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Technology Shocks or Coloured
Noise? Why real-business-cycle models
cannot explain actual business cycles

KEvVIN D. HoovER & KEVIN D. SALYER

Department of Economics, University of California, Davis, CA 95616-8578,
USA

Typically real-business-cycle models are assessed by their ability to mimic the covari-
ances and variances of actual business cycle data. Recently, however, advocates of RBC
models have used them to fit the historical path of real GDP using the Solow residual
as a driving process. We demonstrate that the success of RBC models at matching
historical GDP data does not confirm the validity of RBC models. Through simulations
we demonstrate that the Solow residual does not carrv useful information about
technology shocks and that the RBC model does not add incremental information about
GDP. RBC models fit historical GDP data entirely because the Solow Residual is itself
just a noisy measure of GDP.

1. Introduction

Macroeconometric models have traditionally been evaluated according to the
accuracy with which they fit historical time-series data. In contrast, the propo-
nents of real-business cycle models, following Kydland & Prescott (1982), have
typically advocated a different standard of evaluation: models are judged on their
ability to imitate, not the actual historical realizations of the stochastic processes
that characterize the economy, but the typical operating characteristics of those
processes as reflected in the relative variances and covariances or intercorrela-
tions of business-cycle data. A real-business-cycle model is judged to be good,
for example, not because it can fit the actual paths of consumption or investment,
but because it reproduces, to nearly the correct magnitude, the greater smooth-
ness of consumption relative to investment observed in the actual economy.
Despite this typical focus on stochastic operating characteristics, the lure of
historical time-series has proved strong. Plosser (1989) appears to be the first
real-business-cycle modeler to compare the path of output from a calibrated
real-business-cycle model with the actual data. More recently, Hansen &
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Prescott (1993) use a real-business-cycle model to explain the 1990-91 re-
cession, while Thomas Cooley (1995) uses one to examine the causes of the
‘Volcker recession’ of 1979-82.". In all these cases, the results appear plausible
on the surface. Figure 1 presents a typical picture: it plots output from a
real-business-cycle model against actual output (1964-93); the fit appears close.”
The question is, why? Is it because the real-business-cycle models capture
essential truths about the economy? Or is it merely a spurious correlation
induced by the way in which the data are processed?

Advocates of real-business-cycle models believe of course that the good fit
reflects the fact that the models capture some important truths about the
economy. In these exercises, the real-business-cycle model is used to process
information about technology shocks, as measured by the Solow residual, into
series for output (and other macroeconomics aggregates). If the exercise is
successful for good economic reasons, it is, first, because the Solow residual
measures the relevant technology shocks; and, second, because the model itself
adds information (based on its having captured some of the critical elements of
the macroeconomic structure). We provide evidence that, with respect to
modeling the path of output, both points are wrong: the Solow residual does not
carry useful information about technology shocks; the real-business-cycle does
not add incremental information.

Some might argue that, even if we are correct, our point is not relevant to
the assessment of real-business-cycle models because those models are not
‘about’ realized historical paths, but about stochastic operating characteristics. It
is worth reiterating that prominent advocates of real-business-cycle models
themselves have recently used the models for the analysis of the realized path
of output. It is therefore essential that we know whether these types of models
can be legitimately put to such a use. At the same time we underscore the limited
nature of our analysis: the ability to support conditional forecasts of a model is
only one criterion on which to evaluate models; failure on this dimension does
not imply that the model fails in all dimensions. We do not therefore pretend to
present evidence against real-business-cycle models per se, but rather against the
use of the Solow residual as a measure of the technology shocks that drive them
and against the use of the models themselves to explain the historical path of
output. The ability of the models to capture the historical behavior of other
aggregates (e.g. consumption, investment or labor) conditional on output is
beyond the scope of this paper and remains an open question.

Our conclusion will not come as a surprise in some circles. Hall (1986,
1990) and Hartley (1994a, b) have attacked the adequacy of the Solow residual
as a measure of technology shocks. Watson (1993) and Cogley & Nason

| The recent focus by advocates of real-business-cycle models on comparing actual time series to
conditional model forecasts may in part be due to an acknowledgment that such a methodology is
in line with the Cowles Commission approach to econometric evaluation of models. This issue was
highlighted in Hansen & Heckman’s (1996) critique of calibration.

2 The model on which this figure is based uses linear detrending and is described in the Appendix.
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(1995b) provide evidence that the real-business-cycle model is not itself respon-
sible for the cyclical characteristics of its simulated output. Canova (1991) and
Cogley & Nason (1995a) provide evidence that some of the properties of output
from real-business-cycle models are artifacts of the filtering procedures. The
story we tell is distinguished from these earlier contributions in two respects.
First, the previous work does not address the use of the real-business-cycle
model in explaining particular historical episodes. Second, our evidence is
presented in a readily comprehendable, heuristic way.

2. Taking Kydland & Prescott Seriously

Kydland & Prescott (1991, 1995) argue that real-business-cycle models system-
atically distort some aspects of economic reality in order to cast other aspects in
higher relief. The models embody ‘purposeful inconsistencies’ in some dimen-
sions so that they will be consistent in other dimensions (Kydland & Prescott,
1995, pp. 14-15). They argue that recognition of this feature calls into question
the usefulness of traditional econometric estimation of the models-——what they
call the ‘systems-of-equations approach’. One should not expect a calibrated
real-business-cycle model to fit the data on ordinary statistical criteria as well as
an econometrically estimated model: first, because the estimated model generally
has numerous free parameters that are selected precisely to secure a good fit
(Kydland & Prescott, 1991, p 170; Lucas, 1981, p. 288; Prescott, 1983, p. 11)
and second because goodness-of-fit measures are typically symmetric and
therefore penalize the purposeful inconsistencies that Kydland & Prescott believe
to be essential to the power of real-business-cycle models to illuminate interest-
ing questions (cf. Lucas, 1987, p. 45). Hoover (1995) argues that Kydland &
Prescott’s position has a legitimate methodological foundation, but points out the
risk that their methods might make systematic empirical assessment of calibrated
models impossible. In particular, since real-business-cycle modellers typical
evaluate their models by a subjective comparison of selected sample moments of
the output of their simulated models with the sample moments of the actual data,
it is unclear on what neutral basis one might discriminate between two calibrated
models founded on very different theoretical principles which nonetheless
presented similar subjective matches to the actual data. It is not enough to say
that ‘[t}he degree of confidence in the answer depends on the confidence that is
placed in the economic theory being used’ (Kydland & Prescott, 1991, p. 171)
or that ‘... currently established theory dictates which [model] should be used’
(Kydland & Prescott, 1991, p. 174), when the issue is the empirical basis on
which economists should regard one theory as better established and, therefore,
as more worthy of confidence than another.

Time-series econometrics permit us to characterize data in atheoretical
ways. If real-business-cycle models carry any useful truths about the economy,
they must provide us with some advantage relative to atheoretical time-series
models. This advantage could cut in either of two directions. First, the predicted
series for output from a real-business-cycle model might carry theoretically
informed and interpretable information that permit us to rely on fewer atheoret-
ical relationships in a relatively complete time-series characterization of the data.
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We would therefore be able to reduce the number of free parameters needed to
provide such a characterization.® Second, if we begin with an incomplete
atheoretical characterization of the data, predicted output should provide addi-
tional information and help us to offer a more complete characterization.

The current research started in the first direction. We began with a vector
autoregression in which quarterly output was regressed on 12 lags of itself and
on the current and 12 lagged values of consumption, investment and hours of
labor. We expected, with such a rich characterization of the data, that the
predicted output of the real-business-cycle model would not turn out to be
significant when it was added as an additional regressor. We intended to judge
the success of the real-business-cycle model by posing the question, how much
could we restrict the original VAR model plus the predicted output (i.e. how
many free parameters could we eliminate from the atheoretical model) while
maintaining the requirement that the more parsimonious form remain a statisti-
cally valid restriction of the most general specification. When we added the
predicted output from the real-business-cycle model to the VAR, contrary to our
expectations, model output was not statistically insignificant, which would have
indicated a redundant regressor, but highly significant. Furthermore, we could
reject the hypothesis of no serial correlation at very high levels of significance,
even though the VAR without predicted output as a regressor appeared to have
white-noise errors.

It turns out, and this is the version that we build on for the rest of this paper,
that the exact same phenomena occur when predicted output is added to a
univariate time-series model: that is to say, predicted output from the real-busi-
ness-cycle model has incremental predictive power for actual output even after
the past history of actual output is taken into account. This is indeed the
econometric analogue of Fig. 1. And it raises the same question: why? The
obvious answer, and surely the one that real-business-cycle modelers would
prefer, is that the model is highly explanatory for output. The remainder of this
paper is devoted to showing that this explanation is incorrect.

To test whether the model adds information, we use the Solow residual
itself as a regressor in the output equation (actual output, actual Solow residual).
If it were to dominate model output, then the model would be shown to have had
no value added. In fact, it does dominate model output in the sense of having
a higher level of significance in the regression. This is, however, muddied by the
fact that model output remains independently significant: dominance is incom-
plete.

We then construct artificial data for the Solow residual using actual data for
output but artificial data with similar stochastic properties to the actual factor
input series to construct a faux Solow residual. Since this faux Solow residual is
just noisy output (of a particular coloration), we know in advance that the model
cannot have any value added, because there are, by construction, no technology

3 New classicals, and especially advocates of calibrated business-cycle models, hold the elimination
of free parameters to be the chief virtue of their preferred methods (see Lucas, 1980, p. 288; Prescott,
1983, p. L1).

* A fuller description of the proposed evaluation method and its rationale are found in Hoover (1994).
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shocks to process. We find that, even in this rigged case, the artificial data
reproduces the relationship between the Solow residual and the model output
that we found with actual data (i.e. the fact that dominance is incomplete). This
removes any reason for regarding incomplete dominance as evidence for value
added on the part of the real-business-cycle model.

We regard this last test as bearing on the question of whether the Solow
residual measures technology shocks at the business-cycle frequency as well.
There is no independent evidence that the Solow residual captures technology
shocks. The best evidence is the supposed success of the real-business-cycle
model driven by such shocks in matching the actual data. To the extent that this
evidence is just the relative volatilities of the various time-series generated by
repeated simulation of the real-business-cycle model compared to the actual
relative volatilities (a standard type of evidence in the real-business-cycle
literature) our paper is silent. But real-business-cycle proponents have claimed
success in fitting the actual time series for output as well. The test described in
the previous paragraph shows that a model driven by an artificial Solow residual
which, by construction, does not capture technology shocks, behaves statistically
just like a real-business-cycle driven by the actual Solow residual. Thus, the
goodness of fit between the model output and the actual output does not appear
to depend on the Solow residual actually capturing technology shocks, but on
other statistical and model characteristics independent of true technology shocks.

To reinforce our conclusion, we repeat these tests with a Solow residual
constructed with an artificial series for output as well as for the factors of
production. The fact that identical statistical properties are reproduced in the
completely artificial case (a case in which there is, by construction, no linkage
between artificial output and artificial factors of production or technology)
demonstrates that none of these statistical properties can be taken as evidence in
favor of the actual Solow residual having captured actual technology shocks at
business-cycle frequencies, for they appear even when, by construction, there are
no technology shocks to capture.

Up to this point, our results are based on linearly filtered data. In a final
exercise, we highlight the importance of filtering procedures by showing that
results based on the Hodrick-Prescott filter—the most common detrending
procedure in the real-business-cycle literature—even more dramatically illustrate
the artifactual nature of predicted output from real-business-cycle models.

3. Model, Data, Calibration

We begin with a model similar to one used by Hansen (1985). Like all
competitive-equilibrium real-business-cycle models it is a dynamic optimization
model for a representative agent.” The model is fundamentally a neoclassical
growth model, but in typical fashion it has been cast in such a manner as to
explain deviations from steady-state growth paths. The model is calibrated by
choosing values for its key parameters on the basis of national accounting

5 McCallum (1989) provides a particularly clear introduction to real-business-cycle models.
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Table 1. Descriptive statistics for US economy: 1964:1-1993:1 and artificial economy
(actual data have been detrended using a linear time trend, model data is unfiltered

% SD of

output afo, oo, ano,  Corr(y,c) Corr(y,i) Corr(y,h)
US data 3.49 0.90 223 073 0.93 0.68 0.61
Model 3.72 0.67 302 045 0.81 0.88 0.76

King et al. Model* 4.26 0.64 2.31 0.48 0.76 0.85 0.73

*Taken from King et al. (1988), Table 5, p. 224. For their analysis, the autoregressive
parameter for the technology shock, p, was assumed to be 0.90 rather than the value of 0.96
which we use.

considerations or independent (microeconomic) studies. The data used in the
calibration exercise and in our evaluation of the model are constructed following
Cooley & Prescott (1994). (The model is described in detail, along with its
calibration and the construction of the data in the Appendix.)

The source of aggregate fluctuations is technology shocks. Technology
shocks are measured by the Solow residual (Solow, 1957):

SR=Y—aK—(1—a)L (h

where Y, L and K are the logarithms of GNP, labor and capital, and « is capital’s
share of output (precise definitions are in the Appendix).®

Typically, real-business-cycle models have been assessed by estimating a
univariate time-series model of the Solow residual in order to obtain a good
characterization of its dynamic properties. The models are then simulated
numerous times drawing the technology shocks from a distribution with those
same properties. The variances and covariances of the endogenous variables of
the model (in the case of the current model, output, consumption, investment and
hours) are then compared informally with the second moments of the actual
detrended series. Table 1 compares key variances and covariances of the output
of the model with the actual data. The behavior of the relative (to GNP)
volatilities and contemporaneous correlations with GNP of the endogenous
variables in the model we study are similar to those of the model of King et al.
(1988)". In some dimensions, our model is somewhat closer to the actual data;
in others, their model has the edge; in all, the differences are small. Both models
duplicate some of the key features of the data: consumption is less volatile than
output, which is less volatile than investment. Also, the correlation of both
consumption and investment with output in the models is roughly in line with
that in the data. However, labor is too highly correlated with output in both
models while, at the same time, both models underpredict the volatility of labor

® It is also common to see the Solow residual calculated as a percentage change:

ASR =AY — 24K — (1 — )AL,

7 We choose this model as a fairly standard real-business-cycle model that used a linear detrending
procedure like the one we use.
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relative to GNP. The inability of the basic model to duplicate the features of the
labor market motivates several modifications to the model, e.g. indivisible labor
(Hansen, 1985), including government purchases (Christiano & Eichenbaum,
1992), and including a household production sector (Benhabib, er al. 1991).

To use real-business-cycle models to explain actual historical episodes: (1)
the Solow residual (SR) is calculated for the whole sample and then linearly
detrended (we call the detrended Solow residuals SRL)%; (2) SRL is used as the
driving process for the calibrated model to generate model output (i.e. the
calculated values of the endogenous variables from the model conditional on
SRL); (3) the detrended actual data and the model data can then be compared
either directly (as we shall do later in the paper) or by adding back the trends
extracted from the actual data (as reflected in Fig. 1).

4. The Puzzle

In Section 2 above, we noted that we had expected that predicted output would
not prove to be a significant regressor when added to a richly parameterized
VAR. It not only turned out to be highly significant, but it also appeared to
induce serial correlation. We find this result puzzling. We also discovered that
the same phenomena are present when we add predicted output to a univariate
time-series model for actual output. Its statistical significance is perhaps less
puzzling than it was with the richer VAR, but we are still entitled to ask whence
comes its incremental predictive power—from the fact that the real-business-cy-
cle model captures some essential truth about the economy or from some artifact
of the data? The strange induction of serial correlation may suggest the latter. To
keep things simple, we shall investigate the competing explanations using the
univariate time-series models as the base regressions.

Consider actual output linearly detrended (YL) A good description of the
stochastic properties of this series can be found in the following univariate
time-series model:

8
YL = Bo+ D, BiYLi—; + & )

i=1

An estimate of Equation (2) is reported in Table 2, line 1. The estimates of the
coefficients, f3;, are of little interest and are not reported, but the fit of the
equation as a whole and the properties of the error term tell us that Equation (2)
describes YL reasonably well. One should note the relatively high explanatory
power of the regression as measured by R?, standard error of regression (SER)
and the significance of the regressors as a group (F-statistic). Most important,
one should note that there is reasonable evidence that the residuals are white-
noise. Observe especially that there is no evidence of serial correlation up to
fourth order at conventional significance levels.

8 A suffix L on a variable name indicates that it is linearly detrended; a suffix HP indicates that it
is detrended using the H-P filter.
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Now consider what happens when we add the prediction of output from our
real-business-cycle model to the regression. We now estimate:

8
YL, = o+ D, BiYL., +yYM, + & (3)
j=1
where YM is the prediction of output from the model.

One night expect that since Equation (2) is so richly parameterized that YM
would add little explanatory power to the regression—indeed that was our initial
conjecture. Such a result would not mean that the model is a bad one. Rather,
one might expect that the model could be interpreted as imposing restrictions on
the univariate time-series model, so that in the face of a profligately parameter-
ized model such as Equation (2) the model data would appear redundant.

As we observed at the outset, in practice we find something quite different.
Table 2, line 2 shows that our initial conjecture is wrong: the standard error of
regression falls by 10% from 0.0076 to 0.0069 and the r-statistic on 7y, the
coefficient on YM, is highly significant.”

At first sight, this might appear to be overwhelming evidence that the model
has explanatory power in addition to the past history of YL itself. We, however,
prefer an alternative explanation: YM is just a noisy measure of YL and Equation
(3) fits so well because it regresses the dependent variable on itself.

One initial piece of evidence for this explanation is found in the tests of
serial correlation. For serial correlation up to fourth order the Breusch—Godfrey
test statistics are F =25.04 (p-value =0.00) and ¥ =57.69 (p-value = 0.00),
which reject the null of insignificant serial correlation at any conventional level.
(The table presents similar results for serial correlation up to first and second
orders.) The introduction of YM as a regressor not only raises the fit of the
regression, but also induces serial correlation where there was no evidence of it
before.

This is an odd situation. One normally thinks that additional regressors,
provided that there are no problems with degrees of freedom, do not degrade the
regression. One possibility is the following: YM is simply a noisy measure of YL.
When it is introduced into the regression, it is so well correlated with YL that it
massively increases the precision of the fit. Having better tuned the signal from
YL, it then permits serial correlation that was present in the data, but which itself
presented a weak signal, to rise above the noise.'

7 1t is worth reminding the reader of the point that we made at the outset of this section and in the
introduction that this same phenomena also occurs in arichly parameterized VAR that includes current
information on consumption, investment, and labor hours. It is, therefore. not the case that the puzzle
somehow arises only because model output carries current information that would not otherwise be
available. In any case, even if that were so, so that one found the puzzle less puzzling than we do
ourselves, the question remains open as to what is the nature of this current information: is it
information about technology shocks from the Solow residual with economic information added by
the model? Or is it nothing more than information about output itself? We believe that the
considerations of later parts of the paper favor the second interpretation, so that whatever reason one
gives for the significant coefficient on model output, the fact remains that the real-business-cycle
model driven by the Solow residual is not explanatory of output.

"' We thank our colleague A. Colin Cameron for suggesting this explanation. He did so entirely on
econometric grounds ignorant of the details of what the data were and how they were generated.
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Table 3. Correlations of YL, YM, SRL

YL YM SRL
YL 1.00 0.81 0.86
Ym 0.81 1.00 0.98
SRL 0.86 0.98 1.00

In the next three sections, we provide evidence in support of our conjecture
that the model output is not a genuine prediction of output but is in fact just
output itself with an overlay of noise added by the filtering procedures and the
model.

S. The Real Business Cycle Model Has Little or No Incremental
Predictive Power

We conjecture that the real-business-cycle model itself provides little or no
incremental information. Figure 2 demonstrates the plausibility of this claim. It
shows that YM tracks SRL fairly closely, and that both track YL somewhat less
closely. This point is quantified in Table 3, which shows that YM and SRL are
highly correlated (correlation coefficient of 0.98), while each is substantially
less, but still well, correlated with YL.

If our conjecture is correct, then both the construction of the Solow residual
and the processing of it through the model would be sources of noise. The Solow
residual itself (SRL) should then be a less noisy measure of YL and, not only
should show the same ability to improve the fit of the univariate time-series
model and induce serial correlation, but should dominate YM in the sense that
it should carry all the information contained in YM and more and, therefore,
should render YM insignificant in any regression in which it is also a regressor.
Line 3 of Table 2 presents the results of a regression in which SRL replaces YM
as an additional regressor. The z-statistic on the coefficient on SRL is 6.26—sub-
stantially larger than the t-statistic for YM (4.68) and the standard error of
regression is lower than reported for the regression with YM in line 2: it shows
a 14% reduction, where line 2 shows a 10% reduction, compared with line 1.
This provides some indication in favor of our conjecture.

The matter is, however, somewhat more complicated. Line 4 reports a
regression with both YM and SRL included as regressors. In this case, both
variables are statistically significant and there is a further 7% reduction of the
standard error of regression relative to line 1. To some extent the interpretation
of line 3 is complicated by the multicollinearity of YM and SRL. This is not a
complete explanation, however, and one might be justified in concluding that the
model has incremental explanatory power after all, were it not for other evidence
developed below.

Note that in all the regressions in Table 2, except the univariate time-series
model in line 1, there is evidence of substantial serial correlation in the residuals.
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6. The Solow Residual is Just Colored Noise...

The Solow residual is constructed by exploiting the supposed structural connec-
tion between factor inputs and output implied by a Cobb-Douglas production
function. The idea is that the technology shocks that are used to drive the model
are contained in the output series and can be extracted if careful account is taken
of the behavior of inputs given technology. In this section we construct a faux
(or fake) Solow residual by subtracting from the output a series that has similar
stochastic properties to the factor input series but which bears absolutely no
structural relationship to output. This series therefore imparts to the output series
stochastic properties, similar to those of the Solow residual but, by construction,
it is unable to isolate genuine technology shocks. We then use this faux Solow
residual to generate model output and demonstrate that it behaves in precisely
the same ways as the output of a model driven by the actual Solow residual.

Our conclusion is twofold: First, since the relationships of the driving
process, the model output, and the actual data are the same, whether the driving
process is the actual or the faux Solow residual, we have no reason to believe
that the actual Solow residual carries information that the faux series clearly does
not (i.e. it supports the view that the actual series is itself simply output plus
colored noise, just like the faux series). Second, the value-added of the model is
supposed to be that it converts the input of technology shocks into a good
prediction of actual output. But the similarity in the predictive success of using
actual or faux Solow residuals suggests that the success of the model cannot be
attributed to an ability to process technology shocks; rather, it depends on the
stochastic properties of the input series and the manner in which they are filtered
by the model. This undermines any interpretation of Table 2, line 4, suggesting
that the joint significance of the model output and the Solow residual are
evidence of incremental predictive power on the part of the model.

To construct the faux series, which we call FSRL (the names of all faux
series are just the names of the actual series with an F prefix), we first generated
a series for total factor payments defined as:

PAY,= oK, + (1 — o)L, 4)

where K; is capital, L,,is labor, and « is capital’s share in output. Then we used
this series to estimate the following time series model for PAY:

PAY,= —3.31 + 0.0016TIME + v,
where v, = 1.24v,_; — 0.29v,_> + y,. 1: ~ N(0,0.005) &)

The coefficients of this time series model were then used to generate a faux
series, called FPAY in which the values of #, were drawn from a random-number
generator. Next, the constructed factor payment series was used to generate a
Solow residual series; FSR. FSR was then linearly detrended and used as an
input to the model exactly as described in Section 2.

Table 2, lines 5-7 present the regressions analogous to those reported in
lines 2-4. The character of the results is identical. Faux model output is a
significant predictor of actual output: it carries a high -statistic and reduces




Technology Shocks or Coloured Noise 313

the standard error of regression compared to line | by 25%; it induces substantial
serial correlation in the residuals. The faux Solow residual is an even more
significant predictor of actual output. In line 7, both FYM and FSRL are
significant. In every case the relative orders of magnitude of coefficients and
their z-statistics and the pattern of their signs are similar between the actual and
the faux regressors.

7. ...and the Colours are Artificial

In this section, we provide further evidence that the apparent explanatory
efficacy of the real-business-cycle model is illusory. In the last section, the faux
Solow residual was constructed using an artificial series for factor payments. But
since actual output was used, it was possible to compare the model output with
the actual output. In this section, we create a completely simulated Solow
residual in two stages. First, we estimated the following ARIMA(2,1,2) model
for actual output:

0Y,=0.0026 — 0.1564Y, | + 0.3924Y,_, + w,
where o, = v, + 0.49v, -, —0.05v,_» and v, ~ N(0.000057).

Using its parameters and shocks drawn from a random number generator and
accumulating from the actual level of Y in the fourth quarter of 1960, we created
a simulated output series SY (the prefix § indicates simulated). SY was linearly
detrended to generate SYL. A new realization of FPAY was generated as in
Section 5 above. The simulated Solow residual was then constructed as
SSR = SY — FPAY, and linearly detrended to yield SSRL. This series was then
used as an input to the real-business-cycle model as in previous exercises.

Table 4 presents a set of regressions analogous to those in Table 2, lines
1-4. The key features of these regressions are the same as they are for the actual
and the faux data in Table 2. Line | shows a univariate time-series model that
fits well and shows no evidence of serial correlation. Line 2 shows that model
output is statistically significant even after conditioning on the past history of
SYL; and, just like the analogous case in Table 2, an improvement in the
goodness of fit (9% as measured by the standard error of regression) is
accompanied by evidence of significant serial correlation in the residuals. Line
3 shows that the simulated Solow residual, SSRL, is substantially more
significant than SYM and improves the fit by well over double (26%). Yet, in line
4, when both SYM and SRL are included in the regressions, both are significant
and both show the same sign pattern and relative magnitudes as the analogous
regressions in lines 4 and 7 of Table 2."

It is important to understand exactly what we have done here. It is not the
case that we have created an artificial world in which there are artificial
analogues to true technology shocks. For that to be true, SY and FPAY would
have had to be connected by a production function. But they are not connected;

"' The exact values reported in Table 4 are, of course, partly artifacts of the particular draw used to
construct §Y and FPAY. We have run many simulations, however, and the main features of the
simulations reported here are robust.
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they are two independent series that have been created to possess time-series
characteristics similar to their actual counterparts. The difference, SY-FPAY,
cannot uncover technology shocks because the two series are unrelated and
because there are no such shocks in SY to recover. Nevertheless, when SSRL is
used as the driving process for the real-business-cycle model it shows that SYM
carries statistically significant information about SYL. This must, by construc-
tion, be nothing more than an artifact of the filtering involved in detrending and
in running SSRL through the model and of the stochastic properties of the root
series. The relationship of actual output and model output cannot indicate that
the model has captured a deep economic relationship; for there is no such
relationship to capture. Rather, it shows that we are seeing a complicated version
of a regression fallacy: output is regressed on a noisy version of itself, so it is
no wonder that a significant relationship is found. That the model can establish
such a relationship on simulated data demonstrates that it can do so with any
data that are similar in the relevant dimensions. That it has done so for actual
data hardly seems subject to further doubt.

8. Further Artifacts of Filtering: the H-P filter

We have shown so far that the close relationship of the model output to the
actual data for output, results not from the model having high explanatory power
but from the input to the model being nothing but a noisy measure of output
itself and from the various filtering procedures that induce spurious correlations.
This is clear enough in the case of linearly detrended data. The effect is even
more pronounced when using data that has been passed through the Hodrick—
Prescott (H-P) filter. The H-P filter is the most common detrending procedure
used in the real-business-cycle literature.'” If we follow the frequent practice of
real-business-cycle modellers and run YM through the H-P filter to generate
YMHP and then compare it with H-P-filtered Y, denoted YHP, the initial puzzle
that motivated this paper is even more dramatic.

Table 5, line 1 presents a regression of YHP on a constant and 12 own
lags."’ Line 2 shows that when YMHP is entered as an additional regressor it
comes in with a z-statistic of 12.56 and lowers the standard error of regression
by 37%—much larger effects than reported for the comparison of YM to YL.
(Just as in the case of the linearly detrended data, the additional regressors
induce serial correlation in the residuals.) The root data in Tables 2 and 5 are the
same; the reported results differ only in the filtering methods used to prepare the
data for comparison.

12 Hodrick & Prescott (1997) Let x, = £ + £ where %, denotes the trend component and £, the deviation
from trend. Then the H-P filter chooses this decomposition in order to solve the following problem:

T T N
min{(l/T)Ef% FUT) D %y~ 8) — (% I)]‘}

=1 =2
Following the universal practice of real-business-cycle modelers, we set 2 = 1600 for quarterly data.

3 We initially estimated a regression with only eight lags but moved to 12 to eliminate evidence of
fourth-order serial correlation.
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Table 6. Correlations of YHP, YMPH, SRHP

YL YM SRL
YHP 1.00 0.80 0.77
YMHF 0.80 1.00 0.99
SRHP 0.77 0.99 1.00

Table 5 shows that the patterns evident in Table 2 are reproduced when the
data are H-P-filtered. Line 3 shows that the Solow residual itself has substantial
explanatory power for YHP. When both SRP and YMHP are entered, both
remain significant. One difference, however, is that YMHP carries a slightly
higher r-statistic than SRHP throughout Table 5. This is, we believe for the
reasons stated below, an artifact of the H-P filter.

First, although we have followed common practice in passing model output
through the H-P filter, we are not aware of any published argument justifying
this practice. Passing the actual data through the H-P filter is justified on the
logic of the neoclassical growth model. In a steady state, the values of all stocks
should have a common trend. Real-business cycle models take the trend itself as
exogenous and aim to explain deviations from it. If the steady-state rate of
growth is not constant over time, a slowly varying filter, like the H-P filter or
a moving-average process, might capture the main movements in the steady
state. By construction, the data generated by the model are stationary; there is
no trend to extract.

Second, although we H-P-filtered the Solow residual for use as a regressor
in Table 5, in order to better compare like with like, the model output was not
generated using the H-P-filtered Solow residual as the measure of the technol-
ogy shock (i.e. SRL is still the input to the model). This probably accounts for
the fact that the t-statistics on SRHP are slightly lower than those on YMHP in
Table 5.

The importance of the H-P filter is clearly visible when we compare the
correlations among YHP, YMHP and SRHP in Table 6 with the correlations
among YHP, YM and SRL in Table 7. The Solow residual and model output are
closely correlated (correlation coefficients of 0.98 and 0.99) however they
are filtered. The correlation coefficient between SRL and YHP is only 0.34, while
the correlation coefficient between SRHP and YHP rises to 0.77. Similarly, the
correlation coefficient between YM and YHP is only 0.30, while that between
YMHP and YHP rises to 0.80.

Table 7. Correlations of YHP, YM, SRL

YL YM SRL
YHP 1.00 0.30 0.34
M 0.30 1.00 0.98

SRL 0.34 0.98 1.00
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Essentially, the same message can be seen in Table 5, lines 5—7 in which
non-H-P-filtered regressors are added to the univariate time-series model for
YHP. Line 5 shows that YM is significant at the 10% but not the 5% level. Line
6 shows that SRL is more significant than YM (a r-statistic of 2.20 versus 1.84).
Line 7 enters both YM and YHP as regressors. In this case SRL clearly dominates
YM, although the regression has only a marginal explanatory advantage over the
univariate model in line 1 (the standard error of regression drops trivially from
0.65 to 0.64).

Much of the explanatory power of the model data for the actual data is an
artifact of the H-P filter, which massively raises the correlation between series
that were not that closely related before filtering. Once the filtering of the model
data is eliminated, model output has only a limited explanatory power for H-P
filtered actual output, and the Solow residual completely dominates the model,
suggesting that the independent contribution of the model is virtually nil. Still,
using any combination of YM or SRL as regressors induces serial correlation.

Two points deserve notice. First, the general character of the results is
consistent across Tables 2 and 5, which points to robust support for our
conclusion that the real-business-cycle is not empirically successful in modelling
output. Second, recalling that the root data is identical between Tables 2 and 5,
much of the dramatic performance of YMHP in line 2, as well as some other
features of the data, can be clearly attributed to adventitious characteristics of the
H-P filter: it induces closer statistical relationships among data than the
underlying economic relationships justify."

9. Caveats and Conclusions

When Solow originally proposed the Solow residual, his purpose was to give a
quantitative indication of the importance of long-run technological advancement.

14 Kydland & Prescott (1995, pp- 9-10) defend the use of the H-P filter against critics who have argued
that it induces spurious cycles by stating that deviations from trends defined by the H-P filter ‘measure
nothing’ but instead are ‘nothing more than well-defined statistics’; and, since ‘business cycle theory
treats growth and cycles as being integrated, not as a sum of two components driven by different
factors’, ‘talking about the resulting statistics as imposing spurious cycles makes no sense’. The logic
of Kydland & Prescott’s position escapes us. It is true that real-business-cycle theory treats the
business cycle as the equilibrium adjustments of a neoclassical growth model subject to technology
shocks. In practice, real-business-cycle models are calibrated on the assumption that steady-state
values for key ratios should conform to their sample averages. The models are linearized around the
steady state so that the output of the model is expressed as deviations from the steady state. Generally,
if actual values are compared with the model output, the actual values are first detrended using an
ad hoc filter, which imposes the empirical assumption that the filter’s trend is a good approximation
of the true steady state. If instead, comparisons are made of the levels of actual and modelled variables,
this same ad hoc trend is added to the deviations from steady state to generate modelled levels. In
either case, the relevant steady-state is not jointly modelled with the deviations from steady-state, but
is generated from the ad hoc filter. That this is the practice does not say that such a joint modelling
exercise could not be done in theory. That it is not actually done in practice means that the objection
to the H-P filter raised by many critics remains cogent. Our work, and that of the critics that Kydland
& Prescott wish to dismiss, demonstrates that the choice of which ad hoc method is used to extract
the balanced-growth path greatly affects the stochastic properties of the modelled variables and their
relationships with the actual data.
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It may well be useful in this role. When Prescott (1985) proposed to use the
Solow residual, his purpose was to capture short-run technology shocks. Let us
now draw the threads of our investigation together to show why we have reason
to doubt that it can be successfully used for that purpose.

The starting point of our investigation is a two-part empirical puzzle. First,
when the model data for output are added as a regressor to a profligately
parameterized univariate time-series model for actual output, model output
comes in highly significantly and improves the fit of the regression markedly.
Second, model output induces substantial serial correlation in the data. We want
to discriminate between two explanations for these phenomena. On the one hand,
the fit might mean that the model is so good that the model output carries
substantial non-redundant information about actual output. On the other hand, it
could be that model output is nothing more than a noisy measure of actual
output, and the regression amounts to regressing output on itself. The induced
serial correlation favors that explanation.

For a model to be explanatory it must add information beyond that which
is contained in the exogenous processes that it takes as inputs. Since the only
input to the typical real-business-cycle model is the Solow residual, it is easy to
check whether the model adds information: we simply use the Solow residual
itself as a regressor. We discovered that the Solow residual shows the same
pattern of improving the fit and inducing serial correlation.

The only fly in the ointment is that the z-statistics remain significant on both
the Solow residual and the model output when both are entered as regressors,
perhaps suggesting that it has incremental explanatory power relative to the
Solow residual. This result should be discounted. First, z-statistics are biased
upward in the presence of serially correlated errors. Second, that this result is a
statistical artifact is reinforced by the regressions using a faux Solow residual as
the driving process. The model is supposed to have an explanatory advantage
because it uses calibrated economic theory to process information about technol-
ogy shocks. The faux Solow residual does not carry such information by its very
construction, yet all the same interrelationships appear between actual output and
the faux Solow residual and faux model output. In fact, all the same relationships
appear even when entirely simulated output and factor input series are used that
have no economic relationship to each other.

The results for the faux series also underwrite the case for the Solow
residual simply not carrying any relevant information on technology shocks. The
faux Solow residual mimics the time-series properties of the actual Solow
residual, but by its construction does not carry any information about technology
shocks. Nevertheless, the performance of it and the other faux variables that are
created by using it as an input to the model or to the H-P filter is qualitatively
the same as that using the actual Solow residual. The faux Solow residual is, by
definition, nothing but colored noise. The actual Solow residual is thus indis-
tinguishable from colored noise.

It is important to understand the limited nature of our criticism of the
real-business-cycle model. We do not claim to have demonstrated that the
real-business-cycle model is intrinsically inadequate. Our evidence is consistent
with the critical work of other investigators. Cogley & Nason (1995b) show that
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in models like the real-business-cycle model of this paper the time-series
properties of model output—e.g. the autocorrelation properties that are usually
used to evaluate the models—are inherited from the time-series properties of the
Solow residual and not contributed by the model itself. Similarly, Watson’s
(1993) spectral analysis shows that typical real-business-cycle models lack
power at business cycle frequencies. These results are consistent with our
findings, but we do not address them directly. It may be that with a better
measure of technology shocks the real-business-cycle model would have sub-
stantial explanatory power. It may also be that real-business-cycle models are
inadequate as explanations of output, but nevertheless provide explanations of
consumption, investment, and hours worked conditional on output. We do not
rule that out.

What we must finally conclude is that the construction of the Solow
residual and the manner in which it is processed by the model and by the linear
and H-P filters ensure that the apparent explanatory power of the real-business-
cycle model for actual historical business cycles is a pure artifact: the model
output is nothing more than actual output itself with an overlay of complicated
statistical noise. Real-business-cycle models in practice provide no explanation
whatsoever of the course of actual business-cycle history.

References

Benhabib, J., Rogerson, R. & Wright, R. (1991) Homework in macroeconomics: household
production and aggregate fluctuations, Journal of Political Economy 6, pp. 1166-1187.
Canova, F. (1991) Detrending and business cycle facts, Unpublished typescript, Department of

Economics, European University Institute, Florence.

Canova, F., Finn, M. & Pagan, A.R. (1994) Evaluating a real business cycle model, in: C.
Hargreaves (Ed.) Nonstationary Time Series Analysis and Cointegration (Oxford, Oxford
University Press).

Christiano, L.J. & Eichenbaum, M. (1992) Current real-business cycle theories and aggregate labor
market fluctuations, American Economic Review 82, pp. 430-450.

CITIBASE: Citibank Economic Database (New York, Citibank, N.A.) 1978, July 1993 update.

Cogley, T. & Nason, J.M. (1995a) Effects of the Hodrick—Prescott filter on trend and difference
stationary time series: implications for business cycle research, Journal of Economic Dynam-
ics and Control, 19, pp. 253-278.

Cogley, T. & Nason, J.M. (1995b) Output dynamics in real business cycle models, American
Economic Review, 85(3), pp. 492-511.

Cooley, T.F. (1995) Contribution to a conference panel discussion: what do we know about how
monetary policy affects the economy? At the 79th Annual Economic Policy Conference,
Federal Reserve Bank of St. Louis, Federal Reserve Bank of St. Louis Review, 77(3), pp.
131-137.

Cooley, T.F. and Prescott, E.C. (1994) Econornic growth and business cycles, in: T.F. Cooley
(Ed.) Frontiers of Business Cycle Research (Princeton, Princeton University Press).

Fair, R.C. & Schiller, R.J. (1990) Comparing information in forecasts from econometric models,
American Economic Review, 80(3), pp. 375-389.

Farmer, R.E.A. (1993) The Macroeconomics of Self-fulfilling Prophecies (Cambridge, MA, MIT
Press).

Granger, C.W.J & Newbold, P. (1986) Forecasting Economic Time Series, 2nd edn. (New York,
Academic Press).

Hall, R.E. (1986) Market structure and macroeconomics fluctuations, Brookings Papers on
Economic Activity, 86, pp. 265-338.

Hall, R.E. (1990) Invariance Properties of Solow’s productivity residual, in: P. Diamond (Ed.)




Technology Shocks or Coloured Noise 323

Growth/Productivity/Unemployment: essays to celebrate Bob Solow’s birthday, pp. 71-112
(Cambridge, MIT Press).

Hansen, G.D. (1985) Indivisible labor and the business cycle, Journal of Monetary Economics, 16,
pp- 39-69.

Hansen., G.D. & Prescott, E.C. (1993) Did technology shocks cause the last recession, American
Economic Review, 83, pp. 280-286.

Hansen, L.P. & Heckman, J.J. (1996) The empirical foundations of calibration, Journal of
Economic Perspectives, 10, pp. 87-104.

Hartley, J.E. (1994a) Technology in macroeconomic models, Ph.D. Dissertation, Department of
Economics, University of California, Davis, June 1994,

Hartley, J.E. (1994b) Does the Solow residual actually measure changes in technology, unpub-
lished typescript, Mt. Holyoke College, October.

Hodrick. RJ. & Prescott, E.C. (1997) Post-war U.S. business cycles: an empirical investigation,
Journal of Money, Credit, and Banking, 29, pp. 1-16.

Hoover, K.D. (1994) Six queries about idealization in an empirical context, Ponzan Studies in the
Philosophv of the Sciences and the Humanities, 38, pp. 43-53.

Hoover, K.D. (1995) Facts and artifacts: calibration and the empirical assessment of real-business-
cycle models, Oxford Economic Papers 47, pp. 24-44.

King, R.G., Plosser, C.I. & Rebelo, S.T. (1988) Production, growth, and business cycles [: the
basic neoclassical model, Journal of Monetary Fconomics, 21, pp. 309-42.

Kydland, F.E. & Prescott, E.C. (1982) Time to build and aggregate fluctuations, Econometrica, 50,
pp. 1345-1370.

Kydland, F.E. & Prescott, E.C. (1991) the econometrics of the general equilibrium approach to
business cycles, Scandinavian Journal of Economics, 93(2), pp. 161-178.

Kydland, F.E. & Prescott, E.C. (1995) The computational experiment: an econometric tool, Federal
Reserve Bank of Minneapolis, Research Department, Staff Report No 178.

Lucas, R.E. (1987) Models of Business Cycles (Oxford, Blackwell).

Lucas, R.E., Ir. (1981) Methods and problems in business cycle theory, in: Studies in Business-Cy-
cle Theory, pp. 271-296 (Oxford, Blackwell).

McCallum, B.T. (1989) Real business cycle models, in: R.J. Barro (Ed.) Modern Business Cycle
Theory (Oxford, Blackwell).

Musgrave. J.C. (1992) Fixed reproducible tangible wealth in the United States: revised estimates,
Survey of Current Business, 72, pp. 106-107.

Plosser, C.1. (1989) Understanding real business cycles, Journal of Economic Perspectives, 3, pp.
S51-78.

Prescott, E.C. (1983) Can the cycle be reconciled with a consistent theory of expectations? or a
progress report on business cycle theory, Working Paper No. 239, Research Department,
Federal Reserve Bank of Minneapolis.

Prescott, E.C. (1986) Theory ahead of business cycle measurement, Federal Reserve Bank of
Minneapolis Quarterly Review, 10, pp. 9-22.

Solow, R.M. (1957) Technical change and the aggregate production function, Review of Econom-
ics and Statistics, 39, pp. 312--320.

Watson, M.W. (1993) Measures of fit for calibrated models, Journal of Political Economy, 101,
pp. 1011-1041.

Appendix
Model Description

For our analysis, we use a real business cycle model with divisible labor which is identical (except
for the particular parameter values used for the simulations) to that described in Hansen (1985).
That is, we assume the following social planner problem:

max E(,{E/)”(lnc,-kA In(/ —h,))J

=0
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where E denotes the expectations operator, f§ agents’ discount factor, ¢, is consumption, A, denotes
labor, # is investment, k, is the capital stock, z, is the shock to technology, & is the depreciation
rate of capital, and & is the innovation to the technology shock (assumed to be log normally
distributed with mean 0 and standard deviation o,.

In order to solve for the equilibrium laws of motion for the endogenous variables implied by
the above problem, the numerical approximation procedure described in Farmer (1993) was used.
This method involves taking first-order Taylor series expansions of the necessary conditions
associated with (P1) around the steady-state values (defined by setting z,=1) of ¢, h and k. The
resulting linear structure implies that the solution values for next-period capital, current consump-
tion and labor (the control variables) will be linear functions of the current state variables (the
beginning-of-period capital stock and the current shock to technology (Both control and state
variables are expressed as percentage deviations from steady-state values). The parameters of these
functions are determined by imposing the transversality condition associated with (P1). Once these
functions are determined, the equilibrium behavior of output and investment are determined by the
first-order approximations of the production function and the economy-wide resource constraint.
The actual equations we used to generate the data are presented below in the discussion of the
calibration of the model.

Data Construction

In order to parameterize the model described above, we followed the approach described in Cooley
& Prescott (1994) which attempts to impose a high level of consistency between model constructs
and measured data. For instance, in the model output, is a function of the aggregate capital stock;
hence, for consistency with the data it is necessary to construct imputed income flows from the
stock of consumer durables as well as that from government capital. Also, since the model does
not contain inventories or a foreign sector, the measurement of aggregate output should reflect
these assumptions. We briefly describe the measurement and construction of the data below; for
a more detailed description, the reader is referred to Cooley & Prescott (1994).
Income from the private capital stock is defined as:

Yk (r+ 050K, (B1)

where (Yo.0p, Kp, 1) denote the income from fixed private capital, the depreciation rate of private
capital, the stock of private capital, and the return on private capital, respectively. Given measures
of the first three variables, an estimate of r can be computed using Equation (B1). This estimate,
along with an estimate of the depreciation rates of government capital and consumer durables can
then be used to compute the income flows from the stock of consumer durables and government
capital.

First, however, income from private capital must be determined, which necessitates an
estimate of the fraction of the proprietor’s income due to the existing private capital stock. To do
this, it is assumed that private capital’s share of total GNP, 6,, is the same as that for the
proprietor’s income (net of taxes and subsidies). That is,

Yo = (Rl + CP + NETINT) + 0,(PI + NNP — NI) + (GNP — NNP) = 0,GNP (B2)

RI denotes rental income, CP is corporate profits, NETINT is net interest, PI is proprietor’s
income, NNP is net national product, N/ is national income, and GNP is gross national product.
Hence the first term in parentheses is unambiguous capital income, while the third term in
parentheses measures depreciation. Using the right-hand side equality, 6, can be expressed as a
function of the various income flows. Once this share is calculated, multiplying by GNP
determines Y. Then, using this estimate in Equation (B1) determines r, the return on capital.

Next, time series for the depreciation rates of government capital and consumer durables were
constructed using the law of motion for both capital stocks:




Technology Shocks or Coloured Noise 325

. (Kg.1+lg.t'" Kg,!*'])

Ogk.1 = K, (B3)
ot lea s~ Ked 4
5“" - (Kud. ! d. 1 d 1) (B4)
ch.l

The averages of both time series for the depreciation rates were identified as the constant
depreciation rates, &, and ., With measures of the stocks of government capital and consumer
durables, the estimates of r, J, and J.4 can be used to construct their imputed income flows via
Equation (B1).

Then, total income, TY, is measured as:

TY = GNP + Yy + Yo (B5)

As a final adjustment, net exports are included in investment expenditures since the model
economy does not include a foreign sector. Hence, measured investment (the empirical counterpart
to investment in the model) is:

I=FPI+ AINV + Gl + ICD + NEX (B6)

Where FPI is fixed private investment, A/NV is the change in business inventories, G/ denotes
government investment in durables and structures, /(D is purchases of consumer durables, and
NEX denotes net exports.

Data

The following data over the sample period 1960:1-1993:1 were used in constructing the above
variables.

Government investment. Citibase series: ggndg (defense durables), ggncg (defense structures),
ggodq (non-defense durables), ggocq (non-defense structures), ggsdg (state and local durables),
ggscq (state and local structures). The sum of these series equals GI.

Determining 0, private capital's share of income. The following Citibase series were used (all
nominal denominated series were deflated by the implicit GNP price deflator denoted as price):
gprenj = rental income, gpjva = corporate profits. gnint = net interest income, gproj = proprietor’s
income, gmp = net national product, gy = national income, gnpg = real gnp. Hence, 6, is deter-
mined by:

(gprenj + ghpva + gnint) . ( gnnp‘)
7]
price 8

Hp = ; (ChH
gproj + gnnp — gy
gnpq — (- V?WV)

\ price

Constructing the income flows from government capital and the stock of consumer
durables. Measures for the net stock of reproducible private capital (residential and non-residen-
tial), the net stock of consumer durables, and the net stock of government capital are all taken from
Musgrave (1992). These are annual series. For the stock of inventories, the annual average of the
Citibase series glg was used. The total capital stock. TK is determined by

TK =K, + glg + Ky + K, (C2)

Using the estimate of 0, determined by Equation (C2), the average rate of return on private capital,
r, was measured as 9.3% (expressed as an annual rate). Government investment was measured by
G/ as defined above while the purchases of consumer durables (Citibase series gcdg) was used for
investment in consumer durables. Using the annual average of these series in conjunction with the
respective measures of the relevant capital stock produced the estimates of 0, and f (see
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Equations (B3) and (B4)). These were 16.7% and 4.5% respectively. Using these values in
Equation (BI) produced the imputed income flows from the stock of consumer durables, denoted
Yes, and from government capital, denoted Y. Total income was measured as:

TY = gnpq + Yeg + Yo (C3)

Then capital’s share of total income, the parameter x in the production function, was measured as:

LYot Yot Yy,

o (C4

The average of o was 0.41 over the sample period.

Investment.  Along with the measure of government investment, G/, the following Citibase series
were used: fixed private investment (gifg), change in business inventories (gvq), purchases of
consumer durables (gcdq), and net exports (netex). The sum of these series was used to measure
total investment

Labor. Labor input was measured by the Citibase series hours.

Consumption. The sum of the Citibase series purchases of non-durables (gcng) and services
(gesq) was used to measure consumption.

Finally, total output, total investment, labor, consumption, and the total capital stock were
expressed in per-capita terms by dividing by the adult civilian non-institutional population
(Citibase series pm20 + pf20). These series were then converted to natural logarithms.

Calibrating the Parameter Values

In order to solve the model described in Section 2, parameter values for agents’ preferences (f,
A) as well as technology («, d, p) must be specified. As mentioned above, x represents capital’s
share which for the sample period we studied was equal to 0.41. The agents’ discount factor was
set to 0.984 while the depreciation rate was assumed to be 0.018; these values imply that the
steady-state capital-output ratio is equal to 12, roughly duplicating that in the data. The weight on
utility from leisure (A) was set to 2.15—this implies that 26% of time is spent in work activities
again matching the sample average.

The remaining parameter, p, was determined by first introducing deterministic technological
growth into the above model. (While this implies that the solution variables in (P1) will be
growing over time, a transformation of the variables which removes the secular trend permits the
solution method described above to be applied to the transformed problem, see King ef al., 1988.)
That is, the technology shock was defined as:

Z, =z, (DI)
Z; is measured as the Solow residual:
Z,=y,—ak,— (1 —a)h, (D2)

(All variables on the right-hand side are measured in logarithms.) Then, z, was identified as the
residuals from regressing Z, on a linear time trend. Analysing the autoregressive properties of this
series produced an estimate for p of 0.96.

Using these values produced the following equilibrium laws of motion:

¢ =0634k+0.02k+038 7
kie1= —0.066 &+ 1.016 k, + 0.049 h, + 0.084 z,

h=132¢6+054k+ 1322
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9, =2,+041 k+0.59 A,
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The caret denotes percentage deviation; from the steady-state. The first three equations are the
solutions generated by the linear-approximation method described above. The fourth equation is
the linearized form of the production function while the last equation is the first-order approxi-
mation of the aggregate resource constraint. The numerator of the first term in parentheses is the

steady-state value of output, the numerator of the second term is the steady-state value of
consumption, while the term in the denominator is the steady-state value of investment.




