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Abstract

We provide an accessible introduction to graph-theoretic methods for causal

analysis. Building on the work of Swanson and Granger (Journal of the

American Statistical Association, Vol. 92, pp. 357–367, 1997), and general-

izing to a larger class of models, we show how to apply graph-theoretic

methods to selecting the causal order for a structural vector autoregression

(SVAR). We evaluate the PC (causal search) algorithm in a Monte Carlo study.

The PC algorithm uses tests of conditional independence to select among the

possible causal orders – or at least to reduce the admissible causal orders to a

narrow equivalence class. Our findings suggest that graph-theoretic methods

may prove to be a useful tool in the analysis of SVARs.

I. The problem of causal order

Drawing on recent work on the graph-theoretic analysis of causality, we

propose and evaluate a statistical procedure for identifying the contempora-

neous causal order of a structural vector autoregression.
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Since the publication of ‘Macroeconomics and reality’ by Sims (1980), the

vector autoregression (VAR) has become the dominant tool of empirical

macroeconomics in the United States – if somewhat less so in Europe.

Dissatisfied with the ‘incredible identifying restrictions’ imposed on structural

macroeconometric models, Sims proposed the use of the VAR – an

unrestricted reduced form.

A VAR can be written as

BðLÞYt ¼ Ut; where Bð0Þ ¼ I: ð1Þ

The subscript t indexes time; Yt is an n · 1 column vector of the contem-
poraneous values of the variables Yit, i ¼ 1, 2, . . ., n; B(L) is a conformable

square matrix whose terms are polynomials in the lag operator; and Ut is a

column vector of residuals with elements uit.

Although the VAR is easily estimated, difficulties begin when we turn to

policy analysis. A typical problem would be to work out the effects of a shock

to one of the variables on all the other variables of the system. Let

ui ¼ [ui1, ui2,. . .,uiT] be the time series for uit and U without a time subscript be

the n · T matrix whose rows are the ui. (Equivalently, here and in analogous

cases, omitting time subscripts indicates the matrix whose columns are the Ut.)

The contemporaneous covariance matrix is R ¼ E(UU¢), where E is the

expectations operator. In general, R is not diagonal. The non-zero off-diagonal
elements imply that one variable, say Y1t, cannot be shocked through its

corresponding random error term, u1t, without having simultaneously to

deliver correlated shocks to other variables. Without independence it makes

little sense to think of shocks, say, to the money supply or to employment.

Sims (1980) advocated orthogonalizing the shocks using a Choleski

decomposition. There is a unique lower triangular matrix C, such that

CC¢ ¼ R. Premultiplying both sides of equation (1) by C)1 yields

C�1BðLÞYt ¼ C�1Ut: ð2Þ

The covariance matrix of equation (2) is E(C)1U(C)1U)¢) ¼ W, where W is

diagonal (Hamilton 1994, p. 320). Shocks can be delivered to any of the

variables of the system, and their effects traced out. The Choleski

decomposition imposes a Wold causal order on the variables so that the

shock to Y1 feeds contemporaneously into Y2, Y3,. . .,Yn, while the shock to Y2
feeds contemporaneously into Y3,Y4,. . .,Yn, but into Y1 only with a lag, and so

on. The order of the Yit in the vector Yt is arbitrary; but, for each such

ordering, the Choleski decomposition is unique.1 What is more, orthogonal-

1Sims (1980) initially underplayed the interpretive ambiguity implied by the different orderings.
Under criticism from Cooley and LeRoy (1985), Leamer (1985) and others, Sims (1986) conceded
that useful interpretation of VARs required choosing among the possible orthogonalizing transfor-
mations.
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izing transformations are not restricted to Choleski decompositions, but may

involve non-triangular matrices P, such that E(P)1U(P)1U¢) ¼ W, providing
that at least n(n ) 1)/2 restrictions are imposed for identification.2 A VAR
identified through restrictions on contemporaneous variables is known as a

structural vector autoregression (SVAR).

It is widely believed that there is no empirical or statistical basis for

the choice of the contemporaneous causal orderings (i.e. orthogonalizing

transformations), so that the economist must appeal to a priori knowledge. As

there are transformations that impose every possible order, there is a family of

SVARs for which the original VAR [equation (1)] is the common reduced

form. Each member of the family has the same reduced form and, therefore,

the same likelihood function. Practitioners typically regard the members of the

family as observationally equivalent. Only outside knowledge would allow

the researcher to choose among them.

But where is such knowledge to come from? Only rarely does economic

theory imply particular contemporaneous causal orderings. Generally, prac-

titioners of SVAR methods appeal to plausible stories about which variables

could or could not affect which other variables in the course of a month or

quarter, depending on the periodicity of the data. The problem with this

approach is that sometimes equally plausible stories can be told for competing

causal orderings. Not only does such story-telling not inspire much

confidence, but it is also ironic that a method that originated as a way of

getting away from incredible identifying restrictions relies so heavily on

hardly more credible stories to identify contemporaneous causal ordering.

All just-identified SVARs derivable from the same VAR are in fact

observationally equivalent. As we shall see presently, overidentified SVARs

belong to equivalence classes – not only distinct from the class of just-

identified SVARs, but also from each other. It would be useful if these classes

could be determined from the data. Some of these classes may have only one

member.

The underlying premise of SVAR analysis is that some SVAR corresponds

to the data-generating process. Let the data-generating process be

AðLÞYt ¼ Et; ð3Þ

where Et ¼ [eijt] is a column vector of error terms at time t; A(L) is a

conformable matrix whose terms are polynomials in the lag operator, such

that A(0) is a lower triangular with ones on the main diagonal and, poss-

ibly, zeroes for some elements in the lower triangle; and the covariance

matrix X ¼ E(EE¢) is diagonal. The true SVAR is distinguished from the

2Identification may be achieved in other ways, although in this paper we shall be concerned only
with zero restrictions on the contemporaneous coefficient matrix.
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orthogonalized VAR by the fact that its error terms are independent rather than

merely uncorrelated by construction. It is the independence of the error terms

that marks the VAR as structural.

Let A0 ” A(0) be the matrix of the zeroth-order terms of the matrix A – i.e.

the typical element of A0 is aij0. The reduced form of equation (3), is then

A�1
0 AYt ¼ A�1

0 Et: ð4Þ

Equating terms with equation (1), we see that A0 connects the reduced-form

errors from the ordinary VAR (uit) with the structural errors (eit), so

that

Ut ¼ A�1
0 Et: ð5Þ

The independence of the eit and the structure of the SVAR embodied in A0
implies the relationships of interdependence, independence, and conditional

independence among the uit, the elements of U. These are robust relationships

in the sense that they are invariant to different values of the aij0, the elements

of A0.
3 The transformation that converts equation (1) into equation (3) is,

therefore, a privileged one in that it is the only one that recovers the

independent errors, the eit.

The reduced form [equation (4)] may be transformed into a variety of

(pseudo) structural VARs – each appearing to possess a contemporaneous

causal order different from the data-generating process and each with

uncorrelated error terms. But although the error terms of the pseudo SVARs

are mutually uncorrelated, they are not independent. Each pseudo structure

carries with it the constraints implied by A0 . And unlike the causal order of

the true structure (3), the causal orders of the transformed structures are

well-defined only for a particular set of values implied by A0. If the aij0

change, the error terms of the pseudo SVAR will no longer appear to be

orthogonal.

The central question is, then, whether, starting from the equation (1),

empirical evidence can help us to recover the privileged transformation that

corresponds to the true equation (3)? In principle, the answer is yes.

Over the past 20 years, a group of philosophers and computer scientists

have developed a graph-theoretic analysis of causal structure and demonstra-

ted the relationship between particular causal orders and relationships of

conditional independence embedded in the likelihood function. Pearl (2000)

and Spirtes, Glymour and Scheines (2000) provide detailed accounts of this

approach, as well as search algorithms for implementing it. These methods

3Hoover (2001, ch. 2–4) provides a detailed discussion of the role of independence and invariance
under parameter change as hallmarks of the true causal structure.
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have been used in a variety of social sciences other than economics, but are

unfamiliar to most economists.4

Most of this research on graph-theoretic methods assumes that the causally

ordered data are cross-sectional. Time series data may show statistical

dependencies unrelated to causal relationships because of failures of

stationarity, temporal aggregation, or omitted simultaneity.5 Furthermore, it

is unclear whether past values of a variable should be regarded as causing

future values or that autocorrelation would be evidence for causal connec-

tedness. We follow Swanson and Granger’s (1997) suggestion of how to adapt

graph-theoretic methods to the problem of finding the causal order of the

SVAR. (The method is described fully in section III below.) Swanson and

Granger (1997) restrict the admissible structures to causal chains (for example,

A causes B causes C; but not A causes B, and A and B cause C). In contrast, we

allow every possible ordering. In this paper we contribute three things. First,

we provide an accessible account of the underlying rationale for the graph-

theoretic approach to causal order in general. Second, we use the PC algorithm

embedded in Spirtes et al.’s (1996) Tetrad 3 software to extend Swanson and

Granger’s methodology to the entire class of acyclic (recursive) graphs, rather

than to causal chains only. Third, using a simulation study, we investigate the

efficacy of our approach to select the causal order of SVARs.

II. The graph-theoretic analysis of causal structure

Start with a structure defined by equation (3) with the added stipulation that

the matrix A ¼ A0, i.e. there are only contemporaneous variables. Each row

of A represents the equation for the corresponding element of Y, and the non-

zero off-diagonal elements determine which are the explanatory variables of

the equation represented by each row. A causal structure can be represented by

a graph in which arrows run from causes to the caused variable, and the graph

corresponds to the pattern of non-zero elements of A. For example, if

4Hoover (2001, ch. 7) gives a critical description of these methods, and LeRoy (2002) has recently
discussed them in a review of Pearl (2000). Some earlier applications to economics include Sheffrin
and Triest (1998) and Akleman, Bessler and Burton (1999). Swanson and Granger (1997) and
Demiralp (2000, ch. 4) are particularly concerned with the causal order of the VAR. Reale and
Tunnicliffe Wilson (2000, 2002), Tunnicliffe Wilson and Reale (2002), and Tunnicliffe Wilson, Reale
and Morton (2001) apply substantially different, but still graph-theoretically based methods based on
the work of Lauritzen and Spiegelhalter (1988) (see also Lauritzen and Richardson 2002) to VARs
using economic data. A comparison of these methods with the PC algorithm would be interesting but
beyond the scope of this article. Many of the authors who have used economic data are not econ-
omists and virtually all of the work using economic data has been published in statistics journals or
edited volumes or circulates only in working paper format (Bessler and Lee, 2002 is an exception to
the rule).
5Spirtes et al. (2000, p. 296). See also Hoover (2003) and Tunnicliffe Wilson and Reale (2002) on

non-stationary variables and causality and Breitung and Swanson (2002) and Hoover (2001, ch. 6,
section 2) on temporal aggregation.
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Y ¼

A
B
C
D
E

2
66664

3
77775

and A ¼

1 0 0 0 0

0 1 0 0 0

a31 0 1 0 0

a41 a41 0 1 0

0 a52 0 a54 1

2
66664

3
77775
;

where the aij designate non-zero elements, then the causal structure can be

represented by Figure 1, where the arrows represent one-way causal influence.

It is helpful to define some terms used in graph theory. Causal connections

between variables are indicated by lines (known as edges or links) that may or

may not have arrowheads indicating the direction of causation. The map of a set

of variables showing the causal connections and their directions is a graph such

as that depicted in Figure 1. The map showing just the variables and their

connections but ignoring the directions is the skeleton of the graph. A path is a

chain of causal connections between two variables. For example, in Figure 1,

CAD is a path from C to D. A directed path follows the direction of causation.

For example, BDE is a directed path from B to E; while CAD is a path, but not a

directed path, from C to D. If a variable A is connected to another variable B by

an arrow originating at A and running into B, then A is the parent of B, and B is

the child ofA. If there is a directed path betweenA andB, thenA is an ancestor of

B, and B is a descendant of A. If there are no directed paths from a descendant to

its own ancestor, then the graph is acyclic. If each cause of every variable in a

graph is also a variable in that graph, then the graph is causally sufficient.

Errors terms in each equation could be treated as causes of deterministic

variables. When error terms are independent and, therefore, affect one variable

each, it is conventional to omit them from a graph and to treat the variables as

stochastic. When they are not independent, it is conventional to show them

explicitly as latent, unobservable variables or to indicate bidirectional causal

linkages between the variables. Graphs with latent variables are not causally

sufficient. Because the graph-theoretic account is best developed for acylical

graphs, we restrict our simulations to causally sufficient, acylical models.

Returning to the initial model, as the ei are independent random shocks, the

matrix A and its corresponding graph (Figure 1), represent a causal structure

that defines the patterns of dependence or independence among the variables.

A

C E

B

D

Figure 1. A directed graph
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In this case, it is easy to see that C and D are not independent because both

depend on A. A is said to be their common cause. It is also intuitive that C is

independent of D conditional on A.

Causal search algorithms are based on patterns of conditional inde-

pendence, invoking Reichenbach’s (1956, p. 156) principle of the common

cause: if any two variables, A and B, are truly correlated, then either A causes

B (A fi B) or B causes A (A ‹ B) or they have a common cause

(A ‹ C fi B). The common cause, C, may be a complex of parent variables.

The principle of the common cause can be generalized as the causal

Markov condition:

Definition. Let G be a causal graph relating a set of variables V with a probability
distribution P. Let W be a subset of V. G and P satisfy the causal Markov

condition if, and only if, for every W in V, W is independent of every set of
variables that does not contain its descendants, conditional on its parents (Spirtes
et al., 2000, p. 29; see also Pearl, 2000, p. 30).6

A few further examples illustrate how to apply these ideas. Consider the two

causal graphs A fi C fi B and A ‹ C ‹ B. In each case, A and B are dep-

endent, but are independent conditional on C. C is said to screen-off A from B.

Causal structure can induce conditional dependence as well as eliminate

unconditional dependence. In Figure 1, A and B are unconditionally

uncorrelated. They are however correlated conditional on D. The classic

example is A ¼ the car’s battery being charged; B ¼ the car’s starter switch

being on; and D ¼ the car’s starting. A and B may be completely independent.

Yet, if we know that the car does not start, then knowing that the switch is on

raises the probability that the battery is dead. Node D in Figure 1 is called an

unshielded collider on the path ADB (or BDA). It is a ‘collider’ because the

arrowheads come together at D, and is ‘unshielded’ because there is no direct

causal connection between A and B. Node E is a shielded collider on the path

DEB. The link B fi D acts as a shield in that B and D are correlated even

without conditioning on the common effect.

Essentially, the causal Markov condition holds when a graph corresponds to

the conditional independence relationships in the associated probability

distribution. A graph is said to be faithful (Spirtes et al., 2000, p. 31) or stable

(Pearl, 2000, p. 38) if and only if, there is a one-to-one mapping between the

relationships of conditional independence implied by the causal Markov

condition applied toG and those found inP (Spirtes et al., 2000, p. 31). Consider

a graph like Figure 1 except that the link A fi D is missing. The parameters of

the causal structuremight happen to take specific values such that the correlation

6The graph-theoretic account uses a dauntingly complex and unfamiliar terminology. Here, as
elsewhere, we follow closely the version of Spirtes et al. (2000), but translate it into a more
accessible language.
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between B and E, present in the graph, is not present in the probability

distribution. In that case, the graph and the probability distribution are not

faithful. If the direct link D fi E was also missing, however, the parameter-

specific loss of correlation could not occur, and the graph would be faithful.7

Each causal graph implies a set of independence relationships in the

associated probability distribution. Unfortunately, different graphs may imply

the same set, so that a probability distribution defines a class of observationally

equivalent causal structures. This class may have only one or many elements.

According to the observational equivalence theorem (Pearl, 2000, p. 19,

Theorem 1.2.8) any probability distribution that can be faithfully represented in

a causally sufficient, acyclical graph can be equally well represented by any

other acyclical graph that has the same skeleton and the same unshielded

colliders (cf. Spirtes et al., 2000, ch. 4). As a result, theremay be observationally

equivalent causal structures in which some causal links are reversed but all

unshielded colliders preserved. In those cases, the algorithm leaves the

reversible links undirected. This partial causal ordering defines an equivalence

class whose members correspond to the permutations of the orientations of the

undirected links. A just-identified model has no unshielded colliders. It follows

immediately that all just identified models are observationally equivalent.

Causal search algorithms start with the empirical probability distribution of

the variables (typically characterized by the covariance, or (equivalently) the

correlation, matrix). Although there are other algorithms, we investigate the PC

algorithm of Spirtes et al. (2000), because it is the most commonly used and is

readily implemented using easily available software. Appendix A presents a

detailed description of the PC algorithm. It is easily understood. The causal

Markov condition applied to any graph indicates the conditional independence

relations that should, or should not, be present in the data. The algorithm tests

for the implied independence relations and works backward to the graph as far

as possible.8 The algorithm begins by assuming that each variable is linked to

every other variable through an undirected link. It then proceeds in two major

stages: elimination and orientation.

7Hoover (2001, pp. 45–49, 151–153, 168–169) considers cases in which failures of faithfulness
arise naturally in economic contexts and cannot be dismissed as suggested by Spirtes et al. (2000, p.
41) as of ‘Lebesque measure zero’ (see also Pearl, 2000, p. 63).
8Tests of conditional independence are implemented using conditional correlations. The uncon-

ditional correlation coefficient between A and B is denoted rAB. The correlation of A and B condi-
tional on C is then defined as rABjC ¼ ðrAB � rACrBCÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2AC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2BC

p
Þ. See Johnston (1972,

p. 135) for the generalization to conditioning on more than one variable. The statistical significance
of the conditional correlation can be computed using Fisher’s z-statistic. As we observed in section I,
independence implies an absence of correlation, but not the converse. There may be highly specific
parameter values for which correlations vanish, even though the variables are not independent. These
correspond to the non-robust transformations of the true SVAR mentioned in section I. Hoover
(2001, ch. 2, section 4, and ch. 7, section 1) discusses cases in which these vanishing correlations
arise from economically meaningful optimal control.
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At the elimination stage, it first removes connections between any

variables that are not unconditionally correlated. Next it tests for the

correlation of each pair of variables conditional on a third variable,

eliminating the link between any pair that is conditionally uncorrelated.

Continuing in the same vein, it tests for absence of correlation conditional on

pairs of variables, then on sets of three, four, or more and eliminates links

whenever there is no conditional correlation.

Once the possibilities for elimination of links are exhausted, the PC

algorithm proceeds to the orientation stage. It considers every pair of

variables that is conditionally uncorrelated and causally connected along an

undirected path through a third variable. If the pair is correlated conditional on

the third variable, then the members of the pair are unshielded colliders on that

path, and the arrows from the pair are oriented towards the third variable.

Finally, some unoriented links may be oriented based on screening

relationships: if two variables (A and B) are not directly connected, but are

connected through a third variable (C), so that one link points to the third

variable (say, A fi C) and the other link is undirected (C — B), then the

undirected link is oriented to point away from the third variable (C fi B). This

follows because, given the previous steps, the intervening variable is a screen

and not an unshielded collider, and so the link cannot point towards it.

The PC algorithm may fail to orient some links. This will happen, even

when small sample issues are not in play, whenever the graph of the true data-

generating process contains links whose orientations can be reversed without

affecting the number and location of the unshielded colliders.

III. The effectiveness of the PC (causal search) algorithm

The simulation methodology

Spirtes et al. (1996, user’s manual, ch. 13), Spirtes et al. (2000, pp. 113–122),

and Cooper (1999, section 10) present some simulation evidence of the

effectiveness of the PC algorithm. However, no previous studies have

investigated its effectiveness in the context of ordering the contemporaneous

variables in an SVAR. We proceed in the following steps:

1. Each SVAR takes the form of equation (3). We can write A ¼ A0 þ �A,
where the elements of �A are �Aij ¼ aij1L þ aij2L2 þ aij3L3þ
aij4L4 þ � � � þ aijKLK . Each equation in the SVAR has an identical

lag structure, i.e. for each j ¼ 1, 2, . . ., N and each k ¼ 1, 2, . . ., K,

and for all i ¼ 1, 2, . . ., N and h ¼ 1, 2, . . ., N: aijk ¼ ahjk.
9 For

9Parameter values are chosen to ensure stationarity. The parameter values for all own lags (i ¼ j,
k ¼ 1, 2, 3, 4) is (aijk) ¼ (0.0403, 0.162, 0.0654, 0.0264), and the values for all cross lags (i „ j) is
(aijk) ¼ (0.054, 2.92 · 10)3, 5.17 · 10)4, 8.50 · 10)6).
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concreteness, K ¼ 4. Models to be evaluated differ in the number of

variables and the causal structure of the contemporaneous terms defined

by the placement of non-zero terms in A0. Given the causal structure

and a particular choice of values for the non-zero aij0, the data are

generated recursively drawing the error terms from a random-number

generator. The eijt � N(0, 1). To eliminate problems with initial values,

1,500 realizations are generated and only the last 500 retained for

analysis.10

2. In order to evaluate a range of signal-to-noise ratios, we generate

50,000 realizations for each model with the non-zero aij0 chosen at each

realization using a random number generator with the range calibrated

to generate Fisher’s z-statistics for these parameters in the maximum

likelihood estimates of the SVAR covering a range of roughly 0 to 9.

The distribution is weighted to oversample the 0 to 2 range.

3. A VAR of the form of equation (1) with a lag length of four is

estimated for each realization. The estimated residuals Ût are retained

as the filtered Yt. The sample covariance of the filtered Y is R̂ ¼
UU0=ðT � KÞ and serves as input to Tetrad 3 from which it calculates

all the needed conditional correlations.

4. Tetrad 3 is run for each realization using the PC algorithm and

assuming causal sufficiency. To evaluate the success of the algorithm,

the graph of the model selected by Tetrad (the selected graph) is

compared to a reference graph (the PC-true graph). The PC-true graph

is not the graph of the model that generated the data (i.e. it is not the

true graph). It is, instead, the graph that indexes the equivalence class

to which the true graph belongs. It has the same skeleton as the true

graph, but leaves undirected links wherever a link can be reversed

without altering the identities of the unshielded colliders. It is the graph

that PC algorithm would select under the best circumstances (i.e. with

an infinite amount of data).

Every possible link is evaluated. The possible outcomes are:

(i) Correct: the link is present and oriented the same way in

both graphs or it is absent in both graphs;

(ii) Committed: the link is absent in the reference graph but

present in the selected graph.

(iii) Omitted: the link is present in the reference graph but absent

in the selected graph.

10Many standard U.S. macroeconomic time series begin in 1959. Using monthly data, there are
528 observations between 1959 and 2003. Since many data are quarterly, and many VARs are
estimated for shorter periods, it would be of interest in subsequent work to investigate the sensitivity
of our results to sample size.
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(iv) Reversed: the link is present in both graphs, but points in

opposite directions.

(v) Unresolved: the link is oriented in the reference graph and,

although present, cannot be oriented in the selected graph.

(vi) Overdetermined: the link cannot be oriented in the reference

graph, but is oriented in the selected graph.

Errors fall into two groups. Errors of commission: outcome (ii) can

occur only if a link is missing in the true (and, therefore, reference) graph.

Link errors: outcomes (iii) to (vi) can occur only if a link is present in the

reference graph.

Three models

The strategy of causal identification used in the PC algorithm makes use of the

whole structure. It is likely to work best when there are a relatively large

number of unshielded colliders and a relatively low density of causally

connected variables. We begin with two very simple models. Although these

should be difficult for Tetrad to identify, they are easily grasped by the analyst

and can be used to identify some salient issues. We then consider a more

complex model.

Model 1

The graph of model 1 is depicted in Figure 2. Corresponding to the graph is

A0 ¼

1 0 0 0

0 1 0 0

0 0 1 0

a410 a420 a430 1

2
664

3
775;

where aij0 „ 0. Model 1 is symmetrical around y4 (that is, swapping the

positions of y1, y2, and y3 produces isomorphic graphs). The variable y4 is an

unshielded collider on three separate paths: y1y4y2, y1y4y3, and y2y4y3. As with

Link 1 Link 2
y1 y4 y2

Link 3

y3

Figure 2. Model 1

755Searching for the causal structure of a vector autoregression

� Blackwell Publishing Ltd 2003



all identified SVARs, the A0 matrix can be cast into a lower triangular form

with the overidentifying restrictions indicated by zeroes below the main

diagonal. In principle, the PC algorithm can identify model 1 (i.e. there is only

one graph in the equivalence class), so the true graph and the PC-true graph

are identical. There cannot, therefore, be any errors of overdetermination.

The main question to be addressed is how does the effectiveness of the PC

algorithm vary with the signal-to-noise ratios of the causal links? We begin by

classifying signal-to-noise ratios into categories according to the expected

value of the z-statistic (z
aij0 ¼ Eðzaij0Þ) for the coefficient in A0 that

corresponds to the link (e.g. a410 for link 1):
11 0 < z* < 2 is classified as L

(low); 2 £ z* < 5 as M (medium); and 5 £ z* £ 9 as H (high). There are in

principle 33 ¼ 27 different combinations of signal strengths for model 1 using

these classifications. As model 1 is fully symmetrical, combinations with the

same number of links in a particular category should yield nearly the same

results. For instance, if we label a particular draw by the order of its links as

numbered in Figure 2, then HMH should have very similar results to HHM

and MHH. We, therefore, record only the 10 non-redundant patterns.

The results for model 1 are reported in Table 1. The nominal size for the

conditional correlation tests used in the PC algorithm is set at 10%. Each

outcome is expressed as a proportion of the number of times it might have

TABLE 1

Model 1 simulation outcomes by signal strength

Signal strength� Outcomes as fraction of possible outcomes

By link� Average§ Correct

Skeleton

correct Committed

Link errors

Omitted Reversed Unresolved Total

LLL 1.00 0.46 0.60 0.10 0.71 0.00 0.28 0.99

MLL 1.83 0.47 0.71 0.08 0.50 0.00 0.47 0.98

HLL 3.00 0.48 0.71 0.07 0.52 0.01 0.45 0.97

MLM 2.67 0.50 0.81 0.07 0.31 0.02 0.60 0.93

MMM 3.50 0.54 0.91 0.06 0.11 0.07 0.67 0.84

HML 3.83 0.55 0.82 0.07 0.29 0.03 0.53 0.85

HMM 4.67 0.63 0.93 0.07 0.08 0.11 0.50 0.69

HHL 5.00 0.65 0.83 0.05 0.27 0.03 0.32 0.62

HHM 5.83 0.73 0.95 0.06 0.04 0.15 0.29 0.49

HHH 7.00 0.83 0.98 0.05 0.00 0.15 0.13 0.29

Notes:
�Signal strength measured as the expected z-statistic.
�L ¼ low (0 £ z* < 2), M ¼ medium (2 £ z* < 5), H ¼ high (5 £ z* £ 9); each letter indicates

one link (e.g. HML means link 1 is high, link 2 medium, link 3 low).
§Average expected z-statistic over three links.

11Expected values ðz
aij0 Þ are determined using predicted values from the regression zaij0 ¼
caij0 + eij.
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occurred. While the statistics reported here are not classic test statistics, the

proportion of outcomes committed is analogous to the size of a classical test

statistic (i.e. type I error), while the proportion omitted is analogous to the

complement of the power (i.e. type II error). But there are degrees of errors of

omission. The worst would be to omit a link altogether, but even if a link is

included it may not be correctly directed. A third summary statistic (‘skeleton

correct’) reports the proportion of links correctly identified as present even if

their direction is reversed or unresolved.

The different combinations of signal strength are indicated in the first

column of Table 1. The number in the second column is the mean population

value of z*-statistic for that combination. The data are ordered in ascending

order of the proportion correct link identifications. The data are nearly, but not

quite perfectly, lexicographically ordered by number of L, M, and H links.

They are also nearly, but not quite perfectly, monotonically ordered by

average expected z-statistic.

The usual criticism of specification searches involving repeated testing is

that the true size rises substantially above the nominal size of the test statistic.

Although the PC algorithm tests repeatedly, only tests involved in orienting

links (contrary to tests establishing the existence of a link) involve conditional

decisions, which are the usual targets of opponents of data mining. The cost of

search appears low in this case: the proportion of commissions for LLL is the

same as the nominal size of the z-statistics and for HHH is half the nominal

size.12 The multiple testing used in the PC algorithm appears to be well-

behaved on that front. In this simple, symmetrical model, the ability of the

algorithm depends on the relative number of weak links. It is least effective

when there are three low-strength lengths and most effective when there are

three high-strength links with the remaining combinations ordered nearly

lexicographically between these extremes.

The PC algorithm recovers the correct graph moderately well (improving

with signal strength). It recovers the skeleton of the graph (ignoring the

orientation of links) at a high rate, even when the signal strengths are low. The

columns grouped as ‘Link errors’ report the various ways in which the PC

algorithm fails to correctly identify a true link in model 1. Omissions are high

if two or more links have low strength. When it does omit a link, the other

errors (reversed or unresolved links) cannot occur. Typically, as the proportion

12In simulations not reported in the table, the same pattern is repeated for nominal test sizes of 5%
and 20%: LLL shows commission rates near nominal test size; error rates fall as signal strength rises;
HHH shows rates about half of nominal test size. What is more, rates of omission rise somewhat as
nominal text size falls, confirming the usual tradeoff between size and power. These results are
consistent with findings of well-behaved size in non-causal search algorithms (see Hendry and
Krolzig, 1999; Hoover and Perez, 1999, 2002; Krolzig and Hendry, 2001). For a general defense of
well-regulated search as a respectable econometric practice, see Hoover (1995) and Hoover and Perez
(2000).
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omitted falls rapidly as signal strength rises, the proportion unresolved rises

rapidly to fill the gap. Failures to resolve peak when all links have a medium

signal strength (MMM) and falls as the number of high-signal strengths

increases. Irrespective of the average signal strength, even a single low-

strength link noticeably increases the omission rate (compare, for example,

omissions for MMM and HHL).

There is a clear hierarchy of error: omissions yield to failures to resolve

yield to reversals. Reversals occur only when signal strengths are high. They

peak at about 15%. The total error rate for true links bottoms out at 29%. This

understates the success of the algorithm, first because once signal strengths are

even moderately high it almost always never omits a link and because its error

rate of commission is very small. It almost always identifies the skeleton of the

graph.

Model 2

The graph of model 2 is depicted in Figure 3. Corresponding to the graph is

A0 ¼

1 0 0 0

0 1 0 0

0 0 1 a340
a410 a420 0 1

2
664

3
775;

where aij0 „ 0. Model 2 has the same skeleton as model 1. The y3y4 link is

reversed. Model 2 has only one unshielded collider: B on the path y1y4y2. By

rearranging the order of the variables in the vector Yt, we could recast A0 as a

lower triangular matrix, emphasizing its econometric identifiability. In doing

so, however, we would obscure the close relationship (only a single reversed

link) between the graphical representations of models 1 and 2.

Model 2 is symmetrical only with respect to links 1 and 2. There are,

therefore, more distinct combinations of signal strengths than was the case

with model 1 (18 in all). Table 2 reports rates of errors of commission similar

to that for model 1: at a 10% nominal test size, the maximum number of

commissions occurs at LLM (10%) and the minimum at HHM (5%).

Link 1 Link 2

y1 y4 y2

Link 3

y3

Figure 3. Model 2
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TABLE 2

Model 2 simulation outcomes by signal strength

Signal strength� Outcomes as fraction of possible outcomes§

(1) (2) (3) (4) (5)

Link errors for links 1 and 2 Link errors for link 3

(6) (7) (8) (9) (10) (11) (12) (13)

By link� Average§ Correct Skeleton correct Committed Omitted Reversed Unresolved Total Omitted Reversed Unresolved Total

LLL 1.00 0.46 0.59 0.09 0.72 0.00 0.28 1.00 0.76 0.00 0.23 1.00

LLM 1.83 0.46 0.68 0.10 0.43 0.00 0.55 0.98 0.78 0.01 0.21 1.00

MLL 1.83 0.46 0.68 0.09 0.42 0.01 0.56 0.99 0.77 0.01 0.21 1.00

LLH 3.00 0.47 0.70 0.09 0.37 0.01 0.59 0.97 0.78 0.01 0.20 0.99

HLL 3.00 0.47 0.70 0.08 0.39 0.01 0.58 0.98 0.79 0.01 0.20 1.00

MML 2.67 0.47 0.79 0.08 0.44 0.01 0.51 0.97 0.12 0.04 0.83 0.99

HML 3.83 0.48 0.81 0.07 0.40 0.01 0.55 0.96 0.12 0.05 0.81 0.98

HHL 5.00 0.48 0.83 0.06 0.41 0.01 0.54 0.96 0.00 0.05 0.93 0.98

MLM 2.67 0.49 0.79 0.08 0.11 0.01 0.80 0.93 0.79 0.01 0.19 0.99

MMM 3.50 0.51 0.90 0.08 0.13 0.03 0.75 0.90 0.12 0.06 0.76 0.94

HLM 3.83 0.53 0.81 0.08 0.07 0.01 0.72 0.80 0.80 0.02 0.15 0.96

MLH 3.83 0.54 0.81 0.07 0.06 0.01 0.73 0.80 0.79 0.01 0.16 0.96

MMH 4.67 0.57 0.93 0.06 0.06 0.03 0.70 0.79 0.13 0.06 0.66 0.85

HMM 4.67 0.57 0.92 0.06 0.08 0.04 0.66 0.78 0.11 0.08 0.65 0.84

HHM 5.83 0.57 0.94 0.05 0.09 0.04 0.66 0.79 0.00 0.08 0.74 0.82

HLH 5.00 0.66 0.83 0.06 0.00 0.01 0.46 0.47 0.81 0.01 0.09 0.92

HMH 5.83 0.73 0.95 0.06 0.00 0.02 0.43 0.45 0.13 0.07 0.37 0.57

HHH 7.00 0.74 0.97 0.06 0.00 0.04 0.42 0.45 0.00 0.06 0.42 0.48

Notes:
�Signal strength measured as the expected z-statistic.
�L ¼ low (0 £ z* < 2),M ¼ medium (2 £ z* < 5), H ¼ high (5 £ z* £ 9); each letter indicates one link (e.g. HML means link 1 is high, link 2 medium, link

3 low).
§Average expected z-statistic over three links.
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Because of the asymmetry of model 2, Table 2 reports link errors for

links 1 and 2 in one group and link 3 in a separate group. For links 1 and 2,

there are three clearly defined sets. First, if link 3 or both links 1 and 2 have a

low signal strength (see column 1), then total link errors for links 1 and 2 are

nearly 100%, with reversals and omissions accounting for about half each.

Secondly, if link 3 has a medium- or high-signal strength and at most one of

links 1 and 2 has a low-signal strength, then the total error rate falls to around

80%. Omissions account for about 10 percentage points of the total, and

unresolved links for most of the rest. Thirdly, if link 3 and at least one of links

1 and 2 have a high-signal strength, then the total error rate falls to 50%.

Omissions fall to almost zero, and unresolved links account for almost all of

the total. Reversals remain very low for all combinations.

For link 3 the total error rate is high if any of the three links has a low

signal. Omissions about 80% if either link 1 or 2 has low signal strength. If

both links have medium or high strength, then omissions stand at 11–13%,

whatever value link 3 takes. If both are high, then omissions fall to zero.

Failure to resolve are inversely related to omission rates and fall only when the

total error rate itself falls when all signal strengths are medium or high. The

maximum reversal rate is just over 10%.

Table 2 shows that at any reasonable signal strength, the algorithm

performs well at recovering the skeleton. Column 4 indicates its unqualified

success both at recovering the skeleton and properly orienting the causal

arrows. The difference between columns 3 and 4 is a measure of the total

number of link errors over all links. The algorithm performs well at recovering

the skeleton, so long as no more than one link has a low signal. The PC

algorithm is less good at recovering either the skeleton or the true graph of

model 2 than it was of model 1. This is not surprising, as model 2 has only one

unshielded collider, whereas model 1 has three; it is the presence of

unshielded colliders that makes orientation of links possible.

Model 3

Model 3 can be seen as an elaboration of model 1. The graph of model 3 is

depicted in Figure 4. The core graph is the same as model 1. The link added

between y1 and y2 acts as a shield, so that y4 on path y1y4y2 is no longer an

unshielded collider. The additional link 5 adds another unshielded collider,

while the additional link 6 does not. Model 3 has three unshielded colliders:

y4 on paths y1y4y3 and y2y4y3; and y2 on y1y2y5.

As link 6 can be reversed to run y3 fi y6 without changing the skeleton or

the number of unshielded colliders, model 3 is one member of a two-member

equivalence class. The PC algorithm cannot recover the true graph in

principle. The best that it can do (PC-true graph) is to recover a graph with
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link 6 undirected (indicated by a dashed arrow in Figure 4). The true graph is

used to generate the simulated data, while the PC-true graph is used to score

the outcomes.

Recall that success at recovering particular links depends not only on those

links directly, but on all of the links in the graph. Even the simple Model 2

presented some complexity. As before, if we restrict ourselves to three levels

of signal strength, there are 729 (¼ 36) combinations to be considered for each

of the six links, yielding 4,374 evaluations. This is too complex to grasp

easily, so some simplifications are necessary. In Figure 5 we simplify by

reporting results for the average signal strengths across all six lengths.

Figure 5 shows that the PC algorithm performs quite similarly with the

more complex model as it did with models 1 and 2. Errors of commission are

approximately 10% when average signal strengths are below z* ¼ 1, and fall

monotonically as average signal strength rises. Errors of omission start very

high and fall rapidly as signal strength rises. As omissions fall, unresolved

links rise peaking at the moderate average signal strength of 3 < z* £ 4, and
falling thereafter. Reversals and overdeterminations appear only at higher

signal strengths when failures to resolve direction at all become fewer.

(Reversals and overdetermination occur more frequently at low average signal

strengths because the omission of some links also interferes with the correct

identification of unshielded colliders, which are essential to the correct

orientation of the remaining links.) Overall success as measured by the

recovery of the skeleton rises rapidly with signal strength and tops out at about

y1 Link 1 y2

Link 2 Link 3 Link 5

y4 y5

Link 4

y6 y3
Link 6

Figure 4. Model 3
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96%, while unqualified success at recovering the correct graph rises in

parallel, toping out at just over 82%.

In earlier work, we also investigated a model with a graph similar to that in

Figure 4, except that link 4 was reversed. The results (available on request

from the authors) are broadly similar to those reported for model 3.

IV. An application to US macro data

Using updated quarterly data previously investigated by King et al. (1991),

Swanson and Granger (1997, pp. 362–363) apply the filtering methods

described in section III to a four-variable VAR for the period January 1949 to

February 1990 using eight lags. We now investigate a model using similar

data for the period January 1949 to April 2002. The time series are the

logarithms of real per capita consumption expenditures (C), real per capita

gross private domestic fixed investment (I), per capita real balances (M), and

real per capita private gross domestic product (Y). (Sources and transforma-

tions are described in Appendix B.)

Because they restrict the class of admissible models to linear chains,

Swanson and Granger need test only for first-order independence, using tests of

correlation between two variables conditional on a third. They do not use the

PC algorithm nor do they consider unshielded colliders. So they must appeal to

extra-statistical information to orient the links between variables. Swanson and

Granger identify the following graph: M — C — I — Y, which they orient as

0
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Figure 5. Outcomes by average signal strength for model 3
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M fi C fi I fi Y on the grounds that at least one of M, C, I must causally

precede Y in the current quarter. Using Swanson and Granger’s methods, we are

able to reproduce their results on the updated data both for their period and for

the most recent available data (January 1949 to April 2000).

For the most recent data, the PC algorithm identifies the graph in Figure 6.

The link between Y and I is shown as dashed because the algorithm could

not orient it. However, as the algorithm presupposes acylical graphs, only

the orientation with the link Y fi I is consistent with that assumption. Notice

that Y is ordered recursively ahead of C and I and is independent of M,

contradicting Swanson and Granger’s identifying assumption that one of the

other variables must be causally prior to Y in the current period. The example

illustrates the advantages of the PC algorithm: first, that it admits a wider class

of models than either linear chains or the frequently encountered Choleski

orderings and, second, that it may at least partially orient the skeleton without

appeal to debatable non-statistical considerations.

V. Conclusions and directions for future work

We are now in a position to draw some preliminary conclusions from our

simulation studies.

(i) Graph-theoretic methods can be an effective data-based tool in

selecting (or at least in narrowing the equivalence class of) the

contemporaneous causal order of SVARs. In the systems examined, the

PC algorithm was successful in identifying the correct causal structures

with reasonable reliability only when signal strengths were relatively

high. It was, however, substantially better at identifying the skeletons of

causal structures. Extra-statistical information may suggest the direc-

tion of particular causal links and, when combined with knowledge of

the skeleton, may provide a firmer basis for a complete causal ordering

than either the PC algorithm or the extra-statistical information could

provide separately.

M

Y

C I

Figure 6. US macroeconomic data
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(ii) Contrary to the fears often expressed in relation to search methodol-

ogies, the PC algorithm appears to have well behaved statistical

properties. In the worst case, commission rates are approximately the

nominal size of the test statistic used to assess conditional independ-

ence and, in the best cases, at about half that rate. There is a clear

tradeoff between increasing the rate of commission (type I error) and

decreasing the rate of omission (type II error).

(iii) Errors in causal ordering have multiple dimensions. Errors of omission

fall rapidly with signal strength. Other types of error can occur only if

errors of omission do not. Reversals and overdetermination are

generally relatively low, but increase with average signal strength,

while failures to resolve the direction of links peaks in the mid-range of

signal strengths and then falls.

(iv) All types of link errors are sensitive to the fine details of the causal

structure. These can be well understood in very simple systems, but are

hard to characterize as complexity grows even moderately.

The last point suggests an important direction of future research. The

Monte Carlo studies here refer to specific models, and the degree to which

they apply generically is unclear. We are developing and validating a

bootstrap-type procedure to provide some measure of the reliability of causal

identifications when, as it real-world applications, the true data-generating

process is unknown.

Our study assumed a fixed sample size of 500 that, while reasonable

in some applications, is too long for others (especially ones using

quarterly data). We plan to extend the study to include a variety of realistic

sample sizes.

We also assumed that the true lag length of the VAR was known. But in

practice selecting the lag length is also a statistical problem – one that may

interact with selecting the causal ordering. We plan to investigate the joint

problem in future simulations.

Finally, we have restricted our SVAR to be stationary. We plan to also

plan to investigate the efficacy of the search algorithm in nonstationary

settings.

Final Manuscript Received: October 2003
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Appendix A: The PC algorithm

Descriptions of the PC algorithm are found in Spirtes et al. (2000, pp. 84 and

85) and Pearl (2000, pp. 49–51). This description is based on Cooper (1999,

p. 45, figure 22).

1. Start with a graph C in which each variable is connected by an edge to

every other variable.

2. Set n ¼ 0. Test for nth-order conditional correlation between every pair

of variables conditioning on every subset of variables size n. (For

n ¼ 0, the conditioning set is the null set, so that conditional correlation

is equivalent to unconditional correlation.) If a pair of variables is

conditionally uncorrelated, eliminate the edge between them.

3. Set n ¼ n + 1 and repeat step 2 until all possible conditionings have

been exhausted. Call the resulting graph F.
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4. Consider each pair of variables (X and Y) in F that are unconnected by

a direct edge but are connected through an undirected path through

a third variable (Z). Orient X — Z — Y as X fi Z ‹ Y if, and only if, X

and Y are dependent when conditioned on every subset of variables,

excluding X and Y, that includes Z. Call the resulting graph F¢.
5. Repeat until no more edges in F¢ can be oriented: If X fi Z and Z — Y

and X and Y are not directly connected, then orient Z — Y as Z fi Y.13

Appendix B: The data

All the raw series, except M1, are from the US National Income and Product

Accounts and were downloaded from the Haver Analytics United States

Economic Statistics database. Except where noted, they are seasonally

adjusted, stated in billions of constant 1996 dollars, and cover January 1947 to

April 2002. Haver codes are in bold type. Personal Consumption Expendi-

ture ¼ CH; Gross Private Domestic Fixed Investment ¼ FH; M1 monetary

aggregate (MN) for January 1947 to April 1958 ¼ M1 monetary aggregate

from Board of Governors of the Federal Reserve System (1976), Table 1.1,

pp. 17–18, column 2 (‘Money Stock: Total’) · 0.97966 and for January 1959
to April 2002 ¼ FM1 (data are billions of current dollars; quarterly values are

averages of monthly values); Government Consumption Expenditure and

Gross Investment (current dollars) ¼ G; Government Consumption Expendi-

ture and Gross Investment (constant dollars) ¼ GH; Gross National Product

(current dollars) ¼ GNP; Gross National Product (constant dollars) ¼
GNPH; Civilian Noninstitutional Population over 16 Years Old ¼ LNN.

Data used in paper are constructed as follows: C ¼ log(CH/LNN);

I ¼ log(FH/LNN); M ¼ log[MN/(P · LNN], where P ¼ (GNP ) G)/

(GNPH ) GH); Y ¼ log[(GNPH ) GH)/LNN].

13Cooper (1999), Pearl (2000) and Spirtes et al. (2000) all describes a final step to the algorithm
that is omitted in Tetrad 3 as well as in our simulations: If there is a directed path from X to Y and if
there is an undirected edge between X and Y, orient X — Y as X fi Y. We appeal to this step in
orienting the link between I and Y in section IV.
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