
J Econ Growth (2007) 12:329–350
DOI 10.1007/s10887-007-9023-1

The Manhattan Metaphor

Pietro F. Peretto · Michelle Connolly

Published online: 8 November 2007
© Springer Science+Business Media, LLC 2007

Abstract Fixed operating costs draw a sharp distinction between endogenous growth based
on horizontal and vertical innovation: a larger number of product lines puts pressure on an
economy’s resources; greater productivity of existing product lines does not. Consequently,
the only plausible engine of endogenous growth is vertical innovation whereby progress along
the quality or cost ladder does not require the replication of fixed costs. Is, then, product vari-
ety expansion irrelevant? No. The two dimensions of technology are complementary in that
using one and the other produces a more comprehensive theory of economic growth. The
vertical dimension allows endogenous growth unconstrained by endowments, the horizontal
provides the mechanism that translates changes in aggregate variables into changes in prod-
uct-level variables, which ultimately drive incentives to push the technological frontier in the
vertical dimension. We show that the potential for exponential growth due to an externality
that makes entry costs fall linearly with the number of products, combined with the limited
carrying capacity of the system due to fixed operating costs, yields logistic dynamics for the
number of products. This desirable property allows us to provide a closed-form solution for
the model’s transition path and thereby derive analytically the welfare effects of changes
in parameters and policy variables. Our Manhattan Metaphor illustrates conceptually why
we obtain this mathematical representation when we simply add fixed operating costs to the
standard modeling of variety expansion.
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1 Introduction

The modern theory of innovation-driven economic growth was born with the development
of two classes of models focused on different dimensions of technological advance. In
models of horizontal innovation, agents invest resources in R&D to expand the variety of
existing goods; in models of vertical innovation agents invest resources to increase the quality
and/or reduce the production cost of existing goods. These two approaches are often con-
sidered simple transpositions of each other. Grossman and Helpman (1991) and Barro and
Sala-i-Martin (2004), for example, argue that they yield equivalent aggregate stories and thus
that one can use one or the other to study innovation-driven growth. In this paper we argue
that they are in fact fundamentally different, for a reason that has been in plain sight all along.

In developing his seminal model of horizontal innovation, Romer (1987, 1990) acknowl-
edged that he was borrowing the idea that a larger variety of products leads to higher spe-
cialization, and thus to productivity gains, from the static theory of product differentiation.
What he did not make explicit—and the literature has failed to appreciate—is that to turn
that well-known structure into a model of endogenous growth, he not only introduced fixed,
sunk costs of development of new products, he also eliminated the fixed operating costs that
in static models are responsible for finite product variety in equilibrium.

Far from being a simplifying assumption, the elimination of these costs is necessary
to obtain endogenous growth through variety expansion. Specifically, steady-state growth
driven by product proliferation cannot occur if production of each good entails a fixed cost
even if the production function for horizontal innovations is linear in the stock of horizontal
innovations. (In other words, the linearity of that technology is not sufficient for endogenous
growth.) Rather than being isomorphic representations of technological advance, vertical and
horizontal innovation are fundamentally different.

One way to visualize this difference is what we call the Manhattan Metaphor. A build-
ing requires a fixed plot of land. Consequently, the island of Manhattan can accommodate
only a finite number of buildings since land is in finite supply. Once the island is saturated
with buildings, the only way to progress (i.e., house more people and businesses) is to build
taller buildings. This can entail either adding floors to existing buildings or replacing existing
building with taller ones (skyscrapers). If we think of the height of buildings as quality/pro-
ductivity and of the number of building as the number of products, the Manhattan Metaphor
illustrates the role of fixed operating costs. Because of the fixed requirement of land per
building, at any point in time there is a natural limit to the number of buildings that can exist
on the island. Yet, there is no corresponding natural limit to the height of the buildings that
take up individual lots. In the vertical dimension, progress is only limited by the state of
technology.

In a generic model of variety expansion, the equivalent of the fixed land requirement per
building of our Manhattan Metaphor is an operating cost per product line that is fixed, in the
sense that it does not depend on the volume of production, and is recurrent, in the sense that
it is borne every period. The key property of these fixed operating costs is that increasing the
number of product lines requires their replication. Increasing output of an existing product
line, in contrast, does not. Our Manhattan Metaphor highlights how proliferation of buildings
puts pressure on the island’s finite supply of land, while increasing buildings’ height does
not. Similarly, in the context of endogenous growth models, a larger number of product lines
puts pressure on an economy’s resources; greater productivity of existing product lines does
not.

The Manhattan Metaphor thus provides us with a sharp and intuitive distinction between
horizontal and vertical innovation. In short, if fixed operating costs are not zero, variety
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expansion (product proliferation) is not a plausible engine of endogenous growth. Conse-
quently, the only dimension in which steady-state endogenous growth can occur is the vertical
one wherein progress along the quality or cost ladder does not require the replication of fixed
costs.

Is, then, product variety expansion irrelevant? No. The literature has successfully inte-
grated the two dimensions of technological progress in order to eliminate the scale effect.
Building on this insight, we argue that the two types of technological change are strongly
complementary in that using one and the other produces a more comprehensive theory of eco-
nomic growth. The vertical dimension provides the opportunity of growth unconstrained by
endowments, while the horizontal dimension provides the mechanism that translates changes
in aggregate variables into changes in product-level variables, which ultimately drive incen-
tives to push the technological frontier in the vertical dimension.

We show that this approach produces models so tractable that we are able to provide a
closed-form solution for the entire transition path. This is a very desirable property in that
it allows us to derive analytically the welfare effects of changes in parameters and policy
variables. Specifically, the potential for exponential growth due the property that entry costs
fall linearly with the number of products, combined with the linear crowding process due to
the fixed operating costs, yields logistic dynamics for the number of products. Our Manhattan
Metaphor illustrates conceptually why we obtain this mathematical representation when we
simply add fixed operating costs to ingredients that are standard in variety-expansion models.
It tells us that fixed operating costs imply saturation and thereby place the emphasis on the
limited carrying capacity of the system with respect to the variable—the number of product
lines—whose growth requires replication of fixed operating costs.

Before moving on to the main body of the paper, it is worth differentiating our present
work from Peretto (1998). That paper developed a model built on several of the ingredi-
ents that we use here except that, in line with the standard practice of the time, it set fixed
operating costs at zero. The research question was how to sterilize the scale effect through
product proliferation, a property that allows one to incorporate population growth in models
of endogenous growth without getting counterfactual, explosive behavior. Although the mod-
els that we discuss here exhibit this property, in this paper we ask a rather different question.
Our primary concern is whether vertical and horizontal innovation are conceptually the same
or whether there is some fundamental reason to keep them distinct. A related issue is whether
models of endogenous growth driven by product variety expansion are robust. Developing
the Manhattan Metaphor as a conceptual apparatus to think about these questions convinced
us that they are not, because they cannot survive the (re)introduction of fixed operating costs.
The final question arose serendipitously as we worked out the dynamics of the models. We
noticed that under relatively straightforward assumptions concerning entry costs we tended
to recover reduced-form representations of the equilibrium that had the familiar logistic form.
This was good news, as we were able to solve in closed-form the model’s transition path,
and thereby obtain analytical answers to questions concerning welfare, but we had to wonder
whether this simplicity and elegance was just due to luck or something more fundamen-
tal. The Manhattan Metaphor again proves useful in understanding that logistic dynamics is
inherent to the very structure of these models once we introduce fixed operating costs.

In summary, this paper contributes to the literature on two levels. First, it provides a sim-
ple conceptual framework that sheds light on the structure of models of endogenous growth
based on the interaction between the vertical and horizontal dimensions of technological
advance. In particular, it tells us why the two dimensions are fundamentally different and
thus why growth unconstrained by endowments is plausible in one and not in the other. The
second contribution is more technical. The introduction of fixed operating costs produces
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models with logistic dynamics that we can solve in closed form. As a consequence, we can
investigate the welfare effects of changes in fundamentals in an extremely tractable way.1

The paper is organized as follows. In Sect. 2 we set up the basic model, discuss its
preliminary properties and characterize the economy’s equilibrium dynamics and steady
state. In Sect. 3 we consider different plausible specifications of the entry costs for new
firms. We show that for all these extensions the model’s dynamics belongs to the logistic
class and have a closed-form solution. In Sect. 4 we show how this desirable property allows
us to obtain simple analytical answers to the question of what are the welfare effects of
specific parameters or policy variables. We conclude in Sect. 5.

2 The basic model

In this section, we present our basic model and show that fixed operating costs have dra-
matic consequences for endogenous growth based on variety expansion. For simplicity we
limit our formal discussion to models where labor is the only factor of production. The
argument is easily generalized to more sophisticated environments where there are more
factors of production, some reproducible and some not. In particular, the argument applies
also to specifications where fixed costs are in units of a reproducible factor; see, e.g., Peretto
(2007a,b). In the next section we consider extensions that allow us to generalize our point
and illustrate the great tractability of this class of models.

2.1 Consumption and saving

Consider a closed economy populated by a representative household with identical individ-
ual members who supply labor services and consumption loans in competitive markets. We
normalize initial population so that at time t population size is �eλt , where λ is the rate of
population growth and � is a scale parameter. Each individual is endowed with one unit of
time, which he supplies inelastically. The household maximizes lifetime utility

U =
∫ ∞

0
e−(ρ−λ)t log C (t) dt, ρ > λ > 0 (1)

where ρ is the individual discount rate. The consumption index C is symmetric over a con-
tinuum of differentiated goods,

C =
[∫ N

0
C

ε−1
ε

i di

] ε
ε−1

, ε > 1 (2)

where ε is the elasticity of product substitution, Ci is the purchase of each differentiated good,
and N is the mass of goods. (To simplify the notation, we suppress time from endogenous
variables whenever confusion does not arise.)

Individuals face the flow budget constraint

Ȧ = (r − λ) A + W − E. (3)

All variables are in per capita terms. A is assets holding, r is the rate of return on assets,
W is the wage rate, and E = ∫ N

0 PiCidi is consumption expenditure. The wage rate is the
numeraire, W ≡ 1.

1 For examples of how easy it is to work out the welfare the implications of policy variables in models that
exhibit this property, see, Peretto (2007a,b,c).
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The optimal plan for this setup is well known. Individuals save and allocate instantaneous
expenditure according to:

Ė

E
= r − ρ; (4)

Ci = E
P −ε

i∫ N

0 P 1−ε
j dj

. (5)

2.2 Production and innovation

Each consumption good is supplied by one firm. Thus, N also denotes the mass of firms.
Each firm produces with the technology

Xi = Zθ
i

(
LXi

− φ
)
, 0 < θ < 1, φ > 0 (6)

where Xi is output, LXi
is labor employment and φ is a fixed operating cost. Labor produc-

tivity is a function of the firm’s accumulated stock of innovations Zi , with elasticity θ .2 The
firm faces the demand curve Xi = �eλtCi , where Ci is given in (5) above. With a continuum
of goods, one can assume that firms are atomistic and take as given the denominator of (5).
Hence, monopolistic competition prevails and firms face isoelastic demand curves.

We assume that innovations are developed by independent inventors that then sell them
to firms. Accordingly, the firm maximizes the present discounted value of profit,

Vi =
∫ ∞

0
e− ∫ t

0 r(s)ds
[
PiXi − LXi

− PZi
Żi

]
dt,

where Żi is the mass of innovations (patents) purchased by the firm and PZi
is the price of a

patent.
The firm’s demand for patents is fully summarized by the asset-pricing equation

r = ∂�i

∂Zi

1

PZi

+ ṖZi

PZi

,

where we define �i ≡ PiXi − LXi
− PZi

Żi . The associated pricing strategy is the mark-up
rule

Pi = ε

ε − 1
Z−θ

i . (7)

The firm’s instantaneous profit can be written

�i = �eλtE

ε

Z
θ(ε−1)
i∫ N

0 Z
θ(ε−1)
j dj

− φ − PZi
Żi .

Differentiating under the assumption that the firm takes the denominator as given, substituting
the resulting expression into the asset-pricing equation derived above, and rearranging terms
yields

2 Cost reduction and quality improvements are isomorphic in this environment where customers care about
the services they derive from the products that they purchase. Hence, the vertical dimension of innovation
can be either quality (product innovation) or productivity (process innovation) without changing the paper’s
insight.
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r = �eλtE

ε
θ (ε − 1)

Z
θ(ε−1)−1
i∫ N

0 Z
θ(ε−1)
j dj

1

PZi

+ ṖZi

PZi

.

This expression characterizes the demand for vertical (incremental) innovations in sector i.
Innovation projects targeted at sector i produce an improvement of the production process

that the inventor can patent and then sell to firm i. The cost of the R&D project is determined
by the technology

Żi = αZiLZi
, α > 0 (8)

where Żi is the flow of innovations generated by employing LZi
units of labor for an interval

of time dt and αZi is the productivity of labor in R&D as determined by the exogenous
parameter α and by the stock of sector-specific public knowledge, Zi .3 Since innovations are
carried out by independent inventors, a standard free-entry condition characterizes research
targeted at sector i so that PZi

= 1/αZi .
Independent inventors can also develop products (and the associated production processes)

that are entirely new. When an inventor develops a new good, he can patent the blueprint
and sell it to a production firm. Without loss of generality let this firm be firm i and denote
the price of this “founding” patent PNi

. Once set up, the new firm operates according to the
structure set up above. In particular, the value of the new firm is Vi and follows the standard
asset-pricing equation

r = �i

Vi

+ V̇i

Vi

.

Since the inventor can extract the full value of commercializing the new good under monopoly
conditions, we have PNi

= Vi . The asset-pricing equation then becomes

r =
[

�eλtE

ε

Z
θ(ε−1)
i∫ N

0 Z
θ(ε−1)
j dj

− φ − PZi
Żi

]
1

PNi

+ ṖNi

PNi

.

This expression characterizes the demand for horizontal innovations.
The technology for creating new goods is

Ṅ = βLNN, β > 0 (9)

where Ṅ is the flow of new products generated by employing LN units of labor for an interval
of time dt and βN is the productivity of labor in R&D as determined by the parameter β and
by the stock of public knowledge N . This innovation technology is qualitatively identical

3 If knowledge is sector- or product-specific, there is an inherent advantage to bringing R&D operations in
house since it internalizes the intertemporal spillover. For the sake of simplicity we abstract from this con-
sideration in this paper, and eliminate by construction the possibility that firms internalize increasing returns
to accumulation of sector-specific knowledge by assuming that innovations are undertaken by independent
inventors. Since knowledge is sector-specific, however, we retain the property that resources are spread more
thinly and knowledge is more specialized in an economy that produces a larger variety of goods so that the
scale effect does not arise. This observation might lead one to wonder about inter-sectoral spillovers. We could
accommodate these without changing the qualitative results of the paper if we posited that R&D costs in each
sector depend on the knowledge aggregator

K =
∫ N

0

1

N
Zidi.

As discussed in detail in Aghion and Howitt (1998), Peretto (1998) and Peretto and Smulders (2002), as long
the knowledge aggregator does not rise with the number of sectors/goods, there is no scale effect.
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to that posited for sector-specific incremental innovation. In fact, one can interpret creation
of new products as the (N + 1) th R&D sector in this economy. The standard free-entry
condition for this research sector yields PNi

= 1/βN .4

Under the assumption that setting up a new firm requires no expenditure other than pur-
chasing the patent for the new good, the free-entry condition above defines the entry cost
faced by entrepreneurs in this economy. Introducing additional entry costs would add some
realism but it would make the two innovation technologies qualitative different. This feature
would mask the differences between the two margins of technological advance, vertical and
horizontal, that we wish to emphasize in this paper. We discuss this aspect of the analysis in
more detail in Sect. 3.

2.3 The returns to R&D

We focus on symmetric equilibria to keep the analysis as simple as possible.5 The rates of
return to innovation are:

rZ =
[

�eλtE

εN

θ (ε − 1)

Z

]
1

PZ

+ ṖZ

PZ

;

rN =
[

�eλtE

εN
− φ − PZŻ

]
1

PN

+ ṖN

PN

.

The similarity of the asset-pricing equations highlights the fact that the only difference
between the returns to vertical and horizontal R&D arises from the dividend part of the
dividend–price ratio. We can make the following observations in this regard.

First, the N +1 innovation technologies operated in this economy are qualitatively identi-
cal. Hence, the features of the equilibrium that we describe below do not depend on technolog-
ical differences across R&D activities. Allowing for such differences might add some realism
to our description of innovation activities, but it would mask the source of the qualitative
differences that we wish to emphasize in this paper.

Second, in the vertical dimension of innovation we posit incremental improvements of
products/processes that are brought to market by existing local monopolists. Hence, the
Arrow replacement effect is internalized and the return to cost-reducing R&D within each
sector depends on marginal profit. In contrast, innovation in the horizontal dimension entails
the creation of a new firm/product and there is no Arrow replacement effect because there is
no existing incumbent to replace. Accordingly, the return to variety-expanding R&D depends
on profit. Our assumption that all innovations are developed by independent inventors and
then sold to production firms is unrealistic but has the advantage of making clear that an
important difference between vertical and horizontal innovation in our scheme stems from
the demand side, that is, from the different users of the innovations: in the vertical dimension
the user is an existing firm, in the horizontal dimension it is a new firm.6

4 Although we do not present the details here, the arguments below go through if horizontal innovation is
instead defined as Ṅ = βLNf (N), where f (N) is a non-linear function. Similarly, we can allow for average
vertical knowledge, Z, to play an explicit role in the function f (·), like in Peretto and Smulders (2002),
without changing the basic insight of the model.
5 See, e.g., Peretto (1998) for a discussion of the conditions under which models of this class support symmetric
equilibria.
6 Introducing creative-destruction along the vertical dimension, whereby all innovations are brought to market
by new firms that replace the existing incumbents, would make the analysis much more complicated, but would
not change the basic insight of our model. The reason is that the new firm that replaces the old monopolist
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Third, the entry cost 1/βN bounds the change in the number of products per unit of time,
Ṅ , while the fixed operating cost φ bounds the number of firms that are active at any point in
time, N . The difference is crucial. Specifically, the cost of variety-expanding innovation falls
linearly with the number of goods so that, from the technological viewpoint, self-sustaining,
perpetual variety expansion is possible. The reason why this does not happen in equilibrium
is that with fixed costs of production in units of labor, an infinite variety of goods cannot be
produced if the labor endowment is finite. Hence, the most important way in which vertical
and horizontal innovations differ is that vertical innovations do not replicate fixed production
costs while horizontal innovations do. This property has nothing to do with the innovation
process but rather with the fact that commercialization of the new product entails setting up
production facilities. In this sense the emphasis is on N as the number of firms/plants, not as
the number of goods/blueprints. Once one takes this into account, it is clear that the rate of
return to horizontal innovation falls with the number of firms/plants even if the innovation
cost falls linearly with the accumulated stock of horizontal (product) innovations.7

More formally, consider the free-entry conditions characterizing patent prices and write

rZ = α

[
�eλtEθ (ε − 1)

εN
− LZ

]
; (10)

rN =
[

�eλtE

εN
− φ − LZ

]
βN − Ṅ

N
. (11)

The fact that labor productivity in horizontal R&D is linear in N offsets the negative linear
dependence of cash flow per firm on N (a market share effect), but cannot offset the fact that
a larger number of firms yields a larger demand for labor through the fixed labor requirement
so that rising real wages depress profits and thus the return to setting up new firms. To see
this point most starkly, imagine an equilibrium with zero vertical R&D so that LZ = 0 and
observe that only the case φ = 0 yields a constant rate of return to entry with a constant rate
of entry; this is shown formally below.

2.4 Aggregate dynamics

General equilibrium is defined by the Euler equation (4), the return to innovation (10), the
return to entry (11) and the labor market clearing condition

L = N

[
�eλtE (ε − 1)

εN
+ φ + LZ

]
+ Ṅ

βN
.

Footnote 6 continued
enters an already existing product line and does not create a new one. After completion of this paper, we came
across Cozzi and Spinesi (2002), which works out a quality-ladder model built on Howitt (1999) with fixed
operating costs. Our intuitive argument above is supported by their analytical work. Their paper differs from
ours in that we provide a more general interpretation of the role of fixed operating costs in growth theory,
we work out in detail the transitional dynamics under different hypotheses concerning horizontal innovation
costs, and our model is more tractable. Finally, their research question differs from ours since it focuses on
scale effects, which are peripheral to our argument.
7 One way to check the generality of these statements is to extend the theory to the case of multiproduct
firms with plants that can produce more than one good. We are not aware of work in this direction with the
exception of a section of Smulders and van de Klundert (1995) and, more recently, Minniti (2006). Both
examples support the conclusion that allowing for multiproduct firms does not change the key properties of
these models.
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On the left hand side there is labor supply, which is given by

L = �eλt .

For the purposes of the analysis below, it is useful to set λ = 0. We consider the role of
population growth in the next section.

No-arbitrage between returns to vertical and horizontal R&D, or more generally equi-
librium of the assets market, requires rZ = rN = r . We refer to r as the rate of return to
investment. Solving the resource constraint for LZ and substituting the result into the rate of
return to horizontal innovation we obtain

r = (E − 1)�β.

Notice that the rate of return to investment is independent of the number of products. This
result stems from the assumption that the cost of horizontal innovation is inversely related to
N . In fact, this is precisely what delivers endogenous growth in the first-generation models
of variety expansion (e.g., Romer 1990; Grossman and Helpman 1991, Ch. 3). Since the rate
of return to investment, in this case horizontal innovation, must equal the rate of return to
saving, we have

(E − 1) �β = Ė

E
+ ρ.

This unstable differential equation implies that expenditure per capita jumps to the steady-
state value

E∗ = 1 + ρ

�β
, (12)

while the interest rate is at all times r∗ = ρ.
These results allow us to solve (10) for

z ≡ Ż

Z
= αLZ = �E∗αθ (ε − 1)

εN
− ρ. (13)

An important feature of this equation is that z = 0 for

N ≥ N̄ ≡ �E∗αθ (ε − 1)

ρε
.

This threshold is due to the fact that when there are too many products, demand for each
product is too small and firms would earn a return on the patents that they purchase that is
below the interest rate. Consequently, demand for vertical innovations falls to zero.

Substitution of these results into the resources constraint yields

Ṅ

N
=

{
β

[
�E∗ 1−θ(ε−1)

ε
− (

φ − ρ
α

)
N

]
− ρ N < N̄

β
[
�E∗ 1

ε
− φN

] − ρ N ≥ N̄
.

The tractability of this model is evident in the fact that its general equilibrium reduces to a
single differential equation in the number of firms. Figure 1 illustrates dynamics.8 If φ >

ρ
α

,

8 For simplicity we ignore the hysteresis due to the non-negativity constraint on Ṅ . In Fig. 1, this is captured
by the continuum of steady states between N∗ and Ñ . The value Ñ denotes the maximum number of firms
that the market can accommodate with non-negative profits. Since firms have the option of shutting down
vertical R&D operations, the non-negativity constraint on flow profits, which reflects the exit option, yields
Ñ = �E/εφ.
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Fig. 1 General Equilibrium
Dynamics

N

N

N

N* N N
~

.

the dynamics always feature a falling entry rate. In contrast, if φ <
ρ
α

the entry rate is ini-
tially rising, until the economy crosses the threshold N̄ whereafter the entry rate is negative.
If φ = ρ

α
, the entry rate is initially constant and turns negative when vertical R&D shuts

down. In all cases, there exists a steady state value

N∗ =

⎧⎪⎨
⎪⎩

�E∗ 1−θ(ε−1)
ε

− ρ
β

φ− ρ
α

�E∗
ε

[
1 − φαθ(ε−1)

ρ

]
<

ρ
β

�E∗ 1
ε
− ρ

β

φ
�E∗

ε

[
1 − φαθ(ε−1)

ρ

]
≥ ρ

β

. (14)

These dynamics make clear that φ > 0 kills the possibility of endogenous growth through
product proliferation regardless of any other feature of the model. Upon reflection, this is
obvious: The presence of the term φN on the right hand side of the resources constraint
implies that the equation cannot hold for a fixed labor endowment if N grows too large. One
should note that passed the threshold N̄ , where vertical innovation shuts down, the model is
in all respects identical to that of Grossman and Helpman (1991,Ch. 3) except for the fixed
cost φ. So, in this exercise the introduction of fixed operating costs is the only radical change
that we are making with respect to the standard setup.

An interesting feature of this equilibrium is that there is a negative scale effect with the
extreme implication that a large population yields zero growth since it implies that N∗ > N̄ .
To see this, substitute N∗ into (13) to obtain:

z∗ = (αφ − ρ)
αθ (ε − 1)

1 − θ (ε − 1) − ερ
β�E∗

− ρ,

where

β�E∗ = �β + ρ.

According to this expression, steady-state growth depends negatively on the scale parameter
�. Why? Because the returns to innovation increase with the scale of operations of the firm.
The size of the firm is ultimately determined by the share of aggregate demand that the firm
captures. Aggregate demand is given by population size times expenditure per capita. Popu-
lation size reduces these returns, since the number of firms rises more than one-for-one with
aggregate demand. This is because the effective cost of entry is 1/β�E∗, which decreases
with �. We thus have a crowding-in effect that results in a negative scale effect.
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3 The extended model

In this section we discuss the role of different assumptions concerning entry. We first show
that these assumptions determine whether the model can handle population growth in a
tractable manner. This is important, because a model that requires constant population is
overly restrictive theoretically and fails empirically. We then show that for a broad class
of specifications, the model’s dynamics belong to the logistic class that has a closed-form
solution.

We begin with a discussion of why we set λ = 0 in the analysis of the basic model
of the previous section. Let λ > 0. The differential equation for expenditure is no longer
independent of time:

(E (t) − 1)�eλtβ = Ė (t)

E (t)
+ ρ.

This pins down a path E (t) that is not constant. The differential equation for N becomes

Ṅ (t)

N (t)
=

{
β

[
�eλtE (t)

1−θ(ε−1)
ε

− (
φ − ρ

α

)
N (t)

]
N (t) < N0 (t)

β
[

�
ε
eλtE (t) − φN (t)

]
N (t) ≥ N0 (t)

,

with

N0 (t) = α�eλt θ (ε − 1)

ρε
E (t) .

In this setup, demand grows at rate λ while the entry cost does not keep up. Hence, the
entry cost relative to market size shrinks to zero. This implies that eventually the economy
converges to the solution that one would obtain in a model with no entry costs and product
variety pinned down by fixed operating costs (see, e.g., Smulders and van de Klundert 1995;
Peretto 1996).9 However, the analysis of these dynamics is overly cumbersome, making the
model of limited use for applied questions, especially if they concern welfare.

We obtain tractable dynamics if we suitably scale up horizontal innovation costs. We
discuss two examples that provide insight on the nature of scale effects in models of this
class.10 In particular, we focus on how entry costs regulate how population size and growth
affect vertical innovation. In the next section, we focus on how the interaction of the two
dimensions of technology drives the overall growth rate of consumption.

3.1 Example I: entry cost increasing in population

Suppose horizontal innovation costs increase linearly with population size, perhaps because
inventing a new good is harder the more people to whom it must appeal. With an entry cost
of

�eλt

βN
,

9 Models thus built have the same qualitative steady-state properties as those that we consider here. They
just compress the transitional dynamics to a jump to the new steady state by positing that the number of
products/firms can change discretely.
10 The case Ṅ = βLN , where entry costs do not depend on accumulated experience in horizontal product
development, that the literature has already analyzed (see, e.g., Peretto 1998), does not support potential
exponential growth of the number of firms and thus does not yield logistic dynamics in the presence of fixed
operating costs.
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the rate of return to horizontal innovation becomes

r =
[

�eλtE

εN
− φ − LZ

]
βN

�eλt
− Ṅ

N
+ λ.

Proceeding as before, we get

r = (E − 1) β + λ.

Asset market clearing then yields

(E − 1) β + λ = Ė

E
+ ρ

and again we have that E jumps to a steady-state level

E∗ = 1 + ρ − λ

β
, (15)

with r∗ = ρ at all times. Expenditure no longer depends on the population level, but instead
depends negatively on population growth. There are two reasons for this. First, we have elim-
inated the positive dependence of the rate of return to assets on population size. Second, we
now have constant steady-state entry, which is an investment that must be financed through
saving. Specifically, λ

β
is the rate of investment in entry in steady state.

To see this more clearly, let n ≡ N/�eλt denote the number of firms per capita. Vertical
growth is

z = E∗αθ (ε − 1)

εn
− ρ. (16)

Again we have that z = 0 for

n ≥ n̄ ≡ E∗αθ (ε − 1)

ρε
.

The entry condition reduces to

ṅ

n
=

{
β

[
E∗ 1−θ(ε−1)

ε
− (

φ − ρ
α

)
n
]

− ρ n < n̄

β
[
E∗ 1

ε
− φn

] − ρ n ≥ n̄
.

Dynamics are qualitatively similar to those discussed in the previous section with the differ-
ence that in a neighborhood of the steady state there is no hysteresis since population growth
allows ṅ < 0. The steady state value of n is

n∗ =
⎧⎨
⎩

1
φ− ρ

α

[
E∗ 1−θ(ε−1)

ε
− ρ

β

]
E∗
ε

[
1 − φαθ(ε−1)

ρ

]
<

ρ
β

1
φ

[
E∗
ε

− ρ
β

]
E∗
ε

[
1 − φαθ(ε−1)

ρ

]
≥ ρ

β

. (17)

Steady-state vertical growth spending is

z∗ = (αφ − ρ)
θ (ε − 1)

1 − θ (ε − 1) − ερ
βE∗

− ρ, (18)

where

βE∗ = β + ρ − λ.
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The scale parameter � now drops out, implying no scale effect. Vertical growth, however,
now depends on population growth, λ, through expenditure per capita because financing
constant product creation requires a higher saving rate.

The dynamical system is in fact simpler than the graphical analysis of Fig. 1 suggests. To
explore this property, we focus on the region of parameter space that yields a steady state
with positive vertical R&D and work with

ṅ

n
= η − β

(
φ − ρ

α

)
n, η ≡ βE∗ 1 − θ (ε − 1)

ε
− ρ.

This is a logistic equation with growth coefficient η and crowding coefficient β
(
φ − ρ

α

)
.11

Using the value n∗ in (17), also called the system’s carrying capacity, we can rewrite it as

ṅ

n
= η

(
1 − n

n∗
)

,

which has solution

n (t) = n∗

1 + e−ηt
(

n∗
n0

− 1
) , (19)

where n0 is the initial condition.

3.2 Example II: entry cost proportional to initial variable cost of production

Another way to scale up the entry cost is to assume that it is proportional to the initial variable
cost of production. The idea is that a firm setting up operations incurs the cost of building
prototypes of the new products.12 This assumption also captures the notion that the setup
costs increase with the anticipated volume of output. With an entry cost of

�eλtE (ε − 1)

βεN
,

the rate of return to horizontal innovation becomes

r =
[

�eλtE

εN
− φ − LZ

]
βεN

�eλtE (ε − 1)
− Ṅ

N
+ λ + Ė

E
.

Proceeding as before, we get

r =
(

1 − 1

E

)
βε

ε − 1
+ λ + Ė

E
.

Asset market clearing yields (
1 − 1

E

)
βε

ε − 1
+ λ = ρ

and again we have that E jumps to a steady-state level

E∗ =
[

1 − (ρ − λ) (ε − 1)

βε

]−1

, (20)

11 For an exhaustive discussion of the logistic equation, its properties, solution and applications, see, e.g.,
Banks (1994).
12 We borrow this argument from Etro (2004,p. 299). See also Barro and Sala-i-Martin (2004,Ch. 6).
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with r∗ = ρ at all times. Again, expenditure no longer depends on the population level but
depends negatively on population growth. Vertical growth is

z = E∗αθ (ε − 1)

εn
− ρ. (21)

Again we have that z = 0 for

n ≥ n̄ ≡ E∗αθ (ε − 1)

ρε
.

The entry condition reduces to

ṅ

n
=

{
1

E∗
βε
ε−1

[
E∗ 1−θ(ε−1)

ε
− (

φ − ρ
α

)
n
]

− ρ n < n̄

1
E∗

βε
ε−1

[
E∗ 1

ε
− φn

] − ρ n ≥ n̄
.

This system’s qualitative behavior is identical to that of the previous example. The steady
state value of n is

n∗ =
⎧⎨
⎩

E∗
φ− ρ

α

[
1−θ(ε−1)

ε
− ρ(ε−1)

βε

]
1 − φαθ(ε−1)

ρ
<

(ε−1)ρ
β

E∗
φ

[
1
ε

− ρ(ε−1)
βε

]
1 − φαθ(ε−1)

ρ
≥ (ε−1)ρ

β

. (22)

The solution n∗ < n̄ can be written

E∗

n∗ =
(
φ − ρ

α

) [
1 − θ (ε − 1)

ε
− ρ (ε − 1)

βε

]−1

.

This is important because it says that firm size is independent of population size and growth.
Steady-state vertical growth then is

z∗ =
(
φ − ρ

α

) [
1 − θ (ε − 1) − ρ (ε − 1)

β

]−1

θ (ε − 1) − ρ

α
, (23)

which is independent of both population size and growth.
Once again, we can write the transition path in a neighborhood of this steady state as

governed by

ṅ

n
= ν − 1

E∗
βε

ε − 1

(
φ − ρ

α

)
n ν ≡ β

1 − θ (ε − 1)

ε − 1
− ρ.

Using the value for n∗ in (22) we can rewrite this equation as

ṅ

n
= ν

(
1 − n

n∗
)

,

which has solution

n (t) = n∗

1 + e−νt
(

n∗
n0

− 1
) ,

where n0 is the initial condition.
An interesting feature of the specifications discussed above is that the qualitative differ-

ences in how steady-state vertical growth depends on population size and growth are due
solely to different assumptions concerning the entry cost, that is, the technology for hori-
zontal innovation which regulates how changes in market size translate into changes in firm
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size. As we noticed in the introduction, the integration of the two dimensions of technolog-
ical change—vertical and horizontal—produces a more comprehensive theory of economic
growth. The vertical dimension provides the opportunity of growth unconstrained by endow-
ments, the horizontal dimension provides the mechanism that translates changes in aggregate
variables into changes in firm-level variables. Our examples show how the latter ultimately
drive incentives to push the technological frontier in the vertical dimension.

The question we tackle next is: Why logistic growth in the number of firms? The answer
is straightforward and intuitive. The primitives of the two models outlined above (and of
the basic model of Sect. 2) have two things in common. First, the technology for product
development features a cost of entry that is decreasing linearly in the number of products.
As is well known, this feature yields the potential for exponential growth through product
proliferation. Second, fixed operating costs imply that the economy has limited carrying
capacity with respect to the number of active product lines—or, better, the number of active
firms. In particular, the crowding process is linear in the number of products/firms. Now,
exponential growth plus linear crowding yield logistic growth (Banks 1994), a process with
well-known properties and a closed-form solution for the transition path. What is remarkable
is that this logistic process arises naturally in our environment where to a set of standard,
well-understood ingredients we only add fixed operating costs. Our Manhattan Metaphor cap-
tures conceptually why we obtain this mathematical representation by placing the emphasis
on the limited carrying capacity of the system with respect to the variable—the number of
products/firms—whose growth requires replication of fixed operating costs.

We close this section by noting that it is possible to extend the analysis of this model to
the case of endogenous population growth along the lines of Connolly and Peretto (2003).
The resulting model displays constant product proliferation driven by constant endogenous
population growth, together with constant productivity growth in the vertical dimension.

4 The advantage of tractability

In this section we discuss the main strength of the models proposed above. We focus on
the fact that they admit a closed-form solution for the transition path and illustrate how this
property allows us to study analytically the welfare effects of changes in fundamentals.

For the purposes of this discussion we disentangle the elasticity of product substitution,
ε, from social increasing returns to variety in our preferences by rewriting (2) as

C = Nω− ε
ε−1

[∫ N

0
C

ε−1
ε

i di

] ε
ε−1

, ε > 1, ω ≥ 0, (24)

where ω measures social returns to variety. Because this is an external effect, it does not
affect the behavior of agents. The demand curve (5), the price strategy (7) and symmetry
then yield that at any point in time

C∗ = ε − 1

ε
E∗NωZθ . (25)

One can reinterpret (24) as a production function for a final homogenous good assembled
from intermediate goods—and thus think of C∗ as output per capita—and define aggregate
total factor productivity (TFP) as

T = NωZθ . (26)
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In steady state this gives us

(
Ṫ

T

)∗
= ωλ + θz∗ ≡ g∗, (27)

which says that TFP growth has two components: one fully endogenous, θz∗, and one semi-
endogenous, ωλ.

We focus on the model developed in Example II since it is the one that, with the modifica-
tion outlined above, fits best two sets of well-documented facts that are particularly relevant
to this class of models.13 The first concerns cross-country data: (i) the correlation between
income per capita growth and population size is zero; (ii) the correlation between income
per capita growth and population growth is also zero. The second concerns time-series data:
(iii) the aggregate R&D share of labor exhibits no trend; (iv) the ratio of the number of firms
to total employment exhibits no trend; and (v) average total employment and average R&D
employment per firm exhibit no trend.

To see this, observe that in both models the typical incumbent firm employs in production
operations and R&D, respectively,

LX = E

n

ε − 1

ε
+ φ

and

LZ = E

n

θ (ε − 1)

ε
− ρ

α

workers. Both models predict that in steady state n ≡ N/L is constant, so they both fit fact
(iv). Both models predict that in steady state the ratio E/n is constant, so they both fit facts
(iii) and (v) since LX, LZ and LX + LZ are all constant. The model of Example I, however,
predicts that in steady state E/n is decreasing in population growth and thus fails to fit fact (ii)
since it predicts a negative correlation between λ and z∗. The model of Example II, instead,
predicts that in steady state E/n is independent of population growth and thus predicts that
the correlation between λ and z∗ is zero, fitting fact (ii) provided that ω is sufficiently close
to zero. Fact (iii) concerns the aggregate share of R&D, which in the model of Example II is

NLZ + LN

L
= n

(
LZ + λ

β
LX

)

and therefore constant in steady state.
Now define

� ≡ n∗

n0
− 1.

This is the percentage change in product variety that the economy experiences along the
transition to the steady state n∗ starting from initial condition n0. With this definitions in
hand, it is then possible to establish the following.

Proposition 1 Let log C∗ (t) and U∗ be, respectively, the instantaneous utility index (24)
and welfare function (1) evaluated at E∗. Then, a path starting at time t = 0 with initial

13 See, e.g., Barro and Sala-i-Martin (2004), Laincz and Peretto (2006) and Ha and Howitt (2007) for details
on these facts and the data sets and techniques used to uncover them.
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condition n0 and converging to the steady state n∗ is characterized by:

log T (t) = log

(
Zθ

0n
1

ε−1
0

)
+ g∗t

+γ�

ν

(
1 − e−νt

) + ω log
1 + �

1 + �e−νt
, (28)

where

γ ≡ θ
αθ (ε − 1)

ε

E∗

n∗ = θ
(
z∗ + ρ

)
,

ν ≡ β
1 − θ (ε − 1)

ε − 1
− ρ.

Therefore,

log C∗ (t) = log E∗ + g∗t

+γ�

ν

(
1 − e−νt

) + ω log
1 + �

1 + �e−νt
, (29)

which yields

U∗ = 1

ρ − λ

[
log E∗ + g∗

ρ − λ
+ γ�

ρ − λ + ν

]

+ω

∫ ∞

0
e−(ρ−λ)t log

1 + �

1 + �e−νt
dt. (30)

Proof See the Appendix. �

We can now investigate in a straightforward manner how specific parameters affect produc-
tivity and welfare. An interesting one, that has been the subject of much debate, is population
size. A change in population size shows up as a shock to the model’s initial condition. Specif-
ically, imagine an economy in steady state n0 and let � increase to �′. Such an increase has
no effect on E∗ and on steady-state firm size E∗/n∗. Therefore, at the end of the transition we
have n∗ = n0. Recall that by definition n0 = N0/e

λt� and n∗ = N∗/eλt�′. The transition
to the new steady state starts from n′

0 = N0/e
λt�′ = n0�/�′. We thus have that

� = n∗

n′
0

− 1 = �′

�
− 1 > 0

is the percentage increase in population. We observe next that the increase in � has no effect
on γ , ν, g∗, E∗, and differentiate (28) to write:

d log T

dt
= Ṫ

T
= g∗ + �e−νt

[
γ + ων

1 + �e−νt

]
;

d2 log T

dt2 = d

dt

(
Ṫ

T

)
= −�νe−νt

[
γ + ων(

1 + �e−νt
)2

]
.

We then conclude that a helicopter drop of people raises welfare because it induces a tem-
porary acceleration of productivity growth.
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In fact, we can say by how much. The change in welfare given by a generic change in
population size is

U∗ − U0 = 1

ρ − λ

[
log E∗ + g∗

ρ − λ
+ γ�

ρ − λ + ν

]

+ω

∫ ∞

0
e−(ρ−λ)t log

1 + �

1 + �e−νt
dt

− 1

ρ − λ

[
log E0 + g0

ρ − λ
+ 0

]

−ω

∫ ∞

0
e−(ρ−λ)t log

1

1
dt

= 1

ρ − λ

γ�

ρ − λ + ν
+ ω

∫ ∞

0
e−(ρ−λ)t log

1 + �

1 + �e−νt
dt,

since E∗ = E0 and g∗ = g0. If, to fit the fact that the correlation between income per capita
growth and population growth is zero, we postulate ω = 0, then

U∗ − U0 = 1

ρ − λ

γ

ρ − λ + ν
�

and we can refer to

1

ρ − λ

γ

ρ − λ + ν
= 1

ρ − λ

θ (z∗ + ρ)

ρ − λ + ν

as the welfare multiplier of an increase in population size. This expression tells us that this
multiplier is larger in an economy with growth favoring fundamentals because it translates
into a larger temporary acceleration of vertical growth that yields a higher steady-state level
of productivity than in the baseline case. In other words, the economy makes a transition to a
steady-state growth path with the same slope as, but a higher intercept than, the starting one.
The welfare multiplier calculated above tells us by how much the latter level effect raises
welfare. It also tells us that the welfare increase is smaller, the faster the transition—this is
captured by the presence in the denominator of the growth coefficient of the logistic equation,
ν. In other words, the temporary acceleration of TFP growth is due to the fact that the number
of firms adjusts slowly so that there is a temporary scale effect on incumbent firms. If we
worked with a model where entry costs are zero (i.e., β → ∞), then we would have ν → ∞
and the welfare multiplier would be zero because firm size would adjust instantaneously to
the larger market.

Another important parameter is population growth. Again, imagine an economy in steady
state n0 and let λ increase to λ′. According to (22) and (20) this change reduces steady-state
n so that we now have that at the end of the transition n∗ < n0. The transition starts from
n0 since population is pre-determined and its acceleration does not affect its level at time
t = 0. Recall, moreover, that a change in population growth does not affect firm size E/n.
Consequently, we have that

� = n∗

n0
− 1 = E∗

E0
− 1 =

(λ−λ′)(ε−1)

βε

1 − (ρ−λ′)(ε−1)
βε

< 0

is the percentage decrease in expenditure. We observe next that the increase in λ has no effect
on γ , ν, and notice that according to the derivatives calculated above � < 0 implies that the
path of log T is convex. We then have two cases. If population growth has no long-run effect
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on TFP growth because ω = 0, then the path entails a temporary slowdown. If, instead,
we allow for the semi-endogenous growth component by setting ω > 0, then the path of
TFP entails either a temporary slowdown followed by a permanent acceleration or just an
acceleration.

Regardless of the specific path of TFP, however, we can be quite precise about the effects
of the change in population growth on welfare. Inspection of (30) reveals that λ enters in
four places. First, faster population growth reduces the effective discount rate ρ − λ and
thus raises welfare directly. Second, faster population growth lowers E∗; see (20). Third, the
lower E∗ yields a lower n∗, which implies � < 0. Fourth, faster population growth raises g∗
through the semi-endogenous growth component ωλ. On the other hand, γ and ν remain the
same. We can then organize the welfare effects in two components. The change in welfare
given by a generic change in population growth is

U∗ − U0 = 1

ρ − λ′

[
log E∗ + g∗

ρ − λ′ + γ�

ρ − λ′ + ν

]

+ω

∫ ∞

0
e−(ρ−λ′)t log

1 + �

1 + �e−νt
dt

− 1

ρ − λ

[
log E0 + g0

ρ − λ
+ 0

]

−ω

∫ ∞

0
e−(ρ−λ)t log

1

1
dt

= 1

ρ − λ′

[
log E∗ + g∗

ρ − λ′

]
− 1

ρ − λ

[
log E0 + g0

ρ − λ

]

+ 1

ρ − λ′
γ�

ρ − λ′ + ν
+ ω

∫ ∞

0
e−(ρ−λ′)t log

1 + �

1 + �e−νt
dt.

The first line of the final expression gives the welfare effect of changing the steady state,
the second gives the effect due to the transition to the new steady state. Observe that � < 0
implies 1+�

1+�e−νt < 1 so that the transition reduces welfare. For population growth to be
welfare improving then it must be that the steady-state effect is positive and sufficiently
strong.

The comparison of the two steady states reveals an interesting trade-off. Faster popula-
tion growth reduces steady-state consumption per capita, because the economy must support
faster entry, but faster entry translates into faster growth of income per capita. The impor-
tance of the latter component of this trade-off depends on the strength of social increasing
returns to variety. In light of the empirical fact that the correlation between income per capita
growth and population growth is zero, one could argue that we should write the model with ω

approximately zero, so that g∗ = g0 and faster population growth potentially reduces welfare
because it requires a sacrifice of steady-state consumption not justified by the contribution
to productivity of faster product proliferation. The only force left to counteract this negative
effect is the fact that faster population growth effectively makes people more patient. This, in
turn, suggests that the form of preferences that one posits is crucial. If we posited preferences
whereby individuals do not care about their family members, then we would have that faster
population growth reduces welfare because it requires a sacrifice of steady state consumption
that is not justified by its direct and indirect (through productivity growth) contribution to
individual utility.
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5 Discussion

What do the simple models outlined in the previous sections teach us about R&D-driven
growth? First, product proliferation and productivity improvement are not isomorphic under
realistic characterizations of production operations. Second, linearity of the accumulation
equation for horizontal innovations is not sufficient to obtain perpetual product proliferation.

The implicit—and crucial—assumption at the heart of the variety expansion model of
endogenous growth is that fixed production costs are zero. This is equivalent to assuming
that there are no constraints to the proliferation of production facilities. Our Manhattan Met-
aphor is designed to illustrate how thinking about such constraints reveals the importance
of apparently innocuous assumptions and draws a sharp distinction between models that are
thought to be equivalent. More importantly, it tells us that working with a framework that
does not confuse innovation and entry produces a more plausible and useful representation of
technology. Finally, it suggests that the emphasis on the knife-edge properties of models of
endogenous growth that have at their heart some linear accumulation equation is misplaced.
In our view, the linearity of that equation is largely a matter of analytical convenience. The
important assumption is less about the form of the primitive equation governing the accumu-
lation of some variable but whether there are natural limits to the expansion of that variable
that should be taken into account.

The Manhattan Metaphor emphasizes the notion of saturation. A natural way to incorpo-
rate it in models of endogenous growth that allow for product variety expansion is to introduce
a fixed operating cost per product. We find that when we do so a logistic representation of
equilibrium dynamics emerges. This is remarkable for two reasons. First, the logistic equa-
tion has a well-known closed-form solution, a fact that makes this specification of the theory
very powerful in tackling welfare questions since we know the exact form of the model’s
transition path. Second, and in our view, more important, the logistic representation emerges
because of the combination of two ingredients: the technology for product development fea-
tures a cost of entry per firm that is decreasing linearly in the number of firms; fixed operating
costs imply that the economy has limited carrying capacity with respect to the number of
firms and that the associated crowding process is linear in the number of firms. The first
ingredient is standard in growth models driven by product-variety expansion; the second is
standard in static specialization models. The logistic dynamics of the number of firms that
we uncover—a simple and elegant representation of the process of product proliferation—is
a natural outcome of using both ingredients, instead of just one or the other as the literature
typically does.

Upon reflection, using both is a natural thing to do as fixed operating costs and fixed
entry costs are not the same. Given the resources endowment, the former imply a limit on
the number of firms that the economy can accommodate, the latter a limit on the speed with
which the economy can reach that limit. In plainer language, the former imply a limit on how
far the economy can travel in the variety dimension of technology, the latter imply a limit on
how fast. Logistic dynamics are a natural implication of their interaction.

Appendix: Proof of Proposition 1

Taking logs of (26) yields

log T (t) = θ log Z0 + θ

∫ t

0
z (s) ds + ω log N (t) .
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Using the definition n ≡ Ne−λt , the expression for g∗ in (27) and adding and subtracting z∗
from z (s), we obtain

log T (t) = θ log Z0 + g∗t + θ

∫ t

0

[
z (s) − z∗] ds + ω log n (t) .

Using (16), (19) and the definition of � we rewrite the third term as

θ

∫ t

0

(
z (s) − z∗) ds = θ

αθ (ε − 1)

ε

∫ t

0

(
E∗

n (s)
− E∗

n∗

)
ds

= γ

∫ t

0

(
n∗

n (s)
− 1

)
ds

= γ�

∫ t

0
e−νsds

= γ�

ν

(
1 − e−νt

)
,

where

γ ≡ θ
αθ (ε − 1)

ε

E∗

n∗ = θ
(
z∗ + ρ

)
.

Using (19) and the definition of � we rewrite the last term as

ω log n (t) = ω log
n∗

1 + �e−νt

= ω log n0 + ω log
n∗
n0

1 + �e−νt

= ω log n0 + ω log
1 + �

1 + �e−νt
.

These results yield (28).
We now use (28) and the definition of � to write (24) as

log u∗ (t) = log
ε − 1

ε
+ log E∗ + log T (t)

= log

(
ε − 1

ε
Zθ

0n
1

ε−1
0

)
+ log E∗ + g∗t

+ω log
1 + �

1 + �e−νt
+ γ�

ν

(
1 − e−νt

)
.

Without loss of generality, we set

ε − 1

ε
Zθ

0n
1

ε−1
0 = 1

and obtain (29). We then substitute this expression into (1) and write

U∗ =
∫ ∞

0
e−(ρ−λ)t

[
log E∗ + g∗t

]
dt

+γ�

ν

∫ ∞

0
e−(ρ−λ)t

(
1 − e−νt

)
dt

+ω

∫ ∞

0
e−(ρ−λ)t log

1 + �

1 + �e−νt
dt.
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The first and second integrals have straightforward closed form solutions. The third is solv-
able as well, but it entails a complicated expression containing the hypergeometric function
that is not worth using since it adds no insight and does not simplify the algebra in the analysis
below. Hence, we obtain (30).
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