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Abstract
Economics places a high premium on completeness of explanation. Typical general-
equilibrium accounts of economic phenomena are preferred to partial equilibrium
accounts on the ground that important interactions are necessarily omitted in the latter. A
similar preference for microfoundational explanations over macroeconomic explanations
of aggregate phenomena is grounded in similar reasoning. Probabilistic accounts of
causation frequently presume that greater detail is superior to less. Simpson’s paradox,
for example, assumes that failure to account for distinctions within populations results in
false conclusions. Strategies of causal refinement — e.g., distinguishing between direct
and indirect causes — are similar. However, there are countervailing practices in
economics. Representative-agent models aim to capture economic motivation but not to
reduce the level of aggregation. Structural vector-autoregression models and dynamic
stochastic general-equilibrium models with small numbers of variables are often
practically preferred to ones with large numbers. The distinction between endogenous
variables determined within a causal system and exogenous variables determined
independently of the causal system suggests a partitioning of the world into distinct
subsystems. This paper will explore this tension. I advocate a structural account of
causation grounded in Herbert Simon’s “Causal Order and Identifiability” (1953), which
defines cause with reference to complete systems. But any workable causal epistemology
must deal with incomplete systems and piecemeal evidence. The main formal focus of
the paper is to better understand the constraints that a structural account of causation
places on the freedom to model complex or lower-order systems as simpler or higher-
order systems. The main epistemological focus is to understand how and to what degree
piecemeal evidence can be incorporated into a structural account.
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Causal Structure and Levels of Explanation
I. Models, Piecemeal Knowledge, and Aggregation
The history of science is a history of piecemeal additions to human understanding of the
natural and social world. Yet the image of science portrayed not only in philosophy but
by scientists themselves is frequently totalizing. The aim of science is to discover
universal laws; but have we ever actually discovered such laws, and, if we had, would we
know that we had? The world is ruled by an exceptionless determinism; but when have
we ever seen a rule that held invariably? Even those who acknowledge that we have
always fallen short of the whole truth frequently hold a “perfect-model model” (Teller
2001) as the standard to which we ought to aspire.

Economics is by no means exempt. The Laplacian fantasy of a clockwork world
in which a statement of initial conditions and the laws of nature would allow us to write
the history of the future has an analogue in the Walrasian fantasy of an agent-by-agent
description of the economy:

Thus the system of the economic universe reveals itself, at last, in all its grandeur

and complexity: a system at once vast and simple, which, for sheer beauty,
resembles the astronomic universe. [Walras 1954, p. 374]

Neither Laplace’s nor Walras’s vision is practical; yet they each guide the imagination in
a manner that shapes scientific practice.

The alternative to the perfect-model model is a vision of scientific practice that
embraces the piecemeal acquisition of knowledge (Wimsatt 2007). Although knowledge
was actually acquired piece by piece, economics — and perhaps other sciences — has
reflected relatively little on what an effective methodology of the piecemeal acquisition
of knowledge would look like. This is not to say that there have not been efforts to

formulate such a methodology. Milton Friedman (1949) attempted to revive Alfred



“Causal Structure and Explanation” 29 September 2010
K.D. Hoover

Marshall’s (1885) methodology (see Hoover 2006 and 2009a), rejecting the notion that
the contrast between Marshall and Walras was one between partial and general
equilibrium rather than one between an approach in which empirical knowledge is built
up brick by brick and one that demands an architectonic theoretical account as a starting
point.

The grip of the Walrasian approach is clear in the macroeconomic modeling
tradition that started with Jan Tinbergen (1939) and was largely guided by Lawrence
Klein (1950; Klein and Goldberger 1955; Duesenberry et al. 1965). Looking back, Klein
describes his modeling approach:

In contrast with the parsimonious view of natural simplicity, I believe that
economic life is enormously complicated and that the successful model will try to
build in as much of the complicated interrelationships as possible. That is why I
want to work with large econometric models and a great deal of computer power.
Instead of the rule of parsimony, I prefer the following rule: the largest possible

system that can be managed and that can explain the main economic magnitudes as

well as the parsimonious system is the better system to develop and use. [Klein
1992]

It was a view that Friedman had criticized when Klein’s program was still in the cradle.
He suggested a Marshallian alternative: “the focus should be on the analysis of parts of
the economy in the hope that we can find bits of order here and there and gradually
combine these bits into a systematic picture of the whole” (Friedman 1951, p. 114). And
he summed this view up in his famous methodological essay:
A hypothesis is important if it ‘explains” much by little, that is, if it abstracts the
common and crucial elements from the mass of complex and detailed
circumstances surrounding the phenomena to be explained and permits valid
predictions on the basis of them alone. [Friedman 1953, p. 14]
As Friedman himself acknowledged, Klein’s argument carried the day: “We curtsy to

Marshall, but we walk with Walras” (Friedman 1949, p. 489).

Modern macroeconomics has rejected Klein’s modeling program, though not for
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any lack of sympathy with the ideal of the perfect model. Rather they have rejected it,
first, in the belief that it compromises on fundamental and essential economic principles —
namely that economics is only economics if it is fundamentally grounded in individual
agents described as making choices under constraints. This is the essentially false charge
that the Klein’s macroeconomics — in line with most of the macroeconomics of the 1930s
through 1960s lacked microfoundations (see Hoover, 2010b). Second, they rejected it
not for adopting the Walrasian ideal but for failing to be thoroughly enough committed to
that ideal that the “deep parameters” — that is, the parameters that reflect the preferences
and constraints of the individual agents — could be identified empirically (Lucas 1976;
Hoover 1988, ch. 8, section 3). In practice, the second concern dominated the first. After
1970, macroeconomics worked mainly with smaller models, but the ideal remained to
model the individual agent, so that increasingly complex models beckoned from an ever
receding horizon of technical possibility.

All parties to these debates agree that economics is a science of models. Through
most of this period — although it is changing recently — economists were deeply
uncomfortable with talk of causes, even though most of their principal interests, such
prediction and control, are thoroughly causal (Hoover 2004). Economics, then, should be
seen not only as a science of models but as a science of causes.

The history of postwar macroeconomics just sketched suggests that to understand
economics as a science of models we must understand the relationships among models of
different levels of complexity. Roughly, speaking we must understand the relationship
between aggregated and disaggregated models of the same phenomena. Aggregation in

economics has been traditionally viewed through a reductionist lens — a question related
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to the microfoundations of macroeconomics. This is indeed an important issue (Hoover

2001a; 2001b, ch. 5; 2009b; forthcoming a). Yet it does not exhaust the questions that

arise with respect to hierarchies of models in economics. Consider three common issues:

The relationship of larger to smaller models of the same phenomena on the same
level of aggregation. For example, empirical macroeconomics frequently
employs vector autoregressions (VAR) that attempt to model the interrelated
dynamics of sets of variables. One investigator interested in the Federal
Reserve’s monetary policy might employ a three-variable VAR with, say, GDP,
inflation, and the Federal funds rate. Another investigator addressing the same
issue might instead employ a five-variable VAR using consumption, investment,
and government expenditure (accounting components of GDP) and a long-term
government bond rate, as well as the Federal funds rate. How do empirical results
gathered with one such model relate to those of the other?

The relationship of models at different levels of temporal aggregation. The VAR
analysts using GDP in a three-variable model typically use a quarterly time unit,
since that is the way that the GDP data are published. But if industrial
production, which theoretically should, and practically does, track GDP is used
instead, then monthly data is available.

The relationship of dynamic to static models. Empirical economic data stand in
complex intertemporal relationships. The most widely accepted theoretical
economic models refer principally to static (or steady-state) equilibriua. How
then are static theoretical models to be related to dynamic empirical models?

Traditionally, the problem of aggregation was posed in two ways: First, when
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does the aggregate behave just like its constituent units? Or, second, under what
circumstances are the behaviors of the aggregate and its constituents consistent? (See
Janssen for a discussion of approaches to aggregation.) I want to take a different
approach here, one that shifts the focus from what might be seen as accounting

relationships to one that considers different degrees of causal articulation.

I1. Perspectival Realism and Causation

Philosopher most often — though not exclusively — analyze cause as a relationship among
token events or facts in a background of scientific laws (see, for example, Lewis 1973).
Such an approach is not suitable to a piecemeal approach to scientific knowledge as it is
effectively question-begging — relying on universal laws, which stand at the end of
inquiry. Some philosophers have turned this common view on its head: causal
relatonships precedes even conjectured universal laws, which may be regarded as
abstractions from causal knowledge. For example, the ideal gas laws can be seen as a
functional relationship that is common to various apparatuses in some of which
temperature causes pressure and others of which pressure causes volume or temperature,
and so forth (Hoover 2001b, pp. 81-87).

Causal relationships on this view share the generality of scientific laws and are
more naturally expressed as type relationships among variables rather than token
relationships among events or facts. The variables that characterize such relationships
are necessarily always less than fully descriptive of the concrete situations in which the
causal relationships are embedded. Even selecting a set of variables to describe a

concrete relationship must, therefore, impose a perspective and constrains what causal
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relationships are possible within a model built on those variables.

The familiar notion of cause is, as reflected in the title of Wooward’s (2003)
book, that causes make things happen. Cause in our everyday experience is typically
about control. But we must be careful. First, there is no need to anthropomorphize: by
control we generally do not require human manipulation or intervention, although that
may well be the origin of our causal concepts. We have no trouble with the idea that a
lightening strike caused a fire, and have not for millennia believed that a sentient agent
must like behind each particular natural phenomenon. Second, it is not particular token
interventions that are essential. The issue is less making any particular thing happen than
in identifying how things could happen. In contrast to Woodward (2003, p. 39), the issue
is not particular interventions, but rather what is the scope and topology of interventions.
Again, in contrast to some philosophers (e.g., Lewis 1973) causal knowledge supports
counterfactual analysis, not the other way round (Woodward 2003, p. 16, ch. 6; Hoover
forthcoming b).

Our approach is broadly realist in the sense that it is predicated on the belief that
models are used to assert true general claims about causal relationships, the truth-status of
which is determined by the world external to our mental constructions — that is, external
to our models. Such a realism is compatible with models viewing the world from
different perspectives (Giere 2006). The truth that we seek is what the world is actually
like when seen this way.

Such a perspectival causal realism has implications for aggregation: causal
claims may appear to differ in different models and may appear to conflict if we fail to

notice the particular perspective of the model. Which causal relationships we see depend
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on which model we use and its conceptual/causal articulation; which model is best
depends on our purposes and pragmatic interests.

Take the case of Simpson’s paradox, which can be described as the situation in
which conditional probabilities (often related to causal relations) are opposite for
subpopulations than for the whole population. Let academic salaries be higher for
economists than for sociologists, and let salaries within each group be higher for women
than for men. But let there be twice as many men than women in economics and twice as
many women than men in sociology. By construction, the average salary of women is
higher than that for men in each group; yet, for the right values of the different salaries,
women are paid less on average, taking both groups together.

An aggregate model leads to the conclusion that that being female causes a lower
salary." We might feel an uneasiness with such a model, since I have already filled in the
details that show more precisely why the result comes about. The temptation is to say
that the aggregate model shows that being female apparently causes lower salaries; but
the more refined description of a disaggregated model shows that really being female
causes higher salaries. A true paradox, however, is not a contradiction, but a seeming
contradiction. Another way to look at it is to say that the aggregate model is really true at
that level of aggregation and is useful for policy and that equally true more disaggregated
model gives an explanation of the mechanism behind the true aggregate model.

It is not wrong to take an aggregate perspective and to say that being female
causes a lower salary. We may not have access to the refined description. Even if we do,

we may as matter of policy think (a) that the choice of field is not susceptible to useful

" Woodward (2003), p. 113, argues that essential characteristics, such as species, sex, or race, are not
properly causes. For a counterargument, see Hoover (2010a).
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policy intervention, and (b) that our goal is to equalize income by sex and not to enforce
equality of rates of pay. That we may not believe the factual claim of (a) nor subscribe to
the normative end of (b) is immaterial. The point is that that they mark out a perspective
in which the aggregate model suits both our purposes and the facts: it tells the truth as

seen from a particular perspective.

ITII. Modeling Causal Structure

If models give us a perspective on the causal structure of the world, the next question is
surely what property is it of models that captures causal relationships. An influential
approach to this question is given by Herbert Simon in various papers, starting with
“Causal Order and Identifiability” in 1953. Simon considers causal relationships in
complete systems of equations. I have previously presented a formal generalization of
Simon’s approach (Hoover 2001b, ch. 3), and I will not present the formalism, but
instead exposit the key points with examples. It is worth noting that, while I am prepared
to defend my reading of Simon against critics who interpret him differently, it is the
approach itself rather than its pedigree that concerns us here (cf. Cartwright 2007, chs.
13, 14; Fennell 2005, ch. 4; Hoover 2010a, forthcoming b.)

Simon started with a self-contained structure — that is, a system of equations in
which variables have a unique solution conditional on the values of parameters and the
particular functional forms.> While his illustrations are all linear in variables, there is
nothing in the general approach that prevents the systems of equations from being
nonlinear. Furthermore, variables may be continuous or discrete. He then focused on

self-contained subsets of the self-contained structure.

* A linear structure in Simon’s (1953) terminology.
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To illustrate, consider the following system of equations ():

Structure S;

(D A=a,,
() B=agA4,
3) C=a,A+a,B,

where, for the moment, we regard the «; as fixed coefficients.

System §; is a complete system, and a complete system is itself self-contained.
System § is not, however, a minimal self-contained subset, as it contains subsystems,
which are themselves self-contained. Equation (1) is minimal a self-contained subset: it
determines the value of 4 without reference to any other equation and it contains no
subsystems that are similarly self-contained. Equations (2) or (3) considered separately
are not self-contained subsets as they do not contain enough information to determine B
or C. In contrast, equations (1) and (2) together form a self-contained subset, since they
determine the values of 4 and B without reference to equation (3) — though the subset is
not minimal, since it contains the subsystem of equation (1), which is self-contained.

Simon’s conception is closely related to his later work on hierarchies of systems
(Simon 1996, chs. 1 and 8). Causes are the outputs of lower-level systems and the inputs
to higher-level systems. The relationship is closely connected to the solution algorithms
for systems of equations. In §;, 4 is determined entirely by (1) and can be regarded as an
output. If we know 4, we do not need to know (1) to determine B; a specific value for 4
forms an input that, in effect, turns the non-self-contained subsystem (2) into a self-
contained subset in which the value of 4 is given parametrically. Its output is, of course,

B. Knowing B alone, however, does not turn (3) into a self-contained subset.
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Substituting its value into (3) leaves the variable 4 in place (despite the fact that B cannot
have a well-defined value unless 4 also has a well-defined value) and we have to
substitute 4 directly from (1). Thus, 4 directly causes B, and 4 and B directly cause C;
so, A is both a direct and an indirect cause of C. This, of course, is the causal structure of
Figure 1, where the arrows indicate the relationship of direct causation.

Figure 1
Structure §;

While the solution to a system of equations is specific, the causal relationship for
Simon is generic. Specific systems that differ only in taking different admissible values
of parameters. The set of such specific systems is a model.” Causal structure is a
property of models that is instantiated in specific systems. Implicit in Simon’s account,
though never explicitly articulated, is that parameters are variation-free — that is, the
values of different parameters are mutually unconstrained. To put it
anthropomorphically, the value of any parameter can be changed without necessarily
changing the values of any other parameter. I will argue presently that this is, in fact, a
useful formal requirement but one that in no way constrains what causal relations a model
can represent.

The distinction between parameters and variables is a key one. Causal

relationships for Simon exist only among variables. Parameters are not causes, but

3 A linear model in Simon’s (1953) terminology.

10
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indicators of the scope of possible interventions from outside the system. There is a
temptation — partly driven by a desire to make Simon’s formal language conform to other
usages — to regard “parameter” as a synonym for “exogenous variable” and, therefore, in
diagrams to draw causal arrows from parameters to other parameters and variables (e.g.,
Cartwright 2007, ch. 14). But this is not Simon’s usage. Simon models an exogenous
variable, for example, as X = ay, where X is a variable and ax a parameter. Interventions
are mediated only through parameters, so that an exogenous change in X is modeled as a
change in ay. It does little harm to treat exogenous variables and their governing
parameters as synonyms, so long as the parameters are uniquely assigned to the
exogenous variable; but, as we shall see, this is not the general case; so, it is better to nip
that practice in the bud.

The analysis of the causal structure of a complete structure proceeds by
articulating the hierarchy of self-contained subsets in the manner illustrated with structure
Sz It can be proved that the causal order of a complete structure is unique (Iwasaki and
Simon 156). The fly in the ointment is that uniqueness depends on privileging the
manner in which the equations are written. But the same functional relations can be

written in a variety of ways. For example, the self-contained subset (1) and (2) could be

replaced by Sz

Structure S
4 A=+ BB,
() B=p,

which has the same numerical solution as (1) and (2) provided that:

(6) Bi=a,/(1-ay,),

11
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(7 B =—11-ay,),
and
(8) By =a,p,.

(Nothing depends on the fact that the f; are defined in terms of the ¢;;. We could as
easily have started with equations (4) and (5) and derived an analogous set of restrictions
defining the ¢; in terms of the f; to guarantee identical solutions.) The two sets of
equations have the same solution, but under Simon’s analysis B causes 4 in (4) and (5),
whereas A4 causes B in (1) and (2). Indeed, since every linear combination of equations
(1) and (2) is functionally equivalent, we can easily write down systems that would be
interpreted as having no causal connections or as displaying mutual causation. The
different functionally equivalent sets of equations are all observationally equivalent.

As long as we think of the causal relationship embedded in a model as merely
related to the solution for the variables, observational equivalence will undermine the
utility of the models. Simon offers two different strategies for dealing with the problem
of observational equivalence. Simon’s first strategy is simply to forbid linear
combinations of equations on the grounds that each equation represents a distinct
mechanism and that a linear combination creates a mongrel without causal significance
(Simon and Rescher 1966, Simon and Iwasaki 1988).* Such a strategy amounts to
assigning equations to variables. The relationship is then easily indicated quasi-
graphically by introducing a new “causal equality” operator (<=).” The subset of
equations (1) and (2) could then be written as:

(1) Ad<a

A

* The strategy is first in our exposition, but not first in its appearance in Simon’s work.
> Cartwright uses “c”” to serve the same purpose.

12
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2" B<=ayd,
with the convention that the arrowhead indicates the direction of causation.

In his 1953 paper, however, Simon offers a second strategy for resolving
observational equivalence. While he considers his formal account of causal order
syntactic, he suggests that we adopt a higher-order semantic relation of direct control
over parameters (Simon 1953, pp. 24-27). He invites us (and nature) to experiment on a
system by directly controlling the value of its parameters (the coefficients now being
thought of as parameters that can take different values). The privileged parameterization
is the one in which such experiments can be conducted independently. Thus, if one
represents a causal system by equations (1) and (2) and can control 4 directly by

choosing ¢, and thereby control B indirectly without altering the functional form of

equation (2), then the parameter set {4, ap4} and its associated functional form is
privileged.

If for example, (1) and (2) represented the true causal order, but we instead
modeled the causal relationships with (4) and (5), our control of 4 and B would not show
the same sort of functional invariance. In fact, the only way to achieve the same values
for A and B would be for the coefficient values of {f4, fs, fap} to shift according to the
restrictions (6)-(8). In effect, the decision that {ay, g4} is the parameter set — and that
any other set of coefficients (e.g., {f4, [s, Pap}) are simply functions of those parameters
— determines the causal direction among the variables: it puts the arrowheads on the
shafts. No other functionally equivalent system shares this invariance property. In fact,

the uniqueness of the causal order determined on this basis can be proved (Iwasaki and

Simon, 156).

13
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I have previously supported and elaborated Simon’s second strategy. Yet, why
should we prefer the idea of privileging certain sets of parameters as capturing the
possibilities for interventions in the world over the idea of privileging certain equations
as capturing the causal mechanisms in the world? It is instructive to notice that Simon’s
original analysis of causal order was offered in support of the Cowles Commission’s
(1953) econometric program. While he talked about the structure of formal models, the
point was ultimately to aid the progress of an epistemological project. Cartwright (2007,
p. 81 passim) has stigmatized causal analysis that supposes modularity (of which more in
due course) as making assumptions because they are “epistemically convenient.” In a
sense, I would turn her evaluation on its head: Simon’s second strategy makes weaker
assumptions — that is, assumptions that make smaller epistemological demands on the
econometric modeler or scientist in the construction of his models. Weaker assumptions
have considerable epistemological utility, which is an excellent methodological reason to
prefer them.

Simon appears insensitive to the difference between his two strategies — mostly
likely because they coincide in this examples. Simon implicitly supposes that parameters
are uniquely associated with particular variables or mechanisms — for example, if a
parameter shows up in one equation, it does not show up in any other equation. Such an
supposition implies that it is easy to analyze a system of equations into distinct parts.
Many economic models, however, violate Simon’s supposition and write equations in
which the same parameter might appear in multiple equations. For example, we might

have

14
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Structure §;
) Ad=a,,
(10) B=a,+ayA.

Hoover (2001b, ch. 3) suggests that such systems of equations require
modification of Simon’s formalism for causal structure. We must require Simon’s
hierarchy condition: a direct cause must belong to a lower-order self-contained subset
with no self-contained subset intervening between the direct cause and the self-contained
subset that determines the effect. But in addition we require that the set of parameters
associated with the subset that determines the cause be a proper subset of the set of
parameters that determine the effect. This condition is met in equations (9) and (10) in
which 4 causes B. It would not be met in the following system of equations:

Structure S
(11) A=«a,,
(12) B=oa,A.

An advantage of this extension of Simon’s approach is that it inherits the property
of his second strategy that causal order is uniquely defined by the functional relations
among variables (that is, no matter what equivalent form the equations take) so long as
we can say which objects are parameters and which are coefficients the values of which
are functions of the true parameters. It does not matter, for example, whether we describe
the relationship among the variables by structure $; or by structure S; as long as we know
that the a’s represent the actual scope of interventions and the f’s are, at best, functions
of'the a’s.

A consequence of our parameter-nesting condition is that every effect must have a

15
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some parameter distinct from its causes — that is, there is some means of intervening
directly on every effect independently of its causes. This is one version of a “modularity”
assumption. Cartwright (2007, chs. 7 and 8) regards modularity as an ungrounded
assumption that is made to render systems of equations into an “epistemically
convenient” form. In contrast, I would like to distinguish different types of modularity
and to suggest that understanding them and their relationship is a key to understanding

the relationship of models at different levels of description or aggregation.

IV. Modularity and Identity

The general idea of modularity is that a system is modular if it can broken down into
parts that retain their integrity and functionality. There are at least three types of
modularity at issue in the formal account of causal order under discussion.

First, is the assumption that parameters are variation-free. Recall that a parameter
is called variation-free when it can be set to any value in its admissible range
independently of the setting of any other parameter. Equivalently, parameters are
variation-free when there are no constraints operating among them.® The requirement
that parameters be variation-free is a useful convention that helps to keep our reasoning
clear about the causal structure of models, but it is essentially trivial in the sense that any
formal model that incorporated non-variation-free parameters could be turned into one in
which the constraints among parameters is shifted into the functional form as a constraint
among variables.

An example should make this clear. Consider the system

® Fennel (2005, p. 50) claims that parameters can both be variation-free and mutually constraining. This
shows that he simply fails to grasp the meaning of “variation-free,” and results, in the particular example
offered, from failing to draw a clear distinction between parameters and variables.

16
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Structure S5
(13) X=a«a
(14) Y=pX+y,
subject to the parameter constraint 5 < «. The parameters are not variation-free, since the
value of «a restricts the range of admissible values of . However, this system can be
reformulated into a related system with the same solutions in which the parameters are
variation-free:

Structure Sy

(15) X=a«a
(16) YZ{,BXWLJ/,%faZ,B'
oX +y,if a<pf

A model that was linear in variables with a nonlinear parameter constraint has been
transformed into a model that is nonlinear in variables with unconstrained parameters.
Applying our extension of Simon’s causal formalism, X causes Y.

A second form of modularity has been the subject of vigorous debate (see
Cartwright 2007, chs. 7 and 8; Hausman and Woodward 1999, 2004). To understand this
form of modularity consider Woodward’s (2003, ch. 2) manipulability account of
causation. The essence of the approach is conveyed in his definition of a direct cause:

(DC) A necessary and sufficient condition for X to be a direct cause of ¥ with
respect to some variable set V is that there be a possible intervention on X that will

change Y (or the probability distribution of Y) when all other variables in V besides
X and Y are held fixed at some value by interventions. [Woodward 2003, p. 55]

Despite Woodward’s (2003, p. 39) regarding causation as fundamentally a type-level

relationship among variables, (DC) defines direct cause in terms of a token-level action —

17
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an intervention. Suppose we wish to assess whether B is a direct cause of C in system §;
(i.e., Figure 1 or equations (1)-(3)). Following Pearl (2000), Woodward suggests that we
do this by setting the other variables (here only 4) to token values and, in effect,
“breaking” (or “wiping out”) the causal connections between variables wherever needed
to achieve this. Thus Figure 1 would be replaced by Figure 2 in which the lower-case
letter indicates the token value of the correlative upper-case variable and in which the

causal arrow into B are removed. B causes C, then, if a change in B, say, from b to b’

Figure 2

C

/N

A b

changes (or would change, the intervention being conceived of counterfactually) in a
change in C, say, from c to ¢’.

Pearl (2000, pp. 70) represents interventions by the operators “set(X)” or “do(X)”.
Woodward (2003, pp. 47-48) notes “X and set X are not really different variables, but
rather the same variable embedded in different causal structures. . .” The transition from
Figure 1 to Figure 2 — from one causal structure to another — presupposes that the wiping
out of causal arrows without affecting other parts of the graph makes sense. Woodward
refers to the property that warrants such an intervention as modularity:

a system of equations will be modular if it is possible to disrupt or replace (the
relationships represented by) any one of the equations in the system by means of an

intervention on (the magnitude corresponding to) the dependent variable in that
equation, without disrupting any of the other equations. [Woodward 2003, p. 48]

And while he recognizes that representations of causal relationships may not always

18



“Causal Structure and Explanation” 29 September 2010
K.D. Hoover

display modularity, he assumes
that when causal relationships are correctly and fully represented by systems of

equations, each equation will correspond to a distinct causal mechanism and that
the equation system will be modular. [Woodward 2003, p. 49]

The modularity of the system consists in the independence of the causal linkage
between B and C from modifications that set other variables to particular values or break
causal linkages. While Woodward promises us that a full representation of causal system
is necessarily modular, he neither demonstrates the basis for that claim nor gives us any
guidance about representing causality in less than full representations — another tug of the
perfect-model model. As the following example shows economic models are frequently
not modular in Woodward’s sense, but nonetheless are causally ordered.

Consider a commonplace model of supply and demand supplemented with an tax

on supply:
Structure Ss
(17) R=p,
(18) N=v,
(19) O=al-17P+[R,
(20) P=y0+ ON,
1) T=1PO + ¢

For concreteness, we follow Simon and Rescher (1966) in thinking of the commodity as
wheat (where Q is its quantity and P is its price), R as rainfall, and N as population.
Lower-case Greek letters are parameters. We can think of equation (19) as a supply

equation, where the parameter 7 represents an ad valorem tax on the sales of farmers that
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generates revenues of 7.
Applying our version of Simon’s formal analysis of causal order (his second
strategy), we get the causal structure shown in Figure 3.
Figure 3
N\

{Q<«—>P}

Some points to notice: First, a failure of modularity shows up in the fact that we
cannot set O to some arbitrary value (Q = g), as required in Woodward’s definition of
direct cause, without destroying the tax relationship (21), since the tax rate (7) appears in
(21) only because it also appears in (19). A strength of our extension of Simon’s second
strategy is that it, nevertheless, determines the causal order without any appeal to
modularity of Woodward’s type.

Second, when a subsystem involving more than one variable cannot be separated
into distinct self-contained subsystems, then Simon regards them as standing in
relationship of mutual causation — indicated both by the brackets and by the double-
headed arrow. Such mutual causation underlines the difference between Simon’s first
and second strategies. On the first strategy — that identifies distinct mechanisms — we
might wish to read equations (19) and (20) as distinct mechanisms and therefore to draw

the causal graph somewhat differently as in Figure 4.
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(22)
(23)
(24)

(25)

(22)
(23)
(24)

(25)

Figure 4

To clarify what is at stake between the two strategies, consider, a pair of models:

Structure S,

A=a,
B=pA+ D,
C= B,
D = ¢C.

Structure Ss

A=a,
B=pA+ 6C,
C= 6B+ AD,
D = ¢C.

On Simon’s first strategy, we might see these as causally distinct models with the

graphical representations shown in Figures 4 and 5. But Simon’s second strategy
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Figure 4
Model 1 (first strategy)

A

|

D —B

%

Figure 5
Model 2 (first strategy)

o—

N

is unable to draw any distinction between the two models and would represent the causal
structure as in Figure 6. The variables B, C, and D are so thoroughly entangled in a web
of mutual causality that we cannot articulate their internal structure on the basis of the

topology of interventions.
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Figure 6
Models 1 and 2 (second strategy)

The inability to distinguish these cases is not a weakness of Simon’s second
strategy. Rather it points to an important characteristic of models operating on different
levels of causal explanation. It is elementary that causes must be distinct from their
effects. It is not enough that they be conceptually distinct; they must be causally distinct.
My favorite example is provided by bond prices and yields. The price of a bond is the
amount one pays, say, in pounds sterling for a bond. The yield of the bond is the
equivalent annual percentage return for holding the bond. Price and yield are
conceptually distinct. They are not measured in the same units, and they play different
roles in evaluating various economic and financial situations. They are, however,
connected by an identity. The simplest example is the consol, a perpetual bond, invented
by the British government in the 18" century. A 3-percent consol pays its holder £3 each

year. Its yield (R) and its price (P) are connected by an identity:

Y|

(26) R

or equally
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(26") P

x| w

One sometimes reads in the newspapers that bond yields rose causing bond prices to fall.
But this is wrong. The identity means that a rise in bond yields is just the very same
thing as a fall in bond prices.

Causally, there is no way to draw a wedge between the two variables — no way to
intervene independently on them — even though they are conceptually distinct. And this,
I suggest, is the standard for causal identity. In terms of Simon’s second strategy we can
say that two variables are causally identical if, and only if, they share the same parameter
set — that is, they are determined in a subsystem that cannot be separated into smaller
subsystems. Causal identity defined in this way implies that the parameter-nesting
condition that we added to Simon’s formalism is a logical requirement, given that causes
must not be identical with their effects.

Causal identity has some bearing on aggregation. Whenever, variables are
causally identical, it is possible without loss of information to let one serve as index for
the others and to simplify the model. For example, in the supply-and-demand model (Ss),
Q and P are causally identical and we could omit one equation with no loss of causal
information. Ifthe tax function (21) were replaced by a flat tax without the parameter ¢
(i.e.,, by (21") T = 7PQ), then that equation could be omitted as well. The tax function
would still give useful information to the accountant, but it would provide no causally
salient information for the policymaker.

We can relate this notion of causal identity to the issue of modularity. Cartwright

offers the operation of “a well-made toaster” as a counterexample to Woodward’s
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modularity requirement:
The expansion of the sensor due to the heat produces a contact between the trip
plate and the sensor. This completes the circuit, allowing the solenoid to attract the

catch, which releases the lever. The lever moves forward and pushes the toast rack
open.

I would say that the bolting of the lever causes the movement of the rack. It
also causes a break in the circuit. Where then is the special cause that affects only
the movement of the rack? Indeed, where is there space for it? The rack is bolted
to the lever. The rack must move exactly as the lever dictates. So long as the
toaster stays intact and operates as it is supposed to, the movement of the rack must
be fixed by the movement of the lever to which it is bolted.

Perhaps, though, we should take the movement of the lever to the rack as an
additional cause of the movement of the rack? In my opinion we should not. To
do so is to mix up causes that produce effects within the properly operating toaster
with the facts responsible for the toaster operating in the way it does; that is, to
confuse the causal laws at work with the reason those are the causal laws at work.
[Cartwright 2007, pp. 85-86.]

Cartwright’s toaster, I believe, does provide an illustration of the failure of
modularity in the sense that if we take the position of the bolt not as a parameter subject
to various settings, but as a constant, then there is no intervention on the lever in a model
of a properly operating toaster that does also alter the rack. Another way to look it,
however, is that Cartwright has described to us what it means to be a module. The lever
and the rack are causally identical in a model formulated from a perspective in which the
bolt is neither a variable nor a parameter subject to intervention. But in drawing a
distinction between “causes that produce effects within the properly operating toaster”
and “facts responsible for the toaster operating in the way it does,” she also hints that a
model of a well-made toaster is not the only possible model of the same toaster. We
might need a model of the causal facts responsible for the toaster operating properly — for
example, if we were in the business of designing toasters. Then the fact that a bolt can

determine that a lever and rack remain tightly joined is a salient causal fact. Similarly,
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the model of the properly operating toaster, leaves out of the model many facts that are
true in the world. If the toaster is knocked off the counter and the bolt is loosened (or the
lever is bent), the invariant connection between lever and rack would fail. The model
that would be of use to the repairman is one that admits that failure as a causal possibility.

The models here are not entirely separate; rather they form a family with different
levels of aggregation. A model in which the bolt is considered only in its tightened state
is a special case or an aggregated version of a model in which the position of the bolt is a
variable. We might — to take an economic case — elaborate the supply-and-demand
model by treating the tax rate ras a variable causally determined by connections to other
variables governed by other parameters. In this case, the model that takes zto be a
variation-free parameter would be a special case or an aggregated version of the more
general model. Formally, it is easy to construct models in related families at different
levels of aggregation; but, substantively, facts about the world constrain whether such
families are natural or useful or concocted and misleading. The variation-freeness of
parameters is, as we have seen, trivially constructed within formal models. Yet, it is
anything but trivial that a model in which the parameters have been specified as
variation-free adequately captures the functional relationships among variables. It is only
when it does that it can adequately represent the causal facts from any given perspective
or at any given level of aggregation.

Cartwright’s example of the toaster illustrates that the second type of modularity
is not an essential feature of causation. But more importantly, it illustrates what it takes
to construct a module. The reason that the lever-rack ensemble cannot be intervened

upon separately is that they are, at the level of a properly operating toaster, in fact a
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module. A module is constructed by establishing conditions in which the conceptually
distinct parts are causally identical. When the only admissible interventions necessarily
alter each of a set of variables, the variables act as a unit — a module.

There is, then, a third type of modularity. When a unit can be constructed out of
parts, the parts can be considered modules at one level and the constructed unit a module
at higher level. Modularity of this type is essential to anyone who builds new
mechanisms and devices out of parts with established properties. Notice, however, that
the parts of a modular unit need not display modularity of the second type — that is, that
the properties that they underwrite at the higher level need not be robust to interventions
on the distinct parts. For example, airplane fuselages are sometimes monocoque
constructions in which the stressed skin of the airplane and underlying structural
members are mutually supporting without a connected framework under the skin. The
skin and the framework only function properly in a relationship of mutual support; they
do not display the second type of modularity any more than do Cartwright’s lever and
rack. Yet they are built out of distinct pieces or modules of the third type. Having a
model of the capacities of different pieces —a model less aggregated that a model of the
properly functioning toaster or airplane is essential to engineers and designers.

At the level of the properly operating market, the same situation arises in the
supply-and-demand model (Ss). Equations (19) and (20) are a module and, from one
causal level, can be treated as unit. The way that the equations are written and Simon’s
first strategy to causal order suggests (see Figure 4) that the module is, in fact,
constructed out of parts. The second strategy does not, however, provide the basis for

analyzing the internal structure of a module. For that we have to appeal to knowledge
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other than the scope of interventions — e.g., knowledge of the parts and their capacities —
or we have to analyze a model on a deeper level in which aggregated relationships are
articulated into additional variables and parameters which permit us to define the
distinction between the parts of the module by means of the scope of the interventions
allowed by the parameters. In the economic framework, the implicit equilibrium
assumption embedded in supply always equaling demand is an aggregation that elides an
underlying mechanism (Arrow 1959). A model that specified that mechanism may well
permit us to analyze the module using Simon’s second strategy into the very parts
(among others) that are implicit in his first strategy.

It is frequently a goal of science to break modules down into component parts and
to provide a model of how the parts interact to form a module. While it is a good
heuristic to try to push to a deeper level of analysis, there can be no guarantee that one
will suceed.

The account of modularity and causal identity provided here relates to another,
and frequently neglected (at least among economists) aspect of Simon’s causal analysis
that he sees as the groundwork for what he calls the “sciences of the artificial” (Simon
1996, especially chs. 1 and 8). Simon focuses on the fact that complex systems are
frequently decomposable into units. Some units may have an internal structure, which is
irrelevant to their interactions with the other units. They could, in fact, be replaced with
units with different internal structures, so long as the alternative units each process inputs
to outputs in the same manner. For example, the subsystems determining B, C, and D in
structures §; and S; (see Figures 4 and 5) have different internal structures; yet as shown

in Figure 6, their external causal relations (or external environment) are identical. The
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subsystems thus form “black boxes,” interchangeable with other black boxes that
function externally in the same way.

For example, if the lever-rack assembly in Cartwright’s toaster were made of
metal, we may well be able to replace it with one made of some type of plastic or we may
be able to replace the assembly that is bolted together out of two parts with a single part
by, say, welding rather than bolting the parts together. We need not imagine that the
inner and outer environments are completely separated in fact. There may be boundary
conditions that, if breached, connect the two environments. We may, for example,
generally ignore the distinction between the metal and the plastic assemblies in the
toaster; but, in an environment with particularly high heat, the plastic assembly may fail.

For this reason, Simon frequently emphasizes near decomposability — the
situation in which some parts are connected by strong or highly stable linkages and others
by much weaker or more contingent linkages (Simon 1996, ch. 8; Simon and Iwasaki
1988; Iwasaki and Simon 1994). The highly connected parts will act modularly with
respect to the parts (or other modules) to which they are more weakly linked. Simon’s
most common examples of near decomposability are drawn from dynamic models.

When variables adjust to each other very quickly, they may be treated as in constant static
equilibrium with respect to each other, ignoring their own dynamics. When variables that
adjust very slowly to others, they can be treated as exogenous over shorter time horizons.
Dynamic analysis in the short run can then be simplified to focusing on the relationships
of variables or ensembles of variables that adjust neither very quickly nor very slowly to
each other.

This brings us back to perspectival realism. Whether we find a model adequate
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that ignores the very fast or very slow adjustments among variables depends on
pragmatic considerations — our purposes or interests. A macroeconomist makes no
important error when he takes the yields on financial assets as standing in a state of
constant equilibrium (i.e., models financial markets with a “no-arbitrage condition”). A
trader whose function is to conduct arbitrage would find the macroeconomist’s model
useless. Equally, a macroeconomist makes no important error in assuming that
population in the short run is exogenous relative to economic variables. A demographer
whose preferred time horizon is decades would miss an essential causal mechanism by

making the same assumption.
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