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ECONOMIC THEORY AND
CAUSAL INFERENCE

Kevin D. Hoover

1 REDUCTIONIST AND STRUCTURALIST ACCOUNTS OF CAUSALITY

Economists have intermittently concerned themselves with causality at least since
David Hume in the 18th century. Hume is the touchstone for all subsequent philo-
sophical analyses of causality. He is frequently regarded as a causal skeptic; yet,
as an economist, he put a high priority on causal knowledge.1 In “On Interest”
[Hume, 1754, p. 304], one of his justly famous economic essays, he writes:

it is of consequence to know the principle whence any phenomenon
arises, and to distinguish between a cause and a concomitant effect
. . . nothing can be of more use than to improve, by practice, the method
of reasoning on these subjects

The utility of causal knowledge in economics is captured in Hume’s conception
of what it is to be a cause: “we may define a cause to be an object, followed by
another, . . . where, if the first had not been, the second never had existed” [Hume,
1777, p. 62]. Causal knowledge lays the groundwork for counterfactual analyses
that underwrite economic and political policy judgments.

At least two questions remain open: first, what exactly are causes “in the
objects” [Hume, 1739. p. 165]? second, how can we infer them from experience?
Hume answers the first question by observing that the idea of cause comprises
spatial contiguity of cause to effect, temporal precedence of cause over effect, and
necessary connection between cause and effect. Necessary connection “is of much
greater importance” then the other two elements [Hume, 1739, p. 77]. Necessary
connection is the basis for practical counterfactual analysis.

Hume answers the second question by pointing out that contiguity and temporal
precedence are given in experience, but that no experience corresponds to the
notion of necessary connection. Since Hume famously believed that all knowledge
is either logical and mathematical or empirical, the failure to find an a priori or
an empirical provenance for the idea of necessary connection provides the basis for
the view that Hume is a causal skeptic.

1See Hoover [2001, ch. 1] for a fuller discussion of Hume’s views on causality as a philosophical
and economic problem.
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According to Hume, the closest that we can come to an empirical provenance
for the idea of necessary connection is the habit of mind that develops when two
objects or events are constantly conjoined. Unfortunately, constant conjunction
is too weak a reed to support a satisfactory account of the connection between
causal knowledge and counterfactual analysis — however practically important
Hume deemed the latter.

After Hume, the dominant strategy in the analysis of causality has been reduc-
tive. Its objects are, first, to define causes in terms of something less mysterious
with the object of eliminating causality as a basic ontological category and, second,
to provide a purely empirically grounded mode of causal inference. An important
modern example is found in Patrick Suppes [1970] probabilistic theory of causality.
For Suppes, A prima facie causes B, if the probability of B conditional on A is
higher than the unconditional probability of B (P (B|A) > P (B)). The type of
empirical evidence that warrants calling one thing the cause of another becomes,
in this approach, the meaning of cause: the ontological collapses to the inferential.

Such approaches are not successful. As Suppes and others realized, the concept
of cause must be elaborated in order to capture ordinary understandings of its
meaning. For example, cause is asymmetrical: if A causes B, B does not (in
general) cause A. It is easy to prove that if A is a prima facie cause of B, then B
is a prima facie cause of A.2 Asymmetry can be restored by the Humean device
of requiring causes to occur before their effects: P (Bt+1|At) > P (Bt+1) does not
imply P (At+1|Bt) > P (At+1).

Another standard counterexample to prima facie cause as an adequate render-
ing of cause simpliciter is found in the correlation between a falling barometer
and the onset of a storm. Although these fulfill the conditions for prima facie
cause, we are loath to say that the barometer causes the storm. The standard
device for avoiding this conclusion is to say the barometer will not be regarded as
a cause of the storm if some other variable — say, falling air pressure — screens off
the correlation between the putative cause and effect. The probability of a storm
conditional on a falling barometer and falling air pressure is the same as the prob-
ability of a storm conditional on falling air pressure alone. The falling barometer
does not raise the probability of the storm once we know the air pressure. Such a
screening variable is known either as a common cause (as in this example in which
the falling air pressure causes both the falling barometer and the storm) or as an
intermediate cause (when the variable is a more direct cause that stands between
the effect and a less direct cause in a chain).

These are only two examples of the various additional conditions that have to be
added to bring the simple notion of prima facie cause into line with our ordinary
notions of causation. Such strategies suggest, however, that the reductive notion

2See Hoover [2001, p. 15]. The joint probability of A and B can be factored two ways into
a conditional and a marginal distribution: P (B, A) = P (B|A)P (A) = P (A|B)P (B). If A is a
prima facie cause of B, then P (B|A) > P (B). Substituting for P (B) in the joint probability
distribution gives us P (B|A)P (A) < P (A|B)P (B|A) or P (A|B) > P (A) — that is, B is a prima
facie cause of A.
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is haunted by the ghost of a more fundamental concept of causality and that we
will not be satisfied until the reductive notion recapitulates this more fundamental
notion.

Recognition of the specter of necessary connection suggests another possibility:
simply give the reductive strategy up as a bad job and to embrace causality as a
primitive category, admitting that no satisfactory reduction is possible. Such an
approach once again distinguishes the ontology of causality from the conditions
of causal inference that had been conflated in reductivist accounts. Such a non-
reductive strategy implies that we can never step outside of the causal circle: to
learn about particular causes requires some prior knowledge of other causes. Nancy
Cartwright [1989, ch. 2] expresses this dependence in a slogan: “no causes in; no
causes out.” It is also the basis for James Woodward’s [2003] “manipulability”
account of causality (cf. [Holland, 1986]). Roughly, a relationship is causal if an
intervention on A can be used to alter B. The notion of a manipulation or an
intervention may appear to be, but is not in fact, an anthropomorphic one, since it
can be defined in terms of independent variations that may arise with or without
human agency. Nor is the circularity implicit in this approach vicious. What is
needed is that some causal relationship (say, C causes A) permits manipulation of
A, while what is demonstrated is the existence of a causal relationship between A
and B — what is proved is not what is assumed.

Causal knowledge in a manipulability account is the knowledge of the struc-
ture of counterfactual dependence among variables — for example, how a clock
works or how it will react to various interventions. Whereas in reductive accounts
of causality, the connection between the structure of causes and counterfactual
analysis was too weak to be satisfactory, here it is basic. Woodward’s account
is closely allied with the analyses of Pearl [2000] and Hoover [2001]. I prefer the
term structural account to manipulability account, since manipulations are used
to infer structures and structures are manipulated. Still, that preference is merely
a matter of terminology — the underlying causal ontology is the same in all three
accounts.

A structural account seems particularly suited to economics. Economics is
distinguished from other social sciences in its dedication to a core theory that is
shared, to one degree or another, by most economists. The core theory can be seen
as articulating economic mechanisms or structures not unlike physical mechanisms
that provide the classic illustrations of causal structure. While the very notion of
an economic structure seems to favor the manipulability or structural account
of causality, with its fundamentally causal ontology, the same tensions already
evident in Hume’s account of causality are recapitulated through the history of
economics. These tensions are reflected in two problems: the inferential problem
(how do we isolate causes or identify structure?) and counterfactual problem (how
do we use a knowledge of causal structure to reason to unobserved outcomes?).

John Stuart Mill, one of a distinguished line of philosopher/economists, con-
tributed answers to both questions. In his System of Logic (1851), he describes
various canons for inferring causes from empirical data. But in his Principles of
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Political Economy (1848) he denies that economic structures can be inferred from
these or other inductive rules. For Mill, economics involves many considerations
and many confounding causes, as well as human agency. While there may be some
coarse regularities, it is implausible that any economic laws or any strict causal re-
lationships could be inferred from data. But economics is not, therefore, hopeless
as a counterfactual science. Rather it is “an inexact and separate science” [Haus-
man, 1992]. Economics is the science of wealth in which the choices of human
actors, known to us by direct acquaintance, interact with the production possibil-
ities given by nature and social organization. From our a priori understanding,
we can deduce axiomatically the effects of causes in cases in which there are no
interfering factors. When we compare our deductions to the data, however, we
do not expect a perfect fit, because there are in fact interfering factors and our
deductions must be thought of as, at best, tendencies. There is no simple mapping
between the deductions of theory and any sort of empirical test or measurement.
Implicitly at least, Mill’s view has been highly influential in economics. Yet it
gives rise to a perennial conundrum: if we know the true theory, we can dispense
with empirical study; but how do we know that the theory is true?

I shall use the tension between the epistemological, inferential problem and the
ontological, counterfactual problem as a background against which to situate four
approaches to causality in economics. These four approaches are different, yet
overlapping and sometimes complementary. The goal will not be to ask, which is
right? Rather, what is right about each? They are 1) the notion of causal order
implicit in the Cowles Commission [Koopmanns, 1950; Hood and Koopmanns,
1953] analysis of structural estimation, revived in, for example, Heckman [2000];
2) Granger-causality [Granger, 1969; 1980; Sims, 1972]; 3) the structural account
of causality that appeals to invariance under intervention as an inferential tool
[Hoover, 2001]; and 4) the graph-theoretic approaches associated with Judea Pearl
[2000] and Glymour, Spirtes, and Scheines [2000].

Both economic theory and econometrics have become sciences expressed in mod-
els. My approach will be to discuss causality in relationship to the mapping be-
tween theoretical and econometric models. This mapping is related in a complex
way to the distinction between the inferential and the counterfactual problems. To
keep things concrete, I will use macroeconomic models to illustrate the key points.

2 STRUCTUAL ESTIMATION AND CAUSALITY

Trygve Haavelmo’s monograph “The Probability Approach in Econometrics” (1944)
marks a watershed in the history of empirical economics. Appropriately defined,
econometrics is an old discipline, going back perhaps to William Petty and the tra-
dition of “political arithmetic.” Some of the characteristic tools of econometrics
are traceable to William Stanley Jevons if not to earlier economists (see [Morgan,
1990]). Yet, until Haavelmo there was considerable doubt whether classical statis-
tics had any relevance for econometrics at all. Haavelmo’s great innovation was to
suggest how economic tendencies could be extracted from nonexperimental eco-
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nomic data — that is, to suggest how to do what Mill thought could not be done.
The true interpretation of Haavelmo’s monograph is highly disputed (see [Spanos,
1995]). On one interpretation, economic theory permits us to place enough struc-
ture on an empirical problem that the errors can be thought to conform to a
probability model analyzable by standard statistical tools. On another interpre-
tation (associated with the “LSE (London School of Economics) approach” in
econometrics), analysis is possible only if the econometric model can deliver errors
that in fact conform to standard probability models and the key issue is finding a
structure that ensures such conformity [Mizon, 1995].

The Cowles Commission took the first approach. The problem, as they saw it,
was how to identify and measure the strength of the true causal linkages between
variables. To do this, one started with theory. Suppose, to take a textbook
example, that theory told us that money (m) depended on GDP (y) and GDP on
money as

(1) m = αy + εm

(2) y = βm+ εy,

where the variables should be thought of as the logarithms of the natural variables
and εm and εy are error terms that indicate those factors that are irregular and
cannot be explained. Following Haavelmo, the Cowles Commission program argues
that if a model is structural then these error terms will follow a definite probability
distribution and can be analyzed using standard statistical tools. Furthermore, if
the structural model is complete, then the error terms will be independent of (and
uncorrelated with) each other.

If we have a model like equations (1) and (2), including knowledge of α and β and
of the statistical properties of εm and εy, then answering counterfactual questions
(probabilistically) would be easy. The problem in the Cowles Commission view is
that we do not know the values of the parameters or the properties of the errors.
The real problem is the inferential one: given data on y and m, can we infer the
unknown values? As the problem is set out, the answer is clearly, “no.”

The technique of multivariate regression, which chooses the coefficients of an
equation in such a manner as to minimize the variance of the residual errors,
implicitly places a directional arrow running from the right-hand to the left-hand
side of an equation. The error terms are themselves estimated, not observed,
and are chosen to be orthogonal to the left-hand side regressors — the implicit
causes. Although if we knew the direction of causation, a regression run in that
direction would quantify the relationship, we cannot use the regression itself to
determine that direction. Any regression run in one direction can be reversed,
and the coefficient estimates are just different normalizations of the correlations
among the variables — here of the single correlation between m and y.3 We have

3If ρ is the correlation between y and m, then the regression estimate of α is α̂ = ρ
q

σ2
m/σ2

y

and the estimate of β is β̂ = ρ
q

σ2
y/σ2

m, where ρ is the correlation coefficient between y and

m, σ2
m is the estimated variance of m, and σ2

y is the estimated variance of y.
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no reason to prefer one normalization over another.
Of course, if we knew the values of εm and εy, it would be easy to distinguish

equation (1) from equation (2). But this is just what we do not know. Our best
guesses of the values of εm and εy are determined by our estimates of α and β,
and not the other way round.

The problem is made easier if equations (1) and (2) are influenced by other,
and different, observable factors. Suppose the theoretical model is

(3) m = αy + δr + εm

(4) y = βm+ γp+ εy,

where r is the interest rate and p is the price level. Relative to the two-equation
structure y and m are endogenous and r and p are exogenous variables. The values
of the parameters can be inferred from regressions of the endogenous variables on
the exogenous variables. First, eliminate the endogenous variables by substituting
each equation into the other and simplifying to yield:

(3′) m = αγ
1−αβ p+ δ

1−αβ r + α
1−αβ εy + 1

1−αβ εm

(4′) y = βδ
1−αβ r + γ

1−αβ p+ β
1−αβ εy + 1

1−αβ εy.

Next estimate regressions of the form

(5) m = Π1p+ Π2r + Em

(6) y = Γ1p+ Γ2r + Ey,

where Π1,Π2, Γ1 and Γ2 are estimated coefficients and Em and Ey are regression
residuals. Such a regression is known as a reduced form because it expresses the
endogenous variables as functions of the exogenous variables and errors only.

The estimated coefficients of (5) and (6) can be matched with the coefficients on
the corresponding variables in (3′) and (4′): Π1 = αγ

1−αβ , Π2 = δ
1−αβ , Γ1 = βδ

1−αβ ,

and Γ2 = γ
1−αβ . Given this identification of the estimated coefficients with the

theoretical coefficients, the parameters are easily recovered. A little calculation

shows that α = Π1/Γ2
, β = Γ1/Π2

, δ =
Π2

2Γ2

Π2Γ2−Π1Γ1
, and γ =

Π2Γ
2
2

Π2Γ2−Π1Γ1
. It is only

the assumption that we know the theoretical structure of (3′) and (4′) that allows
us to recover these parameter estimates. In the argot of econometrics, we have
achieved identification through “exclusion restrictions”: theory tells us that p is
excluded as a cause of m and that r is excluded as a cause of y.

It is easy to see why we need factors that are included in one equation and
excluded from another simply by looking at the formulae that define the mapping
between the theoretical and estimated coefficients. For example, if r did not appear
in (3′), we could interpret δ as equal to zero, so that (3′) would collapse to (3).
Then Π2 and Γ1 would both equal zero, and β (the causal strength of m on y in
(4′), the other equation) would not be defined.
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The Cowles Commission approach privileges economic theory in manner that
is strikingly anti-empirical. We can use the strategy to measure a causal strength,
such as β, only on the assumption that we have the form of the structure correct
as in (3′) and (4′). Not only is that assumption untested, it is untestable. Only
if the theory implies more restrictions than the minimum needed to recover the
structural parameters — that is, only if it implies “over-identifying restrictions” —
is a statistical test possible. What is more, the Neyman-Pearson statistical testing
strategy adopted by Haavelmo and the Cowles Commission has been interpreted
as implying one-shot tests, in which the theoretical implication to be tested must
be designated in advance (see [Spanos, 1995]). Mutual adaptation between the
empirical tests and the theory that generated the testable implications invalidates
the statistical model.4 While there is some possibility of adapting the Neyman-
Pearson procedures to account for specification search, only the simplest cases
can be analyzed. Mutual adaptation is certainly practiced, but it lacks a sound
foundation given the statistical approach generally adopted in economics.

Herbert Simon [1953] clarified how identified structural models could be in-
terpreted causally. If we know that the parameters α, β, δ, and γ are mutually
independent — that is, the values taken by one places no restrictions on the range
of values open to the others — we can place the arrows of causation in a system
like (3) and (4), say, as

(3′′) m⇐ αy + δr + εm

(4′′) y ⇐ βm+ γp+ εy,

where the symbol “⇐” is interpreted as a directional equality. In this case, m
and y are mutual causes. If α were zero under all circumstances – that is, if y
were omitted from equation (4′′), then m would cause y, but y would not cause
m. Such systems with a one-way causal order are called recursive.

Simon pointed out an inferential problem closely related to the identification
problem. To keep things simple, consider a recursive system without error terms:

(7) m = δr,

(8) y = βm+ γp.

In this system, if β, δ, and γ are mutually independent parameters, mcauses y. But
can we infer the causal structure from data alone? Unfortunately not. Adding (7)
and (8) yields

(7′) m = −1
1−β y + γ

1−β p+ δ
1−β r,

4In the simplest cases, this is obvious. If one adopts a rule of trying different regressors until
one finds one that passes a t−test at a 5 percent critical value, then the probability of finding
a “significant” relationship when the null hypothesis of no relationship is in fact true is much
greater than one in twenty. For more complicated search procedures, the effect of search on the
true size of statistical tests is hard to work out analytically. In can be shown, however, that some
search procedures impose a large cost to search, while others impose quite small costs [Hoover
and Perez, 1999; 2004].
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While substituting (7) into (8) yields

(8′) y = γp+ βδr.

Every solution to (7) and (8) is also a solution to (7′) and (8′), yet in the first
system m appears to cause y, and in the second system y appears to cause m.
One might say, “yes, but the second system is clearly derived from the first.” But
this is not so clear. If we replace the second system with

(7′′) m = φy + λp+ µr,

(8′′) y = θp+ ρr,

then what appear to be coefficients that are functions of more basic parameters in
(7′) and (8′) can be treated as themselves basic parameters. Taking an appropriate
linear transformation of (7′′) and (8′′) will convert it to a system with a causal order
like that of (7) and (8) in which the coefficients are functions of its parameters.
The same set of values for m, y, r, and p are consistent with this new system as
with the three previous systems. The data alone do not seem to prefer one causal
order over another. This is the problem of observational equivalence.

If we had some assurance that we knew which coefficients were true parameters
and which were functions of more basic parameters, or even if we knew for certain
which exogenous variables could be excluded from which equations, then we could
recover the causal order.

At this point, the theoretical causal analyst is apt to turn to the economist and
say, “we rely on you to supply the requisite subject matter knowledge.” Surpris-
ingly, economists have often been willing to oblige on the basis of a priori theory
or detailed knowledge of the economy. But we are entitled to ask: “Where did
such detailed knowledge come from? How was the theory validated? Was the vali-
dation done in a way that did not merely assume that the problem of observational
equivalence had been solved at some earlier stage? And, if it were soluble, at the
earlier stage, why is it a problem now?”

3 THE ASSAULT ON MACROECONOMETRIC MODELS

The epistemic problem of inferring causal strengths threatens to undermine the
counterfactual uses of causal structure. Macroeconometric models are wanted in
large part to conduct policy analysis. Without knowledge of the parameter values
true policy analysis — that is, working out the effects of previously unobserved
policy — is not possible (see [Marschak, 1953]). Despite the fact that the Cowles
Commission program had clearly articulated the central difficulties in inferring
causal structure, macromodeling in the 1950s and 1960s was undaunted. I be-
lieve that the main reason for ignoring the vast epistemic problems of structural
modeling can be traced to the confidence in our direct, nonempirical acquaintance
with true economic theory that many economists shared with (or inherited from)
Mill. The Cowles Commission program pointed to the need for a priori theory.
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Yet, this was not a problem, because what most distinguished economics from all
other social sciences was, as Cartwright [1989, p. 14] later put it, “economics is a
discipline with a theory.”

But was it well enough articulated? The structural econometric models of
Jan Tinbergen, starting in the 1930s, through Lawrence Klein in the 1950s were
models of macroeconomic aggregate data reflecting commonsensical assumptions
about their interrelationships. Deep economic theory typically referred to the
decision problems of individual agents — it was microeconomic. Even Keynes’s
General Theory (1936), the bible of macroeconomics, had referred to individual
behavior as a basis for aggregate relationships, such as the consumption function
or the money-demand function. In his early review of the General Theory, Leontief
[1936] called for grounding these relationships in a general-equilibrium framework
in which the interactions of all agents had to be mutually consistent. Klein [1947]
himself called for deriving each macroeconomic relationship from the optimization
problems of individual economic actors. Together these quests formed the program
of microfoundations for macroeconomics.

Klein’s leg of the microfoundational program developed more rapidly than Leon-
tief’s. It was soon discovered that because decision-making is oriented toward the
future, expectations are important. This was particularly clear in the investment
literature of the late 1950s and early 1960s and led to a flowering of theoreti-
cal studies of expectation formation associated with the Carnegie Institute (now
Carnegie-Mellon University). Because expectations must be grounded in past in-
formation and because the economic effects are slow to unfold, the current values
of variables depend on past values. In other words, the quest for microfoundations
underscored the dynamical character of economic relationships, reviving lines of
inquiry that had begun in the interwar period.

The Leontief leg of the microfoundational program finally took off around 1970.
Robert Lucas, in a series of papers that launched the new classical macroeconomics,
insisted that models should respect the constraints of general equilibrium.5 Lu-
cas made two key assumptions. Up to this point, most economists had thought
that macroeconomic phenomena arose in part because one market or other failed
to clear. Modeling non-clearing markets is theoretically difficult. Lucas’s first
assumption is that markets in fact (at least to a first approximation) clear. His
second assumption is that expectations are formed according to Muth’s [1961]
rational expectations hypothesis. The rational expectations hypothesis assumed
that what economic actors expect is, up to a random error, what the economic
model predicts. Rational expectations are appealing to economists because they
do not imply an informational advantage on the part of the modeler. If models
could actually outpredict economic actors, then there would be easy profit oppor-
tunities for the modeler. But the modelers are themselves economic actors (and
inform other economic actors) who would themselves take advantage of the profit
opportunities with the effect of changing prices in such a way that the opportunity
disappeared (the process referred to as arbitrage). In effect, acting on non-rational

5See Hoover [1988; 1992a; 1992b].
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expectations would help to make the economy conform to rational expectations.
Lucas’s assumptions had strong implications for monetary policy as well. In a

world in which markets clear, under conditions that many economists regard as
reasonable, increases in the stock of money raise prices but do not change real
quantities: there is pure inflation. In such a world, only an expectational er-
ror would allow a monetary-policy action to have a real (as opposed to a purely
inflationary) effect. If people have rational expectations, then monetary policy
actions can induce such errors at best randomly. Systematic monetary policy can-
not, therefore, have real effects on the economy. This is the policy-ineffectiveness
proposition, which was the most startling result of the early new classical macroe-
conomics [Sargent and Wallace, 1976].

We can see how Lucas’s analysis relates to causality and the Cowles Commis-
sion program through a simple structural model (again the variables should be
interpreted as the logarithms of natural variables):

(9) yt = α(pt − pet ) + εyt,

(10) pt = mt − yt,

(11) mt = γ1mt−1 + γ2yt−1 + εmt,

(12) pet = E(pt|Ωt−1).

The variables are the same as those defined earlier, except that now the dynamic
relationships are indicated by time subscripts. Equation (9) says that prices affect
real GDP only if they differ from expectations formed a period earlier. Equation
(10) shows that the level of prices is determined by the size of the money stock
relative to real GDP. Equation (11) is the monetary-policy rule: the central bank
sets the money supply in response to last period’s levels of money and real GDP.
Finally, (12) says that expected prices are formed according to the rational expec-
tations hypothesis — i.e., they are the mathematical expectation of actual prices
based on all the information available up to time t−1. The information set (Ωt−1)
includes the structure of the model and the values of all variables and parameters
known at t− 1, but does not include the values of the current error terms.

The model is easily solved for an expression governing GDP,

(13) yt =
α

1 + α
mt −

αγ1

1 + α
mt−1 −

αγ2

1 + α
yt−1 +

1

1 + α
εyt,

as well as one governing money that merely recapitulates the earlier equation

(11) mt = γ1mt−1 + γ2yt−1 + εmt.

The system (11) and (13) is identified. In some sense, it shows mutual causality:
m causes y, and y causes m. Yet, if we restrict ourselves to current (time t) values,
then contemporaneously mt causes yt.
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The coefficients in (13) are functions of the parameters of the model (9)–(12)
because of the way expectations are formed: economic actors are seen as account-
ing for the structure of the model itself in forming expectations. Lucas [1976]
criticized macromodelers for failing to incorporate expectations formation of this
sort into their models. In his view, despite the claim that they were “structural,”
previous macromodelers had estimated forms such as

(14) yt = Π1mt + Π2mt−1 + Π3yt−1 + Eyt,

(15) mt = Γ1mt + Γ2mt−1 + Γ3yt−1 + Emt,

with enough exclusion restrictions to claim identification. He argued that these
estimates were not grounded in theory — at least not in a theory that took dy-
namics, general equilibrium, and rational expectations seriously. In effect, Lucas
argued that the coefficients in (14) and (15) were not casual, structural param-
eters but coefficients that were functions of deeper parameters. Mapping these
coefficients onto those in (11) and (13) yields: Π1 = α

1+α , Π2 = −αγ1
1+α , Π3 = −αγ2

1+α ,
Γ1= 0, Γ2 = γ1, and Γ3 = γ2.

Notice that Γ2 and Γ3just recapitulate the parameters of the policy function
(11). In contrast Π1, Π2, and Π3 are coefficients that shift with any change in one
of the policy parameters. Equation (14) may have appeared to the macromodeler
to be a structural relationship, but if Lucas’s theory is correct it would not be
invariant to policy manipulation, as Haavelmo and the Cowles Commission had
insisted that a causal relationship should be. This is the policy noninvariance
proposition or Lucas critique.

While the Lucas critique is a celebrated contribution to macroeconomic analy-
sis, in this context it is secondary. It might be interpreted as little threat to the
Cowles Commission program. Instead of identifying structure through exclusion
restrictions, Lucas seems to show us that a more complicated, nonlinear identi-
fication is needed. The demands on a priori theoretical knowledge are higher,
but they are of the same kind. Once the parameters are identified and estimated,
counterfactual analysis can proceed using (11) and (13). In fact, the combination
of the idea that only unexpected prices can have real effects (encapsulated in the
“surprise-only” aggregate-supply function (9)) and rational expectations renders
counterfactual analysis impossible. To see this, substitute (11) into (13) to yield

(16) yt =

(
1

1 + α

)
(αεmt + εyt) .

Equation (16) says that real GDP depends only on random shocks and on the
shape of the aggregate-supply function (the parameter α), but not in any way
on the policy parameters γ1 and γ2. This is the formal derivation of the policy
ineffectiveness proposition.

One might be inclined to dismiss policy-ineffectiveness as a very special and
very likely non-robust result. In particular, economists typically place less confi-
dence in dynamic theory than in equilibrium theory. But, as it turns out, policy
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ineffectiveness is a generic property of models with a surprise-only supply struc-
ture and rational expectations. Although there are alternatives, it characterizes a
broad and attractive class of models.

The new classical approach can be seen as placing extreme faith in economic
theory and, nevertheless, completely undermining the counterfactual analysis that
causal analysis in the Cowles Commission framework was meant to support. To-
ward the end of the 1970s, macromodels were assaulted from the opposite extreme.
Rejecting the typical identifying restrictions used in macromodels as literally “in-
credible” — not grounded in theory or other sure knowledge — Christopher Sims
[1980] advocated the abandonment of the Cowles Commission program in favor
of a nonstructural characterization of macroeconomic data, the so-called vector
autoregression (VAR). A VAR might take a form such as

(17) yt = Π1yt−1 + Π2mt−1 + Π3pt−1 + Eyt,

(18) mt = Γ1yt−1 + Γ2mt−1 + Γ3pt−1 + Emt,

(19) pt = Λ1yt−1 + Λ2mt−1 + Λ3pt−1 + Ept.

These equations should be understood as reduced forms. The coefficients are not
structural and the error terms are not in general independent. While only a single
lagged value of each variable is shown, in general these lags should be taken as
standing for a set of longer (possibly infinite) lagged values.

Having eschewed structure, the Cowles Commission analysis of causal order
is not available to the VAR modeler. VAR analysis, however, grew out of an
older tradition in time-series statistics. Sims [1972] had introduced Granger’s
[1969] approach to causality into macroeconometric analysis. Granger’s notion is
temporal (causes must precede effects) and informational (A causes B if A carries
incremental information useful in predicting B). In (17), for instance, m does not
Granger-cause y if the estimate of Π2 is statistically insignificant.

Granger-causality does not suffer from the inferential problem: systems like
(17)–(19) are easily estimated and the statistical tests are straightforward. But
it is no help with the counterfactual problem, despite the ease with which many
practicing economists have jumped from a finding of Granger-causality to an as-
sumption of controllability. Just recalling that the reduced-form parameters of the
VAR must be complicated functions of the underlying structure should convince
us of the unsuitability of Granger-causal ordering to counterfactual analysis.

More specifically, Granger-causality is easily shown not to be necessary for coun-
terfactual control. Imagine that structurally m causes y, and that m is chosen in
such a way to offset any systematic (and, therefore, predictable) fluctuations in y,
then m will not be conditionally correlated with y (i.e., Π2 = 0). For example,
suppose that the wheel of ship causes it to turn port or starboard, but that the
helmsman tries to hold a perfectly steady course. The ship is buffeted by the
waves and swells. Yet, if the helmsman is successful, the ship travels in straight
line, while the wheel moves from side to side in an inverted counterpoint to the
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movements of the sea. There should be no observable correlation between the
direction of the ship and that of the wheel along a single heading.

Granger-causality may not be sufficient in practice for counterfactual control.
Suppose that ceteris paribus the higher the stock of money or the lower the demand
for money, the higher the price level. Further suppose that the demand for money
will be lower when people anticipate inflation (i.e., prices higher in future than
today). If people know that the money stock will rise in future, then prices will
rise in future, so that inflation is higher and the demand for money is lower today.
In that case, prices will rise somewhat today as a fixed supply of money would
otherwise exceed the lower demand. Now if people are better able to predict the
future course of money than are econometricians, then the econometricians will
find that prices today help to predict the future stock of money. In this case, prices
Granger-cause money, even though money structurally causes prices ex hypothesi
[Hoover, 1993, 2001, ch. 2].

One might counter this argument by saying that it simply shows that the econo-
metrician has relied on incomplete information. It raises an important ontological
issue for macroeconomics. Given the way that macroeconomic aggregates are
formed, it is likely that there is always more information reflected in the behavior
of people than is reflected in even an ideal aggregate. If that is so, then conflicts
between structural and Granger-causality are inevitable.

A similar point applies to the assumption of time order implicit in Granger-
causality: causes strictly precede effects. Practically, this is clearly not true.
Contemporaneous Granger-causality easily shows up with data sampled at coarse
intervals: months, quarters, years. But would it go away if we could take finer
and finer cuts of the data? The existence of an aggregate such as real GDP as a
stable, causally significant variable is threatened by taking too fine a cut. Real
GDP measures the flow of goods and services — the amount of final products
produced over a unit of time. While one could in principle add up such a quantity
over intervals of an hour or a second, such an aggregate would fluctuate wildly
with the time of day (think what happens to GDP at night or meal times) in a
way that has no causal significance in macroeconomics. At any interval over which
it is causally significant, the relationships may be contemporaneous rather than
strictly time-ordered.

As already observed, the most developed theory is about static equilibrium or
steady states. The relationships in such steady states are essentially timeless, yet
this does not rule out a structural causal order (notice that there are no time
subscripts in (3′′) and (4′′) above).

Economists have found it hard to get by with just Granger-causality and VARs.
This is because they are not ready to abandon counterfactual analysis. The VAR
program started at the nonstructural extreme. It has gradually added just enough
structure to permit a minimal counterfactual analysis. A key feature of the VAR
is that all variables are modeled as endogenous. Ultimately, it is only the errors
(or “shocks”) that cause movements in the variables. But the shocks in (17)–(19)
are intercorrelated. What does it mean to evaluate, say, a money shock when
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any randomly selected value of Emt changes the probability distribution of Eyt
and Ept as well? In the wake of criticism from Cooley and LeRoy [1985], Leamer
[1985] and others, Sims [1982; 1986] and other VAR analysts quickly admitted
that contemporaneous structure was needed.

The preferred structures involved a linear transformations of the VAR that
eliminated the correlation between the error terms. A typical structural VAR (or
SVAR) takes the form:

(20) yt = Π1yt−1 + Π2mt−1 + Π3pt−1 + Eyt,

(21) mt = Γ′
yyt + Γ′

1yt−1 + Γ′
2mt−1 + Γ′

3pt−1 + E′
mt,

(22) pt = Λ′
mmt + Λ′

yyt + Λ′
1yt−1 + Λ′

2mt−1 + Λ′
3pt−1 + E′

pt.

This system is recursively ordered with yt causing mt, and yt and mt causing
pt. (The transformation of the VAR into an SVAR in which each variable is a
direct cause of every variable below it in the recursive order is called triangular
and is achieved through a Choleski decomposition.) At all other lags the system
remains causally unstructured. But this minimal structure is enough to eliminate
the correlations among the error terms. So now, a unique shock to the money
equation or the price equation makes sense. The typical way of evaluating SVARs
is to calculate the effects of a shock to a single equation, setting all other shocks
to zero. These are called impulse-response functions and are usually displayed as
a separate graph of the path of each variable in response to each shock.

Unfortunately, the Choleski transformation that generated the triangular or-
dering of the contemporaneous variables is not unique. There are six possible
Choleski orderings. These are observationally equivalent in the sense that they
are all transformations of the same reduced form. And with n variables, as long
as at least n(n − 1)/2 restrictions are imposed to secure identification, there can
be non-Choleski (i.e., not strictly recursive) orderings as well.

Not only does formal economic theory not often express a preference for a par-
ticular contemporaneous ordering, the founding sentiment of the VAR program
was that theory was not to be trusted to provide structure. In practice macroe-
conomists have offered casual, often temporal, arguments to support particular
orderings. For example, commodity prices are observed daily but the Federal
Reserve’s policy action must act slowly, so the commodity-price index must be or-
dered ahead of the Federal Reserve’s targeted interest rate. These are mostly “Just
So” stories and easily fall foul of some of the problems with temporal arguments
that applied in the case of Granger-causality.

Structural VARs have become the dominant tool of empirical macroeconomics,
often adopted by researchers who subscribe to the fundamental tenets of the new
classical macroeconomics, even while distrusting the details of any theoretical
model that could generate identifying restrictions. But the SVAR stands in an
uneasy relationship with the new classical analysis.6 If the Lucas critique is cor-

6On the tension within the new classical macroeconomics between the SVAR and structural
approaches, see Hoover [2005].
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rect, then are not the coefficients of the SVAR likely to shift with changes in
economic policy, rendering the impulse-response functions inaccurate?

One response has been to admit the Lucas critique on principle but to argue
that true changes in policy are rare [Sims, 1986]. Most monetary-policy actions
are seen as realizations of particular processes. Impulse-response functions may
prove to be accurate on this view; yet, once again, how is one to conduct counter-
factual analysis? LeRoy [1995] has argued — unpersuasively in my view — that a
policymaker can be seen as delivering a set of nonrandom shocks without violating
rational expectations. Leeper and Zha [2003] do not go quite so far. They argue
that there is a threshold of perceptibility for violations of randomness. Below that
threshold (defined by the duration of the string and the size of the shocks), a pol-
icymaker can deliver a string of nonrandom shocks that do not trigger the Lucas
critique and, yet, are economically significant.

The example of the new classical model in (9)–(13) demonstrates a generalizable
point that in those cases in which the Lucas critique is relevant, policy is innocuous.
Counterfactual analysis needs some structure, the SVAR does not provide enough.
I return to this point in Section 5 below.

4 INFERRING CAUSES FROM INTERVENTIONS

The Cowles Commission approach put theory to the forefront in order to support
counterfactual policy analysis. The skeptical SVAR program tried to do with as
little theory as possible. The SVAR program sees the Lucas critique as a threat,
since true changes in policy regime would vitiate the VAR estimates. My own
approach in earlier work (summarized in Hoover 2001, chs. 8-10) is, in sense, to
embrace the Lucas critique as a source of information about the underlying causal
structure. The idea is an essential one for the structural or manipulability account:
the causal relationship is defined as one that possesses a certain type of invariance.
The previous equations used to illustrate Simon’s account of causal order can be
used to show this point.

Suppose that the system (7) and (8), in which m causes y, reflect the true
— but unknown — causal order. A policy intervention might be a change in
the parameter δ. The parameter may not be identified, and, so, the change will
not be directly observed. Yet, we may know from, for example, institutional (or
other nonstatistical) information that a policy change has occurred. Such a change
would, however, not alter the parameters of (8). Now suppose that the system
(7′) and (8′), which could be interpreted (incorrectly, of course) as reflecting y
causing m, is considered as an alternative. Again, if we know that a policy change
has occurred, we see that both the coefficients of the m equation (7′) and the y
equation (8′) have shifted. The stability of (7) and (8) against the instability of
(7′) and (8′) argues in favor of the causal direction running from m to y. There is
no free lunch here. Where identification in structural models is achieved through
a priori theoretical knowledge, identification of causal direction is achieved here
through knowledge of independent interventions.
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This invariance approach is closely related to the econometric notion of su-
perexogeneity [Engle, Hendry, and Richard, 1983; Hendry 1995]. Superexogeneity
is defined with reference to the stability of the statistical distribution in the face
of interventions. My own approach emphasizes the importance of referring to the
causal structure itself and is, in that sense, more fundamentally indebted to the
Cowles Commission analysis of structure. The importance of this distinction can
be seen in the new classical model whose solution is given in (11) and (13). On a
superexogeneity standard, the instability of the coefficients of (13) in the face of
a change in policy that (observable or not) changes γ1 or γ2, might be taken to
count against mt contemporaneously causing yt. Yet, on the Cowles Commission
standard, the causal order clearly runs from mt to yt. The important point is that
the effects of interventions do not run against the arrow of causation. This is still
true in this case, an intervention in the aggregate-supply process (a change in α)
does not result in any shift of the coefficients of (11).

Favero and Hendry [1992] and Ericsson and Hendry [1999] have used superex-
ogeneity tests to check whether the Lucas critique matters in practice (see also
[Ericsson and Irons, 1995]). This is exactly right. And if it does not — prob-
ably because expectations are not formed according to the rational-expectations
hypothesis — then the inference of causal direction from invariance is easier. But
if the Lucas critique in fact matters, then more subtlety is needed to tease causal
direction out of information about invariance.

The key point is that it is not invariance but structure that defines causal-
ity; invariance only provides information that is often helpful in causal inference.
There is always invariance at some level, but not always at the level of ordinary
correlations or regression relationships.

5 GRAPH-THEORETIC ACCOUNTS OF CAUSAL STRUCTURE

Causal inference using invariance testing is easily overwhelmed by too much hap-
pening at once. It works best when one or, at most, a few causal arrows are in
question, and it requires (in economic applications, at least) the good fortune to
have a few — but not too many — interventions in the right parts of the structure.
Over the past twenty years, a new analysis of causal structure based in graph the-
ory has provided important theoretical and practical advances in causal analysis
[Spirtes, Glymour, Scheines, 2000; Pearl, 2000]. These advances have, however,
barely touched economics, yet they may help to overcome some of the limitations
of the invariance approach.

In the Cowles Commission account an adequate econometric model has two
distinct but related parts: the probability distribution of the variables and their
causal structure. Spirtes et al., [2000] and Pearl [2000] subscribe completely to this
view of structure, but offer a more perspicacious way of keeping track of causal
relations. Graphs have been used for more than a century to indicate causal
structure, but only recently have the mathematical tools of graph theory given
researchers a highly efficient way to express causal connections and to analyze and
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manipulate them in relations to the associated probability distributions.
The key idea of the graph-theoretic approach is related to Reichenbach’s [1956]

principle of the common cause. If A and B are probabilistically dependent, then
either A causes B or B causes A or both have a common cause. The common
cause might be a parent as in Figure 1 or a set of ancestors as in Figure 2. The
causal Markov condition is closely related to Reichenbach’s principle. Roughly, it
says that if C is a set of ancestors to A and B and if A and B are not directly
causally connected and are not probabilistically independent, then A and B are
independent conditional on C .

C

BA

Parent

Children

Figure 1. A Common Cause

C D

E

ChildrenA B

Ancestors

Figure 2. Common Ancestors

In practice, independence is usually judged by estimating (conditional) corre-
lations among variables. This raises three issues. First, independence implies an
absence of correlation, but an absence of correlation does not imply independence.
(For an example, see Lindgren [1976, p. 136].)

Second, the independence relationships of interest are those of the population,
and not the sample. Inference about sample correlations is statistical and thus
reliable only subject to the usual caveats of statistical inference.

But, third, even measured correlations are meaningful only in the context of
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a maintained model of the probability distribution of the variables. This dis-
tinction becomes important when statistics that apply to stationary or homoge-
neous data interpreted as applying equally well to nonstationary or inhomogeneous
data. For example, the well-known counterexample to Reichenbach’s principle of
the common causes due to Elliott Sober [1994; 2001] states that bread prices in
England and sea levels in Venice, which ex hypothesi, are not causally connected
are nonetheless correlated, violating Reichenbach’s principle. Hoover [2003] shows
that Sober implicitly assumes a stationary probability model when the best model
would involve variables that either trend or follow a random walk. Time-series
statisticians have known for a long time than ordinary measures of correlation
fail to indicate probabilistic dependence in such models. Keeping these caveats
in mind, we shall, for purposes of exposition, assume that correlations measure
independence.

The idea of vanishing conditional correlation is also found in the notion of
screening, familiar from the literature on probabilistic causation. If cor(A,B) 6=
0 and C is causally between A and B (A → C → B or A ← C ← B), then
cor(A,B|C ) = 0.

Conditioning can also induce correlation. The classic example if shown in Figure
3. Here cor(A,B) = 0, but cor(A,B|C) 6= 0. C is called an unshielded collider
on the path ACB. It is a “collider” because two causal arrows point into it, and
it is “unshielded” because A and B are not directly causally connected. Figure 4
shows two shielded colliders. In each case cor(A,B) 6= 0.

C

BA

Battery Ignition Switch

Unshielded Collider

Car Starting

Figure 3. An Unshielded Collider

There is a number of algorithms that start with all the first-order correlations of
a set of variables and search for patterns of unshielded colliders, common causes,
and screens consistent with the observed correlations. The best known software
for implementing these algorithms is the Tetrad program of Sprites et al. [1996].

The Observational Equivalence Theorem [Pearl, 2000, p. 19, Theorem 1.2.8;
Sprites et al., 2000, ch. 4] states that any probability distribution that can be
faithfully represented in a causally sufficient, acyclical (or what econometricians
would call a recursive) graph can equally well be represented by any other acycli-



Economic Theory and Causal Inference 107

BA

Shielded Collider

BA

C

C Shielded Collider

Figure 4. Shielded Colliders

cal graph that has the same skeleton (i.e., the same causal connections ignoring
direction) and the same unshielded colliders. Such graphs form an observationally
equivalent class. Figure 4 shows two observationally equivalent graphs. They have
identical skeletons and no unshielded colliders. The following two graphs are also
observationally equivalent:

(i) A→ B ← C → D, and

(ii) A→ B ← C ← D

In each case, they have the same causal connections and an unshielded collider at
A on the path ABC but differ in the direction of causation between C and D. A
program such as Tetrad can direct the arrows between A and B and between B
and C, it cannot direct the arrow between C and D.

How can graph-theoretic ideas be applied to macroeconomics? One limitation
is worth noting at the outset. Search algorithms based on the causal Markov con-
dition can easily miss causal linkages in situations of optimal control (for example,
the helmsman in section 3 who tries to steer on a constant heading) for exactly the
same reason that Granger-causality tests failed: in the ideal case, the values of the
control variable are chosen to minimize the variability of the controlled variable,
and the correlation between them vanishes [Hoover, 2001, pp. 168–170]. Spirtes et
al. [2000, p. 66] and Pearl [2000, p. 63] dismiss this as a “Lebesgue measure-zero”
result. While this may do in some cases, it will not do in economics, because such
cases arise naturally in economics when policies are chosen optimally to minimize
the variability of a target. (Stabilizing GDP around its trend is much like stabi-
lizing the movements of a ship around the preferred heading.) This, by no means,
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renders the approach or the algorithms useless, but it does serve remind us that it
is the causal structure that is primary and not the tools that are used to uncover
it. When tools do not work in some circumstances, other tools are needed.

Another problem in applying these tools to macroeconomic applications is that,
in most cases, they have been developed with stationary, non-time-dependent data
in mind. But macroeconomics works primarily with time-series and often with
nonstationary time series. Swanson and Granger (1997) made a first pass at
applying these methods to VARs. Their method can be explained with reference
to the VAR in (17)-(19). Although the variables the variables themselves are
time-dependent and possibly nonstationary, the error terms are not. If the VAR
is correctly specified, then the residual errors are serially uncorrelated with a zero
mean and constant variance. Instead of looking at the correlations among the
primary variables, Swanson and Granger look at the correlations among their
corresponding error terms, reinterpreted as the variables with their time-series
dynamics filtered out.

Swanson and Granger limit themselves to causation in a line without considering
common causes (e.g., Ỹt → M̃t → P̃t, where the tildes over the variables indicate
that they are filtered). They do not use the common algorithms available in Tetrad.
Instead, they check for screening directly. This allows them to put the variables
in order, but not to orient the arrows of causation. Like other VAR analysts,
once they have selected an order, they rely on an argument of temporal priority
to orient the chain of causation. Once they have determined the order among the
filtered variables, they impose them on the original VAR and transform it into an
SVAR.

6 A SYNTHETIC PROGRAM FOR UNCOVERING THE CAUSAL
STRUCTURE OF VARS

I have been highlighting the tensions between causal inference and the counter-
factual uses of causation and the parallel tensions between structural and non-
structural econometric models. But despite these tensions, my aim is essentially
the irenic one of looking for the best in the various approaches. The best available
account of causal order in economics is found in the Cowles Commission structural
analysis. But as a strategy of causal inference it is infeasible. It provides no mech-
anism for effective feedback from empirical facts about the world to the theory
that is used to structure the empirical measurement of causes. The VAR program
has that much right. The identification assumptions of the Cowles Commission
program are incredible. Unfortunately, the VAR program also needs structure to
proceed. The questions are: how little structure can we get away with and still
have something useful to say? and how are we to learn about structure? I want
to conclude by briefly describing my research program on the causal orderings
of VARs (joint work with Selva Demiralp and Stephen J. Perez). Our approach
emphasizes the complementarity of various approaches to causation in macroeco-
nomics.
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We start where Swanson and Granger left off. Their useful idea is that the con-
temporaneous causal order of the SVARs can be determined by applying graph-
theoretic methods to the filtered variables. Along with a small group of other
researchers, we have extended their methods to consider recursive or acylical order-
ings more generally and not just simple causal chains (see [Demiralp and Hoover,
2003] and the references therein). For this we used the PC algorithm in Tetrad.
What makes this a nontrivial exercise is that the algorithms in Tetrad are data
search procedures in which the search path involves multiple sequential testing.
Economists are famously wedded to a Neyman-Pearson statistical testing philos-
ophy in which such “data mining” is viewed with the greatest skepticism. Previ-
ously, Hoover and Perez [1999; 2004] have investigated LSE search methodologies
in Monte Carlo studies and have demonstrated that properly disciplined search
algorithms can, despite economists fears, have extremely well-behaved statistical
properties. Demiralp and Hoover [2003] demonstrate in a Monte Carlo study that
the PC algorithm is very effective when applied to the SVAR at recovering the
skeleton of underlying causal graphs and, provided that signal strengths are high
enough, at oriented the edges as well.

The problem of whether or not (or to what degree) an algorithm identifies a
causal order is not as straightforward as determining the distribution of a statisti-
cal test — the typical application of Monte Carlo studies. In particular, the effec-
tiveness is likely to be highly dependent on the true underlying causal structure
— something that cannot be known in advance in actual empirical applications.
Demiralp, Hoover, and Perez [2008] have therefore developed a bootstrap method
in which simulations can be adapted to actual data without knowing the true un-
derlying structure. The bootstrap method starts by estimating a VAR, in the same
way as one normally obtains the filtered variables, but then treats the error terms
as a pool of random variates from which to construct a large number of simulated
data sets. A causal search algorithm is then applied to each simulated data set
and the chosen causal order is recorded. Statistics summarizing the frequency of
occurrence of different causal structures are then used in the manner of Monte
Carlo simulations in the earlier study to construct measures of the reliability of
the causal identification for the specific case under study.

Graph-theoretic methods are attractive in the VAR context partly because they
are well suited to handle relatively large numbers of variables. Nevertheless, as we
have already seen, there may remain some observational equivalence, so that some
causal links cannot be oriented. Macroeconomics quite commonly involves policy
regime changes and structural breaks that can be exploited as in my own earlier
approach to causal inference.

The impulse-response functions of VARs are known to be inaccurately esti-
mated. In part, this arises because they include large numbers of lagged and often
highly correlated regressors. Conditional on the contemporaneous causal order
being held fixed, it should be possible to conduct systematic exclusion restrictions
of variables and their lags from the different equations of the structure. These
are effectively Granger-causality tests. The elimination of variables which are not
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Granger-causal should help to sharpen the estimates.
This program of discovering the structure of the VAR from data helps to pre-

serve the insight that a priori theory alone cannot get us too far. But let me
end on a cautionary note. The discovery of the contemporaneous causal VAR
through graph-theoretic methods supplemented by invariance-based methods and
refined by Granger-causality tests may still not deliver enough structure to support
counterfactual analysis.

To illustrate the problem, the structure in (11) and (13) is compatible with an
SVAR in which contemporaneous money causes contemporaneous real GDP. And,
as we have seen, it delivers policy ineffectiveness. It is a simple model, but policy
ineffectiveness generalizes to complex models.

Since the 1970s, however, many — if not most — macroeconomists have come
to believe that, in the short run, systematic monetary policy does have real effects.
This might be because expectations are not formed rationally (or because economic
actors follow rules of thumb that make no reference to expectations at all) or
because slowly adjusting wages and prices undermine the surprise-only aggregate
supply relationship. To make the point in a simple way, we can imagine that for
either of these reasons (11) is replaced by

(23) yt = βmt + εyt,

which shows that money directly affects real GDP.
Notice that (11) and (23) form a system which is, again, consistent with an

SVAR in which money is contemporaneously causally ordered ahead of real GDP.
But the system (11) and (23) does not display policy ineffectiveness. Indeed,
systematic monetary policy can be quite powerful in this system. Both the system
(11) and (13) and the system (11) and (23) are compatible with the same SVAR.
But the counterfactual experiment of what happens to real GDP when systematic
monetary policy is changed (that is, what happens when γ1 or γ2) is changed
are radically different: in the first case, nothing; in the second case, a great deal
[Cochrane, 1998].

In a sense, we have come full circle. The initial problem was that we needed to
assume that we already knew the causal structure in order to make measurements
of causal strengths and to conduct counterfactual analysis. We argued that a
variety of methods of causal inference may allow us to discover large parts of
causal structure. And now we see that even if we are very successful, it still
may not be enough for counterfactual analysis. None of our methods definitively
resolves the initial tension.

It is, perhaps, not ultimately resolvable. Yet, I do not view the process as
hopeless. Rather it is one of iterating between whichever pole is most immedi-
ately obstructing our progress. For example, in a more complicated version of the
problem just set out Òscar Jordá and I [Hoover and Jordá, 2001] assume that the
economy consists partly of agents who follow an analogue to (11) and (13) and
partly agents who follow an analogue of (11) and (23). On the assumption that the
shares of each type of agent is stable, we use changes in monetary policy regimes
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to recover the shares and to identify the underlying structure. This approach par-
allels closely the invariance-based methods of causal inference. But notice that it
still relies on strong assumptions not only of the constancy of the shares, but also
of the particular forms of the two aggregate-supply functions. We try to make
these as generic and general as possible, but they cannot be perfectly general. So,
we are again brought round to the conclusion that counterfactual analysis requires
strong untestable, a priori assumptions, and to the open question: how do we
know that they are true?
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