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We show that stricter grading policies in STEM courses reduce STEM enroll-

ment, especially for women. We estimate a model of student demand for courses

and optimal effort choices given professor grading policies. Grading policies are

treated as equilibrium objects that in part depend on student demand for courses.

Differences in demand for STEM and non-STEM courses explain much of why

STEM classes give lower grades. Restrictions on grading policies that equalize

average grades across classes reduce the STEM gender gap and increase overall

enrollment in STEM classes.

1. INTRODUCTION

The effect of college on human capital is heterogeneous based in part on the courses stu-

dents take. Human capital in science, technology, engineering, and mathematics (STEM) is
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perceived to be in short supply, even though jobs in these fields pay substantially more than

those in other fields and are more robust to recessions (Altonji et al., 2016).1 Significant

government activity centers on promoting STEM skills to increase their supply.2 Of partic-

ular concern is the lack of female representation in STEM jobs: Women comprise 47% of

the workforce but just 30% of STEM workers (U.S. Bureau of Labor Statistics, 2019).

The lack of female representation in STEM occupations is in part due to the lack of

female representation in STEM college courses, which in turn may depend on the university

environment. At the University of Kentucky (UK), the data source for this study, men take

43% more STEM classes than women. STEM classes are characterized by enrollments that

are almost twice as high, grades that are 0.36 points lower, and study times that are 43%

higher than non-STEM classes.3 Furthermore, given existing evidence that women value

grades more than men, lower STEM grades may disproportionately deter women from

choosing STEM classes (Rask and Bailey, 2002).

In this paper, we examine the effects of grading policies on student demand for STEM

courses, with a particular focus on female students. To do this, we estimate a two-sided

model of professors choosing linear grading policies in part to influence demand for their

courses. The slope of these grading policies dictates the returns to student ability and study

time. On the demand side, we specify a model where students choose courses and study

time in response to the grading policies of the professors.4 Modeling both sides of the

market allows us to examine the equilibrium effects of policies such as restricting average

grades across classes, where professors may respond by changing the returns to studying

and where students may respond by changing their course bundles and study times.

We estimate our model using transcript and course evaluation data from UK. Our detailed

data and rich utility structure allow us to be quite flexible over student preferences for

1There is evidence that heterogeneity across fields is increasing over time. See Gemici and Wiswall (2014).
2See, for example, Hinz (2019), Stevens (2021).
3Other institutions show similar patterns. See Bagues et al. (2008), and Rask (2010) on grading differences and

Brint et al. (2012) and Stinebrickner and Stinebrickner (2014) on differences in study time.
4Given our focus on course choices, we take the choice of major as given for juniors and seniors and then allow

the payoff for a course to depend on whether it fulfills a major requirement. As a result, any policy simulations

that affect the choices of juniors or seniors are best interpreted as short-run effects; in the long run, the choice of

major may respond to the policy change.
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courses in particular departments while still separately identifying how professor grading

polices affect student decisions. For example, high ACT math scores may lead to higher

grades in engineering classes, but students who have high ACT math scores may also find

engineering classes more attractive for reasons not related to grades. The key identifying

assumption needed to disentangle preferences for courses and grades is that higher ACT

math scores increase the non-grade-related preferences for all engineering classes equally.

However, because of the heterogeneity in the slopes of professor grading policies, sorting

of students into courses within the same department can be used to recover how important

grades are in determining student course choices and whether the importance of grades

differs by gender.

However, grading policy slopes also affect the returns to studying, potentially confound-

ing whether students value grades more or simply have lower costs of studying. We use

self-reported study hours from course evaluations to estimate a model of study effort de-

cisions. The course evaluation data cannot be linked to student transcripts, but they do

include student cohort information. This allows us to examine differences in study hours

across courses and within courses across cohorts to identify heterogeneity in the costs of

study effort by gender and other observed characteristics.

We use the estimates from the model of course choices and study effort to examine the

drivers behind the gender gap in STEM course enrollment. Conditional on professor grad-

ing policies, two key drivers emerge. The first is that women value grades significantly

more than men, suggesting that the lower grades given in STEM courses lower female

enrollment in particular. The second, consistent with Griffith (2010), is comparative advan-

tage: Women at UK have higher high school GPAs but lower ACT math scores than their

male counterparts. Higher high school GPAs and lower ACT math scores are associated

with relatively higher grades in non-STEM courses as well as higher non-grade preferences

for non-STEM courses. Other factors, such as female-specific preferences for departments

and differences in study costs, play more modest roles.

As STEM courses have grading policies with lower average grades and steeper slopes

than those of non-STEM courses, grading policies contribute substantially to the STEM

gender gap. Holding fixed the slopes of the professor grading policies but imposing that

all courses must have an average grade of a B substantially increases enrollment in STEM

courses by both men and women. However, because women value grades more than men,
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the enrollment increase is markedly higher for women, shrinking the STEM gender gap.

Requiring all courses to have both the same average grades and the same slopes decreases

the gender gap even more because steeper slopes in STEM amplify the effects of women’s

comparative advantage in non-STEM courses.

However, grading policies are not fixed parameters—they are choices made by profes-

sors in competition with one another. Thus, restricting average course grades may elicit pro-

fessor responses, mediating the effectiveness of the policy. To incorporate these responses,

we explicitly model how instructors choose grading policies to influence demand for their

courses in equilibrium. We specify an objective function where professors have individual

specific preferences over grades, enrollments, and workloads. Professors that face low in-

nate demand may then raise their grades in an effort to attract more students. Indeed, we

find that differences in innate demand account for over 38% of the difference in average

grades between STEM and non-STEM courses. For example, biology professors and lan-

guage professors have, on average, similar preferences over average grades. But because

demand for biology courses is so much higher, biology courses have grades that are more

than 0.4 points lower than those of language courses.

Given the estimates of both sides of the model, we can then examine how enrollments

would change in equilibrium should all courses be required to have a B average. We find

that even when we allow professors to change their grading slopes, requiring the same

average grade across courses would increase female STEM enrollment by 30.3% and male

STEM enrollment by 15.6%.5 Since our simulations hold the effects of declared majors on

upperclassman utility fixed, our estimates are best interpreted as short-run predictions. In

the long run, when major choices can vary in response to grading policies, the effects may

be substantially larger.

That equalizing average grades across courses would have such large effects may seem

surprising. If students and employers have complete information, differences in grad-

ing policies should be largely inconsequential. However, this is not the case in limited-

information settings (Piopiunk et al., 2020, Chan et al., 2007). Nominal grades may also

matter to students for reasons beyond those underscored by traditional economic explana-

tions, such as parental pressure or the psychological assessment of self-worth, a hypothesis

5The corresponding numbers when holding grading slopes fixed are 34.2% and 17.9%.
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supported by findings in the sociology and psychology literature (Rosenberg et al., 1995,

Crocker et al., 2003).

Our paper relates to the literature examining how college students make education de-

cisions. One strand of this literature focuses on the effects of grades on these decisions.

It generally finds that low grades reduce persistence in STEM (Astorne-Figari and Speer,

2019, McEwan et al., 2021) and that grades affect educational choices for female students

more than for male students (Ost, 2010, Rask and Bailey, 2002, Rask and Tiefenthaler,

2008, Zafar, 2013).6 Closest to our paper, Butcher et al. (2014) show that imposing a cap

on average class grades at Wellesley College increased enrollment in science classes; how-

ever, as Wellesley is a women’s college, the authors cannot estimate differential effects by

gender. In this context, one of our contributions is showing how grading restrictions affect

the gender gap in STEM. Moreover, we estimate how much students value grades, how this

differs by gender, and how important grades are relative to factors such as instructor gender

and gender-specific preferences for departments.

Finally, our paper relates to a growing literature that empirically analyzes supply-side

decision-making in higher education. For example, Epple et al. (2006) and Fu (2014) ana-

lyze how universities admit students and set tuition, while Thomas (forthcoming) examines

the determinants of university course offerings. Our paper contributes to this literature by

providing an empirical analysis of how grading policies are set in equilibrium. We thus

build on descriptive evidence on the heterogeneity of grading policies over time and across

departments (Johnson, 2003, Sabot and Wakeman-Linn, 1991), policy experiments to re-

duce grading differences (Butcher et al., 2014, Bar et al., 2009), and theoretical work on

grading policies (Chan et al., 2007, Zubrickas, 2015).

2. DATA AND DESCRIPTIVE EVIDENCE

In this section, we describe our data and the descriptive analysis that motivates our struc-

tural model. We show that STEM courses have higher enrollments, lower grades, and higher

study times than non-STEM courses, suggesting that student demand may influence in-

structors’ grading policies. We show that women perform better than men in STEM and

6Notable exceptions are Kaganovich et al. (2021) and Kugler et al. (2021), who find that women have stronger

responses than men to low grades only in certain academic departments.
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non-STEM courses. However, women enroll in substantially fewer STEM courses and sort

into classes with higher average grades. These facts motivate an equilibrium model where

students choose courses and study times in response to the grading policies, with differen-

tial responses to these policies by male and female students.

We focus on undergraduate students at the University of Kentucky (UK) in the fall of

2012. We use three types of data. The first is student-level data on demographics, precollege

academic measures, course enrollment, and grade outcomes. The second is course-level

data on instructor gender and rank, enrollment caps, prerequisites, and whether the course

satisfies other prerequisites or major and university requirements. The third is end-of-

semester class evaluation surveys on students’ course quality perceptions, expected grades,

and the number of hours spent per week studying for the class. The evaluation forms pro-

vide no information identifying the students other than their cohort (freshman, sophomore,

etc.), so we use class–cohort averages when we match these data to the transcript data.7

We focus on classes with at least fifteen students. We aggregate departments into four-

teen categories and further aggregate these categories into STEM/non-STEM. We include

economics and related fields as part of STEM because courses in these departments ex-

hibit grading patterns and study times similar to those of traditional STEM departments.

Our sample includes 55,701 student/course observations from 16,079 students and 1,003

courses. Online Appendix B provides additional details on how we split departments into

STEM/non-STEM and select courses for the analysis.

We show summary statistics by gender in Table I. Women at UK arrive with higher

high school grades but lower ACT math scores. In the semester we analyze, women have

significantly higher grades in both STEM and non-STEM courses, though the gender gap

in grades is smaller in STEM courses. They also take fewer courses in STEM: while men

take half their courses in STEM departments, the share is a just over a third for women.

Part of the gender gap in STEM course enrollment may be due to different expectations

and environments in STEM courses. Table II summarizes course characteristics by STEM

status. STEM courses are almost double the size of non-STEM courses and have grades that

7We focus on cohort–classes with response rates between 70% and 100%. Response rates can be higher than

100% due to incorrect matching between the transcript and evaluation data. The evaluation data are also incom-

plete because some courses opt out of participating in the evaluation.
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TABLE I

DESCRIPTIVE STATISTICS BY GENDER

Men Women Diff. Men & Women

High school GPA 3.55 (0.56) 3.68 (0.50) -0.14 (0.01)

ACT Reading Score 26.1 (5.1) 26.0 (4.8) 0.1 (0.1)

ACT Math Score 25.7 (4.6) 23.9 (4.2) 1.7 (0.1)

Fall 2012 GPA 2.86 (0.95) 3.12 (0.86) -0.26 (0.01)

Fall 2012 GPA|STEM 2.68 (1.06) 2.82 (1.03) -0.14 (0.02)

Fall 2012 GPA|non-STEM 3.07 (0.96) 3.31 (0.83) -0.25 (0.02)

Fall 2012 Share Courses in STEM 0.50 (0.35) 0.35 (0.32) 0.15 (0.01)

Note: Fall 2012 University of Kentucky undergraduate students; 7,833 men and 8,246 women. SAT scores are converted to
equivalent ACT scores. Standard deviations in parentheses for columns 1 and 2; standard errors in parentheses for column 3. See
Online Appendix B.2 for sample selection.

TABLE II

DESCRIPTIVE STATISTICS BY COURSE TYPE

STEM Non-STEM Diff. STEM & Non-STEM

Class Size 82.6 (92.6) 45.0 (59.1) 37.6 (5.9)

Average Grade 2.90 (0.46) 3.26 (0.42) -0.36 (0.03)

Average Grade | Female 2.98 (0.56) 3.35 (0.43) -0.38 (0.04)

Average Grade |Male 2.84 (0.47) 3.13 (0.52) -0.28 (0.03)

Study Hours 3.42 (1.62) 2.39 (0.92) 1.03 (0.14)

Percent Female 0.37 (0.20) 0.58 (0.19) -0.22 (0.01)

Percent Fem. Prof. 0.28 (0.45) 0.46 (0.50) -0.18 (0.03)

Note: Fall 2012 University of Kentucky courses; 282 STEM courses and 721 non-STEM courses (for study hours, 139 STEM
courses and 402 non-STEM courses). Standard deviations in parentheses for columns 1 and 2; standard errors in parentheses for
column 3. See Online Appendix B.2 for sample selection.

are 0.36 points lower.8 Students spend an extra hour per week (43% more time) studying

in STEM courses. STEM courses also have a lower share of female professors.

8Classes that have lower grades are associated with other characteristics as well such as lower course eval-

uations and disproportionately male instructors (see Online Appendix Table B.3). In order to separate out how

grading practices themselves drive course decisions separately from these other factors, we use variation in how

student characteristics are rewarded across classes in the same department through their grading policies.
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To motivate our structural analysis, we run a series of descriptive regressions where

grades and study hours are the outcome variables to better understand the driving forces

behind the patterns in Table II. Table III presents the results for grades across all classes

and students in columns (1) and (2), across only upper level classes in columns (3) and (4),

and separately for STEM and non-STEM classes in columns (5) and (6). Columns (1) and

(3) control for whether the class is in STEM; remaining columns control for our fourteen

department categories.

Across all columns of Table III, the following patterns emerge. First, even with depart-

ment fixed effects and controls for student preparation, larger class sizes are associated

with lower grades. All else equal, we would expect students to prefer classes where they

receive higher grades. The fact that larger classes give lower grades could reflect supply

considerations. Specifically, classes with low demand could be inflating grades to attract

students and classes with high demand could be giving lower grades to deter enrollment.9

Second, women outperform men across the board, and this is especially true in non-STEM

classes. Third, controlling for student gender and baseline preparation, students earn higher

grades in classes with a higher fraction of female students. This suggests women dis-

proportionately sort into classes with more lenient grading. Finally, even controlling for

academic background and course enrollment, STEM courses give lower grades than non-

STEM courses.

Looking at STEM and non-STEM courses separately in columns 5 and 6 of Table III, we

see two key patterns. First is that, while women outperform men in STEM classes, the gap

is much smaller than in non-STEM classes, potentially reflecting comparative advantage.

The second key pattern is test scores—especially ACT math—are much more important

in STEM classes than non-STEM classes. In contrast, high school grades have a similar

importance across fields.

The descriptive regressions for study hours are limited because we can only use variation

at the cohort-class level. We show in Table IV the results of regressions of class–cohort

study hours on the average characteristics of the class. We do this for all classes and then

separately for elective classes, STEM classes, and non-STEM classes. Both overall and for

9Alternatively, if students with lower unobserved ability are more attracted to popular courses—perhaps be-

cause of higher labor market returns—these courses might have both higher enrollments and lower grades.
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TABLE III

REGRESSIONS OF GRADES ON STUDENT AND CLASS CHARACTERISTICS

All Classes Upper Level STEM Non-STEM

(1) (2) (3) (4) Classes (5) Classes (6)

Female 0.102 0.101 0.103 0.099 0.028 0.152

(0.009) (0.009) (0.016) (0.016) (0.015) (0.011)

Percent Female 0.354 0.461 0.434 0.379 1.024 0.176

(0.025) (0.028) (0.042) (0.047) (0.049) (0.034)

ACT Reading∗ 0.037 0.049 0.044 0.069 0.055 0.043

(0.005) (0.005) (0.009) (0.009) (0.008) (0.006)

ACT Math∗ 0.133 0.132 0.085 0.080 0.208 0.090

(0.006) (0.006) (0.010) (0.010) (0.009) (0.007)

High School GPA∗ 0.266 0.268 0.183 0.187 0.275 0.264

(0.005) (0.005) (0.009) (0.009) (0.008) (0.006)

ln(Class Size) -0.059 -0.037 -0.054 -0.106 -0.067 -0.037

(0.004) (0.005) (0.008) (0.009) (0.008) (0.006)

STEM Class -0.420 -0.278

(0.010) (0.020)

Dept. FE No Yes No Yes Yes Yes

Observations 55,701 55,701 15,458 15,458 23,280 32,421

Note: ∗ indicates the variable is z-scored. Additional controls are indicators for upper-level classes and minority and first-
generation college students. Regressions (2) and (4)-(6) split STEM/non-STEM into 14 department categories.

each subgroup, the share of the class–cohort that is female is positively correlated with

study time. That women study more than men is consistent with survey evidence from

Arcidiacono et al. (2012) and Stinebrickner and Stinebrickner (2012).10 STEM classes have

higher study times, though not in elective courses where enrollments are lower.

Perhaps most interesting is the coefficient on average course grade. Courses with higher

grades are associated with less study time even after conditioning on department fixed

effects. This suggests that grades are relative measures of accomplishment and, in conjunc-

tion with workload, may be used by professors to influence demand for their courses.

10Given women’s higher reported study times, there may be a concern that women are also more likely to fill

out course evaluation forms. Regressing response rates at the class–cohort level on share female, however, yields

a small and insignificant coefficient both with and without course fixed effects.
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TABLE IV

REGRESSIONS OF STUDY TIME ON AVERAGE STUDENT AND CLASS CHARACTERISTICS

All Classes Elective Classes STEM Non-STEM

(1) (2) (3) (4) Classes (5) Classes (6)

Female 0.175 0.245 0.109 0.159 0.401 0.226

(0.071) (0.070) (0.099) (0.097) (0.194) (0.073)

ACT Reading∗ 0.049 0.038 0.183 0.173 -0.308 0.105

(0.041) (0.041) (0.059) (0.060) (0.114) (0.044)

ACT Math∗ 0.065 0.044 0.016 0.014 0.237 0.034

(0.048) (0.048) (0.063) (0.065) (0.139) (0.050)

High School GPA∗ -0.064 -0.070 -0.056 -0.098 -0.048 -0.090

(0.046) (0.045) (0.064) (0.062) (0.124) (0.048)

Average Grade -0.308 -0.265 -0.276 -0.215 -0.401 -0.240

(0.044) (0.046) (0.070) (0.071) (0.112) (0.050)

ln(Class Size) -0.124 -0.083 -0.146 -0.158 -0.054 -0.106

(0.027) (0.028) (0.049) (0.051) (0.061) (0.031)

STEM Class 0.362 -0.058

(0.050) (0.084)

Dept. FE No Yes No Yes Yes Yes

Observations 866 866 346 346 204 662

Note: ∗ indicates that variable is z-scored. Observations are at the class-cohort level. Additional controls are an indicator for
upper-level classes, % minority, and % first-generation. Regressions (2) and (4) - (6) split classes into 14 department categories.

3. DEMAND-SIDE MODEL

The descriptive results in Section 2 revealed significant differences in grading and study

times across departments. Motivated by these patterns, we next develop a model of how

students make course choices and study effort decisions. These decisions are made in part

in response to professor grading policies. From the perspective of the student, these grading

policies are taken as given. How grading policies are chosen is described in Section 6.

The demand-side model produces three estimating equations. The first is the optimal

choice of study effort, which depends on the cost of studying, the extent to which the stu-

dent values grades, and the incentives provided by professor through their grading policies.

The second is the grade production process, which depends on the student’s preparation,

the optimal choice of study effort, and the professor’s grading policies. The final estimating
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equation comes from the solution to the student’s problem of choosing a bundle of courses

given his or her preferences over grades, expected optimal study times, and non-grade pref-

erences for particular courses.

3.1. Choice set

Student i chooses ni courses from a subset of all courses Ji ⊂ [1, . . . , J ], where J is the

total number of courses and Ji is the set of courses i is eligible to take. While our data

set contains over 1,000 classes, students are precluded from registering for a substantial

fraction of these courses. To account for the restrictions to a student’s choice set that arise

due to academic and administrative considerations, we use information on course prerequi-

sites, class enrollment capacity constraints, students’ course histories from past semesters,

and their AP exam results. Accounting for these factors results in students having on av-

erage 700 courses in their choice set. See Online Appendix B.3 for a description of the

supplemental data that we collected and how we utilized this data to form the choice sets.

3.2. Course payoffs

We specify the payoff for a particular course j as dependent on student i’s non-grade

preference for the course, δij , the amount of study effort that he or she chooses to exert in

the course, sij , and the course grade conditional on study effort, gij(sij). Following Nevo

et al. (2005), we assume that the payoff associated with a bundle of courses is given by the

sum of the payoffs for each of the individual courses, where the payoffs do not depend on

those of the other courses in the bundle.11 The individual’s realized utility from choosing

course j and exerting sij units of effort is given by:

Uij(sij) = φigij(sij)− ψijsij + δij (1)

11For a model that includes complementarities in bundled choice, see Gentzkow (2007). The Gentzkow (2007)

framework is not feasible in our setting because of the large number of potential course bundles. A natural concern

with our setup is that students may balance hard courses with easier ones. In Appendix A.2, we show that our

estimated model matches both the within-student distribution of high-workload courses and the within-student

distribution of STEM courses.
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We parameterize φi as dependent on the student’s gender. Denoting wi as an indicator for

whether the student is female, φi = φ0 + φ1wi. The costs of studying in course j, ψij , are

specified to depend on wi and a set of characteristics Xi, defined in Table V. The costs of

studying also depend on a shock ζij that is revealed after the student has chosen his or her

courses, implying that students form expectations over the realizations of ζij when making

their course choices. In particular, we specify ψij as:

ψij = ζijψi = ζij exp (ψ0 +wiψ1 +Xiψ2) (2)

where ζij is log-normally distributed.

Preferences for courses net of grades and study costs, δij , depend on the characteristics

of the student and the course. Each course belongs to some department k ∈ [1, . . . ,K],

where k(j) gives the department for the jth course. Denote as Z1i the set of variables that

affect preferences for courses in particular departments. For example, students with high

ACT math scores may prefer courses in physics for reasons above and beyond how ACT

math scores affect physics grades. Denote as Z2ij the set of variables that affect the match

between the student and the course. This includes factors such as whether a course satisfies

prerequisites for freshmen or major requirements for upperclassmen. The full listing of

what is included in Z1i and Z2ij is shown in Table V.

We then parameterize δij as:

δij = δ0j +wiδ1k(j) +Z1iδ2k(j) +Z2ijδ3 + εij (3)

where δ0j are course fixed effects and εij is i.i.d. type 1 extreme value. Women’s pref-

erences for the course material and the climate in particular departments are captured by

δ1k(j).

Substituting the parameterizations of φi, ψij and δij into (1) yields:

Uij(sij) = (φ0 + φ1wi)gij(sij)− ζij exp (ψ0 +wiψ1 +Xiψ2) sij (4)

+δ0j +wiδ1k(j) +Z1iδ2k(j) +Z2ijδ3 + εij

Estimating department preferences, preferences for grades, and study costs separately by

student gender helps us uncover some of the driving forces behind the gender gap in STEM.

For example, if women’s intrinsic demand for courses in STEM departments is relatively
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TABLE V

LIST OF CONTROLS

Gender (wi): affects department-specific academic preparation and preferences, study costs, & grade preferences

Covariates for academic preparation and cost of study effort (Xi): ACT reading & math, high school grades,

minority, first generation, unobserved type

Covariates for preferences that vary by department (Z1i): ACT reading & math, high school grades, unobs. type

Covariates for preferences that vary by class match (Z2ij): female × female professor;

freshman and sophomore × STEM × female; (juniors and seniors) whether the course is required for the major,

whether it is one of two or more courses that would fill a major requirement, whether the course is upper division;

(sophomores) log number of courses opened up by taking the course, STA210; (freshmen) log number of courses

opened up by taking the course, CIS/WRD110

Note: Opened-up courses are ones where the particular course is a prerequisite; STA210 and CIS/WRD110 are university core
requirements typically taken during the sophomore and freshman years respectively.

low (δ1k(j) negative) while the preferences for grades and cost of effort are relatively equal

across men and women (φ1 and ψ1 close to zero), then changing grading policies would

have little effect on the gender gap in STEM. On the other hand, if women have significantly

different preferences over grades and study effort than men, then altering grading policies

could affect the gender composition of classes and departments.

Note that one of the components of both Xi and Z1i is the student’s unobserved type.

This is time-invariant private information (not observed by the econometrician) that the stu-

dent has regarding (i) their department-specific preferences, (ii) their department-specific

abilities, and (iii) their study costs. It is through these unobserved types that we account for

selection on unobservables. Identification and estimation in the presence of this unobserved

heterogeneity is discussed in Section 4.4.

3.3. Grades

The grade that student i receives in course j, gij , depends in part on student i’s aca-

demic preparation for course j. We allow academic preparation to vary across departments.

For example, ACT math scores may be important for math classes but less so for English

classes. Academic preparation for class j in department k is then given by a department-
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specific weighted average of the student’s characteristics, Xi. Note that these are the same

characteristics that affect study costs and are given in Table V.

In addition to academic preparation for the course, gij depends on the student’s study

effort, sij , and a mean-zero shock that is unknown to the individual at the time of course

enrollment, ηij . Given study effort sij , gij is specified as:

gij(sij) = βj + γj
(
wiα1k(j) +Xiα2k(j) + ln(sij)

)
+ ηij (5)

Professors’ grading policies are then choices over an intercept, βj , and a slope, γj , that

dictate the returns to academic preparation and effort. Gains from study effort enter as a

log to capture the diminishing returns to studying.

3.4. Study effort

Students are assumed to know professors’ grading policies.12 After we substitute the

grading process (5) into the utility function (4), the optimal study effort given a realization

of ζij can be found by differentiating Uij(sij) with respect to sij :

s∗ij =
φiγj
ψij

=
(φ0 + φ1wi)γj

ζij exp (ψ0 +wiψ1 +Xiψ2)
(6)

A higher γj increases the incentives to study. Those who value grades more (have higher

values of φi) and have lower study costs (lower values of ψij) also exert more effort.

Equation (6) gives us our first estimating equation, linking grading policies and student

characteristics to study effort. Substituting the optimal choice of study effort given (6) into

(5) yields our second estimating equation, which is the grade production process:

gij = βj + γj
[
wi(α1k(j) − ψ1) +Xi(α2k(j) − ψ2) + ln(φ0 + φ1wi) + ln(γj)− ψ0

]
+ ηij − γj ln(ζij) (7)

12Students can learn about grading policies from friends, course syllabi, or from publicly available course

evaluations that include average expected grades. See also Ferreyra et al. (2021) for a model of student effort as a

function of college policies.
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3.5. Course choices

An important assumption is that study time is chosen optimally after the realization

of the shock to study costs, ζij , but that ζij is unknown at the time of course selection.

The shock to grades, ηij , is also unknown at the time when courses are chosen. Hence,

individuals maximize the expected utility of their course bundle taking into account their

optimal response to the realizations of the ζijs. Taking expectations over ζij and ηij in (7)

gives the expected grades that individuals use when forming their expectations over course

payoffs:

E(gij) = βj + γj
[
wi(α1k(j) − ψ1) +Xi(α2k(j) − ψ2) + ln(φ0 + φ1wi) + ln(γj)− ψ0

]
(8)

After substituting in the optimal study effort responses from (6) and the corresponding

expected grades given in (8) into (1) and taking expectations, the expected utility of course

j can be written as:

E(Uij) = (φ0 + φ1wi) (E(gij)− γj)] + δ0j +wiδ1k(j) +Z1iδ2k(j) +Z2ijδ3 + εij (9)

Let dij = 1 if j is one of the ni courses chosen by student i and zero otherwise. Students

then solve the following maximization problem when choosing their optimal course bundle:

max
di1,...,diJ

J∑
j=1

dijE(Uij) subject to:
J∑
j=1

dij = ni (10)

where ni is taken as given.13 We then obtain our third estimating equation by solving the

maximization problem in (10).

4. DEMAND-SIDE ESTIMATION

The model in the previous section was characterized by three sets of equations govern-

ing (i) the grade production process, (ii) the optimal choice of study effort, and (iii) student

class choices. We now describe the estimation of the model and the identification assump-

tions.

13Although some students may adjust the number of courses they take in counterfactual scenarios, ni is only

weakly related to other observed variables. For example, the correlation between the number of classes and each

of female, HS gpa, ACT reading, and ACT math all lie between -0.015 and 0.03.
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For expositional clarity, we begin with the case where there are no unobserved types. Key

to the identification arguments is the sequential revelation of new information. In particular,

new information on the costs of studying are revealed after the course choice decisions

are made. Further, new information on grade realizations is revealed after course choices

and study decisions. With each piece of new information assumed to be uncorrelated with

the others and absent unobserved heterogeneity, the model reduces to one of selection on

observables.

We then describe identification and estimation in the case with unobserved types in Sec-

tion 4.4. Finally, given the strong assumptions made in the model and estimation, we dis-

cuss the implications for our results should these assumptions be violated and develop tests

for whether certain violations would lead us to miss key data moments.

4.1. Reduced-form grade equation

We begin with the estimation of the grade process. Equation (7) yields the following

reduced form:

gij = θ0j + γj
(
wiθ1k(j) +Xiθ2k(j)

)
+ η∗ij (11)

where

θ0j = βj + γj(ln(φ0) + ln(γj)− ψ0) (12)

θ1k(j) = α1k(j) + ln(φ0 + φ1)− ln(φ0)− ψ1 (13)

θ2k(j) = α2k(j) − ψ2 (14)

η∗ij = ηij − γj ln(ζij) (15)

The reduced-form parameters {θ0j , θ1k(j), θ2k(j)} and the structural slopes, the γjs—both

relative to a normalization—can be estimated by means of nonlinear least squares. A

normalization must be made for every department, as scaling up the θs by some factor

and scaling down the γs by the same factor would be observationally equivalent. We set

one γj equal to one for each department, a normalization that will be undone in Sec-

tion 4.2. Denote as Ck the normalization for department k. We then estimate γNj , where

γNj = γj/Ck(j). Similarly, we estimate θN1k(j) and θN2k(j), where θN1k(j) = θ1k(j)Ck(j) and

θN2k(j) = θ2k(j)Ck(j).
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4.2. Reduced-form study equation

The course evaluation data give reported study hours for each individual in the class-

room, and we use these study hours as our measure of effort, s∗ij . Taking logs of (6) yields:

ln(s∗ij) = κ0 +wiκ1 −Xiψ2 + ln(γj)− ln(ζij) (16)

where

κ0 = ln(φ0)− ψ0 (17)

κ1 = ln(φ0 + φ1)− ln(φ0)− ψ1 (18)

Recall that one γj for every department was normalized in the grade equation. Substitut-

ing in γ̂Nj Ck(j) for γj in (16) and rearranging yields:

ln(s∗ij)− ln(γ̂Nj ) = κ̃0 +wiκ1 −Xiψ2 + κ2k(j) − ln(ζij) (19)

where κ2k(j) = ln(Ck(j)/C1) and κ̃0 = κ0 + ln(C1). Here, C1 is the normalized course for

the base department.

The course evaluation data cannot be linked to the individual data on grades and aca-

demic preparation. However, the evaluation data do provide information about the cohort

of the evaluator (i.e., freshman, sophomore, junior, or senior). The observations that we use

in estimating the choice of study effort are then at the class–cohort level. Letting li indicate

the cohort of student i and averaging (19) at the class-cohort level yields our estimating

equation:∑
i

(li = l)dij ln(s∗ij)∑
i

(li = l)dij
− ln(γ̂Nj ) = κ̃0 +wjlκ1 −Xjlψ2 + κ2k(j) − ln(ζjl) (20)

where wjl, Xjl, and ln(ζjl) are the averages of wi, Xi, and ln(ζij) for students of cohort

l enrolled in course j. ln(ζjl) is unobserved and assumed to be uncorrelated with wjl and

Xjl.

The estimates of (20) allow us to recover how observed characteristics (other than gen-

der) affect study costs, ψ̂2. We can also partially undo the normalization on the γs, solving
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for γs that are normalized with respect to one course rather than to one course in each

department. Namely, let γPj = γNj exp(κ2k(j)). γ̂Pj then provides an estimate of γj/C1.

The last normalization—the returns to preparation and study time in the only remaining

normalized course—can be recovered from the heteroskedasticity in the grading residuals

that result from the study cost shocks, ln(ζij), mattering more in classes where γj is high.

In particular, the residual from Equation (11) can be written as:

gij −E(gij) =−C1γ
P
j ln(ζij) + ηij (21)

Since ln(ζij) is assumed to be independent of ηij , we can express the variance of the

residuals for class j, σ2j , as:

σ2j = (γPj )2κ3 + σ2η (22)

where κ3 = C2
1σ

2
ln(ζ). Regressing σ2j on (γPj )2 then gives us an estimate of C2

1 up to the

variance of the study cost shock.

We can recover an estimate of σ2ln(ζ) using the residuals of Equation (20) for cohort–

course combinations with one student. Let this estimate be given by σ̂2ln(ζ). However, be-

cause we observed the study times only in grouped intervals, there will be measurement

error in these residuals. We simulate data from the continuous study time process (so that

the hours are not lumped into bins), using the cohort–class data employed and the corre-

sponding parameter estimates from Equation (20) and where the ln(ζij)s are drawn from

a normal distribution with mean zero and variance calibrated so that, after censoring into

bins, the censored residuals have variance equal to σ̂2ln(ζ). This calibrated variance then

allows us to recover C1.

4.3. Estimation of utility parameters

We now turn to estimating the utility function parameters. Recall that the expected utility

from taking course j in Equation (9) was given by:

E(Uij) = (φ0 + φ1wi) (E(gij)− γj)] + δ0j +wiδ1k(j) +Z1iδ2k(j) +Z2ijδ3 + εij

The estimates of expected grades and γs follow from the previous steps. With these taken

as given, the variation in the data that identifies φ0 and φ1 comes from how individuals
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sort within departments based on their comparative advantage in grades. For example, the

extent to which men with high math ability sort into math classes where math ability is

especially rewarded identifies φ0; the difference in this sorting behavior between men and

women identifies φ1.

We use simulated maximum likelihood coupled with a nested fixed-point algorithm to

estimate the choice parameters.14 To illustrate the approach, denote as Ki the set of courses

chosen by i. Denote Mi = maxj /∈Ki
{E (Uij)} as the highest payoff among the unchosen

courses. Suppose that Ki consisted of courses {1,2,3} and that the values for all the pref-

erence shocks εij were known with the exception of those for {1,2,3}. The probability of

choosing {1,2,3} could then be expressed as:

Pr(di = {1,2,3}) = Pr(U i1 >Mi,U i2 >Mi,U i3 >Mi)

= Pr(U i1 >Mi)Pr(U i2 >Mi)Pr(U i3 >Mi)

= (1−G(Mi −U i1))(1−G(Mi −U i2))(1−G(Mi −U i3))

where G(·) is the extreme value c.d.f. and U ij is the flow payoff for j net of εij .

Since the εijs for the unchosen courses are not observed, we integrate them out of the

likelihood function and approximate the integral by simulating their values from the type I

extreme value distribution. Denoting asMir the value ofMi at the rth draw of the unchosen

εijs and asR the number of simulation draws, the full log-likelihood function is given by15:

lnL=
∑
i

ln

 R∑
r=1

J∏
j=1

(
1−G(Mir −U ij)

)dij/R
 (23)

While in theory one could estimate all of the choice parameters δ0j , δ1k(j), δ2k(j), δ3,

φ0, and φ1 by solving for the parameter values that maximize Equation (23), the large

number of courses makes doing so computationally challenging. To circumvent this issue,

14Nesting a fixed-point algorithm within a maximum likelihood routine follows Berry et al. (1995).
15Our setup is similar to Nevo et al. (2005). Nevo et al. (2005) randomly samples rankings of chosen options,

computes likelihood contributions conditional on rankings, and averages across the sampled rankings to simulate

the full likelihood. We simulate the stochastic utility of the best unchosen course, compute the likelihood contri-

butions conditional on this stochastic utility, and average across simulation draws to simulate the full likelihood.
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in the spirit of Berry et al. (1995), we nest a fixed-point algorithm within the maximiza-

tion routine that matches estimates of the course-specific intercepts δ0j directly to data on

enrollment shares. Details of the algorithm can be found in Online Appendix C.2. Once

the parameters of Equation (23) have been estimated, it is straightforward to recover the

remaining structural parameters ψ0, ψ1, βj , and α1k(j) from combinations of previously

identified parameters.

4.4. Estimation with unobserved heterogeneity

We now consider the case when one of the components of Xi and Z1i is unknown to

take into account correlation across outcomes for the same individual. We assume that this

missing component takes on S values, where πs is the unconditional probability of the sth

value. In practice, we set S to three.

Identification of the unobserved types comes from the within-student correlation across

grades and choices after conditioning on observables. Unobserved types affect study costs,

department-specific preferences, and department-specific abilities. Differences between ob-

served grade outcomes and those predicted by the observables help pin down department-

specific abilities. For example, a student may perform better than expected based on observ-

ables in all his or her STEM classes, implying a comparative advantage in STEM. Students

may also sort into STEM classes as a whole more than what his or her expected grades

and observed characteristics would predict, implying an unobserved preference for these

classes as well. Coupled with the structure of the model where type classification is also

determined by grades and course choices, differences in study times at the course-cohort

level help pin down the effect of the unobserved types on study costs.

Integrating out over this missing component removes the additive separability of the log-

likelihood function, suggesting that the estimation of the three sets of parameters (grades,

course choices, and study time) can no longer be estimated in stages. However, using the in-

sights of Arcidiacono and Jones (2003) and Arcidiacono and Miller (2011), we can restore

separability via a modified expectations maximization (EM) algorithm. Our full estimation

procedure is described in Online Appendix C.1.
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4.5. Discussion

While we view our model of course level choices with flexible utility, flexible grade

production, and endogenous study effort as a substantial innovation relative to existing

literature, our model still requires a number of important assumptions that may affect our

conclusions. In Appendix A, we discuss some of these assumptions in detail and perform

specification tests to assess robustness to these assumptions. Our general approach is to

predict how violations of certain assumptions would lead to poor model fit for particular

moments of the data. We then assess model fit for these moments to examine whether our

assumptions lead us to poorly approximate student behavior.

For example, our model does not allow students to balance difficult courses with easy

courses when choosing course bundles. This suggests we might over-predict the number

of students choosing mostly difficult courses or mostly easy courses. However, when we

simulate choices for all students, calculate the share of difficult classes that each student

takes, and compute the standard deviation in this share across students, we find that this

standard deviation is actually slightly lower than the standard deviation in the data. This

implies that our model closely approximates the course balancing behavior observed in our

data. Details of our specification tests are provided in Appendix A.

5. DEMAND-SIDE ESTIMATES

5.1. Preference estimates

Table VI presents a subset of the preference parameters. While both men and women

value grades, women derive substantively higher utility from higher grades. The results

show that women value grades 28% more than men. Consistent with Carrell et al. (2010),

female students prefer classes with female professors, with the estimate suggesting that

women would have to be compensated by a little over one-tenth of a grade point to enroll

in the same class taught by a male professor.16

In the first column of the second panel of Table VI, we show women’s preferences (rel-

ative to men’s) for different departments, with the omitted category being Agriculture. The

16The coefficient may be biased upward due to aggregation of departments. If female professors are more

likely to be in departments that women prefer and that variation exists in aggregated groups, we may be capturing

within-group department preferences.
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largest difference in preferences is between Engineering and Biology, at 1.4, which for

women translates to 1.18 grade points. Engineering and Biology are outliers, with the dif-

ference in the penultimate categories (Psychology and Communications) translating to 0.47

grade points.

These departmental preferences of women emerge after we account for grade consider-

ations and sorting on other ability factors.17 Education & Health, where women make up

almost 70% of course enrollments, are shown to be preferred to a similar extent as Chem-

istry & Physics, where women make up less than half of enrollments. The primary driver

of women into Education & Health over Chemistry & Physics is the difference in grades

and the matching of observed characteristics to characteristics of the department.

We show in the second to fourth columns of Table VI how non-grade preferences for

classes in particular departments vary by academic characteristics. The most salient result

is the strong positive correlation between ACT math scores and preferences for STEM de-

partments.18 Since men at UK on average have higher ACT math scores (and lower high

school grades) than their female counterparts, this too contributes to more men choosing

STEM classes above and beyond the fact that higher ACT math scores are especially re-

warded in the grading policies of STEM classes.

5.2. Study effort estimates

Estimates of the study cost parameters are presented in Table VII. Women have 5.4%

lower study costs than men, though the estimate is not statistically significant. Conditional

on having the same observed characteristics and taking the same class, women study 30%

more than men; however, our estimates of φ0 and φ1 imply that over 80% of their increased

studying is due to preferences for grades.

We show in the second set of columns how the returns to study effort vary across classes,

taking the median γ class for each course grouping. The heterogeneity is quite large, with

classes in STEM departments having the highest returns to studying. A doubling of study

17See Jacob et al. (2018), Kaganovich et al. (2021), Wiswall and Zafar (2015), and Zafar (2013) for other

examples in the literature exploring non-grade preferences for departments or majors.
18The one exception is mathematics, which may be due in part to students with lower mathematics skills being

required to take additional remedial classes to satisfy general university requirements.
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TABLE VI

ESTIMATES OF SELECTED STUDENT PREFERENCE PARAMETERS

Preference for: Coef. Std. Error

Expected grades (φ0) 0.927 (0.006)

Female x expected grade (φ1) 0.257 (0.009)

Female x female professor 0.141 (0.007)

Departments Female ACT read∗ ACT math∗ HS GPA∗

Biology 0.504 -0.238 0.033 -0.136

Psychology 0.162 -0.375 0.047 -0.202

Education & Health 0.139 -0.336 0.010 0.075

English 0.127 0.024 -0.208 0.051

Chem. & Physics 0.069 -0.177 0.143 -0.178

Mgmt. & Mkting -0.049 -0.243 0.138 -0.081

Regional Studies -0.091 -0.231 -0.062 -0.057

Math -0.133 -0.154 -0.193 -0.200

Languages -0.159 -0.116 0.042 -0.154

Social Sciences -0.350 -0.175 -0.010 -0.182

Econ., Fin., Acct. -0.378 -0.295 0.131 -0.040

Communications -0.401 -0.247 0.036 -0.090

Engineering -0.897 -0.275 0.494 0.048

Note: See Online Appendix Table B.5 for complete results. ∗ indicates that the variable is z-scored. Female is women’s non-
grade preference for departments relative to men’s. Department preferences are relative to agriculture. STEM departments are in
bold.

effort would translate into an increase of 0.44 grade points in Engineering but would be

less than one-third as effective in increasing grades in Education & Health.

5.3. Grade estimates

The estimated department-specific ability weights, the αs, are given in Table VIII. The

departments are sorted such that those with the highest Female estimate are listed first.

The coefficients on Female in the first column suggest that women have a comparative

advantage in non-STEM departments after differences in test scores and high school grades

are accounted for. This result makes sense in the context of the descriptive statistics pre-

sented in Table II: Women have higher grades than men in both STEM and non-STEM
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TABLE VII

ESTIMATES OF STUDY COSTS AND DEPARTMENTAL RETURNS TO STUDYING

Study Cost Median γ

Coef. (ψ) Std. Error Department Coef.

Female -0.054 (0.085) Engineering 0.442

ACT Reading Score∗ -0.056 (0.050) Biology 0.308

ACT Math Score∗ 0.064 (0.058) Math 0.271

High School GPA∗ 0.098 (0.056) Econ., Fin., Acct. 0.259

Psychology 0.253

Chem. & Physics 0.241

Regional Studies 0.233

English 0.224

Languages 0.194

Communications 0.190

Social Sciences 0.187

Agriculture 0.168

Mgmt. & Mkting 0.146

Education & Health 0.142

Note: ∗ indicates that the variable is z-scored. Study costs also depend on minority and first-generation status and unobserved
type. STEM departments are in bold. Departments are sorted by their median value of γ.

classes, but the gap is smaller in STEM classes. Given that the returns to studying are

higher in STEM classes and that women study more than men, we would expect women

to substantially outperform men in STEM classes should women not have a comparative

advantage in non-STEM courses.

We show in the second through fourth columns the ability weights on the two compo-

nents of the ACT and high school grades. The returns to the different components of the

ACT score are intuitive. The five STEM categories have five of the six highest returns to

the ACT math score, with the highest return found in Math classes. Higher returns to ACT

reading are found in Social Sciences, Psychology, English, and Languages.

5.4. Drivers of the STEM gap

Given the estimates of the grading process and students’ choices over classes and study

time, we now examine the sources of the male–female gap in STEM enrollment. We focus
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TABLE VIII

ESTIMATES OF DEPARTMENT-SPECIFIC ABILITY WEIGHTS (α)

Female ACT read∗ ACT math∗ HS GPA∗

Education & Health 0.522 (0.164) 0.164 (0.064) 0.407 (0.077) 0.750 (0.119)

Communications 0.372 (0.170) 0.167 (0.067) 0.167 (0.051) 0.960 (0.210)

Regional Studies 0.361 (0.153) 0.071 (0.072) 0.660 (0.105) 1.020 (0.143)

Agriculture 0.172 (0.196) 0.223 (0.106) 0.613 (0.130) 1.121 (0.176)

Psychology -0.055 (0.100) 0.415 (0.064) 0.517 (0.065) 0.940 (0.078)

English -0.072 (0.160) 0.296 (0.103) 0.453 (0.110) 1.006 (0.141)

Languages -0.140 (0.105) 0.311 (0.085) 0.530 (0.102) 0.929 (0.153)

Social Sciences -0.199 (0.089) 0.480 (0.088) 0.408 (0.074) 1.082 (0.141)

Math -0.244 (0.063) -0.074 (0.036) 1.594 (0.133) 0.984 (0.084)

Mgmt. & Mkting -0.309 (0.124) 0.166 (0.097) 0.440 (0.127) 0.985 (0.246)

Biology -0.439 (0.078) 0.166 (0.047) 0.648 (0.076) 0.827 (0.084)

Engineering -0.442 (0.070) -0.018 (0.029) 0.631 (0.067) 0.362 (0.040)

Econ., Fin., Acct. -0.547 (0.087) 0.146 (0.053) 0.980 (0.117) 0.917 (0.098)

Chem. & Physics -0.708 (0.080) 0.042 (0.044) 1.286 (0.075) 1.165 (0.066)

Note: ∗ indicates that the variable is z-scored. STEM departments are in bold. Departments are sorted by women’s α. Standard
errors in parentheses.

our attention on freshmen and sophomores because junior and seniors have already chosen

their majors.19 In all simulations, we change the parameters or characteristics for women

to match the parameters or characteristics for men.20

19Juniors and seniors change their choices in these partial equilibrium counterfactual scenarios because coun-

terfactual choices by freshmen and sophomores alter which courses are capacity constrained. However, these

changes are generally very small because most juniors and seniors register before freshmen and sophomores and

thus are not exposed to the effects of freshmen’s and sophomores’ choices on capacity constraints.
20Similar to male juniors and seniors, male freshmen and sophomores change their choices in these counter-

factual scenarios only because the counterfactual choices by female freshmen and sophomores alter which course

are capacity constrained. These effects are small, so we omit them for the sake of brevity.
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We show in Table IX how the share of classes taken in STEM for women and men change

as different characteristics are equalized across genders.21 We also report the difference

between the male and female shares as a measure of the gender gap in STEM participation.

The first two rows of Table IX show that our model matches the data well. The model-

predicted shares of STEM classes for men and women are 53.3% and 41.0%, respectively.

The 12.3-percentage-point gap between the two model-predicted shares is what we use as

our baseline when comparing the drivers of the STEM gender gap.

TABLE IX

STEM ENROLLMENT FOR FRESHMEN AND SOPHOMORES

IN COUNTERFACTUAL SCENARIOS (PARTIAL EQUILIBRIUM)

STEM Enrollment Share

Female Male STEM gap

(1) Data 40.9% 53.3%

(2) Baseline model 41.0% 53.3% 12.3

(3) Equalize grade preferences 45.0% 8.3

(4) Shift obs. abil. incl. abil. tastes 43.8% 9.5

(5) Shift unobs. abil. in grades 45.2% 8.1

(6) Equalize unobs. pref. for depts. 40.7% 12.5

(7) Female professor effect turned off 41.3% 12.0

(8) Grade around a B: γj = 0 62.3% 65.5% 3.2

(9) Grade around a B: γj = 0.21 60.7% 67.9% 7.1

(10) Grade around a B: γj = γ̂j 55.6% 63.9% 8.2

Note: Women’s preference and ability parameters are adjusted to be identical to men’s preferences and abilities. Counterfac-
tuals are partial equilibrium, as the grading policies of professors are held fixed.

The predicted outcomes when women’s preferences for grades are changed to be the

same as men’s (φ1 is set to zero) are shown in the third row. Equalizing grade preferences

increases the share of classes that women take in STEM to 45.0%. This reduces the gender

21Our counterfactual simulations hold the utilities of courses with γ < 0.01 fixed. There were twenty-five such

courses. See Online Appendix C.3 for how the counterfactual choice probabilities are calculated in the presence

of capacity constraints.
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gap in STEM by almost a third. This reduction arises both because STEM courses have

lower grades and because women have a comparative advantage in non-STEM courses;

lowering the value of grades weakens the importance of this comparative advantage.

The fourth and fifth rows change the observed and unobserved abilities so that the dis-

tribution is the same for men and women. The observed abilities affect both grades and

the non-grade department preferences. Because men have higher math ACT scores and

this makes STEM classes more attractive both through grades and through the non-grade

department preferences, equalizing observed abilities reduces the gender gap by 2.8 per-

centage points. Even stronger effects from equalizing unobserved ability are presented in

the fifth row, where the gender gap is reduced by 4.2 percentage points. We find that women

have a comparative advantage in non-STEM courses beyond what is associated with ob-

servable characteristics such as test scores. Because women value grades more, removing

these relative advantages makes STEM courses significantly more attractive to women and

reduces the gender gap accordingly.

The next two counterfactuals (rows six and seven) equalize women’s unobserved pref-

erences for departments and remove women’s preferences for female instructors, respec-

tively. Both changes barely move the gender gap (0.3 percentage points in either direction).

Overall, we find that the non-grade preferences not already accounted for through other

background measures are relatively unimportant to the STEM gap. However, the small ef-

fect of equalizing unobserved preferences for departments masks larger movements within

STEM, lowering female participation in Biology and raising it in Engineering and Eco-

nomics.

The final set of rows in Table IX examines how a standardized curve policy would affect

both overall STEM enrollment and the gender gap in STEM. We consider a policy in which

the average grade in each course must be a B; however, at this point, we cannot predict how

professors would adjust both βj and γj to comply with this policy. As such, we perform

simulations that fix γj at particular values and adjust βj to satisfy the curve. Simulations

that allow professors to endogenously adjust both βj and γj will be discussed in Section 6.

We perform three simulations using different sets of values for the γjs. First, we set γj
to zero for all classes. This is equivalent to removing grades from the utility function alto-

gether. Second, we set γj to the median value across all courses (0.21). Finally, we fix γj
at their estimated values. In all scenarios, we find that a standardized curve substantially
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increases STEM enrollment and substantially decreases the gender gap in STEM. The ef-

fects are generally larger in the more standardized scenarios where γj are equated across

classes. For example, with γj set to zero, the curve policy would increase female STEM

enrollment by 52% and decrease the gender gap in STEM to 3.2 percentage points (around

a quarter of the size of the original gap).

In sum, we find three primary drivers of the gender gap in STEM. First, women have

a comparative advantage in non-STEM courses. Second, women value grades more than

men, exacerbating the effects of this comparative advantage. Finally, lower grades in STEM

courses play a substantial role in limiting STEM enrollment, and this is especially true for

women. This last finding suggests that policies that lead to more uniform grading may work

to close the gender gap in STEM. We examine how professors may respond to restrictions

on grading policies in the next section.

6. EQUILIBRIUM GRADING POLICIES

Section 5 revealed that differences in grading policies across departments influence

course choices and contribute to the gender gap in STEM. It also revealed large differ-

ences in grades and workloads across departments. In this section, we develop and estimate

a model of how professors set their grading policies in equilibrium. Doing so serves two

purposes. First, it allows us to show the role that differences in demand for courses plays in

differences in grading policies. Second, it shows the scope that professors have to undo the

effects of policy changes by changing their behavior along other dimensions. The particular

policy change that we consider is a policy restricting average grades to be the same across

courses or subsets of courses.

6.1. Reduced-form evidence of the effect of enrollment on grading policies

We begin by providing reduced-form evidence that higher course enrollments result in

professors both giving lower grades and assigning more work (higher γs). Consider regres-

sions of average courses grades, Gj , and workloads, γj , on log enrollment, ln(Ej), and

course and faculty characteristics, Wj :

Gj =WjϑG1 + ln(Ej)ϑG2 + εGj (24)

γj =Wjϑγ1 + ln(Ej)ϑγ2 + εγj (25)
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Log enrollment is endogenous, and the OLS estimate of its coefficient captures both

how enrollment affects grades through grading policies and how grading policies affect en-

rollment. To account for the endogeneity of log enrollment, we instrument for it by using

predicted log enrollment when all classes have the same grading policies. In practice, we

set βj and γj to the median values across all classes and then use our structural model to

predict course enrollments. Clearly, this instrument satisfies the relevance requirement, as

classes with large course fixed effects (δj) will have higher enrollments. The exogeneity

assumption requires that innate instructor leniency be uncorrelated with innate course de-

mand (as captured by δj but also the other demand determinants) after the characteristics

of the course given in Wj are accounted for. While this assumption is not testable, we see

similar results from instrumenting instead with predicted enrollment when (i) grades are

the same in all courses (βj , γj = 0) or (ii) all coefficients in the utility function are turned

off with the exception of the course fixed effects (δj).

We estimate three versions of Equations (24) and (25): (i) one without the control for

log enrollment, (ii) one with the control for log enrollment, and (iii) one instrumenting for

log enrollment. We restrict our analysis to those classes where the capacity constraint is

not met and where γj > 0.22 We show in Table X the coefficients on log enrollment in

each regression and how removing the effects of log enrollment affects the average gap

between STEM and non-STEM courses in the outcome.23 Averaging across courses shows

that STEM classes have grades that are 0.34 points lower than the grades of their non-

STEM counterparts (column 1). Accounting for the endogeneity of log enrollment using

our instrument (column 3) reduces this gap to 0.16 points and leads to increases in the

magnitude of the effect of log enrollment by a factor of over 5 relative to the OLS estimate.

We show in the second set of columns of Table X that differences in enrollment (af-

ter reverse causality is removed) are part of the explanation for why STEM classes have

higher workloads. The standard deviation of γj is 0.12, implying that the average value of

γ for STEM courses is over one standard deviation larger than that of non-STEM courses

(column 4). Accounting for the endogeneity of log enrollment using our instrument (col-

umn 6) reduces this gap to 0.089 points. Together, these results suggest that higher demand

22Recall that twenty-five courses had γjs that hit the zero constraint.
23The remaining parameters are shown in Online Appendix B.8.
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for courses leads to lower grades and higher workloads, and that differences in demand

partially explain differences in grading policies between STEM and non-STEM courses.

TABLE X

RELATING COURSE DEMAND TO GRADES AND WORKLOADS

Average Grades γ

Baseline OLS IV Baseline OLS IV

(1) (2) (3) (4) (5) (6)

non-STEM 0.340 0.307 0.164 -0.128 -0.124 -0.089

Ln Enroll -0.066 -0.352 0.007 0.077

(0.020) (0.023) (0.004) (0.005)

Note: The analysis is at the course level. Estimates are from 951 courses where γj > 0 and the course capacity constraint does
not bind. Additional controls include department fixed effects, rank of the instructor, female instructor interacted with STEM and
upper-level class interacted with STEM. See Online Appendix Table B.7 for the coefficients on the additional controls.

6.2. The professor’s problem

We next develop a model of professor choices that is designed to produce estimating

equations similar to those in Equations (24) and (25). We assume that professors choose

grading policy parameters βj and γj to maximize an objective function that depends on

(i) the number of students in their class, (ii) the grades given in the course, and (iii) the

cost of assigning work (γ).24 In particular, we specify the professor’s objective function

to penalize deviations from their ideal log enrollment, e0j , their ideal average grade in the

class, e1j , and their ideal workload, e2j . These ideals depend on observed and unobserved

characteristics of the professor.

We specify the objective function this way in part because these are the measures that

we observe in the data. Preferences over enrollments and workloads may relate to learn-

ing outcomes that the professor values but also impose time costs on the professor through

24We also estimate models where professors exert effort to directly affect demand for courses. Incorporating

professor effort has little effect on our counterfactual results, though measuring professor effort is difficult. See

Online Appendix D for the model with professor effort, the description of how professor effort is measured, and

the model results with this channel incorporated.
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increased student interaction and development and grading (or supervision of teaching as-

sistants in the administration and grading) of assignments and exams. Having the professor

directly value class grades (beyond their impact on enrollment) may reflect departmental

norms and the desire to avoid student complaints.

Denote as Gj(β, γ) the expected average grade in class j given the grading policies for

all courses (β and γ). Denote as Pij(β, γ) the probability that i takes course j given the

grading policies. Gj(β, γ) and log enrollment in course j are given by:

Gj(β, γ) = βj + γj


N∑
i

Pij(β, γ) [Aij + ln(φi)− ln(ψi)]

N∑
i

Pij(β, γ)

+ ln(γj)

 (26)

ln [Ej(β, γ)] = ln

[
N∑
i

Pij(β, γ)

]
(27)

The objective function that professor j maximizes is then:

Vj(β, γ) =− (ln [Ej(β, γ)]− e0j)2 − λ1
(
Gj(β, γ)− e1j

)2 − λ2(γj − e2j)2 (28)

where the coefficient on ideal log enrollment is normalized to one.25

Professors choose grading policies given different innate demand for their courses. Ab-

sent the first term, the professor of course j would set γj to e2j . Given γj , the professor

would then set βj such that expected grades would equal e1j . However, with the first term,

professors deviate from their ideal grades and workloads to mitigate the costs associated

with having classes that are not the ideal size. If demand for a course would be above

(below) e0j when grades and effort were set to their ideal levels, professors adjust grades

(workloads) downward (upward) to move enrollment closer to the ideal.

25The coefficient on one of the squared terms must be normalized to identify the model. As normalizing one

of these coefficients to one is a monotonic transformation of the underlying utility function, the normalization has

no implications for the counterfactual policy analysis.
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6.3. Estimation

We use the first-order conditions of the professor’s objective function to form our esti-

mating equations. After dividing by two, these are given by:26

0 =− (ln [Ej(β, γ)]− e0j)
∂ lnEj
∂βj

− λ1
(
Gj(β, γ)− e1j

) ∂Gj
∂βj

(29)

0 =− (ln [Ej(β, γ)]− e0j)
∂ lnEj
∂γj

− λ1
(
Gj(β, γ)− e1j

) ∂Gj
∂γj
− λ2(γj − e2j) (30)

We allow for heterogeneity across professors in their preferences through the eljs, spec-

ifying elj as:

elj =WljΨl + εlj (31)

where εlj is unobserved professor-specific tastes for the lth outcome. Given that there are

two first-order conditions and three ε terms and that we cannot recover three unobservables

from two equations, we normalize ε0j to zero. When l refers to enrollment, we specify Wlj

to include a constant term and an indicator for whether the course is upper division, with

the latter allowing instructors to prefer lower enrollments in upper-division courses. When

l refers to grades or workload, we specify Wlj to include course category fixed effects, rank

of the instructor, whether the instructor is female, and whether the course is upper division.

The indicators for whether the instructor is female and whether the course is upper division

are also interacted with STEM.

The unobserved preferences ε1j and ε2j in part determine the optimal choice of βj and

γj . The rest of this section shows how we obtain estimates of the parameters given the

endogeneity of the grading policies. As in Section 6.1, the key identification assumption is

that the unobserved professor preferences for grades and workload are uncorrelated with

innate demand for the courses that they teach after we condition on Wlj .

26Note that when capacity constraints bind, the first term in each of the expressions is zero. In this case, profes-

sors set their grades, workloads, and effort to their ideal levels. As a result, we do not use courses where capacity

constraints bind in the estimation. Given the parameter estimates, we can, however, back out the corresponding

unobserved preference terms using Equations (29) and (30) with the first terms of each set to zero.
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6.3.1. Recovering Ψ0, Ψ2, and λ2

We estimate the professor parameters in two steps. In the first step, we estimate Ψ0

(preferences for ideal enrollment), Ψ2 (preferences for ideal workload), and λ2 (the weight

on the ideal workload). Rearranging and differencing the first-order conditions given in

Equations (29) and (30) to eliminate the λ1 term and solving for γj , we obtain:

γj = (1/λ2) ln [Ej ]Aj −Ψ0Aj +W2jΨ2 + ε2j (32)

where Aj is given by:

Aj =

[
∂ ln [Ej ]

∂βj

∂Gj
∂γj

/
∂Gj
∂βj

]
−
∂ ln [Ej ]

∂γj
(33)

Both the first and second terms of Equation (32) are correlated with ε2j , as ε2j affects

enrollment through γj and the corresponding derivatives of enrollment and grades with

respect to γj . We create instruments for these two terms by using the course choice model

to evaluate Aj and Aj ln [Ej ] at common values of β0 and γ0. In practice, we set β0 and γ0

to the median values across all courses. The variation across classes is then driven by the

innate demand for courses given fixed grading policies.

6.3.2. Recovering Ψ1 and λ1

In the second step, we recover estimates of Ψ1 (preferences for ideal grades) and λ1 (the

weight on ideal grades). Equation (29), the first-order condition with respect to βj , can be

rewritten as:

Gj(β, γ) =−(1/λ1)Bj (ln [Ej ]−Ψ0) +W1jΨ1 + ε1j (34)

where Ψ0 is known from step 1 and Bj is given by:

Bj =

[
∂ ln [Ej ]

∂βj
/
∂Gj
∂βj

]
We then instrument for Bj (ln [Ej ]−Ψ0) following the procedure in step 1, evaluating Bj
and ln [Ej ] with the policy parameters set to β0 and γ0 in each course.
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6.4. Supply-side results

We show in Table XI the estimates of the professor preference parameters. Professors

who teach upper-level classes prefer higher grades, lower workloads, and smaller class

sizes relative to those teaching lower-level classes, perhaps reflecting the more specialized

nature of these courses. The estimates imply that it is more often the case that professors

raise grades to attract students than lower grades to deter students. Among lower-division

classes, 9.6% are above the ideal size of 146. Among upper-division classes, 25.9% are

above the ideal size of 40.

There is also heterogeneity in the grading practices based on instructor rank and gender.

Tenured and tenure-track faculty prefer lower grades than lecturers. Instructors who are not

on the tenure track may have an incentive to offer higher grades, as their contracts may

depend on teaching evaluations, which in turn rise with expected grades (see Online Ap-

pendix Table D.2). Female professors have higher ideal grades than their male counterparts,

though the differences are smaller in STEM departments.

Department-specific parameters are listed from highest ideal grades to lowest. Professors

in the Management & Marketing and Education & Health departments on average have the

highest ideal grades, while professors in the English and Mathematics departments have the

lowest. Higher ideal grades are also generally associated with lower ideal workloads. Note

that these ideal grades and workloads are not driven by direct student demand for courses;

they may be set by norms in the department, perhaps following the lead of senior faculty or

influenced by instructors’ own experiences as undergraduates.

While Table XI reveals how professors would prefer to assign grades and workloads,

student demand for courses induces deviations from these ideals to achieve enrollments

closer to e0j . One can see these demand adjustments directly in the rearranged first-order

conditions given in Equations (32) and (34). The first terms of each equation show how

deviations from ideal enrollments (demand adjustments) impact professor choices.

Table XII reports averages of these demand adjustment terms by department relative

to the average across all courses. Demand adjustments are sorted from lowest to highest

based on the adjustment to grades. In response to higher student demand, STEM depart-

ments (along with the Psychology and Management & Marketing departments) give lower

grades and assign higher workloads than non-STEM departments. The difference in grades
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TABLE XI

ESTIMATES OF PROFESSOR PREFERENCES

Ideal grade Ideal workload Ideal log enrl

λ (Preference Weight) 2.969 (0.374) 46.068 (3.988) 1.000 —–

Constant 2.595 (0.102) 0.273 (0.035) 4.981 (0.592)

Upper-Level Class 0.417 (0.056) -0.069 (0.035) -1.283 (0.491)

Upper-Level X STEM -0.050 (0.066) 0.076 (0.019)

Grad. Student -0.028 (0.043) 0.007 (0.011)

Lecturer 0.104 (0.045) -0.013 (0.011)

Asst. Prof. -0.060 (0.049) 0.027 (0.013)

Tenured Prof. -0.068 (0.040) 0.002 (0.010)

Female Prof. 0.091 (0.030) 0.002 (0.008)

Female Prof. X STEM -0.040 (0.060) -0.009 (0.016)

Management & Marketing 0.344 (0.086) -0.048 (0.022)

Education & Health 0.297 (0.066) -0.020 (0.017)

Communications 0.128 (0.060) 0.009 (0.016)

Regional Studies 0.051 (0.073) 0.045 (0.020)

Biology 0.004 (0.114) 0.061 (0.027)

Language -0.003 (0.066) 0.035 (0.017)

Engineering -0.003 (0.080) 0.209 (0.023)

Psychology -0.009 (0.099) 0.048 (0.025)

Econ., Fin., Acct. -0.038 (0.096) 0.004 (0.024)

Chemistry & Physics -0.099 (0.090) 0.011 (0.022)

Social Science -0.109 (0.063) 0.013 (0.017)

English -0.177 (0.080) 0.090 (0.022)

Math -0.235 (0.077) 0.071 (0.019)

Note: The weight on ideal log enrollment, λ0, is normalized to 1. The base professor rank category is adjunct instructors
contracted by the course. Lecturers are offered longer-term contracts and are salaried. See Online Appendix Table D.3 for a
specification that includes professor effort. STEM departments are in bold. The baseline department is Agriculture.

between Biology and English (the two extremes) due to demand factors is about 0.47 grade

points. English has the lowest ideal grades among all departments except Math (Table XI)

yet offers grades around the median in equilibrium due to the relatively low demand for

English courses. In contrast, Biology is close to the median on ideal grades yet gives sub-

stantially lower grades due to the high demand for Biology courses.
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TABLE XII

DEMAND ADJUSTMENTS RELATIVE TO THE MEAN

Grades Workload

Biology -0.293 0.052

Psychology -0.258 0.051

Econ., Fin., Acct. -0.213 0.039

Management & Marketing -0.198 0.038

Chemistry & Physics -0.105 0.018

Engineering -0.056 0.026

Math -0.036 0.003

Education & Health -0.017 0.005

Social Science -0.010 -0.009

Agriculture 0.035 -0.005

Communications 0.079 -0.012

Language 0.133 -0.026

Regional Studies 0.161 -0.013

English 0.182 -0.057

Note: Demand adjustments are calculated from the first terms of Equations (32) and (34).

Using the results in Tables XI and XII, we can decompose the gaps in grades and work-

loads between STEM and non-STEM courses into the contributions from student demand

and professor preferences. In particular, we examine the share of the gap in grades and

workloads that is due to differences in i) demand (Table XII), ii) level of course offerings

(Table XI rows 3–4), iii) rank of the instructor (Table XI rows 5–8), iv) female professor

representation (Table XI rows 9–10), and v) departmental effects (Table XI rows 11–23).

The results are presented in Table XIII.

We show in the first column of Table XIII how demand factors vary across STEM and

non-STEM courses. These are calculated by weighting the department demand adjustments

in Table XII by the number of courses in each STEM and non-STEM department. As we

show in the first panel, differences in demand result in STEM grades being 0.15 grade

points lower than non-STEM grades. This represents 38% of the average difference be-

tween STEM and non-STEM course grades. Differences in demand account for a similar

share of the differences in workloads across STEM and non-STEM departments, as seen in

the second panel.
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The results in the next set of columns come from calculating how the components of ideal

grades and workloads given in Table XI vary by department. More upper-division classes

are offered in non-STEM departments. This, coupled with upper-level classes having higher

ideal grades, accounts for 11.5% of the difference between STEM and non-STEM grades.

Despite the substantial heterogeneity in ideal grades across instructor rank, this accounts

for very little of the differences between STEM and non-STEM courses. Differences in

female representation, coupled with women in non-STEM fields having higher ideal grades,

accounts for an additional 4.4%. Department-specific intercepts account for the remaining

difference, representing a slightly higher share than student demand.

The patterns for workloads, shown in the second panel, also highlight the importance of

student demand, which accounts for over 24% of the STEM/non-STEM gap. Upper-level

non-STEM classes have lower ideal workloads. This, coupled with the greater upper-level

courses offerings in non-STEM departments, accounts for 23% of the gap. More important

are department norms, captured by the department-specific intercepts, which account for

over 50% of the gap. Engineering is the primary driver of this last result, as it is an outlier

on the ideal workload (see Table XI).

TABLE XIII

DECOMPOSING STEM/NON-STEM DIFFERENCES IN GRADES AND WORKLOADS

Demand Upper-Level Faculty Female Dept. Total

Adjust Class Rank Faculty Prefs. Effect

STEM grade -0.1084 -0.0326 -0.0079 -0.0123 -0.1129 -0.2832

Non-STEM grade 0.0434 0.0131 0.0031 0.0049 0.0452 0.1134

Diff. 0.1519 0.0457 0.0110 0.0173 0.1582 0.3966

Shares 38.30% 11.53% 2.77% 4.35% 39.88%

STEM workload 0.0222 0.0212 -0.0003 -0.0003 0.0472 0.0911

Non-STEM workload -0.0089 -0.0085 0.0001 0.0001 -0.0189 -0.0365

Diff. -0.0310 -0.0296 0.0004 0.0005 -0.0662 -0.1276

Shares 24.31% 23.21% -0.33% -0.37% 51.85%

Note: The decompositions of STEM/non-STEM differences in grades and workloads (γ) are calculated by averaging across
courses the Ψ estimates of department-category intercepts, instructor rank, upper-level class, and female professor from Table XI
and the demand-side adjustments calculated in Table XII.
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6.5. General equilibrium counterfactuals

With estimates of professor preferences, we can examine how equilibrium grading prac-

tices would change in counterfactual scenarios. We focus on two counterfactual scenarios:

one where the average grade is set to a B in all courses and another where only lower divi-

sion courses are subject to this grading policy. The former mirrors the partial equilibrium

case considered in the last row of Table IX but now allows professors to respond to the

policy by adjusting workloads. Note that all counterfactuals hold the choice of major by

juniors and seniors fixed. They should therefore be interpreted as short-run results, with

larger long-run impacts likely to occur as students adjust their majors.27

The counterfactual results are presented in Table XIV. The first row shows the data. Row

2 shows the partial equilibrium effects of setting average grades in each course to a B but

fixing the γjs at their estimated values. These results are equivalent to those in the last row

of Table IX but now including juniors and seniors. The share of STEM classes increases

for men and women by 8.9 and 11.8 percentage points, respectively. We then show in row 3

what happens when professors are able to partially undo the effects of the policy by chang-

ing their workloads (γjs). Professor responses to the policy lower the increases for men

and women to 7.7 and 10.5 percentage points. However, the effects on STEM enrollment—

especially for women—remain large. Finally, row 4 contains results equivalent to those in

row 3 but where the curve applies only to lower-division courses. Since over 80% (65%) of

STEM (non-STEM) enrollment is in lower-division courses, the effects remain large, with

STEM enrollment dropping by only 1.3 percentage points for women and 0.9 percentage

points for men relative to STEM enrollment under a curve that affects all courses.

7. CONCLUSION

The number of STEM graduates—especially from underrepresented groups—has been

an ongoing concern. At the same time, STEM courses are on average associated with lower

grades and higher study times, both of which may deter enrollment. Using administrative

data from the University of Kentucky, we estimate a model of course choices to understand

27The number of previous courses taken in a department also affects the payoffs of taking courses offered in

that department. Hence we may expect larger long run responses from our counterfactual policies from changes

in sophomore course histories as well.
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TABLE XIV

COUNTERFACTUALS WITH ENDOGENOUS PROFESSOR RESPONSES

Class Size STEM Enroll. Share Weighted Avg. Grade

STEM Non-STEM Female Male STEM Non-STEM

(1) Baseline 82.6 45.0 34.6% 49.5% 2.756 3.207

(2) Grade around a B (PE) 103.1 36.9 46.4% 58.4% 3.000 3.000

(3) Grade around a B (GE) 100.6 37.9 45.1% 57.2% 3.000 3.000

(4) Grade around a B (GE, lower div) 98.4 38.8 43.8% 56.3% 2.996 3.096

Note: “Weighted” means weighting by class enrollment. “PE” indicates partial equilibrium and is equivalent to the last row
in Table IX but for all students. “GE” indicates general equilibrium and allows professors to change their grading policies. While
in Table IX we show the STEM shares for freshmen and sophomores, the results here are for all students. See Online Appendix
Table D.4 for the changes to γ and counterfactuals evaluated when professors directly influence enrollment.

what influences STEM enrollment and how those influences differentially affect men and

women. While we show that a variety of factors influence how students choose courses,

we find that differences in grading policies play an important role in suppressing STEM

demand and that this is particularly true for female students.

One issue with policies aimed at reducing grading differences is that instructors may re-

spond by changing other aspects of their courses. To capture these responses and to under-

stand the source of grading differences more generally, our analysis treats grading policies

as equilibrium objects chosen by instructors in competition with one another. Taking into

account these equilibrium responses, we show that a policy of curving all courses around a

B would increase male STEM participation by 7.7 percentage points (15.7% increase) but

would increase female STEM participation by 10.5 percentage points (30.3% increase).

Changing grading practices to mitigate large departmental differences in average grades

then results in substantial increases in STEM enrollment and a shrinking of the gender gap.

There are at least two reasons why our estimates likely understate the long-run effects

of equalizing average grades across classes. First, our counterfactual holds the choice of

major fixed for juniors and seniors; later cohorts will also be able to respond to the policy

by shifting into STEM majors. Second, the shifting composition of STEM classes toward

more women may have a positive feedback effect by changing the climate of the classes.
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Weighed against these positive effects, increases in the supply of STEM majors may result

in lower wage premiums for STEM majors, partially undoing the effects of the policy.
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APPENDIX A: APPENDIX – FOR INCLUSION IN TEXT

We discuss some assumptions made to estimate the demand side and provide validity

tests by comparing the simulated vs. actual course choices. To simulate course choices,

1. we simulate preference shocks εij and compute choice utilities Uij for all student class

combinations,

2. beginning with the student with the earliest timestamp, we take the ni courses with

the highest choice utility,

3. we repeat step 2 for each student based on the ordering of timestamps and removing

courses from students’ subsequent choice sets once the capacity constraint is reached.

A.1. Knowledge of the grading process

We assume that students know the grading policies for every class (γj and βj). In reality,

they may be uncertain about the true parameters. The model can incorporate limited forms

of uncertainty. For example, if a student were equally overoptimistic in all courses, then the
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overoptimism would cancel out in the choice problem. If some students are better informed

about policies in particular classes than others, this may have implications for what the

model predicts vs. what is in the data. For instance, upperclassmen may sort better than

lowerclassmen, and women may be more informed about classes with more women.

If upperclassmen are better informed about grading policies, we would over- (under-)

predict how well lower- (upper-) classmen sort into classes matching their abilities. To test

this, we simulate course choices using model estimates and calculate expected grades us-

ing the simulated and actual choices. If expected grades in the simulated courses were on

average higher than those in actual courses chosen by lowerclassmen, this would imply up-

perclassmen are better informed. However, the difference between the actual and simulated

expected grades for freshmen, sophomores, and upperclassmen are all less than 0.01.28

As a central finding of our model is that women value grades more than men, women may

have better information in courses where women comprise a greater share of enrollment.

We may expect women to better match their abilities for these classes than what the model

predicts. To test this, we calculate average expected grades for women at the class level

based on their actual and simulated choices. We then difference at the class level women’s

actual and model-simulated grades and regress this measure on the share of women in the

class. The coefficient on share women is small and negative (-0.019). If women were better

informed about grading processes in classes that more women take, we would expect this

relationship to be positive.

A.2. Balancing effort across classes

Key to the tractability of our model is the assumption that the utility from a course does

not depend on the other chosen courses. This rules out students balancing workloads (γ)

with a mix of easy and hard classes. To test this assumption, we simulate the model to

predict the share of classes that each student takes above the median γ class and calculate

the SD across students. If the model overpredicts this SD, it would be evidence of balancing

of workloads: the model would be overpredicting the number of students who take all hard

or all easy classes. The model-predicted SD (0.308) is actually slightly lower than SD in

28The actual minus simulated differences for freshmen, sophomores, and upperclassmen are 0.003, -0.001, and

-0.009, respectively.
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the data (0.320). We also predict the share of classes that each student takes in STEM, with

STEM serving as a proxy for classes that require more work. As in the previous test, we

find no evidence that the model misses students balancing STEM/non-STEM. For the share

of STEM, the model-predicted SD is 0.328 versus 0.343 in the data.

A.3. Flexibility of gender effects

Although our model includes a variety of mechanisms to explain the gender gap in

STEM, there may be features not captured by the model for key STEM courses that de-

ter women from enrolling. To investigate this possibility, we simulate course choices and

examine how the share of women varies across different subsets of simulated and actual

courses. We find that across a range of specifications, the simulated female share is within

one percentage point of the actual share.29 This suggests that our model is capturing how

women and men are distributed across courses in different departments.

Finally, women may perform better in classes taught by women, a feature not allowed

for in our model. We estimate a version of our model which includes a female student time

female professor term in grade production. While the coefficient is positive, it is also small

at 0.03. Allowing for this interaction has little effect on our counterfactuals, though it does

slightly reduce the estimated preference that females have for female instructors because

part of this effect is now transmitted through grades.

29We compare simulated vs. actual enrollment in lower-division classes, large classes (≥ 100 students), STEM

classes minus biology, underclassmen sample only, and all combinations.
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APPENDIX B: DATA AND RESULTS APPENDIX – ONLINE

In this section, we describe how we processed the data and show additional results for

the various estimation stages. The appendix covers:

1. our method of aggregating the departments into our fourteen categories,

2. our sample selection procedures for the various estimation stages,

3. construction of student choice sets,

4. descriptives on how course grading is related to other outcomes,

5. additional parameters from the motivating regressions on grades and hours studied

(Tables III and IV)

6. additional structural parameters (expanding on Table VI),

7. the share of courses taken in each department by unobserved type, and

8. additional parameters from the regressions of average grades and workload on enroll-

ment and instructor characteristics (expanding on Table X).

B.1. Aggregation of departments

In Table B.1 we show the aggregation of departments into our fourteen categories. We

partitioned departments into these categories by first grouping departments by their school

organization. UK consists of the Colleges of Agriculture, Arts and Sciences, Business and

Economics, Communication and Information, Design, Education, Engineering, and Fine

Arts. Within the colleges, departments were further grouped based partly on shared core

requirements and cross-listed coursework. Finally, some departments were manually ex-

tracted (e.g., Psychology has its own category) or inserted into a category (e.g., all fine arts

departments were subsumed under Communications), mostly due to department size.

B.2. Sample selection

We now describe our sample selection rules for the various stages of estimation. We

restrict courses to those that have enrollment of at least 15 undergraduates. This cuts the

2,026 classes observed in the population to 1,084. The total number of individual–course

observations resulting from this cut is 58,081 with 16,190 unique students. We then remove

specialized classes that would result from taking a second course in a sequence, as the

decision process is very different for these courses. The restriction we impose is that at
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TABLE B.1

AGGREGATION OF DEPARTMENTS

Category Departments

Agriculture Ag. Biotechnology, Ag. Economics, Ag. Ed, Ag. General, Animal & Food Sciences,

Biosystems & Ag. Engineering, Environmental Studies, Forestry, Landscape Architec-

ture, Plant Pathology, Plant & Soil Sciences, Sustainable Ag.

Regional Studies Appalachian Studies, Family Sciences, Gender & Women’s Studies, Hispanic Studies,

Latin American Studies

Communications Arts Admin, Comm., Comm. & Info Studies, Fine Arts – Music, Theatre Arts, Schl of

Journalism & Telecomm, Schl of Art & Visual Studies, Schl of Interior Design

Education & Health Allied Health Ed & Research, Comm Disorders, Community & Leader Dev, Dept of

Gerontology, Dietetics & Nutrition, Early Child, Spec Ed, Rehab, Ed, Ed Curriculum &

Instr, Ed Policy Studies & Eval, Ed, Schl & Counsel Psych, Health Sci Ed, Kinesiology –

Health Promotion, Lib & Info Sci, Nursing, Public Health, STEM Ed, Social Work

Engineering Chem. & Materials Engineering, Civil Engineering, Com. Sci., Electrical & Com. Engi-

neering, Engineering, Mech. Engineering, Mining Engineering, Schl of Architecture

Languages Linguistics, Modern & Classical Languages, Philosophy

English English

Biology Biology, Entomology

Mathematics Mathematics, Statistics

Chem & Physics Chemistry, Earth & Environmental Sciences, Physics & Astronomy

Psychology Psychology

Social Sciences Anthropology, Geography, History, Pol. Sci., Schl of Human Env. Sci., Sociology

Mgmt. & Mkting Aerospace Studies, Department of Mgmt., Dept of Mkt & Supply Chain, Merchand, Ap-

parel & Textiles, Mil Sci & Leadership

Econ., Fin., Acct. Accountancy, Economics, Dept of Finance & Quantitative Methods

Note: STEM departments are in bold.
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least 99 students had the course in their choice set and that less than 50% of those who

had the course in their choice set took the course. Imposing this restriction results in 1,003

courses chosen by 16,079 unique students. This represents our baseline data for the choices

of courses and grades.

There is an additional restriction imposed in the grade estimation. Namely, there are 18

courses where all students received the exact same grade, accounting for 518 individual–

course observations or less than 1% of enrollments in the baseline data. The courses are

still part of our course choice problem but are not used in the estimation of grades. Instead,

the expected grades for students in these courses is set to what it is in the data, 4.0, with γ

for these courses set to 0.

Estimates of the grade parameters show an additional 7 courses where the estimate of γ

is less than 0.01 (estimates of γ are constrained to be greater than zero). For these courses,

the factors yielding high grades are fundamentally different from those of other courses in

the same department. These courses account for 224 individual–course observations or less

than 0.5% of enrollments in the baseline data. For the purposes of estimating study times

(where one of the inputs is ln(γ)) and the professor estimation (where γ is a choice), we do

not use these courses. For our counterfactuals, we fix the grading policies of these courses

to what we observe in the data.

For the study effort analysis, observations are at the course–cohort level with an initial

sample of 2,395 course–cohort evaluations. In principle, there could have been 4,012 ob-

servations if there were a student from each cohort in the class who also filled out a course

evaluation. The 2,395 is then the result of some courses either not having students in a

particular cohort or having students in a particular cohort where none filled out the course

evaluation.

We implement a number of additional restrictions on the sample for the study effort anal-

ysis. The cohort of the student in the evaluation data is based on the students’ self reports,

while in the administrative data, it is based on our calculations given the academic records

of the student. We define the response rate for the course–cohort as the number of course–

cohort observations in the evaluation data divided by course–cohort enrollment in the reg-

istrar data. Because we want the average characteristics for a particular course–cohort from

the registrar data to match the characteristics of those who filled out the evaluations, we re-

strict our analysis to course–cohorts where the response rate on the evaluations is between
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70% and 101%. Imposing this restriction reduces our number of course-cohort observa-

tions to 866. Further removing courses with γjs less that 0.01 results in a final sample of

850 course-cohort observations.

For the professor estimation, we do not use courses where γ is less than 0.01. We also

do not use courses that hit their capacity constraint, as the professor maximization problem

is different when the capacity constraint binds. This reduces our number of courses to 951.

B.3. Construction of students’ choice sets

We account for administrative and academic rules and students’ academic histories to

construct accurate class choice sets for students:

1. Academic history: We drop classes that the student completed over the prior seven

semesters (fall 2008–spring 2011) unless he or she is in the class in fall 2012.

2. Class prerequisites: We compile lists of prerequisite classes (from the UK Undergrad-

uate Bulletin) for every course. We use the student’s academic history and close the

choice set unless all prerequisites are met. If a student is in a class without having

completed all requirements, we assume an exemption was granted by the instructor.

3. AP exams: Students can bypass introductory courses in some subjects (from the UK

Undergraduate Bulletin) with a score of 3 or above on the corresponding AP exam.

4. Room capacity: We have timestamps for all classes that students registered for. Using

data on room capacity, we find the timestamp of when/if the class reaches capacity.

We compare this time stamp to the first observed time stamp for the student. If the

student’s first timestamp is after the class’s timestamp, the class is not in the choice

set.

Table B.2 shows the average share of STEM and non-STEM classes available by co-

hort after the imposition of each restriction. Restriction 1 implies that for seniors, almost

10% (5%) of courses in STEM (non-STEM) are closed, which is reflective of more de-

mand for STEM courses. Restriction 2 substantively restricts the choice set, especially for

STEM. Overall, almost 40% (20%) of STEM (non-STEM) courses are closed due to stu-

dents either not meeting prerequisites or having already completed the course. The changes

to the choice set from AP exams (Restriction 3) or capacity constraints (Restriction 4) are

marginal.
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TABLE B.2

SHARE OF COURSES AVAILABLE BY COHORT/STEM CLASSIFICATION UNDER CHOICE SET RESTRICTIONS

Restriction Freshmen Sophomores Juniors Seniors Overall

STEM departments

(1) 1.000 0.953 0.921 0.906 0.946

(2) 0.550 0.541 0.552 0.555 0.550

(3) 0.562 0.547 0.556 0.558 0.556

(4) 0.556 0.546 0.555 0.557 0.554

non-STEM departments

(1) 1.000 0.974 0.962 0.952 0.972

(2) 0.802 0.785 0.790 0.789 0.792

(3) 0.804 0.787 0.791 0.790 0.793

(4) 0.800 0.786 0.790 0.789 0.792

Note: (1) removes courses already taken. (2) removes courses where prerequisites are not met based on transcripts. (3) adds
courses for which the prerequisites were met by AP exams. (4) removes courses where capacity constraints are met and adds
courses where the student enrolled in the course despite not meeting the prerequisites.

B.4. Characteristics of classes with above and below median grades

Table B.3 compares classes with above median average grades to classes with below

median average grades. Higher grades are associated with being a non-tenure track instruc-

tor as well as with being female. The latter could be due in part to STEM classes giving

lower grades. Courses with high grades are also somewhat more likely to receive positive

student evaluations. In our structural model, we handle the fact that higher grades may

be correlated with other factors that drive student demand by directly including many of

these variables in our estimating equations, modeling the professor behavior explicitly, and

including course-level fixed effects to account for other student non-grade preferences.

B.5. Additional parameters from the motivating regressions

In Table B.4 we show estimates of the department indicator variables from Tables III and

IV. The grade regression results show that the coefficients are lowest for STEM classes plus

English and Psychology. For example, in the first column with the entire sample, there is a

gap of over 0.8 grade points between the highest-grading department (Education & Health)
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TABLE B.3

CHARACTERISTICS OF HIGH VS. LOW GRADE CLASSES

High Grades Low Grades

Faculty Rank Full / Assoc. / Assist. / Lecturer 0.13 / 0.16 / 0.13 / 0.58 0.20 / 0.20 / 0.15 / 0.45

Female Professor 0.48 0.34

Class Eval


Presents effectively 3.44 (0.40) 3.23 (0.46)

Stimulates interest 3.37 (0.39) 3.11 (0.43)

Stimulates further reading 3.25 (0.40) 2.97 (0.50)

STEM Dept. 0.20 0.47

Note: Fall 2012 University of Kentucky courses with enrollments of 15 or more students; Classes divided at the median grade:
3.16. Standard deviations in parentheses. Class evaluation questions use a 5-point Likert scale.

and lowest-grading department (Chemistry & Physics). The second set of columns shows

that the Engineering and Chemistry & Physics departments have the highest coefficients

for hours of study.

B.6. Additional structural parameters and standard errors

In Table B.5 we show the full set of student preference parameters (see Table VI for a

subset of the parameters). The parameters not discussed in the body of text also follow the

expected patterns. The more courses opened up by a class (ln Open Class), the more ap-

pealing the class is for sophomores and even more so for freshmen. For junior and seniors,

courses that fill requirements for their declared majors are associated with higher utilities,

as are upper-level classes in general.
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B.7. Share of courses taken in each department by unobserved type

In Table B.6 we show how types are distributed across departments. The order of the

rows is given by the ranking on the ratio of the type 1 (high-ability) share to the type 3

(low-ability) share, implying positive selection into courses listed in the first few rows.

TABLE B.6

SHARE OF COURSES TAKEN IN EACH DEPARTMENT BY UNOBSERVED TYPE

Type 1 Type 2 Type 3

(High Ability) (Medium Ability) (Low Ability)

Econ., Fin., Acct. 0.0944 0.0614 0.0415

Management & Marketing 0.0477 0.0278 0.0230

Regional Studies 0.0383 0.0319 0.0279

Biology 0.0656 0.0540 0.0478

Engineering 0.0643 0.0543 0.0471

Chem. & Physics 0.0985 0.0916 0.0803

Languages 0.0691 0.0622 0.0669

Math 0.1165 0.1291 0.1137

English 0.0237 0.0222 0.0236

Psychology 0.0502 0.0496 0.0530

Social Sciences 0.1092 0.1277 0.1360

Communications 0.1211 0.1547 0.1612

Education & Health 0.0889 0.0573 0.1269

Agriculture 0.0126 0.0763 0.0511

Note: The shares of each type are 64.1%, 29.5%, and 6.4% respectively. STEM departments are in bold. The order is given by
the ranking on the ratio of the type 1 (high-ability) share to the type 3 (low-ability) share.

B.8. Additional regression parameters relating course demand to average grades and

workloads

In Table B.7 we show the full set of professor parameters (see Table X for a subset of the

parameters).

APPENDIX C: METHODS APPENDIX – ONLINE

This appendix provides additional details regarding our empirical methods:
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TABLE B.7

COMPLETE TABLE – RELATING COURSE DEMAND TO GRADES AND WORKLOADS

Average Grades γ

OLS IV OLS IV

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Constant 3.418 (0.091) 4.375 (0.097) 0.124 (0.021) -0.109 (0.022)

Ln Enroll -0.066 (0.020) -0.352 (0.023) 0.007 (0.004) 0.077 (0.005)

Grad. Student -0.057 (0.044) -0.045 (0.042) 0.006 (0.010) 0.003 (0.010)

Lecturer -0.016 (0.043) 0.111 (0.041) 0.015 (0.010) -0.016 (0.009)

Asst. Prof. -0.136 (0.049) -0.079 (0.047) 0.040 (0.011) 0.027 (0.011)

Tenured Prof. -0.091 (0.040) -0.030 (0.039) 0.018 (0.009) 0.003 (0.009)

Female Prof. 0.102 (0.030) 0.123 (0.029) 0.008 (0.007) 0.003 (0.007)

Female Prof. X STEM -0.023 (0.062) -0.065 (0.059) -0.020 (0.014) -0.010 (0.013)

Upper-Level Class 0.084 (0.034) -0.016 (0.032) 0.009 (0.008) 0.033 (0.007)

Upper-Level Class X STEM 0.088 (0.065) -0.013 (0.062) 0.035 (0.015) 0.060 (0.014)

Regional Studies 0.051 (0.075) 0.028 (0.071) 0.061 (0.017) 0.066 (0.016)

Communications 0.086 (0.062) 0.110 (0.059) 0.020 (0.014) 0.014 (0.013)

Education & Health 0.225 (0.068) 0.275 (0.064) -0.009 (0.015) -0.022 (0.015)

Engineering -0.127 (0.079) -0.011 (0.075) 0.267 (0.018) 0.238 (0.017)

Language -0.024 (0.068) -0.031 (0.065) 0.036 (0.015) 0.037 (0.015)

English -0.123 (0.082) -0.171 (0.078) 0.053 (0.019) 0.065 (0.018)

Biology -0.276 (0.105) 0.109 (0.102) 0.146 (0.024) 0.052 (0.023)

Math -0.396 (0.073) -0.209 (0.070) 0.120 (0.016) 0.074 (0.016)

Chem. & Physics -0.287 (0.085) -0.037 (0.082) 0.071 (0.019) 0.011 (0.019)

Psychology -0.145 (0.098) 0.069 (0.094) 0.095 (0.022) 0.043 (0.021)

Social Science -0.180 (0.064) -0.111 (0.061) 0.020 (0.015) 0.003 (0.014)

Mgmt. & Mkting 0.213 (0.087) 0.339 (0.083) -0.022 (0.020) -0.052 (0.019)

Econ., Fin., Acct. -0.278 (0.091) -0.018 (0.088) 0.070 (0.021) 0.007 (0.020)

Note: The analysis is at the course level. The estimates are from 951 courses where γj > 0 and the course capacity constraint
does not bind.

1. our modified EM algorithm for recovering the parameters of the grade process and

conditional probabilities of a student being each unobserved type,

2. the fixed point algorithm we use when estimating the structural utility parameters of

the students,
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3. and our method of solving for counterfactual choice probabilities in the presence of

capacity constraints.

C.1. Modified EM algorithm

We first describe our estimation procedure in the presence of unobserved heterogeneity.

First, consider the parameters of the grade process and the course choices. With unobserved

heterogeneity, we now need to make an assumption on the distribution of ηij , the residual

in the grade equation. We assume that the error is distributed N(0, ση). In theory, one could

use the structural choice likelihood in Equation (23) to capture the likelihood of making

observed course choices; however, maximizing Equation (23) at every iteration of the EM

algorithm is computationally infeasible. Instead, we construct an alternative course choice

likelihood function based on a flexible analog of the structural model. For the reduced-form

choice problem, we abstract from the bundling of courses, treating each course choice as

its own decision problem. To facilitate computation, at points, we break down the problem

into the probability of taking a course from department k and then the probability choosing

the specific course j:

pijk = pikpij|k

We specify the reduced-form payoff of taking class j as:

vij = (φ∗1 +wiφ
∗
2)gij(γ

N
j , θ

N
j(k),Xi) + δ∗0j +wiδ

∗
1j +Z1iδ

∗
2k(j) +Z2ijδ

∗
3 + ε∗ij (35)

where gij (·) represents the expected grade of student i in course j and ε∗ij is assumed to

follow a nested logit structure with nesting at the department level characterized by ν. The

full set of choice parameters is then ϕ = {φ∗, δ∗, ν}. Note that although we will not be

interpreting the estimates of ϕ, the structure of utility in Equation (35) is very similar to the

structure in Equation (9).30 This ensures that the conditional type probabilities from this

specification are appropriate for classifying students for the estimation of Equation (9).

30The structure of utility in Equation (35) differs from the structure in Equation (9) in three ways: First, Equa-

tion (35) does not subtract γj from expected grades. Second, Equation (35) assumes nested logit preference

shocks, while Equation (9) assumes independent Type 1 extreme value errors. Finally, Equation (35) assumes

that contemporaneous choices are independent, while Equation (9) models students choosing bundles of courses

simultaneously.
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Let ϕ represent the parameters of this flexible choice process. The integrated log likeli-

hood is then:

∑
i

ln

(
S∑
s=1

πsLigs (θ, γ)Lics (ϕ)

)
(36)

where Ligs (θ, γ) and Lics (ϕ) are the grade and course choice likelihoods, respectively,

conditional on i being of type s.

We iterate on the following steps until convergence, where the mth step follows:

1. Given the parameters of the grade equation and choice process at step m − 1,

{θ(m−1), γ(m−1)} and {ϕ(m−1)} and the estimate of π(m−1), calculate the conditional

probability of i being of type s using Bayes’s rule:

q
(m)
is =

π
(m)
s Ligs

(
θ(m−1), γ(m−1)

)
Lics

(
ϕ(m−1)

)
∑
s′

π
(m)
s′ Ligs′

(
θ(m−1), γ(m−1)

)
Lics′

(
ϕ(m−1)

) (37)

2. Update π(m)
s using

(∑N
i=1 q

(m)
is

)
/N .

3. Using the q(m)
is s as weights, obtain {θ(m), γ(m), ϕ(m)} by maximizing:

∑
i

∑
s

q
(m)
is (ln [Ligs (θ, γ)] + ln [Lics (ϕ)]) (38)

To facilitate computation, the maximization step (step 3) is conducted in stages. Denote

as f(gij , γ
N
j , θ

N
k(j)) the likelihood of observing gij given the parameters γNj and θNk(j). De-

note as ϕ(!A) ϕ absent the Ath component. Finally, denote as dij an indicator for whether

i chose course j, as dijk an indicator for whether i chose course j in department k, and as

dik an indicator for whether i’s choice was in department k. Maximization then proceeds

as follows:

1. For each department k ∈K , taking ϕ as given, choose γNj and θNk to maximize:

∑
i

∑
j∈k

dijk

(
ln[f(gij , γ

N
j , θ

N
k )] + ln[pij|k(γ

N
j , θ

N
k , ϕ)]

)
(39)
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2. Taking γNj , θNk , and ϕ(!φ∗, !δ∗3) as given, choose φ∗ and δ∗3 to maximize:∑
i

∑
j

dij ln
[
pijk

(
γNj , θ

N
k , ϕ(!φ∗, !δ∗3), φ∗, δ∗3

)]
(40)

3. For each department k ∈K , taking γNj , θNk , and ϕ(!δ∗0) as given, choose δ∗0j (relative

to one course in each department) to maximize:∑
i

∑
j∈k

dijk ln
[
pij|k

(
γNj , θ

N
k , ϕ(!δ∗0j), δ

∗
0j

)]
(41)

4. Taking γNj , θNk , and ϕ(!δ∗1, !δ
∗
2, !ν) as given, choose δ∗1j(k), δ

∗
2j(k), and ν to maximize:31

∑
i

∑
k

dik ln
[
pik

(
γNj , θ

N
k , ϕ(!δ∗1, !δ

∗
2, !ν), δ∗1, δ

∗
2, ν
)]

(42)

The advantage of this sequential strategy is that it limits the number of parameters being

estimated at each stage and limits the number of times that the 1,003 choice probabilities are

calculated for each individual. Further, when the 1,003 choice probabilities are calculated

within the maximization routine at step 2, the number of parameters over which we are

maximizing is limited.

Once the algorithm has converged, we have consistent estimates of {θ, γ,ϕ} and the

conditional probabilities of a student being of each type. We can use the estimates of qis as

weights to form the average type probabilities of students of year in school l in class j to

then estimate the parameters of the study process in (20). Finally, we use the estimates of

qis as weights in estimating the structural choice parameters using (23).

C.2. Fixed-point algorithm

We now describe our fixed-point algorithm used in each calculation of the student choice

likelihood. Let Θ̃ = {δ1k(j), δ2k(j), δ3, φ0, φ1} represent choice parameters other than δ0j ,

let Sdj represent the share of students choosing course j in the data, and let Sj
(
δ0j , Θ̃

)
represent the predicted share of students choosing course j as a function of δ0j and other

choice parameters. Given a new guess of Θ̃, we use the δ0js from the previous guess δ00j(Θ̃)

31At this step, we also recover the δ∗0js for the normalized courses in each department from step 3.
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and calculate Sj
(
δ00j , Θ̃

)
. The mth iteration of the fixed-point problem updates δm0j using:

δm0j = δm−10j + ln
[
Sdj

]
− ln

[
Sj

(
δm−1, Θ̃

)]
(43)

Given the δm0j , we update Sj
(
δm0j , Θ̃

)
. These steps are repeated until the predicted and

actual enrollment shares are arbitrarily close.

C.3. Counterfactuals in the presence of capacity constraints

Embedded within each counterfactual are each student’s conditional choice probabilities.

To ensure that capacity constraints are not exceeded, we work backward based on the reg-

istration ordering given by the timestamps (see Section B.3). We proceed in the following

manner for each student n, where n refers to the ordering based on the student’s timestamp:

1. Calculate the choice probabilities for student n over the courses where the student has

met the prerequisites and where the course is not already filled.

2. If adding the choice probabilities to the probabilities of the previous n− 1 students

does not cause any of the classes to exceed the course capacity, proceed to the next

student.

3. If one or more of the courses exceeds capacity in step 2, identify the class where

adding n’s probability causes the capacity constraint to be exceeded by the greatest

amount. Label this excess capacity c and the choice probability p. Note that c < p, as

the course previously had open space.

4. Assign the probability that the course identified in step 3 is in n’s choice set as 1− c
p .

Take the choice probabilities when this course is in the choice set, multiply them by

1− c
p , and add them to the number of enrollees in each course. This ensures that the

identified course will be exactly filled. Repeat step 1 for student n, taking into account

that all probabilities from the new choice set will be multiplied by c
p and where the

identified course is no longer in n’s choice set.

The algorithm ensures that any capacity-constrained courses are exactly filled, with filled

courses no longer available to individuals with later timestamps.
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APPENDIX D: EXTENDING THE SUPPLY-SIDE MODEL TO INCLUDE PROFESSOR

EFFORT – ONLINE

In this section, we extend our model of professor choices to include efforts exerted to

affect enrollment directly. In the section, we

1. show how effort affects the course payoffs,

2. show how professor effort is measured,

3. show how the extension affects the modeling and estimation of the professor’s objec-

tive function,

4. present estimates of the parameters of the professor’s objective function and the equi-

librium counterfactuals with the extended model, and

We extend our model to allow professors to directly influence demand for courses by ex-

erting effort, in addition to setting grading parameters. We decompose the course fixed

effect in the student’s utility function, δ0j , into intrinsic demand, δ∗0j , and the effort of the

professor, τj :

δ0j = ρτj + δ∗0j (44)

where ρ measures how professor effort translates into course utility. Two major compli-

cations arise in extending the model. First, clean measures of professor effort are difficult

to obtain from administrative data. We use student responses from the evaluation data and

purge potentially contaminating endogenous effects to arrive at a viable measure. Second,

we do not have a way to recover ρ. As a result, we estimate the model under different

assumed values of ρ.

D.1. Measuring Professor Effort

Outside of a time-use survey or rigidly prescribed schedules (for example, unionized

manufacturing jobs), it is often difficult to gather data on worker effort. For professors,

whose time could have multiple uses (for example, data analysis or writing an article/book

could yield benefits for both research and teaching), even direct measures of inputs be-

come problematic. Instead, we use information about students’ receptivity to the profes-

sor’s teaching to capture a measure of the professor’s effort, τ . Of the twenty questions in

the evaluations, we focus on three with students answering on a five-point Likert scale:
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TABLE D.1

CORRELATION AMONG CLASS EVALUATION AND GRADES THAT STUDENTS EXPECT TO RECEIVE

Expected Grade Q09 Q13 Q19 (Q09+Q13+Q19)/3

Expected Grade 1.0000

Q09 0.2132 1.0000

Q13 0.2392 0.7364 1.0000

Q19 0.2192 0.5878 0.7387 1.0000

(Q09+Q13+Q19)/3 0.2518 0.8575 0.9291 0.8818 1.0000

Note: Expected Grades are grades that students expect to receive (as indicated on class evaluations). Questions receive re-
sponses on the evaluation on a 5-point Likert scale and are worded as follows: Did the instructor (1) present the material effectively
– Q09, (2) stimulate interest in the subject – Q13, and (3) stimulate you to read further beyond the class – Q19?

• Q09: Did the professor present class materials effectively?

• Q13: Did the professor stimulate your interest in the subject?

• Q19: Did the professor stimulate you to read further in the subject beyond the class?

We average these three measures to create a student i’s perception of professor effort in

course j, τ (1)ij .

There are at least two issues with using this average as a measure of effort. First, as shown

in Table D.1, professors who give high grades may receive better evaluations because of

the high grades rather than because of the effort exerted by the professor.32

We are able to purge the effort measure of grade effects because the evaluation data

contain the expected grade of each student filling out the evaluation. Using evaluation data

across multiple semesters (fall 2011 to spring 2013), we regress τ (1)ij on a course fixed

effect and dummy variables for each expected grade. The course fixed effect, τ (2)j , gives

us a measure of effort purged of the effect of offering high grades. The results from this

regression are given in the top half of Appendix Table D.2 and show that higher expected

grades are associated with better evaluations.

The second issue is that, conditional on the same amount of effort, some instructors may

be better in the classroom than others. Since we are interested in discretionary effort rather

than fixed instructor ability, we purge our effort measure of instructor effects, using multi-

32See Insler et al. (2021), Nelson and Lynch (1984), and Zangenehzadeh (1988), who also find this positive

relationship.
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TABLE D.2

PROFESSOR EFFORT RESIDUALIZATION & REGRESSION OF EFFORT MEASURE ON LOG ENROLLMENT

Coef. Std. Err.

Expected Grade:

A 0.9519 (0.0358)

B 0.7709 (0.0358)

C 0.5336 (0.0361)

D 0.2933 (0.0370)

log(class size) -0.0901 (0.0082)

Note: The dependent variable in the top half is the average response to questions 9, 11, and 13 from the evaluation data.
Regressors include class times semester fixed effects. The dependent variable in the bottom half is the average response to the
three evaluation question minus the grade effects estimated in the top half of the table. Regressors include professor and semester
fixed effects. Sample size for the top panel is 150,303 and 4,075 for the bottom panel. Both use evaluation data from Fall 2011 to
Spring 2013.

ple semesters of the evaluation data. To do so, we collapse the multi-semester data to the

class-year-semester level and regress τ (2)j on an instructor fixed effect (taking advantage of

the panel nature of the data) and log enrollment. The regression results in the bottom half

of Appendix Table D.2 show that the coefficient on log enrollment is large and negative,

implying that perceived quality of the class is lower when enrollment is high given the same

instructor. We then subtract the instructor fixed effect but leave in the effect of log enroll-

ment: effort should be correlated with log enrollment if it is responding to characteristics of

the class. We then standardize this variable to have mean zero and standard deviation one.

It is this standardized variable that we use for τj .

For estimation of the professor model with professor effort, we impose additional restric-

tions on the sample. Here, we need professors to have at least two measures of effort across

fall 2011 to spring 2013, in addition to having one of those measures for our semester of

analysis, fall 2012. This reduces our sample to 748 courses.

D.2. Model Extension and Estimation

Professors choose their effort level, τj , in addition to grading policy parameters βj and

γj . The professor has an ideal effort level e3j , which depends on his or her observed and un-

observed characteristics. Then, our equilibrium objects, expected grades, probability of stu-
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dent i enrolling in a class, and log enrollments, are now defined as Gj(β, γ, τ), Pij(β, γ, τ),

and ln [Ej(β, γ, τ)], respectively. The professor’s objective function now has an extra term

to maximize:

Vj(β, γ, τ) =− (ln [Ej(β, γ, τ)]− e0j)2 − λ1
(
Gj(β, γ, τ)− e1j

)2
−λ2(γj − e2j)2 − λ3(τj − e3j)2 (45)

where e3j = W3jΨ3 + ε3j . Solving for ideal effort proceeds similarly to the procedure in

the main model. There is an extra first-order condition:

0 =− (ln [Ej(β, γ, τ)]− e0j)
∂ lnEj
∂τj

− λ1
(
Gj(β, γ, τ)− e1j

) ∂Gj
∂τj
− λ3(τj − e3j) (46)

In recovering Ψ0, Ψ2, and λ2, we create our instruments with β0, γ0, and τ0.

To estimate λ3 and Ψ3, we take Ψ0 as given and eliminate λ1 using using Equations (29)

and (46) to solve for τj :

τj = (1/λ3)Cj (ln [Ej ]−Ψ0) + Ψ3 + ε3j (47)

where Cj is given by:

Cj =

[
∂ ln [Ej ]

∂βj

∂Gj
∂τj

/
∂Gj
∂βj

]
−
∂ ln [Ej ]

∂τj
(48)

We then instrument for Cj (ln [Ej ]−Ψ0) by evaluating Cj and ln [Ej ] at the common grad-

ing and effort policies, β0, γ0, and τ0. Recovery of Ψ1 and λ1 proceeds as before.

D.3. Professor preference estimates and equilibrium counterfactuals under different

values of ρ

We estimate the professor preference parameters in this extended model ρ = 0.05 and

ρ = 0.2. Table D.3 shows the estimates of professor preferences (shown in Table XI) at

alternate values of ρ. Table D.4 shows the general equilibrium counterfactual results (shown

in Table XIV) at alternative values of ρ. Allowing for professor endogenous effort mutes

the effects of the grading policy but does so only slightly. For example, at ρ= 0.2 average

class for STEM courses is 99.5, or about one student less than when professors could not

adjust their effort.
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TABLE D.3

ESTIMATES OF PROFESSOR PREFERENCES AT ALTERNATIVE ρ VALUES

ρ= 0.2 ρ= 0.05 ρ= 0.2 ρ= 0.05

Ideal grade Ideal workload

λ 2.933 (0.448) 2.898 (0.434) 48.167 (5.025) 46.874 (4.675)

Constant 2.627 (0.120) 2.619 (0.119) 0.275 (0.038) 0.277 (0.038)

Upper-Level Class 0.436 (0.065) 0.440 (0.065) -0.074 (0.038) -0.075 (0.038)

Upper-Level X STEM -0.050 (0.069) -0.052 (0.069) 0.073 (0.021) 0.074 (0.021)

Grad. Student -0.009 (0.050) -0.008 (0.051) 0.008 (0.014) 0.008 (0.014)

Lecturer 0.112 (0.052) 0.114 (0.053) -0.012 (0.013) -0.013 (0.013)

Asst. Prof. -0.106 (0.054) -0.105 (0.054) 0.035 (0.015) 0.035 (0.015)

Tenured Prof. -0.070 (0.047) -0.069 (0.047) 0.007 (0.012) 0.007 (0.012)

Female Prof. 0.102 (0.032) 0.102 (0.033) 0.002 (0.009) 0.002 (0.009)

Female Prof. X STEM -0.056 (0.065) -0.056 (0.065) -0.002 (0.018) -0.002 (0.018)

Regional Studies -0.015 (0.074) -0.015 (0.074) 0.050 (0.021) 0.050 (0.021)

Communications 0.086 (0.069) 0.087 (0.069) 0.004 (0.019) 0.004 (0.019)

Education & Health 0.218 (0.068) 0.218 (0.069) -0.011 (0.019) -0.011 (0.019)

Engineering -0.043 (0.082) -0.041 (0.082) 0.206 (0.024) 0.205 (0.024)

Language -0.057 (0.066) -0.057 (0.066) 0.042 (0.018) 0.042 (0.018)

English -0.223 (0.082) -0.224 (0.082) 0.094 (0.024) 0.094 (0.024)

Biology 0.016 (0.129) 0.022 (0.129) 0.035 (0.031) 0.033 (0.030)

Math -0.331 (0.081) -0.328 (0.081) 0.094 (0.021) 0.092 (0.021)

Chem. & Physics -0.159 (0.106) -0.156 (0.106) 0.024 (0.026) 0.022 (0.026)

Psychology -0.023 (0.101) -0.020 (0.101) 0.055 (0.026) 0.053 (0.026)

Social Science -0.138 (0.064) -0.137 (0.064) 0.023 (0.018) 0.023 (0.018)

Mgmt. & Mkting 0.308 (0.088) 0.310 (0.088) -0.042 (0.024) -0.043 (0.024)

Econ., Fin., Acct. -0.075 (0.101) -0.071 (0.101) 0.008 (0.026) 0.006 (0.026)

Ideal log enrl Ideal prof. effort

λ 1.000 1.000 0.528 (0.073) 0.252 (0.064)

Constant 5.196 (0.662) 5.173 (0.639) -0.347 (0.061) -0.179 (0.059)

Upper-Level Class -1.385 (0.528) -1.372 (0.511)

Note: Ideal enrollment λ is normalized to equal 1. The base for rank is “Instructor,” who are adjunct instructors contracted by
the course/semester. “Lecturers” are offered longer-term contracts and are salaried.
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TABLE D.4

COUNTERFACTUAL SCENARIOS IN GENERAL EQUILIBRIUM AT ALTERNATIVE ρ VALUES

Class Size STEM Enrollment Share

ρ STEM Non-STEM Overall Female Male

Baseline 82.6 45.0 41.8% 34.6% 49.5%

Grade Around 3� 0 100.6 37.9 50.9% 45.1% 57.2%

0.05 100.5 37.9 50.9% 44.9% 57.3%

0.2 99.5 38.3 50.4% 44.4% 56.8%

Note: �: “Grade Around 3” adjusts the mean grade in all courses to a B, affecting both men and women. Professors change
their grading strategies based on student responses to changes in preferences and abilities for the general equilibrium analysis.
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