
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Causal structure and hierarchies of models

Kevin D. Hoover ⇑
Department of Economics, Duke University, Durham, NC, USA
Department of Philosophy, Duke University, Durham, NC, USA

a r t i c l e i n f o

Article history:
Available online 21 June 2012

Keywords:
Causal structure
Identity
Independence
Modularity
James Woodward
Herbert Simon

a b s t r a c t

Economics prefers complete explanations: general over partial equilibrium, microfoundational over
aggregate. Similarly, probabilistic accounts of causation frequently prefer greater detail to less as in typ-
ical resolutions of Simpson’s paradox. Strategies of causal refinement equally aim to distinguish direct
from indirect causes. Yet, there are countervailing practices in economics. Representative-agent models
aim to capture economic motivation but not to reduce the level of aggregation. Small structural vector-
autoregression and dynamic stochastic general-equilibrium models are practically preferred to larger
ones. The distinction between exogenous and endogenous variables suggests partitioning the world into
distinct subsystems. The tension in these practices is addressed within a structural account of causation
inspired by the work of Herbert Simon’s, which defines cause with reference to complete systems adapted
to deal with incomplete systems and piecemeal evidence. The focus is on understanding the constraints
that a structural account of causation places on the freedom to model complex or lower-order systems as
simpler or higher-order systems and on to what degree piecemeal evidence can be incorporated into a
structural account.
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1. Models, piecemeal knowledge, and aggregation

The history of science is a history of piecemeal additions to
human understanding of the natural and social world. Yet the im-
age of science portrayed not only in philosophy but by scientists
themselves is frequently totalizing. The aim of science is to dis-
cover universal laws; but have we ever actually discovered such
laws, and, if we had, would we know that we had? The world is ru-
led by an exceptionless determinism; but when have we ever seen
a rule that held invariably? Even those who acknowledge that we
have always fallen short of the whole truth frequently hold a ‘‘per-
fect-model model’’ (Teller, 2001) as the standard to which we
ought to aspire.

Economics is by no means exempt. The Laplacian fantasy of a
clockwork world in which a statement of initial conditions and
the laws of nature would allow us to write the history of the future
has an analogue in the Walrasian fantasy of an agent-by-agent
description of the economy:

Thus the system of the economic universe reveals itself, at last,
in all its grandeur and complexity: a system at once vast and
simple, which, for sheer beauty, resembles the astronomic
universe. (Walras, 1954, p. 374)

Neither Laplace’s nor Walras’s vision is practical; yet they each
guide the imagination in a manner that shapes scientific practice.

The alternative to the perfect-model model is a vision of scien-
tific practice that embraces the piecemeal acquisition of knowl-
edge (Wimsatt, 2007). Although knowledge was actually
acquired piece by piece, economics—and perhaps other sciences—
has reflected relatively little on what an effective methodology of
the piecemeal acquisition of knowledge would look like. This is
not to say that there have not been efforts to formulate such a
methodology. Milton Friedman (1949) attempted to revive Alfred
Marshall’s (1885) methodology (see Hoover, 2006, 2009a), reject-
ing the notion that the contrast between Marshall and Walras
was one between partial and general equilibrium rather than one
between an approach in which empirical knowledge is built up
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brick by brick and one that demands an architectonic theoretical
account as a starting point.

The grip of the Walrasian approach is clear in the macroeco-
nomic modeling tradition that started with Jan Tinbergen (1939)
and was largely guided by Lawrence Klein (1950; Duesenberry,
Fromm, Klein, & Kuh 1965; Klein & Goldberger 1955). Looking
back, Klein describes his modeling approach:

In contrast with the parsimonious view of natural simplicity, I
believe that economic life is enormously complicated and that
the successful model will try to build in as much of the compli-
cated interrelationships as possible. That is why I want to work
with large econometric models and a great deal of computer
power. Instead of the rule of parsimony, I prefer the following
rule: the largest possible system that can be managed and that
can explain the main economic magnitudes as well as the par-
simonious system is the better system to develop and use.
(Klein, 1992)

It was a view that Friedman had criticized when Klein’s program
was still in the cradle. He suggested a Marshallian alternative:
‘‘the focus should be on the analysis of parts of the economy in
the hope that we can find bits of order here and there and gradually
combine these bits into a systematic picture of the whole’’ (Fried-
man, 1951, p. 114). And he summed this view up in his famous
methodological essay:

A hypothesis is important if it ‘explains’’ much by little, that is,
if it abstracts the common and crucial elements from the mass
of complex and detailed circumstances surrounding the phe-
nomena to be explained and permits valid predictions on the
basis of them alone. (Friedman, 1953, p. 14)

As Friedman himself acknowledged, Klein’s argument carried the
day: ‘‘We curtsy to Marshall, but we walk with Walras’’ (Friedman,
1949, p. 489).

Modern macroeconomics has rejected Klein’s modeling pro-
gram, though not for any lack of sympathy with the ideal of the
perfect model. Rather they have rejected it, first, in the belief that
it compromises on fundamental and essential economic princi-
ples—namely that economics is only economics if it is fundamen-
tally grounded in individual agents described as making choices
under constraints. This is the essentially false charge that the
Klein’s macroeconomics—in line with most of the macroeconomics
of the 1930s through 1960s—lacked microfoundations (see Hoover,
2012a). Second, they rejected it not for adopting the Walrasian
ideal but for failing to be thoroughly enough committed to that
ideal that the ‘‘deep parameters’’—that is, the parameters that
reflect the preferences and constraints of the individual agents—
could be identified empirically (Hoover, 1988; Lucas, 1976, ch. 8,
section 3). In practice, the second concern dominated the first.
After 1970, macroeconomics worked mainly with smaller models,
but the ideal remained to model the individual agent, so that
increasingly complex models beckoned from an ever receding
horizon of technical possibility.

All parties to these debates agree that economics is a science of
models. Through most of this period—although it is changing re-
cently—economists were deeply uncomfortable with talk of causes,
even though most of their principal interests, such prediction and
control, are thoroughly causal (Hoover, 2004). Economics, then,
should be seen not only as a science of models but as a science
of causes.

The history of postwar macroeconomics just sketched suggests
that to understand economics as a science of models we must
understand the relationships among models of different levels of
complexity. Roughly speaking, we must understand the relation-

ship between aggregated and disaggregated models of the same
phenomena. Aggregation in economics has been traditionally
viewed through a reductionist lens—a question related to the
microfoundations of macroeconomics. This is indeed an important
issue (Hoover, 2001a, 2001b, ch. 5, 2009b, 2010b). Yet it does not
exhaust the questions that; arise with respect to hierarchies of
models in economics. Consider three common issues:

The relationship of larger to smaller models of the same phenom-
ena on the same level of aggregation. For example, empirical mac-
roeconomics frequently employs vector autoregressions (VARs)
that attempt to model the interrelated dynamics of sets of
variables. One investigator interested in the Federal Reserve’s
monetary policy might employ a three-variable VAR with, say,
GDP, inflation, and the Federal funds rate. Another investigator
addressing the same issue might instead employ a five-variable
VAR using consumption, investment, and government expendi-
ture (accounting components of GDP) and a long-term govern-
ment bond rate, as well as the Federal funds rate. How do
empirical results gathered with one such model relate to those
of the other?
The relationship of models at different levels of temporal aggrega-
tion. The VAR analysts using GDP in a three-variable model typ-
ically use a quarterly time unit, since that is the way that the
GDP data are published. But if industrial production, which the-
oretically should, and practically does, track GDP is used
instead, then monthly data is available.
The relationship of dynamic to static models. Empirical economic
data stand in complex intertemporal relationships. The most
widely accepted theoretical economic models refer principally
to static (or steady-state) equilibria. How then are static theo-
retical models to be related to dynamic empirical models?

Traditionally, the problem of aggregation was posed in two
ways: First, when does the aggregate behave just like its constitu-
ent units? Or, second, under what circumstances are the behaviors
of the aggregate and its constituents consistent? (See Janssen
(1993) for a discussion of approaches to aggregation.) I want to
take a different approach here, one that shifts the focus from what
might be seen as accounting relationships to one that considers
different degrees of causal articulation.

2. Perspectival realism and causation

Philosopher most often—though not exclusively—analyze cause
as a relationship among token events or facts in a background of
scientific laws (see, for example, Lewis, 1973). Such an approach
is not suitable to a piecemeal approach to scientific knowledge as
it is effectively question-begging—relying on universal laws, which
stand at the end of inquiry. Some philosophers have turned this
common view on its head: causal relationships precedes even con-
jectured universal laws, which may be regarded as abstractions
from causal knowledge. For example, the ideal gas laws can be seen
as a functional relationship that is common to various apparatuses
in some of which temperature causes pressure and others of which
pressure causes volume or temperature, and so forth (Hoover,
2001b, pp. 81–87).

Causal relationships on this view share the generality of scien-
tific laws and are more naturally expressed as type relationships
among variables rather than token relationships among events or
facts. The variables that characterize such relationships are neces-
sarily always less than fully descriptive of the concrete situations
in which the causal relationships are embedded. Even selecting a
set of variables to describe a concrete relationship must, therefore,
impose a perspective and constrains what causal relationships are
possible within a model built on those variables.
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The familiar notion of cause is, as reflected in the title of Wood-
ward’s (2003) book, that causes make things happen. Cause in our
everyday experience is typically about control. But we must be
careful. First, there is no need to anthropomorphize: by control
we generally do not require human manipulation or intervention,
although that may well be the origin of our causal concepts. We
have no trouble with the idea that a lightening strike caused a fire,
and have not for millennia believed that a sentient agent must lie
behind each particular natural phenomenon. Second, it is not par-
ticular token interventions that are essential. The issue is less mak-
ing any particular thing happen than in identifying how things
could happen. In contrast to Woodward (2003, p. 39), the issue is
not particular interventions, but rather what is the scope and
topology of interventions. Again, in contrast to some philosophers
(e.g., Lewis, 1973) causal knowledge supports counterfactual anal-
ysis, not the other way round (Woodward, 2003, p. 16, ch. 6;
Hoover, 2011).

Our approach is broadly realist in the sense that it is predicated
on the belief that models are used to assert true general claims
about causal relationships, the truth-status of which is determined
by the world external to our mental constructions—that is, external
to our models. Such a realism is compatible with models viewing
the world from different perspectives (Giere, 2006; Hoover,
2012b). The truth that we seek is what the world is actually like
when seen this way.

Such a perspectival causal realism has implications for aggrega-
tion: causal claims may appear to differ in different models and
may appear to conflict if we fail to notice the particular perspective
of the model. Which causal relationships we see depend on which
model we use and its conceptual/causal articulation; which model
is best depends on our purposes and pragmatic interests.

Take the case of Simpson’s paradox, which can be described as
the situation in which conditional probabilities (often related to
causal relations) are opposite for subpopulations than for the
whole population. Let academic salaries be higher for economists
than for sociologists, and let salaries within each group be higher
for women than for men. But let there be twice as many men as
women in economics and twice as many women as men in sociol-
ogy. By construction, the average salary of women is higher than
that for men in each group; yet, for the right values of the different
salaries, women are paid less on average, taking both groups
together.

An aggregate model leads to the conclusion that that being fe-
male causes a lower salary.1 We might feel an uneasiness with such
a model, since I have already filled in the details that show more pre-
cisely why the result comes about. The temptation is to say that the
aggregate model shows that being female apparently causes lower
salaries; but the more refined description of a disaggregated model
shows that really being female causes higher salaries. A true paradox,
however, is not a contradiction, but a seeming contradiction. An-
other way to look at it is to say that the aggregate model is really
true at that level of aggregation and is useful for policy and that
equally true more disaggregated model gives an explanation of the
mechanism behind the true aggregate model.

It is not wrong to take an aggregate perspective and to say that
being female causes a lower salary. We may not have access to the
refined description. Even if we do, we may as matter of policy think
(a) that the choice of field is not susceptible to useful policy inter-
vention, and (b) that our goal is to equalize income by sex and not
to enforce equality of rates of pay. That we may not believe the fac-
tual claim of (a) nor subscribe to the normative end of (b) is imma-
terial. The point is that that they mark out a perspective in which

the aggregate model suits both our purposes and the facts: it tells
the truth as seen from a particular perspective.

3. Modeling causal structure

If models give us a perspective on the causal structure of the
world, the next question is surely what property is it of models that
captures causal relationships. An influential approach to this ques-
tion is given by Herbert Simon in various papers, starting with
‘‘Causal Order and Identifiability’’ in 1953. Simon considers causal
relationships in complete systems of equations. I have previously
presented a formal generalization of Simon’s approach (Hoover,
2001b, ch. 3), and I will not present the formalism, but instead ex-
posit the key points with examples. It is worth noting that, while I
am prepared to defend my reading of Simon against critics who
interpret him differently, it is the approach itself rather than its
pedigree that concerns us here (cf. Cartwright, 2007, chs. 13, 14;
Fennell, 2005, ch. 4; Hoover, 2010a, 2011, 2012c).

Simon started with a self-contained structure—that is, a system
of equations in which variables have a unique solution conditional
on the values of parameters and the particular functional forms.2

While his illustrations are all linear in variables, there is nothing in
the general approach that prevents the systems of equations from
being nonlinear. Furthermore, variables may be continuous or dis-
crete. He then focused on self-contained subsets of the self-contained
structure.

To illustrate, consider the following system of equations (S1):
Structure S1

A ¼ aA; ð1Þ
B ¼ aBAA; ð2Þ
C ¼ aCAAþ aCBB; ð3Þ
where, for the moment, we regard the aij as fixed coefficients.

System S1 is a complete system, and a complete system is itself
self-contained. System S1 is not, however, a minimal self-contained
subset, as it contains subsystems, which are themselves self-
contained. Equation (1) is minimal a self-contained subset: it deter-
mines the value of A without reference to any other equation and it
contains no subsystems that are similarly self-contained. Equations
(2) and (3) considered separately are not self-contained subsets as
they do not contain enough information to determine B or C. In
contrast, equations (1) and (2) together form a self-contained
subset, since they determine the values of A and B without reference
to Equation (3)—though the subset is not minimal, since it contains
the subsystem of Equation (1), which is self-contained.

Simon’s conception is closely related to his later work on hier-
archies of systems (Simon, 1996, chs. 1 and 8). Causes are the out-
puts of lower-level systems and the inputs to higher-level systems.
The relationship is closely connected to the solution algorithms for
systems of equations. In S1, A is determined entirely by (1) and can
be regarded as an output. If we know A, we do not need to know (1)
to determine B; a specific value for A forms an input that, in effect,
turns the non-self-contained subsystem (2) into a self-contained
subset in which the value of A is given parametrically. Its output
is, of course, B. Knowing B alone, however, does not turn (3) into
a self-contained subset. Substituting its value into (3) leaves the
variable A in place (despite the fact that B cannot have a well-de-
fined value unless A also has a well-defined value) and we have
to substitute A directly from (1). Thus, A directly causes B, and A
and B directly cause C; so, A is both a direct and an indirect cause
of C. This, of course, is the causal structure of Fig. 1, where the ar-
rows indicate the relationship of direct causation.

1 Woodward (2003), p. 113, argues that essential characteristics, such as species, sex, or race, are not properly causes. For a counterargument, see Hoover (2012c).
2 A linear structure in Simon’s (1953) terminology.
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While the solution to a system of equations is specific, the cau-
sal relationship for Simon is generic. Specific systems differ only in
taking different admissible values of parameters. The set of such
specific systems is a model.3 Causal structure is a property of models
that is instantiated in specific systems. Implicit in Simon’s account,
though never explicitly articulated, is that parameters are varia-
tion-free—that is, the values of different parameters are mutually
unconstrained. To put it anthropomorphically, the value of any
parameter can be changed without necessarily changing the values
of any other parameter. I will argue presently that this is, in fact, a
useful formal requirement but one that in no way constrains what
causal relations a model can represent.

The distinction between parameters and variables is a key one.
Causal relationships for Simon exist only among variables. Param-
eters are not causes, but indicators of the scope of possible inter-
ventions from outside the system. There is a temptation—partly
driven by a desire to make Simon’s formal language conform to
other usages—to regard ‘‘parameter’’ as a synonym for ‘‘exogenous
variable’’ and, therefore, in diagrams to draw causal arrows from
parameters to other parameters and variables (e.g., Cartwright,
2007, ch. 14). But this is not Simon’s usage. Simon models an exog-
enous variable, for example, as X = aX, where X is a variable and aX a
parameter. Interventions are mediated only through parameters,
so that an exogenous change in X is modeled as a change in aX. It
does little harm to treat exogenous variables and their governing
parameters as synonyms, so long as the parameters are uniquely
assigned to the exogenous variable; but, as we shall see, this is
not the general case; so, it is better to nip that practice in the bud.

The analysis of the causal structure of a complete structure pro-
ceeds by articulating the hierarchy of self-contained subsets in the
manner illustrated with structure S1. It can be proved that the cau-
sal order of a complete structure is unique (Iwasaki & Simon, 1994,
p. 156). The fly in the ointment is that uniqueness depends on priv-
ileging the manner in which the equations are written. But the
same functional relations can be written in a variety of ways. For
example, the self-contained subset (1) and (2) could be replaced
by S2:

Structure S2

A ¼ bA þ bABB; ð4Þ
B ¼ bB; ð5Þ

which has the same numerical solution as (1) and (2) provided that:

bA ¼ aA=ð1� aBAÞ; ð6Þ
bAB ¼ �1=ð1� aBAÞ; ð7Þ

and

bB ¼ aAaBA ð8Þ

(Nothing depends on the fact that the bij are defined in terms of the
aij. We could as easily have started with equations (4) and (5) and
derived an analogous set of restrictions defining the aij in terms
of the bij to guarantee identical solutions.) The two sets of equations
have the same solution, but under Simon’s analysis B causes A in (4)
and (5), whereas A causes B in (1) and (2). Indeed, since every linear
combination of equations (1) and (2) is functionally equivalent, we
can easily write down systems that would be interpreted as having
no causal connections or as displaying mutual causation. The differ-
ent functionally equivalent sets of equations are all observationally
equivalent.

As long as we think of the causal relationship embedded in a
model as merely related to the solution for the variables,

observational equivalence will undermine the utility of the models.
Simon offers two different strategies for dealing with the problem of
observational equivalence. Simon’s first strategy is simply to forbid
linear combinations of equations on the grounds that each equation
represents a distinct mechanism and that a linear combination cre-
ates a mongrel without causal significance (Simon & Rescher, 1966;
Simon & Iwasaki 1988).4 Such a strategy amounts to assigning equa-
tions to variables. The relationship is then easily indicated quasi-
graphically by introducing a new ‘‘causal equality’’ operator (�).5

The subset of equations (1) and (2) could then be written as:

A( aA; ð10Þ

B( aBAA; ð20Þ

with the convention that the arrowhead indicates the direction of
causation.

In his 1953 paper, however, Simon offers a second strategy for
resolving observational equivalence. While he considers his formal
account of causal order syntactic, he suggests that we adopt a high-
er-order semantic relation of direct control over parameters (Simon,
1953, pp. 24–27). He invites us (and nature) to experiment on a
system by directly controlling the value of its parameters (the coef-
ficients now being thought of as parameters that can take different
values). The privileged parameterization is the one in which such
experiments can be conducted independently. Thus, if one repre-
sents a causal system by equations (1) and (2) and can control A di-
rectly by choosing aA and thereby control B indirectly without
altering the functional form of equation (2), then the parameter
set {aA, aBA} and its associated functional form is privileged.

If for example, (1) and (2) represented the true causal order, but
we instead modeled the causal relationships with (4) and (5), our
control of A and B would not show the same sort of functional
invariance. In fact, the only way to achieve the same values for A
and B would be for the coefficient values of {bA, bB, bAB} to shift
according to the restrictions (6)–(8). In effect, the decision that
{aA, aBA} is the parameter set—and that any other set of coefficients
(e.g., {bA, bB, bAB}) are simply functions of those parameters—deter-
mines the causal direction among the variables: it puts the arrow-
heads on the shafts. No other functionally equivalent system
shares this invariance property. In fact, the uniqueness of the cau-
sal order determined on this basis can be proved (Iwasaki & Simon,
1994, p. 156).

I have previously supported and elaborated Simon’s second
strategy. Yet, why should we prefer the idea of privileging certain
sets of parameters as capturing the possibilities for interventions in
the world over the idea of privileging certain equations as captur-
ing the causal mechanisms in the world? It is instructive to notice
that Simon’s original analysis of causal order was offered in sup-
port of the Cowles Commission’s (1953) econometric program.
While he talked about the structure of formal models, the point
was ultimately to aid the progress of an epistemological project.
Cartwright (2007, p. 81 passim) has stigmatized causal analysis
that supposes modularity (of which more in due course) as making

C 

A B

Fig. 1. Structure S1.

3 A linear model in Simon’s (1953) terminology.
4 The strategy is first in our exposition, but not first in its appearance in Simon’s work.
5 Cartwright uses ‘‘c¼ ’’ to serve the same purpose.
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assumptions because they are ‘‘epistemically convenient.’’ In a
sense, I would turn her evaluation on its head: Simon’s second
strategy makes weaker assumptions—that is, assumptions that
make smaller epistemological demands on the econometric mod-
eler or scientist in the construction of his models. Weaker assump-
tions have considerable epistemological utility, which is an excellent
methodological reason to prefer them.

Simon appears insensitive to the difference between his two
strategies—mostly likely because they coincide in his examples. Si-
mon implicitly supposes that parameters are uniquely associated
with particular variables or mechanisms—for example, if a param-
eter shows up in one equation, it does not show up in any other
equation. Such a supposition implies that it is easy to analyze a
system of equations into distinct parts. Many economic models,
however, violate Simon’s supposition and comprise equations in
which the same parameter might appear in multiple equations.
For example, we might have

Structure S3

A ¼ aA; ð9Þ
B ¼ aA þ aBAA: ð10Þ

Hoover (2001b, ch. 3) suggests that such systems of equations
require modification of Simon’s formalism for causal structure.
We must require Simon’s hierarchy condition: a direct cause must
belong to a lower-order self-contained subset with no self-con-
tained subset intervening between the direct cause and the self-
contained subset that determines the effect. But in addition we re-
quire that the set of parameters associated with the subset that
determines the cause be a proper subset of the set of parameters
that determine the effect. This condition is met in equations (9)
and (10) in which A causes B. It would not be met in the following
system of equations:

Structure S4

A ¼ aA; ð11Þ
B ¼ aAA: ð12Þ

An advantage of this extension of Simon’s approach is that it
inherits the property of his second strategy that causal order is un-
iquely defined by the functional relations among variables (that is,
no matter what equivalent form the equations take) so long as we
can say which objects are parameters and which are coefficients
the values of which are functions of the true parameters. It does
not matter, for example, whether we describe the relationship
among the variables by structure S1 or by structure S2 as long as
we know that the a’s represent the actual scope of interventions
and the b’s are, at best, functions of the a’s.

A consequence of our parameter-nesting condition is that every
effect must have some parameter distinct from its causes—that is,
there is some means of intervening directly on every effect inde-
pendently of its causes. This is one version of a ‘‘modularity’’
assumption. Cartwright (2007, chs. 7 and 8) regards modularity
as an ungrounded assumption that is made to render systems of
equations into an ‘‘epistemically convenient’’ form. In contrast, I
would like to distinguish different types of modularity and to sug-
gest that understanding them and their relationship is a key to
understanding the relationship of models at different levels of
description or aggregation.

4. Modularity and identity

The general idea of modularity is that a system is modular if it can
broken down into parts that retain their integrity and functionality.

There are at least three types of modularity at issue in the formal ac-
count of causal order under discussion.

First, is the assumption that parameters are variation-free. Re-
call that a parameter is called variation-free when it can be set to
any value in its admissible range independently of the setting of
any other parameter. Equivalently, parameters are variation-free
when there are no constraints operating among them.6 The
requirement that parameters be variation-free is a useful convention
that helps to keep our reasoning clear about the causal structure of
models, but it is essentially trivial in the sense that any formal model
that incorporated non-variation-free parameters could be turned
into one in which the constraints among parameters is shifted into
the functional form as a constraint among variables.

An example should make this clear. Consider the system
Structure S5

X ¼ a ð13Þ
Y ¼ bX þ c; ð14Þ

subject to the parameter constraint b 6 a. The parameters are not
variation-free, since the value of a restricts the range of admissible
values of b. However, this system can be reformulated into a related
system with the same solutions in which the parameters are varia-
tion-free:

Structure S50

X ¼ a ð15Þ

Y ¼
cbX þ c; if a P b

aX þ c; if a < b

�
ð16Þ

A model that was linear in variables with a nonlinear parameter
constraint has been transformed into a model that is nonlinear in
variables with unconstrained parameters. Applying our extension
of Simon’s causal formalism, X causes Y.

A second form of modularity has been the subject of vigorous
debate (see Cartwright, 2007, chs. 7 and 8; Hausman & Woodward,
1999, 2004). To understand this form of modularity consider
Woodward’s (2003, ch. 2) manipulability account of causation. The
essence of the approach is conveyed in his definition of a direct
cause:

(DC) A necessary and sufficient condition for X to be a direct
cause of Y with respect to some variable set V is that there be
a possible intervention on X that will change Y (or the probabil-
ity distribution of Y) when all other variables in V besides X and
Y are held fixed at some value by interventions. (Woodward,
2003, p. 55)

Despite Woodward’s (2003, p. 39) regarding causation as funda-
mentally a type-level relationship among variables, (DC) defines
direct cause in terms of a token-level action—an intervention.
Suppose we wish to assess whether B is a direct cause of C in system
S1 (i.e., Fig. 1 or equations (1)–(3)). Following Pearl (2000),
Woodward suggests that we do this by setting the other variables
(here only A) to token values and, in effect, ‘‘breaking’’ (or ‘‘wiping
out’’) the causal connections between variables wherever needed to
achieve this. Thus Fig. 2 would replace Fig. 1 in which the lower-
case letter indicates the token value of the correlative upper-case
variable and in which the causal arrow into B are removed. B causes
C, then, if a change in B, say, from b to b́ changes (or would change,
the intervention being conceived of counterfactually) in a change in
C, say, from c to c0.

Pearl (2000, pp. 70) represents interventions by the operators
‘‘set(X)’’ or ‘‘do(X)’’. Woodward (2003, pp. 47–48) notes ‘‘X and
set X are not really different variables, but rather the same variable

6 Fennell (2005, p. 50) claims that parameters can both be variation-free and mutually constraining. This shows that he simply fails to grasp the meaning of ‘‘variation-free,’’
and results, in the particular example offered, from failing to draw a clear distinction between parameters and variables.
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embedded in different causal structures . . . ’’ The transition from
Fig. 1 to Fig. 2—from one causal structure to another—presupposes
that the wiping out of causal arrows without affecting other parts
of the graph makes sense. Woodward refers to the property that
warrants such an intervention as modularity:

a system of equations will be modular if it is possible to disrupt
or replace (the relationships represented by) any one of the
equations in the system by means of an intervention on (the
magnitude corresponding to) the dependent variable in that
equation, without disrupting any of the other equations.
(Woodward, 2003, p. 48)

And while he recognizes that representations of causal relationships
may not always display modularity, he assumes

that when causal relationships are correctly and fully repre-
sented by systems of equations, each equation will correspond
to a distinct causal mechanism and that the equation system
will be modular. (Woodward, 2003, p. 49)

The modularity of the system consists in the independence of
the causal linkage between B and C from modifications that set
other variables to particular values or break causal linkages. While
Woodward promises us that a full representation of causal system
is necessarily modular, he neither demonstrates the basis for that
claim nor gives us any guidance about representing causality in
less than full representations—another tug of the perfect-model
model. As the following example shows economic models are fre-
quently not modular in Woodward’s sense, but nonetheless are
causally ordered.

Consider a commonplace model of supply and demand supple-
mented with a tax on supply:

Structure S6

R ¼ q; ð17Þ
N ¼ m; ð18Þ
Q ¼ að1� sÞP þ bR; ð19Þ
P ¼ cQ þ dN; ð20Þ
T ¼ sPQ þ / ð21Þ

For concreteness, we follow Simon and Rescher (1966) in thinking
of the commodity as wheat (where Q is its quantity and P is its
price), R as rainfall, and N as population. Lower-case Greek letters
are parameters. We can think of equation (17) as a supply equation,
where the parameter s represents an ad valorem tax on the sales of
farmers that generates revenues of T.

Applying our version of Simon’s formal analysis of causal order
(his second strategy), we get the causal structure shown in Fig. 3.
Some points to notice: First, a failure of modularity shows up in
the fact that we cannot set Q to some arbitrary value (Q = q), as re-
quired in Woodward’s definition of direct cause, without destroy-
ing the tax relationship (21), since the tax rate (s) appears in
(21) only because it also appears in (19). A strength of our exten-
sion of Simon’s second strategy is that it, nevertheless, determines
the causal order without any appeal to modularity of Woodward’s
type.

Second, when a subsystem involving more than one variable
cannot be separated into distinct self-contained subsystems, then

Simon regards them as standing in relationship of mutual causa-
tion—indicated both by the brackets and by the double-headed ar-
row. Such mutual causation underlines the difference between
Simon’s first and second strategies. On the first strategy, which
identifies distinct mechanisms, we might wish to read equations
(19) and (20) as distinct mechanisms and therefore to draw the
causal graph somewhat differently as in Fig. 4.

To clarify what is at stake between the two strategies, consider,
a pair of models:

Structure S7

A ¼ a; ð22Þ
B ¼ bAþ dD; ð23Þ
C ¼ dB; ð24Þ
D ¼ /C ð25Þ

Structure S8

A ¼ a; ð26Þ
B ¼ bAþ hC; ð27Þ
C ¼ dBþ kD; ð28Þ
D ¼ /C ð29Þ

On Simon’s first strategy, we might see these as causally distinct
models with the graphical representations shown in Figs. 5 and 6.
But Simon’s second strategy is unable to draw any distinction be-
tween the two models and would represent the causal structure
as in Fig. 7. The variables B, C, and D are so thoroughly entangled
in a web of mutual causality that we cannot articulate their internal
structure on the basis of the topology of interventions.

The inability to distinguish these cases is not a weakness of Si-
mon’s second strategy. Rather it points to an important character-
istic of models operating on different levels of causal explanation.
It is elementary that causes must be distinct from their effects. It is
not enough that they be conceptually distinct; they must be caus-
ally distinct. My favorite example is provided by bond prices and
yields. The price of a bond is the amount one pays, say, in pounds
sterling for a bond. The yield of the bond is the equivalent annual
percentage return for holding the bond. Price and yield are concep-
tually distinct. They are not measured in the same units, and they
play different roles in evaluating various economic and financial
situations. They are, however, connected by an identity. The sim-
plest example is the consol, a perpetual bond invented by the Brit-
ish government in the 18th century. A 3-percent consol pays its
holder £3 each year. Its yield (R) and its price (P) are connected
by an identity:

R � 3
P

ð30Þ

or equally

P � 3
R

ð300Þ

C 

A b

Fig. 2. An intervention on S1.

R N

{ Q P} 

T

Fig. 3. Structure S6 on Simon’s second strategy.
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One sometimes reads in the newspapers that bond yields rose caus-
ing bond prices to fall. But this is wrong. The identity means that a
rise in bond yields is just the very same thing as a fall in bond prices.

Causally, there is no way to draw a wedge between the two
variables—no way to intervene independently on them—even
though they are conceptually distinct. And this, I suggest, is the
standard for causal identity. In terms of Simon’s second strategy
we can say that two variables are causally identical if, and only if,
they share the same parameter set—that is, they are determined
in a subsystem that cannot be separated into smaller subsystems.
Causal identity defined in this way implies that the parameter-
nesting condition that we added to Simon’s formalism is a logical
requirement, given that causes must not be identical with their
effects.

Causal identity has some bearing on aggregation. Whenever,
variables are causally identical, it is possible without loss of infor-
mation to let one serve as index for the others and to simplify the
model. For example, in the supply-and-demand model (S6), Q and P
are causally identical and we could omit one equation with no loss
of causal information. If the tax function (21) were replaced by a
flat tax without the parameter / (i.e., by (210) T = sPQ), then that
equation could be omitted as well. The tax function would still give
useful information to the accountant, but it would provide no caus-
ally salient information for the policymaker.

We can relate this notion of causal identity to the issue of mod-
ularity. Cartwright offers the operation of ‘‘a well-made toaster’’ as
a counterexample to Woodward’s modularity requirement:

The expansion of the sensor due to the heat produces a contact
between the trip plate and the sensor. This completes the cir-
cuit, allowing the solenoid to attract the catch, which releases
the lever. The lever moves forward and pushes the toast rack
open.
I would say that the bolting of the lever causes the movement of
the rack. It also causes a break in the circuit. Where then is the
special cause that affects only the movement of the rack?
Indeed, where is there space for it? The rack is bolted to the
lever. The rack must move exactly as the lever dictates. So long
as the toaster stays intact and operates as it is supposed to, the

movement of the rack must be fixed by the movement of the
lever to which it is bolted.
Perhaps, though, we should take the movement of the lever to
the rack as an additional cause of the movement of the rack?
In my opinion we should not. To do so is to mix up causes that
produce effects within the properly operating toaster with the
facts responsible for the toaster operating in the way it does;
that is, to confuse the causal laws at work with the reason those
are the causal laws at work. (Cartwright, 2007, pp. 85–86.)

Cartwright’s toaster, I believe, does provide an illustration of the
failure of modularity in the sense that if we take the position of
the bolt not as a parameter subject to various settings, but as a con-
stant, then there is no intervention on the lever in a model of a
properly operating toaster that does also alter the rack. Another
way to look it, however, is that Cartwright has described to us what
it means to be a module. The lever and the rack are causally identi-
cal in a model formulated from a perspective in which the bolt is
neither a variable nor a parameter subject to intervention. But in
drawing a distinction between ‘‘causes that produce effects within
the properly operating toaster’’ and ‘‘facts responsible for the toast-
er operating in the way it does,’’ she also hints that a model of a
well-made toaster is not the only possible model of the same toast-
er. We might need a model of the causal facts responsible for the
toaster operating properly—for example, if we were in the business
of designing toasters. Then the fact that a bolt can determine that a
lever and rack remain tightly joined is a salient causal fact. Simi-
larly, the model of the properly operating toaster, leaves out of
the model many facts that are true in the world. If the toaster is
knocked off the counter and the bolt is loosened (or the lever is
bent), the invariant connection between lever and rack would fail.
The model that would be of use to the repairman is one that admits
that failure as a causal possibility.

The models here are not entirely separate; rather they form a
family with different levels of aggregation. A model in which the
bolt is considered only in its tightened state is a special case or
an aggregated version of a model in which the position of the bolt
is a variable. We might—to take an economic case—elaborate the
supply-and-demand model by treating the tax rate s as a variable
causally determined by connections to other variables governed by
other parameters. In this case, the model that takes s to be a vari-
ation-free parameter would be a special case or an aggregated ver-
sion of the more general model. Formally, it is easy to construct

Q P

T

R          N 

Fig. 4. Structure S6 on Simon’s first strategy.

A 

C 

D B

Fig. 5. Structure S7 (first strategy).

A 

C 

D B

Fig. 6. Structure S8 (first strategy).

A 

D B

C 

Fig. 7. Structures S7 and S8 (second strategy).
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models in related families at different levels of aggregation; but,
substantively, facts about the world constrain whether such fami-
lies are natural or useful or concocted and misleading. The varia-
tion-freeness of parameters is, as we have seen, trivially
constructed within formal models. Yet, it is anything but trivial
that a model in which the parameters have been specified as var-
iation-free adequately captures the functional relationships among
variables. It is only when it does that it can adequately represent
the causal facts from any given perspective or at any given level
of aggregation.

Cartwright’s example of the toaster illustrates that the second
type of modularity is not an essential feature of causation. But
more importantly, it illustrates what it takes to construct a module.
The reason that the lever-rack ensemble cannot be intervened
upon separately is that they are, at the level of a properly operating
toaster, in fact a module. A module is constructed by establishing
conditions in which the conceptually distinct parts are causally
identical. When the only admissible interventions necessarily alter
each of a set of variables, the variables act as a unit—a module.

There is, then, a third type of modularity. When a unit can be
constructed out of parts, the parts can be considered modules at
one level and the constructed unit a module at higher level. Mod-
ularity of this type is essential to anyone who builds new mecha-
nisms and devices out of parts with established properties.
Notice, however, that the parts of a modular unit need not display
modularity of the second type—that is, that the properties that
they underwrite at the higher level need not be robust to interven-
tions on the distinct parts. For example, airplane fuselages are
sometimes monocoque constructions in which the stressed skin
of the airplane and underlying structural members are mutually
supporting without a connected framework under the skin. The
skin and the framework function properly only in a relationship
of mutual support; they do not display the second type of modular-
ity any more than do Cartwright’s lever and rack. Yet they are built
out of distinct pieces or modules of the third type. Having a model
of the capacities of different pieces—a model less aggregated that a
model of the properly functioning toaster or airplane is essential to
engineers and designers.

At the level of the properly operating market, the same situation
arises in the supply-and-demand model (S6). Equations (19) and
(20) are a module and, from one causal level, can be treated as unit.
The way that the equations are written and Simon’s first strategy
to causal order suggests (see Fig. 4) that the module is, in fact, con-
structed out of parts. The second strategy does not, however, pro-
vide the basis for analyzing the internal structure of a module. For
that we have to appeal to knowledge other than the scope of inter-
ventions—e.g., knowledge of the parts and their capacities—or we
have to analyze a model on a deeper level in which aggregated
relationships are articulated into additional variables and parame-
ters which permit us to define the distinction between the parts of
the module by means of the scope of the interventions allowed by
the parameters. In the economic framework, the implicit equilib-
rium assumption embedded in supply always equaling demand
is an aggregation that elides an underlying mechanism (Arrow,
1959). A model that specified that mechanism may well permit
us to analyze the module using Simon’s second strategy into the
very parts (among others) that are implicit in his first strategy.

It is frequently a goal of science to break modules down into com-
ponent parts and to provide a model of how the parts interact to
form a module. While it is a good heuristic to try to push to a deeper
level of analysis, there can be no guarantee that one will succeed.

The account of modularity and causal identity provided here re-
lates to another, and frequently neglected (at least among econo-
mists) aspect of Simon’s causal analysis that he sees as the
groundwork for what he calls the ‘‘sciences of the artificial’’ (Si-
mon, 1996, especially chs. 1 and 8). Simon focuses on the fact that

complex systems are frequently decomposable into units. Some
units may have an internal structure, which is irrelevant to their
interactions with the other units. They could, in fact, be replaced
with units with different internal structures, so long as the alterna-
tive units each process inputs to outputs in the same manner. For
example, the subsystems determining B, C, and D in structures S1

and S2 (see Figs. 4 and 5) have different internal structures; yet
as shown in Fig. 6, their external causal relations (or external envi-
ronment) are identical. The subsystems thus form ‘‘black boxes,’’
interchangeable with other black boxes that function externally
in the same way.

For example, if the lever-rack assembly in Cartwright’s toaster
were made of metal, we may well be able to replace it with one
made of some type of plastic or we may be able to replace the
assembly that is bolted together out of two parts with a single part
by, say, welding rather than bolting the parts together. We need
not imagine that the inner and outer environments are completely
separated in fact. There may be boundary conditions that, if brea-
ched, connect the two environments. We may, for example, gener-
ally ignore the distinction between the metal and the plastic
assemblies in the toaster; but, in an environment with particularly
high heat, the plastic assembly may fail.

For this reason, Simon frequently emphasizes near decompos-
ability—the situation in which some parts are connected by strong
or highly stable linkages and others by much weaker or more con-
tingent linkages (Simon 1996, ch. 8; Iwasaki & Simon 1994; Simon
& Iwasaki 1988). The highly connected parts will act modularly
with respect to the parts (or other modules) to which they are
more weakly linked. Simon’s most common examples of near
decomposability are drawn from dynamic models. When variables
adjust to each other very quickly, they may be treated as in con-
stant static equilibrium with respect to each other, ignoring their
own dynamics. When variables that adjust very slowly to others,
they can be treated as exogenous over shorter time horizons. Dy-
namic analysis in the short run can then be simplified to focusing
on the relationships of variables or ensembles of variables that ad-
just neither very quickly nor very slowly to each other.

This brings us back to perspectival realism. Whether we find a
model adequate that ignores the very fast or very slow adjustments
among variables depends on pragmatic considerations—our pur-
poses or interests. A macroeconomist makes no important error
when he takes the yields on financial assets as standing in a state
of constant equilibrium (i.e., models financial markets with a ‘‘no-
arbitrage condition’’). A trader whose function is to conduct arbi-
trage would find the macroeconomist’s model useless. Equally, a
macroeconomist makes no important error in assuming that popu-
lation in the short run is exogenous relative to economic variables. A
demographer whose preferred time horizon is decades would miss
an essential causal mechanism by making the same assumption.
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