In some studies causation is clear, so random effects may be appropriate. For exam-
ple, in a controlled experiment such as crop yield from different amounts of fertilizers
applied to different fields the causation is clear. In other cases it may be sufficient to
use a random effects analysis to measure the extent of correlation, with determination
of causation left to further research taking other approaches. The effect of smoking on
lung cancer is an example. Economists are unusual in instead preferring a fixed effects
approach, however, because of a desire to measure causation in spite of reliance on
observational data.

The fixed effects model has several practical weaknesses. Estimation of the coeffi-
cient of any time-invariant regressor, such as an indicator variable for gender, is not
possible as it is absorbed into the individual-specific effect. Coefficients of time-
varying regressors are estimable, but these estimates may be very imprecise if most
of the variation in a regressor is cross sectional rather than over time. Prediction of the
conditional mean is not possible. Instead, only changes in the conditional mean caused
by changes in time-varying regressors can be predicted. Even coefficients of time-
varying regressors may be difficult or theoretically impossible to identify in nonlinear
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models with fixed effects (see Chapter 23). For these reasons economists also use ran-
dom effects models, even if causal interpretation may then be unwarranted.

21.4.1. Fixed Effects Example

Consider the effect of computer use on wage. Several cross-sectional studies, most no-
tably those by Krueger (1993) and DiNardo and Pischke (1997), find that computer use
in a job is associated with substantially higher wages, even after controlling for many
determinants of the wage such as education, age, gender, industry, and occupation. As
emphasized by DiNardo and Pischke (1997) this does not necessarily imply causa-
tion, if regressors are correlated with the error term owing to endogeneity or omitted
variables.
Specifically, we suppose that in the cross section

yi=xB+ai+e,

where y is the natural logarithm of wage, x is a vector of individual characteristics
including an indicator variable for computer use at work, and ¢ is an error that is
assumed to be independent of x. The complication is the addition of the unobserved
variable «, which is assumed to be correlated with computer use at work, and hence
with the observed regressors x, even though the components of x other than computer
use, such as occupation and education, may partly control for computer use at work.
Regression of y on x leads to omitted variables bias leading to inconsistent estimates
of 3 as the combined error (o + ¢) is correlated with x.

Panel data offer a way around this problem, if we assume that the unobserved vari-
able o; is time-invariant. Then

!
Yir = x,’,ﬂ + a; + i,

where again ¢ is uncorrelated with x and « is correlated with x. Differencing eliminates
a; (see Section 21.2.2), permitting consistent estimation of 3. For the computer use
example, the causative effect of computer use on wages is then measured by the associ-
ation between individual changes in wages and individual movements to or from a job
with a computer. Haisken-DeNew and Schmidt (1999) found no effect using German
panel data.

This fixed effects panel approach permits determination of causation under weaker
assumptions than those of cross-section analysis, but it still requires assumptions. The
key assumption is that the unobservables «; are time-invariant, rather than being of
more general form a;,. In the computer use example it is being assumed that an in-
dividual’s propensity to have a job with a computer may be endogenous, but the un-
observed component of the effect of this propensity a; on wage is constant over time
once we control for observables x;,. Essentially the particular time periods in which an
individual’s job does or does not involve use of a computer are assumed to be purely
random, once we control for time-invariant unobservable a; and observable Xx;;.

A random effects or pooled panel approach does not have similar properties. It
instead assumes away the original concern that « is correlated with X, since it as-
sumes that « is iid [0, o'2] and hence is uncorrelated with x. This leads to inconsistent
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parameter estimates if in fact « is correlated with x, whereas the fixed effects estimator
is consistent if « is correlated with x, provided « is time-invariant,

21.4.2. Conditional versus Marginal Analysis

Fixed effects estimation is a conditional analysis, measuring the effect of x;, on y;
controlling for the individual effect o;. Prediction is possible only for individuals in
the particular sample being used, and even then it is only possible if the panel is long
enough so that o; can be consistently estimated. Random effects estimation is instead
an example of marginal analysis or population-averaged analysis, as the individual
effects are integrated out as iid random variables. The random effects estimators can
be applied outside the sample.

If the true model is a random effects model, then whether to perform a conditional
or marginal analysis will vary with the application. If analysis is for a random sample
of countries then one uses random effects, but if one is intrinsically interested in the
particular countries in the sample then one does fixed effects estimation even though
this can entail a loss of efficiency.

If the true model instead has individual-specific effects correlated with regressors,
however, then a random effects analysis is no longer meaningful as the random effects
estimator is inconsistent. Instead, alternative estimators such as the fixed effects and
first-differences estimators are necessary. Because of the desire to determine causation
microeconomic applications emphasize these latter estimators.

21.4.3. Hausman Test

If individual effects are fixed the within estimator ﬁw is consistent whereas the random
effects estimator Gy, is inconsistent. Here (3 refers to the vector of coefficients of just
the time-varying regressors. One can therefore test whether fixed effects are present by
using a Hausman test of whether there is a statistically significant difference between
these estimators. Alternatively, any other pair of estimators with similar properties,
such as first differences versus pooled OLS, can be used.

A large value of the Hausman test statistic leads to rejection of the null hypothesis
that the individual-specific effects are uncorrelated with regressors and to the conclu-
sion that fixed effects are present. It may still be possible to avoid using a fixed effects
model. If regressors are correlated with individual-specific effects caused by omitted
variables, then one can add further regressors, either time varying or time-invariant,
and again perform a Hausman test in this larger model to see whether fixed effects are
still necessary. Even if such correlation persists it may be possible to estimate a random
effects model using instrumental variables methods (see Sections 22.4.3-22.4.4).

Computation When RE Is Fully Efficient

We begin by assuming that the true model is the random effects model (21.3) with a;
iid [0, 03] uncorrelated with regressors and error &;, iid [0, UZ].
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Then the estimator ERE is fully efficient, so from Section 8.3 the Hausman test
statistic simplifies to

H= (BI,RE - BI,W)/ W[Bl.w] - ?[Bl,RE]]ﬁ] (EI.RE - BI,W) ,

where 3, denotes the subcomponent of 3 corresponding to time-varying regressors
since only that component can be estimated by the within estimator. This test stastistic
is asymptotically x2(dim[(3,]) distributed under the null hypothesis.

Hausman (1978) showed that an asymptotically equivalent version of this test is to
perform a Wald test of v = 0 in the auxiliary OLS regression,

Yir = A3 = (1 = M+ Kiiy — 2%0,)' By + Kiir — K11)'y + vir, (21.15)

where x;;, denotes the time-varying regressors and X is defined in (21.11) and only
the time-varying regressors are used. This algebraic result can be 1nterpreted as fol-
lows. The individual-specific effects model (21.10) implies that v;, = (1 — A)a,
(ei; — Ae )- The random effects estimator is actually obtained by OLS estimation of
(21.15) with v = 0 (see (21.10)). If instead the fixed effects specification is valid then
the error v;; will be correlated with the regressors, via correlation of «; with regres-
sors. This correlation leads to additional functions of the regressors, such as (x;; — X;),
being statistically significant variables in (21.15).

Computation When RE Is Not Fully Efficient

The simple form of the Hausman test is invalid if «; or &, are not iid, which is
more than likely given heteroskedasticity inherent in much microeconometrics data.
Then the RE estimator is not fully efficient under the null hypothesis so the expres-
sion V[,BW] - V[,BRE] in the formula for H needs to be replaced by the more general
V[,BRE BW] (see Section 8.3).

For short panels this variance matrix can be consistently estimated by bootstrap
resampling over i (see Section 21.2.3). Then a panel-robust Hausman test statistic is

Hrobust = (EI.RE - EI,W)I [VBOOI[ELRE - Bx,w]]_l (BI,RE - EI,W) ,  (21.16)

where

B 7
i7130m[ﬁ1,mz - E}.w] = B—l—l (51; - 5) (‘51; *3) ,
T b=
b denotes the bth of B bootstrap replications (see Section 21.2.3), and b= Bl RE —
ﬂ, w- This test btdtlSth can be applied to subcomponents of 3, and | can use alternative
estimators such as ,81 poLs in place of ,81 rg and 51 rp in place of;Bl w-

Alternatively, Wooldridge (2002) suggests estimating the auxiliary OLS regression
(21.15) and testing v = 0 using panel-robust standard errors. If the effects are random,
though not necessarily such that o; and ¢;, are iid, then v;, = (1 — ’):)a,- + (&, — ’):é,-) 18
still uncorrelated with regressors though v;, is no longer asymptotically iid, so cluster-
robust standard errors need to be used. If the effects are fixed then the error v;, is
correlated with the regressors, leading to significance of additional functions of the
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regressors such as (x;; — X;). This robust version of the auxiliary regression for the
Hausman test is preferred to one that assumes v;, is asymptotically iid, on the usual
grounds of minimizing distributional assumptions. However, it is not clear whether
this test actually coincides with the Hausman test when RE is inefficient.

Hausman Test Example

For the Inhrs-lnwg example estimates given in Table 21.2, a comparison of FE
and RE estimates using the default standard errors yields H >~ (0.168 — 0.119)%/
(0.019% — 0.014%). This leads to H = 14 > x2,(1) = 3.84, so the random effects
model is rejected.

This test is not appropriate, however. The statistic H is inflated because the usual
standard errors in this example are greatly downward biased (see Section 21.3.2). Fur-
thermore, this bias is a signal that the RE estimator is not fully efficient under Hp, so
that the more general form of the Hausman test needs to be used.

The auxiliary regression (21.15) yields a panel-robust z-statistic for 7 of 1.28 and
hence H* = 1.28% = 1.65, leading to nonrejection of the random effects model at 5%.
Even though the wage elasticity estimates differ by 0.049, the estimates are sufficiently
imprecise that the difference is not statistically significant. Note that if the nonrobust ¢-
statistic for 7 is used instead, then 12 = 13.69, close to the previous incorrect Hausman
test statistic.

21.4.4. Richer Models for Random Effects

The random effects model specifies that the random effect o; is distributed indepen-
dently of regressors. Richer models, closer in spirit to fixed effects models, relax this
assumption.

Mundiak (1978) allowed individual effects in the panel model (21.3) to be deter-
mined by time averages of the regressors, so that o; = X7 + w;, where w; is iid.
Then efficient GLS estimation of 3 and = in this expanded model leads to an estima-
tor of 3 that equals the fixed effects estimator in model (21.3). By contrast the usual
random effects estimator of B in model (21.3) that erroneously specifies iid random
effects will be inconsistent.

Chamberlain (1982, 1984) considered an even richer model for the random effects,
with a; = X, m, + - - - + X, w7 + w;, a weighted sum of the regressors. He proposed
estimation by minimum distance methods (see Section 22.2.7 for details), leading to
an estimator of 3 that equals the fixed effects estimator.

More generally, mixed linear models and hierarchical linear models of Section 24.6
permit quite general models for random intercepts and also random slope parameters.
Bayesian analysis of panel data also uses this framework. See Section 22.8 for details.

In linear models the fixed effects approach is used if the unobserved individual
effect is correlated with regressors. In more complicated models, such as nonlinear
models, fixed effects models are not always estimable and richer random effects mod-
els provide an alternative approach.
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21.5. Pooled Models

The pooled cross-section time-series model or constant-coefficients model is
Vie =0+ X' B + uy,. 21.17)

In the statistics literature the model is called a population-averaged model, as there
is no explicit model of y;; conditional on individual effects. Instead, any individual
effects have implicitly been averaged out. The random effects model is a special case
where the error u;, is equicorrelated over 7 for given i (see Section 21.2.1).

The main complication for statistical inference, assuming no fixed effects, is that
the distribution of least-squares estimators of this model varies with the assumed dis-
tribution of ;;. In short panels, panel-robust standard errors can be obtained using
(21.13).

Here we instead focus on GLS estimation using many of the different specifications,
including equicorrelation, for the covariance structure of u;; over time and individuals
that have been proposed in the literature.

Although we focus on pooled GLS estimation of (21.17), a model without
individual-specific fixed effects, the methods of this section can be applied more gen-
erally to pooled GLS estimation of the transformed model (21.12) of Section 21.2.3.

21.5.1. Pooled OLS, FGLS, and WLS Estimators

It is convenient to use matrix notation. Combining observations over time for a given
individual, define

yi =W;é +u,, (2L.18)

where 6 =[o BT isa (K +1)x | parameter vector, y; and w; are 7 x 1 vectors
with zth entries y;; and u;,, respectively, and W; isa T x (K + 1) matrix with ¢th row
w;, = [l x;,]’. Stacking all individuals yields

y =W +u. (21.19)

where y and u are NT x 1 vectors, for example y=1I[y,...yy], and W is an
NT x (K + 1) regressor matrix whose first column is a vector of ones. We assume
that E[u|W] = 0, so errors are strictly exogenous, and define € = Eluuw’ |W].

There are several possible least-squares estimators of this model, summarized in
Table 21.5.

First, pooled OLS is consistent and asymptotically normal. However, in a panel
setting it is unlikely that Q =o%Iy7, so OLS is inefficient except in some special
cases such as when all regressors are time-invariant. More importantly, the usual OLS
variance estimate of o2(W'W)~! should not be used and a panel-robust estimate such
as that in (21.13) needs to be used.

Second, pooled feasible GLS (PFGLS) is consistent and fully efficient if €2 is cor-
rectly specified and € is consistent for 2. Some of the very large range of structures
on u;; and hence 2 that have been proposed in the panel literature and incorporated
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21.5. POOLED MODELS

Table 21.5. Pooled Least-Squares Estimators and Their Asymptotic Variances

Estimator Formula® Variance Matrix®

Pooled OLS: dpors  (W'W)~!W'y (WW)~ ' WOWWW)~!

Pooled FGLS: Sprors (W' ﬁ"wr’w Qly (W’ﬁ"W)—

Pooled WLS: 8pwis (WS W) 'wS™ly WS~ W)—'w' $105-'w
x(WE'w)!

2 The formulas are for the model y = W§ + u defined in (21.19) and error matrix §2.
b For computation of $ for the variance matrices of POLS and PWLS see the text; in those cases Q
need not be consistent for €2. For pooled FGLS it is assumed that $ is consistent for Q.

into regression packages are given in Sections 21.5.2 and 21.5.3 for, respectively, short
and long panels.

Third, the pooled weighted LS (PWLS) estimator guards against misspecification
of . It posits a working matrix X for the error variance matrix €2 but then per-
forms inference that is valid even if X # €. Ordinary least squares is an example,
with 3 = ¢ 21y, but other choices of ¥ may improve efficiency.

Estimation of the variance matrix of the pooled OLS estimator requires an Q such
that (NT)~'W'QW consistently estimates (NT)™'W/QW.

For short panels this is possible by direct application of the results of Section 21. 2.3.
Estimation of the varlance matrix of the pooled WLS estimator requires an € such that
(NT)"'WS Q5 'W consistently estimates (NT)"'W'S~'QE~'W. The panel-
robust estimate for OLS given in (21.13) can be adapted to pooled WLS by replacing
wWX'QX "W, or equivalent]y YW ’)J_IE[u W |W;1Z7'W; given independence
over i, by the quantity ) ; W; ’2 IAA’Z W;, where u; = y; — W,@. Alternatively,
a panel bootstrap can be used.

21.5.2. Error Variance Matrix for Short Panels

In short panels there are few time periods but many individuals, usually peo-
ple or firms. It is assumed that errors are independent over individuals, so that
Covlu;, ujs] =0, i # j. In such cases it is convenient to revert to summation no-
tation. For example, the PFGLS estimator given in Table 21.5 becomes

N -l N
A 7> =3
BrrcLs = [Z W, 1W,-] ZW,- Q vy, (21.20)
i=1 i=1
where ﬁ,- is consistent for
Q; = E[u;u;|W;], (21.21)

and €; is nondiagonal as errors for a given individual are likely to be correlated over
time. Note that Q needs to come from estimation of a specified model for €2;, and we
cannot use Q = U, (see the related discussion after equation (5.88)).

721



LINEAR PANEL MODELS: BASICS

Equicorrelated Errors

The most commonly used error structure is the random effects model presented in
tion 21.2.1. Then from (21.6) £2; has common diagonal entries 62 + o2 and ¢
off-diagonal entries o2. Equivalently, the errors are equicorrelated, with 0
common diagonal entries o> and common off-diagonal entries po2. Impleme:
of FGLS requires only estimation of 2 and o2, or of o2 and p (see Sections 2
and 21.7).

ARMA Errors

An alternative error structure is to assume an ARMA error model. For example,
an AR(1) error model specifies that u;; = pu;,— + &;;, where &;; are iid. Then
Covlu;;, uis] = p"~*lo2. In this case the covariance between errors falls as the number
of time periods between the errors increases. The RE model and an AR(1) error mode! -
are compared in Section 21.5.4.

Baltagi and Li (1991) combine the two error models to consider a random effects
model with AR(1) errors. This can be easily generalized to the AR(p) case, and meth-
ods for moving average and ARMA errors (see Section 5.8.7) in random effects mod-
els have also been developed more recently. A summary is given in Baltagi (2001,
Chapter 5).

Homoskedastic Errors with Unstructured Autocorrelation

For FGLS estimation in short panels there is actually no need to impose as mug

structure as that imposed by an RE model or an AR(1) error model, if the assumpt'lyr
is made that the T x T matrix §2; is constant over i. Then there are “only” T(T + 1)/
covariance parameters to estimate. A consistent estimate of £2; is then Q with (7, s),
entry G, = N1 Zi=1 W;ii;s. The preceding models also assume homoskedasticit
but place additional structure on £2;. '

Robust Inference

All of the preceding specifications assume that error covariances are the same across
individuals, which rules out heteroskedasticity. Provided the panel is short one-can
nonetheless use the preceding restrictive error variance matrix models as the basis
for pooled WLS estimation, but then obtain robust standard errors as discussed af-
ter Table 21.5. Alternatively, richer mixed models, presented in Chapter 22, can be/
estimated.

The assumption of independence over i is maintained throughout Chapters 21-23,
though it can be relaxed even for small T provided structure can be placed on the
correlation. An example is an explicit model for spatial correlation for panel data on
regions such as states or countries, with correlations declining as physical distance
between individual observations increases. »
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21.5. POOLED MODELS

21.5.3. Error Variance Matrix for Long Panels

In long panels there are many time periods but relatively few individuals. Such data
can arise in microeconometrics analysis if the individual observational unit is one of
only a few regions, such as a state or country, or firms, but these are observed over
enough time periods to base inference on the assumption that T — 00.

Correlation across time for a given individual can be introduced using an ARMA
model for the errors, with the parameters of the ARMA model permitted to differ
across individuals as now N is fixed and T — oo. For example, consider an AR(1)
error with uj; = pjui -1 + €ir, where &; ~ [0, o,?] is heteroskedastic and p; also dif-
fers across individuals. Separate regressions of y;; on w;; with AR(1) errors for each
individual using T time periods yields consistent estimates 7; and 62, since T — o0.
These can then be used for feasible GLS estimation of & using all NT observations.
For details see Kmenta (1986). This model permits both heteroskedasticity across in-
dividuals and correlation over time for a given individual. Pesaran (2004) proposes a
considerably richer model that is estimated by GLS.

For long panels it is possible to introduce correlation across individuals, so that
Cov{u;,, ujl # 0fori # j, since N is fixed and asymptotic resultsrelyon T — oo. In
particular, one can perform pooled GLS estimation as done earlier, with the assumption
of independence across individuals, but then calculate standard errors using the method
of Newy and West (1987b), mentioned briefly in Section 6.4.4, that permits arbitrary
cross-sectional dependence and serial dependence, provided the serial dependence dies
away sufficiently fast. For details see Arellano (2003, p. 19).

Time-series considerations for panel data are discussed in more detail in Section
22.5 for models with lagged dependent variables as regressors.

21.5.4. The Impact of Autocorrelated Errors

Panel data regression models have errors that are usually autocorrelated over time
for a given individual. If fixed effects are absent then pooled OLS regression gives
consistent parameter estimates. However, the error correlation can lead to large bias
in standard errors for pooled OLS if autocorrelation is ignored and to relatively small
efficiency gains as the length of a panel is increased.

The analysis is particularly simple for estimation of the mean of y based on T
observations for one individual (so N = 1) with equicorrelation. Then y, = B+ u,,
and the OLS estimator is the sample mean, so 3 =y = T~'3, ;. The OLS estimator
has true variance V[B] = V[§] = T2Y, >, Covlu,, u;]. Assuming equicorrelation
the double sum has T variances equal to o and T(T — 1) covariances all equal to po?.
Hence V[7] = T~'02(1 4+ (T — 1)p). Thus the iid result that V[j] = T~ '0? needs to
be modified by inflation by a multiple (1 + p(T — 1)). In particular V[y] approaches
oZasp — 1.

Table 21.6 presents the impact of correlation on the variance of ¥ for different values
of T and p, where for simplicity we normalize o? = 1. The precision of estimation
falls considerably as p increases, and the estimate of V[y] under the assumption of
independence given in the first column (assuming o2 is known for simplicity) can
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Table 21.6. Variances of Pooled OLS Estimator with Equicorrelated Errors®

T p=00 p=102 p=04 p=0.6 p=038 p=1L10

1 1.00 1.00 1.00 1.00 1.00 1.00
2 0.50 0.60 0.70 0.80 0.90 1.00
5 0.20 0.36 0.52 0.68 0.84 1.00
10 0.10 0.28 0.46 0.64 0.82 1.00

“ Given are the variances of the pooled OLS estimator as the correlation p of equicorrelated errors increases,
for an intercept-only model with error variance normalized to one assuming errors are correlated though
homoskedastic.

greatly understate the true variance. Furthermore, for p > 0 the gain in precision due
to increase in the number of time periods is much smaller than with independent data
where a doubling of the number of time periods will halve estimator variance. For
example, if p = 0.4 then with five time periods the estimator variance is only 0.52
times that with one period, instead of the much lower multiple of 0.2 with independent
data. Moreover, a doubling from 5 to 10 time periods leads to only a small reduction
in estimator variance from 0.52 to 0.46.

This result holds more generally for balanced panel regression with equicorrelated
errors and regressors that are time-invariant, where the true variance of the OLS es-
timator is (1 + p(7T — 1)) times that assuming independent errors (see Kloek, 1981).
In practice time-varying regressors are also included and clear analytical results are
more difficult to obtain. For regression with intercept and single time-varying regres-
sor, Scott and Holt (1982) show that the variance of the slope coefficient is inflated
by the multiple (1 + %, 0(T — 1)), where P, can be viewed as an estimate of the
individual-specific autocorrelation in x. For panel data p, is often high so that there
is still considerable inflation. These results also apply to other forms of clustered data
and are presented in more detail in Section 24.5.2.

The preceding analysis assumes equicorrelated errors, a property of the RE model.
If instead errors are AR(1) there is greater benefit from increasing panel length.
Then Coviu, us] = p"l62, s0 V[3] = T-262[T + 2 7-(T - 5)0°]. For exam-
ple, if p = 0.8 then V[$] = 0.7202 for T = 5 and 0.5402 for T = 10, lower than the
corresponding values from Table 21.6 of 0.84¢2 and 0.8202 for equicorrelation with
© = 0.8, but still much higher than values of 0.2¢'2 and 0,102 for p = 0.0.

Microeconometricians gravitate to the RE model or equicorrelated error models for
short panels as an outgrowth of the literature on clustered data presented in Chapter 24.
For example, consider data on different siblings in a family for many families. Then
it is natural to assume that correlations of unobservables across siblings in the same
family are the same for different siblings pairs. For example, the correlation between
the first and second siblings equals that between the first and third siblings. Those using
long panel data instead often have a time-series background and naturally assume that
correlation declines over time, leading to models such as an AR(1) error.

Determining which model of time-series correlation is more reasonable really de-
pends on the data. Many short panels used in microeconomics applications yield
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pooled OLS residual autocorrelations that are qualitatively similar to those given in
Table 21.3. These are closer to an RE model than an AR(1) model, though an
ARMAC(1,1) model may do well. Better still may be an RE model with AR(1) error.
In all cases error correlation leads to a loss of information and the usual OLS standard
errors understate the true standard errors. For short panels one can base inference on
panel robust standard errors (see Section 21.2.3) that do not require specifying a model
for the error correlation.

21.5.5. Hours and Wages Pooled GLS Example

A variety of pooled GLS estimates and associated default and robust standard errors
of the model y;; = a; + Bx;; + u;, for the Inhrs on Inwg regression are given in Ta-
ble 21.7. All assume the error u;, is independent over i and identically distributed over
i, and then have different assumptions on correlation in u;, over t.

The first column of Table 21.7, for the pooled OLS estimator, repeats the first col-
umn of Table 21.2.

Pooled GLS estimates assuming equicorrelated errors are given in the second col-
umn of Table 21.7. These coincide with the RE-GLS column in Table 21.2, since the
random effects model implies equicorrelated errors (see (21.6)).

Pooled GLS estimates assuming AR(1) errors, so that u;; = pu;;—1 + & where &;;
is iid, are given in the third column of Table 21.7. The slope coefficient estimate is
close to the pooled OLS estimate.

Pooled GLS estimates with no structure placed on error correlation aside from
homoskedasticity, so that Cov[u;,, u;s] = oy, are given in the fourth column of Ta-
ble 21.7. Then o, is consistently estimated given small T by 7, = N -1 va=1 Ui s
for all 7 and s. These are again close to the pooled OLS estimate.

It is clear from Table 21.7 that panel-robust standard errors should be used rather
than the default standard errors, which here assume homoskedasticity and correctly-

specified model for serial correlation.

Table 21.7. Hours and Wages: Pooled OLS and GLS Estimates®

. POLS PFGLS
Estimator
Error correlation None Equi AR1 General
o 7.442 7.346 7.440 7.426
B .083 120 .084 .091
Robust se (.029) (.052) 037 (.050)
Boot se [.032] [.060] [.050] (-1
Default se {.009} {.014} {.012} {.014}

4 Pooled OLS and GLS linear panel regression of Inhrs on Inwg for a short panel as-
suming independence and identical distribution over i and no fixed effects. Pooled
GLS estimators assume equicorrelated or random effects errors (equi), AR(1) errors
(AR1), or no structure on the correlations (general). Standard errors for the slope
coefficients are panel robust in parentheses, panel bootstrap in square brackets, and
usual default estimates that assume iid errors in curly braces.
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21.6. Fixed Effects Model

The fixed effects model specifies
Yir = ; +X;,0 + €4, (21.22)

where the individual-specific effects a;, ..., oy measure unobserved heterogeneity
that is possibly correlated with the regressors, x;; and 3 are K x 1 vectors, and to
begin with the errors ¢;, are iid [0, 02).

The challenge for estimation is the presence of the N individual-specific effects
that increase in number as N — oco. For practical purposes we are most interested
in the K slope parameters 3, which give the marginal effect of change in regressors
since dE[y;]/0x;; = B. The N parameters ¢, ..., ay are nuisance parameters or
incidental parameters that are not of intrinsic interest. Nevertheless, their presence
potentially prevents estimation of the parameters (3 that are of interest.

Remarkably, for the linear model there are several ways to consistently estimate
B despite the presence of these nuisance parameters. These include (1) OLS in the
within model (21.8); (2) direct OLS estimation of the model (21.2) with indicator
variables for each of the N fixed effects; (3) GLS in the within model (21.8); (4) ML
estimation conditional on the individual means ¥;,7/ =1, ..., N; and (5) OLS in the
first-differences model (21.9).

The first two methods always lead to the same estimator for 3. So too does the
third if additionally the ¢;, in (21.22) are iid and the fourth if &;, ~ N[0, o2]. The last
estimator differs from the others for T > 2. Such equivalences generally do not hold
in nonlinear models, which are considered in Chapter 23.

The essential results for the within estimator are given in the next Section. The first-
differences estimator, presented in Section 21.6.2, is extensively used in Chapter 22
when regressors are no Jonger strongly exogenous. The other estimators are presented
in the remainder of Section 21.6, which some readers may wish to skip.

21.6.1. Within or Fixed Effects Estimator

The within model is obtained by subtraction of the time-averaged model y; = o; +
X;'3 + &; from the original model. Then

Yir = Vi = Xie — XY B + (61 — &), (21.23)
so the fixed effect «; is eliminated, along with time-invariant regressors since X;; —
X; = 0if x;, = x,; for all ¢.

Using OLS estimation yields the within estimator or fixed effects estimator Bw,
where

'y 7T
Bw = [Z D i — %) Xip — i,-)’] DO i — & — 5. (21.24)
i i=1 r=1

i=1 t=1

The individual fixed effects a; can then be estimated by

(21.25)




21.6. FIXED EFFECTS MODEL

The estimate @; is unbiased for o;, and it is consistent provided T — oo since a;
averages T observations. In short panels the estimates &; are inconsistent, but Ew is
nonetheless consistent for 3. The a; are viewed as nuisance parameters or ancillary
Parameters that fortunately do not need to be consistently estimated to obtain consis-
tent estimates of the more important slope parameters 3. This remarkable result need
Dot carry over to more complicated fixed effects models such as nonlinear models.

Consistency of the Within Estimator

The within estimator of 3 is consistent if plim(NT)~! Zi > (X — X)) (giy — &)=0.
This should happen if either N — 0o or T —s oo and

Elei — & lx; — %] = 0. (21.26)

Owing to the presence of the averagesX; = 7! _; Xir and ; this condition is stronger
than E[e;,|x;,] = 0. A sufficient condition for (21.26) is the strong exogeneity condi-
tion that E[g;, |x,q, ..., Xit] = 0. This precludes within estimation with lagged endoge-
nous variables as regressors (see Section 22.5).

Asymptotic Distribution of the Within Estimator

The distribution of Bw appears potentially complicated because the error (¢ir — &;) in
the within model (21.8) is correlated over ¢ for given i. It is shown in the following
that the usual OLS results nonetheless apply. Under the strong assumption that ¢;, is
iid,

N T =1
V[Bw] =02 [Z Ziirié,] , 21.27)

i=] r=1

where X;, = x;, — X;. A consistent and unbiased estimate of 052 is 3? =[NT-1) -
K171y, 3, 8%, where the degrees of freedom equal the sample size NT less the
number of model parameters X and the N individual effects. Note that if the regression
(21.23) is estimated using a standard least-squares package then we need to inflate the
reported variances by [N(T — 1) — K]~![NT — K]

For short panels (21.13) yields the robust estimate of the asymptotic variance

N T

-1 -1
V[ﬁw]=[ anﬁi,‘,] iZanig@,"e} [ZZ&,-,&;,] ., (21.28)

i=1 t=1 i=1 t=1 s=1 i=1 =1

where &;; = ¢;, — &;. This preferred estimate permits arbitrary autocorrelations for the
&, and arbitrary heteroskedasticity. ’
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Derivation of the Variance of the Within Estimator

We now derive the estimates of the variance of the within estimator given in (21.27)
and (21.28), using matrix algebra. We begin with the model for the izth observation

yie = & +X;,8+ &,

where x;, and 3 are K x 1 vectors. For the ith individual, stack all T observations, so

il i X} £i1
=|: |+ : B+ : , i=1,...,N,
it i Xir &
or
yi=ex; + X;3+¢e;, i=1,...,N, (21.29)
wheree = (1,1,...,1)Y isa T x 1 vector of ones, X; is a T x K matrix, and y; and

g; are T x 1 vectors.
To transform model (21.29) to the within model, which subtracts the individual-
specific mean, introduce the T x T matrix

Q=1I; — T 'ee. (21.30)
Premultiplication by the matrix Q creates deviations from the mean, since
QW, =W, —ew,, (21.31)

where W; is a T x m matrix with tth row w;, and W; = T-! Z:T=1 w;isamx1
vector of averages. The result (21.31) is obtained using ¢'W; = TW;. Note also that
QQ' = Q, using €’e = T and Qe = 0, so Q is idempotent.

Premultiplying the fixed effects model (21.29) for the ith individual by Q yields

Qy, =QX;8+Qg;, i=1,...,N, (21.32)

using Qe = 0. This is the within model (21.23), since equivalently y; — ey; = (X; —
eX)3 + (g; — e&;) using (21.31). Thus premultiplication by Q yields the within model.
An OLS estimation of (21.32) yields Ew with variance matrix, assuming independence
over I, equal to

-1

N -1y N
v[ﬁw]=[ZX;Q'Qx,-] D X, Q'VIQs; 1X/1QX; [ZX;Q'Qx,] . (21.33)
i=1 i=1 i=1

Begin with the strong the assumption that &;, are iid [0, 052], so that g; are iid
[0, 031]. The T x 1 error Qg; is then independent over i with mean zero and vari-

ance V[Qe;] = QVI[&;1Q = 02QQ’ = 02Q. Then

N N
D X{Q'VIQe;X:1QX; = Y X;Q'07QQX;

i=] i=1

N
=02 ) X;QQX,,

i=]
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so that (21.33) simplifies to the estimate given in (21.27), using

T
QX)) (QX) = Y _(xi — %)% = %)

t=1

At the time of writing many packages use (21.27) but alternative estimators may be
better. In particular, the assumption of serially uncorrelated error &;; is easily relaxed.
If €; are iid [0, X;] we use the more general form of the variance matrix (21.33) with
Cov[Qg;, Qe;] = 0, fori # j, and V[Qe;] replaced by (Q€))(QE;), where €; = y; —
X,-ﬁw. This yields the estimate given in (21.28).

From the derivation it should be clear that ﬁw is also consistent in the random
effects model, though as shown in Section 21.7 it is less efficient than the random
effects estimator if the random effects model is appropriate.

GLS Estimation of the Within Model

The within model (21.32) can also be estimated by feasible GLS.

If in fact ¢;, are iid [0, 03], however, then there are no gains to doing GLS. To see
this, note that then Qg; is independent of Qe ;, i # j, with VIQs] = O’EZQ, so the GLS
estimator is

N

N -1
Bw,oLs = [Z X Q/Q_Qxi] > X:QQQy;,
im1 i=1

where the generalized inverse Q~ is used as Q is not of full rank. However,
Q'Q~Q = Q'Q since Q'Q~Q = Q, for a generalized inverse, and Q = QQ’ as Q here
is idempotent. Replacing Q'Q~Q by Q'Q in the formula for Bwgys yields the OLS
estimator in (21.32).

There can be gains to GLS if other models for &;, are assumed. The approach is
essentially the same as that in Section 21.5.2 for pooled GLS without fixed effects,
except that first the fixed effect must be eliminated. This leads to error Qg; that is less
than full rank, so we first drop one time period and apply pooled GLS to only (T — 1)
time periods. It is easier, and often not much less efficient, to instead just use the usual
within FE estimator and then obtain panel-robust standard errors using (21.28).

MaCurdy (1982b) gives a Box-Jenkins-type analysis for identification and estima-
tion of ARMA processes for ¢;, in a fixed effects model for a short panel. For short
panels it is not necessary to assume an ARMA process for g; or even stationarity,
since for N — oo we can always consistently estimate Cov[u;;, uis]by N -1 Zi Wigllis.
Nonetheless, there may be interest in determining the ARMA process for the errors.

21.6.2. First-Differences Estimator

The within model is obtained by subtraction of the time-averaged model y; = a; +
%;'3 + &; from the original model. Alternatively, one can subtract the model lagged

729

>
5



LINEAR PANEL MODELS: BASICS

one period, y;;—1 = o; + X;,—1'B+¢;;_1. Then

Oie = Yig-1) = Kir = Xip 1Y B+ (6 — €4-1), t=2,...,T, (21.34)
so the fixed effect o; is eliminated. An OLS estimation yields the first-differences
estimator

R N T N T
Brp = [Z Z(Xl’t = Xi -1 )(Xir — Xi.t—l),} Z Z(Xn = Xie—)ir = Yiu—1)-
i=1 1=2 i=1 =2

(21.35)

Note that there only N(T — 1) observations in this regression. An easy error to make
in implementation is to stack all NT observations and then subtract the first lag. Then
only the (1, 1) observation is dropped, whereas all T first-period observations (i, 1),
i =1,..., N, must be dropped after differencing.

Consistency of the First-Differences Estimator

Consistency of the first differences estimator requires that E[g;, — Eir—11Xis — Xip—1]-
This is a stronger condition than E[g;,|x;,] = 0 but a weaker condition than the strong
exogeneity condition needed for consistency of the within estimator.

Asymptotic Distribution of the First-Differences Estimator

Statistical inference requires adjusting the usual OLS standard errors to account for the
correlat10n over time in the error term ¢;, — ¢, ,_;. To obtain the asymptotic variance
of ,BFD, stack the model for the ith individual as

Ay; = AX:ﬂ + Aeg,

where Ay; is a (T — 1) x 1 vector with entries (y;» — Yit)s - Vit — ¥i7-1), and
AX;isa(T — 1) x K vector with rows (x;2 — x;1), ..., (X; — X; 7-1). Then
R N Ry
Brp = [Z(AX»’(AX»} > (AXyy(ay) (21.36)
i=1 =
has variance matrix, assuming independence over i, of

N “Iry N -1

V[ﬂm]=[Z(Ax,->’(Ax,~)] [Z(Axn’vmsimxi]man [Z(AX;)/(AX,-)} :
i=1 i=1 i=1

(21.37) I

The simplest assumption is that &;, are iid [0, 03]. Then the error (¢;, — &; ,_) is now
an MA(1) error, with variance 2052 and one-period apart autocovariance %2 for individ- ;
ual i. It follows that V[Ae;] equals %2 times a (T — 1) x (T — 1) matrix with entries l
of 2 on the diagonal, entries of 1 on the immediate off-diagonals, and Os elsewhere. ‘
A more realistic assumption is that s;, is correlated over time for given i, so
that Cov[e;, g;,] # 0 for r # 5, but is still independent over . From (21.13), for
short panels an estimator that is robust to general forms of autocorrelation and l
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heteroskedasticity is (21.37) with V[Ag;] replaced by (Z\ei )’(ZE,-). One should never
use the usual OLS standard errors from OLS regression of the first-differences model
(21.37), as these are only correct in the unlikely event that &;, is a random walk, so that
(i — €i4—1) are iid.

For T = 2 the first-differences and within estimators are equal since y = (y1+
y2)/2 50 (y1 — ) = (0 — y2)/2 and (y2 — 5) = —(y1 — y2)/2, and similarly for x.
For T > 2 the two estimators differ. Under the simplest assumption that &;; are iid, it
can be shown that the GLS esﬁgator of the first-difference model (21.34) equals the
within estimator. The estimator Bgp instead estimates (21.34) by OLS and is less effi-
cient than By,. For this reason the first-difference estimator is not mentioned much in
introductory courses. However, it is used extensively once lagged dependent variables
are introduced (see Chapter 22). Then the within estimator is inconsistent. The first-
differences estimator is also inconsistent, but relies on weaker exogeneity assumptions
that permit consistent IV estimation.

21.6.3. Conditional ML Estimator

The conditional MLE maximizes the joint likelihood of y11, ..., YNT conditional on
the individual averages ¥i, ..., yr. This method has the attraction that, for the linear
panel model under normality, the fixed effects a; are eliminated, so maximization is
with respect to 3 alone.

Assume that y;; conditional on regressors X, and parameters a;, 3, and o? are iid
with normal distribution N [e; + x, 0, o2]. Then the conditional likelihood function
is

N
Leonp(B.0%, @) = [ | fOun, - vir13) (2138
i=1
N ity YiTs Fi)
G

T
{Z G — %, BF + (i — XiPY’)/20° ] :

=1

The first equality defines the conditional likelihood assuming independence over i.
The second equality always holds since, suppressing subscript i, fOr, .. yrl¥) =
f(}’l, sy YT y)/f(j’) and f()’l» ce ey YT S’) = f()’l, cee )’T) as kHOWIedge of y=
T71Y, yi adds nothing given knowledge of y1, ..., y1- The third equality under nor-
mality comes after considerable algebra that is left as an exercise.

The key result is that the fixed effects o do not appear in the final equality in (21.38),
s0 Lconp(8,02, a) is in fact Lconp(3,02), and we need to maximize the conditional
log-likelihood function (21.38) with respect to 3 and o2 only. The resulting condi-
tional ML estimator ﬁCML solves the first-order conditions

| I X
-3 (i — x;'yﬁ)xit -0 - ii‘ﬁ)’_‘.’] =0,
0% 3 =
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or equivalently

T N
2D 1O = 3 — (i — XY B, — %) = 0.

t=1 i=1

However, these are just the first-order conditions from OLS regression of (y;, — ¥:) on
(Xir — X;). R R

The conditional MLE B, therefore equals the within estimator By,

Intuitively, the method yields a consistent estimator because conditioning on
in (21.38) eliminated the fixed effects. More formally, y; is a sufficient statistic for
«; and conditioning on the sufficient statistic enables consistent estimation of 3 (see
Section 23.2.2).

21.6.4. Least-Squares Dummy Variable Estimator

Consider the original fixed effects model (21.22) before any differencing. An OLS
analysis can be applied directly to the model, simultaneously estimating o and 8.

In principle no special software is needed. One simply estimates the OLS regression
of y;; on x;, and a set of N indicator variables dit,...,dy i, where d ;.ir €quals one
if j =i and equals zero otherwise. However, as N gets large there are too many re-
gressors to permit inversion of the (N + K) x (N + K) regressor matrix. Some matrix
algebra, however, reduces the problem to inversion of a K x K matrix.

The resulting estimator of 3 turns out to equal the within estimator. This is a spe-
cial case of the so-called Frisch-Waugh Theorem for a subset regression. If dummy
variables are partialled out by regression of all the variables on the dummies, and if
the residuals from these regressions are used in a second stage regression, then we get
the same estimates as in the full regression. But these residuals here are simply devia-
tions from their respective means, i.e. the within regression. For completeness we now
present the relevant matrix algebra.

Stack the T’ x 1 vectors in (21.29) over all N individuals to yield the fixed effects
dummy variable model

X, €l
B+
Xy

y=[Iy®e) X] [g] te, (21.39)

where y is an NT x 1 vector, the Kronecker product (Iy ® e) is an NT x N block-
diagonal matrix, and X is the NT x K matrix of nonconstant regressors.
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An OLS estimation of this model yields the least-squares dummy variable
(LSDYV) estimator

[QLSDV] _ [(IN ®e)Iy®e) (Iy® e)’X}_l y [(IN ® e)’y]
Brspv X'(Iy®e) X'X X'y

[ _
_[rw X7 Ty
TX' X'X X'y |’

where the matrix of sample means X =I[X| ---X\], % =T 'YL x;,, y=
[1---yn),and y; = T} Z;T=1 ¥ir. Using the formula for partitioned inverse and per-
forming further algebra leads to

o) o di gl oo
[ﬂLSDV :I - [[X’X — X’X]-I(X/y _ X/y) . (21.40)

Reexpressing this in summation notation, we have ﬁLSDV = ﬁw defined in (21.24) and
arspy = arg defined in (21.25), so the LSDV estimators equal the within or fixed
effects estimator

For short panels an obvious potential problem is that consistent estimation of 8
and « is not guaranteed as there are N + K parameters to estimate and N — o0o.
Remarkably, consistent estimation of 3 is possible, even though « is inconsistently
estimated, unless additionally T — oc.

This estimator is second-moment efficient if &;, are iid [0, o'2]. It follows that the
within estimator of 3 is more efficient than alternative differencing estimators that
also eliminate ;, such as subtracting the first observation or the previous period’s
observation. If additionally the errors are normally distributed, the LSDV estimator
equals the MLE by the usual equivalence of OLS and MLE in the linear model with
spherical normal errors.

21.6.5. Covariance Estimator

Suppose data belong to one of N classes, with y;, denoting the rth observation in the
ith class. The analysis of variance decomposes the total variation of y;, around the
grand mean 3, 3, 3~ (yir — 7)°, into within-group variation 3", 3, (yi — 7 + 7)°
and between-group variation Y (3 — ¥)?, where ¥; is the mean in the ith group.
Group membership becomes more important as between-group variation increases.
The analysis of covariance extends this approach to introduce regressors, in which
case the residual sum of squares is similarly decomposed. This framework is widely
used in applied statistics.

For short panels each individual is viewed as a class, observed for several time
periods. The model (21.3) is called the analysis-of-covariance model, as it permits
the mean residual in the ith class to differ over classes. The estimator of this model,
the within estimator, is accordingly also called the covariance estimator.
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21.7. Random Effects Model

The random effects model (21.3) can be rewritten as
Yu=p+x,B+e;+e, i=1,...,N, t=1,...,T, (2141
or
Yir = W, 6 + a; + iy, (21.42)

where w;, = [1 x;;] and § = [u  B']’. The individual-specific effects o; are assumei
to be realizations of iid random variables with distribution [0, 0‘3] and the error ¢;; 15
1id [0, 082]. The nonrandom scalar intercept w is added so that, unlike in (21.5), the
random effects can be normalized to have zero mean.

The model can alternatively be viewed as a special case of a random coefficient
or varying coefficient model, where only the intercept coefficient is random. The
model can be re-expressed as y;, = u +X;, 8 + u;,, where the error term u;, has two
components u;, = «; + &;;. For this reason the random effects model is also called the
error components model. Even clearer terminology may be the random intercept
model. Richer mixed models also permit random slopes, see Chapter 22.

There are many consistent estimators of the random effects model, including (1)
GLS estimation in the model (21.42); (2) ML estimation in the model (21.42) assum-
ing a; and ¢;, are normally distributed; (3) OLS estimation in the model (21.42); and
(4) fixed effects model estimators such as the within and first-differences estimators,
though these only estimate the coefficients of time-varying regressors. The first two
estimators are asymptotically equivalent but can vary in finite samples depending on
the specific estimates used for o2 and o2. The remaining estimators are consistent,
though they are inefficient if in fact «; and ¢;, are iid.

21.7.1. GLS Estimator

The random effects estimator of 1 and 3 is the feasible GLS estimator of the model
(21.42), and it is shown later in this section that it can be implemented by OLS regres-
sion of the transformed equation

Yie = A% = (1 = D+ (Xig — A% B + vis, (21.43)

where v;; = (1 — ’):)a,- + (g — /):é,-) and X is consistent for

A=1-0,/(Ta?+ D)2 (21.44)
Equivalently,
~ m u ~ SO R ~ ~
Sre = [A“E} = [Z D (Wi — AW )Wy, — m)/} DD Wi = AW i — A3,
Bre i=1 1=1 i=1 1=1
(21.45)

where w;; = [1 x;;] and W; = {1 X;]. Consistency requires NT -+ oo, through either
N — ocoor T — oo or both.
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’ Assuming that ¢;, and «; are iid, the usual OLS output from OLS regression of
" (21.43) can be used to obtain the variance matrix estimate, so that

~ N T -1
v [* ] =0, [Z D (Wi — AW —T»'vi)’] : (21.46)

i=1 1=1

Alternatively, for short panels a robust variance estimate that permits quite general
behavior for «; + &;; can be obtained using (21.13). This yields

-1
] , (21.47)

where W;; = Wi; — AW; and T =B — _ %% where €}, is the RE residual. This estimate
permits arbitrary autocorrelations for the ;, and arbitrary heteroskedasticity.
Equation (21.46) requires consistent estimates of the variance components o; 2 and
3. From the within or fixed effects regression of (y;; — ¥;) on (X;; — X;) we obtain

~2 =\
;= W:T)— Z Z«y,, 1) — i — %) Bw)*- (21.48)
From the between regression of ¥; on an intercept and X;, an equation that has error
term with variance o2 + o2/ T, we obtain

—~2 - - _
o = (K 5 Z(y, Tig — %;Bs)* — (21.49)

More efficient estimators of the variance components o2 and o? are possible (see, for
example, Amemiya, 1985), but these will not necessarily increase the efficiency of
ﬂm«: A wide range of estimators are pos31ble The variance estimator (21.49) can be

negative, in which case programs often set G2 =0,s0 % = 0 and estimation is then by

pooled OLS.

To verify that the feasible GLS estimator simplifies to OLS estimation of (21.43),
stack (21.42) by observations from all T time periods for given i in the same way as
for the fixed effects model. Then

yi = W;b + (ea; + &), (21.50)
where y;, e, €;, and X; are defined after (21.29), and W; = [e X]. To estimate by

GLS we need to obtain the variance matrix € of the T x 1 vector error (ec; + €;).
Given independence of «; and &; we have E[(eq; + &;)(ex; +¢&;)] = Eleigil +
E[a?]ee’. Since ¢, are iid [0, 0] and ; are iid [0, 2] we obtain

Q =01 + o2ee =0 [Q+ —dr— Q)]

where Q = Iy — T~'ee’ was introduced in (21.30) and ¥ = 02/[0? + T?]. Using
QQ' = Q we can easily verify that Q! = 08‘2[Q + ¥2(I;—Q)] and

1
Q2= — [Q+vdr—Q)]. (21.51)
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The GLS estimator is obtained by premultiplication of (21.50) by any scalar multiple
of 7172, Now

[Q+vUr—Q)y: =yi — ey] + ¥ (i — (vi — €3))
=y; — Aey;,

where A = (1 — ). Performing similar algebra for W;, ea;, and €; in (21.50) yields
the following model:

yi — Aey) = (W; — AWY6 + (1 — Ma; + (&; — AeEy), (21.52)

where the transformed error in (21.52) has variance matrix afIT. The GLS estimator
is the OLS estimator of (21.52), but (21.52) is just a stacked version of (21.43) with
the scalar A replaced by a consistent estimate.

The random effects estimator ﬂRE of the slope parameters converges to the within
estimator as T — oo since then A — 1. Otherwise, ,BRE can be shown, after some
algebra, to equal a matrix-weighted combination of the within estimator and the
between estimator. If the random effects model is appropriate, this weighted average
works better than using the within estimator alone. However, if the fixed effects model
is appropriate then this weighted average is inconsistent, as the between estimator is
then 1ncon51stent The estimator of the intercept can be shown to simplify to HRre =
y— XﬂRE. For more details see, for example, Hsiao (2003, p. 36) or Greene (2003).

21.7.2. ML Estimator

In the derivation in the previous section, normality of the errors is not assumed. If they
are in fact normal, we can maximize the log-likelihood function with respect to 3, u,
o ,and 02 For given ¢? and o the MLE for B and p is the same as the GLS estimator,
but the MLE gives estimators G%and & &2 that differ from those given in (21.48) and
(21.49).

Thus the MLE for 3 and p is glven by (21.45) with x replaced by the alternative
consistent estimate A = 1 — &, /(T2 + 62)'/2. Asymptotically, the MLE and GLS
estimators of the random effects model are equivalent, but the two will differ in finite
samples.

For the MLE there may be two local maxima rather than one of the likelihood for
0 < ¥% < 1, so care is needed to ensure a global maximum.

21.7.3. Other Estimators

Many different estimators of 3 are consistent if the random effects model is the cor-
rect model. In particular, the pooled OLS, within, first-differences, and between es-
timators are all consistent. However they are inefficient if ; and ¢;, are iid, and
the within and first-differences estimators can only estimate the coefficients of time-
varying regressors.
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21.8. Modeling Issues

In this section we consider some practical issues that arise in linear panel data mod-
els, even in the absence of complications such as endogeneity and lagged dependent
variables, topics that are deferred to Chapter 22.

21.8.1. Tests for Pooling

The random effects model restricts all regression parameters to be the same in different
cross sections and time periods, whereas the fixed effects models imposes parameter
constancy except for the intercept, which may vary across individuals. Tests of poola-
bility test the appropriateness of these constraints.

These tests are usually done using a Chow test (see Greene, 2003, p. 130) based
on the tests for equality of regressors in two linear regressions assuming a common
variance. Depending on the assumptions about errors, the Chow test may be applied
to models estimated by OLS or by GLS. Baltagi (2001, Chapter 4) and Hsiao (2003,
Chapter 2) provide detailed coverage.

For short panels it is not possible to allow the slope parameters to differ across
individuals, as then the number of parameters goes to infinity. However, parameters can
be permitted to vary over time. The model y;; = y + X, + u;, is then tested against
yir = ¥+ + X, B, + u;;. The most obvious method is to assume random effects with
u;; = &+ a;, estimate the restricted model (v, =y and B, = B) using the random
effects GLS estimator, and compare the restricted and unrestricted residual sums of
squares in the transformed models. If more robust inference is preferred then panel-
robust standard errors should be obtained and a Wald test performed. For short panels
it is common to specify models with slope parameters {3 constant, though the intercept
y: may be permitted to vary over time by inclusion of time dummies as additional
regressors.

21.8.2. Tests for Individual-Specific Effects

Breusch and Pagan (1980) derived Lagrange-multiplier tests for the presence of
individual-specific random effects against the null hypothesis assumption of iid er-
rors. These have the advantage of being easily implemented by an auxiliary regression
that requires only residuals from pooled OLS estimates. Alternatively, one can assume
normality and do a likelihood ratio test of the random effects MLE against the MLE of
the constant-coefficients model, or a Wald test of o, = 0 in the random effects model.

In practice one often rejects the null hypothesis that the errors in the constant-
coefficients model are iid. It is easiest to immediately estimate by pooled OLS with
panel-robust standard errors or by random effects GLS.

For a short panel formal tests for the presence of individual-specific fixed effects
are not possible because of the incidental parameters problem. It is not possible to
test whether N parameters are zero when there are only NT observations and T is
small. Instead, the Hausman test of Section 21.4.3 is used to test the null hypothesis of
random effects against the alternative of fixed effects. :
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21.8.3. Prediction

Prediction in models without individual effects is straightforward: Use yj; = x’jﬁ.
This is a prediction of the population average E[y;;|x;,].

Prediction for a given individual conditional on the individual-specific effect is more
difficult. This is prediction of E[y;,|X;s, &;]. We consider out-of-sample forecasts for
the ith individual using the random effects model (21.42). Then y; ;+s = W}, 8 + i 145,
where u; ;s = ; + & ;4. The obvious predictor replaces 6 by dgrg and u; ;s by ei-
ther 0 or u;, where u; = y; — Wﬁsmz is the average within-sample residual for the ith
individual. However, this is inefficient as it ignores the correlation between u; 4, and
in-sample errors induced by the individual-specific random effect o;. The problem is
an example of the more general problem of prediction within a GLS rather than an OLS
framework. For this special case the best linear unbiased predictor (see Section 22.8.3)
is Virts = X, 0re + (T02/(To? + 02)Ya;. For the fixed effects model the obvious pre-
dictor is y; ;45 = xg,ﬁw + @; Fg, but again this is inconsistent in short panels.

21.8.4. Two-Way Effects Models

The analysis to date has focused on the one-way model, which is (21.1) with u;; =
a; + &;;. A more general model is the two-way effects model, with u;, = a; +y; +
&ir, which additionally allows for time-specific effects. Then

yi=oi+y+x,8+e, i=1... t=1,...,T. (21.53)

This model was presented originally in (21.2).

As already noted, for short panels the usual approach is to treat the time-specific
effects as fixed and estimate them as the coefficients of time dummies that are included
in the regressors, with analysis then differing according to whether the individual-
specific effects are treated as fixed or random.

If both a; and y; are fixed then the OLS estimator of 3 in (21.53) is equivalent to
regression of y;; — ¥ — y; + Yonx; —X —X + X, where §; = T-! ZLI Vit Y1 =
NIYN oy, and5=(NT) YN, S ¥ir, with similar definitions for &;, %,, and
K. This method of estimation is convenient if T is large.

If instead both «; and y, are random then the error term will have a component y,
that induces error correlation across individuals, whereas we have focused on inde-
pendence over i. It can be shown that the GLS estimator can be computed by OLS
estimation of y}, on a constant and x},,

yh = yir — MFi — A2¥e + A3y,

where ¥;, ;, and ¥ have already been defined and x7, is defined analogously to y;.
For this and other results for the two-way effects model see Hsiao (2003) or Baltagi
(2001).
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21.8.5. Unbalanced Panel Data

The discussion thus far has assumed the panel is balanced, meaning that data are
available for every individual in every year. For panel data on different regions this
is often the case. In contrast, for panel surveys of individuals there is usually a drop
off or attrition over time in the proportion of individuals still answering the survey.
Moreover, some individuals may miss one Or more periods but return later, in some
cases by design as in the case of rotating panels such as the CPS, where households
are surveyed for four consecutive months, not surveyed for eight months, and then
surveyed for another four months. Such panels where different individuals appear in
different years are called unbalanced panels or incomplete panels.

Let d;; be an indicator variable equal to one if the itth observation is observed and
equal to zero otherwise. Then for the individual-specific effects model (21.3) the FE

estimator is consistent if the strong exogeneity assumption (21.4) becomes
Eluiloti, Xit, - - XiT> dit, -+ diT] = 0, (21.54)

and the RE estimator is consistent if additionally o; is independent of the other con-
ditioning variables. The fixed and random effects estimators can then be applied to
unbalanced data with relatively little adjustment. This should be clear from the ini-
tial presentation of the estimators as OLS estimators in various models given in
§ection 21.2.2. For example, for the random effects model replace % in (21.10) by
% =1—0:/(Tios + o2)V/?, where T; is the number of observations for individual i
(see Baltagi, 1985, and Wansbeek and Kapteyn, 1989). Davis (2002) considers multi-
way random effects models. For the fixed effects model an individual observation must
be observed at least twice in the sample and degrees of freedom must be appropriately
adjusted. Baltagi (2001) gives a lengthy treatment of unbalanced panels. Economet-
rics packages that estimate the more standard of the panel models presented in Chap-
ters 21-23 usually automatically handle missing observations.

At times it may be convenient to convert an unbalanced panel into a balanced panel,
by including in the sample only those individuals with data available in all years. This
obviously can greatly reduce efficiency because of the loss of many observations. Fur-
thermore, if data are not randomly missing this can exacerbate potential problems ofa
nonrepresentative sample.

One reason for missing data can be that although most variables are observed, at
least one variable is not. For example, the nonresponse rate to income questions can
be quite high. Rather than drop an entire observation because data for one regressor,
income, is missing there may be efficiency gains to using the jmputation methods
presented in Chapter 27.

Unbalanced panels require special methods if the reason for individuals dropping
out of the sample is correlated with the error term, so that (21.54) does not hold. For
example, those individuals with unusually low wages (after controlling for observed
characteristics) may be more likely to drop out of 2 panel sample. The result is an
unrepresentative panel that will lead to attrition bias if wage is the dependent variable.
Consistent estimation requires use of sample selection methods extended to panel data

(see Section 23.5.2).
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21.8.6. Measurement Error

Measurement error in regressors leads to inconsistent parameter estimates in cross-
section regression models. If panel data methods are used that involve differencing of
the data, the result may be a large increase in the inconsistency caused by measurement
error depending on the assumptions made about the dgp. This is pursued in Chapter 26.

21.9. Practical Considerations

The various estimators presented in this chapter are easily implemented. The most
foolproof method is to use the panel commands available in econometric packages
such as LIMDEP, STATA, and TSP, all of which have the added advantage of usually
handling unbalanced panels. Most estimators can alternatively be estimated using an
appropriate pooled OLS regression on transformed data that requires only a cross-
section package, though standard errors may then differ from panel package standard
errors because the latter may ignore autocorrelation induced by transformation and
may use different degrees of freedom.
A weakness of panel commands in packages is that they currently compute standard
errors based on restrictive distributional assumptions such as iid errors in the fixed
effects models, and iid individual effect and iid errors in the random effects model. To
compute the more robust standard error estimates presented in this chapter may require
panel estimation with a panel bootstrap or estimation of an appropriate pooled QLS

regression using an option to compute cluster-robust standard errors,
In microeconometric analysis there is a

with and models without fixed effects.
it should be justified by passing a Hau
fects model then it may still be possible
invariant regressors using the instrumen
chapter.

fundamental distinction between models
If a model without fixed effects is preferred
sman test. If this test rejects the random ef-
to consistently estimate coefficients of time-
tal variables methods presented in the next

21.10. Bibliographic Notes

Most textbooks, such as Greene’s (2003), include at least a chapter on panel data models,
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use of within estimates using time-series variation and betw
section variation.

een estimates using cross-
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Exercises

21-1 (Adapted from Baltagi, 1999) Consider the panel model yi: = a + BXit + Uit,
where « and g are scalars.

(a) Show by appropriate subtraction that this mode! implies
Yit — ¥ = B(Xit — Xi) + B(Xi — X) + (Uit — T),

where y= (NT) '3, ¥ir, X=(NT)7' 3, %ir and X; = TV Y X

(b) For the corresponding unrestricted least-squares regression

Yit — ¥ = B1(%it — Xi) + Ba(Xi — X) + (Uit — T),

show that the least-squares estimator of g, is the within estimator and that
of Bz is the between estimator.

(c) Show that if U = u; + vir, where p; ~iid[0, o2] and v;; ~iid[0, o2], and the
two are mutually independent across both i and t, the OLS and the GLS
estimators are equivalent.

21-2 Consider estimation of the fixed effects linear regression model yit = @ + X;;3 +
eir, where a; are fixed effects possibly correlated with x;;. Stacking all T observa-
tions for individual i yields y; = a;e + X; 3 + €; (see (21.29) for definitions). Con-
sider the estimator 8 =[S/, X/JdX;]™! x N, XjJ/Jy;, where Jisa Tx T
matrix of known constants such that Je = 0. [Note that an example of J is
Q=17r— T 'ee.]

(a) Provide a motivation for the estimator ﬁ

(b) Find E[ﬁ]. For simplicity assume that X; are fixed regressors and that ¢;; are
iid [0, o2). Is B unbiased for 37

(¢) Find V[B]. For simplicity assume that X; are fixed regressors and that ¢;; are
iid [0, 2.

(d) Now suppose ¢;; are independent over i but correlated over t with Vie;] = ;.
Give V[A].

(e) Suppose that the effects a; are random (0, 02) rather than fixed. Would the
estimator in this exercise be consistent?

21-3 (Adapted from Baltagi, 1998) Consider the fixed effects, two-way error compo-
nent panel data model

Vit = o + X8 + pi + At + €it,

where « is a scalar, X;; is a k x 1 vector of exogenous. regressors, Bisa Kx1
vector, x and A denote fixed individual and time effects, respectively, and ¢;; ~
id[0, 02].

(a) Show that the within estimator of 3, which is best linear unbiased, can be
obtained by applying two within (one-way) transformations on this model.
The first is the within transformation ignoring the time effects followed by the
within transformation ignoring the individual effects.

(b) Show that the order of these two within (one-way) transformations is unim-
portant. Give an intuitive explanation for this result.

21—-4 Use a 50% random subsample of the wage—hours data in Section 21.3
(a) Can g be directly interpreted as a labor supply elasticity? Explain.
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(b) For the following estimators: (1) pooled OLS, (2) between, (3) within, (4) first

(c)
(@)
(e)

)

(9)

LINEAR PANEL MODELS: BASICS

differences, (5) random effects GLS, (6) random effects MLE give (i) B (esti-
mated coefficient of Inwg), (ii) default standard error, and (jii) panel bootstrap
standard error with 200 replications.

Are the estimates of g similar?

Is there a systematic difference between default standard errors and panel-
robust standard errors?

Will the pooled OLS estimator in part (b) be consistent for g in a fixed effects
model? Will the pooled OLS estimator be consistent for 8 in a random effects
model?

Perform a Hausman test of the difference between the fixed and random
effects (GLS) estimates of 8 in this model. Do this manually using the earlier
regression output with the default standard errors. What do you conclude
and which model is favored?

Given the preceding evidence, do you believe that the labor supply curve is
upward sloping? Explain.
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LINEAR PANEL MODELS: EXTENSIONS

Less consideration has been given to nonstationary data in short panels. Harris ¢
Tzavalis (1999) consider the unit root tests of Levin and Lin (1992) in short pane
Let ¥ denote the within estimate of ¥ in the AR(1) fixed effects model y; = a;
¥Yiz—1 + &ir, where ;; ~ N[0, o%]. We consider the null hypothesis of a unit root,
y = 1, and no intercept o; = 0, which corresponds to the pure time series case 2
Hamilton (1994, p. 490). Under this null hypothesis the unit root test statistic

VNG —14+3/(T +1)
[3(1772 — 20T + 1)}/[S(T — 1X(T + 1)3]

as N — oo for fixed T. Large negative values of this statistic lead to rejection of the
unit root hypothesis. Levin and Lin (1992) provide additional tests, such as for models
with individual time trends.

Binder, Hsiao, and Pesaran (2003) consider short panel estimation of fixed effect .
dynamic panel models with unit roots and cointegration. With unit roots the Arellano- .
Bond estimator is inconsistent, though the extensions due to Ahn and Schmidt (1995)
and others discussed at the end of Section 22.5.3 yield consistent estimates. Binder

et al. (2003) propose quasi-ML estimators that perform better in finite samples when
unit roots are present.

4 N0, 1]

22.6. Difference-in-Differences Estimator

The evaluation literature presented in Chapter 25 focuses on measuring the treatment
effect, in the simplest case the impact or marginal effect of a single binary regressor
that equals one if treatment occurs and equals zero if treatment does not occur. For
example, interest may lie in measuring the effect on earnings of a policy change (the
binary treatment) that alters tax rates or welfare eligibility or access to training for
some individuals but not for others.

In this section we relate one of the methods of Chapter 25 to panel methods. Specif-
ically the treatment effect can be measured using standard panel data methods if panel
data are available before and after the treatment and if not all individuals receive the
treatment. Then the first-differences estimator for the fixed effects model reduces to
a simple estimator called the differences-in-differences estimator, introduced in Sec-
tion 3.4.2 and also studied in Section 25.5. The latter estimator has the advantage that
it can also be used when repeated cross-section data rather than panel data are avail-
able. However, it does rely on model assumptions that are often not made explicit. The
treatment here follows Blundell and MaCurdy (2000).

22.6.1. Fixed Effects with Binary Treatment

Let the binary regressor of interest be

Dy, = 1if indiv.idual i receives treatment in period ¢, (22.39)
0 otherwise.
Assume a fixed effects model for y;, with
Yir = ¢Di + 8, + i + &, ’ (22.40)
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22.6. DIFFERENCE-IN-DIFFERENCES ESTIMATOR

where 8, is a time-specific fixed effect and ; is an individual-specific fixed effect. As
noted in Section 21.2.1 this is equivalent to regression of y;; on D;; and a full set of
time dummies with the complication of individual-specific fixed effects. For simplicity
there are no other regressors. '

The individual effects «; can be eliminated by first differencing. Then

Ayi = ¢ADi + (8 — 8:-1) + Asir. (22.41)
The treatment effect ¢ can be consistently estimated by pooled OLS regression of Ay
on AD;, and a full set of time dummies.

22.6.2. Differences in Differences

Now consider specialization to only two time periods. Furthermore, suppose treatment
occurs only in period 2, so that in period 1 D;; = 0 for all individuals and in period 2
D;; = 1 for the treated and D; = 0 for the nontreated. Then the subscript ¢ can be
dropped from (22.41) and

Ay = ¢D; + 8+ vi, (22.42)
where Dj; is a binary treatment variable indicating whether or not the individual re-
ceived treatment.

The treatment effect can be estimated by OLS regression of Ay onan intercept and
the binary regressor D. Define A7 to denote the sample average of Ay; for the treated
(D; =1)and A y™ to denote the sample average of Ay; for the nontreated (D; = 0).
Then the OLS estimator reduces to i '

= A" — AY™. (22.43)
This estimator is called the differences-in-differences (DID) estimator, since one
estimates the time difference for the treated and untreated groups and then takes the
difference in the time differences. ,

The estimator is appealing for its intuitive simplicity. Additionally, it can be ex-
tended from panel data to the case where separate Cross sections are available in the
two periods. In the second period compute the averages ¥ and y3' for the treated and
untreated groups. Compute similar averages y¥ and y7' in the first pretreatment period.
This assumes that it is possible to identify in the first period whether or not an individ-
ual is eligible for treatment. This is easy if, for example, the treatment applies only to
women and data on gender are available. Then compute

® =G5 -3 -G - (22.44)

As an example, if average annual earnings for the group eligible for treatment equals
10,000 before treatment and 13,000 after treatment then y¥ — T = 3,000. Similarly,
if average annual earnings for the group not eligible for treatment equals 15,000 before
treatment and 17,000 after treatment then yat — 7t = 2,000. The DID estimate of the
treatment effect @ is then 3,000 — 2,000 = 1,000.
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LINEAR PANEL MODELS: EXTENSIONS

22.6.3. Assumptions Underlying Differences in Differences

The preceding formulation of the DID estimator makes explicit the underlying as-
sumptions for consistent estimationof ¢. ,

First, it is assumed that the time effects &, are common across treated and untreated
individuals. For example, time trends may differ by gender, in which case identifying
¢ is problematic if treatment depends on gender. The common trends assumption is
needed if either panel or cross-section data are used.

Second, if cross-section data are used then the composition of the treated and un-
treated groups is assumed to be stable before and after the change. With panel data
differencing eliminates the fixed effects o;. With repeated cross-section data the origi-
nal model (22.40) implies that §;* = ¢ -+ 8 +a¥ + & and =4+ a™ + £}'. Given
that treatment only occurs in the second period it follows that

b=GF -7 - GF -7+ @5 —an -6 - al) +v,

where v = (B — &}) — (% — &1"). Consistency of ¢ in (22.44) occurs if plim@§ —

a¥) =0 and plim(@y* — &) = 0. This will happen if assignment to treatment is ran-
dom. However, often this is not the case.

22.6.4. Richer Models

In practice richer models are used. An obvious extension is to include regressors :
other than the treatment indicator and time dummies. By grouping data the individual- -
specific effects can at least be permitted to differ on average across groups. The general :
procedure is to estimate :

Yigt = ¢Djg + 5 +a;+Ei

where g denotes the gth group.

In a classic example of DID estimation, Card (1990) studied the effect on unemploy:
ment of low-wage workers in Miami of a sudden influx of immigrants from Cuba.
example is also reviewed in Angrist and Krueger (1999). Athey and Imbens (2002
present extension to nonlinear models. o '

22.7. Repeated Cross Sections and Pseudo Panels

The key potential advantages of panel data arise from being able to observe subjects
over time. This makes it possible to control for unobserved individual heterogeneiiy;
differences in initial conditions, and dynamic dependence of outcomes. In many cases,
however, genuine panel data are unavailable.

22.7.1. Repeated Cross Sections

We consider analysis when data are for several repeated cross sections, derived from -
responses to a series of independent sample surveys, where independence means that
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