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Abstract

This paper analyzes wage dynamics in the National Longitudinal Survey of
Youth, controlling for the effects of censoring caused by non-random attrition. Non-
random attrition, caused by individuals failing to appear for interviews or choosing
not to work, is common in longitudinal surveys like they NLSY and can bias
statistical analyses.  Techniques to control for the effects of non-random censoring
on the dynamics of mean wages require a great deal of knowledge of (or assumptions
about) the censoring process.  We adapt the non-parametric bounding techniques of
Manski for use with a newly proposed Smoothed GMM quantile estimator to
overcome this problem by studying the dynamics of wage percentiles.  Results
suggest that non-random attrition does not pose serious problems for the analysis of
men�s wages, but that the combination of multiple sources of attrition leads to
significant potential biases in the study of women�s wages.
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1.  Introduction

The availability of rich longitudinal data sources has greatly enhanced researchers� abilities

to study the dynamic properties of wage and earnings growth experienced by individuals over

various time periods and stages of their life cycle.  Surveys such as the PSID and NLS offer

extensive information on many individuals over decades.  Conceptually, with a time series of

observations on earnings supplied for each member of a random sample, analysts can formulate

elaborate models of stochastic processes to summarize the features of intertemporal earnings

mobility.  Unfortunately, one rarely has a random sample.  As panel surveys progress, individuals

are lost for a variety of reasons.  This attrition is rarely random, implying that the remaining

observations are not representative of the original population.  Evidence for the PSID and the NLSY,

for example, suggests individuals lost in sampling are drawn disproportionately from the lowest

and/or upper segments of the wage distribution. [See Gottschalk and Moffitt (1998) for the PSID and

MaCurdy, Mroz  and Gritz (1998) for the NLSY]  Consequently, over time the distribution of wages

becomes corrupted for the observations remaining in the sample.  Moreover, when analyzing the

evolution of wages for women, one must also account for the additional source of data censoring

arising from the non-random loss of observations caused by women selecting not to work.

Remarkably little is known about the impacts of either attrition or nonparticipation on our inferences

about wage dynamics.

This paper exploits recent advances in nonparametric estimation to gain an understanding

of how attrition and non-participation biases the values of parameters relating current to past wages

in empirical relationships describing the evolution of individuals� wages.  One can learn relatively

little about the sensitivity of estimated coefficients to attrition in familiar ARMA-type specifications

whose parameters link the conditional means and autocovariances of variables, for these parameters

are not identified in the presence of censoring without relying on strong and untestable distributional

assumptions.  Consequently, one cannot calculate useful bounds for either forecasted means or

autocovariances; virtually all values are possible for these quantities without considerable knowledge

of the sample selection mechanism at work. Such is not the case, however, for specifications based

on order statistics describing dynamic relationships between variables.  Manski (1995) illustrates a

non-parametric method for determining bounds on quantiles of variables drawn from censored

samples.  His methods are attractive as they forego the intricate assumptions regarding knowledge
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of the sample selection mechanism at work, and instead rely on the worst-case consequences of non-

random attrition.  This paper estimates quantile regressions analogous to the autoregressive relations

found in ARMA models and identifies bounds for these specifications following Manski�s approach.

The results demonstrate how the autoregressive coefficients associated with these bounds differ from

autoregressive coefficients that ignore sample selection. 

We conduct this study using data from the National Longitudinal Survey of Youth (NLSY),

which has become one of the most widely used data sources for investigating the economic and

demographic circumstances of young adults during the 1980's.  As the NLSY enters its second

decade, concern has arisen regarding the representativeness of the sample due to the possibility of

non-random attrition, which has plagued other longitudinal data sets.  In contrast to most other

longitudinal data sources, sample members departing from the NLSY are often recruited back into

the sample at a later date; this process of �returning� may also be non-random, possibly offsetting

or exacerbating the effects of attrition.   MaCurdy, Mroz, and Gritz (1998) present an exhaustive

analysis of attrition in the NLSY, investigating: attrition patterns, the characteristics of who departs

from and returns to the sample, and how the depiction of youths� labor market outcomes in the

NLSY differs from that in the Current Population Survey (CPS).  Their analysis documents that

those who attrit tend to have higher wages and earnings before they leave the sample and have lower

wages and earnings upon their return.  Losing the workers with higher compensation from the NLSY

means that its compensation profiles will understate the actual profiles, assuming these workers

would have held their positions in the distributions in future years.  How this phenomena might

impact the coefficient estimates of autoregressive relationships in describing the dynamic properties

of wages is the question addressed in this paper.

Our empirical methodology should prove useful in a variety of contexts in addition to the

dynamic analysis of wages.  An obvious potential application in the field of Industrial Organization

is in the analysis of how the distribution of firms� productivities evolves over time.  In that setting,

firms non-randomly �attrit� by exiting the industry, with important implications for the measurement

of productivity dynamics. [Pakes and Olley (1996)] In the field of Development Economics, our

approach to quantile estimation (i.e., converting the problem to a smoothed GMM procedure) will

facilitate the analysis of cross-country income distribution dynamics, allowing one to test more

directly, for example, the conditional convergence hypothesis.  The technique will likely prove useful
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in other fields as well, whenever the evolution of distributions over time is of interest, and especially

when non-random censoring is a concern. 

The remainder of this paper contains four sections.  Section 2 presents the central ideas

underlying our approach to formulating and estimating autoregressive analoges of quantile

regressions and the bounds for these relations accounting for censoring.  Section 3 describes the

sample composition and nature of sample attrition in the NLSY.  Section 4 reports the empirical

results, and Section 5 summarizes our findings.

2.  Estimating Wage Growth Relationships with Censoring

Formulating an econometric approach for estimating bounds for quantiles describing wage

growth involves four tasks.  The first consists of proposing a specification for quantiles associated

with the distribution of current wages conditional on past values.  The second  recognizes the

problems created by censoring in estimating statistical relationships.  The third surmises how

censoring figures into the construction of estimated bounds for specifications of wage quantiles.  The

fourth identifies a robust and flexible procedure for estimating the parameters of quantile

specifications in a panel data setting.  After covering these tasks, this section ends by bringing these

items together to develop the estimation approach that we will apply in our empirical analysis. 

2.1  Models Characterizing Dynamic Properties of Wages

A popular empirical specification for modeling the growth of wages experienced by

individuals in longitudinal data takes the form: 

(2.1)    ωi,t =  ρ1 ωi,(t-1) + ... + ρs ωi,(t-s) + Xi,t β  + εi,t       t = 1,...,T,    i = 1,...,N,

/   Zi,t θ  +  εi,t 

where ωi,t is the dependent variable for the i-th individual in the t-th year, Xi,t is a vector of measured

variables describing that individual, the coefficients ρj and β are parameters, and εi,t is an error term.

The elements of Xi,t include year and age effects, measures of educational attainment, and gender and

race indicators.  Throughout the majority of the subsequent analysis we assume εi,t is distributed
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independently both across time and individuals.  The autoregressive coefficients ρj characterize the

dynamic properties of wages after removing trends.

A conventional autoregressive formulation of (2.1) invokes the moment restriction:

(2.2) E ( εi,t |  ωi,t-τ ,  Xi,t ) = 0

where ωi,t-τ signifies the past wages ωi,t-1, ..., ωi,t-s appearing in (2.1).  This condition implies that (2.1)

characterizes how the first moment of the Markov distribution of ωi,t, conditional on ωi,t-τ and Xi,t,

evolves over time.  One applies least squares or generalized least squares methods to estimate the

parameters of such formulations, suitably adjusting for heteroscedasticity or correlation in an

individual�s errors when appropriate.  

Alternatively, one can associate relation (2.1) with an autoregressive formulation of the α-th

percent quantile of the Markov distribution of ωi,t by imposing the restriction:

(2.3) Qα ( εi,t |  ωi,t-τ , Xi,t ) =  0

where Q α ( � ) designates the α-th percent quantile of the distribution of εi,t conditional on ωi,t-τ and

Xi,t, where α 0 (0, 100).   When α = 50, equation (2.1) determines how the conditional median of ωi,t

evolves over time.  To our knowledge, such relations have not been estimated in a panel data

context, but conceptually the application of LAD procedures would produce consistent estimates of

the autoregressive coefficients appearing in (2.1). 

2.2  Problems Induced by Censoring

Serious complications arise in the estimation of (2.1) under either restriction (2.2) or (2.3)

when data are missing in a non-random manner.  Two sources contribute to this non-random

sampling: (i) individuals depart from the sample, and (ii) persons fail to work during the specified

period. Both of these phenomena represent a form of data censoring that leads to biased estimation

of dynamic relationships. 

Attrition is inherently a dynamic phenomenon � an individual observed in one period may

for some reason be unobserved in a later year, only to be brought back to the sample at some later
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date.  Evidence suggests [MaCurdy, Gritz, and Mroz (1996)] that individuals lost in sampling are

not randomly drawn from the wage distribution; rather, these individuals tend to come from the

upper segments of that distribution.  Consequently, over time the distribution of wages becomes

perturbed for the observations remaining in the sample.  Biases in estimating wage equations

attributable to persons selecting not to work are well known in the labor economics literature, having

been studied for almost 30 years in the case of women�s hours-of-work behavior.  To the extent that

low-wage women choose not to work, their wages are missing in the observed wage distribution

corresponding to the employed population. 

Observations making up the sample available for estimating intertemporal wage relationships

must, therefore, not have departed from the sample and have worked positive hours.  To evaluate the

effects of this censoring, let the variable δi,t = 1 indicate when an observation meets this criteria and

δi,t = 0 when it fails to do so.   To account for biases in the estimation of equation (2.1) with moment

condition (2.2), the corrected version of (2.1) takes the form:  

(2.4)    ωi,t  =  ρ1 ωi,t-1 + ... + ρs ωi,t-s + Xi,t β  + λ(ωi,t-τ, Xi,t) + ζi,t

where

(2.5) λ(ωi,t-τ, Xi,t)  =  E (εi,t |  ωi,t-τ, Xi,t, δi,t = 1) 

Developing formulae for the conditional moment λ requires the introduction of extensive

distributional assumptions for εi,t, and, in a longitudinal setting, typically involves considerable

computational burden.  

2.3  Nonparametric Bounds for Quantiles

One can construct upper and lower bounds for quantiles to account for sample censoring.

The idea underlying these bounds is simple.  Suppose one wants to estimate the value of the α-th

percent quantile of a variable yi,t
*.    One does not have data on all observations of  yi,t

*, but instead

observes data on the variable yi,t, where δi,t = 1 implies yi,t =  yi,t
* and δi,t = 0 implies that yi,t

* is not

seen.  Let P = Prob (δi,t = 0) represent the proportion of the sample that is missing, and let π designate

the π-th percentile of the distribution of yi,t.  To form bounds for α based on measures of π, one can

imagine two extreme circumstances.  First, all missing observations come from the very bottom of

the distribution.  In this case, π may actually represent as high as α = P + π (1-P) of the true



  4 This inequality comes from the the Law of iterated expectations:

.P(y # t *x) ' P(y # t *x,z'0)�P(z'0) % P(y # t *x,z'1)�P(z'1)

P(y#t |x,z=1), P(z=0), and P(z=1) are all observed in the censored data.  Without any additional assumptions, we know
that 0 # P(y#t|x,z=0) # 1.  This yields the bounds shown here for the percentile of y.

6

πL '
α&P
1&P

πU '
α
1&P(2.7)

P(yi,t # t * Zi,t, δi,t ' 1) P(δi,t ' 1 * Zi,t) # P(yi,t # t * Zi,t) #

P(yi,t # t * Zi,t, δi,t ' 1) P(δi,t ' 1 * Zi,t) % P(δi,t ' 0 * Zi,t)
(2.8)

percentile.    Analogously, if at the other extreme, all missing observations come from the very top

of the distribution, then (1-π) may actually represent as high as the true percentile 1-α = P + (1-π)

(1-P).  Combing these insights, one readily infers that α must lie in the interval:

(2.6) πL # α  # πU 

where 

Given a particular value of α, equations (2.6) and (2.7) show how to use information on the

percentiles of yi,t to form bounds for α.

These bounds are equivalent to ones proposed by Manski (1995).  Without prior assumptions

regarding the conditional distribution of the censored values of yi,t, Manski notes the following

relationship:4

Manipulation of these inequalities implies that the inverse of P(yi,t # t | Zi,t) � i.e., the αth percentile

of yi,t given Xi,t � falls within the bounds:

(2.9) R(α, Zi,t)  #  α   #   µ(α, Zi,t)

where
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R(α , Zi,t ) '
α & P(δi,t ' 0 * Zi,t)

P(δi,t ' 1 * Zi,t)

th

& percentile of P(yi,t * Zi,t , δi,t ' 1 )(2.10)

and

µ(α , Zi,t ) '
α

P(δi,t ' 1 * Zi,t)

th
& percentile of P(yi,t * Zi,t ,δi,t ' 1 ) .(2.11)

Hence, the αth percentile of the uncensored distribution of yi,t given Zi,t is bounded by two percentiles

calculated from the conditional distribution of the censored variable.  The width of these bounds is

proportional to the degree of censoring in the sample, or P(δi,t = 0 | Zi,t).

2.4  Estimating Quantiles Using Nonlinear Instrumental Procedures without Censoring

MaCurdy and Hong (1999) propose a class of quantile estimators for systems of simultaneous

equation models that provides a flexible and non-cumbersome procedure for estimating parameters

of the dynamic wage growth equation introduced above.  In essence, assuming specifications for the

quantiles of structural error distributions conditional on exogenous or predetermined instruments,

the estimators formulate these conditional quantiles into moment conditions capable of being

estimated within a conventional nonlinear instrumental variables or Generalized Method of Moments

(GMM) framework.  This apparatus matches the sample analog of the conditional quantiles against

their population values, employing a smoothing procedure familiar in various problems found in

non-parametric inference and simulation estimation.  The analysis applies standard arguments to

demonstrate consistency and asymptotic normality of the resulting Smoothed GMM quantile

estimator.  Simulation exercises reveal that this procedure accurately produces estimators and test

statistics generated by conventional quantile estimation approaches. 

To apply this GMM quantile procedure, let ωi,t denote the log of hourly wages in year t for

individual i, and let Xi,t denote demographic characteristics. We are interested in obtaining

information about the distribution of ωi,t conditional on Xi,t and ωi,t-τ (past hourly wages).  We will

use Qα(ωi,t-τ, Xi,t) to represent the αth percent quantile of this conditional distribution, where α 0 (0,

100).  Our Smoothed GMM quantile estimator makes use of the following moment conditions,

which underlie the construction of most quantile estimation procedures:
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(2.12) P(ωi,t < Qα (ωi,t&τ , X) * ωi,t&τ , Xi,t) ' α

This relation implies the condition

(2.13) E i t Q i t Xi t i t Xi t[ ( , ( , , , )) | , , , ]1 0ω α ω τ α ω τ< − − − =

where 1(�) represents the indicator function which takes value 1 when the condition expressed in the

parentheses is true, and 0 otherwise.  The indicator function inside the moment condition is neither

continuous nor differentiable.  To incorporate this moment condition into the standard framework

of nonlinear method of moments estimation, MaCurdy and Hong  (1999) propose to use the modified

smooth version of this condition:

(2.14) E limN64Φ
ωi,t & Qα(ωi,t&τ , Xi,t )

sN

& (1 & α ) ' 0

where N represents the sample size, and Φ is a continuously differentiable distribution function with

bounded symmetric density function φ.  The following analysis selects Φ to be the cumulative

standard normal distribution function; a natural alternative would be the logit distribution function.

The quantity sN is a bandwidth parameter that converges to 0 as N goes to 4 at a rate slower than that

of  N1/2.   Formally, one may choose sN = N-d, for 0 < d < 1/2. One can readily verify that when sN 6

0, Φ(·) converges almost surely to the indicator function 1(ωi,t > Qα(ωi,t-τ, Xi,t)).  Since Φ is a bounded

function, one can exchange expectation and limit to obtain the above smoothed moment condition.

The condition imposed on the convergence rate  0 < d < ½ is needed for the proof of asymptotic

normality.  A generalized nonlinear two-stage least squares estimation routine can be directly applied

to this asymptotic moment condition.  MaCurdy and Hong (1999) explore the performance of

various choices for the bandwidth parameter in a simulation study; the estimation analysis below

relies on the results of this exercise.  The estimation approach selects instrumental variables that are

conditionally independent of the error terms defined by 1(ωi,t > Qα(ωi,t-τ , Xi,t) ) - α. 
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Cov[ 1(ωi,t > Qαi
(ωi,t&τ , Xi,t ) ) , 1 (ωi,t > Qαj

(ωi,t&τ , Xi,t ) ) ] ' 1&αi& (1&αi) (1&αj )

This estimation framework extends to consider a set of quantile relations, which may either

describe several percentiles of a single conditional distribution or characterize the same quantile for

marginal distributions of a variable in different time periods.  To estimate any finite and fixed

number of quantiles of the conditional wage distribution jointly in an efficient way, let 0 < α1 < α2

< þ < αK < 1 be the K quantiles of interest.  Define a system of K simultaneous equations through

the following asymptotic moment conditions:

(2.15) E limN64Φ
ωi,t & Qαk

ωi,t&τ , Xi,t

sN

& (1&αk ) ' 0, k'1,ÿ,K

Each of these equations can be separately estimated using single equation two-stage least squares

methods.  To improve efficiency given the available instruments, one can apply a three-stage

nonlinear least squares or joint-equation GMM estimation procedure by weighting the K equations

optimally.  The optimal weighting matrix, will be determined by the variance-covariance matrix of

the K sign-variables: 

(2.16) 1[ ωi,t > Qαk
(ωi,t&τ , Xi,t ) ] k'1,ÿ,K

This matrix depends only on the α�s associated with the specific distribution of the error term.  In

particular, Var[1(ωi,t > Qα(ωi,t-τ, Xi,t)] = α(1-α), and for αi > αj:

(2.17)

One can permit flexible and unknown forms of heteroscedasticity in calculating the optimal

weighting matrix used in GMM estimation, as well as an unbalanced number of equations

corresponding to the different observations.  Incorporating these generalizations involves

implementing the conventional approach utilized in multiple-equation GMM procedures.  The

conditional quantile, Qα(ωi,t-τ, Xi,t), can be chosen to be any flexible nonlinear function. 

Finally, the Smoothed GMM quantile procedure readily allows for weighting in estimation

to account for stratified sampling, which is present in most data sets.  With Υi,t representing the
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weight supplied by the data set for individual i in period t, replace the system of structural equations

(2.15) by:

(2.18) E Υi,t limN64Φ
ωi,t & Qαk

ωi,t&τ , Xi,t

sN

& (1&αk ) ' 0, k'1,ÿ,K .

The inclusion of weights in these moment conditions now defines the value of Qα (ωi,t-τ , Xi,t)

associated with the appropriate population conditional quantile.  As described in the above

discussion, these equations can be estimated separately using single equation two-stage least square

methods, or estimated jointly using a multiple-equation GMM procedure with an optimally

computed weighting matrix. 

2.5  Estimating Bounds for Autoregressive Parameters

The specification of the conditional quantile function adopted in our characterization of wage

dynamics is the linear distributed lag relation:

(2.19) Qαk
(ωi,t&τ , Xi,t ) ' ρ1ωi,t&1 % ÿ % ρsωi,t&s % β Xi,t

If one had a random sample available to estimate this conditional quantile, the variant of the

nonlinear simultaneous equation implied by (2.14) takes the form:

(2.20) Φ
ωi,t & ρ1 ω i, t&1 & ÿ & ρs ω i , t&s & β Xi,t

sN

& (1 &αk ) ' ν i,t

where νi,t is treated as the error with E (νi,t | ωi,t-1 ,..., ωi,t-s , Xi,t ) = 0.  

Specifications of nonlinear simultaneous equations implied by relation (2.14), applied to

estimating coefficients corresponding to the bounds (2.10) and (2.11), take the form:
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(2.21) 

Φ
ωi,t & ρL1 ω i, t&1 & ÿ & ρLsω i , t&s & βL Xit

sN

& (1 & R (α, Zi,t ) ) ' νL,i,t

Φ
ω i,t & ρU1 ω i,t&1 & ÿ & ρUs ωi,t&s & βU Xit

sN

& (1 & µ (α, Zi,t) ) ' νU,i,t

where one interprets the errors νL,i,t and νU,i,t  as possessing the conditional means E (νL,i,t  | ωi,t-1 ,...,

ωi,t-s , Xi,t , δi,t = 1)  =  0   and   E (νU,i,t  | ωi,t-1 ,..., ωi,t-s , Xi,t , δi,t = 1) =  0 .  In both (2.20) and (2.21),

one sets the denominator sN to an appropriately small number.

Reliance on the Smoothed GMM quantile approach implies that one can estimate the

coefficients ρ and β by implementing conventional nonlinear IV or 2SLS/3SLS procedures to

equations (2.20) and (2.21).  The resulting estimators are consistent and asymptotically normally

distributed with standard errors computed using robust methods.   In the subsequent analysis we

estimate variants of these equations separately for the conditional 25, 50, and 75th percent quantiles.

While we could jointly estimate specifications for several αi�s simultaneously, we do not do so here.

Conceptually, one can generalize equations (2.20) and (2.21) to allow parameters to be year (or age)

dependent.  Estimation in this instance would require the introduction of an equation for each

quantile for each year (or age) in which a person has current and past wage observations.  Within-

and cross-equation restrictions on the quantile regression coefficients could be imposed in the

standard way using the multi-equation GMM framework given by (2.15).  In the estimation of these

wage growth profiles, the proper choice of instruments include the elements of Xi,t, lagged values of

the natural log of the real wage, and possibly interactions and higher order powers of these variables.

One would not use the same set of instrumental variables for each equation, since the wage variables

ωi,t-1,..., ωi,t-s are predetermined for period t but not for previous years.  Using different instruments

is easily accomplished in GMM estimation.  Finally, if weighting is required to adjust for the

stratified character of a data set, then equations (2.20) and (2.21) are modified by simply multiplying

these relations by a weight Υi,t analogous to (2.18) and then apply conventional NIV estimation

methods. (This is what we mean by weighting in the subsequent analysis.)



  5 Note, however, that in tests designed to infer the behavior of ρj between ρLj and ρUj (i.e., by calculating the values of these
parameters at, for example, 20 different quantiles between R(α,Z) and µ(α,Z)), we found that, in every case, the value
of ρj moved monotonically from ρLj to ρUj.  In practice, therefore, ρLj and ρUj do behave like bounds on ρj in our
particular application, although we have no reason to expect this property to necessarily carry-over to other
applications.
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The bounds for quantiles specified in (2.21) do not, of course, imply that estimation of the

these relations creates bounds for the autoregressive coefficients ρj.5  In the subsequent discussion,

when we refer to bounds for the  autoregressive coefficients we merely mean estimates of the values

of ρLj and ρUj.  We infer that a large discrepancy between these values suggests that results are

sensitive to the presence of censoring.

3.  Sample Composition and Attrition in the NLSY

This section summarizes the structure of the NLSY and describes how attrition alters its

make-up during the years of the survey.  The NLSY permits analyses of a number of different sample

compositions that exclude non-respondents according to a variety of rules.  This discussion explores

the consequences of using these alternative samples to estimate wage distributions conditional upon

prior observed wages and other demographic variables of interest.

3.1  Description of the NLSY

The NLSY is a multistage, stratified, clustered probability sample designed to represent the

entire population of youth residing in the United States on January 1, 1979.  Three independent

probability samples make up the NLSY, each comprised of youth born January 1, 1957 through

December 31, 1964:  (i) a cross-sectional sample designed to be nationally representative of the non-

institutionalized civilian population in the United States; (ii) a supplemental sample of the non-

institutionalized civilian population comprised of Hispanics, Blacks, and economically-

disadvantaged White (i.e., non-Hispanic, non-Black) youth; and (iii) a military sample representing

men and women who served in the military on September 30, 1978.  Households served as the

interview unit for the civilian samples, and the military sample was drawn from rosters of active duty

military personnel.  The civilian samples were selected after the completion of initial screening

interviews of approximately 75,000 dwelling units, and first-round interviews were completed for

about 90 percent of the civilian youths designated for the base-year interviewing.



  6 A total of 201 military respondents were retained from the original military sample of 1,280.
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For the purposes of our discussion, it is convenient to consider the NLSY as made up of five

distinct components: (1) the cross-sectional sample comprised of 6,111 youths; (2) the supplemental

sample of Hispanics with 1,480 youths; (3) the supplemental sample of Blacks containing 2,172

youths; (4) the supplemental sample of economically-disadvantaged Whites with 1,643 youths; and

(5) the military sample of 1,280 personnel.  We restrict our analysis to the 9,763 young men and

women included in the first three components of the sample.  Two factors lead us to exclude the

economically-disadvantaged White supplemental sample.  First, this particular supplemental sample

was discontinued from the NLSY in 1991.  Second, this action was taken due to serious suspicions

about the representativeness of this supplemental sample; the primary criteria used to screen

households into the sample was based solely on household income in 1978 � not necessarily parents�

income � relative to the poverty level.  We do not consider the military sample either because the

vast majority of its members were not interviewed after 1983.6

Tables 1 (a) and (b) present simple summary statistics for the men and women included in

the random sample and the supplemental samples of Hispanics and Blacks.  The table reports sample

sizes and statistics calculated separately for the three race-ethnic categories: Whites, Blacks, and

Hispanics.  The variables summarized include average hourly earnings (wages), annual reported

earnings, annual imputed earnings, and annual hours of work, all measured for the calendar year

preceding the year of the interview in 1990 dollars.  Annual reported earnings in the NLSY

corresponds to a CPS-type measure of annual earnings.  Average hourly earnings equals annual

reported earnings divided by annual hours of work, all referring to the previous calendar year.  The

variable used for the annual hours of work measure is a key variable created by the Center for

Human Resource Research (CHRR) from the work history data.

A unique feature of the NLSY is the reference period used to collect the work-history data.

This period extends back to the date of the last interview completed by a respondent and can span

two or more calendar years.  In sharp contrast, the reference period for the annual reported measures

spans only the previous calendar year.  Because the work-history data includes both hours and

earnings information on a weekly basis, one can construct alternative measures of annual earnings.

Moreover, not only can one calculate a second measure of annual earnings in the calendar year

preceding an interview, one can also impute this measure in the calendar years with missed



  7 We impute our earnings measure by first calculating an earnings measure for each week in which the respondent was
working at a job, and then summing weekly earnings over the relevant weeks in each calendar year.  Weekly earnings
are inferred by multiplying usual hours worked per week and usual hourly wage rate for each job held by a respondent
during the specific week and summing across all jobs held during this week.  As a matter of convention, if for any
reason either usual hours worked or usual wage is missing for a job, the job does not contribute to weekly earnings.

  8 Missing information occurs because of item non-response (refusal), a "don't know" response, a valid skip, or an invalid
skip.

  9 The relatively large standard deviations result from extreme values of truncated variables or misreported/misrecorded
information; these large standard deviations point out the importance of using statistics that are not unduly influenced
by these extreme values.  Extreme values for reported earnings result from the replacement of values above $100,001
with the average earnings of respondents who are U.S. residents and who reported values above this threshold in the
latter years of the sample.  The extreme values for imputed earnings stem from misreported/misrecorded values for
hourly wage rates in the work-history data.  Hours of work are also truncated in the data at 96 hours per week.  In our
subsequent analysis, we top code all earnings data to 100001, which is the level used in the earlier years of the NLSY.
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interviews for respondents who eventually return to the sample.  We construct such �imputed

earnings� for all respondents in all calendar years for which information is available.7

The calculation of the descriptive statistics reported in Tables 1 (a) and (b) does not use

weights.  The first column presents the percentage of noninterviews for the samples relevant for each

row, summed over the first thirteen rounds of the NLSY.  According to this column, well over ninety

percent of the sample is interviewed in each year on average, and Hispanic men and women are more

likely to miss interviews compared to White and Black respondents.  The next four groups of

columns present statistics for average hourly earnings, annual reported earnings, annual imputed

earnings, and annual hours of work.  The first column of each group presents the percentage of

observations with missing information.8  For imputed earnings, the first column in the group

indicates the extent to which we are able to impute annual earnings during the calendar years

preceding a missed interview for those respondents that return to the sample.  For example, in the

case of Hispanic men, data are available to calculate an imputed earnings measure for 3.8 percent

of all calendar years, which translates into 46 percent of all calendar years preceding a missing

interview by this subgroup (i.e., 3.8/8.2).  The second column of each group reports the percentage

of nonmissing observations with a value of 0.  The third column presents means and standard

deviations calculated over observations with positive values.9  Since these statistics account for no

weighting or sample composition of the NLSY, we do not discuss them here.
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3.2  Patterns of Attrition 

Tables 2 (a) - (d) summarize the cumulative effects of attrition on the sample composition

of the NLSY, with Tables 2 (a) and (b) reporting results for men and Tables 2 (c) and (d) listing

findings for women.  The first set of rows shows the fraction of original respondents who are not

interviewed in each year, and the second set reports the fraction of interviewees who are returnees

(i.e., who formerly departed from the sample) in each year.  The tables show that:

� Approximately 10 percent of the original respondents are regularly
missing in the latest years of the NLSY. (This figure is somewhat
higher for men and lower for women.).

� Approximately 20 percent of the male interviewees are returnees in
the latest years, while less than 15 percent of the women are
returnees.

Tables 2 (a) - (d) provide more detail on the patterns of initial attrition and returning to the

sample.  The columns in this table represent the year of first attrition.  The top set of rows shows the

percentage of individuals who miss an interview for the first time in the year designated in the

column, with percentages computed using those who have continuously remained in the sample as

the baseline.  (Thus, these percentages are estimates for the hazard rates for first leaving the NLSY.)

The results are given for the entire sample and for race-ethnic groups and age cohorts. The second

set of rows gives the fraction of these initial attritions in each year who never return to the sample

by 1991, by age cohort.  The third set of rows reports the fraction of these attritions who miss more

than one interview but who return in at least one year after initial attrition, again by age cohort.  The

fourth set of rows gives the average number of spells experienced by individuals who attrit for

multiple-years (identified in the previous set of rows), along with the average number of years that

they are missing during the year brackets 1980-83, 1984-87, and 1988-91. 

We see that initial attrition rates never exceed six percent for men or women, and these rates

are typically in the one percent to three percent range.  Among the race-ethnic groups, Hispanics

experience the highest rates of initial attrition, especially in the early years of the survey.  Among

the cohorts, attrition rates tend to rise with age, once again particularly early in the survey.  The

second set of rows (percentage of those who attrit and never return) show that of the persons who

depart in the early years, around 10 to 25 percent are never seen again by 1991.  This range rises to



16

as much as 50 percent in the later years reflecting, in part, the shorter length of time available for

finding these individuals and recruiting them back into the sample.  The results presented in the third

set of rows show that around 50 percent of those who miss at least one interview and who are not

lost forever (i.e., who return at some time before 1991) end up missing two or more interviews. The

figures reported for the number of spells experienced by those who attrit for multiple-years indicate

that intermittent periods of absence are common.  Finally, the findings for the average numbers of

missing years during the various time horizons, listed in the bottom rows of the tables, further show

that periods of absence for the multi-year attritions involve about the same numbers of years in the

early in the NLSY as in its later interviews. 

4.  Empirical Analysis of the Effects of Censoring on Wage Dynamics in the NLSY

This section applies the ideas described in Section 2 to assess the effects of attrition and non-

work-participation on the estimates of autoregressive coefficients characterizing wage dynamics in

the NLSY.  The analysis considers both men and women, and accounts for nonrandom selection

attributable to several sources of censoring. 

4.1  A Two-Step Estimation Approach

Application of our technique practically involves a two-step estimation procedure.  The first

step estimates the probabilities of censoring needed to construct the quantile bounds given by (2.10)

and (2.11).  The second inserts these estimated bounds in the specification of the nonlinear structural

equations appropriate to estimate particular conditional quantiles and estimates the resulting

relationships using NIV methods.  

To calculate R(α, Zi,t) and µ(α, Zi,t) we apply a probit estimation procedure to derive fitted

values for P(δi,t = 1 | Zi,t); i.e., the probability that an individual i appears in the sample in year t

given attributes Zi,t.   We apply weighted maximum likelihood estimation, using the Υi,t weights

provided by the NLSY to account for stratified sampling.   We include the following variables in Zi,t

in carrying out this analysis:

(4.1) Z it  = [year effects, age, age2, education,  black, Hispanic, δ i,t-τ ]
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where the education variable signifies to the highest year of education completed by the individual,

and δi,t-τ refers to i�s attrition status in year t-τ.  With fitted values of the conditional probability of

appearing in the sample, we compute fitted Manski bounds on the αth quantile of the conditional

wage distribution according to:

(4.2) .�R(α, Zi,t) '
α & �P(δi,t'0 | Zi,t)

�P(δi,t'1 | Zi,t)
�µ(α, Zi,t) '

α
�P(δi,t'1 | Zi,t)

In the second stage of the estimation, we apply weighted GMM procedures to compute values

for the parameters appearing in the nonlinear simultaneous equations: 

(4.3) Υi,t Φ
ωi,t & ρ1 ω i, t&1 & ÿ & ρs ω i , t&s & β Xi,t

sN

& (1 &αk ) ' ν i,t

and

(4.4) 

Υ i,t Φ
ωi,t & ρL1 ω i,t&1 & ÿ & ρLsω i ,t&s & βL Xi,t

sN

& (1 & �R (αk, Zit ) ) ' νL,i,t

Υ i,t Φ
ω i,t & ρU1 ω i,t&1 & ÿ & ρUs ω i ,t&s & βU Xi,t

sN

& (1 & �µ (αk, Zi,t ) ) ' νU,i,t .

using only data satisfying the criterion δi,t = 1. 

The following analysis estimates variants of (4.2) - (4.4) for the αk = 25, 50, and 75th percent

quantiles of the conditional wage distribution, although we cannot estimate bounds the 25th and 75th

percent quantiles when censoring exceeds 25%.  In estimating (4.2) - (4.4), we consider three sets

of instrumental variables in the implementation of NIV methods: 
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(i)    ωi,t-1 and  Xi,t  = [year effects, age, age2, education,  black, Hispanic]
(4.5) (ii)   ωi,t-2 and  Xi,t  = [year effects, age, age2, education,  black, Hispanic]
   (iii)  ωi,t-2 , ωi,t-2, and  Xi,t = [year effects, age, age2, education,  black, Hispanic]

We estimate each equation separately using single-equation GMM procedures.  Reported standard

errors from the second-stage do not account for estimation error introduced by the fitted probabilities

of censoring.

The data used for this analysis come from the original NLSY 1979-1991, with the selection

based on two criteria: (i) any individual-year observations reporting missing values for completed

grades are dropped, and (ii) individuals are sampled only after leaving school and entering the labor

force.  Practically, the second criterion is defined as being satisfied when an individual�s reported

number of completed grades stops growing.  Altogether, selecting based on these criteria reduced

the sample from its original 126,919 individual-year observations to 64,767 individual-year

observations.

4.2  Estimation of Quantile Coefficients

We do not report estimates obtained from our probit maximum likelihood for the sake of

brevity.   Nearly all parameter estimates were individually statistically significant and had signs

corresponding to the description of the attrition data in Section 3.

Tables 3 (a) - (f) report our findings for the autoregressive coefficient estimates calculated

using the second-stage smoothed GMM quantile regressions for αk = 50 (i.e., the conditional

medians) and αk = 25 and 75.  Tables 3 (a) - (c) present results for men and Tables 3 (d) - (f) report

estimates for women.  These tables report results for the three specifications described above.  Tables

3 (a) and (d) list estimates of ρ1 for Specification #1, which assumes equations (4.3) - (4.4) have a

1st-order autoregressive structure (i.e., restrict ρ2 = ... = ρs = 0) and uses instrument set (i) from (4.5).

Tables 3 (b) and (e) present estimates from Specification #2, which assumes the same 1st-order

autoregressive formulations for (4.3) - (4.4), but which employs instrument set (ii) from (4.5).

Finally, Tables 3 (c) and (f) show estimates for Specification #3, which relies on instrument set (iii)

to estimate variants of (4.3) - (4.4) taking the form of a 2nd-order autoregressive model.  In each table,

the results listed in the columns �ignoring censoring� are for the autoregressive coefficients

associated with equation (4.3), and the estimates given in the columns �upper bound� and �lower
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bound�  are for the autoregressive coefficients associated with equations (4.4).  As a check of

whether the autoregressive coefficients are time invariant (as has been assumed throughout this

analysis), each table presents three sets of results.  The top set of rows lists findings for all years

pooled, and the lower two sets report coefficient values for separate specifications estimated using

only data for the years 1985 and 1990, respectively. 

The estimates account for two sources of censoring: (i) an individual departs from the sample

in any portion of the periods covered by the data appearing in a specification; and (ii) an individual

does not work in any period covered by the specification.  Unless an individual does not attrit

according to both of these criteria, he/she cannot be included among the observations used in

estimation because there is missing data on his or her wages.   In the case of men, the first source is

the principal reason for censoring because men typically work continuously after leaving school; i.e.,

the estimated bounds for men primarily reflect the consequences of attrition from the survey.  On

the other hand, both sources are relevant for women.  Thus, the estimated bounds for women show

the combined effects of both types of sample censoring. 

4.3  Interpretation of Results

The findings for men in Tables 3 (a) - (c) tell a straightforward story.  The estimated

autoregressive coefficients are virtually identical for the upper-bound, ignoring-censoring, and lower-

bound specifications, regardless of whether one considers the 1st- or 2nd-order autoregressive

formulations.  Thus, censoring appears to play no role in biasing coefficient estimates determining

how the conditional quantiles of future wages relate to current wages.  In sharp contrast, evidence

suggests that autoregressive coefficients vary over time and across cohorts.  Not only do the values

of ρ1 vary across the pooled, 1985 and 1990 data, but so do the values of ρ2 .  The estimates of ρ2 are

statistically significant but relatively small for the pooled and 1990 samples.  However, this is not

the case for the 1985 sample.  Irrespective of which autoregressive specification one selects, the

findings indicate that a high degree of dependence of current wages on past wages; the 1st-order

coefficients regularly reach the value of 0.9 which implies a slow decay in the effects of current

wages on the distribution of future earnings.

The results for women in Tables 3 (d) - (f) reveal that the ranges for estimated autoregressive

coefficients are wider than those found for men, with large bounds found for the 25th and 75th



20

percentiles than for the median.  This is hardly surprising given the generally higher conditional

probability of censoring found for women, attributable to more of them being lost due to non-

participation in work.  The bounds on the autoregressive coefficients derived from the median

regressions are, however, especially tight, suggesting that not much has been lost in the way of

accuracy arising from censoring when fitting this quantile of women�s wages.  In exactly the same

way as was seen for men, the results for women convincingly reveal that autoregressive coefficients

vary over time or across cohorts.  Also as was true for men, the estimated values of these coefficients

attest to a high degree of dependence of current wages on past wages. 

In an effort to gain some understanding of whether the similarity of the autoregressive

coefficients found in Tables 3(a) - (f) translate into tight bounds for the future wage quantiles

forecasted using current and past wages, Tables 4 (a) and (b) report averages of the fitted values of

the bounds for the 25, 50, and 75th percent quantiles, for all estimated specifications and instrument

sets.  These fitted values are computed across all individuals in the sample who have non-missing

data for all variables appearing in estimated autoregressive relations.   In general, the bounds are

quite tight and are narrower for men than for women.  The closeness of the averaged upper and lower

bounds indicates that percentiles for the conditional distributions of wages are themselves close in

value, at least in the middle 50% of the distribution.  Thus, much of the variation we see in wages

reflects variation across persons rather than variation over time for particular individuals.  This

finding alone would readily explain why the autoregressive coefficients are relatively insensitive to

the effects of censoring.  

5.  Concluding Remarks

The empirical technique outlined in this paper for assessing the effects of censoring on the

estimation of conditional quantiles has many potential applications.  Nonrandom sample selection

is a particularly relevant concern given its documented prevalence in many popular longitudinal data

sets.  Moreover, the loss of observations due to individuals self-selecting themselves out of the

sample (e.g., by choosing not to work) is an additional source of censoring that possibly

contaminates the randomness of samples and biases estimates.  The analysis presented here

demonstrates that estimating bounds for conditional quantiles, accounting for such censoring, can

produce relatively robust values for estimated coefficients.   
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In general, under a conservative definition of attrition, estimation of a relatively assumption-

free set of bounds on a quantile of the uncensored conditional distribution does a good job of

identifying autoregressive parameters determining conditional wage distributions.   A comparison

of findings between men and women suggests that censoring due to persons not working induces

larger biases than sample losses due to attrition alone.  Moreover, our results indicate greater

sensitivity at the lower quantiles of the wage distribution.  All considered, our application to the

NLSY suggests that not much is lost in the way of accuracy in moving from a traditional method of

ignoring sample selection to the robust econometric procedure introduced here.

Our findings reveal that autoregressive coefficients of conditional wage quantiles change over

time or across cohorts, so one must allow for this feature in order to model wage dynamics

accurately.  One further needs to explore the way in which parameterizations might vary across

education and race groups.  In further developing our econometric method, our approach will be

generalized to admit more sophisticated serial dependence in wages and disturbances, and to

recognize adjustments for estimation error encountered in our two-step econometric approach.

Finally, while in principle applicable, our methods have not been tested to determine how well they

would work in the presence of more severe forms of attrition (e.g., when persons are dropped forever

after they miss their first year in a longitudinal sample).  We intend to pursue all of these

generalizations in future research.
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Table 1 (a)
Basic Summary Statistics for Various Demographic Samples -- Men

Nominal Values, Unweighted

Sample
Composition

(size)

Descriptive Statistics

% Not
Interviewed

Average Hourly Earnings Reported Earnings Imputed  Earnings Annual Hours of Work

%
Missing1

%
Zero2

Mean 
(standard

deviation)3

%
Missing

%
Zero

Mean 
(standard
deviation)

%
Imputed

%
Zero

Mean 
(standard
deviation)

%
Missing

%
Zero

Mean 
(standard
deviation)

Entire Sample
(4837)

7.1 8.8 10.9 7.24
(9.16)

4.9 10.9 12356
(14420)

3.0 16.9 17733
(335963)

5.9 10.8 1703
(863)

Random Sample
(3003)

6.9 8.4 8.8 7.60
(9.86)

4.1 8.8 13332
(16077)

2.9 14.4 18259
(285520)

5.9 8.4 1754
(866)

Whites
(2439)

6.9 8.2 8.0 7.73
(9.56)

3.7 8.0 13816
(16837)

2.9 13.5 17574
(200710)

6.0 7.5 1785
(868)

Blacks
(1451)

6.8 9.7 16.4 6.37
(8.11)

6.5 16.4 9843
(10339)

2.9 23.3 16765
(464529)

5.7 17.0 1545
(864)

Hispanics
(947)

8.2 9.1 10.2 7.11
(9.31)

5.2 10.2 11892
(11318)

3.8 15.8 19513
(402974)

6.0 9.9 1706
(816)

1 For variables other than imputed earnings, this column shows the percentage of values associated with negative codings reflecting "don't know", refusal to answer, and valid and invalid skips.  For imputed
earnings, this column shows the percentage of observations for which no retrospective information is available to infer imputed earnings.

2 This column shows the percentage of observations with non-missing information (due to non-interview or missing for other reasons) that equal zero.

3 The mean and standard deviation are calculated for samples incorporating only those observations with positive values of the specified variable.
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Table 1 (b)
Basic Summary Statistics for Various Demographic Samples -- Women

Nominal Values, Unweighted

Sample
Composition

(size)

Descriptive Statistics

% Not
Interviewed

Average Hourly Earnings Reported Earnings Imputed  Earnings Annual Hours of Work

%
Missing1

%
Zero2

Mean 
(standard

deviation)3

%
Missing

%
Zero

Mean 
(standard
deviation)

%
Imputed

%
Zero

Mean 
(standard
deviation)

%
Missing

%
Zero

Mean 
(standard
deviation)

Entire Sample
(4926)

5.5 8.2 20.3 6.20
(29.18)

5.3 20.3 8855
(11666)

2.0 25.8 16496
(431652)

5.1 19.8 1421
(788)

Random Sample
(3108)

5.5 7.9 17.2 6.43
(35.42)

4.6 17.2 9137
(12036)

2.1 22.4 17191
(450383)

5.1 16.5 1443
(781)

Whites
(2477)

5.3 7.6 14.9 6.58
(38.77)

4.0 14.9 9351
(12114)

2.1 19.8 18606
(493019)

5.2 14.1 1461
(777)

Blacks
(1472)

4.6 8.9 26.9 5.59
(7.64)

6.9 26.9 8113
(12674)

1.5 33.1 10301
(133135)

4.8 27.0 1367
(811)

Hispanics
(977)

7.4 8.6 24.0 5.92
(6.40)

5.9 24.0 8432
(8094)

2.5 29.7 19307
(514628)

5.2 23.3 1380
(778)

1 For variables other than imputed earnings, this column shows the percentage of values associated with negative codings reflecting "don't know", refusal to answer, and valid and invalid skips.  For imputed
earnings, this column shows the percentage of observations for which no retrospective information is available to infer imputed earnings.

2 This column shows the percentage of observations with non-missing information (due to non-interview or missing for other reasons) that equal zero.

3 The mean and standard deviation are calculated for samples incorporating only those observations with positive values of the specified variable.
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Table 2 (a)
Attrition Patterns for Men -- First Attrition

Attrition Measure
Attrition Year

80 81 82 83 84 85 86 87 88 89 90 91

First  Attrition

% attrition

cohort: 
 14-15 2.4 0.9 1.6 1.2 2.1 2.0 3.1 3.0 3.3 2.0 2.5 2.6 
16-17 3.9 1.9 1.9 1.2 2.0 2.9 3.6 4.5 2.6 2.3 2.7 1.9 
18-19 5.3 2.1 1.9 1.5 2.8 3.5 2.6 4.3 3.1 2.9 3.2 2.0 
20-21 5.9 3.1 2.6 1.2 2.6 3.4 3.8 3.8 3.4 1.7 2.2 1.9 

% never return

cohort:
14-15 11.1 10.0 38.9 0.0 13.6 14.3 18.8 20.0 12.5 47.4 30.4 -
16-17 3.7 24.0 8.0 13.3 23.1 30.6 22.7 20.8 20.7 20.0 27.6 -
18-19 7.6 20.8 22.7 17.6 19.4 28.9 14.8 14.0 36.7 40.7 34.5 -
20-21 16.1 35.7 8.7 30.0 27.3 25.0 33.3 13.8 36.0 41.7 26.7 -

% multiple attrition 

cohort:
14-15 55.6 60.0 27.8 53.8 50.0 52.4 43.8 30.0 21.9 26.3 - -
16-17 63.0 48.0 56.0 46.7 61.5 52.8 31.8 32.1 10.3 24.0 - -
18-19 56.1 45.8 54.5 76.5 54.8 50.0 55.6 27.9 16.7 22.2 - -
20-21 53.6 50.0 60.9 30.0 45.5 42.9 23.3 37.9 20.0 25.0 - -

Multiple Attrition

Average # attrition 
spells1

Average missing
 years in:

2.1 2.0 2.2 1.9 1.9 1.6 1.7 1.7 1.4 1.3 - -

1980-83 2.4 2.0 1.4 1.0 - - - - - - - -
1984-87 1.5 1.7 1.8 2.1 2.5 2.3 1.6 1.0 - - - -
1988-91 1.6 1.7 1.7 1.5 1.8 1.4 1.4 1.8 2.4 2.0 - -

% attrition

Race-Ethnic
Groups:

All 4.3 2.0 2.0 1.2 2.4 2.9 3.3 3.9 3.1 2.2 2.7 2.1 
Whites 3.6 2.2 1.3 0.8 2.8 2.5 3.1 3.3 2.8 2.3 2.3 1.5 
Blacks 4.2 1.4 2.4 1.7 1.7 3.3 3.5 4.1 2.9 2.7 3.4 3.3 

Hispanics 6.3 2.5 3.0 1.5 2.5 3.5 3.6 5.3 4.2 1.3 2.5 2.0 

1 This row reports the average number of attrition spells experienced by individuals who initially attrit in the specified year, who
attrit for more than one year, and who return at sometime after this initial attrition.
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Table 2 (b)
Attrition Patterns for Men

Total Attrition

% Attrition

Race-Ethnic Groups:
All 4.3 3.6 4.5 4.1 5.3 6.8 9.2 11.2 10.7 10.0 11.5 11.0 

Whites 3.6 3.8 3.8 3.4 5.6 6.7 9.0 10.6 10.5 10.3 11.6 10.5 
Blacks 4.2 2.8 4.8 4.1 4.6 7.0 9.1 10.6 9.5 9.1 10.6 11.7 

Hispanics 6.3 4.5 6.2 5.5 5.5 7.1 9.8 13.7 13.3 10.7 12.8 11.3 

Fraction of Interviewed Population Who are Returnees

% Returnees

Race-Ethnic Groups:
All - 2.7 3.7 5.4 6.5 7.7 8.5 10 13.3 15.9 16.8 19 

Whites - 2 3.3 4.5 5 6.3 6.9 8.3 11.1 13.2 14 16.3 
Blacks - 2.8 3.2 5.5 6.6 7.4 8.6 10.9 14.5 17.1 18.6 20.3 

Hispanics - 4.3 5.5 7.7 10.1 11.7 12.3 13.2 17.3 20.8 20.9 23.8 
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Table 2 (c)
Attrition Patterns for Women -- First Attrition

Attrition Measure
Attrition Year

80 81 82 83 84 85 86 87 88 89 90 91

First  Attrition

% attrition

cohort: 
 14-15 2.8 0.7 0.8 0.7 1.3 1.2 2.7 3.3 3.4 0.9 1.8 1.7 
16-17 2.7 1.3 1.4 1.1 1.3 1.8 2.4 1.5 2.8 0.9 2.3 0.8 
18-19 4.5 2.0 1.8 0.8 1.8 2.0 2.2 2.3 2.4 1.6 1.7 0.9 
20-21 5.2 1.8 1.6 1.5 1.6 2.7 2.2 2.8 2.5 1.0 1.7 1.1 

% never return

cohort:
14-15 16.7 0.0 0.0 42.9 23.1 41.7 7.7 29.0 32.3 50.0 25.0 -
16-17 21.6 17.6 11.1 33.3 23.5 21.7 30.0 5.3 20.6 40.0 29.6 -
18-19 12.1 20.8 9.1 22.2 23.8 26.1 28.0 12.0 26.9 35.3 38.9 -
20-21 12.3 10.5 18.8 20.0 25.0 19.2 19.0 15.4 21.7 44.4 26.7 -

% multiple attrition  
cohort:
14-15 60.0 57.1 62.5 42.9 46.2 50.0 69.2 25.8 12.9 12.5 - -
16-17 51.4 70.6 38.9 53.3 58.8 56.5 43.3 47.4 23.5 30.0 - -
18-19 55.2 50.0 63.6 55.6 57.1 47.8 56.0 40.0 34.6 29.4 - -
20-21 64.9 68.4 37.5 46.7 43.8 53.8 61.9 34.6 26.1 33.3 - -

Multiple Attrition

Average # attrition 
spells1

Average missing
 years in:

1.9 1.9 2.1 1.9 1.9 1.6 1.6 1.6 1.4 1.6 - -

1980-83 2.5 2.0 1.4 1.0 - - - - - - - -
1984-87 1.4 1.6 2.3 1.7 2.5 2.3 1.7 1.0 - - - -
1988-91 1.2 1.5 2.1 1.4 1.7 1.5 1.6 1.9 2.6 2.0 - -

% Attrition

Race-Ethnic
Groups:

All 3.8 1.5 1.4 1.0 1.5 2.0 2.4 2.4 2.8 1.1 1.9 1.1 
Whites 3.8 1.4 1.1 0.9 1.7 1.7 2.3 1.9 2.2 0.9 1.8 0.7 
Blacks 3.3 1.1 0.9 1.3 1.2 1.2 1.6 2.4 3.0 1.6 1.6 1.7 

Hispanics 4.3 2.4 3.0 1.0 1.6 3.8 3.6 3.8 3.9 1.1 2.7 1.0 

    1 This row reports the average number of attrition spells experienced by individuals who initially attrit in the specified year, who
attrit for more than one year, and who return at sometime after this initial attrition.
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Table 2 (d)
Attrition Patterns for Women

Total Attrition

% Attrition

Race-Ethnic Groups:
All 3.8 3.3 3.9 3.2 4.1 5.2 7.0 8.1 9.0 7.3 8.9 8.0 

Whites 3.8 3.2 3.7 3.3 4.5 5.3 7.0 7.7 8.1 7.1 8.3 7.3 
Blacks 3.3 2.7 2.9 2.6 3.1 3.6 5.0 6.0 7.5 6.3 8.4 8.4 

Hispanics 4.3 4.3 5.6 4.1 4.8 7.3 10.3 12.1 13.4 9.3 11.0 9.1 

Fraction of Interviewed Population Who are Returnees

% Returnees

Race-Ethnic Groups:
All - 2 2.8 4.4 5 5.8 6.2 7.4 9.1 11.8 12 13.7 

Whites - 2.1 2.7 4 4.4 5.2 5.8 6.9 8.5 10.3 10.7 12.3 
Blacks - 1.6 2.2 3.8 4.5 5.1 5.4 6.6 7.9 10.6 10.1 11.6 

Hispanics - 2.4 3.9 6.4 7.2 8.4 8.7 10.4 12.5 17.4 18.2 20.6 
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Table 3 (a)
Estimated Bounds for Autoregressive Quantile Coefficients for Men, Specification #1

Asymptotic standard errors in parentheses

Sample
 Period

Recognized
Source of
Censoring 

α

Autoregressive  Coefficients

1st   Order 2nd   Order
Upper
 Bound

Lower
Bound

Ignoring
Censoring 

Upper
Bound

Lower
Bound

 Ignoring
Censoring

Pooled 
(All 

Years)

Attrition 
and 

Working 
in

Contiguous
Years

25 0.852672 0.845286 0.850772
(0.008434) (0.009241) (0.008777)

50 0.834229 0.840362 0.837325
(0.007706) (0.007643) (0.007836)

75 0.702084 0.718560 0.714496
(0.011372) (0.010236) (0.010015)

1985

25 0.791278 0.791385 0.791629
(0.023406) (0.032539) (0.024903)

50 0.764129 0.768963 0.766684
(0.029762) (0.030301) (0.030110)

75 0.602281 0.609330 0.607361
(0.033647) (0.033797) (0.031988)

1990

25 0.824670 0.805601 0.820043
(0.032482) (0.034980) (0.033479)

50 0.855091 0.859759 0.857423
(0.019947) (0.019470) (0.020051)

75 0.789570 0.799214 0.797815
(0.020710) (0.016954) (0.017046)
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Table 3 (b)
Estimated Bounds for Autoregressive Quantile Coefficients for Men, Specification #2

Asymptotic standard errors in parentheses

Sample
 Period

Recognized
Source of
Censoring 

α

Autoregressive  Coefficients

1st   Order 2nd   Order
Upper
 Bound

Lower
Bound

Ignoring
Censoring

Upper
Bound

Lower
Bound

Ignoring
Censoring

Pooled 
(All 

Years)

Attrition 
and 

Working 
in

Contiguous
Years

25 0.898478 0.893413 0.897527
(0.008976) (0.010580) (0.009508)

50 0.889850 0.894278 0.892194
(0.007736) (0.007507) (0.007615)

75 0.856922 0.810676 1.808574
(0.055738) (0.009727) (0.009720)

1985

25 0.955998 0.959542 0.956439
(0.029673) (0.036471) (0.030574)

50 0.904360 0.906227 0.905515
(0.026521) (0.024886) (0.025327)

75 0.856922 0.859978 0.859297
(0.055738) (0.058097) (0.055596)

1990

25 0.808629 0.796716 0.806405
(0.038549) (0.040744) (0.038393)

50 0.834992 0.836821 0.835992
(0.028609) (0.037590) (0.033320)

75 0.770239 0.778537 0.776669
(0.024417) (0.021376) (0.022773)
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Table 3 (c)
Estimated Bounds for Autoregressive Quantile Coefficients for Men, Specification #3

Asymptotic standard errors in parentheses

Sample
 Period

Recognized
Source of
Censoring 

α

Autoregressive  Coefficients

1st   Order 2nd   Order
Upper
 Bound

Lower
Bound

Ignoring
Censoring

Upper
Bound

Lower
Bound

Ignoring
Censoring

Pooled 
(All 

Years)

Attrition 
and 

Working 
in

Contiguous
Years

25 0.835438 0.830271 0.834375 0.040305 0.041150 0.040334
(0.020573) (0.019237) (0.020603) (0.018770) (0.015401) (0.018023)

50 0.818207 0.821169 0.819703 0.050554 0.050556 0.050568
(0.010291) (0.010491) (0.010367) (0.005653) (0.006040) (0.005818)

75 0.691058 0.701930 0.698913 0.071133 0.069582 0.070078
(0.024398) (0.029725) (0.028190) (0.021579) (0.025328) (0.024537)

1985

25 0.610191 0.612329 0.610914 0.259218 0.253845 0.257495
(0.074545) (0.096092) (0.078296) (0.092934) (0.109836) (0.093720)

50 0.628226 0.627653 0.627941 0.178970 0.181589 0.486481
(0.061926) (0.059134) (0.060633) (0.060377) (0.057385) (0.089291)

75 0.478980 0.486481 0.484530 0.208537 0.208116 0.209024
(0.087990) (0.089291) (0.088699) (0.063754) (0.063335) (0.063525)

1990

25 0.901473 0.882508 0.897136 -0.072214 -0.063236 -0.070073
(0.061022) (0.061426) (0.061072) (0.047487) (0.048672) (0.046670)

50 0.897092 0.902314 0.899620 -0.048821 -0.050591 -0.049657
(0.041202) (0.042372) (0.042581) (0.025980) (0.025227) (0.025829)

75 0.843824 0.841442 0.842058 -0.052712 -0.046024 -0.047608
(0.038140) (0.042345) (0.041260) (0.037544) (0.042789) (0.041999)
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Table 3 (d)
Estimated Bounds for Autoregressive Quantile Coefficients for Women, Specification #1

Asymptotic standard errors in parentheses

Sample
 Period

Recognized
Source of
Censoring 

α

Autoregressive  Coefficients

1st   Order 2nd   Order
Upper
 Bound

Lower
Bound

Ignoring
Censoring

Upper
 Bound

Lower
Bound

Ignoring
Censoring

Pooled 
(All 

Years)

Attrition 
and 

Working 
in

Contiguous
Years

25 0.894144 0.874546 0.888980
(0.009077) (0.013406) (0.009999)

50 0.838520 0.864776 0.853740
(0.009377) (0.008324) (0.007440)

75 0.639189 0.712737 0.696472
(0.013003) (0.013439) (0.012797)

1985

25 0.774688 0.803268 0.0782338
(0.069445) (0.035838) (0.076248)

50 0.626360 0.670796 0.651863
(0.040396) (0.017898) (0.054066)

75 0.441419 0.499531 0.494723
(0.024952) (0.019266) (0.056771)

1990

25 0.918881 0.893843 0.913279
(0.027193) (0.015483) (0.024131)

50 0.925118 0.929544 0.930493
(0.014541) (0.012908) (0.012024)

75 0.818567 0.862047 0.853032
(0.032232) (0.020172) (0.017232)
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Table 3 (e)
Estimated Bounds for Autoregressive Quantile Coefficients for Women, Specification #2

Asymptotic standard errors in parentheses

Sample
 Period

Recognized
Source of
Censoring 

α

Autoregressive  Coefficients

1st   Order 2nd   Order
Upper
 Bound

Lower
Bound

Ignoring
Censoring

Upper
 Bound

Lower
Bound

Ignoring
Censoring

Pooled 
(All 

Years)

Attrition 
and 

Working 
in

Contiguous
Years

25 0.948260 0.933461 0.945042
(0.011316) (0.017123) (0.013747)

50 0.909419 0.929802 0.921565
(0.008928) (0.007466) (0.008290)

75 0.766675 0.825381 0.813894
(0.014538) (0.009791) (0.011167)

1985

25 0.950810 1.021600 0.950116
(0.056570) (0.135190) (0.062244)

50 0.875832 0.918084 0.902622
(0.072970) (0.045469) (0.051327)

75 0.681774 0.719380 0.704034
(0.044099) (0.075816) (0.045803)

1990

25 0.871659 0.829001 0.863954
(0.025304) (0.036390) (0.034735)

50 0.915512 0.916755 0.919119
(0.019367) (0.017751) (0.019951)

75 0.800699 0.855194 0.845489
(0.036082) (0.021042) (0.015898)
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Table 3 (f)
Estimated Bounds for Autoregressive Quantile Coefficients for Women, Specification #3

Asymptotic standard errors in parentheses

Sample
 Period

Recognized
Source of
Censoring 

α

Autoregressive  Coefficients

1st   Order 2nd   Order
Upper
 Bound

Lower
Bound

Ignoring
Censoring

Upper
Bound

Lower
Bound

Ignoring
Censoring

Pooled 
(All 

Years)

Attrition 
and 

Working 
in

Contiguous
Years

25 0.907281 0.894997 0.903545 0.024384 0.023522 0.024619
(0.014537) (0.016630) (0.017484) (0.010384) (0.012845) (0.014256)

50 0.857159 0.875828 0.866739 0.036310 0.033032 0.034930
(0.012081) (0.015863) (0.013888) (0.010629) (0.013309) (0.033826)

75 0.653650 0.728371 0.711111 0.072097 0.055307 0.059022
(0.021563) (0.018822) (0.017872) (0.014209) (0.010788) (0.009891)

1985

25 0.732090 0.761420 0.735394 0.108641 0.097725 0.106765
(0.066894) (0.121165) (0.060763) (0.080187) (0.096267) (0.060424)

50 0.535072 0.564793 0.538561 0.188120 0.185370 0.190785
(0.073386) (0.085427) (0.038166) (0.059047) (0.070442) (0.054961)

75 0.241154 0.342378 0.332611 0.302818 0.248765 0.255491
(0.038473) (0.071691) (0.028270) (0.052382) (0.035403) (0.030853)

1990

25 0.967804 0.970496 0.971485 -0.067866 -0.114877 -0.077600
(0.041614) (0.032784) (0.044511) (0.031152) (0.045597) (0.037993)

50 0.950122 0.955434 0.953728 -0.021172 -0.020142 -0.019825
(0.015669) (0.020092) (0.015173) (0.005323) (0.009770) (0.004929)

75 0.871606 0.940416 0.904293 -0.040013 -0.068031 -0.050164
(0.024644) (0.060933) (0.044973) (0.006422) (0.052959) (0.032567)
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Table 4 (a)
Average Fitted Bounds on Quantiles of the Conditional Log Wage Distribution

Men, δi,t = 0 if Attrition or Hours = 0

Specification Bound 25th-Percentile 50th-Percentile 75th-Percentile

#1 Upper 1.82939 1.95860 2.11027

Lower 1.81599 1.95326 2.10537

#2 Upper 1.89227 2.00457 2.13250

Lower 1.88048 2.00029 2.12898

#3 Upper 1.93969 2.05453 2.18506

Lower 1.93057 2.05138 2.18182

Table 4 (b)
Average Fitted Bounds on Quantiles of the Conditional Log Wage Distribution

Women, δi,t = 0 if Attrition or Hours = 0

Specification Bound 25th-Percentile 50th-Percentile 75th-Percentile

#1
Upper 1.65110 1.76577 1.91350

Lower 1.59881 1.74941 1.89790

#2
Upper 1.71692 1.81443 1.93900

Lower 1.66606 1.80069 1.92546

#3
Upper 1.76594 1.86534 1.99390

Lower 1.72519 1.85352 1.98105


