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pace of development when economic growth is endogenously driven by both horizontal

and vertical innovations. Resource exhaustion may occur under both regimes but is

more likely to arise under open access. Under full property rights, positive resource

rents increase expenditures and temporarily accelerate productivity growth, but also

yield a higher resource price at least in the short-to-medium run. We characterize

analytically the welfare e§ect of a regime switch induced by a failure in property rights

enforcement: switching to open access is welfare reducing if the utility gain generated

by the initial drop in the resource price is more than o§set by the static and dynamic

losses induced by reduced expenditure.
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1 Introduction

The gradual abandonment of primary inputs in Öxed supply ñ especially, fossil fuels ñ in

favor of alternative resources capable of natural regeneration is a primary task for most

industries in both advanced and developing countries. Such ìshift to renewablesî raises a

number of microeconomic issues concerning resource management, appropriability, exter-

nalities and potential market failure (see, e.g., Brown, 2000). Moreover, understanding how

the use of renewables a§ects sustainability requires a complete macroeconomic analysis of

the interplay between economic growth and resource exploitation. This paper studies how

di§erent regimes of access rights to renewable natural resources a§ect sustainability and

welfare in the context of modern endogenous growth theory.

In resource economics there is a long tradition of studying access rights in partial equi-

librium. The benchmark bioeconomic model ñ pioneered by Gordon (1954) and Schae§er

(1957), and fully characterized by Clark (1973) ñ typically considers the two polar cases

of open access, in which the resource is accessible to atomistic harvesters that do not con-

trol the evolution of the aggregate resource stock, and full property rights, in which the

sole owner, or a coordinated group of harvesters, controls the resource stock and there-

fore adjusts the time proÖle of harvesting to the dynamics of the resource base. The most

popular result, known as the Tragedy of the Commons (Hardin, 1968), is that open access

may induce resource exhaustion because atomistic harvesters maximize current rents ne-

glecting the e§ects of current harvesting on future resource scarcity. Related contributions

emphasize that, when both regimes yield positive resource stocks in the long run, the levels

attained under di§erent regimes depend on the speciÖcation of harvesting costs and discount

rates (Zellner, 1962; Plourde, 1970). Importantly, because this literature focuses on partial-

equilibrium models, its results are highly sensitive to the assumption that prices and the

interest rate are exogenous (Clark, 2005). The Gordon-Schae§er-Clark bioeconomic model

has been seldom studied in the general equilibrium framework of modern growth theory.

Consequently, we still lack of a satisfactory treatment of the dependence of growth on access

rights. This gap in the existing literature motivates our analysis.

Notable attempts at integrating resource and growth economics that preceed ours are

Tahvonen and Kuuluvainen (1991; 1993) and Ayong Le Kama (2001). Both introduce re-

newable resources and pollution in the neoclassical Solow-Ramsey model and study the

interactions between harvesting and negative externalities. Bovenberg and Smulders (1995)

analyse the same issues in the context of endogenous growth. Our analysis departs from

these contributions in two fundamental respects. First, we abstract from pollution exter-
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nalities and provide, instead, a detailed comparison of open access and full property rights

over a renewable resource that exclusively plays the role of essential production input. Sec-

ond, we employ a Schumpeterian model of endogenous growth in which di§erent types of

innovations coexist.

The distinctive feature of our framework is that productivity growth stems from innova-

tions pursued by incumbent Örms as well as by new Örms entering the market.1 Incumbent

Örms invest in projects aimed at increasing their own total factor productivity (vertical

innovation). At the same time, entrants invest in projects that develop new products and

set up production and marketing operations to serve the market (horizontal innovation).

The rationale for using this approach is three-fold. First, this class of models is receiving

strong empirical support in explaining historical patterns of innovation activity and eco-

nomic growth (Madsen, 2010; Madsen and Timol, 2011). Second, the interaction between

the mass of Örms and technological change within the Örm eliminates scale e§ects ñ that

is, long-run growth rates do not depend on the size of endowments ñ a property that is

empirically plausible (Laincz and Peretto, 2006; Ha and Howitt, 2007) and is furthermore

realistic in the present context where input endowments include a stock of natural resources.

Third, the model is analytically tractable, a highly desirable feature in the present context.

A major reason for the lack of general-equilibrium analyses of access rights and economic

growth is, as Brown (2000) put it, that ìIntroducing one more di§erential equation to ac-

count for renewable resource dynamics makes it di¢cult to get general analytical solutions

and much of the profession continues to Önd it tasteless to rely on computer-aided answersî.

Our model yields a detailed characterization of the dynamics of the resource stock, income

levels and productivity growth, both in the transition and in the long run. This allows us

to compare equilibrium paths under both regimes and to obtain three sets of results.

The Örst set of results concerns the e§ect of property rights regimes on resource scarcity

and sustainable resource use. Both regimes may yield resource exhaustion or sustained

growth in the long run, but the condition for long-run sustainability is always more restric-

tive under open access: if the intrinsic regeneration rate of the natural resource falls within

a speciÖc interval of values, the economy experiences the Tragedy of the Commons under

open access but sustained resource extraction ñ and, hence, sustainable economic growth ñ

under full property rights. When natural regeneration is su¢ciently intense to induce sus-

1The framework, pioneered by Peretto (1998) and Peretto and Connolly (2007), has been recently applied

to study the role of resources in Öxed supply ñ like, e.g., land ñ in a closed economy (Peretto 2012) and in

a two-country, world general equilbrium model with asymmetric trade (Peretto and Valente 2012). In this

paper we extend it to the case of renewable resources.
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tained growth under both regimes, the resource stock is always higher under full property

rights. Importantly, this last result does not imply that the resource price is necessarily

lower under full property rights. The reason is that, in our model, the equilibrium value

of resource rents is a§ected by both resource scarcity and income dynamics and ñ contrary

to standard partial equilibrium models ñ income dynamics are driven by endogenous pro-

ductivity growth. SpeciÖcally, full property rights induce a downward pressure on prices

via scarcity e§ects (i.e., the resource stock tends to be preserved relatively to open access)

as well as an upward pressure on prices via rent e§ects (i.e., resource harvesters with full

ownership charge a higher price for given quantity).

The second set of results concerns the impact of resource property rights on market

size, innovations and productivity growth. We show that, under full property rights, the

market for manufacturing goods is always larger because strictly positive resource rents

yield additional income that boost household spending. A larger market size, in turn,

attracts entrants so that the economy converges to a steady state with a larger mass of

Örms. Productivity growth, however, is not faster because the process of entry in the

manufacturing sector sterilizes the scale e§ect: in the long run, Örm size and growth rates

are the same in the two regimes.

The third set of results concerns the overall e§ect on consumption and welfare of a regime

switch. A shift from full property rights to open access generates negative transitional e§ects

ñ namely, a productivity slowdown and a gradual increase of natural resource scarcity ñ but

also intantaneous level e§ects having a potentially ambiguous impact on consumption levels:

the permanent reduction in expenditure is mitigated by a reduction in the resource price,

because open access implies zero net rents from harvesting and thereby lower unit cost for

resource inputs. Therefore, switching to open access is welfare reducing only if the utility

gain generated by the initial drop in the resource price is more than o§set by the static and

dynamic losses induced by lower expenditures and transitional growth.

The plan of the paper is as follows. Section 2 describes the model setup. Section

3 derives the general equilibrium relationships that characterize the economy under each

regime. Section 4 compares the two regimes in terms of equilibrium outcomes and studies

the welfare impact of a regime switch. Section 5 concludes.
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2 AModel of Renewable Resources and Endogenous Growth

The supply side of the economy comprises a Önal sector producing the consumption good,

a manufacturing sector producing di§erentiated intermediate inputs, and a resource sector

that supplies harvest goods to Önal producers. In the manufacturing sector, incumbents

invest in R&D that raise own productivity (i.e., vertical innovations) while outside entrepre-

neurs develop new varieties of intermediate inputs and start new Örms to serve the market

(i.e., horizontal innovations). The resource sector may operate under two di§erent regimes

ñ open access or full property rights ñ that determine di§erent time paths of resource rents

and income levels as a result of households choices.

2.1 Final Producers

A representative competitive Örm produces Önal output, Y , by means of H units of a

ìharvest goodî drawn from a stock of a renewable natural resource, LY units of labor and

n di§erentiated manufacturing goods. The technology is

Y (t) = H (t) LY (t)

Z n(t)

0
Xi (t)

 di; +  +  = 1; (1)

where Xi is the quantity of manufacturing good i and t 2 [0;1) is the time index. The

Önal producer demands inputs according to the usual conditions equating value marginal

productivities to remuneration rates. The demand schedules for labor and resource read

LY (t) = 
PY (t)Y (t)

W (t)
; (2)

H (t) = 
PY (t)Y (t)

PH (t)
; (3)

where PY is the price of Önal output, W is the wage rate, and PH is the resource price. The

condition for Xi yields

Xi (t) =

"
PY (t)H (t)

 LY (t)


PXi (t)

# 1
1

; i 2 [0; n (t)] ; (4)

where PXi is the price of good i.

2.2 Manufacturing Sector: Incumbents

The manufacturing sector consists of single-product Örms that supply di§erentiated goods

under monopolistic competition. The typical Örm produces with the technology

Xi (t) = Zi (t)
  (LXi (t) ) ; 0 <  < 1;  > 0 (5)
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where Zi is Örm-speciÖc knowledge,  is the associated elasticity parameter, LXi is labor

employed in manufacturing production and  is a Öxed labor cost. Technology (5) exhibits

constant returns to scale to labor but Örmís productivity may increase over time by virtue

of in-house R&D. SpeciÖcally, the Örmís knowledge grows according to

_Zi (t) =  K (t)LZi (t) ;  > 0 (6)

where  is an exogenous parameter, LZi is labor employed in vertical R&D, and K is the

stock of public knowledge available to all manufacturing Örms. Public knowledge is the

average knowledge in the manufacturing industry,

K (t) =
1

n (t)

Z n(t)

0
Zj (t) dj; (7)

which is taken as given at the Örm level.2 The Örm maximizes

Vi (t) =

Z 1

t
Xi (s) e


R s
t (r(v)+)dvds;  > 0 (8)

subject to (6)-(7) and the demand schedule (4), where Xi = PXiXiWLXiWLZi is the

instantaneous proÖt, r is the interest rate and  is the exogenous death rate. The solution

to this problem, derived in the Appendix, yields a symmetric equilibrium where each Örm

produces the same output level and captures the same fraction 1=n of the market:

PXi (t)Xi (t) =
1

n (t)
 PY (t)Y (t) ; (9)

where PY Y is the Önal producerís expenditure on manufacturing goods.

2.3 Manufacturing Sector: Entrants

Entrepreneurs develop new products and set up new Örms to serve the market. These

operations require labor in proportion to the value of the good to be produced.3 Without

loss of generality, we denote the entrant as i and write the sunk entry cost as

W (t)LNi (t) =  PXi (t)Xi (t) ;  > 0 (10)

where LNi is labor employed in entry operations and  is a parameter representing techno-

logical opportunity. A free-entry equilibrium requires that the value of the new Örm equals

the entry cost, that is,

Vi (t) =  PXi (t)Xi (t) : (11)
2Peretto and Smulders (2002) provide microeconomic foundations for the knowledge aggregator (7).
3Peretto and Connolly (2007) discuss the microfoundations of this assumption and of several alternatives

that yield the same results.
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In symmetric equilibrium the mass of Örms grows according to

_n (t)

n (t)
=

1

 

W (t)LN (t)

PY (t)Y (t)
 ; (12)

where LN is total employment in entry (see the Appendix).

2.4 Resource Dynamics

The resource stock, S, obeys the regeneration equation

_S (t) = G (S (t))H (t) ; (13)

where G () is natural regeneration and H is harvesting. Following the benchmark model of

renewable resources pioneered by Schaefer (1957), we assume that the regeneration function

takes the logistic form

G (S (t)) = S (t) 

1

S (t)
S


;  > 0; S > 0 (14)

where  is the intrinsic regeneration (or growth) rate and S is the carrying capacity of the

habitat, i.e., the maximum level of the resource stock that the natural environment sustains

when there is no harvesting.

The harvesting technology is

H (t) = BLH (t)  S (t) ; B > 0 (15)

where B is a productivity parameter also known as the ìcatchability coe¢cientî and LH is

the amount of labor employed in harvesting. Employment in harvesting is determined by

the choices of the households, who behave like atomistic extractive Örms and earn a áow of

resource rents given by

S (t) = PH (t)H (t)W (t)LH (t) ; (16)

where PH is the price of the harvest good.

2.5 Household Behavior and Access Rights

We consider a representative household endowed with L units of labor that it can either

sell in the market for the wage W or use to produce the harvest good that it can then sell

in the market for the price PH . The household has preferences

U (t) =

Z 1

0
logC (t)  etdt;  > 0 (17)
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where C (t) is consumption and  is the discount rate. Financial wealth, A, consists of

ownership claims on Örms that yield a rate of return r. The budget constraint reads

_A (t) = r (t)A (t) +W (t)L+ [PH (t)BS (t)W (t)]  LH (t)| {z }
S(t)=resource rents

 PY (t)C (t) ; (18)

where the term in square brackets follows from (15)-(16). The household chooses the time

paths of consumption, C, and employment in harvesting, LH , to maximize (17) subject to

(18). The choice over LH depends on the regime of access rights.

Under open access, the household has no control over the total resource stock, the

constraint (13) does not appear in the household problem, and the Hamiltonian reads

Loa  logC (t) + a (t) _A (t) ; (19)

where a is the marginal shadow value of Önancial wealth. The Örst order condition with

respect to LH then yields maximization of current resource rents.

Under full property rights, instead, the household has full control over the resource stock

and maximizes the present value of the stream of beneÖts in a forward-looking manner:

equation (13) is an explicit constraint in the optimization problem and S is an additional

state variable. Consequently, the current-value Hamiltonian reads

Lpr  logC (t) + a (t) _A (t) + s (t) _S (t) ; (20)

where s is the marginal shadow value of the resource stock.

3 General Equilibrium

Open access and full property rights yield di§erent harvesting plans, which, in equilibrium,

induce di§erent dynamics of consumption and innovation-led growth. Before analyzing

in detail the two regimes, we describe the general equilibrium relations that hold in the

economy independently of the type of access rights on natural resources. All the expressions

discussed below are derived in the Appendix.

3.1 Main Features of the Equilibrium

The economy allocates labor across Öve activities: Önal production, manufacturing produc-

tion, Örm-speciÖc knowledge accumulation (vertical R&D), entry (horizontal R&D), and
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resource harvesting. Because we have assigned the decision concerning employment in har-

vesting to the household, we have in fact modeled the household as determining labor supply

as L LH . Consequently, the labor market clearing condition is

L LH (t) = LY (t) + LX (t) + LZ (t) + LN (t) ; (21)

where LX and LZ denote, respectively, total employment in production and vertical R&D.

Labor mobility yields wage equalization across all activities. We take labor as the numeraire

and set W (t)  1. We also denote expenditure on manufacturing goods by y  PY Y .

The market for the Önal good clears when output equals consumption, Y (t) = C (t).

The household problem yields the Euler equation for consumption growth,

_PY (t)

PY (t)
+
_C (t)

C (t)
=
_y (t)

y (t)
= r (t) : (22)

From (8), the return to Önancial assets is

r (t) =
X (t)

V (t)
+
_V (t)

V (t)
 : (23)

The free-entry condition yields that Önancial wealth ñ the aggregate value of Örms ñ is a

constant fraction of the value of Önal output:

A (t) = n (t)V (t) =    y (t) : (24)

Equilibrium of the Önancial market requires that all rates of return be equal.

As discussed in detail in Peretto (1998) and Peretto and Connolly (2007), models of

this class have well-deÖned dynamics also when one of the two R&D activities shuts down

because it is return-dominated by the other, or even when they both shut down because

they fail to generate the householdís reservation rate of return on saving. For simplicity, we

focus our analysis on the case in which both types of innovation are active and discuss the

role of corner solutions in the Appendix. The growth rate of Örm-speciÖc knowledge is

_Z (t)

Z (t)
=  



y (t)

n (t)


 (r (t) + ) : (25)

Equation (25) shows that larger Örm size y=n increases the typical Örmís vertical R&D

e§ort, boosting productivity growth. The gross growth rate of the mass of Örms is

_n (t)

n (t)
+  =

1    
 


n (t)

y (t)

1

 


 
+

1



_Z (t)

Z (t)

!
: (26)
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The last term in (26) highlights that Örm-speciÖc knowledge accumulation reduces the

expansion rate of product variety because it raises the anticipated post-entry incumbency

cost.

Access rights ináuence the equilibrium of the economy via their e§ect on resource use

and the income it generates. Equation (24) implies that expenditure is a constant fraction

of labor and resource income:

y (t) =
1

1  
 (L+S (t)) : (27)

Di§erent regimes of access rights over resources yield di§erent dynamics of resource rents

and, hence, of consumption expenditure. This mechanism has crucial implications for

growth and welfare, as we show in the next section.

3.2 Equilibrium under Open Access

Under open access, the household chooses employment in harvesting in order to maximize

current rents, while competition forces the price of the harvest good down to the marginal

harvesting cost and thus resource rents to zero. From the Hamiltonian (19), we have

P oaH (t) =
1

BSoa (t)
=) oaS (t) = 0: (28)

From (27), this constant time proÖle of resource income yields an equilibrium with constant

expenditure on the Önal good which, via the saving rule (22), yields that the interest rate

equals the discount rate:

yoa (t) = yoa 
L

1  
and roa (t) = : (29)

This result has important implications for harvesting and innovation.

Proposition 1 (Natural resource dynamics under Open Access) Harvesting is proportional

to the existing resource stock:

Hoa (t)

Soa (t)
= Byoa =

BL

1  
: (30)

The regeneration equation (13) becomes

_Soa (t) =


 

BL

1  


 Soa 


S
 (Soa)2 ; (31)

and yields

lim
t!1

Soa (t) = Soass 

8
<

:

S
 

  BL

1 


if  > oa  BL

1 

0 if  6 oa
: (32)
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There exists a condition on the parameters determining whether the economy experi-

ences natural resource exhaustion or it reaches a steady state with a positive stock. The

condition for long-run preservation,  > oa, says that the intrinsic regeneration rate  must

be su¢ciently high to compensate for the adverse e§ects of consumersí impatience (a high

 boosts current consumption and thereby harvesting), resource dependency in production

(a high  yields a large demand for the harvesting good), and e¢ciency in harvesting (a

high B raises the incentive to hire workers in harvesting). For  6 oa the open-access

economy experiences the Tragedy of the Commons: the rent-maximizing harvesting rule is

unsustainable and the resource stock eventually vanishes.

The equilibrium paths of the innovation rates are as follows.

Proposition 2 (Innovation dynamics under Open Access) The rate of accumulation of

Örm-speciÖc knowledge is

_Zoa (t)

Zoa (t)
=  

yoa

noa (t)
 (+ ) : (33)

The mass of Örms follows a logistic process with constant coe¢cients,

_noa (t)

noa (t)
=  


1

noa (t)

~noa


;  

1      (+ )
 

(34)

where  is the intrinsic growth rate, and

~noa  yoa 
1      (+ )
 (+ )  1

: (35)

is the carrying capacity. In the long run, the mass of Örms converges to the carrying-capacity

level

noass  lim
t!1

noa (t) = ~noa:

One implication of Proposition 2 is that the engine of growth in the long run is Örm-

speciÖc knowledge accumulation. Entry generates transitional dynamics in the mass of Örms

but, due to the Öxed operating cost , it is not self-sustaining. Consequently, in steady state

the rate of entry exactly compensates for the death rate of Örms . The long-run mass of

Örms noass , on the other hand, determines long-run Örm size, yoa=noass , and thus long-run

growth. The interpretation is that, at any point in time, the equilibrium of factors market

and the consumption/saving decision of the household determine the size of the market for

manufacturing goods, yoa. This, in turn, determines the carrying capacity in the logistic

equation characterizing the equilibrium proliferation of Örms. Peretto and Connolly (2007)

discuss in detail the intuition for why these logistic dynamics arise in a broad class of models
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and how they relate to the literature. The reason why these models exhibit logistic, instead

of exponential, growth of the mass of frms is that they (re)introduce the Öxed operating

costs of the static theory of product variety that Örst-generation endogenous growth models

set to zero.4 In this paperís speciÖc application of the Schumpeterian framework, the Önite

amounts of labor and of the natural resource are the force that limits the proliferation of

a ìspecieî ñ Örms/products ñ through the crowding e§ect implied by the Öxed operating

cost.

3.3 Equilibrium under Full Property Rights

Under full property rights, harvesting satisÖes the Hotelling rule: the marginal net rent

must grow over time at the rate of interest net of the marginal beneÖts from resource

regeneration.5 We show this result in the Appendix. Here, we focus on the components

of the household harvesting plan that identify the key channels through which such plan

a§ects macroeconomic outcomes.

First, resource rents are strictly positive because the household chooses the extraction

path so to equalize the proÖts from harvesting to the marginal shadow value of the resource

stock:

prS (t) = ypr (t)  prs (t)H
pr (t) : (36)

Second, the resource price is

P prH (t) =
1

BSpr (t)
+ ypr (t)  prs (t)| {z }

scarcity rent

: (37)

Third, from (27) and (36) we obtain

ypr (t) =
L

1    prs (t)Hpr (t)
. (38)

According to hese expressions, resource rents are not a constant fraction of consumption

expenditure because the incentives to harvest depend on the marginal shadow value of the

4Setting  = 0 in (34) yields that the mass of Örms does not follow a logistic process anymore but grows

forever, exactly like in expanding-varieties models ‡ la Grossman and Helpman (1991).
5The Hotelling rule ñ named after Hotelling (1931) ñ asserts that an e¢cient harvesting plan requires

that the growth rate of the marginal net rents from harvesting equal the interest rate minus the shadow

value of all the positive feedback e§ects that a marginal increase in the resource stock induces on current

rents and on future consumption beneÖts from resource use. If the resource is non-renewable and harvesting

costs are independent of the resource stock, the feedback e§ects are zero and the Hotelling rule asserts that

the growth rate of the marginal net rents from harvesting equal the interest rate.
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resource stock. Di§erently from the open access regime, full property rights induce an

equilibrium path where expenditure and the interest rate are time-varying. The reason is

that the economyís rate of return continuously adjusts to the dynamics of resource rents

generated by the harvesting choices of forward-looking resource owners.

We can study the equilibrium path of the economy by constructing a two-by-two sys-

tem that governs the joint dynamics of the shadow value of the resource stock, m (t) 

prs (t)S
pr (t), and the physical resource stock, Spr (t).

Proposition 3 (Natural resource dynamics under Full Property Rights) Harvesting is a

monotonously decreasing function of the shadow value of the resource stock:

Hpr

Spr
= (m) 

2BL

1   +BLm+
q
(1   +BLm)2  4BLm

: (39)

The associated dynamical system consists of the costate equation generated by the Hamil-

tonian (20) and the regeneration equation (13) evaluated at the harvesting rule (39):

_m (t)

m (t)
= +


S
Spr (t)



m (t)
; (40)

_Spr (t)

Spr (t)
=  


S
Spr (t)  (m (t)) : (41)

The system is saddle-path stable and converges to:

limt!1m (t) = mss 

8
<

:


+(= S)Sprss

if  > pr   (mss)


 if  6 pr

;

limt!1 Spr (t) = Sprss 

(
S
  (   (mss)) if  > pr   (mss)

0 if  6 pr
:

(42)

Figure 1 illustrates the dynamics in the two cases:  > pr yields positive resource

stock in the steady state (left diagram) whereas  < pr leads to resource exhaustion (right

diagram). The condition for long-run resource preservation is conceptually analogous to

that obtained under open access: if the intrinsic regeneration rate is too low, resource

exhaustion occurs. However, the intrinsic regeneration rate triggering exhaustion under

full property rights, pr   (mss), di§ers from that obtained under open access, oa. We

discuss this point in detail in section 4.

The convergence results in (42) imply that consumption expenditure and the interest

rate are constant in the long run: from (38) and (22), we obtain

lim
t!1

ypr (t) = yprss 
L

1  mss (mss)
and lim

t!1
rpr (t) = : (43)
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Figure 1: Dynamics under full property rights according to Proposition 3. Left graph: the

case  > pr implies positive resource stock in the long run. Right graph: the case  < pr

leads to long-run resource exhaustion.

In light of these results, we can characterize the dynamics of innovation as follows.

Proposition 4 (Innovation dynamics under Full Property Rights) The rate of accumula-

tion of Örm-speciÖc knowledge is

_Zpr (t)

Zpr (t)
=  

ypr (t)

npr (t)
 (rpr (t) + ) :

The mass of Örms follows the logistic process with time-varying carrying capacity

_npr (t)

npr (t)
=  


1

npr (t)

~npr (t)


;  

1      (+ )
 

where  is the intrinsic growth rate, and

~npr (t)  ypr (t) 
1      (+ )
 (rpr (t) + )  1

is the carrying capacity. In the long run, since ypr (t)! yprss and rpr (t)!  , we have

nprss  lim
t!1

npr (t) = lim
t!1

~npr (t) = yprss 
1      (+ )
 (+ )  1

: (44)

Proposition 4 can be interpreted along similar lines as Proposition 2: the mass of Örms

follows a logistic process converging towards a stable carrying-capacity level nprss . As we

noted above, the Önite amounts of labor and of the natural resource limit the prolifera-

tion of a ìspecieî ñ Örms/products ñ that would otherwise grow exponentially. Unlike the
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open-access regime, the carrying capacity of Örms changes over time due to agentsí inter-

nalization of the dynamics of the natural resource stock. More generally, human activity

ñ i.e., harvesting ñ a§ects the evolution of the resource stock by modifying the habitat in

which it grows. The evolution of the resource stock, in turn, a§ects the ìeconomic habitatî

in which Örms grow in number and size. Productivity growth in the long run is driven by

vertical innovation, whose incentives depend on Örm size.

The crucial di§erence between the open access and the full property rights regimes

is that in the former the economy lacks a price signal of scarcity capable of inducing an

adaptive response of resource extractors to the changing habitat. This is why the Tragedy

of the Commons occurs for a larger set of values of the natural regeneration rate than under

full property rights, as we show in section 4 below.

3.4 Equilibrium Growth Rates

The model yields a clear characterization of equilibrium consumption and growth rates. In

equilibrium, the logarithm of consumption in each instant equals

logC (t) = log a+ log y (t)| {z }
market size

 logPH (t)| {z }
input cost

+ log
h
(n (t))1 (Z (t))

i

| {z }
TFP

; (45)

where we have deÖned the constant a  2 . This expression shows that consumption

is higher the higher is the value of Önal output (market-size e§ect), the lower is the resource

price (input-cost e§ect), and the higher is total factor productivity (TFP) determined by

the mass of Örms and by the Örm-speciÖc knowledge stock. Accordingly, the growth rate of

consumption is

g (t) 
_C (t)

C (t)
= r (t)  

_PH (t)

PH (t)
+ (1 )

_n (t)

n (t)
+ 

_Z (t)

Z (t)
: (46)

In the long run, the resource stock, the harvesting rate, the interest rate and the mass

of manufacturing Örms are all constant in both regimes. Consequently, the only source

of consumption growth in the long run is Örm-speciÖc knowledge growth. An important

implication of Propositions 2 and 4, then, is that the economyís steady-state growth rate is

the same under open access and under full property rights.

Proposition 5 (Steady-state growth) In the long run, Örm size is the same in the two

regimes, i.e.,

lim
t!1

yoa

noa (t)
= lim

t!1

ypr (t)

npr (t)
=
1      (+ )
 (+ )  1


yss
nss

; (47)
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implying the same long-run growth rate in the two regimes:

lim
t!1

g (t) = lim
t!1


_Z (t)

Z (t)
=  


 

yss
nss

 (+ )

> 0: (48)

The reason why growth rates coincide is that, in our framework, the interaction between

horizontal and vertical innovations fragments the intermediatesí market into submarkets

whose size does not depend on endowments: although the long-run levels of expenditures

and of the mass of Örms di§er between the two regimes, the market share of each Örm

converges to the same equilibrium level ñ determined by expression (47). Armed with these

results, we can investigate in detail the role of the regime of access rights.

4 Regime Comparison

In this section we compare the two regimes in four respects. First, we combine our previous

results concerning long-run equilibria to compare the steady-state values of resource stocks,

expenditures, and mass of Örms, under the two regimes (subsection 4.1). Second, we show

that di§erent regimes of property rights induce contrasting e§ects on the equilibrium value

of the resource price (subsection 4.2). Third, we distinguish between instantaneous and

transitional e§ects of property rights regimes on consumption (subsection 4.3). Fourth, we

characterize analytically the welfare impact of a regimes switch from full property rights to

open access (subsection 4.4).

4.1 Long-Run Equilibria

We Örst focus on the dynamics of the resource stock and investigate the conditions for

sustainable growth in the two regimes.

Proposition 6 (Sustainability in the two regimes) The condition for long-run resource

preservation is more restrictive under open access: pr < oa. Consequently, there are three

cases:

(i) For pr < oa < , both regimes yield resource preservation and positive production in

the long run, with

Sprss > Soass ; yprss > yoa; nprss > noass :

(ii) For pr <  < oa, the economy is sustainable under full property rights (Sprss > 0) but

experiences the Tragedy of the Commons under open access (Soass = 0).
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Figure 2: Regime Comparison according to Proposition 6. The black bold trajectory repre-

sents full property rights. The grey bold trajectory along the vertical axis represents open

access.

(iii) For  < pr < oa, both regimes yield resource exhaustion and zero production in the

long run.

The intuition behind the Örst statement in Proposition 6 follows immediately from the

regeneration equation (13). To preserve the resource stock in the long run, the intrinsic

regeneration rate  must be able to compensate for the depletion due to harvesting. Under

open access, harvesting is more intense because agents do not consider the e§ects of current

exploitation on future scarcity. Also, full property rights generate a higher level of expen-

diture that induces more intense entry during the transition and, consequently, more Örms

in the intermediate sector in the long run.

Figure 2 illustrates the dynamics of the resource stock S (t) and of its shadow value

m (t) in the three scenarios listed in Proposition 6. The grey trajectories along the vertical

axis ñ i.e., a zero shadow value in each instant ñ represent open access whereas the black

trajectories are associated with full property rights. When (i) both regimes exhibit preser-

vation, more intense harvesting under open access yields a lower resource stock in the long

run. Alternatively, we may observe (ii) the Tragedy of the Commons under open access, or

(iii) asymptotic exhaustion in both regimes. Figure 2 clariÖes that open access is a special

case of full property rights that obtains for m (t) = 0 because agents do not internalize the

regeneration equation (13) in their intertemporal choices.
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4.2 Resource Price: Scarcity versus Rent E§ects

The equilibrium value of the resource price is a§ected by property rights regimes in two

ways. First, the resource price at a given instant reáects current scarcity ñ i.e., the current

level of the resource stock ñ and di§erent regimes entail di§erent degrees of resource preser-

vation. Second, under full property rights, the resource price is also a§ected by income

dynamics through the rent e§ect ñ that is, forward-looking extractors with full ownership

make positive proÖts by charging a higher price than under open access given the same

resource stock (cf. subsection 3.3). The interplay between scarcity e§ects and rent e§ects

yields the following result.

Proposition 7 (Resource price in the two regimes). For a given level of the resource stock

Soa (t) = Spr (t) = S (t), positive resource rents under under full property rights imply a

higher resource price than under open access:

P oaH (t) =
1

BS (t)
< P prH (t) =

1

BS (t)
+ ypr (t)prs (t)| {z }

Rent e§ect

:

In long-run equilibria with positive preservation, the resource stock is higher under full

property rights, Sprss > Soass > 0, but the rent e§ect implies an ambiguous price gap:

lim
t!1

P oaH (t) =
1

BSoass
R lim

t!1
P prH (t) =

1

BSprss| {z }
Scarcity e§ect

+ lim
t!1

ypr (t)prs (t)
| {z }

Rent e§ect

:

In general, full property rights induce an upward pressure on prices via the rent e§ect as

well as a downward pressure via scarcity e§ects. If we compare the two regimes at time zero,

when the resource stock is given, the resource price is necessarily higher under full property

rights because the rent e§ect is fully operative and is not mitigated by scarcity e§ects.

As the two economies converge to their respective steady states, however, full property

rights imply more intense resource preservation (cf. Figure 2), and the resulting scarcity

e§ect may, but does not necessarily, determine a lower price than under open access. The

implications of this tension between scarcity and rent e§ects for consumption and welfare

may be substantial, as we show below.

4.3 Consumption: Expenditure-Price Tradeo§ and Transitional E§ects

Di§erent harvesting regimes determine di§erent paths of resource price, income and con-

sumption. This mechanism has two main components. The Örst is the expenditure-price
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tradeo§ captured by the Örst two terms in (45). High expenditure levels do not necessarily

imply high consumption: if the resource price is also high, the positive impact of market size

may be more than o§set by the negative impact of input costs. This observation is immedi-

ately relevant to our regime comparison. On the one hand, full property rights yield higher

expenditures relative to open access: from (27), positive resource rents imply ypr (t) > yoa

in each t. On the other hand, full property rights determine a higher resource price at time

zero and, possibly, in the long run (cf. Proposition 7). The expenditure-price tradeo§ thus

suggests that full property rights do not necessarily enhance consumption at each point in

time. In particular, open access can yield higher consumption in the short run.

The second source of consumption gaps between the two regimes is given by di§erences

in transitional growth rates. Expression (46) captures the relevant components. On the

one hand, equilibrium interest rates di§er during the transition because full property rights

yield positive and time-varying proÖts from harvesting (cf. subsection 3.3). On the other

hand, productivity growth rates di§er between regimes during the transition: entry in

manufacturing proceeds at di§erent speeds because, starting from a given initial condition

n (0), the mass of Örms must reach di§erent long-run levels, nprss or noass , in the two regimes.

All these mechanisms jointly determine the overall impact of property rights regimes

on consumption and thereby on present-value welfare. In particular, the expenditure-price

tradeo§ suggests that open access is not necessary welfare-reducing. Although open access is

by deÖnition a regime that fails to maximize present-value resource rents, it is not possible to

conclude that full property rights are always Pareto-superior because access rights interact

with other market failures ñ namely, monopolistic competition in manufacturing and non-

decreasing returns to R&D ñ and the favorable impact of open access on resource prices

can be substantial. The next subsection sheds further light on this issue by analyzing the

welfare e§ects of a regime shift.

4.4 Regime Switch: From Property Rights to Open Access

Suppose that the economy is initially in the steady-state equilibrium of the full property

rights regime with positive resource stock (i.e., pr < ). At time t = 0, the economy

suddenly shifts to open access ñ as a result of, e.g., failure in enforcing property rights.

The overall impact of the regime switch on welfare depends on the combination of the

instantaneous and transitional e§ects discussed below.

Instantaneous level e§ects. At time zero, the regime switch induces two instantaneous

adjustments: expenditure jumps down, from yprss to yoass , and the resource price jumps down,
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Figure 3: E§ects of a regime switch from full property rights to open access at time t = 0.

Scenario I: welfare loss (consumption is always below the baseline level). Scenario II: welfare

gain (consumption is always above the baseline level). Scenario III: ambiguous welfare e§ect.

from

P prH


ss
= (1 +Byprssm

pr
ss) =BS

pr
ss to P oaH = 1=BSprss . From expression (45), the ratio

between consumption levels (immediately) before and (immediately) after the switch is

Cpr (0)

Coa (0+)
=
yprss
yoass



P oaH (0+)

P prH (0)


=
yprss
yoass




1

1 +Byprssm
pr
ss



This ratio may be above or below unity in view of the expenditure-price tradeo§. Hence,

the overall level e§ect is generally ambiguous: at the time of the regime switch, we may

observe either an instantaneous drop or an instantaneous increase in consumption.

Transitional growth e§ects. After time 0, there are two types of transitional e§ects

respectively induced by productivity growth and resource scarcity. First, there is a transi-

tional slowdown in productivity growth via both horizontal and vertical innovations: the

switch to open access reduces the mass of Örms over time (n must move from the initial

state nprss to the new steady state noass < nprss) and also reduces the growth rate of Örm-speciÖc

knowledge as a result of reduced expenditure. As a consequence, the transitional growth

rate of TFP after the switch is smaller than the rate enjoyed before ñ in fact, it may even

be negative because the mass if Örms is shrinking. The second transitional e§ect results

from increased scarcity: the resource stock moves from the initial state Sprss to Soass < Sprss ,

and this decline increases the resource price after the initial instantaneous drop.

Overall e§ect on welfare. After the switch, the consumption path generated by open

access may be above or below the baseline path ñ i.e., the path, characterized by permanent

full property rights, that the economy would have followed without the regime switch. The

20



reason is the ambiguous impact of the instantaneous level e§ects: while the transitional

growth e§ects (i.e., productivity slowdown and increased scarcity) tend to reduce consump-

tion after the regime switch, the initial drop in the resource price may be strong enough

to raise consumption above the baseline level at time zero. Figure 3 describes the possible

outcomes according to three scenarios. If the initial jump in consumption is downward, the

entire time proÖle of consumption for t > 0 is strictly below the baseline path ñ in which

case, the switch to open access yields a welfare loss. If the initial consumption jump is

upward, the impact on welfare is positive if consumption remains forever above the baseline

path, and is generally ambiguous if consumption falls short of the baseline path at some

Önite time.

Since the model yields a closed-form solution for the equilibrium path after the regimes

switch, we can assess the scope of possible ambiguities in welfare e§ects analytically:

Proposition 8 The welfare change experienced by an economy that switches to the open

access regime is

 (Uoa  Uprss ) = Bmpr
ssy

pr
ss| {z }

Initial price drop



1

yoa

yprss


1 +

'

+ 



| {z }
Expenditure fall ampliÖed

by productivity slowdown




+ !


1

Soass
Sprss



| {z }
Increased scarcity

: (49)

Proposition 8 formally establishes that the switch to open access yields a welfare loss

unless the positive e§ect of the initial drop in the resource price is large enough to com-

pensate for the negative e§ects induced by (i) the instantaneous fall in expenditure due to

the destruction of the áow of resource rents; (ii) the transitional slowdown of TFP growth

induced by reduced expenditure; (iii) the gradual increase in resource scarcity. This result

suggests a more general conclusion that abstracts from the experiment of regime switching:

full property rights improve welfare relative to open access if the utility cost induced by pos-

itive resource rents is more than o§set by the static gains generated by higher expenditure

and the dynamic gains induced by faster (transitional) productivity growth.

It is self-evident that our results concerning the welfare impact of property-rights regimes

Örmly hinge on the endogeneous nature of both the resource price and the productivity

growth rate. This property di§erentiates our analysis from the traditional resource eco-

nomics literature, which typically employs partial equilibrium models.
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5 Conclusion

This paper analyzed the impact of di§erent regimes of access rights to renewable natural

resources on sustainability conditions, innovation rates and welfare levels in a Schumpeterian

model of endogenous growth. The crucial di§erence between open access and full property

rights is that, in the former, the economy lacks a price signal of scarcity capable of inducing

an adaptive response of resource extractors to the changing habitat. Consequently, the

critical condition for long-run sustainability is always more restrictive under open access:

the economy might experience the Tragedy of the Commons under open access and sustained

economic growth under full property rights.

Full property rights yield positive rents from harvesting and therefore higher expenditure

relative to open access: the bigger market size induces faster productivity growth during

the transition via both horizontal and vertical innovations. However, positive rents also

imply that the resource price is lower under open access given the same resource stock.

Consequently, a failure in property-rights enforcement that induces a regime switch to

open access generates negative transitional e§ects via slower productivity growth but also

ambiguous level e§ects on consumption because reduced resource prices mitigate the impact

of lower expenditures. The closed-form solution delivered by the model shows that switching

to open access is welfare reducing if the utility gain generated by the initial drop in the

resource price is more than o§set by the static and dynamic losses induced by reduced

expenditure.

The crucial role played by endogenous prices and endogenous productivity growth in

our conclusions conÖrms that a proper understanding of the relationship between long-

term sustainability and property-rights regimes requires a full general equilibrium analysis.

In particular, the vertical structure of production that characterizes our model implies

that prospects for sustainability hinge on the link between price formation in upstream

extraction/harvesting and the incentives to innovate faced by downstream industries: this

topic deserves further research at both the theoretical and the empirical levels.
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A Appendix

Manufacturing sector (incumbents): maximization problem. Using the demand

schedule (4) and the technology (5), the incumbent Örmís proÖt equals

Xi =

"
PYH

LY
PXi

# 1
1 h

PXi WZi

i
WLZi W: (A.1)

The Örm maximizes (8) subject to (A.1) and (6)-(7), using PXi and LZi as control variables,

Örm-speciÖc knowledge Zi as the state variable, taking public knowledge K as given. The

current-value Hamiltonian is

Lxi  Xi =

"
PYH

LY
PXi

# 1
1 h

PXi WZi

i
WLZi W+ xi  KLZi; (A.2)

where xi is the dynamic multiplier associated to (6). Since the Hamiltonian is linear in

LZi, we have a bang-bang solution. The necessary conditions for maximization read

1 =
1

1 

"
PXi WZi

PXi

#
; (A.3)

xi  K W 6 0 ( < 0 if LZi = 0, = 0 if LZi > 0); (A.4)

(r + )  xi  _
x
i =  XiWZ1i : (A.5)

Condition (A.3) follows from @Lx=@PXi = 0 and yields the standard mark-up rule

PXi =
1


WZi : (A.6)

Condition (A.4) is the Kuhn-Tucker condition for R&D investment: in an interior solution,

the marginal cost of employing labor in vertical R&D activity (W ) equals the marginal

beneÖt of accumulating knowledge (xi K). Condition (A.5) is the co-state equation for

knowledge: with strict equality in (A.4), substitution of both xi = W= (K) and (A.6) in

(A.5) yields

r +  =  
XiPXi
W

 
K

Zi
+

_W

W

_K

K
: (A.7)

Manufacturing sector (incumbents): symmetry. The symmetry of the equilib-

rium is established in detail in Peretto (1998: Proposition 1) and Peretto and Connolly

(2007). Applying the same proof to the present model, the mark-up rule (A.6) is invariant

across varieties and implies the same price PXi, the same quantity Xi, and the same em-

ployment in production LXi for each i 2 [0; n]. Therefore, we can combine (A.3) and (A.6)

1



to write each Örmís market share as in expression (9) in the main text. Concerning the

knowledge stock, from (7) and (6), the equilibrium growth rate under symmetry is

_K=K = _Zi=Zi = _Z=Z =   LZi; (A.8)

where we can substitute LZ = nLZi to obtain

_Z

Z
=  

LZ
n
: (A.9)

Manufacturing sector (entry): derivation of (12). Given a constant death rate of

Örms , the mass of entrants in each instant equals the gross variation in the mass of Örms

_n+n. This implies that total labor employed in entry activities equals LN = LNi ( _n+ n),

and equation (10) may be written as

WLN = ( _n+ n) PXiXi: (A.10)

Rearranging terms, we have
_n

n
=

WLN
 nPXiXi

 ; (A.11)

where we can substitute (9) to obtain (12).

General equilibrium: derivation of (22). In both regimes of access rights ñ see the

Hamiltonians (20) and (20) ñ the household problem yields the necessary conditions

1=C = aPY ; (A.12)

_a = a (r  ) ; (A.13)

from which we obtain the standard Keynes-Ramsey rule (22).

General equilibrium: derivation of (23). Time-di§erentiating (8) yields (23).

General equilibrium: derivation of (24). Combining (9) with (11), we obtain (24).

General equilibrium: derivation of (25). Substituting (A.8) in (A.7) yields

_Z

Z
=

_W

W
+ 2 

PY Y

Wn
 (r + ) : (A.14)

Setting W = 1 in (A.14) yields equation (25) in the text.

General equilibrium: derivation of (26). Time-di§erentiating the free entry con-

dition (24), we obtain
_Vi
Vi
=
_PY
PY

+
_Y

Y

_n

n
: (A.15)

2



Substituting (A.15) in (23) to eliminate _Vi=Vi yields

r +  +
_n

n
=

_PY
PY

+
_Y

Y
+
Xi
Vi

(A.16)

where, because C = Y , we can use the Keynes-Ramsey rule (22) to obtain

_n

n
=
Xi
Vi

  : (A.17)

Substituting (A.6) and (A.9) in the deÖnition of proÖts Xi, we have

Xi =  (1 ) 
PY Y

n
WW

1



_Z

Z
: (A.18)

Substituting (A.18) in (A.17), and using (24) to eliminate Vi, we have

_n

n
=
1 
 

W
n

 PY Y


"
+

1



_Z

Z

#
  ;

which reduces to (26) for W = 1.

General equilibrium: derivation of (27). Substituting A =   PY Y from (24), as

well as Y = C, in the wealth constraint (18), we obtain

_PY
PY

+
_Y

Y
= r +

L y
   y

+
S
   y

: (A.19)

The Keynes-Ramsey rule (22) then yields

y (1  ) = L+S ; (A.20)

which yields (27) in the text.

Equilibrium under open access: derivation of (28) and (29). Under open access,

normalizing W  1 and recalling expression (18), the Hamiltonian (19) reads

Loa  logCoa + oaa  [r
oaAoa + L P oaY Coa + (P oaH BSoa  1)  LoaH ] ; (A.21)

where Coa and LoaH are control variables and Apr is the only state variable. The necessary

conditions for maximization are:

1=Coa = oaa P
oa
Y ; (A.22)

P oaH BSoa = 1; (A.23)

_
oa
a = oaa  ( r

oa) : (A.24)

3



From (A.23), we have P oaH BSoa = 1 =) oaS = 0, which is expression (28) in the text.

Substituting (28) in (27), we have

P oaY Y oa = L (1  )1 ; (A.25)

which, substituted into the Keynes-Ramsey rule (22), yields roa = .

Equilibrium under open access: proof of Proposition 1. Combining (28) with

(3), we obtain (30). Substituting (30) into (13), we obtain the di§erential equation (31)

which converges to the unique steady state

lim
t!1

Soa (t) =

S=



 

BL

1  


:

Imposing the non-negativity restriction on physical quantities Soa > 0 determines the crit-
ical threshold reported in (31).

Equilibrium under open access: proof of Proposition 2. As noted in the main

text, Proposition 2 assumes that innovation activities are operative in each instant: that is,

the economy uses positive amounts of labor in vertical R&D and entry activites (LZ > 0 and

LX > 0) implying positive rates of public knowledge growth ( _Z (t) > 0) and of gross entry

( _n(t)n(t) +  > 0). A detailed analysis of the implied restrictions on parameters is reported at

the end of this Appendix. Expression (33) is obtained by substituting yoa = yoa and roa = 

from (29) into equation (25). Substituting (33) into (26) yields (34), which is dynamically

stable around the unique steady state noass  limt!1 noa (t) = ~noa.

Equilibrium under Full Property Rights: the Hotelling rule. Under full prop-

erty rights, normalizing W  1 and recalling expression (18), the Hamiltonian (20) reads

Lpr  logCpr + pra 

rprApr + L P prY Cpr +prS


+ prs  _S

pr;

that is,

Lpr  logCpr + pra 

rprApr + L P prY Cpr +prS


Spr; LprH


+

+prs 

G (Spr)Hpr


Spr; LprH


; (A.26)

where Cpr and LprH are the control variables, Apr and Spr are the state variables, and the

functions

S

Spr; LprH





P prH BSpr  1


 LprH ; (A.27)

G (Spr)  Spr 

1


Spr= S


; (A.28)

H

Spr; LprH


 BLprHS

pr; (A.29)
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directly follow from deÖnitions (16), (14) and (15). The necessary conditions for maximiza-

tion are:

1=Cpr = pra P
pr
Y ; (A.30)

@S

Spr; LprH



@LprH
=

prs
pra


@H


Spr; LprH



@LprH
; (A.31)

_
pr
a

pra
=  rpr; (A.32)

_
pr
s

prs
= 

@G (Spr)

@Spr
+
@H


Spr; LprH



@Spr

pra
prs

@S

Spr; LprH



@Spr
; (A.33)

along with the transversality conditions

lim
t!1

pra (t)A
pr (t) et = 0; (A.34)

lim
t!1

prs (t)S
pr (t) et = 0: (A.35)

Henceforth, we denote the marginal net rent from employing an additional unit of labor in

harvesting as

0S 
@S


Spr; LprH



@LprH
=

P prH BSpr  1


=
S

Spr; LprH



LprH
: (A.36)

Time-di§erentiating (A.31), we obtain

_
pr
s

prs

_
pr
a

pra
=
_0S
0S


_Spr

Spr
;

where we can substitute (A.32) and (A.33) to obtain

_0S
0S

= rpr 

(
pra
prs


@S


Spr; LprH



@Spr
+

"
@G (Spr)

@Spr

@H


Spr; LprH



@Spr

#

_Spr

Spr

)
: (A.37)

Equation (A.37) is a generalized Hotelling rule: an e¢cient harvesting plan requires that

the growth rate of the marginal net rents from resource harvesting equal the interest rate

minus the term in curly brackets ñ which represents the shadow value of all the positive

feedback e§ects that a marginal increase in the resource stock induces on current rents and

on future consumption beneÖts from resource use. If the resource were non-renewable and

harvesting costs were independent of the resource stock, the term in curly brackets would

be zero: in that case, equation (A.37) would collapse to the basic Hotellingís (1931) rule
_0S=

0
S =

_PH=PH = rpr.

Equilibrium under Full Property Rights: derivation of (36)-(37). From (A.27)

and (A.29), the Örst order condition (A.31) can be re-written as

pra 

P prH BSpr  1


= prs BS

pr;

5



where we can subtitute pra = 1=

P prY Y pr


from (A.30), and multiply both sides by LprH , to

obtain

P prH BSpr  1


 LprH = prs BS

prLprH  y
pr; (A.38)

which yields expression (37) in the main text. The left-hand side of (A.38) equals current

net rents from harvesting, prS . Therefore, substituting H
pr = BSprLprH from (15) into

(A.38), we obtain equation (36) in the text.

Equilibrium under Full Property Rights: derivation of (38). From (27), we can

rewrite the relation between expenditure and resource rents as

prS (t) = ypr (t) (1  ) L: (A.39)

Substituting prS in (A.39) by means of (36), we obtain

ypr (t) =
L

1    prs (t)Hpr (t)
; (A.40)

that is equation (38) in the text. For future reference, notice that ñ using the resource

demand schedule (3) ñ resource rents can also be written as

jS (t) = P jH (t)H
j (t) LjH (t) = yj (t) LjH (t) : (A.41)

Combining (A.39) with (A.41) under full property rights, it follows that

L LprH (t) = (1    )  y
pr (t) : (A.42)

In any equilibrium with positive Önal output, we must have L > LprH (t) and, consequently,

the parameter restriction

1     > 0: (A.43)

Equilibrium under Full Property Rights: proof of Proposition 3. The proof

hinges on three steps: (i) the derivation of the dynamic system (40)-(41); (ii) the proof of

saddle-point stability; (iii) the proof of results (42).

(i) Dynamic system First, we derive equation (40). From (A.28) and (A.29), we have

@G (Spr)

@Spr

@H


Spr; LprH



@Spr
=   2


= S


 (Spr)BLprH : (A.44)

From (A.30) and (A.27), we respectively have

pra = 1=ypr and
@S


Spr; LprH



@Spr
= P prH BLprH : (A.45)
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Substituting (A.44) and (A.45) into (A.33), as well as Hpr=Spr = BLprH from (15), we

have
_
pr
s

prs
=   + 2


= S


 (Spr) +

Hpr

Spr


1

prs

P prH Hpr

yprSpr
: (A.46)

Substituting P prH by means of (3), we obtain

_
pr
s

prs
=   + 2


= S


Spr +

Hpr

Spr


1

prs



Spr
: (A.47)

From (13) and (15), the growth rate of the resource stock is

_Spr

Spr
=  


= S


Spr 

Hpr

Spr
: (A.48)

Equations (A.47)-(A.48) imply

_
pr
s

prs
+
_Spr

Spr
= +


= S


Spr 



prs S
pr
: (A.49)

Equation (A.49) can be transformed into a di§erential equation governing the shadow

value of the resource stock, m  prs S
pr, which depends on the resource stock:

_m

m
= +


= S


Spr (t)



m
; (A.50)

which is equation (40) in the text. We now derive (41). From (A.38), we have

P prH BSpr = 1 + prs S
pr Bypr: (A.51)

Substituting P prH = ypr=Hpr from (3) into (A.51), and using m  prs S
pr, we have

Spr

Hpr
=

1

Bypr
+
m


: (A.52)

Using (A.40) to substitute ypr in (A.52), and using Hpr = Hpr  Spr=Spr,we obtain

Spr

Hpr
=
1   m  H

pr

Spr

BL
+
m


;

which generates the second-order static equation

BL


Spr

Hpr

2
 (1   +BLm) 

Spr

Hpr
+m = 0: (A.53)

Equation (A.51) determines, at each point in time, the equilibrium stock-áow ratio

Spr=Hpr for given m. The roots of (A.51) are

Spr

Hpr
=
1   +BLm

q
(1   +BLm)2  4BLm

2BL
: (A.54)
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Notice that, in order to ensure a real value for Spr=Hpr, the term under the square

root is constrained to be strictly positive:

(1   +BL m)2  4BL m =

(1  )2 + 2 (1    4)BLm+ (BLm)2 > 0: (A.55)

In order to isolate the admissible root in (A.54), notice that Hpr = BLprHS
pr from

(15) and LprH < L from the requirement of strictly positive labor (see (A.43) above)

imply that Hpr < BLSpr must hold in each instant in an equilibrium with positive

harvesting and positive Önal production. Imposing this inequality in (A.54), we have

BLSpr

Hpr
=
1   +BLm

q
(1   +BLm)2  4BLm

2
> 1: (A.56)

The above inequality can only be satisÖed by the solution exhibiting the plus sign in

front of the square root.6 Inverting the stock-áow ratio in (A.56), we can thus write

Hpr

Spr
= (m) (A.57)

in each instant t in which there is an equilibrium with positive production, where

 (m) 
2BL

1   +BL m+
q
(1   +BL m)2  4BL m

: (A.58)

Notice that, given the restriction (A.55), deÖnition (A.58) implies

0 (m) 
@ (m)

@m
= 

2B2L2 f1 + 2 (1    4) + 2BLmg

1   +BL m+

q
(1   +BL m)2  4BL m

2 < 0:

(A.59)

These results allow us to complete the autonomous two-by-two system: equation (40)

is (A.50) above; substituting result (A.57) into (A.48), we obtain (41).

(ii) Saddle-point stability The steady-state loci of system (40)-(41) are given by:

_m (t) = 0! Spr (t) =
S







m (t)
 

; (A.60)

_Spr (t) = 0! Spr (t) =
S


 [   (m (t))] : (A.61)

6The proof of this statement is by contradiction: picking the solution with the minus sign, inequality

(A.56) would imply 4 f (1  )g > 0, which is not possible because we would violate the parameter

restriction (A.43).
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The steady state (mss; S
pr
ss ) is therefore chcarcterized by:

Sprss =
S







mss
 

; (A.62)

 (mss) =  

= S


Sprss : (A.63)

Therefore, there exists a steady state with positive resource stock if and only if para-

meters are such that

mss <



and  (mss) < : (A.64)

Linearizing system (40)-(41) around the steady-state (mss; S
pr
ss ), we have

0

BB@

_m=m

_Spr=Spr

1

CCA '

0

BB@

&1 

=m2

ss


&2 


= S



&3  0 (mss) &4  

= S



1

CCA

0

BB@

mmss

Spr  Sprss

1

CCA ;

where (recalling result (A.59) above), the coe¢cients have deÖnite signs: &1 > 0,

&2 > 0, &3 > 0, &4 < 0. These signs imply (&4&1  &2&3) < 0. As a consequence, the

characteristic roots of the linearized system, given by the eigenvalues

(&1 + &4)
q
(&1 + &4)

2  4 (&4&1  &2&3)

2
;

are necessarily real and of opposite sign. The steady state (mss; S
pr
ss ) thus displays

saddle-point stability: given the initial state Spr (0) = S0, there is a unique trajectory

determined by the jump variable m (0) driving the system towards (mss; S
pr
ss ). Ruling

out explosive paths by standard arguments,7 the saddle-path determines a unique

equilibrium path which converges to a positive stationary level of the resource stock

Sprss > 0 provided that the restrictions (A.64) are satisÖed.

(iii) Steady states Results (42) follow from the condition for positive steady-state re-

source stock implied by (41). If the parameters are such that  >  (mss), restric-

tions (A.64) are satisÖed and saddle-point stability implies that (m (t) ; Spr (t)) con-

verge to the steady state (mss; S
pr
ss ) with S

pr
ss > 0 determined by (A.62)-(A.63): see

Figure 1, left graph. If parameters imply  6  (mss), instead, the steady state

(A.62)-(A.63) is not feasible in view of restrictions (A.64) and the dynamics gener-

ated by the loci (A.60)-(A.61) imply that (m (t) ; Spr (t)) converge to a steady state

with limt!1 Spr (t) = 0 and limt!1m (t) = =, as shown in Figure 1, right graph.

7Explosive paths would violate either the transversality condition limt!1m (t) et = 0 appearing in

(A.35) or the intertemporal resource constraint (13).
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Equilibrium under Full Property Rights: proof of Proposition 4. As noted

in the main text, Proposition 4 assumes that innovation activities are operative in each

instant (i.e., _Z (t) > 0 and _n(t)
n(t) +  > 0: see the further details reported at the end of

this Appendix). The equilibrium growth rate of Zpr follows directly from (25), and can be

substituted into (26) to obtain

_npr (t)

npr (t)
=
1      (+ )

 

1

 

npr (t)

ypr (t)




1


 (rpr (t) + )


: (A.65)

DeÖning   1 (+)
 and ~npr (t)  ypr (t) 1 (+)

 1

(rpr(t)+)

, expression (A.65) reduces

to
_npr (t)

npr (t)
=  


1

npr (t)

~npr (t)


: (A.66)

Having established that limt!1 ypr (t) = yprss and limt!1 rpr (t) =  in (43), the carrying

capacity ~npr (t) is asymptotically constant,

lim
t!1

~npr (t) = yprss 
1      (+ )
 (+ )  1

;

implying that equation (A.66) is dynamically stable around the steady state limt!1 npr (t) =

limt!1 ~n
pr (t).

Equilibrium growth rates: derivation of (45). Symmetry in the manufacut-

ing sector implies that Önal output (1) equals Y = HLY
nX . Substituting the proÖt-

maximizing conditions of the Önal sector, we have

Y =


PY Y

PH

PY Y
W


n


PY Y

PX


:

Observing that Y drops out and rearranging terms, we obtain

PY = 2  PH W
  n1+  P X :

Observing that C = Y = y=PY , setting a  2 , W = 1, and using the pricing rule

(A.6) yields expression (45) in the text.

Equilibrium growth rates: derivation of (46). Time-di§erentiating (45) and sub-

stituting _y=y by means of the Keynes-Ramsey rule (22), we obtain (46).

Equilibrium growth rates: proof of Proposition 5. Propositions 2 and 4 imply

the result of identical Örm size in the long run (47). Substituting (47) in (25), we obtain

identical asymptotic rates of vertical innovation, limt!1
_Z(t)
Z(t) =  yssnss

 (+ ). Letting

t!1 in expression (46), we obtain limt!1 g (t) = limt!1 
_Z(t)
Z(t) and therefore (48).

Long-Run Equilibria: proof of Proposition 6. The proof hinges on two steps: (a)

proving that oa > pr, and (b) comparing the three subcases (i)-(iii).
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(a) Proof that oa > pr: From (32) and (42), the di§erence between the critical levels

oa  pr = BL
1    (mss). Substituting the deÖntion of  (mss) from the third

expression in (42), we have

oapr 
BL

1  


2

41 2 (1  )

1  +BLmss +
q
(1   +BLmss)

2  4BLmss

3

5 :

The term in square brackets is strictly positive if and only if 1  > , a condition

that surely holds given the restriction (A.43).

(b) Proof of subcases (i)-(iii) Considering subcase (i), suppose that pr < oa < .

Then, both regimes yield positive stock in the long run with the following property.

From (32) and (42),

Soass  S
pr
ss =

S




 (mss)

BL

1  


=
S


 (pr  oa) < 0;

because the last term is strictly negative (oa > pr). Hence, Sprss > Soass . Under

full property rights, positive harvesting in the long run implies a positive asymptotic

shadow value of the resource stock: mss > 0 and  (mss). Consequently, (29) and (43)

yield yprss > yoa. Concerning the mass of Örms, from (35) and (44), we have noass
nprss

= yoa

yprss
,

which implies nprss > noass . Considering subcase (ii), suppose that 
pr <  < oa. Then,

we have Sprss > 0 from (42) and Soass = 0 from (32); since the production function (1)

implies that the resource is essential, resource exhaustion under open access yields

zero production/consumption under open access. Considering subcase (iii), suppose

that  < pr < oa. Then, we have Sprss = 0 from (42) and Soass = 0 from (32), that

imply zero production/consumption under both regimes.

Resource price: proof of Proposition 7. From (28) and (37), the resource prices

under the two regimes read

P oaH =
1

BSoa
and P prH =

1 +Bmypr

BSpr
:

For a given level of the resource stock S (t) = ~S, the above expressions imply P oaH jS=~S <

P prH

S=~S

because Bm (t) ypr (t) > 0. In the long-run equilibria of the two regimes, resource

prices equal

lim
t!1

P oaH (t) =
1

BSoass
and lim

t!1
P prH (t) =

1 +Bmssy
pr
ss

BSprss
:

11



Consequently, the sign of the gap limt!1 P oaH (t)  limt!1 P prH (t) is determined by the

inequality 1
BSoass

? 1+Bmssy
pr
ss

BSprss
, that is,

Sprss
Soass

? 1 +Bmssy
pr
ss : (A.67)

Substituting Soass and S
pr
ss by (32) and (42), and eliminating y

pr
ss by (43), the above expression

reduces to
   (mss)

  BL
1 

? 1 + BmssL

1  mss (mss)
: (A.68)

The sign is generally ambiguous because, deÖning   1    and    (mss), we can

rewrite (A.68) as

(mss)| {z }
positive

(BL)| {z }
positive

 (mssBL)| {z }
positive

( BL)| {z }
positive

? 0.

Regime switch: proof Proposition 8. Rewrite (45) as

logC (t) = log a+ log y (t)  logPH (t) + log T (t) ; (A.69)

where we have deÖned total factor productivity as

TFP = T (t)  (n (t))1 (Z (t)) : (A.70)

Starting from (A.69)-(A.70), the derivation of expression (49) involves three intermediate

steps: deriving explicit expressions for (i) TFP, (ii) the resource price, and (iii) present-value

utility, under the regime of open access.

(i) Total factor productivity For future reference, we denote the rate of vertical inno-

vation by Ẑ (t)  _Z (t) =Z (t), its asymptotic value by Ẑss  limt!1 Ẑ (t), and the

long-run growth rate of the economy by gss  limt!1 g (t) = Ẑ (t). Under open

access, the TFP term can be re-expressed as follows. By deÖnition,

log T oa (t) =  logZ0 + 

Z t

0
Ẑoa (s) ds+ (1 ) log n0 + (1 ) log


noa (s)

n0


;

where we can add and subtract Ẑss from Ẑ (t), obtaining

log T (t) = log

Z0 n

1
0


+ gss  t+ 

Z t

0

h
Ẑ (s) Ẑss

i
ds+ (1 ) log


n (s)

n0


:

(A.71)

12



Denoting xj (t)  yj (t) =nj (t), and recalling that yoa (t) = yoa is constant over time,

we have _noa=noa =  _xoa=xoa. Therefore, the di§erential equation for noa in (34)

yields _xoa =  (xoass  xoa), the solution of which is

xoa (t) = xoa0 e
t + xoass


1 et


: (A.72)

Result (A.72) implies that



Z t

0


Ẑ (s) Ẑ


ds =  ()2

Z t

0
(x (t) xss) ds

=
 ()2 xss




x0
xss

 1

1 et


: (A.73)

Also, from the solution (34), we have

n (t)

n0
=

1 +

nss
n0
 1


1 +

nss
n0
 1

et

;

where we can take logarithms and approximate the resulting terms to obtain

log


n (s)

n0


=


nss
n0

 1

1 et


: (A.74)

Observing that nss
n0
 1 = x0

xss
 1, results (A.73) and (A.74) yield

log T (t) = log

Z0 n

1
0


+ gss  t+ '


nss
n0

 1

1 et


; (A.75)

where we have deÖned '  ()2xss
 + (1 ).

(ii) Resource price Since open access implies a constant harvesting rate, the resource

stock follows the logistic process

_Soa (t)

Soa (t)
= ! 


1

Soa (t)

Soass


; (A.76)

where we have deÖned the constants !  BLH and Soass  S  BLH . The solution

of (A.76) is

S (t)

S0
=

1 +

Sss
S0
 1


1 +

Sss
S0
 1

e!t

;

where we can take logarithms and approximate the resulting terms to obtain log S(t)S0
=

Sss
S0
 1
 
1 e!t


. Since (28) implies  log P oaH (t)

P oaH (0) = log
S(t)
S0
, we have

 log
P oaH (t)

P oaH (0)
=


Sss
S0

 1

1 e!t


: (A.77)
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(iii) present-value utility Under open access, expression (A.69) reads

logCoa (t) = log a+ log

 
yoa

P oaH (0)


!
  log


P oaH (t)

P oaH (0)


+ log T oa (t) : (A.78)

Without loss of generality, let us normalize log a+ log

Z0 n

1
0


 0.8 Substituting

(A.75) and (A.77) in (A.78), we obtain

logCoa (t) = log yoa   logP oaH (0) + gss  t

+


Soass
S0

 1

1 e!t


+ '


noass
n0

 1

1 et


: (A.79)

Substituting (A.79) in the welfare functional (17), and integrating, we obtain

Uoa =
1




log yoa   logP oaH (0) +

gss

+



+ !


Soass
S0

 1

+

'

+ 


noass
n0

 1


;

(A.80)

which is the level of welfare associated to the transition dynamics under open access

given generic initial conditions S0, Z0, n0.

On the basis of these results, we consider the initial conditions at time zero as determined

by the steady state of the full property rights regime. In particular, given the general

expression (A.69), the baseline consumption path that the economy would follow if full

property rights were maintained after time zero is given by

logCpr (t) = log a+ log yprss   logP
pr
H;ss + log T

pr (t) ; (A.81)

where TFP grows at the asymptotic rate gss in each instant after time zero. Substituting

(A.81) in the welfare functional (17), and integrating, we obtainWith these results in hand,

we reÖne our exercise. The baseline path is the PR steady state and yields the baseline

present-value welfare

Uprss =
1




log yprss   log


P prH


ss
+
gss



: (A.82)

Taking the di§erence between (A.80) and (A.82), we obtain expression (49).

Further details: operativeness of innovation activities. Both Proposition 2 and

Proposition 4 assume that innovation activities are operative in each instant ñ that is,
_Z(t)
Z(t) > 0 and

_n(t)
n(t) +  > 0. The parameter restrictions that guarantee this outcome can be

derived as follows. For simplicity, consider the open access regime. From (29), substitute

8This normalization only simpliÖes the notation and does not a§ect the results.
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yoa = yoa and roa =  into equation (25): the non-negativity constraint on Örm-speciÖc

R&D implies

_Zoa (t)

Zoa (t)
=

(
  yoa

noa(t)  (+ ) if noa (t) < noa  2

+ y
oa

0 if noa (t) > noa
: (A.83)

Substituting this result in (26), we obtain

_noa (t)

noa (t)
+  =

8
<

:

1 
  (+)1

 L(1 )1
 noa (t) if noa (t) < noa

1 
  

 L(1 )1
 noa (t) if noa (t) > noa

: (A.84)

Imposing the non-negativity constraint on employment in entry, LN , expression (A.84)

implies two threshold levels on the mass of Örms. First, when _Zoa (t) > 0, there exists

noaT1 
L(1 )

(1 )[(+)1] , such that

noa (t) < noa and
_noa (t)

noa (t)
+  =

8
<

:

1 
  (+)1

 L(1 )1
 noa (t) if noa (t) < noaT1

0 if noa (t) > noaT1

:

(A.85)

Second, when _Zoa (t) = 0, there exists noaT2 
(1 )L
(1 ) , such that

noa (t) > noa and _noa (t)

noa (t)
+  =

8
<

:

1 
  

 L(1 )1
 noa (t) if noa (t) < noaT2

0 if noa (t) > noaT2

:

(A.86)

It follows from (A.85) and (A.86) that a su¢cient condition for positive gross entry is

noa (t) < min fnoaT1; n
oa
T2g : (A.87)

Provided that (A.87) holds, the mass of Örms obeys the logistic process described in (A.84).

Proposition 2 thus assumes implicitly that condition (A.87) is satisÖed. This assumption

is without loss of generality: because the logistic process (34) always converges to a Önite

steady state, satisfying (A.87) is equivalent to imposing restrictions on the exogenous pa-

rameters appearing in (A.84) and on the initial condition noa (0). The alternative cases in

which parameters yield no horizontal R&D are a less interesting special case because the

model collapses to an economy with vertical R&D only.
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