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Abstract

We re-examine studies of cross-country growth regressions by Levine and
Renelt (American Economic Review, Vol. 82, 1992, pp. 942–963) and Sala-i-
Martin (American Economic Review, Vol. 87, 1997a, pp. 178–183; Econo-
mics Department, Columbia, University, 1997b). In a realistic Monte Carlo
experiment, their variants of Edward Leamer’s extreme-bounds analysis are
compared with a cross-sectional version of the general-to-specific search
methodology associated with the LSE approach to econometrics. Levine
and Renelt’s method has low size and low power, while Sala-i-Martin’s
method has high size and high power. The general-to-specific methodology
is shown to have a near nominal size and high power. Sala-i-Martin’s method
and the general-to-specific method are then applied to the actual data from
Sala-i-Martin’s original study.

I. Growth regressions and the problem of robustness

Economists typically prefer theoretically informed empirical investigations.
Sometimes, however, we face questions for which there is no generally
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agreed upon constrained optimization model to which the empirical
researcher can turn. Two, often related, responses to this situation are
common. First, economists sometimes take a broader view of the ‘theory’
that they aim to test, to include less formal considerations (e.g. factors drawn
from political science or sociology). Secondly, they sometimes take what,
from the point of view traditional econometrics, is an atheoretical approach.
Both responses are well exemplified in a series of empirical investigations
that are referred to as ‘cross-country growth regressions’. In this literature,
cross-sectional regression or panel-data techniques are used to identify which
of a large number of factors are statistically and economically significant
determinants of growth rates.1

One problem with the literature is that different studies reach different
conclusions depending on what combination of regressors the investigator
chooses to put into his regression. In an attempt to put some order into the
literature, Levine and Renelt (1992) assembled a cross-sectional data set
with a large number of potential regressors and subjected it to a variant of
Leamer’s (1983, 1985) ‘extreme-bounds analysis’.2 Subsequently, Sala-
i-Martin (1997a, b) criticized Levine and Renelt’s method and suggested
his own, less restrictive variant on extreme-bounds analysis.

Our investigation has two goals. First, we compare the effectiveness in a
realistic Monte Carlo simulation of each of these extreme-bounds method-
ologies to that of a mechanized version of the general-to-specific specifi-
cation search methodology associated with David Hendry and others and
often referred to as the London School of Economics (LSE) methodology.3

We then apply the LSE approach and Sala-i-Martin’s (1997a, b) variant of
the extreme-bounds methodology to the specification of cross-country
growth regressions.

II. Alternative search methodologies

We begin by describing the competing search methodologies.

1The literature is huge. Important contributions are due to Kormendi and Meguire (1985), Grier
and Tullock (1989), Barro (1991), DeLong and Summers (1991) and Sachs and Warner (1995, 1996).
A recent book by Barro (1997) gives a good overview to the literature.

2Temple (2000) re-examines Levine and Renelt’s (1992) data set from a perspective largely
sympathetic to extreme-bounds analysis, including Sala-i-Martin’s variant.

3The adjective ‘LSE’ is, to some extent, a misnomer. It is derived from the fact that there is a
tradition of time-series econometrics that began in the 1960s at the London School of Economics (see
Mizon, 1995, for a brief history). The practitioners of LSE econometrics are now widely dispersed
among academic institutions throughout Britain and the world. The LSE approach is described
sympathetically in Gilbert (1986), Hendry (1987, 1995, especially chapters 9–15), Pagan (1987),
Phillips (1988), and Ericsson, Campos and Tran (1990). For more sceptical accounts, see Hansen
(1996), Faust and Whiteman (1995, 1997) to which Hendry (1997) replies.
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Two variants on extreme bounds

The central idea in Leamer’s (1983, 1985) analysis is that a coefficient of
interest is robust only to the degree that it displays a small variation to the
presence or absence of other regressors. Leamer and Leonard (1983) define
the extreme-bounds for the coefficient of a particular variable within a search
universe as ranging between the lowest estimate of its value minus two times
its standard error to the highest estimate of its value plus two times its standard
error, where the extreme values are drawn from the set of every possible
subset of regressors that include the variable of interest. A variable is said to
be robust if its extreme bounds lie strictly to one side or the other of zero. And
the narrower the extreme bounds, the more confidence one is supposed to
have in the coefficient estimate.

Employing a modified version of Leamer’s (1983, 1985) approach that
reduces the number of regressions needed to compute the extreme bounds,
Levine and Renelt (1992) find that few variables can be regarded as robust
determinants of economic growth (i.e. almost all coefficient estimates are
‘fragile’).

Sala-i-Martin (1997a, b) argues that Levine and Renelt (1992) employ
too strict a standard of robustness. He suggests that if most of the distri-
bution of the coefficient estimates (±2 SE) lie to one side of zero, then the
rest might be regarded as irrelevant outliers, and the variable should be
regarded to be robust. By analogy with the ordinary practice with signifi-
cance tests, he suggests that we regard a variable to be robust if 95%
of the distribution of the coefficient estimates lies to one or the other
side of zero. Predictably, on this more permissive standard, Sala-i-Martin
(1997a, b) finds considerably more variables to be robust determinants of
economic growth.

Leamer’s (1983, 1985) notion of robustness strikes us as an odd one. There
is no reason to believe that a variable that is robust in Leamer’s (1983, 1985)
sense is thereby guaranteed to be a true determinant of economic growth or
that a true determinant of economic growth is guaranteed to be a robust one, or
even that there is a high correspondence of any kind between truth and
robustness (see Hoover, 1995, Hoover and Perez (2000).4 Leamer (in Hendry
et al., 1990, p. 188) rejects the notion of a true specification: ‘I … don’t think
there is a true data-generating process …,’. But then it is puzzling what one is
supposed to do with one’s robust coefficient estimates.

A practical question to ask of any search methodology, such as Levine and
Renelt’s (1992) or Sala-i-Martin’s (1997a, b) versions of extreme-bounds

4Closely related criticisms of extreme-bounds analysis are made by Breusch (1990) and Hendry
and Mizon (1990).
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analysis, is: when there is a truth to be found, does the methodology
discover it? Advocates of extreme-bounds analysis sometimes argue that the
concern for truth is misplaced, because to reject a variable as fragile is not to
deny that it might be a true determinant of the dependent variable. Rather it
is to deny that we have good evidence for its truth; i.e. the claim is about us
and our certainty, not about the world. But this looks at the wrong side of
the issue. The extreme-bounds procedure also identifies some variables as
robust. If this says that our evidence is good, that we are more certain, we
are still entitled to ask: Of what is our evidence good evidence? What are we
more certain about? Surely, the evidence is evidence about whether or not
some variables are true determinants of the dependent variable, and the
degree of certainty is a measure of how much stock we should place in the
truth of the specification.

The required notion of truth is not a metaphysical puzzle. A variable is a
true determinant of economic growth if variations in that variable (induced by
policy or accident) can be relied upon to yield predictable variations in the rate
of economic growth. To discover such determinants we seek to convince
ourselves that particular variables predictably explain past growth rates; and
then we hope that the relationship is an enduring one that can be used to
explain future growth rates. Whether we are warranted in claiming that
particular determinants are true or not is a nice question for the philosophy of
science perhaps. Nevertheless, when we use estimated relationships instru-
mentally, we must be assuming that they are true in this sense and not just
correlations or data summaries.

Although, for the reasons just stated, we disagree with their arguments,
we recognize that serious econometricians maintain that robustness, while
not a measure of truth, is nevertheless a property which conveys useful
information about the uncertainty surrounding model specification. Temple
(2000) provides a good example of this argument. He maintains that
extreme-bounds analysis appropriately modified to account for parameter
heterogeneity, model uncertainty, and outliers ‘is a useful way of commu-
nicating any uncertainty surrounding the choice of the model, and hence
uncertainty surrounding parameter estimates and standard errors’ (Temple
2000, p. 201).

McAleer (1994, p. 347, 349) and Granger and Uhlig (1990) attempt to
sharpen the information available in model comparisons by eliminating from
the comparison set models that are clearly poor (as judged, for example, by
low R2). Brock and Durlauf (2001, p. 235, especially Footnote 3) accept the
role of extreme bounds in indicating specification uncertainty, but argue that it
is an inefficient method of specification search because of collinearity. They
appeal (p. 262) to model averaging techniques as a means of more effectively
assessing and reporting the robustness of regression results. Bayesian model
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averaging is developed inter alia by Raftery, Madigan and Hoeting (1997) and
applied to issues related to growth by Doppelhofer, Miller and Sala-i-Martin
(2000) and by Fernandez, Ley and Steel (2001).

While we maintain a firm, negative view about the methodological utility
of extreme-bounds analysis (see especially, Hoover and Perez, 2000) as a
means of specification search, we recognize that others find it valuable as a
means of communicating model uncertainty. In the end, we believe that it is
unnecessary to resolve the matter here. Instead, we address the narrower
question of the effectiveness of extreme-bounds methods as a means of
identifying the true data-generating process.

General-to-specific

In the linear context typical of the cross-country growth literature, the general-
to-specific methodology begins with the idea that the truth can be
characterized by a sufficiently rich regression: the general regression. In
particular, if every possible variable is included in the regression, then the
regression must contain all the information about the true determinants. It
may, however, not provide it in a perspicacious form. The information content
might be sharpened by a more parsimonious regression – the specific
regression. This specific regression is acceptable if it has the properties (a) it is
statistically well specified (for example, it has white noise errors); (b) that it is
a valid restriction of the general regression, and (c) that it encompasses every
other parsimonious regression that is a valid restriction of the general
regression.5

One regression encompasses another if it contains all the information of the
other regression.6 LSE econometricians have developed various ways of
implementing encompassing tests, but there is an easy way to understand the
general notion (and a simple way to implement a test). Consider two
competing models of the same dependent variable. If we form a third model
which uses the union (excluding redundant variables) of both sets of
regressors, then each original regression can be seen as nested in the joint
regression. If one of the original regressions can be shown to be a valid
restriction of the joint regression, then it encompasses the other regression. Of
course, it may turn out that neither regression encompasses the other. There
may be some third regression, more parsimonious than the joint regression

5The general-to-specific methodology is explained in detail by inter alia Phillips (1988) and
Hendry (1995). Bleaney and Nishiyama (2002) apply the notion of encompassing to growth
regressions.

6For general discussions of encompassing, see, for example, Mizon (1984), Mizon and Richard
(1986), Hendry and Richard (1987), Hendry (1988, 1995, chapter 14).
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that encompasses them both or it may be that the joint regression is as
parsimonious as the joint set of regressors permits.

The LSE approach has been used almost exclusively in time-series
contexts. There is, however, nothing in its conceptual structure that prevents
its extension to cross-sectional data.

Previously, we have evaluated the efficacy of the general-to-specific
approach (Hoover and Perez 1999).7 Our goal was to determine whether
common objections to the LSE approach had practical merit. One objection is
that any path of simplifications from the general to the specific is just one of
many and there is no guarantee that a particular simplification will be the true
specification. We acknowledge the problem, but we showed that simple
methods of generating a feasible number of competing specifications and then
choosing among them on the basis of encompassing tests was an effective
strategy.8

A second objection is that the general-to-specific searches involve multiple
testing with unknown distributional properties. In particular, many conjecture
that the size of the whole search procedure is vastly larger than the
conventional sizes of the underlying specification tests. This is the objection
that is usually associated with a general condemnation of ‘data mining’. The
objection is often framed as in Lovell (1983) in the context of simpler search
procedures (for example, stepwise regression, max R2 maximin t-statistics)
that lack key features of the LSE general-to-specific approach – particularly
attention to encompassing the general model and to rigorous specification
testing (see Hoover and Perez, 1999, 2000, for further discussion). In our
study, we found in a realistic Monte Carlo setting that the size of the general-
to-specific search was very close to the nominal size of the underlying
specification tests. This suggests that a distinction must be drawn between
undisciplined or wrongly disciplined data mining, which is invidious, and well
disciplined data mining, which is useful in many contexts.

The LSE approach is not a mechanical one. Instead it relies on a
combination of system and econometrician’s art. Our evaluation was
necessarily based on a mechanical approximation to what LSE econometri-
cians actually do. Some aspects of the approach that might make it more
successful were ignored. Nevertheless, the overall assessment was positive.

7Our article was the subject of a symposium in the Econometrics Journal (1999: no. 2), which
included a comment by Hendry and Krolzig (1999). Subsequently, Krolzig and Hendry (2001)
refined our algorithms and provided further evidence of their efficacy in the time series context. Their
refinements are embodied in a program, PcGets (Hendry and Krolzig 2001). This study was largely
completed before PcGets became available.

8We regarded multiple search paths as an innovation relative to the LSE approach. In response to
our suggestion, Krolzig and Hendry (2001) adopt our approach and Hendry and Krolzig (1999) point
out a precedent (Mizon 1977).
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III. The effectiveness of three search methodologies
in a realistic Monte Carlo study

In this section, we adapt the LSE approach (described in greater detail below)
to a cross-sectional context. Our goal is to evaluate the success of two versions
of extreme-bounds analysis in a realistic Monte Carlo setting in which we
know in fact what the true determinants are. The setting is ‘realistic’ in the
sense that it uses actual variables, rather than ones fabricated from random-
number generators, as the true determinants and the other variables in the
search universe. The dependent variable, which is calibrated to act like the rate
of economic growth, is generated through a bootstrap procedure. The realistic
setting ensures that the problem faced in the Monte Carlo is similar to the one
that an actual investigator of the determinants of economic growth faces.

We begin, starting in the next subsection, with a description of the data to
be used in the simulations and, after that, of the simulations themselves. We
then proceed to a description of the detailed implementation of the two
variants of extreme-bounds analysis and of the general-to-specific algorithm.
Finally, we present the results of the simulation study.

Data and simulated data

In order to understand the effectiveness of search methodologies, it is essential
that the variables of the search universe used in the simulations display the
same sort of intercorrelations as actual data. To achieve this we start with the
data set used by Levine and Renelt (1992). Their original data set contains 40
variables for 119 countries. Reporting is not complete so that the 119 · 40
matrix of variables has many missing values. A number of variables and
countries are, therefore, deleted from the data set with the aim of producing
the largest complete matrix possible. The result is a 107 country by 36
variable data set. The original Levine-and-Renelt data set and the reduced,
complete data set are described in detail and are downloadable from our
websites (http://www.econ.ucdavis.edu/faculty/kdhoover/research.html and
http://www.csus.edu/indiv/p/perezs/Data/data.htm). The average rate of growth
of GDP per capita for 1960–89 is the variable of interest in the simulations.
Each simulation replaces actual GDP growth with a simulated variable
constructed from a linear combination of a subset of the other variables in the
data set.

Alternative specifications and the criteria of success

In earlier work on time-series models, Hoover and Perez (1999) used the
particular set of models suggested by Lovell (1983) as the ‘true’ specifications.
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The particular models were suggested by competing theoretical approaches in
macroeconomics and reflected several possible dynamic specifications. That
approach is less natural in this context, because the literature is motivated
largely by a priori ignorance of the empirical factors that might explain
growth.

One issue that arose in the time-series context does carry over. Any
search procedure may fail to select a variable for one of three reasons:
(1) it, in fact, is not a true determinant of the dependent variable or (2) the
search method is unsuccessful or (3) the signal-to-noise ratio is low (i.e.
there is insufficient variance in the independent variable relative to the
dependent variable). The first type of failure is desirable, the second clearly
not. The third, however, is unavoidable. As there is no reason to believe
that a true specification would necessarily have only those variables that
are easy to detect, there is no reason in evaluating different search
procedures to favour specifications in which all the variables have a high
signal-to-noise ratio. The failure to identify a variable with a low signal-to-
noise ratio should not be regarded as a failure of the method. Of course,
this is a matter of degree. The strategy we adopt is to simulate models with
randomly chosen specifications and to evaluate their success relative to
norms that depend on the signal-to-noise ratios for each independent
variable.

Each simulation is based on a true specification that relates the growth
rate to zero, three, seven, or 14 independent variables. Let the growth rate
be y (a 107 · 1 vector). Let the complete set of variables be in the data set
X (an 107 · 34 matrix). Let Xj be a randomly selected j-element subset of
the variables of X, where j ¼ 0, 3, 7, 14. There is a degree of unavoidable
arbitrariness in the choice of values for j. We justify our choices as
follows: zero independent variables is a baseline for checking the size of
the search. Levine and Renelt (1992) and Sala-i-Martin (1997a, b) consider
regressions with no fewer than three and no more than seven independent
variables. We, therefore, study simulations in which there are three and
seven variables as well. When the simulated true specification has either
three or seven variables, one of Levine and Renelt’s or Sala-i-Martin’s test
specifications can, in fact, coincide precisely with the truth. Levine and
Renelt’s and Sala-i-Martin’s search algorithms do not prevent more than
seven variables from being identified as robust. In fact, Sala-i-Martin
(1997a) identifies 21 variables as robust (and maintains an additional three
as free variables in all regressions, for a total of 24 selected determinants
of country growth rates). True specifications with 14 variables (chosen
because it is twice seven), therefore, allow for the implied cases in which
the test specifications are, to different degrees, underspecified relative to the
truth.
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For each j, 30 different specifications are chosen. And for each
specification, 100 simulations are run.9 We proceed as follows:

1. Select a j-element subset. This defines the specification.
2. Run the regression, y ¼ XjB + u and retain the estimates of the

coefficient matrix, B̂, and the estimated residuals, û.
3. For each simulation search i ¼ 1, 2, …, 100 construct a simulated

dependent variable y�i ¼ XjB̂ þ û�i . As the Monte Carlo is based on
actual data, which may be heteroscedastic, we construct the elements of
the vector û�i by sampling from û using a wild bootstrap.10

4. The three search procedures are run for the ith simulation. The
successes and failures at identifying the true variables are recorded for
each search procedure.

5. The procedure begins again with a new simulation at step 2 until 100
simulations are recorded. The type I and type II errors are recorded.11

The proportion of type I error, the empirical size, is calculated as the ratio
of the incorrect variables included (significantly at the 5% critical level for
general-to-specific searches) to the total possible incorrect variables. The
empirical size for a given specification measures what proportion of variables
with true coefficients equal to zero are chosen in the specification. We report
the size ratio, defined as the ratio of the empirical size to the nominal size of
the exclusion tests used in the search algorithm (0.05 in all the results we
report). A size ratio of unity implies that the size of the search procedure is
exactly the nominal size.

The empirical power for a given true variable is the fraction of the
replications in which the variable is picked out by the search procedure
(significantly at the 5% critical level for the general-to-specific procedure); i.e.
it is the complement of the proportion of type II error. In order to control for
variations in the signal-to-noise ratio, we compute the true (simulated) power
from the proportion of type II error for each specification over the 100
bootstrap simulations without search (i.e. with knowledge of the correct
regressors). The true (simulated) power for a given true variable is the
empirical power that one would estimate if there were no uncertainty about the

9Simulations use Matlab 5.2 running on PC with 300 Mz. We would have preferred to examine
both more specifications and more simulations of each specification. Unfortunately, each run of
100 simulations for one specification using all three search procedures takes about one and a half
days of computing time.

10Our implementation follows Brownstone and Kazimi (1998, section 2). The wild bootstrap is
due to Wu (1986). Horowitz (1997) shows that the wild bootstrap is superior to the more familiar
paired bootstrap when data are heteroscedastic.

11We recognize that the object of our investigations is not a classical test statistic of the kind to
which the terms ‘size’ and ‘power’ normally attach. However, we believe that the statistics that we
report based on measures of the type I and type II error are so clearly analogous to size and power
that it is natural to use these terms in this context.
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true specification, but sampling uncertainty remained. If the signal-to-noise
ratio is low, the true (simulated) power will also be low; and, if it is high, the
true (simulated) power will be high. The power ratio is defined as (empirical
power)/true(simulated)power. A power ratio of unity indicates that a search
algorithm does as well at picking out the true variables as one would do, given
the signal-to-noise ratio, with full knowledge of the true specification.

There is, of course, always a balancing between type I and type II error. If
one put no weight on type I error, a search algorithm can achieve 100% power
by selecting every variable in the data set. The power ratio in that case could
easily be much greater than unity, as the true (simulated) power is sometimes
very low. The cost, of course, is that the size of such an algorithm is large.
Similarly, if one puts no weight on type II error, a search algorithm can
achieve a low size by selecting nothing. The cost is that the power of such an
algorithm is zero.

Extreme-bounds analysis

We assess particular variants of Leamer’s extreme-bounds analysis related to
those used by Levine and Renelt (1992) and Sala-i-Martin (1997a, b). A
practical problem in implementing extreme-bounds analysis is the large
number of regressors. For example, Levine and Renelt’s (1992) data set has 39
variables excluding the dependent variable. There are 239 ¼ 5.498 · 1011

linear combinations of the regressors. At one second per regression, it would
take 17,433 years to try them all.

Levine and Renelt simplify the problem by adopting Leamer’s notion
that some variables should be included in every regression on the
assumption that they are known to be robust a priori. The variables real
per capita GDP in 1960, primary school enrollment rate in 1960, and the
average investment share of GDP 1960–1989 are included in every
regression. In describing Leamer’s approach, McAleer, Pagan and Volcker
(1985) divide the universe of regressors into free variables, which theory
dictates should be in the regression; focus variables, a subset of free
variables that are of immediate interest; and doubtful variables, which
competing theories suggest might be important. Levine and Renelt treat the
three variables included in every regression as free variables, and they let
every other variable in turn play the part of a focus variable, while linear
combinations of the remaining variables play the part of doubtful variables.
They restrict the number of subsets of the doubtful variables further by
considering only subsets with three or fewer variables. The largest
regression for Levine and Renelt, then, has seven independent variables,
exclusive of the constant term: one focus variable, three free variables, and
(at most) three doubtful variables.
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Sala-i-Martin’s (1997a, b) approach modifies Levine and Renelt’s search
procedure in two ways. First, he considers only regressions of exactly seven
independent variables: one focus variable, three free variables, and (exactly)
three doubtful variables. He tries every linear combination of three doubtful
variables in the search universe. Secondly, he looks at a different criterion for
robustness. The estimate of a coefficient on a focus variable is robust in Sala-
i-Martin’s sense if 95% or more of the estimates (±2 SEs) lie to one side of zero.

The results reported here follow Sala-i-Martin’s evaluation procedure
modified to eliminate the free variables. To compute the extreme bounds each
variable in the search universe is allowed to be the focus variable in turn and
regressions that include it and every subset of exactly three other variables
(plus a constant) is computed. From these estimates, variables are identified as
robust on the Levine and Renelt and the Sala-i-Martin criteria.

Our procedure differs from both Levine and Renelt, because we do not
maintain that we have a priori knowledge of any of the true regressors. This
seems reasonable in the simulations as the true specifications are chosen
randomly. We did, however, examine another set of simulations (not reported
in detail here) in which the three free variables are part of every true
specification and are maintained in every search. There is no qualitative
difference between these simulations and the ones reported here.

General-to-specific

The precise details of the general-to-specific algorithm are given in Appendix
A. Here we provide an outline of the procedure. The search procedure
proposed is a modification for the cross-sectional context of the general-
to-specific search procedure evaluated in Hoover and Perez (1999) in a time
series context.

There are five principal elements in the search procedure.
First, the data are divided randomly into two overlapping samples, each

with 90% of the data. A search is conducted over each subsample and only
those variables that are selected in both subsamples are part of the final
specification.12

Secondly, each search begins with a general specification in which all the
variables in the search universe are included as regressors. The general
specification is simplified sequentially by removing variables with low

12This procedure was an innovation in Hoover and Perez (1999) relative to the LSE methodology,
but has been adopted in, for example, Hendry and Krolzig (1999, 2001), and Krolzig and Hendry
(2001). In a study that has only just become available to us, Hendry and Krolzig (2003) conclude that
full-sample search dominates the subsample procedure when both are conducted at the same size.
The procedure does not improve the size/power tradeoff although it is successful at controlling the
size for selection problems.
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t-statistics one at a time. Initially, five simplification paths are tried in which
each of the variables with the five lowest t-statistics is the first variable to be
removed along a simplification path. After that – with the exceptions noted
below – variables with the lowest t-statistic are removed one at a time until all
the remaining variables are significant on a 5% test. After removal of each
variable, a battery of specification tests is performed. The test battery includes
a Breusch and Pagan (1980) test for heteroscedasticity, a subsample stability
test using an equality of variance test (a cross-sectional analogue to a Chow
test), and an F-test of the restrictions from the general model. The number of
tests failed is recorded for each step.

Thirdly, after all variables in a specification are significant, the test
battery is run. If all tests are passed, this is the terminal specification. If any
are failed, the last specification passing all tests becomes the current
specification.

Fourthly, a new round of variable elimination proceeds with the removal of
the variable with the lowest t-statistic in the chosen specification. At each step
the test battery is run. If a specification fails one of the tests, the last removed
variable is replaced, the variable with the next lowest t-statistic is removed and
the test battery is run again. This process continues until a variable can be
removed without failing any of the tests or all variables are tried.

Fifthly, once all search paths have ended in a terminal specification, the
final specification is chosen through a sequence of encompassing tests. We
form the non-redundant joint model from each of the different terminal
specifications; take all candidate specifications and perform the F-test for
encompassing the other specifications. If only one specification passes, it is
the final specification. If more than one specification passes, the specification
with the minimum Schwarz criterion is the final specification. If no model
passes, reopen the search on the non-redundant joint model (including testing
against the general specification) using only a single search path and take the
resulting model as the terminal specification. The final specification is, as
noted above, the intersection of the regressors of the overall terminal
specifications from the two 90% subsamples.

Results of the simulations

The results of the simulations are presented in Table 1. Recall that for both the
size and the power ratio a value of unity is a useful reference point. A size
ratio of unity indicates that the algorithm incorrectly accepts a variable at the
same rate that independent tests of a 5% nominal size would do. A power ratio
of unity indicates that the algorithm chooses the true variables at the same
frequency that one would if one knew the true specification and used a t-test
with a 5% critical value to decide whether a variable should be retained.
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The extreme-bounds analysis using Leamer’s original criterion shows an
extremely low size irrespective of the number of variables in the true
specification. This algorithm almost never selects a variable that does not
belong. The trade off, however, is that its power ratio is low in all cases, and it
too approaches zero as the number of variables in the true specification
becomes equal to and then larger than the number of variables in the
specifications used to estimate the extreme bounds. While the extreme-bounds
algorithm almost never commits type I error, it almost always commits type II
error. This confirms generically the criticism made by Sala-i-Martin of Levine
and Renelt’s use of extreme-bounds analysis. It is overly strict. It says,
‘nothing is robust’; and, in so saying, it is unable to find the truth at all.

In contrast, the modified extreme-bounds analysis does almost exactly the
reverse. Its size ratio is only 10% greater than the 5% nominal test size when
there are no true variables. It rises to an astonishing 440% greater than the
nominal test size for specifications with 14 true variables. Compared with the
standard extreme-bounds analysis it picks out too many variables that do not

TABLE 1

The efficacy of three search algorithms

Models with:

Extreme-bounds
analysis

Modified extreme-
bounds analysis General-to-specific

Size
ratio*

Power
ratio�

Size
ratio*

Power
ratio�

Size
ratio*

Power
ratio�

0 true variables 0.060 1.10 0.75
3 true variables 0.003 0.43 5.17 0.77 0.77 0.95
7 true variables 0.030 0.13 5.89 1.10 0.81 0.93
14 true variables 0.020 0.04 5.45 0.67 1.02 0.82

Notes:
The basic data are a pool of 34 variables described in Memorandum 1 downloadable from our

websites (http://www.econ.ucdavis.edu/faculty/kdhoover/research.html and http://www.csus.edu/
indiv/p/perezs/Data/data.htm). For each number of true variables, 30 models are specified by
choosing the indicated number of regressors at random from the pool. Coefficients are calibrated
from a regression of the chosen regressors on the actual average growth rate. One hundred dependent
variables are created from the same regressors and coefficients and error terms constructed with a
wild bootstrap procedure from the errors of the calibrating regression. Specification searches are then
conducted by each of the three methods and the number of type I and type II errors are recorded.
Statistics reported here average over each of the 100 simulations for each of the 30 models. Details of
the simulations and the search procedures are found in section 2 and Appendix A.
*Size is calculated as the proportion of incorrect variables included (significantly for general-

to-specific) to the total possible incorrect variables. The size ratio is average ratio of the size to the
nominal size (0.05) used as the critical value in all the hypothesis tests in the search procedures.
A size ratio of 1.00 indicates that on average the size is equal to the nominal size (0.05).
�Power is calculated as the proportion of times a true variables is included (significantly for the

general-to-specific procedure). The true (simulated) power is based on the number of type II errors
made in 100 simulations of the true model without any search. The power ratio is the average ratio of
power to true (simulated) power. A power ratio of 1.00 indicates that on average the power is equal to
the true (simulated) power. The power ratio is not relevant when there are no true variables.
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belong to the true specification. Of course, this increases the power ratio.
When there are seven variables in the true specification – the same number as
in the regressions used to estimate the extreme bounds, the power ratio is 1.10.
The algorithm is more likely to pick the true variables than even knowing
the true specification would suggest. At three or 14 variables in the true
specification, the power ratio falls substantially. Although Sala-i-Martin shows
some success in correcting the overly strict character of Levine and Renelt’s
method, the cure comes at the price of going way too far in the other direction.
His method is overly lax. It says, ‘many variables are robust’ and, in so
saying, it is unable to discriminate the true from the false.

The general-to-specific algorithm finds the middle ground. Its size ratio is
below unity except when there are 14 variables in the true specification, and
then it is only slightly greater at 1.02. Its power ratio is always a little less than
unity, but except for the case of three true variables, it is larger than that for the
modified extreme-bounds analysis. In comparison with the other two methods,
the general-to-specific algorithm not only usually finds the truth nearly as well
as one would if God had whispered the true specification in one’s ear, but it is
also able to discriminate between true and false variables extremely well.

The fact that the empirical size is well behaved (i.e. near unity) for the
general-to-specific search algorithm is perhaps the most striking thing about
these findings. Many critics of data mining in general, and the general-
to-specific methodology in particular, express a priori skepticism of the
practice of multiple, sequential testing using conventional critical values.
Invariably, they predict that such test procedures are bound to understate the
true size of the joint test implicit in the search procedure. The evidence here
runs in the other direction altogether. Far from the simulations showing that
the empirical size is very high, it is, in fact, lower than the nominal test size.
These results are broadly consistent with the earlier findings of Hoover and
Perez (1999), who found empirical sizes for the general-to-specific algorithm
that were greater – but only a little greater – than the nominal sizes of the tests.
One way to understand this result is that the disciplines imposed by the various
encompassing tests in the search procedure tend to force the final specification
to be close to the true specification. And, if one had known the true
specification a priori, the nominal test sizes would have been correct. Tests
based on a specification that is near the true specification have similar size.

IV. Re-examining the data

Although the investigation of the last section used data from a cross-country
growth study in order to better mimic real data, it was a true simulation
revealing characteristics of the search methodologies and not of the world.
In this section, we apply those methodologies – in light of the simulation
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study – to the central question of the cross-country growth literature: what
explains the differences in growth rates among nations?

Theory has made some headway with this question. The neoclassical
growth model (Solow 1956) tells us that in steady state, growth rates depend
on the rates of growth of the labour force and of technological progress, yet
it gives us little notion of what might determine technological progress,
especially when technology must be conceived to include all aspects of
social organization that might relate to the effectiveness of production. Out
of steady-state, increasing the rate of utilization of factors of production or
increasing capital investment can temporarily increase growth rates. Also,
the higher the gap between the current level of output and the steady-state
level, the higher the growth rate. Models of growth with increasing returns
suggest that we cast a wider net, looking at industrial organization, research
and development, investment in education and other factors (Romer, 1986,
Lucas, 1988 and many others, ably surveyed in Jones, 1998, Barro and Sala-
i-Martin, 1995). These models generally assume that some factor is
important and try to work out the mechanisms of its influence, but they
give little guidance as to which of the many possible factors really influence
growth. Substantial room remains for theory to be informed by empirical
investigations.

Sala-i-Martin (1997a, b) makes a persuasive case that Levine and Renelt’s
choice of data introduces endogeneity problems that are inadequately
addressed. He assembles a data set less susceptible to those problems. In
the next subsection we describe this data set and a multiple imputation
procedure (novel in the cross-country growth literature) for dealing with the
fact that many variables do not exist for many countries. Next, we apply both
the modified extreme-bounds analysis and the general-to-specific search
methodology to this data set and evaluate the results in light of the earlier
simulation study, asking what conclusions might be drawn about the
determinants of growth differentials.

Adapting to real-world data

The previous section cast doubt on the efficacy of extreme-bounds methods in
identifying the true determinants of a dependent variable in a case in which
those true determinants were in fact known. The general-to-specific
methodology did substantially better. What implications would these simu-
lation results have for reasonable conclusions about the actual determinants of
cross-country growth differentials? To investigate this question, we apply the
general-to-specific methodology to Sala-i-Martin’s (1997a, b) data set. We
compare the results in each case to those using Sala-i-Martin’s modified
extreme-bounds analysis.
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Sala-i-Martin (1997a, b) correctly observes that Levine and Renelt’s data
set includes variables that may be endogenous as potential regressors.
Endogenous regressors call into question a causal reading, not only of any
final regressions based on the data set, but also the validity of the ordinary-
least-squares regressions in all the intermediate stages of both search
procedures. To account for this in a new data set, Sala-i-Martin, to a greater
degree than Levine and Renelt, collected variables that were likely to be
predetermined, so that a causal reading of their relationship to the rate of
growth of per capita GDP is more plausible.

In the Monte Carlo simulations of the last section, we worked with ‘nice’
data. In particular, we eliminated a carefully chosen set of countries and
variables in order to produce a data matrix without missing values. Sala-
i-Martin’s data set is missing 14.5% of its values. As Levine and Renelt
before him, Sala-i-Martin deals with the missing values through what is
sometimes called casewise (or listwise) deletion: for any regression, if a
country does not report the values for each of the variables required for that
regression, that country is omitted from the regression. Although it is a
common practice, casewise deletion presents particular problems in this
context.

First, casewise deletion wastes enormous amounts of relevant information.
Every country that is missing values for any of the variables in a particular
regression is omitted from that regression – and along with it all the data for
that country whether they are missing or not. Although only 14.5% of the data
is truly missing, Sala-i-Martin’s practice of omitting countries with missing
data treats a minimum of 25% of the cells as empty and, in the worst case,
could treat more than 67% as empty.

Secondly, the millions of regressions of the extreme-bounds analysis are
run over a shifting set of countries. The legitimacy of comparing coefficient
estimates across regressions conducted on different samples is highly
questionable. Yet, extreme-bounds analysis requires a legitimate basis for
such comparisons. Similarly, the general-to-specific methodology cannot be
implemented properly – even as a mechanical matter – if samples must be
constantly shifted, since it vitiates encompassing tests against a general
specification.

Our solution to the problem of missing data is to use multiple imputation
(see Little and Rubin, 1987; Rubin, 1987, 1996; Schaefer, 1997; and King,
Joseph and Scheve, 2001, and the references therein). The details of the
procedure are described in Appendix B. The principal advantage of multiple
imputation is that it allows us both to effectively fill in the missing data with a
maximum likelihood estimate and to retain sampling uncertainty, which helps
to support accurate specification tests needed for both extreme-bounds and the
general-to-specific methodologies.
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Hoover and Perez (1999) show that there is a nonlinear trade-off between
power and size as function of the degree of overlap in general-to-specific
searches (the greater the overlap, the higher the power, but the higher the size).
As the imputation of missing data should have little effect on the size but may
lower the power relative to a complete data set (although not relative to
casewise deletion), we run the general-to-specific searches as described in
Appendix B with 90-percent overlap and with 100% overlap (i.e. on a single
sample).13

Results using the Sala-i-Martin data set

The data set is described in detail and are downloadable from our web-
sites (http://www.econ.ucdavis.edu/faculty/kdhoover/research.html and http://
www.csus.edu/indiv/p/perezs/Data/data.htm). It contains 64 variables for 138
countries with 14.5% of the values missing. We omit 12 countries for which
the data is so sparse that imputation does not seem sensible. The dependent
variable is the growth rate of real per capita GDP for 1960–92. We omit the
average age of the population (mnemonic AGE), because the data do not
appear to correspond to its definition: of 138 countries, 107 are reported as
0, 1 as 40, and the remainder as a variety of values greater than 76. And we
also omit a variable (mnemonic X0) that duplicates the dependent variable.14

We are then left with a search universe of 126 countries by 61 variables plus
the dependent variable. The search is conducted with the nominal size of all
specification tests and t-tests set at 5%.

There is no reason to expect that an extreme-bounds analysis of the data set
completed using multiple imputation would give the same results as one using
casewise deletion. So, for the sake of comparison, Table 2 presents the results
of a modified extreme-bounds analysis in a format that corresponds to Table 1
of Sala-i-Martin (1997b), which is an expanded version of Table 1 of Sala-
i-Martin (1997a). Running the eye quickly down the columns headed ‘Lower
Extreme’ and ‘Upper Extreme’ confirms Levine and Renelt’s (1992) original
conclusion that robustness is rare: only three of the variables are robust on their
definition, and these do not include the three free variables. Nevertheless, on the
modified robustness criterion – based, following Sala-i-Martin’s (1997a)
preference, on a non-normal, weighted cumulative distribution function – 13 of

13In the simulation studies in section 2, the overlapping samples are chosen randomly. Here the
countries omitted from each subsample are chosen by selecting a seed country randomly and then
selecting every tenth country. Since the countries are grouped by region, this procedure guarantees
that all regions are well represented.

14We were able to reproduce Sala-i-Martin’s (1997a, b) modified extreme-bounds estimates using
the data. AGE was not robust in the modified extreme-bounds analysis and recomputing the modified
extreme-bounds analysis omitting it has little effect on the robustness of the remaining variables.
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the focus variables and one of the free variables are robust.15 Only two of these
variables are not also found in Sala-i-Martin’s (1997a, b) analysis using
casewise deletion. But 11 variables found in that earlier analysis are not found
in Table 2. This makes sense. Adding countries to an extreme bounds analysis
presents many further opportunities for failures of robustness.

Table 3 presents regression equations based on two general-to-specific
searches – one using 90% overlapping subsamples and one using the full
sample. Except for two additional variables equipment investment and
revolutions and coups, the full-sample search selects the same variables as
the overlapping-subsample search. We prefer the full-sample search as the one
likely to have the better power. Table 3 also presents a regression that uses the
robust focus variables and the free variables (whether robust or not) from the
modified extreme bounds search. Comparison of the full-sample and modified
extreme-bounds specifications in Table 3 is consistent with the results of the
Monte Carlo study summarized in Table 1. Four variables are chosen by both
search methodologies; seven additional regressors are chosen only by
modified extreme-bounds analysis; one is chosen only by the general-
to-specific algorithm. These are patterns of the type one would expect given
the size and power ratios for the two search methodologies reported in Table 1.

The full-sample regression in Table 3 is more parsimonious than the
regression based on the modified extreme-bounds analysis. The P-values
for F-tests of each regression against a joint regression that includes all 12
variables generated from either search are both 0.05. At a 5% critical value, both
are valid restrictions of the joint model and neither encompasses the other.
The extreme-bounds regression has a lower standard error, but at the cost of
almost double the number of regressors. The Schwarz criterion, which
evaluates the trade-off between improvements in fit and loss of parsimony, is
lower for the general-to-specific regression.We conclude – although it is close –
that the general-to-specific regression is the preferred specification statistically.

To investigate the relationship between the two competing specifications
somewhat further, we form the nonredundant union of the full sample general-
to-specific model and the extreme-bounds model and then run the general-
to-specific search algorithm again. It chooses a model identical to the full
sample model in Table 3. This shows that the extreme-bounds specification
was not eliminated because of any peculiarity in the search algorithm, but
because it failed the criteria of the specification tests in the algorithm.

How important are the various determinants of economic growth
economically? In Table 4, we evaluate the contribution of each of the
variables selected in the general-to-specific search by multiplying the

15The construction of the cumulative distribution function and the weighting scheme are described
in Sala-i-Martin (1997a, b).
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coefficient for an independent variable by the change in the independent
variable between the country in the 25th percentile and the country in the 75th
percentile for each variable. This gives some idea of how much each
characteristic serves to differentiate higher from lower growth countries.

Our method of displaying the economic magnitudes of the different
determinants must be treated with caution. They are not a guide to true
counterfactual experiments, as many of the variables in the data set are given
by history or geography, and therefore are not malleable, or have dependencies
(e.g. shares professing various religions) that restrict the possible values they
might take. Variables may also be skewed in a manner that would mislead us
about the practical policy implications of moving to extreme values. Instead we
interpret Table 4 as descriptive. It provides an accounting for each determinant.

The variables in Table 4 are arranged in ascending order of the effect on
the growth rate attributable to each variable. The five variables divide into
three groups.

The first group is the single variable indexing the number of revolutions
and coups a country faces. Revolutions and coups have a moderate negative
effect on growth rates as moving from the 25th percentile to the 75th
percentile would decrease a countries growth rate by 0.397 percentage points.

The second group contains two cultural/religious variables. It is a 0.288
percentage point disadvantage to move from the 25th percentile Protestant
country to the 75th percentile. The coefficient for fraction Confucist needs to
be interpreted with extreme care. In the Sala-i-Martin dataset, there are only
six countries with non-zero values: Malaysia, Singapore, Hong Kong, Taiwan,
China, and Korea.

There are two political/economic variables. Investment is relatively
important.16 Interestingly, the search eliminates non-equipment investment
and public investment and retains only equipment investment. Equipment
investment is the second highest positive influence. Openness to foreign trade
is the most important effect in either direction. An increase of openness from
the 25th percentile country (one of 36 countries with no years open) to
Australia (the 75th percentile country) which had 68.9 years of openness
would increase a country’s growth rate 1.378 percentage points.

V. Lessons for methodology; lessons for growth

There are two main points to this study. The first is methodological. Despite
the fact that we do not have good a priori theory of the determinants of

16This confirms the findings of DeLong and Summers (1991) and Temple (1998) among others.
Sala-i-Martin (1997b, p. 7) retains investment in his data set despite its endogeneity because it is a
central variable in the neoclassical and other growth models. We agree that it its endogeneity renders
its interpretation in the final specifications ambiguous.
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differences in growth rates between countries, we would like to identify the
true determinants. Robustness in Leamer’s sense is not an adequate guide to
model specification, whatever other uses it might have. Robustness is neither
necessary nor sufficient for a regressor to belong to the data-generating
process. Extreme-bounds approaches in the form advocated by Levine and
Renelt are too stringent and reject the truth too frequently (small size, but low
power), while those advocated by Sala-i-Martin are not discriminating and
accept the false too frequently along with the true (high power, but large size).
In contrast, the general-to-specific specification search methodology is – like
Little Bear’s bed in the tale of Goldilocks – just right: it maintains a size near
(and even a little below) the nominal size of the tests used in the search and
has power approaching the true power one should find if the specification
were not in doubt.

It is sometimes objected that the advantage of the general-to-specific search
is illusory because it presupposes (wrongly, it is asserted) that the true
specification is nested in the search universe, and that this is unlikely, since the
search universe never includes every variable that matters to the dependent
variable in any way. This misunderstands both the exercise conducted in this
paper and the underlying strategy of the LSE methodology. Of course, the
general-to-specific search cannot locate the true specification if the true
variables are not available to the search. But equally, there is no reason to
suppose that extreme-bounds analysis is any more informative when variables
are omitted from its search universe, than when they are included. The
argument is that if any of the methods fail to find the truth when it is in fact
there to be found, the method is a fortiori unsuccessful. If robustness does not
correspond to truth when truth is to be had, why should it be regarded as a
desirable characteristic when truth is required but unavailable? We can never
guarantee that the specifications selected by the general-to-specific approach
are true. But the approach is part of a critical, indeed dialectical, methodology.
If anyone seriously argues that an important variable has been omitted from
the specification, the appropriate response is to add that variable to the search
universe and, then, to rerun the search.

It is worth noting that this same critical spirit can be applied to the general-
to-specific search algorithm itself. We have presented only a single version of
a general approach. While we have shown that it is superior to the two
alternatives that we studied, it is not necessarily the best implementation of
that approach. We look forward to further refinements and developments –
and perhaps to further horse-races against other search methodologies.

The second main conclusion from the study is that in practice extreme-
bounds methods are misleading about the determinants of growth. Sala-
i-Martin was right to criticize Levine and Renelt (1992) for rejecting too many
potential determinants of growth as non-robust. What is more, he is right to
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question the exogeneity of a number of the determinants of growth that they
consider. However, the evidence of the general-to-specific approach is that his
approach selects many variables that probably do not truly determine
differences in growth rates. While the modified extreme-bounds analysis
selects most of the variables selected by the general-to-specific search, it also
selects a set of other variables that add nothing significant to the explanatory
power of the specification. Differences in growth rates are more adequately
characterized by a much smaller number of variables. The five variables
retained by the general-to-specific search correspond reasonably well to
a priori growth theory and to a reasonable understanding of political and
cultural factors.

The general-to-specific search, therefore, reaches more precise conclusions
about the determinants of differences in growth rates among countries than
does the modified extreme-bounds analysis. There are three messages. First, to
some degree cultural characteristics matter. It is a massive advantage to be
Confucian and, given the fame of the ‘Protestant work ethic’, a surprising
disadvantage to be Protestant. Unfortunately, such cultural variables are not
easily manipulated by public policy. Secondly, a more hopeful message:
investment, which can be affected by policy, matters. Thirdly, politics matters:
civil disorder is an important antagonist and openness to world trade is an
important promoter of economic growth.

What is surprising is how few of the variables matter in the end and how
much is left unexplained. The preferred regression explains only 42% of the
variability in countries’ growth experiences. Although none of the factors
identified contradicts common economic understanding of the growth process,
what is omitted gives no special support to the most popular classes of growth
models. The neoclassical growth model encourages us to expect evidence of
conditional convergence – i.e. evidence that ceteris paribus the further behind
a country was, the faster it would grow (see Mankiw, Romer and Weil, 1992).
The search failed to select real per capita GDP in 1960. A negative coefficient
on that variable would have provided some evidence of conditional
convergence.

In contrast, Sala-i-Martin (1997a, b) did find evidence of conditional
convergence – initial income (real per capita GDP in 1960) was a highly
robust free variable. However, this result does not hold up when extreme-
bounds analysis is applied to the richer data set used in Table 2. As a free
variable, initial income appears in every regression, but with only 80%
of the parameter estimates on the conditional convergence side of zero, it
fails to make Sala-i-Martin’s 95% cut-off for robustness. Again, as a free
variable, initial income is also a regressor in the modified extreme-bounds
specification in Table 3. With a p-value of 0.08, it is significant at
the 10%, but not at the 5%, level. When included in the full-sample
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genera-to-specific specification, initial income has a p-value of 0.22 and the
other coefficients are not significantly changed. If the failure to find
conditional convergence is theoretically puzzling, it is puzzling for both the
general-to-specific and modified extreme-bounds methodologies applied to
Sala-i-Martin’s data set.

There are other discrepancies between some growth theories and our
findings. The new growth models typically suggest that human capital or
education variables should increase growth rates. But again, none of these
variables was selected. And again, primary school enrollment and life
expectancy are selected by the modified extreme-bounds analysis only
because they are retained as free variables by theoretical priors; they do not
show up as robust in Table 2 or statistically significant in Table 3.

General-to-specific search methods have proved superior to extreme-
bounds methods in isolating the truth – when the truth is to be found.
Applied to actual data, they allow us to identify factors important to
explaining the differences in growth rates among various countries. Our
study, we believe, uses the available cross-sectional data more fully than
any previous study. Yet, it also highlights how much more there is to
understand.

Final Manuscript Received: January 2004
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Appendix A: The general-to-specific search algorithm used
in the simulations

A. The data are generated according to the simulated equation setup with
either 0, 3, 7, or 14 true variables included. Candidate variables
include a constant and all variables in Levine and Renelt’s dataset,
with the exceptions noted in the main text and in the notes to
Memorandum 1, downloadable from our websites: http://www.econ.
ucdavis.edu/faculty/kdhoover/research.html and http://www.csus.edu/
indiv/p/perezs/Data/data.htm/. A replication consists of creation of a
simulated dependent variable using one of the simulated models and
one draw from the bootstrapped random errors. Nominal size governs
the conventional critical values used in all of the tests employed in
the search: it is 5%. Two overlapping sub-samples are created, each
comprising 90% of the data set. Independent searches are run on the
two subsamples. A general specification is estimated on a replication
using a full set of candidate variables.

B. Five search paths are examined. Each path begins with the removal
of one of the candidate variables with the five lowest t-statistics in
the current general specification. All t-statistics are calculated using
White’s heteroscedasticity-corrected standard errors. The first search
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begins by re-estimating the regression. This re-estimated regression
becomes the current specification. The search continues until it reaches
a terminal specification.

C. The current specification is estimated and all searchable variables are
ranked according to their t-statistic. The searchable variable with the
lowest t-statistic is removed.

D. Each current specification is subjected to the following battery of
tests:
i. subsample stability test: an F-test for the equality of the variances of
the first half versus the second half of the sample. (This is analogous
to a Chow test in a time-series context.) This test compares the
regressions over each subsample to the regression over the full
sample. If the degrees of freedom do not permit splitting the sample
into equal subsamples, the test is replaced by one that compares a
regression over the first k + (n ) k)/2 observations to the one over
the full sample (on both tests, see Chow, 1960).

ii. An F-test of the hypothesis that the current specification is a valid
restriction of the current general specification.

E. The number of tests failed is recorded and the new specification
becomes the current specification. Return to C until all remaining
variables have a significant t-statistic.

F. If all variables are significant, and all of the tests in the test battery are
passed, the current specification is the terminal specification and go to
H. If any of the tests fails return to the last specification for which all
the tests are passed and go to G.

G. The variable with the lowest t-statistic is eliminated. The resulting
current specification is then subjected to the battery of tests.
i. If the current specification fails any one of these tests, the last
variable eliminated is replaced, and the current specification is
re-estimated eliminating the variable with the next lowest insignifi-
cant t-statistic.

ii. If the current specification passes all tests, re-estimate and return
to G.

iii. The process of variable elimination ends when a current specification
passes the battery of tests and either has all variables significant or
cannot eliminate any remaining insignificant variable without failing
one of the tests.

H. After a terminal specification has been reached, it is recorded and the
next search path is tried until all have been searched.

I. Once all search paths have ended in a terminal specification, the final
specification is chosen through a sequence of encompassing tests. We
form the non-redundant joint model from each of the different terminal
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specifications; take all candidate specifications and perform the F-test
for encompassing the other specifications. If only one specification
passes, it is the final specification. If more than one specification passes,
the specification with the minimum Schwarz criterion is the final
specification. If no model passes, reopen the search on the non-
redundant joint model (including testing against the general specifica-
tion) using only a single search path and take the resulting model as the
final specification.

J. The final specification is the intersection of the two specifications from
each subsample.

Appendix B: Multiple imputation procedures

All the regressions in both the general-to-specific and modified extreme
bounds approaches in section IV use multiple imputation to fill in the missing
values in the data set. Multiple imputation is unfamiliar to many economists.
Standard references include Little and Rubin (1987), Rubin (1987, 1996), and
Schaefer (1997). We have followed closely the procedures advocated by King
et al. (2001).

Multiple imputation has two steps. First, missing values are treated as
parameters and the maximum likelihood estimate of the distribution of each is
formed on the basis of all of the available data. The imputed value is drawn
from the estimated distribution using a procedure similar to bootstrapping.
Secondly, in order not to introduce spurious precision into estimates based on
imputed values, repeated draws are used to construct multiple data sets. Any
regressions are run on each data set and the coefficient estimates and standard
errors combined to form a joint estimate. Monte Carlo studies of multiple
imputation suggest that it maintains size, but loses some power relative to
complete data sets. King et al. show that it is superior to casewise deletion in
almost all realistic applications.

The essential step is to regard missing data as parameters to be estimated
through maximizing a likelihood function. Theoretically, the imputation–
posterior (IP) method converges to an exact distribution. Unfortunately, the
method converges slowly in distribution only, and there is no mechanical
convergence criterion, so that considerable judgment is required. King et al.
propose a fast, robust alternative: the expectations–maximization algorithmwith
importance sampling (EMis). They demonstrate in a Monte Carlo study that it
does well in closely approximating the IP algorithm and in recovering the true
coefficients and standard errors when there is missing data. The algorithm is
implemented in a program called Amelia downloadable from http://gking.
harvard.edu.
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Following King et al. (2001) we start with the entire data set (62
variables) with missing values and draw five different values for each
missing value to create five complete sets. Each regression in both the
general-to-specific and the extreme-bounds analysis is then conducted
separately on each of the five data sets and the results combined according
to the formulae given in King et al. (2001, p. 53). The EMis algorithm
requires the number of observations in the data set to exceed p(p + 3)/2,
where p is the number of variables. With 62 variables, at least 2,015
observations would be needed for the algorithm to work. We have only 138.
In such cases, the manual for Amelia recommends the addition of ridge
priors (see Amemiya, 1985, chapter 2, section 2). In our case, the effect
would be to add a large number of lines of random observations to the data
matrix. The effect at the point of imputation would be to replace the
conditional distribution for the variable to be imputed with an unconditional
one. We, therefore, do this directly by drawing each imputed value from a
normal distribution with a mean equal to the sample mean of the available
observations on that variable and a variance equal to the sample variance.
Informal simulations comparing results from complete data sets (the same
trimmed Levine and Renelt data set used in the simulations in section III) to
the same sets with missing data gave good results.

Again following King et al.’s advice bounded and/or asymmetrical
variables are transformed to approximate unbounded or, at least more
symmetrical, variables before imputation. After imputation the transforma-
tions are inverted. Integer-valued variables are either rounded to the nearest
integer or, in some cases, the inverted value is used to set the probabilities of a
uniform bivariate random distribution from which the imputed value is drawn.
The transformations for each variable are described in Memorandum 2, down-
loadable from our websites: http://www.econ.ucdavis.edu/faculty/kdhoover/
research.html and http://www.csus.edu/indiv/p/perezs/Data/data.htm.
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