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Abstract

Workers contribute to team production through their own productivity and through their

effect on the productivity of other team members. We develop and estimate a model where

workers are heterogeneous both in their own productivity and in their ability to facilitate the

productivity of others. We use data from professional basketball to measure the importance

of peers in productivity because we have clear measures of output, and members of a worker’s

group change on a regular basis. Our empirical results highlight that productivity spillovers play

an important role in team production, and accounting for them leads to changes in the overall

assessment of a worker’s contribution. We also use the parameters from our model to show that

the match between workers and teams is important and quantify the gains to specific trades of

workers to alternative teams. Finally, we find that worker compensation is largely determined by

own productivity with little weight given to the productivity spillovers a worker creates, despite

their importance to team production. The use of our empirical model in other settings could

lead to improved matching between workers and teams within a firm, and compensation that is

more in-line with the overall contribution that workers make to team production.

∗We thank Patrick Coate, Fabian Lange, Lars Lefgren, Craig Palsson, Michael Ransom, and seminar participants

at Iowa State, McGill, Boston College, Brigham Young University, and the University of Georgia for helpful comments.
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1 Introduction

The classic economic model predicts that workers will be paid the value of their marginal product of

labor. Estimating this marginal product may be complicated by team environments in which workers

contribute to team production directly but also indirectly through their effect on the productivity

of other team members. If firms are able to identify workers who boost peer productivity, they can

leverage complementarities in team production through team and task assignments. Workers who

bring out the best in others will likely be assigned to tasks essential for firm production.

Mas and Moretti (2009) provide an excellent example of spillovers in team production by looking

at the placement of cashiers in a supermarket. Placing the most productive cashiers in full view of

the other cashiers resulted in the other cashiers working faster. However, Mas and Moretti provide

one of the few examples where actual productivity is observed. Other examples include Hamilton,

Nickerson, and Owan (2003), who examine worker interactions in the garment industry, and a set

of papers analyzing productivity in the academy, Azoulay, Zivin, and Wang (2010) and Waldinger

(2010, 2012).1

The assumption made in this literature–as well as the abundant literature on peer effects in

education–is that the individuals who are most productive themselves are also the ones who will

make others most productive. This assumption may not be true in many contexts. For example,

there are professors who choose to focus exclusively on their own research, providing little in terms

of public goods while other professors who are particularly adept at helping their colleagues in

their research and may do so even at the expense of their own research. Similarly, a brilliant but

introverted student may not be as helpful to the learning of the other students as the perhaps

not-so-brilliant student who asks good questions in class.

We may expect workers to be compensated for both their productivities and their abilities to

make others more productive. However, peer effects, particularly heterogeneous peer effects, are

notoriously difficult to measure, in part because of the data requirements. But the advent of “Big

Data”, as well as the accompanying means of estimating models with large state spaces, may result in

measures of productivity spillovers becoming more readily available. For example, patent scientists

and financial advisors are both occupations for which there is rich data on individual output and

information about network structure within the firm. These are both settings where a firm could

identify workers who improve the productivity of their peers through interaction and advice.

1Field experiments have also been used to examine peer effects in the workplace. See the papers by Bandiera,

Baranakay, and Rasul (2009, 2010) as well as Falk and Ichino (2006).
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In this paper, we develop and estimate a model of team production where individuals are hetero-

geneous in their own productivity as well as in their ability to help others be productive. We then

relate our measures to compensation, focusing in particular on the extent to which the ability to

make others more productive is rewarded in the marketplace. We focus on an industry, professional

basketball, where the ability to help others is clearly an important part of team production. Sports

data provide an excellent opportunity to study team production because the members of a team

can be clearly identified, there are frequent changes in the players that compose a particular team,

and compensation data is available.

Two papers using sports data highlight the heterogeneity in how spillovers may operate. Gould

and Winter (2009) use data on baseball players to analyze how batter performance is related to the

performance of other batters on the team. This paper fits perfectly with the idea that the most

productive players have the largest positive peer effects: batting in front of a high-performing player

results in receiving better pitches because the pitcher will not want to risk a walk prior to facing

the high-performing player. Guryan, Kroft, and Notowidigdo (2009) examine how the productivity

of one’s golf partners affects own performance, finding no significant effects from being paired with

better golfers. Even though there is no team production in golf, it may be that individual spillovers

are multidimensional in the sense that they work through multiple player attributes. Certain players

may be very productive but are surly or disobey common golf etiquette, both of which may serve

to distract their partners. The authors allow for this additional flexibility, but find no evidence of

heterogenous spillovers.

Using possession-level data from games played in the National Basketball Association (NBA),

we demonstrate that productivity spillovers play an important role in team production. We find

that a standard deviation increase in the spillover effect of one player improves team success by 63%

as much as a standard deviation increase in the direct productivity of that player. Estimates of the

model also allow us to form player rankings based on the overall contribution to team production.

We compare these rankings to estimates of team production when spillovers are ignored. Players

who are generally perceived by the public as selfish see their rankings fall once we account for

productivity spillovers.

We also use our model to highlight how the value of a particular player can vary depending on the

composition of his teammates. Most firms have various teams within their organization and have the

ability to reassign workers across teams. Since individual productivity and productivity spillovers

play a complementary role, the overall contribution of a player will depend on the composition of the
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other players already on the team.2 We find that the assignment that produces the greatest increase

in team productivity is often an assignment that does not maximize the direct productivity of the

player. This suggests a tension that firms need to balance between team and player productivity,

especially in firms where individual productivity has a large effect on compensation.

Given the large role spillovers play in team production in this industry, we would expect signifi-

cant returns in the labor market to the ability to help others. This is not the case. Returns to own

productivity are substantially higher than returns to the ability to help others, well beyond their

differences in their contribution to team production. Part of the reason for this may be the difficulty

in measuring the ability to help others. As in the academy, direct productivity is easily observed

in ways that facilitating the productivity of others is not. To the extent that own productivity and

facilitating the productivity of others is endogenous, the lack of returns to the latter may result in

inefficient effort allocations among workers.

2 Data

To estimate a model of player performance, we use publicly available NBA play-by-play data covering

all games during the 2006-2009 regular seasons gathered from espn.com. For those readers unfamiliar

with the basic rules of basketball we have included a brief description in Appendix A. The raw play-

by-play data provides a detailed account of all the decisive actions in a game, such as shots, turnovers,

fouls, rebounds, and substitutions. Plays are team specific, meaning that there is a separate log

for the home team and the away team. Associated with each play are the player(s) involved, the

time the play occurred, and the current score of the game. While our model of player productivity

is estimated using only the play-by-play data, we augment it with additional biographical and

statistical information about each player gathered from various websites which we discuss later in

this section. As described in Appendix B, we took a number of steps to clean the data. These

included establishing which players were on the court, acquiring the outcomes of possessions, and

matching the names of the players to data on their observed characteristics such as position and

experience.

Table 1 describes our estimation sample in further detail. We use data from 905,378 possessions

and 656 unique players active in the NBA from 2006-2009. On average, each player is part of

13,801 possessions, split evenly between offense and defense. The average number of possessions for

2Similarly, Ichniowki, Shaw, and Prennushi (1997) find that the returns to innovative work practices (e.g. teams,

incentive pay, etc.) are complementary in the steel finishing industry.
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each player-team-season combination is 4,507. The corresponding 25th and 75th percentile values

are 1,130 and 7,470. The final four rows of Table 1 describe the typical outcomes for a possession.

Slightly more than 50% of the time the offensive team scores, and, conditional on scoring, the offense

scores on average 2.1 points.

To supplement the play-by-play data, we merge in biographical and statistical information about

each player. Our primary source for this information is basketball-reference.com. The website

contains basic player information such as date of birth, height, position, and college attended and

a full set of statistics for each season the player is active. We also gathered information on salaries

and contract years from prosportstransactions.com and storytellerscontracts.com. We also obtained

additional measures of player performance from basketballvalue.com and 82games.com.

3 Model and Estimation

In this section we present a model of team production, discuss identification, and describe our

estimation strategy. The innovation of the model is that the ability of an individual to influence

the productivity of others is not directly tied to own productivity. We tailor the model to the

NBA context, though it would be simple to expand the framework to other types of production.3

The number of parameters to be estimated is quite large and would be computationally prohibitive

using straight maximum likelihood. Consequently, we take an iterative approach as in Arcidiacono,

Foster, Goodpaster, and Kinsler (2012).4

3.1 Model setup

Our unit of analysis is an offensive possession during an NBA game. There are five offensive and

five defensive players on the court during every possession. For a given possession n, denote the

set of players on the court as Pn, where Pn includes the offensive players on the court On and the

defensive players on the court Dn. For notational ease we abstract from the fact that possessions

are typically observed within games, which themselves are observed within seasons. Additionally we

abstract from the concept of team, even though the potential sets of offensive and defensive players

will be determined by team rosters. A possession can end in one of six ways, no score or one of the

3For example, in Mas and Moretti (2009) checkout cashiers are assumed to influence other cashiers through their

own productivity. However, it would be straightforward to allow for completely separate effects.
4See Burke and Sass (2013) for an application of this method in education and Cornelissen, Dustmann, and

Schonberg (2013) for an application in the labor market.
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five offensive players in On scoring at least one point.5 We assume that each player i on the court is

fully characterized by three parameters: (i) their ability to score, oi, (ii) their ability to help others

score, si, and (iii) their ability to stop others from scoring di.

Assume for the moment that there is no heterogeneity in defensive skills. The likelihood that

offensive player i scores to conclude a possession will depend on i’s own ability to score and his

ability to help others score, as well as the similar skills of his teammates on the court. Denote

yin = 1 if the individual scores and yin = 0 otherwise. We assume that the probability that player

i scores at least one point during possession n is given by6

Pr(yin = 1|Pn) =
exp

(
oi(1−

∑
k∈On,k 6=i sk)

)
1 +

∑
h∈On

exp
(
oh(1−

∑
k∈On,k 6=h sk)

) . (1)

The probability that player i scores to end possession n is increasing in oi, the offensive intercept of

player i. An increase in the offensive spillover of player k 6= i will have an ambiguous effect on the

probability that player i scores, since an increase in sk also benefits the other offensive players in On.7

The probability that possession n ends with no points scored is simply 1−
∑

i∈On
Pr(yin = 1|Pn).

The above model is inadequate since defenders will vary in ability. Thus, the probability that

one of the players in On scores will depend on the composition of the players in Dn. To account

for defense, we alter the above framework such that the probability that player i scores at least one

point during possession n is given by

Pr(yin = 1|Pn) =
exp

(
oi(1−

∑
k∈On,k 6=i sk)

)
exp

(∑
j∈Dn

dj

)
+
∑

h∈On
exp

(
oh(1−

∑
k∈On,k 6=h sk)

) (2)

The difference between Equation (1) and Equation (2) is that the index associated with no points

being scored now varies with the abilities of the defenders in Dn. The joint defensive prowess of the

5Note that this is different from many other labor market settings where production for each person may be

observed. Individual productivity measures would be equivalent to having many players be able to score on one

possession, a feature that would make estimation easier as we would have output measures on everyone at each point

in time. This is discussed in greater detail at the end of this section.
6Separate identification of own productivity from spillover productivity is not reliant on the multinomial logit

production function. We choose this specification since possession outcomes are binary in nature. In fact, a linear

model would be significantly easier to estimate.
7Note also that spillovers are not specific to particular player combinations, with certain players working well

together beyond what their indvidual abilities would suggest. We maintain this assumption as well for defensive

parameters. Substitutions are then exogenous conditional on the fixed effects (offensive intercept, defensive intercept,

and spillovers) of the players.
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players in Dn is a linear function of the defensive intercepts of each player j.8

Possessions that yield positive points do not necessarily contribute equally to team success

since there are a range of plausible point outcomes. To determine the expected number of points

per possession for each player, we scale the probability of scoring positive points by the expected

number of points conditional on scoring for each player,

E[Pointsin|Pn] = E[Pointsi|yi = 1]× Pr(yin = 1|Pn). (3)

The above formulation assumes that the number of points a player scores, conditional on scoring, is

unrelated to the identities of the other players on the court. We check this assumption by regressing

points scored on player fixed effects and teammate fixed effects for all possessions that yield positive

points. In this simple model, each player has two parameters, one describing his own typical point

production and the other describing how he influences the points scored by his teammates when

he is on the court. For each season in our data, we fail to reject that all of the spillover related

parameters in point production are jointly equal to zero. Thus, it appears that our assumption is a

reasonable approximation of the data even if it is not strictly true. The advantage of making this

simplifying assumption is that we can estimate E[Pointsi|yi = 1] outside of the model. Without

the independence assumption we would need to append points scored to our likelihood function and

in the process triple the number of parameters. Each player would be described by an offensive

intercept, offensive spillover, and defensive intercept both for the probability of scoring and points

scored.9 This would significantly impede estimation.

Our model of team production is complex; the production function is non-linear, there are a large

number of parameters to estimate, and many of these parameters interact. The large parameter space

reflects our desire to estimate both own and spillover productivity. To estimate these parameters

we use a non-linear production function since only one player can score during a single offensive

possession. The fact that only one player can score per possession means that we don’t observe the

output, or contribution, of all the players all the time. We match this feature of the data by using

a multinomial logit type production technology that generates discreteness in individual outcomes.

If output were available for each individual in each time frame, a much simpler model of own and

8Note that defensive spillovers are not present. We experimented with including defensive spillovers and found that

they were poorly identified.
9There may be ways to restrict the parameters for each player across the two outcomes and thus limit the number

of additional parameters, but it is not obvious a priori what those restrictions should be. The simpler approach, and

the one supported by the data, is to assume points conditional on scoring is independent of the other players on the

court.
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spillover productivity might be possible. For example, Mas and Moretti (2009) observe productivity

for all cashiers working a particular shift. It is possible in their context to estimate own productivity

and the ability to help others be more productive using a linear specification. Estimation of such

a linear model would require iteration, but would be easy to implement since it would essentially

require running repeated OLS regressions as in Arcidiacono, Foster, Goodpaster, and Kinsler (2012).

Linear specifications could also be utilized to explore spillovers in education (test scores are available

each year), health (doctors and nurses treat patients each period), or entertainment (actors perform

in many movies).

An alternative approach for estimating individual contributions to team performance, when

output measures for all team members are lacking, is to model team outcomes directly. Because

team outcomes are always available, it is possible to estimate player contributions using a linear

specification. The Adjusted Plus/Minus (APM) statistical model of player performance follows this

approach.10 The basic idea is to regress a team outcome, such as points scored, on a set of offensive

and defensive player fixed effects. The drawback to this methodology is an inability to separately

identify own and spillover productivities. The estimated offensive fixed effect for each player will

be a mix of own productivity and the ability to help others be more productive. Replacing player

fixed effects in the APM with an aggregate of traditional box score statistics, such as points, assists,

and rebounds faces the same criticism. The coefficients on these statistical measures will capture a

mix of own and spillover productivities. In contrast, our model exploits information about both the

players on the court and which of those players scores to separately identify the two parameters.

Separate identification of own and spillover productivities is critical for evaluating counterfactual

player groupings when there are potential complementarities in production.

3.2 Normalizations and identification

The offensive intercept parameters can be readily identified if data for many possessions is available.

However, to identify the offensive spillovers it is necessary to observe player i in multiple groups.

Put differently, the spillover parameters can only be separately identified if we observe player i

with different sets of teammates across possessions. If not we could simply redefine oi such that

o∗i = oi(1 −
∑

k∈On,k 6=i sk) for all i and estimate the o∗i ’s. Without switching there is no way to

separate the offensive intercepts from the offensive spillovers.

Even when the set of teammates in On varies across possessions, it is still necessary to make a

10Further details on the APM are available at http://www.82games.com/barzilai2.htm
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normalization on the spillover parameters. For any set of oi and si, it is always possible to redefine

the parameters such that the predicted probabilities are identical. For example, define

o∗i = oi(1 + 4s) (4)

where s is the mean spillover calculated using i’s spillover and the spillover of all the players i is

ever grouped with. Additionally, define

s∗i =
si − s
1 + 4s

(5)

It can be shown that the predicted probability that i scores is identical across {o, s} and {o∗, s∗}.

A natural normalization is simply to constrain s = 0.

Adding defensive heterogeneity to the scoring probabilities does not alter the identification ar-

gument regarding the offensive parameters. Similar to the offensive spillover parameters, it is not

possible to identify the baseline defensive productivities unless player i is observed on defense with

different sets of teammates. This is because defensive outcomes are essentially group outcomes.

Thus, switching teammates is critical for identifying the defensive intercepts. Note that the mean

defensive intercepts must also be normalized since the mean is not separately identified from the scale

of the baseline offensive parameters. The normalization we make is that the possession-weighted

average of the defensive intercepts across players is zero in each year.

The normalization and identification issues discussed above are technical concerns in the sense

that it is not possible to identify all the parameters of the model even if infinite amounts of data were

available. However, in order to consistently estimate the player productivities that are identified, we

must make an additional exogeneity assumption, namely that changes in the sets of players in On

and Dn are exogenous conditional on oi, si, and di. In the context of NBA basketball, there are many

sources of plausibly exogenous player substitutions, such as fatigue, injury, or foul trouble. However,

there is also a concern that some player substitutions are strategic responses to idiosyncratic shocks

to player performance, game situations, or individual match-ups between players in On and Dn.

Strategic substitutions could bias our estimates of player productivities in unpredictable ways. We

investigate the robustness of our findings to alternative modeling assumptions in Section 4.5.

3.3 Iterative algorithm

There are three parameters to be estimated for each player we observe in the data. As previously

discussed, it is not possible to estimate the offensive spillovers without an additional restriction. If

all the players in the sample are connected, in other words, every player can be linked to every other
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player through their teammates, then it would only be necessary to restrict the overall mean of the

offensive spillovers to zero. In our data, all the players are in fact connected, since players switch

teams both within and across seasons. However, jointly estimating all of the player parameters by

maximum likelihood imposing this one restriction is not computationally feasible.

As a result, we pursue an estimation strategy that treats each team-season as an independent

entity. Players that switch teams within a season are treated as completely unrelated. For each

team-season, we normalize the possession-weighted spillover to zero. Once we have estimated all the

player parameters imposing these restrictions, we adjust team and player spillovers to be consistent

with observed changes in the same player’s performance across different teams and seasons. This

approach has two advantages. First, it facilitates estimation since we can iteratively estimate the

offensive intercepts, offensive spillovers, and defensive intercepts team by team. Second, it allows

player productivity to vary across seasons as a result of random factors such as health and luck.

Once we have defined players as any unique combination of player-season-team, we estimate

the offensive and defensive parameters using an iterative approach. The method has three broad

steps that correspond to estimating the offensive intercepts, defensive intercepts, and the offensive

spillovers, where each step increases the log likelihood.11 The following steps outline the estimation

procedure more precisely, where now player i’s parameters are indexed by team-season pairs (t).

• Step 0: Make an initial guess of the parameters, denoted by {o0
it, s

0
it, d

0
it}.

• Step 1: Estimate by maximum likelihood o1
it conditional on {s0

it, d
0
it}.

• Step 2: Estimate by maximum likelihood d1
it conditional on {o1

it, s
0
it}.

• Step 3: Estimate by maximum likelihood s1
it conditional on {o1

it, d
1
it}.

Estimation proceeds by iterating on Steps 1-3 until convergence, where the estimates at the qth iter-

ation are characterized as {oqit, s
q
it, d

q
it}. Note that within Steps 1-3, estimation proceeds separately

for each team-season, implying that each maximization step is searching over only approximately

15 parameters–one for each player who played on a particular team in a particular season. Our

approach relies on the fact that there are no across-team interactions to be concerned about when

the remaining parameters are taken as fixed–when estimating the offensive parameters for one team,

11Increasing the log likelihood at each step does not guarantee the algorithm will converge to the global maximum.

We used two different sets of starting values, one of which used the estimates from the model where we did not allow

for spillovers and then set the starting values for the spillover parameter to zero. In both cases the estimates converged

to the same values.
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all the defensive parameters of the players associated with the other teams are taken as given. Note

that this approach would not be possible if the parameters for a particular player were constrained

to be the same across seasons or across teams within a season.

3.4 Linking across years

Once the above process converges, we are left with a set of parameters describing player performance

for each team-season. In order to compare these parameters across team and season combinations,

assumptions must be made. For the defensive parameters, we assume that the possession-weighted

average defensive ability is the same in each season.12 Since our normalization on the defensive

parameters was such that the average defensive ability was zero in each season, no adjustments need

to be made to compare defensive parameters across seasons. Note that coaches are embedded in these

defensive parameters: certain coaches may positively affect the defensive abilities of their teams.

Hence we can project the time-varying defensive parameters on, for example, player fixed effects

and coach fixed effects in order to ascertain which coaches are particularly effective at improving

the defensive skills of their players.13

More difficult is comparing offensive intercepts and spillover parameters across teams and sea-

sons. Recall that the average spillover was normalized to zero for each team-season. This rules out

the possibility that specific teams are composed of players with higher-than-average spillovers. To

compare players across teams and seasons, we make an observationally-equivalent assumption, but

one that is perhaps more tenable. Namely, we assume that the variation in a particular player’s

spillover parameter over time does not depend on team-specific effects in that season. Hence, coaches

or teams may be particularly effective in generating offense in a particular year beyond what would

be expected given the skills of their players, but this effect operates solely through the offensive in-

tercept. Similar to the discussion of the defensive parameters, we can project the offensive intercept

on player fixed effects and coach effects, but our normalization effectively rules out coach effects on

the spillover parameter.

Now denoting s0
it as the initial estimate of the spillover parameter when the average spillover on

12Note that the defensive abilities come from both the players skills and the coaching strategies. Hence, the

assumption is that, on average, the combination of the defensive skills of the players in the league as well as how

coaches complement those skills does not change over time.
13In fact, we can go further than this by interacting the coach fixed effects with the positions of the players. For

example, some coaches’ defensive schemes may depend more on the skills of particular positions than the schemes of

other coaches. We do not pursue this because the panel is relatively short.
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each team in each season is constrained to zero, the procedure to change the spillover normalization

iterates on the following two steps:

• Step 1: Regress s0
it on player fixed effects and team-season fixed effects, weighting each obser-

vation by the observed number of possessions.14 This leads to the following decomposition of

s0
it:

s0
it = s0

i − δ0
t + ε0it (6)

where s0
i and δ0

t give the contribution of the player and the team-season respectively. The

team season effect enters negatively in the decomposition since a higher δ0 implies a better

spillover team and thus a lower normalized spillover estimate.

• Step 2: Create adjusted offensive spillovers using: s1
it = (1 + 4δ0

t )s
0
it + δ0

t . Note that this is

essentially equation (5) which gives the mapping from one normalization to another, where s∗i

is s0
it, s is δ0

t , and si is s1
it.

Estimation proceeds by iterating on Steps 1-2 until convergence, where the estimates at the qth

iteration are denoted by sqit. Convergence occurs when the regression of sqit on player fixed effects

and team-season effects yields team-season effects that are all zero, δqt = 0, implying sqit = sqi + εqit.
15

After convergence, the offensive intercepts are adjusted according to equation (4) using the new

spillover parameters.

To get a more intuitive sense for how the algorithm works, consider a player who is on team

A in the first half of the season and on team B in the second half of the season. Suppose team A

has higher spillover players than team B. Since the mean spillover under the initial normalization

is zero for both teams A and B, this player will have a lower estimated spillover parameter when

he played for team A as he was pooled with stronger players. Hence the regression of the player’s

spillover parameters on his fixed effect and the negative of the team-season effect will yield a positive

estimate for team A’s fixed effect. This positive effect gives us our first estimate of how much better

the players on team A in that season were on the basis of the spillover parameter which is then used

to adjust the spillover parameters for the players on team A upward.

14One team-season effect must be normalized to zero to pin down the scale of the offensive intercept parameters. It

is possible to control for experience or age when estimating the spillover regression. Our results do not change if we

allow for these additional explanatory variables.
15Only a few iterations are required in practice.
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4 Results

The estimation procedure yields three parameters for each player-season-team combination. If these

parameters are capturing something permanent about player skill, they should be reasonably stable

over time and across teams. To investigate this, we estimate separate fixed effects regressions for

each of our skill measures. The outcome variables are the player-season-team estimates and the

only explanatory variables are player fixed effects. Each player-season-team skill observation is

weighted by the number of observed possessions. With these simple regressions we are able to

explain approximately 83%, 50%, and 57% of the variation in the offensive intercept, offensive

spillover, and defensive parameters respectively across seasons and teams. Thus, it does appear

that we are capturing something intrinsic about each player.16

For evaluating players and teams, however, the parameter estimates themselves are not particu-

larly informative. In the next few sections we demonstrate how the various player skills contribute to

team performance, how to rank players using our estimates, and finally whether players and teams

make decisions that are consistent with the results of our model.

4.1 Importance of the three factors

As noted above, the scale of the offensive intercept, offensive slope, and defensive intercept are

not meaningful on their own. To illustrate how important each of these components are for team

success, we perform the following exercise using player skill estimates from the 2009-2010 season.

We first identify the four most utilized players on each team in the 2009-2010 season based on

total possessions. We then ask how each group of four players would perform when various types of

players are added. Our measure of team performance is the predicted per possession point differential

against an average team.17

The results of this exercise are illustrated in Table 2. The first row of results shows the dis-

16Since the spillover parameter is a key contribution of our empirical model, we provide two pieces of external

evidence about the validity of this measure. First, we find that the spillover parameter is strongly correlated with

the statistics in box-score data that it should be most closely related to, such as assists and turnovers. Second, John

Hollinger wrote an article for ESPN in 2010 that listed the 15 worst ball-hogs in the NBA. We find that these players

have a spillover parameter that is 0.4 of a standard deviation lower than the other players in the league.
17The five offensive intercepts for the average team are chosen to match the average intercepts across teams by

player offensive rank. For example, the offensive intercept for the most productive scorer on the average team is the

mean across all 30 teams of the best scorer’s offensive intercept. Each player on the average team is assigned the

overall average spillover and defensive parameter since these enter the production function linearly.
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tribution of predicted point differentials when an average player is added to each team’s top four

utilized players.18 Across 30 teams, the average differential is slightly above zero, with a standard

deviation equal to 0.087. Using this as a baseline we then explore how each team’s per possession

point differentials change when players with particular skills are added. We consider six different

player types, altering the offensive intercept, offensive slope, and defensive intercept by one standard

deviation in either direction from the average.19

We find that all three factors are important for team performance. Adding a one standard

deviation better offensive intercept, offensive spillover, or defensive intercept player improves a

team’s per possession point differential by 0.027, 0.017, and 0.021 points respectively. Compared to

the baseline standard deviation of point differentials of 0.087, these numbers indicate that adding a

one standard deviation more skilled player increases a teams per possession point differential by 20%

to 30% of a standard deviation. The largest change in team performance stems from the addition of

a better offensive intercept player. This is true despite the fact that adding a good scorer necessarily

decreases the opportunities that the other players on the team have to score.

The results in Table 2 also document the variability across teams in the effect that different types

of offensive players have on team performance.20 Because of the complementarities in the probability

of scoring, the benefit of adding a particular type of player will vary by team. For example, a high

offensive intercept player may be valued more by teams that have fewer high spillover players since a

productive scorer doesn’t rely as much on his teammates to score. In contrast, a team with a number

of productive scorers may prefer to bring in a high spillover teammate to enhance the productive

skills already present.

18The average player is constructed by taking the possession weighted average of each of the offensive intercept,

offensive spillover, and defensive intercept.
19To calculate the standard deviation for each skill type, we first compute the variance of our parameter estimates

by skill type, weighting by each player’s total number of possessions. This variance is an overestimate of the true

variation in player skill since it will be inflated by sampling error in our estimates. We correct for this by subtracting

off the average variance of the sampling error across the parameter estimates, again weighting by the total number of

possessions. The sampling variance for each parameter is simply the square of the standard error associated with each

parameter, which we obtain by inverting a numerical approximation to the Hessian. Further details on calculating

standard errors are available in Appendix C.
20In contrast to the offensive skills, there is little variability across teams in point differential changes associated

with adding a one standard deviation better (or worse) defensive player. This is primarily a reflection of the fact that

we assume that there are no complementarities in defensive production.
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4.2 Position comparisons

High offensive intercept, spillover, or defensive players are often associated with particular positions

on a standard NBA team.21 For example, point guards are generally viewed as facilitators, while

centers are expected to protect the basket on defense. Table 3 shows how the various skills break

down by position. For each position, we show the average skill measure for each of our estimated

parameters and a measure of a player’s overall effectiveness (a combination of our three measures

which we discuss further in the next section). For comparison purposes we also include two common

measures of player effectiveness, player efficiency rating (PER) and adjusted plus minus (APM).22

All measures are standardized to have a mean of zero and standard deviation equal to one across

positions.

The estimates of our model match the basic intuition about the types of skills different position

players bring to a team. Point guards are by far the best spillover players but tend to be below

average scorers and very poor defenders.23 In contrast, centers are 0.68 standard deviations better

than the average defensive player and the huge defensive benefit of centers provides their most

important contribution from an overall effectiveness standpoint, with centers being 0.33 standard

deviations more effective than the average player. The PER’s ordering of overall effectiveness by

position is similar to our ranking, except in the case of point guards which are ranked higher under

21The most common lineup in professional basketball contains a point guard, shooting guard, small forward, power

forward, and center. However, teams face no restrictions regarding which positions players are allowed to play at one

time.
22PER is a rating of a player’s per-minute productivity that is generated using a complicated formula based on

box-score statistics. The precise formula can be found at http://www.basketball-reference.com/about/per.html.

PER does not consider who each player plays with or against and is viewed largely as a measure of offensive

effectiveness. PER has been criticized as a measure of player effectiveness since it emphasizes shot taking (see

http://wagesofwins.com/2006/11/17/a-comment-on-the-player-efficiency-rating/). APM ratings indicate how many

additional points are contributed to a team’s scoring margin by a given player in comparison to the league-average

player over the span of a typical game. APM is constructed using a fixed effects regression where the dependent

variable is the per-possession point differential for a given set of players on the court and the explanatory variables are

player fixed effects. Further details are available at http://www.82games.com/barzilai2.htm. The advantage of APM

relative to PER is that it explicitly accounts for who a player plays with and against. However, because the model is

linear, it cannot capture complementarities in production.
23We find statistically significant correlations between the different skill parameters. A player’s ability to score and

ability to help others score have a possession-weighted correlation equal to -0.21 that is statistically significant at a 5%

level. This does suggests a tradeoff between own and spillover productivity on average. Ability to score and ability to

stop others from scoring are not significantly correlated. However, the ability to help others score and to stop others

from scoring have a possession-weighted correlation of 0.05 that is statistically significant.
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PER. This is consistent with the criticism that the PER fails to account for defensive contributions.

The APM, on the other hand, ranks centers quite differently than either PER or our measure. In

the next section we discuss further how to rank players individually.

4.3 Ranking workers overall contribution

The previous sections suggest that attempts to rank players individually in a team sport are mis-

guided since the value of each player necessarily depends on who his teammates are. However,

NBA player rankings are ubiquitous and often fail to account for the team nature of the sport. We

develop a player ranking that directly accounts for the complementarities present in a team setting

by using estimates of each player’s underlying skills from our spillover model. We first describe

how we construct our rankings, and then compare them to other common rankings and rankings we

generate when ignoring spillovers in team production.

There are a number of ways to measure the effectiveness of each player given our estimated

parameters. We construct our preferred measure by first taking each player and pairing him with

an average team. A player’s measured effectiveness is then the per possession point differential

when this team plays against an average opponent.24 The per possession point differentials are then

standardized so players can be compared in standard deviation units. We create two additional

measures of player effectiveness. The first takes our preferred measure and adjusts for position,

since as Table 3 indicates there are significant differences in player effectiveness by position. Because

teams typically field lineups with one player at each position, players who excel at underperforming

positions will be valued more. Finally, rather than take each player and put him on an average

team, our third measure of player effectiveness replaces each player with an average player and asks

how his team’s performance changes.25 To some extent, this measure accords with how valuable

each player is to their team.

Table 4 lists the top ten players in the 2009-2010 season according to our three rankings along

with the rankings according to PER and APM.26 Our preferred rankings indicate that Dwight

24The average teammates a player is assigned and the average opponent are constructed using the average offensive

intercepts across teams by player offensive rank. For example, the offensive intercept for the most productive scorer

on the average team is the mean across all 30 teams of the best scorer’s offensive intercept. Each player on the average

team is assigned the overall average spillover and defensive parameter since these enter the production function linearly.
25For this measure we create rankings only for the top five most utilized players on each team. This allows for a

straightforward determination of who the teammates will be when each player is replaced with an average player.
26We only consider players who accumulated at least 2,000 total possessions for any team in 2009-2010. This

restriction limits the rankings to those players observed often enough to accurately estimate their underlying skills.
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Howard is the most effective player, over three standard deviations better than the average NBA

player. The primary reason that Dwight Howard is so highly ranked is that he is the top ranked

defensive player, almost a full standard deviation better than the next best defender. The rest of

the top ten is full of names that are familiar to basketball fans, but are not necessarily the brightest

stars in the game. For example, Al Horford and Chris Andersen are highly ranked because they are

well above average both offensively and defensively. Horford is an above average offensive intercept,

offensive spillover, and defensive player. Andersen is actually a below average offensive intercept

player, but his presence on the court generates enough extra opportunities for his teammates that

his offensive spillover measure is two and a half standard deviations above the mean. The rankings

based on APM also pick-up Andersen’s overall effectiveness.

LeBron James, widely regarded as the best player in the game, is ranked number six according

to our preferred method. This “low” ranking is a reflection of the fact that in 2009-2010 James is

a good, but not great defender, and only an average spillover player. Based on offensive intercept

alone, James would be the highest ranked player, meaning that when added to an average team

James would have the highest scoring probability relative to adding any other player.27 The PER

measure is often criticized for over-valuing shooting and scoring and not surprisingly James comes

out ahead on this measure.

When the rankings are adjusted for position or team there are slight changes. Because centers

are on average the most effective players, Dwight Howard is de-valued when ranked relative to

other centers and drops to the 4th best overall player. Point guards, shooting guards, and small

forwards move up the ranks, with Kevin Durant now identified as the most effective player. The

player rankings changed very little when players are assessed based on how their team would perform

without them. Finally, many of the names on our preferred ranking list appear in the PER and APM

rankings. In fact, the possession weighted correlation between our preferred measure of standardized

point differential and PER is 0.42. The correlation with the APM rankings is significantly higher,

equal to 0.78.28 This is not surprising since our measure is more similar to APM since it measures

337 players, or 67% of active players in 2009-2010, played in 2,000 or more possessions. Each team has approximately

11 players who play more than 2,000 possessions. Among those who played at least 2,000 possession the average

number of possession was 6,436. The mean for those who played fewer than 2,000 possessions is 741. Rankings for

2006-2007 through 2008-2009 can be compiled in a similar manner.
27Note that a ranking based strictly on each player’s offensive intercept would yield a top-five of LeBron James,

Dwyane Wade, Kevin Durant, Kobe Bryant, and Carmelo Anthony. These are five of the most recognizable and

renowned scorers in the NBA.
28Again, only players with more than 2,000 possessions are considered.
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a player’s effectiveness controlling for the identity of the other players on the court.

4.4 Ignoring spillovers

In Table 5, we examine how our player rankings change when estimating a model that ignores

spillovers, essentially ruling out any complementarity in offensive production. The first column

shows the top ten players based on point differentials when playing with average teammates against

an average opponent. Many of the names remain the same, such as Dwight Howard and LeBron

James, but there are significant changes. In particular, players that tend to score often and also

play above average defense tend to move up in the rankings. Examples include Tim Duncan, Kobe

Bryant, and Chris Bosh.

The second through fourth columns look more closely at some of the changes in standardized

point differentials across the spillover and no spillover models. The second column lists the changes

for some notable players. For example, Carmelo Anthony, a high volume shooter, is 1.31 standard

deviations better in the no spillover model than in the spillover model.29 In contrast, Steve Nash,

a player widely believed to be one of the best offensive facilitators in the NBA, is 1.30 standard

deviations better in the spillover model. Columns three and four of Table 5 lists the ten players

who have the largest positive and negative swings in point differentials between the spillover and

no spillover models. The players that tend to improve greatly when complementarities are modeled

are pass-first point guards, such as Jason Williams and Jamaal Tinsley, and players who tend not

to score but generate opportunities for their teammates through offensive rebounds, screens, and

passing, such as Theo Ratliff, Chris Andersen, and Anderson Varejao. The list of the ten largest

negative changes is full of players who are well known to be not only bad passers, but shoot-first

players, like Chris Kaman and Carmelo Anthony.

While the results presented thus far coincide with widely held perceptions about individual

players, there is still a concern that our estimates could be biased by endogenous changes to team

composition. In the next section, we investigate the robustness of the estimated player productivities

to two main sources of endogenous substitutions.

4.5 Robustness Checks

As discussed in Section 3.2, endogenous changes to team composition could arise in response to

idiosyncratic shocks to player performance or changing game strategy as a function of the competitive

29Anthony was second in shots per 36 minutes during the 2009-2010 NBA season.
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environment. If players play more in games when they receive positive productivity shocks, then

estimated productivity will be biased upwards. Alternatively, if players are asked to allocate effort

differentially on offense or defense as a function of game situations, this can also affect our estimates

of player productivity. In this section, we conduct two robustness checks. First, we see if allowing

players to play more possessions when they are performing well affects our findings. Second, we see

how our estimates change when only the first three quarters are used, as the fourth quarter may

entail more or less pressure depending on the score of the game.

4.5.1 Endogenous playing time due to variation in player productivity across games

To investigate the concern that playing time in any particular game is endogenous to contempora-

neous performance, we estimate separate productivity measures for each player according to how

many possessions they play in a particular game. We re-estimate the model outlined in Section 3.1,

but index players by two sets of parameters, {oHi , sHi , dHi } and {oLi , sLi , dLi }. The first (second) set of

parameters describes player productivity in games when they play more (fewer) than their median

number of possessions per game.30 Essentially we are treating each player as two distinct players

according to how often they play in any particular game.

All the parameters are jointly estimated, meaning that there will be players on the same team

playing above and below median possession games at the same time. Once all the parameters are

estimated for each team-season, we link players using the same strategy discussed in Section 3.4. In

order to compare the results to our baseline estimates we need one set of parameters for each player.

We combine the productivity parameters from high and low possession games by taking a simple

average, such that player i’s productivity is given by {o
L
i +oHi

2 ,
sLi +sHi

2 ,
dLi +dHi

2 }. These productivity

measures can be interpreted as expected productivity. At the start of any game there is a 50-50

chance a player plays as a high-possession player or as a low-possession player.

The top panel of Table 6 illustrates how expected productivity compares with our original

productivity. Across seasons and skill, the estimates are very highly correlated. In particular, the

offensive intercepts generated through the approach described above are almost perfectly correlated

with our baseline estimates. The second three rows in the top panel also indicate that our player

rankings are largely unaffected by endogenous substitutions as a function of player performance.

The correlation between our baseline ranking and the ranking based on expected productivity is

approximately 0.90. While the baseline findings are largely unaffected, the results of the high/low

30Only games in which a player plays positive possession are included.
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possession exercise are consistent with the existence of endogenous substitution. On average, a

player’s high possession productivities are larger than the low possession productivities. However, it

is not as if the best players do not play if they are having an off night. To see this, consider that the

average within player standard deviation in total possessions across high and low possession games

is 712. In contrast, the across player standard deviation of total possessions is 4,731. Overall, the

game-to-game variability in playing time for each player is small relative to the variability in playing

time across players.

4.5.2 Endogenous playing time due to game situations

A second source of endogenous player substitutions that could bias our estimates of player produc-

tivity are changing game situations. Players may be instructed to play differently as a function of the

competitive environment. If a particular player only plays under a certain set of game circumstances,

then that player’s productivity estimates are not reflective of his general skills. To investigate this

concern, we eliminate from our data any possession that occurs after the 3rd quarter and re-estimate

the model. The idea behind this approach is that game strategy is likely to change most significantly

in the 4th quarter. As the game nears its end, coaches are more likely to take drastic measures.

Eliminating data from the 4th quarter eliminates some of these concerns. Estimation follows the

approach outlined in Section 3, the only difference is that our sample is approximately 25% smaller.

The bottom panel of Table 6 compares the baseline productivity estimates with the estimates

generated after dropping all 4th quarter observations. Similar to the previous exercise, the offensive

intercepts are highly correlated across the two models in all seasons, on the order of 0.95. The

offensive slopes and defensive parameters are correlated at a slightly lower level, around 0.80. The

lower correlation for these parameters could be partly the result of game strategy, but is also likely

a result of the fact that we have thrown out a lot of useful variation. Both of these parameters are

identified through changes in team composition and are less precisely estimated than the offensive

intercepts. Thus, when we eliminate a quarter of our sample it is not surprising that these param-

eters are more sensitive. The last three rows of the bottom panel show that the sensitivity of the

spillover and defensive parameters trickles over to our player rankings. Across the 2007-2010 sea-

sons, the correlation between the original player rankings and the rankings without the 4th quarter

is approximately 0.80.

Overall the results of the robustness exercises are encouraging. The player productivity measures

and rankings change very little when we treat high possession games differently than low possession
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games. Eliminating all 4th quarter observations results in slightly larger changes, but this is not

surprising as we have excluded a quarter of our sample. In the next section we move from our

individualistic approach to players and consider more directly how players interact to generate team

success.

4.6 Allocating workers to the optimal team

For the purposes of ranking individual players we considered how each player performs with an

average team. However, when actual player personnel decisions are made, success will hinge on how

the various components of a team work together. This is true not only in the context of professional

basketball, but in other industries as well. When a firm considers hiring a new worker it likely

considers how that worker complements the skills of the workers already at the firm. Moreover,

individual workers will seek out firms where their talents can best be utilized.

To illustrate how our model captures these ideas, we first examine one of the most high profile

personnel decisions in the history of the NBA. In the summer following the 2009-2010 season,

LeBron James’ contract with the Cleveland Cavaliers expired and he became a free agent. Using

our model, we evaluate James’ decision, examining both his own performance and the likelihood

of team success. Table 7 presents the model predictions for the teams most interested in signing

James: Cleveland, Miami, Chicago, and New York. Cleveland provided the greatest opportunity

for individual output, while Miami offered the greatest chance for team success. James’ predicted

per possession probability of scoring declines from 0.187 with Cleveland to 0.165 with Miami, a

drop of 11.8%.31 By joining Miami, James would increase Miami’s predicted per possession point

differential from 0.043 to 0.219. James ultimately signed with Miami, sacrificing individual output

for team success. Workers and firms, more generally, can also face these types of tradeoffs when

choosing where to work or how to allocate workers. The result here is interesting in that it suggests

a tension that firms need to balance between team and individual productivity, especially for firms

where individual productivity has a large effect on compensation.

A second example of a how a worker’s value can be heterogenous across firms according to the

set of incumbent workers can be seen in the free agency case of Amar’e Stoudemire. At the end of

the 2009-2010 season, Stoudemire had played eight consecutive seasons with the Phoenix Suns and

at the time was described as an offensively skilled center with injury concerns. Reportedly, Phoenix

31Interestingly, James’ scoring average per 36 minutes in his first year in Miami declined by 8.5% relative to his last

three years in Cleveland.
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was only willing to give Stoudemire a four year contract at an undisclosed salary, while the New York

Knicks were willing to sign Stoudemire to a five year contract for 100 million dollars. Stoudemire

ultimately signed with New York, but should New York have been willing to give Stoudemire more

than Phoenix? Table 8 shows the predicted performance for both New York and Phoenix with and

without Stoudemire on the team. The final column of the table shows the change in each team’s per

possession point differential with Stoudemire instead of an average player. Given their projected

lineups, Stoudemire was more valuable to the Knicks than to the Suns based on predicted team

performance. Thus, our model is consistent with the Knicks’ decision to offer Stoudemire a more

lucrative deal. From Stoudemire’s standpoint, the Knicks were also more attractive in terms of

individual performance, as his points per possession is predicted to be 8% higher.32

4.7 Returns to the three factors

The previous section highlights the usefulness of our model for evaluating potential personnel deci-

sions, but teams need to decide not only which players to obtain but also how much to pay them.

Table 3 indicates that the three player skills we have identified, offensive intercept, offensive spillover,

and defensive intercept, are associated with improved team performance. In this section, we examine

whether player compensation correlates with our measures of player skill.

Table 9 provides the results from a series of OLS regressions where the dependent variable is log

annual earnings. The annual earnings data comes from prosportstransactions.com and storyteller-

scontracts.com and is pro-rated equally over the course of a multi-year contract.33 The skill measures

we use as regressors are based on performance in the previous year and vary across columns, allowing

us to compare the predictive power of our skill measures and standard player measures. The unit of

observation in these regressions is a player-season-team combination, where we observe each player

for up to four seasons, from 2007 to 2010.34

32In his first year with the Knicks, Stoudemire’s scoring average per 36 minutes actually increased by 3%.
33Most NBA contracts are fully guaranteed and some contracts include an incentive provision. The data we use

includes information on these provisions and indicates whether the incentive is likely or unlikely to occur based on

information at the start of the contract. We include incentives that are likely to occur in the annual earnings measure

based on the definition of a likely incentive provided by storytellerscontracts.com.
34In the NBA, first-round draft choices are assigned salaries according to their draft position. Each contract is for

two years, with a team option for the third and fourth seasons. These structured contracts may weaken the relationship

between skills and earnings, since players are drafted based on potential, not performance. However, when we estimate

the earnings regressions using only players who have been in the league for at least four years, the results are nearly

the same.
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The first column of results indicate that a one standard deviation increase in a player’s offensive

intercept is associated with a statistically significant 41% increase in annual earnings. A one standard

deviation increase in the defensive intercept is associated with a 15% increase in earnings, while there

is essentially no monetary gain to being a better spillover player. The results are robust to controls

for player position and experience. In column 4 we examine whether the returns to skills changed

over the four seasons in our sample. We include an interaction between a linear time trend and

each of the three player parameters. We re-centered the linear time trend at the first year in our

data so the main effects of the three parameters are the relationship between those parameters and

earnings in the first year of our data and the interaction terms indicate how these have changed over

time. None of the interactions are statistically significant, indicating little change in the return to

skills across our sample. The last two columns in Table 9 provide estimates for two commonly used

measures of player performance, the player efficiency rating (PER) and the adjusted plus-minus

(APM). Players with higher PER and APM tend to earn significantly more than other players.

Our skill measures explain more of the variation in log earnings than APM, but slightly less than

PER. This makes sense as PER is widely available while APM is not. The results across regressions

suggest that teams tend to compensate players for easily measured statistics (high R2 for PER),

but fail to identify players that add to team performance in difficult to observe ways (no effect of

spillover skill).35

One potential reason for the apparent lack of return to the spillover factor is that this parameter

is somewhat noisier than either the offensive or defensive intercept. So rather than estimate a log

earnings regression using a single player-season-team skill measure, we examine how average earnings

over the four seasons in our sample is related to a player’s possession weighted average skill measures.

Table 10 shows the results of these regressions. Similar to the results from Table 9, players with

higher offensive and defensive intercepts are rewarded with higher total earnings, with earnings that

are 46% and 18% higher per standard deviation of performance respectively. However, the results

now indicate that high spillover players also earn significantly more than low spillover players. A

one-standard deviation increase in a player’s average offensive spillover parameter is associated with

an increase in total earnings of approximately 10%. Again, the PER measure explains the greatest

amount of variation in total earnings, followed by the three skill factors and APM.

One way to measure the degree to which productivity spillovers are undervalued by NBA teams

35All the results in Table 9 are nearly identical if we restrict the sample to just those players who are in the first

year of a next contract. This alternative approach reduces the sample size but ensures that the performance measures

pre-date the determination of the player’s salary.
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is to compare differences in the relationship between the different productivity parameters on wages

and team success. Based on the results from Table 2, we find that a standard deviation increase

in own productivity results in 1.6 times as much team success as a standard deviation increase in

the spillover parameter, but results in 8.7 times as much income for the player (Table 10). Thus,

productivity spillovers are undervalued by more than a factor of 5 relative to own productivity.

We can take the idea of spillover mispricing one step further by asking what would happen if a

team trades away a player that had an offensive intercept parameter one standard deviation above

the mean and used the money to purchase a player(s) with higher spillover parameters. The results

in Table 10 suggest that obtaining an extra standard deviation of offensive intercept costs about 5

times as much as obtaining an extra standard deviation of the offensive spillover. Combining this

with the coefficients from Table 2, we find that a team that gives up a standard deviation better

offensive intercept player experiences a 0.027 drop in per-possession point differential. However,

with the money saved, the team is able to purchase players that result in an additional 5 standard

deviations of spillover productivity. This increase in spillover productivity would raise the per-

possession point differential for the team by 0.084 (based on 5 × 0.0168). Thus, the net benefit of

making this trade would be an increase in the per-possession point differential of the team of 0.057.

In our sample from 2007-2010, the average team had 92.89 possessions per game. This would give

the team a net increase of about 5.30 points per game relative to their opponent. Between 2007 and

2010, about 3.85% of NBA games fall within one point, 14.72% fall within three points, and 26.84%

of games fall within five points. Thus, the proposed trade for skills would have a significant impact

on expected total wins with no associated increase in salary costs.

An important note about the numbers above is that they are based on the average expected

change in performance across teams using the four most utilized players on each team. The benefit

of acquiring a high spillover player will depend on the other players already on the team. As such,

there are likely to be teams that wouldn’t benefit from acquiring a player with a higher spillover

parameter. An attractive feature of our model is that we can use it to evaluate the expected results

of specific trades, as in Tables 7 and 8.

Finally, our conclusion that spillover productivity is mispriced is based on the assumption that

teams are trying to maximize point differentials. If teams have other objectives, such as ratings,

then they may be willing to pay more for high offensive intercept players. It also may be the case

that offense is preferred to defense, explaining why the returns to offensive intercepts are higher than

defensive intercepts. But in this case we might expect the returns to spillovers to be larger than
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defensive intercepts. The fact that the returns to spillovers are so much smaller than the returns to

the other two factors suggest that the difficulty in quantifying the presence of the spillovers likely

plays a role in its low return.

5 Conclusion

Worker skills are multidimensional. One of the skills that may be important to a variety of produc-

tion processes is the ability to bring out the best in others. In this paper, we use data from the NBA

to identify three measures for each player: their ability to score, their ability to defend, and their

ability to help others score. It is this last factor that differentiates our work and also substantially

complicates estimation. Using an iterative approach along the lines of Arcidiacono et al. (2012), we

show that estimating models of this type can be accomplished in a straightforward manner.

We find that all three factors are important components to overall team productivity and prob-

ability of success. Ignoring spillovers has a substantial effect on assessing the overall contribution of

specific players causing previous approaches to underestimate the contribution of “team” players.

We also find that there are complementarities in production between direct forms of productivity

and indirect forms that operate through productivity spillovers. As such, some teams will value

particular players more than others based on the current composition of their team. Players who

are particularly strong at scoring but are not good facilitators will be more valued by teams that

are composed of players who are not very strong at scoring themselves.

We also find that players are primarily compensated based on their direct contributions to team

production with little weight given to their ability to increase the productivity of their teammates.

This misalignment of incentives might reduce the incentive for players to invest in or engage in

actions that increase their positive effects on the productivity of their teammates, especially in cases

where compensation is based on relative performance.

The approach we take here to measuring both one’s productivity and one’s ability to help others

be more productive, as well as the corresponding implications for compensation, could be applied to

a number of other labor markets. One example is in the production of patents. Researchers in a lab

may both be working on their own patents as well as serving as a resources for other members of the

lab. The measurable output is who is on the patent. But others in the lab may have facilitated the

process and these facilitation skills may not map one-to-one in the skills needed to produce a patent.

When facilitation skills become more easily measured and rewarded, then incentives to invest these

skills also increases. Financial advisors provide another example. Compensation in this industry
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tends to be based on one’s clients, not how helpful one is to other financial advisors. This is likely

due to the difficulty in measuring how other advisors affect both the number of the clients an advisor

has and the quality of the advice the advisor is giving. But with data on clients and investment

returns, as well as variation in the composition of the team, it would be possible to measure the

value of these sorts of interactions.
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A Basic Rules of NBA Basketball

An NBA basketball game consists of four 12 minute quarters. The court is ninety-four feet long

and fifty feet wide. At each end of the court is a horizontal metal ring ten feet above the floor with

a glass board behind each ring. Each team has five players on the court at a given time, though

coaches can substitute players rather freely throughout the contest. A team’s goal is to score more

points than the other team. Scoring is achieved by throwing or shooting the ball through the team’s

metal hoop. A successful shot scores two or three points depending on the distance and provides

the opposing team with possession of the basketball. Only one player on a team can score per

possession, while the remaining players act to facilitate this activity. Teams must shoot the ball

every 24 seconds or relinquish possession to the opposing team.

Using physical contact to gain an advantage is by definition a foul. When a referee concludes a

foul was committed by a player, a whistle is blown causing play to stop. If the fouled player was

in the act of shooting while being fouled, the player is awarded a number of free throws equivalent

to the value of the shot being attempted. A free throw is a shot from 15 feet away from the basket

in which the player cannot be defended by the opposing team. Each free throw is worth one point.

If a player was not shooting, the fouled player’s team is awarded the ball out of the bounds of the

court and play continues by the team passing the ball in play to a teammate. If players accumulate

six fouls, the are excluded from the remainder of the game.

B Data Appendix

There were a number of intermediate steps required to transform the raw play-by-play data that we

gathered from espn.com into our final dataset. First, we had to determine which players were on the

court at each point during the game. Since the play-by-play data does not provide a running list of

who was on the court over the course of the game, we had to infer who was on the court based on

the players we observed in the data.

Teams can freely substitute players at the start of each quarter and none of these substitutions

appear in the data. However, for any substitutions that occur during the quarter, we observe both

the players coming in and the players going out. We combine this with information on the names

of the players that record some action in the data to construct the set of five players on each time

for every play-level observation in the data.

The second step required us to transform our play-level data into a single observation for each
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possession. An offensive possession begins anytime a team obtains the ball and switches from defense

to offense. Possessions can end in many ways, such as a made basket, a missed shot, a turnover,

or the end of a quarter. For possessions that resulted in positive points, we also captured which

player on the offensive team scores and how many points they scored. For this study, any play by

the offensive team that extends a possession (such as an offensive rebound) does not create new

possession but just becomes the continuation of the possession already going. The one exception is

when an offensive rebound occurs following foul shots, since it is very common for substitutions to

occur during foul shots.

If in the middle of a possession there is a substitution, the player entering the game is the one

considered on the court for that possession. The one exception is substitutions that occur during

fouls shots in which case the players coming out are considered part of the possession that resulted

in the foul and any points scored from the foul shots are credited to that possession.

From the defensive standpoint, the only relevant outcome is whether the offensive team scores

positive points. Steals, blocks, and defensive rebounds will get reflected in an increased probability

that the offensive team does not score.

At the end of this process we were left with 915,580 unique possessions. We dropped around 1%

of these possessions either because we could not identify all of the players on the court or identify

the player who shot the basket. A possession that either has too few players on the court or a player

on the court more than once typically indicates a data entry error in the play-by-play data. Often

this implies that active lineups for other possessions during that quarter are likely to be incorrect.

As a result, any quarter that has a possession with either too few or too many players is dropped.

Finally, our empirical strategy requires us to estimate the model separately by season. If during

a season a player never scores nor is ever part of a defensive unit that keeps the other team from

scoring, then that player’s offensive and defensive parameters are not identified. Thus, we identify

who these players are, and then eliminate all possessions during which these players are on the court.

Typically there are about five to ten players per season who fall into this category.

C Standard Error Calculations

In Section 3.3 we outlined an iterative estimation procedure that avoided jointly estimating all the

parameters in the model. The downside to this approach is that it is not straightforward to compute

standard errors. However, once the iterative procedure has converged, we have all the parameter

estimates and can compute standard errors using the Outer Product of the Gradient. This is a
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particularly useful method in this case since the logit probabilities yield simple closed form solutions

for estimating the gradient.

Our joint log-likelihood function is given by,

lnL(o, s, d) =
N∑
n=1

5∑
i=0

(din = 1) lnPr(yin = 1|Pn)

where

Pr(yin = 1, i > 0|Pn) =
exp

(
oi(1−

∑
k∈On,k 6=i sk)

)
exp

(∑
j∈Dn

dj

)
+
∑

h∈On
exp

(
oh(1−

∑
k∈On,k 6=h sk)

)
and

Pr(y0n = 1|Pn) =
exp

(∑
j∈Dn

dj

)
exp

(∑
j∈Dn

dj

)
+
∑

h∈On
exp

(
oh(1−

∑
k∈On,k 6=h sk)

)
and din indicates whether outcome i occurred for possession n. For ease of exposition I refer to

Pr(yin = 1|Pn) = Pin. Also, define θ̂ = {ô, ŝ, d̂}.

The first step is to construct the estimate of the gradient vector, ĝn = ∂ lnPin(θ̂)

∂θ̂
. For any

possession n, there are at most 15 parameters involved, 5 each for o, s, and d. Thus, the gradient

for each observation will only have 15 non-zero elements. Again, because of the closed form for the

logit probability, the derivatives of the log probability are rather straightforward.36 The estimated

variance covariance matrix is then given by Σθ̂ =
[∑N

n=1 ĝnĝ
′
n

]−1
.

For estimation we restrict the spillover parameter for one player on each team-season to equal

zero. Post-estimation we adjust the spillover estimates such that the possession-weighted mean

spillover for each team season is equal to zero. This way we have a spillover estimate for each

player. In doing this we also have to adjust the offensive intercept parameters to keep the scoring

probabilities constant. Both of these changes require adjusting Σθ̂, which is a straightforward

application of the delta method.

The final step of our estimation procedure is to link players across teams and seasons. This pro-

cess yields a string of team-season fixed effects (δt) with which we update our parameters according

to the process outlined in Section 3.4. We simply apply the delta method iteratively using the δt’s

to update the standard errors for the team-season specific parameters.

36Precise formulas are available upon request.
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Table 1: Sample Statistics

Seasons Covered 2006-2007 through 2009-2010

Total Possessions (Involving 5 Offensive and Defensive Players) 915,580

Utilized Possessions 905,378

Fraction of Possessions Discarded 0.01

Unique Players 656

Average Possessions Per Player 13,801

SD Possessions Per Player 12,882

25th Percentile Of Possession Distribution 2,342

75th Percentile Of Possession Distribution 22,609

Average Possessions Per Player-Season 5,081

SD Possessions Per Player-Season 3,557

25th Percentile Of Possession Distribution 1,697

75th Percentile Of Possession Distribution 8,083

Average Possessions Per Player-Season-Team 4,507

SD Possessions Per Player-Season-Team 3,570

25th Percentile Of Possession Distribution 1,130

75th Percentile Of Possession Distribution 7,470

Proportion of Possessions with Positive Points 50.8

Avg. Points Per Possession 1.06

SD Points Per Possession 1.11

Avg. Points Per Possession | Points>0 2.1

32



Table 2: Skills and Winning, 2009-2010

Take the 4 most utilized

players on each team and... Point Differential SD Point Differential Minimum Maximum

Add average player 0.0048 0.0873 -0.1536 0.257

∆ Point Differential SD ∆Point Differential Minimum Maximum

Add 1 SD Better Intercept Player 0.0270 0.0022 0.0217 0.0307

Add 1 SD Worse Intercept Player -0.0217 0.0018 -0.0252 -0.0177

Add 1 SD Better Spillover Player 0.0168 0.0012 0.0146 0.0202

Add 1 SD Worse Spillover Player -0.0167 0.0012 -0.0200 -0.0146

Add 1 SD Better Defensive Player 0.0210 0.0002 0.0200 0.0211

Add 1 SD Worse Defensive Player -0.0209 0.0002 -0.0211 -0.0202

Unit of observation is an NBA team in the 2009-2010 season.
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Table 3: Average Skills by Position

Point Shooting Small Power

Guard Guard Forward Foward Center

(All measures standardized at the population level)

Offensive Intercept -0.147 0.081 -0.013 0.069 0.006

Offensive Spillover 0.168 -0.091 -0.012 -0.073 0.012

Defensive Intercept -0.511 -0.305 -0.097 0.315 0.683

Overall Rank -0.298 -0.108 -0.016 0.134 0.327

PER -0.039 -0.112 -0.107 0.065 0.218

APM -0.101 0.039 0.057 0.015 -0.011

Observations 395 410 349 438 417

Unit of observation is a player-season-team combination. Means are constructed

by weighting the total number of possessions for a player-season-team combination.

Across all positions the mean of each measure is zero with a standard deviation of 1.

Note that the number of observations for the APM measure is smaller since players

with few possessions are not assigned a rating.
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Table 6: Robustness Exercises

2010 2009 2008 2007

High/Low Possessions

Corr(Offensive Intercepts) 0.98 0.98 0.98 0.98

Corr(Offensive Slopes) 0.90 0.92 0.90 0.91

Corr(Defensive Intercepts) 0.94 0.94 0.94 0.94

Corr(Standardized Per Poss. Point Differential) 0.91 0.92 0.91 0.92

Corr(Standardized Per Poss. Point Differential), >2000 Possessions 0.90 0.92 0.91 0.92

Corr(Player Rank), >2000 Possessions 0.88 0.92 0.92 0.92

No 4th quarter

Corr(Offensive Intercepts) 0.95 0.95 0.95 0.95

Corr(Offensive Slopes) 0.79 0.79 0.77 0.79

Corr(Defensive Intercepts) 0.85 0.82 0.80 0.82

Corr(Standardized Per Poss. Point Differential) 0.77 0.86 0.78 0.86

Corr(Standardized Per Poss. Point Differential), >2000 Possessions 0.75 0.86 0.79 0.86

Corr(Player Rank), >2000 Possessions 0.72 0.84 0.81 0.83

Unit of observation is a player-season-team combination. Correlations are between the baseline estimates

and the estimates generated by the particular robustness exercise. All correlations are possession weighted.

Further details on the High/Low Possession exercise and the No 4th quarter exercise can be found in Section

4.5.
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Table 7: LeBron James? Free Agency

Probability James Scores Team per Possession

If James joins . . . Projected Teammates per Possession Points Point Differential

Chicago Boozer, Deng, 0.175 1.204 0.136

Bulls Noah, Rose

Cleveland Williams, Hickson, 0.187 1.142 0.043

Cavaliers Parker, Varejao

Miami Chalmers, Bosh, 0.165 1.244 0.219

Heat Ilgauskas, Wade

New York Chandler, Felton, 0.172 1.155 0.126

Knicks Gallinari, Stoudemire

To generate predicted outcomes for each team we utilize player estimates based on all four years of data.
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Table 9: Lagged Skills and Wages

Dependent Variable: Log Earnings

Offensive Intercept 0.414* 0.414* 0.356* 0.340*

(0.025) (0.025) (0.018) (0.027)

Offensive Slope -0.018 -0.017 -0.033 -0.016

(0.026) (0.026) (0.019) (0.030)

Defensive Intercept 0.150* 0.140* 0.069* 0.038

(0.023) (0.026) (0.022) (0.029)

Player Efficiency Rating 0.356*

(0.031)

APM 0.223*

(0.022)

Experience 0.394* 0.396* 0.388* 0.400*

(0.023) (0.023) (0.024) (0.027)

Experience2 -0.019* -0.019* -0.019* -0.020*

(0.002) (0.002) (0.002) (0.002)

Position Effects N Y Y Y Y Y

Time Trends N N N Y N N

R2 0.239 0.241 0.593 0.596 0.605 0.498

N 1273 1273 1273 1273 1273 1094

Unit of observation is a player-season-team combination. Robust standard errors in paren-

theses. * Indicates a coefficient that is statistically significant at a 5% level. Coefficients are

estimated by OLS weighting each observation by the total number of possessions associated

with that player-season-team combination. All skill measures are standardized to have a

mean of zero and a variance of one.
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Table 10: Skills and Wages over Career

Log Average Earnings 2007-2010

Average Offensive Intercept 0.464* 0.461* 0.419*

(0.039) (0.039) (0.024)

Average Offensive Slope 0.096* 0.091* 0.048*

(0.038) (0.037) (0.022)

Average Defensive Intercept 0.182* 0.188* 0.084*

(0.033) (0.041) (0.026)

Average Player Efficiency Rating 0.426*

(0.022)

Average APM 0.266*

(0.025)

Average Experience 0.338* 0.334* 0.340*

(0.022) (0.021) (0.028)

Average Experience2 -0.015* -0.016* -0.017*

(0.002) (0.002) (0.002)

Position Effects N Y Y Y Y

R2 0.284 0.295 0.702 0.719 0.580

N 656 656 656 656 494

Unit of observation is a player. Robust standard errors in parentheses. * Indicates a coefficient

that is statistically significant at a 5% level. Coefficients are estimated by OLS weighting

each observation by the total number of possessions associated with that player over all four

seasons. Average skill measures are also constructed as a possession weighted average of the

player-season-team measures. The average skill measures are then standardized to have a

mean of zero and a variance of one.
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