There is a need for integrated thinking about causality, probability, and mechanism
in scientific methodology. A panoply of disciplines, ranging from epidemiclogy and
biology through to econometrics and physics, routinely make use of these concepts
to infer causal relationships. But each of these disciplines has developed its own
methods, where causality and probability often seem to have different understandings,
and where the mechanisms involved often look very different. This variegated situation
raises the question of whether progress in understanding the tools of causal inference
in scme sciences can lead to progress in other sciences, or whether the sciences are
really using different concepts.

Causality and probability are long-establishad central concepts in the sciences, with
a corresponding philosophical literature examining their problems. The philosophical
literature examining the concept of mechanism, on the other hand, is more recent and
there has been no ciear account of how meachanisms relate 1o causality and probability.
if we are to understand causal inference in the sciences, we need to develop some
account of the relationship between causality, probability, and mecharism, This book
represents a joint project by philosophers and scientists to tackle this question, and
related issues, as they arise in a wide variety of disciplines across the sciences.
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rerms of counterfactuals that are given an independent account. James
Woodward (2003) also defines cause$ counterfactually, albeit non-reductively.
Woodward's account has become increasingly popular among philosophers
of science, although it is not universally accepted. Nancy Cartwright (2007)
attacks it, partly over the relationship of causes to counterfactuals. She
objects both to defining cause in terms of counterfactual manipulations
and to the subsequent use of causal knowledge so defined to evaluate
counterfactuals for policy. Cartwright doubts that Woodward’s criterion for
cause is generally applicable, and she regards the counterfactuals supported
by the supposed causal knowledge as irrelevant ‘imposters’ (Cartwright
2007, esp. ch. 16).

Woodward's account draws substantially on the graph-theoretic analyses
of Peter Spirtes, Clark Glymour and Richard Scheines (2001) and Judea
Pearl (2000), in which causes are conceived as holding among variables that
are connected through functional, but asymmetrical, relations. The graphs
in these accounts are maps of the asymmetric flow of causal influence. A
main purpose of the current chapter is to suggest that Woodward’s version
of the graph-theoretic approach implies an unnecessarily impoverished
representation of causal relations and that these representations, in turn, lead
him to attribute too great a role for counterfactual manipulability in defining
cause and to support a too highly constrained account of the structure of the
relationships among causes and effects, laying his account open to many of
Cartwright's criticisms. I offer an alternative account, the structural account,
built on work that long predates Woodward's book, but which is less well
_known to philosophers (Hoover 1990, 1994, 2001). The structural account
bears a close family resemblance to Woodward's manipulation account.
Yet, there are key differences that provide a richer set of resources, which
are adequate to deal with Cartwright's objections and to provide a basis for
understanding the connection of counterfactuals to causality.

To avoid confusion, it is worth noting that the account proposed here does
not fundamentally conflict with the general approach of modeling causal
relationships graphically, developed especially by Pearl (2000) and Spirtes,
Glymour and Scheines (2001), and used by Woodward. Rather it clarifies the
relationship between graphical representations and systems of equations in
a manner that both enriches the graphical approach and demonstrates the
fundamental kinship of the two approaches.

16

Counterfactuals and causal structure

Kevin D. Hoover

Abstract

The structural account of causation derives inter alia from Herbert Simor's work ot
causal order and was developed in Hoover's Causality in Macroeconomics and earlier
articles. The structural account easily connects to, enriches, and iluminates graphical
or Bayes net approaches to causal representation and is able to handle modular, no
modular, linear, and nonlinear causal systems. The representation is used to illuminaté
the mutual relationship between causal structure and counterfactuals, particulagl
addressing the role of counterfactuals in Woodward’s manipulationist account of cau:
gation and Cartwright's attack on ‘impostor counterfactuals’.

16.1 Introduction

Causality is closely related to the analysis of counterfactuals. Hume, who is
often seen as having depreciated the status of causal relations, stressed thei
importance in political and economic contexts:

it is of consequence 1o know the principle whence any phenomenon arises, and t
distinguish between a cause and a concomitant effect. Besides that the speculation
curious, it may frequently be of use in the conduct of public affairs. At least, it mus
be owned, that nothing can be of more use than to improve, by practice, the method o
reasoning on these subjects, which of all others are the most important; though they:
are commonly treated in the loosest and most careless manners. {Hume 1754, p. 304)

The value of causal reasoning is, in part, diagnostic and retrospective: wh
did X happen? Such a backward looking question calls for a counterfactua
inquity: if Y had not happened, would X have happened? Causal reasoning
is also prospective and related to planning: if Y were implemented, wou
X happen?

A central question addresses the relationship between causes and couil
terfactuals. David Lewis (1973), for example, defines causes reductively 1

- 16.2 Woodward’s manipulation account

-~ While Woodward's account of causation relies on a counterfactual analy-
sis, it is substantially different from the influential counterfactual account

1 Nor is this view of the importance and utility of causal knowledge limited ic Hume’s
due to David Lewis (1973, 1979), which relies on a possible-worlds analysis.

economic and political writings — see Hume (1739, pp. 73, 8%; 1777, p. 76).
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A B C <= CLCAA'!' acg B, (161’)
D <= apcC +app B, (162"}
C 1 effect combines Figure 16.1 with equations {16.1') and {16.2}.
Causal arrows indicate direct causes, a key concept in Woodward’s account:
' C) A necessary and sufficient condition for X to be a divect cause of Y with respect
‘ D ‘tp s0IME variable set V is that there be a possible intervention on X that will change Y
or the probability distribution of ¥) when all other variables in V besides X and Y are
Fi ¢ld fixed at some vaiue by interventions. (Woodward 2003, p. 55)
ig. 16.1

Woodward (2003, p. 98) intervention variable (I} for a variable X with respect

Woodward and I agree that Lewis unnecessarily privileges the notion of ng ‘to a variable Y is defined according to four criteria:

causal, universal laws (Hoover 2001, ch. 4, sections 4.2—4.4: Woodward 200
p. 16, ch. 6). Furthermore, the notion of a metric for nearmess of possib
worlds is fundamentally vague (Woodward 2003, p. 138). Two analysts are
vastly more likely to agree on a causal claim than on the truth or falsity of
counterfactual that is supposed to underwrite it or the nearness of the possibla
worlds that are supposed to decide the truth value of that counterfactual,

In contrast to Lewis, who sees causal relations as connecting token events.
Woodward follows Spirtes (2001) and Pear] (2000} as seeing causal relations
as connecting variables. Fundamentally, then, Woodward’s account is one 6.
type-causation. Token-causation is analysed through assessing the cases in
which variables tale particular values. :

Causal relations among variables are represented both graphically and
functionally. Thus in Figure 16.1, A and B cause C; and C and B (direc'f'
as well as indirectly), in turn, cause D. These relationships may be made
more quantitatively precise by specifying the functional connections among
the va.lriables. For example, Figure 16.1 might be the graph of a system of
equations: S i

1. I causes X;
9. I acts as a switch so that when it takes the right values it can eliminate
the effect of all other variables in determining X;

3. any causal path from I to Y goes through X;

4. I is independent of any variable Z that causes Y otherwise than
through X.

An intervention is defined as a token realization of an intervention variable
that is an actual cause of the value of X. '
Counterfactuals play a role at two key points in Woodward’s definition of
direct cause. First, the definition relies on counterfactuals in that it is enough
that the conternplated interventions are possible; he does not require them to
be actual. The exact modality captured in a possible intervention (equivalently,
possible manipulation) is an open question. On the one hand, Woodward
rejects as potential causes variables for which we have no notion of manip-
ulation, as well as variables, such as race, sex, or species, for which a change
would threaten the fundamental identity of the subject to which the variable
is attached (Woodward 2003, p. 113; cf. Hoover 2009a). On the other hand,
Woodward rejects the notions that manipulations must be the result of himan
agency (naturally occurring ‘interventions’ will suffice} or that they are neces-
sarily practically possible {the moon causes the tides, but how can we pracii-
cally manipulate the moon in the right sort of way?} (Woodward 2003, p. 113).
The second point at which counterfactuals play an essential role is in
the notion that the causal relationship is to be evaluated in isolation by
holding other variables fixed. There may, in fact, be no way actually to achieve
such holding fixed and, like Lewis, Woodward is willing fo countenance
the semantic device of ‘small miracles’ to achieve the necessary isolation
(Lewis 1973, p. 560; Woodward 2003, pp. 132, 136). And like Lewis, Woodward
evaluates the counterfactual manipulation not in the actual world or, more
accurately perhaps, in the actual causal graph, but in one that is different,
though derived from: it.

C=acaA+acyB, (16.1)
D =apcC +apeB, : (16.2)

where the ay, 1, j = A, B, C, D are the coefficients that measure the strength
of the causal connection between variable ; and variable i.?

Neither the graphs nor the equations are dispensable, unless we abandor
the symumetry of the equal sign and rule out functionally equivalent sets of
equations as causally adequate. This can be done implicitly by adopting a
rule: effects on the left; causes on the right. While Woodward does not adopt
such a convention, both Cartwright {2007, p. 13) and Hoover (2001, p. 40}
explicitly convert the symmetrical equal sign into an assignment operator: ‘¢’
for Cartwright; ‘<=’ for Floover. Thus, rewriting (16.1) and (16.2) as

2 . . ,
Woodward restricts attention to acyshcal or recursive systems in which there is no mutual

Farreatian 214 e ratiaal Alatre tlead oo Tom ool e b e A
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The semantic content of the assertion of Figure 16.1 that C is a direcy
cause of D is captuted in the counterfactnal experiment of manipulating
some of its variables. Following Pearl, Woodward suggests that we consider 5
intervention that sets variables other than C and D to token values ~ in effect;
‘breaking’ {or ‘wiping out’} the causal connections between variables wherever
needed to achieve this. Thus Figure 16.1 would be replaced by Figure 16.2 in’
which the lower-case letters indicate token values for the correlative uppe '
case variables and in which the causal arrows into C are removed. C cauges
D, then, if a change in C, say, from ¢ to ¢’ results in a change in D, say, from 4
to d’. The truth of this counterfactual justifies the direction of the causal arroty
from C to D in Figure 16.1. :

Alihough establishing direct cause relies on the evaluation of a counterfac:
tual, Woodward's account, unlike Lewis’s, is not reductive. Manipulation ig
an admittedly causal relationship. Rather than explaining causation in term
of some more basic notion, Woodward explains the causal structure of one
part of a network of variables in terms of the causal structure of other part
While such a non-reductive account may be metaphysically unsatisfying t
those unwilling to take causation as a primitive, it is very much in keeping
with Cartwright's (1989, ch. 2) slogan, ‘no causes in, no causes out, and:
provides a framework for a causzl epistemology, which explains its appeal to
philosophers of science.

How one is to evaluate the truth value of counterfactuals remains an issue.
Woodward rejects Lewis's appeal to universal natoral laws. In the end, He
grounds the evaluation of counterfactuals in the empirical fact of invariance.
The invariant connection of the manipulated cause to the effect, under the’
conditions set out in the definition of direct cause (DC) is relied upon to
translate the causal map given in the graphs and their associated functions
into more complex counterfactual assessments that constitute Hume’s useful
causal knowledge. Tnvariance, in Woodward’s view, is not absolute but admits
of degrees. A relationship may be invariant to some sorts of interventions and
not to others (Woodward 2003, ch. 6, section 6.4). And, in general, Woodward

Ty

w)

Fig. 16.2
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stresses that causal knowledge and the assessments of counterfactuals are
deeply contextual and that causal explanation is contrastive.

Woodward's strategy of defining direct cause through a process of coun-
terfactual manipulation and then reconstructing causal networks out of the
pieces requires, he believes, that causal relationships possess a kind of auton-

omy that he calls modularity:

a system of equations will be modular if it is possible to disrupt or replace (the
relationships represented by) any one of the equations in the system by means of
an intervention on (the magnitude corresponding to) the dependent variable in that
equation, without disrupting any of the other equations. (Woodward 2003, p. 48)

The actual systems that, for example, a scientist works with may or not be
modular; nonetheless, Woodward maintains

that when causal relationships are correctly and fully represented by systems of equa-
tions, each equation will correspond 1o a distinct causal mechanism and that the
equation system will be modular. (Woodward 2003, p. 49)

Modularity, and whether it is essential to causal relationships, is a major point
of dispute between Woodward and Cartwright (see Cartwright 2007, chs. 7, 8;
Hausman and Woodward 1999, 2004; cf. Hoover 2009a).

16.3 The structural account

While it ig an alternative to Woodward’s manipulation account of causation,
the structural account bears a family resemblance to it and to the related
graph-theoretic analyses of Spirtes et al. and Pearl. Its pedigree, however,
can be traced back principally to J.L. Mackie’s (1980, ch. 3) INUS analysis
of causation and to Simon's (1953) analysis of causal order in econometrics
(see Hoover 2001, ch. 2). Our present focus is on Simon.

16.3.1 Simon on causal order

Simon ({1953) proposes a syntax for representing causal relationships that
suits the structural account very well. Consider the representation of a causal
structure in a system of equations, such as (16.1} and {16.2) with the addition

of

A=y, (16.3)
and

B=ap. {16.4}

These equations, in which A and B are set equal to parameters, complete
the system of equations, so that once the parameters have been assigned
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values, the system can be solved. Call the system (16.1)-(16.4) S. In 8, we
can solve for the value of A from equation (16.3) alone without knowledge -
of the parameters of the other equations, and we can solve for the value of -
B from equation {16.4) alone. Each is a minimal complete subsystem of S: call
them S, and Sg. Similatly equations {16.1)—{16.3} form a complete subsystem
(Se) in which we can solve for A, B, and C. It is minimal for C, though not.._
for A and B. Equations (16.1)-{16.4) form a complete subsystem (Sp = §)-
that is minimal for D. For Simon, causal order is about the hierarchical -
relationships of minimal complete subsystems. A and B cause C becauge
34 and Sg are subsystems of Se (written S4 C Sc and Sp C S¢). C causes
D because S¢c C Sp- A is an indirect cause of D because A causes C and €
causes D and knowing the value of C allows us to dispense with knowledge -
of the parameters that determine A in solving for D. B is both a direct and
indirect cause of D because, as with A, there is a chain of causation running
through C; but, in contrast to A, knowledge of C is not enough to allow us to
dispense with knowledge of the parameters of B in solving for D. '
Simon recognizes that his syntactic approach is inadequate on its own
because structures of equations can be written in equivalent forms that
syntactically yield different systems of minimally complete subsystems and;
therefore, different causal orderings. For example, let sysiem §' consist of
equations {16.2), {16.4) and

Aq4q———8B

Oy

D
Fig. 16.3

a-parameters of S would have to change in the face of a change in one of the
g 5.parameters.

The true causal order, then, is one that allows mutually unconstrained
- interventions among its parameters oz, to put it another way, any change to
the variables of the causal system leaves the parameterization and, therefore,
the functional form of the remaining causal relations invariant. Invariance of
" the functional forms in the face of specific interventions is, on this view, the
- hattmark of a true causal representation; while failure of invariance is a key
- symptom of causal mistepresentation.

We can restate Simon's semantics by defining a parameter to be one of a
" set of variation-free variables that represent the scope for interventions in the

A=pBa+BagB+PacC, - {(16.5) . :
- causal system, where variation-free means that the choice of any particular

where value for a variable does not constrain the admissible choices of values for
aa oy 1 other variables in the set. _
Ba= » Pas= » and fac=- : Cartwright objects to this characterization of a parameterization as a set of
- LA 1 Ora 1-— Oeca R . .
variation-free variables that govern the values of variables that are consirained
and . by the causal structure: ‘this is not generally the distinction intended between
Lo the parameters and the variables’ (Cartwright 2007, p. 241). But I submit that
C= BC + BCB B, (166)

defining parameter in this way is consistent with ordinary usage. The Oxford
American Dictionary defines parameter as ‘a variable quantity or quality that
- restricts or gives particular form to the thing it characterizes.” Simon treats
parameters as capable of taking different values and uses the parameterization
to define the causal order — the form of the causal order of a system of
variables.

Cartwright also suggests that this interpretation of Simon’s characterization
of causal order is incorrect (Cartwright 2007, ch. 13, 14). The best rejoinder is
1o quote Simon at length:

where ,8(; = hallea and IBCB = (Lca.
By construction, systems S and § have identical solutions; yet by Simons
syntactic criteria the causal ordering of § is represented by Figure 16.3
substantially different from the causal ordering of S in Figure 16.1.
Simon's solution to this problem of observational equivalence is to provide
a semantic account of causal order (Simon 1953, pp. 24-26; 1955, p. 194
Parameters are not, on this view, fixed constants, but precisely the things that
are altered by interventions or manipulations. If the a-parameterization of
were the true one, then any one of its parameters can be set to a new value
without affecting any of the other parameters in the system. However, the;
p-parameters of § must change in order to maintain the common solution. It
works both ways, if the g-parameterization of S’ were the true one, then the.

“The causal relationships have operational meaning, then, to the extent that particular
alterations or “interventions’ in the siructure can be associated with specific complete
‘Subsets of equations. We can picture the situation, perhaps somewhat metaphoricaily,
as follows. We suppose a group of persons whom we shall call ‘experimenters’. If
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we like, we may consider ‘nature’ to be a member of the group. The experimenters,
severally or separately, are able to choose the nonzero elements of the coefficient matyiy
of a linear structure, but they may not replace zero elements by nonzero elements o1
vice versa (Le. they are restricted to a specified linear model). We may say that they
control directly the values of the nonzero coefficients, Once the matrix is specified, -
the values of the n variables in the n linear equations of the structure are uniquely
determined. Hence, the experimenters control indirectly the values of these variables.
The causal ordering specifies which variables will be affected by intervention at a
particular point (a2 complete subset) of the structure. (Simon 1953, p. 26)

Panel (b) Panel (c}

CT Ccr
A A
Panel (a)

cT

What Simon refers to as ‘coefficients’ subject to direct control — that is, able
to be freely chosen by the ‘experimenters’ —is exactly what we call parameters.?
And a specific change in a parameter is the manner in which an intetvention
(or Woodward’s manipulation) is implemented. We can think of a causal
systern as a machine whose various operating characteristics are the variableg
which are controlled indirectly by selecting the settings for various sthches
and dials.

Significantly, Woodward (2003, p. 96) uses the analogy of switches as g
means of explaining the breaking or wiping out of causal arrows involved
in intervention. The operation of a switch is not analogous to the wiping
out of a causal relationship. (This is perhaps more obvious with respect 1o
dials that allow the setting of a continuously variable quantity. Not for the first
time causal analysis is misled by philosophers’ penchant for 0/1 or onfo
variation.}* Flipping a switch does not break a causal system; it operates i
Interventions that change the values of parameters maintain the topology of
the causat relationships among variables, calling for variables to take dlfferen
values but not altering the causal graph itself. :

While Simon's conception of causal order in one sense rejects Woodward’s
approach (causal order is not best understood through the comparison of:
causal system to a topoioglcally different system), in another sense it genera
izes it. For the parameters represent the scope of possible interventions in:
causal system, so that the connection between interventions and outcomes fo
variables is clear. Simon's conception shifis the focus away from specific toke
interventions to parameters that can take a variety of values. These are types

D1 D1 D2 D1

Fig. 16.4

which can instantiate a vanety of token manipulations. The causal structure
is defined entirely at the type level.

The structural account takes the minimal causal connection between two
variables as primitive, offering no deeper account. The nature even of such a
primitive causal connection must be understood counterfactually. If a cause
has a certain effect in the right circumstances, then we cafinot sensibly assert
that it has that effect when those circumstances are not actual but not when
they are actual. If diamonds scratch glass, the property cannot hold only when

a diamond is not actually used to scratch glass. This is the sense in which
 causal relationships are naturally connected to invariance and it captures the
~ meaning of what it is for a cause to be necessary in the circumstances for an
- effect.

Primitive causal connections reflect the natures or capacities {to use
Cartwright's 1989 preferred term} of the causes. And capacities must
- be understood as dispositional, subject to a counterfactual analysis (see
Mackie 1973, ch. 4). Cartwright analyses capacities as dispositions that are
- carried from context to context; yet they do not have to express themselves in
every context (Cartwright 1989, pp. 3, 146-147, 191, passim). It is no failure
of an account in terms of capacities that contextual details matter substan-
tially in whether capacities are actualized. And a capacity account in no way
presupposes modularity, which is a sort of independence from context.

While direct causal connections are primitive, they are also relative to the
representation or model and may or may not be brute facts. For example, we
ight imagine that a drug (D1) is found experimentally to reduce coronary
thrombosis {(CT). The relationship may be modelled as in Figure 16.4a. (Plus
or minus signs next to causal arrows indicate whether the causal influence
promaotes or inhibits the effect.)

! In light of the fact that Cartwright sees ‘direct control as highly resizictive notion and ty
possibility that her view arises partly from an assumption that direct control requires huma
agency, it is worth reiterating that Simon counts ‘nature’ as among the ‘experimenters’ who éé
exercise direct control {Cartwright 2007, . 252, fn. 27; also p. 205). :

* And, indeed, Simon is not free of the potential confusion; for he refers to the elimination of
causal linkage as the setting of a coefficient to zero; but there is a difference between a paramete
having no value and having a range of admissible values which happens to include zero. Causa
analysts frequently — and no doubt inadvertently - equivocate on the meaning of zero, failing
distinguish these two cases. See Hoover (2001, p. 45, esp. fn. 13). In the cited passage, Woodwar
conirasts switches and dials: switches break causal connections, while dials modulate the stren
of causal connections. The structural account sees this as a distinction without a difference. .
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It is not inconsistent with such a model that further research supports g
more complex model (Figure 16.4b) in which D1 causes CT directly an,
in fact, promotes coronary thrombosis, while it also reduces blood pressure
(BP), while high blood pressure promotes thrombosis; the net affect being

to reduce thrombosis. Sometimes a model such as Figure 16.4b is taken to.:

imply that the model in Figure 16.4a is defective. A better interpretation ig
that the models operate in different contexts. If there were no known meang
of intervening independently on blood pressure or in such a way as would
meliorate the adverse direct effect of D1, then the model in Figure 16.44
would be a perfectly fine model and a guide to clinical practice. The mode] jn
Figure 16.4b would simply explain the mechanism through which D1 inhibits
thrombosis.

An advantage of the model in Figure 16.4b, however, is that, in articulating
the mechanism of operation, it may suggest paths toward better outcomes. For
example, knowing that the positive effect of D1 operates through BP suggess.
seeking another drug (say, D2) that would reduce blood pressure with no:
direct effect on coronary thrombosis (Figure 16.4¢). If research successfully
produced such a drug, a better clinical practice might be to administer D2 and
omit D1. There is a sense in which the causal arrow in Figure 16.4a capturesa:
fact that is primitive relative to the model, but which is not brute, in that it has
2 more complex explanation in a finer grained model, There is no guarantee,
that primitive causes can be explained through further refinements, though'
that is often the object of research. :

16.3.2 Modularity and difference-making
The structural account agrees with Woodward (2003, e.g., p. 80) that causes:
are difference makers, yet it marks the difference that they make relative
to an intact causal structure, not some related, but different, structure con-
structed by manipulations that, in effect, break the system. The difference’
between our approach and Woodward’s becomes important with respect to-:
modularity. Where Woodward sees modularity as a fundamental element of
a well-articulated causal system, the structural approach does not require-

modularity at afl - a distinct advantage, since many intuitively causal systems -

are decidedly nonmodular,

Different notions of intervention also distinguish the structural account
from Woodward's manipulation account. A parameter can be thought of as™

a causal variable, so there is no fundamental difference with Woodward's".
criterion 1 for an intervention variable, cited in Section 16.2: I causes X, .

A significant difference arises with Woodward's criterion 2: [ acts as a switch
so that when it takes the right values it can eliminate the effect of all other”
variables in determining X. As already noted, while parameters may well -

act as switches or dials (i.e. insruments of continuous variation rather than

simply on or off), they need not shut off the effects of other causes. The

critical feature is not the breaking or wiping out but the accounting for the
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effects of other causes. Nor does the structural account accept criterion 3:
any causal path from I to Y goes through X. This criterloz% is closely rclelated
to modularity, and the structural account does not require modularity. A
parameter may have a direct effect on Y as well as an indirect effect on Y
though X without undermining a clear causal ordering of X and Y. The
case in the next subsection illustrates exactly this situation. The structural
account suggests a different interpretation of criterion 3. When it is fulf.ii‘led
for parameters (I}, then we find ourselves in a particularly fortunate position
1o infer causal direction through an intervention. We should not, however,
confuse the epistemic issue of how and when causes are inferable from
data with the conceptual issue of what it means to be a cause or with the
question of how to represent causal order. The structural account does not
accept Woodward's criterion 4: I is independent of any variable Z that causes
Y otherwise than through X. If I is interpreted as a parameter as we have
defined it, then it is required to be independent only of other parameters
and not of all other variables. This is the requirement that parameters be
variation-free,

An intervention for the structural account is a token realization of a parame-
ter in the same way that an intervention for Woodward is a token realization
of an intervention variable. But unlike Woodward, the type-relations among
the variables and the parameters fully determine the causal order without
reference to a particular token intervention or manipulation. In relying on
token interventions in the deliniton of direct cause, Woodward again seems
to confuse the causal relationship with a strategy that supports the inference
of causal relationship.

We can illustrate the issue with a typical macroeconomic model.’ The
demand for real money balances (m — p) is given by

Wy — pr=8—alipiy — i) +w, {16.7)

where the subscripts ¢ indicate time periods; m is the logarithm of money; p,
the logarithm of the price level;, p7 . the expectation at time t of the price level
attime t + I; v, an independent random error; and « and § are parameters. The
central bank’s money supply rule is

Phat = A+ Wl + &y, (16.8)

where ) is a parameter that governs the growth rate of money and ¢ is an
independent random error. Expectations are formed rationally:

P = E(pial E), {16.9)

which says that the expectation of the price level is the mathematical expec-
tation of actual prices conditional on all the information available at tizafle i,
including the model itself E,. Janssen (1993, pp. 137-139) argues persuasively

> This model is adapted from Hamilton (1995, pp. 326-332).
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that ‘rational expectations’ are not expectations at all, but a consistency crite. -
rion or solution concept analogous to the condition that markets clear — that -
is, that prices are assumed to take the values at which supply equals demand
(see also Hoover 2009b). On that assumption, , p?,,, is not a proper variable -
or at least not a causally efficacious one - but an instrument for imposing 2
certain nonlinear restriction on the parameters of the model. _
On that interpretation, the causally relevant solution to the modet is given -
by (16.9) and

pro= 1y — 8+ ad+ v {16.10)

The model is nonlinear in parameters, and it is not modular. The appear.
ance of the multiplicative coefficient a in (16.11) results from the imposi.
tion of rational expectations -- A appears only because it is a parameter of
the money-supply rule (16.9). Thus, it is impossible to perform Woodward’s”
manipulation test of whether money causes prices, which calls for setting m, -
in (16.9) to a fixed value come what may and, in effect, wiping out any causal:
arrows, say, from my or v to wy,4; for that would remove the basis for the
parameterization of (16.11}. The causal structure reflected in (16.11) cannot
survive such a breaking of the system.

Nevertheless, applying the definition of direct cause from the structural
account tells us unequivocally that m; causes p,. Rather than calling for:
miraculous token manipulations, direct cause is implied by the constraints
on the variables determined by the parameterization. '

The model illustrates another important point, Consider a change in the
central bank’s money-supply rule - for example, an increase in the growth rate
of money indicated by a higher value for A. As equation {16.11) indicates such
an intervention would alter the coefficient a) in (16.11). As a result a statistical
test of the relationship of money to prices based on (16.11) would be non-
invariant. Woodward and others have treated invariance under manipulation
of causes as the hallmark of a causal relationship, and they would, therefore;
be ternpted to reject the causal status of (16.11) {Woodward 2003, pp. 15-16,
ch. 6). What the example actually shows is that a more subtle approach to -
invariance is necessary. '

Consider an intervention that changes prices through some other instru-
ment than money; for example, consider an intervention that changes 8, then |
naturally (16.11) is non-invariant. But (16.9) is invariant. And this is a general
rule in non-moduiar systems with one-way causes: the causal structure that
determines a cause of an effect is invariant to interventions that alter the
effect through some other mechanism than the cause in question; while the
causal structure that connects a cause to an effect is not generally invariant -
to interventions that alter the cause of the effect in question (Hoover 2001,
ch. 8; Cartwright 2007, pp. 99, 105). In fact, the differential invariance is

% See Hoover {2001, pp. 64-65) for the derivation of the solution to a slightly more general
version of this model.
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diagnostic of causal direction in non-modular systems; and invar-iance in both
directions is a test of modularity (see Hoover 2001, ch. 8, section 8.1). The
more subtle analysis of invariance nonetheless supports Woodward's view that
one can alter the effect by manipulating the cause; one cannot alter the cause
by manipulating the effect.

16.3.3 Counterfactual analysis

Lewis explains causal relations by an appeal to counterfactuals and evalu-
ates the truth of counterfactuals through a comparison of possible worlds.
Mackie {1973, ch. 3) rejects the notion that countetfactuals per se have a
truth value. He interprets them as enthymemetic or disguised arguments,
which can be evaluated for validity once their structures are articulated and,
additionally, for soundness once the truth of their premises is established or,
at least, accepted ‘for the sake of argument’.

The structural account of causation rejects Lewis’s account of the counter-
factual basis for causal relationships, but is compatible with Mackie’s account.
A causal model can be interpreted as a map of possible worlds. Unlike the
possible wotlds in Lewis's account of counterfactuals, causal models are pre-
cise about what changes are possible and what implications they have for
the variables in the model. Consequently, they provide an instrument for
+he construction and articulation of the kind of arguments that Mackie sees
as underwriting counterfactuals, and they avoid the hopeless ambiguities of
Lewis's metric for the closeness of possible worlds.

Naturally, we cannot avoid the question of the adequacy of causal models
as representations of the real world or the need to choose among competing
causal models. But these are the ordinary episterological problems faced
in scientific inference. They may be practically difficult and subject to other
philosophical reservations; but, once we are satisfied that they have been dealt
with adequately, counterfactual analysis itself is not additionally problematic.”

16.4 Counterfactuals and policy analysis

16.4.1 Impostor counterfactuals

In her recent book, Cartwright {2007, ch. 16) makes a case against the typ-
ical uses of counterfactual analysis in economics. Her theme is reflected in
her title, Hunting Causes and Using Them; she suggests that the techniques
appropriate to hunting causes are not the ones appropriate to using them in
counterfactual analysis. The title, however, masks different levels of issues.

7 Spirtes (2001) provides an extensive account of the using of information encoaded in condi-
tional independence relationships of variables as a means of establishing facts relevant to causal
inference, Hoover {2001, chs. §-10) provides both a methodological account and case studies of
causal inference based on interventions of a type that induces structural change in causal sysiems.
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It seers off the mark, In the well known story, the recipe for jugged hare
(usually wrongly attributed to the famous cookbooks of Mrs. Beeton or Mrs,
Glasse) begins ‘first, catch your hare...” In an obvious sense, one surely

needs to hunt causes (that is, to establish the existence of causal connections.

empirically) before one can use them for anything. :
Cartwright's real concern is with what she calls ‘imposter counterfac-
tuals’ — that is, cases in which the counterfactual that received empiricgl
warrant is not the one that would appropriately warrant a counterfactual
policy analysis. One of Cartwright's objections is simply an extension of
her skepticism of modularity. Treated as an empirical strategy, Woodward's
manipulation test should reveal the causal refationship if the causal structure
is, in fact, modular. Cartwright does not deny that, but stigmatizes such

systems as ‘epistemically convenient, suggesting that such convenience ig

necessarily rare.

She also objects to the breaking or wiping out of causal connections as part
of Woodward's and Pearl's approach to evaluating a causal relationship on the
ground that it is the intact system, not the broken system, that it is needed
to evaluate policy counterfactuals. The difficulty is that when implementing a
policy, we may in fact not be able to manipulate a cause independently of other
causes, so that the counterfactual that Woodward or Pearl seeks to evatuate is
simply not a counterfactual that the policy analyst can rely on.

This objection connects to the distinction that Cartwright draws between
implementation-neutral and implementation-specific counterfactuals. An
implementation-neutral counterfactual is one that implies the same effect
no matter what means are used to bring about the causal antecedent. An
implementation-specific counterfactual is one in which the effect is sensitive
to the manner in which the causal antecedent is brought about. For example,
in the causal structure connecting high blood pressure to coronary thrombo-
sis in Figure 16.4c, the counterfactual question, ‘how much would a reduc-
tion in blood pressure reduce thrombosis?, is not well posed because the
counterfactual is not implementation-neutral. A reduction of blood pressure
to a particular level using drug D2 will be more effective than one using
drug D1, since DI has a direct promoting affect on thrombosis indepen-
dent of its indirect inhibiting effect operating through its effect on blood
pressuze.

The structural account of causation suggests that implementation-specific
counterfactuals are the rule, in large measure because causal com-
plexity and failures of modularity are the rule. What Cartwright calls
implementation-neutral policies are merely policies that benefit from the
special features of some causal structures that render them robust to the mode
of implementation. In such structures, a variety of modes of determining a
cause produce the same effect. Such robustness is practically usefil in many
cases and may be sought for that reason, but there is no reason to connect it to
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she existence or non-existence of a causal relationship 1‘11. general. In fact, n(}t
nfrequently a lack of such robustness is desirable. Pushing up on the plastic
in

1ab causes the cap to the medicine bottle to come off, but only when the plastic

tab is atigned with the arrow on the bottle. The lack of robustness contributes
* éhii;ﬁ?(zooz p. 254) assumes that we should prefer implern.en’taﬁop-

u:rai policies. Yet, such a preference is not obvious. And, even if we fi1d
o for them, we would need a more detailed, accurate causal representation
for ?3: sure tP;at the policies were in fact implementation-neutral. For exabmpl.e,
1 simple model of the relationship of blood pressure to coronary thrombosis,

' Bp - CT, might appear to be implementation-neutral; but, if Figure 16.4.c,

truly represents the causal structure, whether a fall in. bl_ood pressure is
brozght about by drug D1 or D2 matters, the policy is implementation-
specific, and we have made a mistake.

16.4.2 An illustration from monetary economics 1 :
We can illustrate some of the key issues -and how the strucstura acco;m
deals with them using the model in equations (16.8)-{16.1%). A mone a?r
regime is defined by the parameterization of the central bank’s money suig ey
rule (16.9), so that any change in the pa_ranr‘leter A represents a new’E r;gn o.f
Tmagine that the model (16.8)—(16.11) is, n faFt, a true rep;esen atio ¢
the economy; it is, what econometricians som@mes call the am—_genem Lsgs,r
process. Equations (16.9) and (16.11), then dl?SCi’lbe the actual dynarqlc pg(())ciemt
of governing the evolution of money and prices. Of course, economists ot
know the data-generating process a priori. A central problem for econome tr11n
is identification: how can we recover the ?araxlneters of the dita-geri?ris_ogf
process (or of some, close enm;gh approximation) based on observatio

i ere, of mand p): .
thi\z;r:;lifascgeconomists eslgmate so-called structural vector au.toregressz;;s,
Most of the details are not important here, but a few are \fvorth noting. fthe
structural vector autoregression technique gives up onlearning aboutallo \ e
parameters of the dynamic process, focusing instead only on.those that11'§ ate
the contemporaneous values of variables to each other, lfattmgb the 1;;1 a?zt;l{;
ships of lagged to contemporaneous variables be Sur‘nmanzed ¥y coe tcues o
that may themselves be difficult-to-disentangle functions of the parame erters
the data-generating process. Estimates of these contemporancous param;c_ o
are obtained under a maintained assumption about ﬂ}e causal order of the
variables. For example, if we assume {correctly) that in the data—gl?nerahngf
process to hand, m, causes p;, we would be able to recover good esumate's 0
the true parameters. But most economists make the necessary assumptions

impli i i del used
8 Equations {16.8)(16.11) represent a simplified version of an actual econozn;;ré{c) Ino el u
to conduct counterfactual analyses of US monetary policy {see Hoover and Jor ).
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about causal ordering on the basis of a priori guesswork, so that considerable
doubt hangs about their estimates. This is an area in which the graph-theoreti

{or Bayes net) inferential techniques pioneered by Spirtes ef al. {2001) and first

applied to the problem of structural vector autoregressions by Swanson and
Granger (1997) have considerable power.?

Typically, once an economist has estimated a structural vector autoregres-

sion, it is used to evaluate particular counterfactual questions: for example,
treating (16.9) and (16.11) as the structural vector autoregression, we might
ask, ‘what would be the path of prices {p} if money (m) were increased for 3
single period?” Such a one-period increase is referred to as a ‘monetary shock’
(or ‘impulse’} and the path of prices is referred to as an ‘impulse-response

functiort. The shock is typically administered by setting the error term (here

&:) to a positive value for a single period. :

The effect of the shock is nonetheless the same as Woodward's or Peails
experiments forcing a variable to take a particular value come what may.-..
Typically, the implied breaking of causal refationships is restricted to the
current period, so that future values of the money are not fixed but allowed:
to develop in line with the causal structure. However, one could in principle

offer a series of shocks that had the effect of fixing money at every future time

period. That this is not often done is partly pragmatic: the own dynamics of
the shocked variable are independently interesting, so economists prefer not
to suppress them.,

It is also partly the result of the Lucas critique, the fact that in a model
with rational expectations, the dynamics are not invariant with respect 10
changes in the policy rule.’® The Lucas critique is exemplified in the point

previously made that the coefficient aA shifis with changes in the monetary:

policy rule (the setting of the monetary growth rate, %), so that o know the::

path of prices (p), we heed to know not only the value of m, but also how
m; was brought about — that is, the value of A. Impulse-response analysis

is sometimes thought to circumvent the Tucas critique. The idea is that a.
shock to the random-error term in (16.9) leaves the parameters untouched-:

and, therefore, does not induce any failure of invariance in {16.9} or (16.11).

Impulse-response analysis provides a good example of what Cartwright
criticizes as impostor counterfactuals, It is used to say something about the'
effects of monetary policy - for example, what would happen if the Federal :
Reserve raised the money supply by 1 percent? - and it tries to answer that-

question by treating the Federal Reserve’s action as a shock to a stable system.
The impulse-response function does answer a well-posed counterfactual ques-

? See Demiralp and Heover (2003), Hoover (2005), Demiralp, Hoover, and Perez (2008), and
Hoover, Demiralp, and Perez (2009) for further development, evaluation, and applications of these
techniques to economic problems,

10 Tucas (1976); Hoover {1988, ch. 8, section 8.3; 2001, ch. 7, seciion 7.4).
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tfion, but not the one for which we want an answer. The question it actually
poses is, what if the money supply were to rise unexpectedly and arbitrarily,
say, by 1 percent above its dynamic path and then fall back the next period
by the same amount? It truly asks what would happen if there were a shock
to the system. But monetary policy is not delivered by shocks. The increases
in the money stock that the Federal Reserve typically delivers are reactions
to economic conditions aimed at desired goals for economic variables. Fur-
thermore, while the impulse-response function can trace out the effects of 2
random shock, it cannot trace out the effect of a change in systematic policy,
since to deliver a series of shocks in one direction, for example, in order
to force money to evolve along a desired path represents a violation of tie
randomness assumptions that govern the underlying representation of the
error term (16.9). It is not that such systematic policy could not be analysed;
it iy that it cannot be analysed while assuming that the causal structure of the
model, which includes the model of the random errors, is constant and - at
one and the same time — changes.

In a discussion of the Great Depression, the economist Christopher
Sims {1999) recognizes that random shocks to error terms could not ade-
quately address the counterfactual question, what if monetary policy in the
1930s had adopted the rules that characterized it in the 1990s? He obtained
econometric estimates of a model more complex than, but similar to, {16.8)—
(16.11) for both the 1930s and the 1990s. To evaluate the counterfactual,
he, in effect, replaced the monetary-policy rule (16.9) for the 1930s by the
one that characterized the 1990s. For our purposes, think of this as simply
changing A to a new value — while holding the estimated value of ad and
the other parameters of (16.11) constant at values appropriate to the 1930s.
The counterfactual is evaluated by setting m and p in the first period to
the values that they actually took at the onset of the Great Depression and
then feeding the random error terms from the original estimates into the
model with the alternative monetary-policy rule. (Notice that if this proce-
dure were undertaken with the original monetary-policy rule, it would nec-
essarily have simply generated the actual path for money and prices over
the Great Depression.) With such counterfactual estimates, Sims felt free
to discuss whether modern central bankers would have produced better
outcomes.

The ordinaty impulse-response analysis was a true impostor counterfac-
tual, in that it answered a counterfactual question, but the wreng one, In
contrast, Sims’s counterfactual experiment is simply incoherent. If, as he
holds, the existence of rational expectations subjects the model to the Lucas
critique, then one cannot simply substitute one monetary-policy rule for
another. The incoherence is displayed in simultaneously assuming that A may
change while « and A remain constant. The difficulty is the non-modularity
of the causal structure. Were the causal structure modular, as it might be if
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rational expectations were not an element of the data-generating process, i,
Sims’s method would be coherent. :
Hoover and Jord4 (2001) offer a different counterfactual analysis. Ratha
than replacing the monetary rule of the 1930s by that of the 1990s, they Simpi
transfer the entire model of the 1990s to the 1930s by setting the initial valys
of the 1990s model to their values at the onset of the Great Depression an,
then feeding the estimated random error terms from the 1930s model into th,
1990s model. This procedure makes sense if the elements of the model ot
than the particular shocks and the monetary-policy rule have not change
between the two time periods. The counterfactual question that it answer
is well-posed and not an impostor. Essentially, the procedure is that same a3
we had changed X in the estimated 1930s model and, untike Sims, allowed
to take a new value, holding a constant. The central message of Hoover and
Jord&'s approach is that one should not ignore non-medularity but account for
it. Accounting for it raises difficult, but not necessarily insuperable, inferent
problems, which — fortunately — are not our direct concern here. :

16.4.3 internal and external validity
Holding a constant is the emblem in our expository model for the constancy’o
the rest of the structure of the model between the two periods. The assump::
tion that we are justified in doing so is by no means automatic and raises
the classic question of internal versus external validity. The issue is whether:
a causal relationship (indeed, empirical relationships of other kinds as well).
undercovered in a specific context can be transferred and assumed to hold:
in other contexts. Superficially, it might appear to recapitulate the distinction
between implementation-specific and implementation-neutral counterfacty
als. The implementation dichotomy comes down, first, to whether or not an’
empirically warranted causal structure supports the counterfactual; second,
to whether the detail in the representation of that structure is fine enough--
to distinguish between alternative policy implementations; and, finally, to-
whether the target effects are, in fact, robust to different implementations. In ;
contrast, external validity comes down, first, to whether there is homogeneity.-
in the background conditions between irnplementations in the two situations;
and, second, to the domain of possible interventions.!!

Y Hoover (2009a) frames the notion of background conditions in a manner consistent.-
with Woodward's (2003, pp. 145-146) emphasis on contrastive focus using John Ander—_':-
sorfs (£938/1962) notion of a causal field. The causal field is the set of standing conditions that,
while they may themselves be causes, do not change relative in relation to our particular causal.
interests and, so, define the boundary conditions for a particular causal relationship. Causal
relations may be evaluated differently in different causal fields. As a results, causa) relationships -
may be represented or modeled in a variety of {ultimately non-contradictory} ways depending on
our differing pragmatic aims.
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in the case of the monetary-policy counterfactual, there is no
;mplementation-neutrai counterfactual possible: to know what effect a change
1 the money stock causes we must know how it comes about — an increase
n my from a shock to £ has a different effect than one {from a rise in A. Yet,
Hoover and Jordd’s counterfactual analysis trades on external validity. In order
that the 1990s may speak to the Great Depression, they assume that the actual
history of the variables and the causal topology are the same in both periods.
‘And they assume that the parameterization, except for the parameterization

“of the monetary-policy rule itself {the value of A) is also the same.

Hoover and Jorda could easily be wrong: the conditions that underwrite

= external validity may fail. But that is an issue on which empirical evidence

can be brought to bear. It is not a special problem for causal analysis but a
more general problem for the import of empirical results derived in one set of
circumstances (say, in a particular experiment) for other sets of circuinstances.
Our current concern is not with the problem of external validity but with the
problem of using causes in situations in which the external validity of the
causal model is not in question.

A good deal of Cartwright's skepticism about causal knowledge in eco-
nomics and — one presumes - in other fields is apparently generated by
a lack of sufficient respect for her own distinction between hunting and
using. She writes as if the manner in which causes are hunted limits their
possible uses. The structural account, however, clarifies that there are a
variety of things we typically need to know to have a useful representation
of causal structure. We need to know the causal topology — essentially the
pattern of arrows connecting variables or, equivalenily, the parameteriza-
tion {for example, that the parameter space includes « and X and not, say,
= a.X). We also need to know the functional interrelationship of the para-
meters, including the manner of potential nonmodularity. And we need to
know, for any real-world counterfactuals, the actuial values of the parameters.
The structural account tells us both what we need to know and where to
stot such knowledge as we have obtained into the representation of causal
structure.

Cartwright (2007, p. 9, passim) characterizes her position as ‘causal plural-
ism.” The structural account aims at a high encugh level of generality that any
coherent approaches are nested within it. Yet, it is compatible with substantial
methodological pluralism: different methods may supply different elernents
of the knowledge needed o fill in the causal structure. For example, Bayes net
methods, as discussed earlier, are helpful in mapping the causal topology. But
there are situations — well known to their advocates — in which they are not dis-
criminating, and they do not directly address parameter values. Hoover (2001,
ch. 8) offers methods that use patterns of invariance and noninvariance across
regime changes that can sometimes resolve the equivalent causal topologies
allowed by Bayes net methods. Hoover and Jorda {2001) demonstrate in an
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enriched version of the model (16.8)—(16.11) that knowledge of interventiong
in the monetary-policy rule (not even the fine details, but simply the timing of .
when they occur) may allow us to recover the functional relationships among
parameters of nonmodular causal systems. Their approach is an empirical
analogue to Woodward's use of manipulations in the evaluation of causg]
counterfactuals, although it does neot invoive breaking of causal arrows, but
in the manner of Section 16.3 above, considers manipulations in a conserved
causal topology.

These empirical methods, at various points, all involve untested assump'_
tions — a number of which have been mentioned already with respect tg
Hoover and Jordd’s counterfactual experiments. But then so does all empirica]
investigation. These assumptions may not be tested in a particular study,
but they are not necessarily untestable or, at least, not necessarily beyond
empirically based criticism. They are not, however, all jointly testable at the
samme time. Ounly a thoroughly destructive skeptic would be unwilling to maké
some assumptions that seem reasonable and reliable until there exist reasons.
to doubt their truth more compelling than the mere possibility that they could
be false.
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16.4.4 Epistemic opportunism
While Cartwright takes the fact that some methods work well only for modu:
lar, ‘epigtemically convenient’ situations to be a significant drawback, from
a practitioner’s point of view it is surprising, but welcome, how ofien the
real world seems to be convenient enough to make empirical progress with
relatively simple methods. Cartwright is certainly correct that modularity’is
not a general property of causation, but it is common enough — to a reasonaly
approximation — that methods that require it are often practically effectiv
And where modularity fails, there are other methods, such as the methods
based on invariance testing advocated by Hoover (2001) and methods built
on similar principles used by Hoover and Jordd (2001). Some nuts have n
yet been cracked; some perhaps never will be. Rather than decrying method
that require ‘epistemic convenience’ generally, it would be better to embrace
epistemic opportunism: articulate causal models by any means necessary. The:
structural account gives us a systematic way to interpret what appropriate;
methods have accomplished. '
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17-
The error term and its interpretation
in structural models in econometrics

Damien Fennell

Abstract

This chapter explores what the error term represents in structural models in economet-
rics and the assumptions about the error terms that are used for successful statistical
and causal inference, The error tezmn is of particular inferest because it acts as a cover-
all term for parts of the system that are not fully known about and not explicitly
modelled. The chapter attempts to bring some of the key assumptions imposed on the
error term for different purposes (statistical and causal inference) and to ask to what
extent the conditions imposed on the error ferm can be empirically tested in some way.

17.1 Introduction

Structural econometrics attempts the extremely difficult task of making causal
inferences from non-experimental data. Its core approach, which in its mod-
ern form dates from the ground-breaking paper of Trygve Haavelmo (1944),
is to postulate a statistical model that carries structural (or causal) content.
The model may be postulated from theory, from observations and from other
background knowledge. One then uses sample data to test its observable
implications (to check it is adequacy) and to infer remaining unknown fea-
tures (for example, to estimate parameters if the model is parametric).!

In a highly general form, we can denote a structural model in the following
way. Denote the variables of interest to the econometrician as a vector of
random variables Z, some of whose components (though not necessarily all)
are observable, The probabilistic part of model postulates conditions on the
joint probability distribution of Z. Structural content can be introduced in
several ways. For example, some can be introduced with a partition of Z into
exogenous variables, X, and endogenous variables, Y. Though not all concepts

1 In practice the process of model selection and inference of parameters will tend be inter-
linked, for example, inferring certain parameter values (e.g. zero's) may lead one to simplify the
model.



