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1 Introduction

Observers of financial markets have long noted that the volatility of financial price

movements varies stochastically. The well-established ARCH and GARCH models of

Engle (1982) and Bollerslev (1986) and the plethora of descendants provide a very

convenient framework for empirical modelling of volatility dynamics. A somewhat

different, but essentially equivalent way to model the same phenomenon is to think in

terms of the latent stochastic volatility model introduced in embryonic form by Clark

(1973), extended and formalized in Taylor (1982, 1986), and studied extensively in

the vast literature that follows (See Ghysels, Harvey, Renault (1996) and Shephard

(2004)). Financial market empiricists now know that time varying stochastic volatility

can account for much of the dynamics of short-term financial price movements.

The empirical volatility literature has proceeded largely in a reduced form statis-

tical manner, with only minimal guidance from economic theory. The role of theory

has mainly been to identify important markets and sometimes to provide informal

intuitive interpretation of empirical regularities.

This paper studies stock market volatility within a self-contained general equilib-

rium framework. The economy is a familiar endowment economy with a preference

structure assumed to be that of Epstein and Zin (1991) and Weil (1989). The paper

is an extension of Bansal, Khatchatrian, and Yaron (2003), Bansal and Yaron (2004),

Campbell and Hentschel (1992), and Campbell (2003). As in those papers, the log-

linearization methods of Campbell and Shiller (1988) are used to derive qualitative

predictions and gain further insights into the implications of the models under consid-

eration. In this paper, however, the volatility dynamics are more complicated. The

paper proceeds through a sequence of models, with each extension motivated by a

desire to explore more fully the relationship between stock market returns and volatil-

ity. The models, and in particular the most general model considered in Sections 3–4

below, yields some interesting insights that can account for known characteristics of

stock market volatility.

For instance, empirical researchers have long known that stock market returns and

stock market volatility are negatively correlated. Black (1976) is perhaps the first to

call attention to this empirical regularity and attributes it to changing financial lever-

age associated with equity prices changes, as further studied by Christie (1982). The

asymmetric effect has thus been termed the leverage effect, and Nelson (1991) high-

lights its importance by formally building the asymmetry into the E-GARCH model.
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Although the term leverage effect, or simply leverage, is the common expression in

the econometrics and stochastic volatility literatures, few, if any, economists are com-

fortable with the original explanation and believe the leverage effect has more to do

with risk premiums than balance sheet leverage.

Economic explanations for the leverage effect such as French, Schwert, and Stam-

baugh (1987) employ intuitive traditional CAPM-type reasoning with a presumption

that volatility carries a positive risk premium. A related approach (Campbell and

Hentschel, 1992) uses the Merton (1973) model to connect expected returns to volatil-

ity along with a GARCH-type model for the evolution of volatility. Bekaert and Wu

(2000) provide a comprehensive review of these explanations and a very convenient

reduced-form setup for empirical analysis of volatility asymmetry relationships. Wu

(2002) develops a self-contained equilibrium model, along with carefully executed

empirical work, but the model relies on a pre-specified pricing kernel not directly

connected to marginal utility. Also the Wu model permits correlations between cash

flow innovations and their volatilities that provide a statistical channel for a leverage

effect separate from any economic channels.

The main model developed and analyzed in Section 3–4 indicates that the ex-

istence and sign of the leverage effect depend critically on the values of two key

economic parameters, the coefficient of risk aversion and the intertemporal elasticity

of substitution. In the case of expected utility, these parameters are reciprocals of

each other, and the model predicts no leverage effect at all in this case. Thus, the now

well-established empirical finding of a negative leverage effect — which is reconfirmed

in Figures 1 and Figures 2 below — strongly discredits the expected utility paradigm.

Furthermore, economists generally agree that the coefficient of risk aversion exceeds

unity; if so, the predicted sign of the leverage effect depends critically on the loca-

tion of the intertemporal elasticity of substitution relative to unity. If this elasticity

parameter exceeds unity, then the leverage effect is negative — exactly as observed

in the data. On the other hand, if it is below unity, then the sign of the leverage

effect is positive, in direct contrast to empirical findings. The issue of whether the

intertemporal elasticity of substitution is below or above unity is contentious. (See

Bansal and Yaron (2004) for more details on the debate.) Since the negative rela-

tionship has been so well documented (see Bekaert and Wu, 2000), the findings from

reduced-form modelling of asymmetric volatility thereby have sharp consequences for

an economic debate regarding the magnitude of a key utility parameter. In addition,

the model can also explain the dynamic leverage effect, i.e., the pattern of serial cross
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correlations between stock market movements and volatility at different leads and

lags as documented empirically in Litvinova (2004) and Bollerslev, Litvinova, and

Tauchen (2004).

The model can also account for the empirical finding that stock market volatility

appears to follow a two factor structure, with one slowly evolving component and one

quickly mean reverting component. Engle and Lee (1999), Gallant, Hsu, and Tauchen

(1999), and Alizadeh, Brandt, and Diebold (2002), among many others, adduce evi-

dence on this empirical regularity. The two factor structure emerges naturally from

the internal structure of the model.

Finally, the model appears useful for sorting out issues related to time varying

risk prices and a volatility risk premium. A common presumption is that increased

stock market volatility is associated with increased expected stock market returns.

This reasoning is intuitively plausible — riskier investments should demand a higher

expected return relative to cash — and a rigorous analysis is Merton (1973). Various

expositions of the Merton model appear in the literature, and a convenient summary

with easy to interpret log-linear approximations is in Campbell, Lo, and Mackinlay

(1997, pp. 291—334). An early effort to model and detect empirically the return-

volatility relationship is Engle et al (1987), who propose the GARCH-M model for

bond returns. The follow-up literature from Nelson (1991) onwards is huge, but, as

is well known, the effort to detect an empirical relationship between expected stock

returns and volatility has yielded weak and mixed results. Two recent efforts, Ghy-

sels, Santa-Clara, and Valkanov (2004) and Lundblad (2004), employ more powerful

techniques and present evidence for a statistically significant positive risk-return re-

lationship which has been here-to-for quite difficult to detect. However, as will be

seen in Section 4, such efforts are detecting the confounding of a time-varying risk

premiums on consumption and volatility risk, which clouds the interpretation of the

empirical evidence. Scruggs (1998) and Guo and Whitelaw (2003) present evidence

that additional factors are needed in the return-volatility equation in order to measure

volatility risk reliably, and the main model below indicates the underlying variable

for which these factors are likely proxies.

The rest of this paper is organized as follows: Section 2 presents the notatation

and two initial models that are useful for understanding the basic structure and

ideas. Section 3 sets forth the main model, and Section 4 connects the predictions

from that model to the empirical stochastic volatility literature. Section 5 contains

the concluding remarks.
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2 Setup, Notation, and Two Initial Models

2.1 The MRS and Asset Pricing

Let Mt+1 denote the marginal rate of substitution process (MRS), also sometimes

termed the stochastic discount factor (SDF), between t and t+1, and let Rt+1 denote

the gross return on an asset. The fundamental asset pricing relationship is

Et (Mt+1Rt+1) = 1. (1)

Throughout, we shall work under a conditional lognormality assumption. Let mt+1 =

log(Mt+1), and let rt+1 = log(Rt+1) denote the geometric return on the asset. The

fundamental asset pricing relationship is then

log
[
Et

(
emt+1+rt+1

)]
= 0. (2)

We start by working through in this section two models that illustrate the main

points about time varying a risk premium on consumption versus a volatility risk

premium. We then proceed to the main model in Section 3 below.

2.2 CRR Preferences and Stochastic Volatility

Under constant relative risk aversion (CRR) preferencesMt+1 = β(Ct+1/Ct)
−γ, where

Ct is real consumption and β and γ are parameters. Equivalently,

mt+1 = δ − γgt+1, (3)

where δ = log β and

gt+1 = ct+1 − ct, ct = log(Ct),

so gt+1 is the geometric growth rate of consumption. Assume the dynamics of gt+1

are

gt+1 = µc + σctzc,t+1

σ2
c,t+1 = aσc + ρσcσ

2
ct + φσcσctzσ,t+1

(4)

where σct represents stochastic volatility in consumption that is observed by agents

but not by the econometrician, and zc,t+1 and zσ,t+1 are iid N(0, 1) random variables.

The above volatility dynamics are not quite the same as those of Bansal and Yaron

(2004) and Bansal, Khatchatrian, and Yaron (2003), who have a constant multiplying

zσ,t+1, as do and Brenner, Ou, and Zhou (2004) in their continuous time version of

a setup like (4). These other papers use Gaussian volatility dynamics while (4) is
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a square-root, or CIR, type specification. There are certain consequences to the

alternative specifications as discussed farther below. In simulations, of course, care is

needed to include an additional reflecting barrier at a small positive number to ensure

positivity of simulated σ2
c,t+1. The above dynamics for volatility are similar to those

of Bollerslev and Zhou (2003) for their continuous time assessment of the relationship

between the expected stock return volatility relationship.

Let vt = log(Pt/Ct) denote log of the price-dividend ratio of the asset that pays

the consumption endowment {Ct+j}∞j=1. Let

rt+1 = log

(
Pt+1 + Ct+1

Pt

)
(5)

denote the geometric return (hereafter just called the return). The standard Campbell-

Shiller (1988) log-linearization is

rt+1 = k0 + k1vt+1 − vt + gt+1 (6)

where k1 < 1, k1 ≈ 1, is a positive constant. The strategy to solve models of this

sort is to conjecture a solution for vt as a function of the state variables, use the

approximation immediately above, impose the fundamental asset pricing equation,

and then solve for the coefficients of the conjectured solution.

In this case we conjecture

vt = A0 + Aσσ
2
ct (7)

and the solutions for A0, Aσ are given in Subsection 6.1 of the Appendix. From the

solution one can easily derive the familiar relationship for the expected excess return

Et(rt+1)− rft = γσ2
ct −

1

2
σ2

rt (8)

where rft is the riskless rate in geometric form and 1
2
σ2

rt = 1
2
Vart(rt+1) is a geometric

adjustment term, also called a Jensen’s Inequality adjustment (Campbell, Lo, and

Mackinlay, 1997, p. 307). The risk premium is thus γσ2
ct, and, ignoring the geometric

adjustment, one can write

rt+1 − rft = α + γσ2
ct + εt+1 (9)

where α is an intercept and εt+1 is a heteroskedastic error term. This expression

is the elusive risk-return relationship that has been sought after by Nelson (1991),

Lundblad (2004), and Ghysels el al (2004), among others.
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One has to be very careful on how to interpret the risk premium in (9), however.

It is actually a time-varying risk premium on consumption risk, with a variable coeffi-

cient that is attributable to the stochastic volatility; this interpretation is emphasized

by Bansal and Yaron (2004) and less directly in (Campbell, Lo, and Mackinlay, 1997,

p. 307). The fact that stochastic volatility generates time-varying risk premium on

other factors (here consumption risk) appears first to have made formal in an econo-

metric sense by Engle et al (1987), who use a GARCH-in-mean model to study the

risk premium in bond returns.

It proves interesting to examine why (9) does not reflect a volatility risk premium.

In this model, any return that depends only on the volatility innovation zσ,t+1 carries

no risk premium, despite the fact that volatility innovation zσ,t+1 has an impact on

the return; one can easily show that

rt+1 − Et (rt+1) = σctzc,t+1 + k1Aσφσcσctzσ,t+1 (10)

so the volatility innovation zσ,t+1 affects the return, and possibly substantially. Nonethe-

less, an arithmetic return that is a pure volatility bet such as

Rσ,t+1 = exp

(
−1

2
ς2
t + ςtzσ,t+1

)
, (11)

where ςt is a constant known at time t, satisfies

Et (Rσ,t+1) = Rft, (12)

where Rft = erf t; i.e., Rσ,t+1 carries no risk premium. Also, if C(σ2
c,t+1) is a cash flow

realized at t + 1 that only depends upon σ2
c,t+1, then the price (present value) of that

cash flow satisfies

Et

[Mt+1C(σ2
c,t+1)

]
=

E
[
C(σ2

c,t+1)
]

Rft

. (13)

There is no reward for bearing volatility risk because in this model that risk is un-

correlated with the MRS process due to the assumption that zc,t+1 and zσ,t+1 are un-

correlated. Of course one could always generate a volatility risk premium by simply

correlating zc,t+1 and zσ,t+1, but that seems ad hoc and economically unsatisfactory.

2.3 Epstein-Zin-Weil Preferences and Stochastic Volatility

Bansal and Yaron (2004) and Bansal, Khatchatrian, and Yaron (2003) note that

Epstein-Zin-Weil preferences can actually induce an endogenous volatility risk pre-

mium. We start with a simplified version of their setups, point out some problems,

and then proceed to a more general version in the next section.
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Write the log of the marginal rate of substitution as

mt+1 = bm0 + bmggt+1 + bmrrt+1 (14)

and note that under Epstein-Zin-Weil preferences

bm0 = θ log(δ)

bmg = −θ/ψ

bmr = θ − 1

(15)

where

θ =
1− γ

1− 1
ψ

. (16)

The parameter γ is the risk aversion parameter; ψ is the coefficient of intertemporal

substitution, and δ the subjective discount factor. If θ = 1 then these preferences

reduce to the CRR preferences studied above. We retain the same dynamics (4)

for consumption growth and volatility. The primary differences between this setup

and that of Bansal and Yaron (2004) are that the above entails square-root volatility

dynamics instead of the simpler Gaussian dynamics but it excludes the long run

risk factor in the consumption growth equation. That factor is excluded only for

simplification to concentrate attention on the role of volatility.

The return on the consumption endowment rt+1 that appears in the expression

for the log of the marginal rate of substitution (14) has to be solved for endogenously.

As before, first conjecture a solution for log price-consumption ratio

vt = A0 + Aσσ
2
ct. (17)

Subsection 6.2 of the Appendix contains the derivation of A0 and Aσ along with the

reduced form expressions for rt+1 and mt+1.

From these expressions one can deduce the expression for the expected excess

return

Et(rt+1)− rft = −(bmr + bmg)σ
2
ct − bmrk

2
1A

2
σσ

2
ct −

1

2
σ2

rt (18)

which in the case of Epstein-Zin-Weil preferences reduces to

Et(rt+1)− rft = γσ2
ct + (1− θ)k2

1A
2
σσ

2
ct −

1

2
σ2

rt (19)

where again −1
2
σ2

rt is the geometric adjustment term. The risk premium

γσ2
ct + (1− θ)k2

1A
2
σσ

2
ct (20)
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is composed of two terms. The first term represents the familiar time varying risk pre-

mium on consumption risk, while the second represents the risk premium on volatility.

The volatility risk premium is generated endogenously via the structure of the pref-

erences, and, in fact, is absent in the CRR case where θ = 1. However, both risk

premiums are multiples of the same stochastic process, σ2
ct, and would thus be im-

possible to separately identify empirically. In the expression (20) for the overall risk

premium (20) above, the volatility risk premium gets confounded with the consump-

tion risk premium. The confounding reflects the specification of stochastic volatility

in (4) above. By way of contrast, in the models of Bansal and Yaron (2004) and

Bansal et al (2003) the volatility risk premium gets folded into a constant term.

3 Main Model

Consider the following model where consumption growth is

gt+1 = µg + σctzc,t+1, (21)

as in (4), and the stochastic volatility specification is generalized to

σ2
c,t+1 = aσc + ρσcσ

2
ct + q

1
2
t zσ,t+1

qt+1 = aq + ρqqt + φqq
1
2
t zq,t+1 .

(22)

Now we allow for stochastic volatility of the volatility process via the qt process. This

characteristic of volatility is known to be empirically important; see Chernov et al

(2003) and the references therein.

The log of the marginal rate of substitution remains

mt+1 = bm0 + bmggt+1 + bmrrt+1, (23)

where expressions for the coefficients are given in (15) for Epstein-Zin-Weil prefer-

ences.

Let vt denote the log price dividend ratio of an asset paying the consumption

endowment and rt+1 denote the return. Conjecture a linear expression for vt

vt = A0 + Aσσ
2
ct + Aqqt (24)

where A0, Aσ, Aq are constants whose derivation is in Subsection 6.3 of the Appendix.

This subsection of the Appendix also contains the reduced form expressions for the
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marginal rate of substitution and the return. From these expressions one can deduce

that the conditional mean excess return is

Et (rt+1)− rft = (bmr + bmg)σ
2
ct + bmrk

2
1(A

2
σ + A2

qφ
2
q)qt − 1

2
σ2

rt (25)

where −1
2
σ2

rt = −1
2
Vart(rt+1) is the geometric adjustment term. For Epstein-Zin-Weil

preferences, the conditional mean excess return reduces to

Et (rt+1)− rft = γσ2
ct + (1− θ)k2

1(A
2
σ + A2

qφ
2
q)qt − 1

2
σ2

rt (26)

The risk premium

γσ2
ct + (1− θ)k2

1(A
2
σ + A2

qφ
2
q)qt (27)

is composed of two separate terms, where the first term reflects the risk premium

on consumption risk and the second the risk premium on volatility risk. The latter

is a confounding of a risk premium on shocks to volatility, zσ,t+1, and shocks to the

volatility of volatility, zq,t+1, but nonetheless this risk premium (or more precisely

the risk price) can be separately identified from that of consumption risk. Indeed,

Scruggs (1998) and Guo and Whitelaw (2003) present evidence that additional control

factors are needed in the return-volatility equation in order to estimate reliably the

relationship between expected return and volatility. In both cases, the additional

factors include at least one interest rate variable, which is arguable a proxy for qt in

the equation immediately above, given that the level of interest rates is associated

with the turbulence of financial markets.

Interestingly, the sign of the volatility risk premium depends critically on the sign

of 1− θ, where θ is define in (16). Most economists would probably agree that γ > 1,

i.e., the agent is more risk averse than a log investor. If γ > 1, then the sign of

1− θ =
γ − 1

ψ

1− 1
ψ

(28)

depends upon ψ. A sufficient condition for a positive volatility risk premium is ψ > 1,

which Bansal and Yaron (2004) argue is the most reasonable region for ψ. On the

other hand, a number of economists (see Campbell and Koo, 1997, and the references

therein) argue that ψ < 1. If so, then it would take rather small values to generate a

positive risk premium on volatility

ψ < 1
γ
⇒ 1− θ > 0

1
γ

< ψ < 1 ⇒ 1− θ < 0.
(29)
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4 Stock Price and Volatility Dynamics

Much of the stochastic volatility literature examines the log capital return process

∆pt = log(Pt)− log(Pt−1) (30)

instead of the total return process, rt, which includes the dividend yield. In this

section we shall study the dynamics of the volatility of ∆pt implied by the general

stochastic volatility model of Section 3; the conclusions are essentially the same for

either process, because the capital gain return tends to dominate the total return.

The reduced form expression for the ∆pt process is derived in the Subsection 6.3

of the Appendix and takes the form

∆pt = bp0 + Aσ(ρσ − 1)σ2
c,t−1 + Aq(ρq − 1)qt−1 +

σc,t−1zc,t + Aσq
1
2
t−1zσ,t + Aqφqq

1
2
t−1zq,t

(31)

where bp0 is a constant and the other parameters are defined in Subsection 6.3 of the

Appendix. Note that from (86) Aσ is of the form

Aσ =
1

θ
hσ, hσ > 0, (32)

and from (87) Aq is of the form

Aq =
1

θ
hq, hq > 0, (33)

and so the signs of Aσ and Aq are same as those of θ defined in (16) above.

We consider first the dynamic relationship between ∆pt and the consumption

volatility process σ2
ct. It follows from the expression (31) and the dynamics (22) that

Cov(∆pt, σ
2
c,t−j) = Aσ(ρσ − 1)E(σ4

c,t−1)ρ
j−1
σc , j = 1, 2, . . . ,∞

Cov(∆pt, σ
2
ct) = ρqAσ(ρσc − 1)E(σ4

c,t−1) + AσE(qt−1)

Cov(∆pt, σ
2
c,t+j) = Aσ(ρσ − 1)E(σ4

c,t−1)ρ
j
σc, j = 1, 2, . . . ,∞

(34)

The serial cross covariances Cov(∆pt, σ
2
c,t+j) for j 6= 0 are proportional to the auto-

covariance function of the σ2
ct process. The sign will be negative if θ < 0, as would

be the case if both γ and ψ exceed unity. Thus, in this case a market price decline

would signal increased future expected consumption volatility, a result analogous to

that of Bansal, Khatchatrian, and Yaron (2003) who study the covariance between

the log price dividend ratio, vt, and subsequent consumption volatility σc,t+j, j > 0.
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Interestingly, the sign of the contemporaneous covariance Cov(σ2
ct, ∆pt) is ambiguous

because it is the sum of terms of opposite signs.

To tie the theory to the stochastic volatility literature, the most interesting series

is the one-step conditional variance process defined as

σ2
pt ≡ Vart(∆pt+1) = σ2

ct + (A2
σ + A2

qφ
2
q)qt. (35)

From (35) it is immediately seen that conditional volatility follows a two-factor

structure where it is the superposition of two autoregressive processes. This the-

oretical representation of volatility corresponds exactly to the two-factor structure

developed empirically by Engle and Lee (1999), Gallant, Hsu, and Tauchen (1999),

Barndorff-Nielsen and Shephard (2001, and additional papers at www.levyprocess.org),

Alizadeh, Brandt, and, Diebold (2002) among others. The typical structure identi-

fied empirically contains one factor that is extremely persistent and another that is

strongly mean reverting and nearly serially uncorrelated. In (35), σ2
ct is a likely can-

didate for the persistent factor while qt is likely the strongly mean reverting factor.

Scruggs (1998) and Guo and Whitelaw (2003) present evidence that additional fac-

tor(s) are needed in the return-volatility equation in order to empirically measure

volatility risk reliably. These factors are variables that tend to be high when financial

volatility is high. Their findings are appear completely consistent with Equation (35),

which suggests that these factors should be related to qt, the volatility of volatility.

The contemporaneous leverage effect pertains to the correlation between the con-

ditional volatility process σ2
pt and the capital return process ∆pt. Two easily computed

conditional moments are

Covt−1(∆pt, σ
2
pt) = Aσqt−1 (36)

and

Cov[∆pt, σ
2
pt − Et−1(σ

2
pt)] = AqE(qt−1). (37)

One sees immediately from these covariances along with with (32), (33), and (16) the

role that the utility function parameters γ and ψ play in determining the sign of the

leverage effect. The covariances are negative under the parameter values utilized by

Bansal and Yaron (2004).

We now consider the dynamic leverage effect. Some direct empirical evidence

is seen in Figure 1, which shows the correlations between ∆p as proxied by the

logarithmic return on S&P 100 Index and leads and lags of the VIX volatility Index,

daily, 1990–2004. The VIX index is designed to reflect the implied volatility on S&P
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100 Index options with one month to expiration. Evidently, a large price increase is

associated with a contemporaneous drop in volatility which then slowly dies away.

Figure 2 shows the same correlations except computed using monthly averages. The

pattern remains quite apparent at the monthly frequency. Both figures are consistent

with the evidence adduced in Litvinova (2004) and Bollerslev, Litvinova, and Tauchen

(2004) using very high frequency data.

In order to compare the predictions from the model to the observed pattern,

we need to compute analogous correlations under the model. Convenient analytical

approximate results involving moments of σ2
pt and cross moments with other series

appear to be out of reach. Instead, simulation is used to compute unconditional

correlations of interest. Given a set of parameter values, the model of Section 3

is simulated for 10000 periods and population moments implied by the model are

computed via Monte Carlo. Following the recommendation of Campbell and Koo

(1997), the orthogonality conditions of the Euler equation error were checked and

found to be negligible.

The correlations of interest are computed for two sets of parameter values, labelled

Cases A and B in Table 1, which are based on Campbell and Koo (1997) and Bansal,

Gallant, and Tauchen (2004). The only difference between the two cases is that

the elasticity of substitution ψ = 1.50 in A and ψ = 0.50 in B. The risk aversion

parameter γ is the same in both cases. The other values of the parameters would be

reasonable for a model operating in monthly time. The model could not be expected

to fit actual data because it lacks the long run risk component in consumption growth

of Bansal and Yaron (2004), which is left out only for simplicity. Figure 3 shows the

autocorrelation function of stock market volatility σ2
pt for the two sets parameter

settings. The persistence of volatility is completely consistent with all empirical

findings, and comparison across cases indicates that the value of the elasticity of

substitution ψ has little effect on volatility persistence.

Figure 4 shows predicted dynamic leverage correlations between ∆pt and leads and

lags of σ2
pt. In the upper panel, where ψ = 1.50, the contemporaneous leverage effect is

a negative and it fades away over time, which is completely consistent with Figures 1

and 2. In the bottom panel, where ψ = 0.50, the leverage effect is positive, which

is completely counter factual. Interestingly, and somewhat surprisingly, the observed

negative dynamic leverage effect is fairly compelling evidence for an intertemporal

elasticity of substitution above unity.

13



5 Conclusion

The characteristics of the relationships between stock market volatility and stock

market returns are examined within the context of a general equilibrium framework.

The framework only permits connections between volatility and returns that arise

through the internal economic structure of the model. All innovations are presumed

uncorrelated, thereby ruling out connections that could arise via separate statistical

channels. The most general model generates a two-factor structure for volatility

along with time-varying risk premiums on consumption and volatility risk. It also

generates endogenously a dynamic leverage effect, the sign of which depends upon

the magnitudes of the risk aversion (γ) and intertemporal elasticity of substitution

(ψ) parameters. In the case of expected utility where γ = 1/ψ, the leverage effect is

absent, which suggest a strong connection between non-expected utility preferences

and the leverage effect. The magnitude of ψ relative to unity is an issue of debate in

the financial economics literature. Interestingly, if γ > 1, as is commonly presumed,

then the observed negative leverage effect necessarily implies ψ > 1, so the well

documented finding of negative leverage has bearing on this economic debate.
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6 Appendix: Details of the Derivations

6.1 Solution for the Model with CRR Preferences in Subsec-
tion 2.2

From the approximation rt+1 = k0 + k1vt+1 − vt + gt+1 and the presumed dynamics

for gt+1 and σ2
c,t+1 it follows that

rt+1 = k0 + (k1 − 1)A0 + (k1 − 1)Aσaσc + µc + Aσ(k1ρσc − 1)σ2
ct +

k1φσcAσσctzσ,t+1 + σctzc,t+1

(38)

and

mt+1 = δ − γµc − γσctzc,t+1. (39)

Thus

Et

(
ert+1+mt+1

)
= 1 ⇒ (40)

Et (rt+1 + mt+1) +
1

2
Vart (rt+1 + mt+1) = 0. (41)

Computing the conditional first two moments and setting the above to zero gives

k0 + (k1 − 1)A0 + (k1 − 1)Aσaσc + δ + (1− γ)µc +
[
Aσ(k1ρσc − 1) + 1

2
k2

1φ
2
σcA

2
σ + 1

2
(1− γ)2φ2

c

]
σ2

ct = 0.
(42)

This can hold for all values of σ2
ct only if

A0 =
k0 + (k1 − 1)Aσaσc + δ + (1− γ)µc

1− k1

(43)

where Aσ is a solution to the quadratic

(1− γ)2φ2
c + 2(k1ρσc − 1)Aσ + k2

1φ
2
σcA

2
σ = 0 (44)

There are two roots

A+,−
σ =

1− k1ρσc ±
√

(1− k1ρσc)2 − k4
1φ

2
σ(1− γ)2φ2

σc

φ2
σc

(45)

which are real so long as φ2
σc is sufficiently small. The root A+

σ has the unappealing

property that

lim
φσ→0

A+
σ φ2

σc 6= 0 (46)

which would mean the impact of σct would grow without bound as stochastic volatility

becomes unimportant. Thus we take A−
σ as the economically meaningful root and set

Aσ =
1− k1ρσc −

√
(1− k1ρσc)2 − k4

1φ
2
σ(1− γ)2φ2

c

φ2
σc

(47)
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6.2 Solution for Model with EZW Preferences in Subsec-
tion 2.3

From the approximation rt+1 = k0 + k1vt+1 − vt + gt+1 and the presumed dynamics

for gt+1 and σ2
c,t+1 it follows that

rt+1 = k0 + (k1 − 1)A0 + (k1 − 1)Aσaσc + µc + Aσ(k1ρσc − 1)σ2
ct +

k1φσcAσσctzσ,t+1 + k1σctzc,t+1

(48)

with

mt+1 = bm0 + bmggt+1 + bmrrt+1. (49)

Then

mt+1 = bm0 + bmg(µc + σctzc,t+1) +

bmr [k0 + (k1 − 1)A0 + (k1 − 1)Aσaσc + µc + Aσ(k1ρσc − 1)σ2
ct] +

bmrk1φσcAσσctzσ,t+1 + (bmr + bmg)k1σctzc,t+1

(50)

Thus

rt+1 + mt+1 = (1 + bmr) [k0 + (k1 − 1)A0 + (k1 − 1)Aσaσc] +

(1 + bmr + bmg)µc + bm0 + (1 + bmr) [Aσ(k1ρσc − 1)] σ2
ct +

(1 + bmr)k1φσcAσσctzσ,t+1 + (1 + bmr + bmg)k1σctzc,t+1,

(51)

and

Et (rt+1 + mt+1) = (1 + bmr) [k0 + (k1 − 1)A0] + (1 + bmr) [Aσ(k1 − 1)aσc] +

(1 + bmr + bmg)µc + bm0 + (1 + bmr) [Aσ(k1ρσc − 1)] σ2
ct,

(52)

Vart (rt+1 + mt+1) = [(1 + bmr)
2k2

1φ
2
σcA

2
σ + (1 + bmr + bmg)

2k2
1φ

2
c ] σ

2
ct. (53)

Imposing

Et (rt+1 + mt+1) +
1

2
Vart (rt+1 + mt+1) = 0 (54)

and equating to zero the constant and coefficient of σ2
ct gives the equations

0 = (1 + bmr) [k0 + (k1 − 1)A0 + (k1 − 1)Aσaσc] +

(1 + bmr + bmg)µc + bm0

(55)

0 = (1 + bmr) [(k1 − 1)Aσaσc] +

1
2
[(1 + bmr)

2k2
1φ

2
σcA

2
σ + (1 + bmr + bmg)

2k2
1φ

2
σc] .

(56)
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Thus

A0 =
[k0 + (k1 − 1)Aσaσc]

(1− k1)
+

(1 + bmr + bmg)µc + bm0

(1 + bmr)(1− k1)
(57)

where )Aσ is the solution of the quadratic

(1 + bmr + bmg)k
2
1φ

2
σc + 2(k1ρσc − 1)Aσ + (1 + bmr)k

2
1φ

2
σcA

2
σ = 0 (58)

There are two roots

A+,−
σ =

1− k1ρσc ±
√

(1− k1ρσc)2 − (1 + bmr + bmg)2k4
1φ

2
σc

(1 + bmr)k2
1φ

2
σc

(59)

Again, the root A+
σ has the unappealing property that

lim
φ2

σc→0
φ2

σcA
+
σ 6= 0 (60)

so we take A−
σ as the economically meaningful root and set

Aσ =
1− k1ρσc −

√
(1− k1ρσc)2 − (1 + bmr + bmg)2k4

1φ
2
σc

(1 + bmr)k2
1φ

2
σc

(61)

In the case of Epstein-Zin-Weil preferences the coefficients are

A0 =
k0 + (k1 − 1)Aσaσc

(1− k1)
+

(1− γ)µc + θ log(δ)

θ(1− k1)
(62)

Aσ =
1− k1ρσc −

√
(1− k1ρσc)2 − (1− γ)2k4

1φ
2
σc

θk2
1φ

2
σc

(63)

It is useful to record the reduced form expression for mt+1, rt+1:

mt+1 = b∗m0 + bmrAσ(k1ρσc−1)σ2
ct +(bmr + bmg)φcσctzc,t+1 + bmrk1Aσφσcσctzσ,t+1 (64)

rt+1 = br0 + Aσ(k1ρσc − 1)σ2
ct + σctzc,t+1 + k1Aσφσcσctzσ,t+1 (65)

where

b∗m0 = TBA

br0 = TBA
(66)

In the case of Epstein-Zin-Weil preferences the reduced form expressions are

mt+1 = b∗m0 + (θ − 1)Aσ(k1ρσc − 1)σ2
ct − γφcσctzc,t+1 + (θ − 1)k1Aσφσcσctzσ,t+1

rt+1 = br0 + Aσ(k1ρσc − 1)σ2
ct + σctzc,t+1 + k1Aσφσcσctzσ,t+1

(67)
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6.3 Solution for the Model with EZW Preferences and Gen-
eral Stochastic Volatility in Section 3

The steps to find the solution start with

rt+1 = k0 + (k1 − 1)A0 + Aσ(k1σ
2
c,t+1 − σ2

ct) +

Aq(k1qt+1 − qt) + gt+1.
(68)

Thus

mt+1 + rt+1 = bm0 + (1 + bmr) [k0 + (k1 − 1)A0] + (1 + bmg + bmr)gt+1 +

(1 + bmr)[Aσ(k1σ
2
c,t+1 − σ2

ct) + Aq(k1qt+1 − qt)],
(69)

and so

Et(mt+1 + rt+1) = bm0 + (1 + bmr) [k0 + (k1 − 1)A0] + (1 + bmg + bmr)µc +

(1 + bmr)k1[Aσaσc + Aqaq] +

(1 + bmr)[Aσ(k1ρσc − 1)σ2
ct + Aq(k1ρq − 1)qt],

(70)

and

Vart(mt+1 + rt+1) = Vart[(1 + bmg + bmr)gt+1] +

Vart[(1 + bmr)(Aσk1σ
2
c,t+1 + Aqk1qt+1)].

(71)

This can be expressed as

Vart(mt+1 + rt+1) = (1 + bmg + bmr)
2σ2

ct +

(1 + bmr)
2(A2

σk
2
1qt + A2

qk
2
1φ

2
qqt)

(72)

The asset pricing equation is

0 = Et(mt+1 + rt+1) +
1

2
Vart(mt+1 + rt+1) (73)

Setting to zero the constant term yields

A0 =
bm0 + (1 + bmr)[k0 + k1(Aσaσc + Aqaq)] + (1 + bmg + bmr)µc

(1 + bmr)(1− k1)
. (74)

The term for σ2
ct is

(1 + bmr)(k1ρσc − 1)Aσσ
2
ct +

1

2
(1 + bmg + bmr)

2σ2
ct (75)

and setting it to zero gives

Aσ =
1
2
(1 + bmg + bmr)

2

(1 + bmr)(1− k1ρσc)
. (76)
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The term for qt is

(1 + bmr)(k1ρq − 1)Aqqt +
1

2
(1 + bmr)

2(A2
σk

2
1qt + A2

qk
2
1φ

2
qqt). (77)

and setting it to zero gives a quadratic in Aq:

(1 + bmr)A
2
σk

2
1 + 2(k1ρq − 1)Aq + (1 + bmr)k

2
1φ

2
qA

2
q = 0. (78)

There are two real solutions

A+
q , A−

q =
1− k1ρq ±

√
(1− k1ρq)2 − (1 + bmr)2k4

1φ
2
qA

2
σ

(1 + bmr)k2
1φ

2
q

(79)

so long as

φ2
q ≤

(1− k1ρq)
2

(1 + bmr)2k4
1σ

2
qA

2
σ

. (80)

Note that

lim
φq→0

φ2
qA

+
q 6= 0, (81)

which is economically unappealing, so we take the other root and set

Aq =
1− k1ρq −

√
(1− k1ρq)2 − (1 + bmr)2k4

1φ
2
qA

2
σ

(1 + bmr)k2
1φ

2
q

. (82)

The solution for the log price dividend ratio is thus

vt = A0 + Aσσ
2
ct + Aqqt (83)

where expressions for A0, Aσ, Aq are given immediately above. Under Epstein-Zin-

Weil preferences the coefficients are

A0 =
θ[log(δ) + k0 + k1(Aσaσc + Aqaq)] + (1− γ)µc

θ(1− k1)
(84)

or

A0 =
log(δ) + k0 + k1(Aσaσc + Aqaq)

1− k1

+
(1− γ)µc

θ(1− k1)
(85)

and

Aσ =
1
2
(1− γ)2

θ(1− k1ρσc)
(86)

Aq =
1− k1ρq −

√
(1− k1ρq)2 − θ2k4

1φ
2
qA

2
σ

θk2
1φ

2
q

(87)

19



The reduced form expressions for the MRS, the return, and the price change, are

derived as follows. Start with

mt+1 = bm0 + bmggt+1 + bmrrt+1 (88)

mt+1 = bm0 + bmgµc + bmgσctzc,t+1 + bmr(k0 + k1vt+1 − vt + gt+1). (89)

Hence

mt+1 = b∗m0 + bmrAσ(k1ρσc − 1)σ2
ct + bmrAq(k1ρq − 1)qt +

(bmg + bmr)σctzc,t+1 + bmrk1Aσq
1
2
t zσ,t+1 + bmrk1Aqφqq

1
2
t zq,t+1

(90)

where

b∗m0 = bm0 + (bmg + bmr)µc + bmr[k0 + k1(Aσaσc + Aqaq) ]. (91)

Under Epstein-Zin-Weil preferences the solution for the MRS is

mt+1 = b∗m0 + (θ − 1)Aσ(k1ρσc − 1)σ2
ct + (θ − 1)Aq(k1ρq − 1)qt +

−γσctzc,t+1 + (θ − 1)k1Aσq
1
2
t zσ,t+1 + (θ − 1)k1Aqφqq

1
2
t zq,t+1

(92)

with

b∗m0 = θ log(δ)− γµc + (θ − 1)[k0 + k1(Aσaσc + Aqaq) ]. (93)

To obtain the reduced form expressions for the return start with

rt+1 = k0 + k1vt+1 − vt + gt+1 (94)

rt+1 = k0 + k1(A0 + Aσσ
2
c,t+1 + Aqqt+1)− (A0 + Aσσ

2
ct + Aqqt) + gt+1 (95)

which gives

rt+1 = br0 + Aσ(k1ρσc − 1)σ2
ct + Aq(k1ρq − 1)qt +

σctzc,t+1 + k1Aσq
1
2
t zσ,t+1 + k1Aqφqq

1
2
t zq,t+1

(96)

where

br0 = µc + k0 + (k1 − 1)Aσ + k1(Aσaσc + Aqaq) (97)

For the price change start with

∆pt+1 = pt+1 − pt = vt+1 − vt + gt+1 (98)

which leads to

∆pt+1 = bp0 + Aσ(ρσc − 1)σ2
ct + Aq(ρq − 1)qt +

σctzc,t+1 + Aσq
1
2
t zσ,t+1 + Aqφqq

1
2
t zq,t+1

(99)
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where

bp0 = µc + Aσaσc + Aqaq (100)

The riskless rate, rft, is the solution to

−rft = Et(mt+1) +
1

2
Vart(mt+1), (101)

which works out to

−rft = b∗m0 + (1− θ)[Aσ(k1ρσc − 1)σ2
ct + Aq(k1ρq − 1)qt +

= 1
2
γ2σ2

ct + 1
2
(θ − 1)2k2

1(A
2
σ + φ2

qA
2
q)qt,

(102)

or

rft = −b∗m0 + [(1− θ)Aσ(1− k1ρσc)− 1
2
γ2]σ2

ct +

[Aq(1− k1ρq)− 1
2
(θ − 1)2k2

1(A
2
σ + φ2

qA
2
q)]qt.

(103)
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7 Tables and Figures
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Table 1: Parameter Settings Cases A and B

Parameter Case A Case B

aσc 0.10e-06 0.10e-06
ρσc 0.98 0.98
aq 0.20e-06 0.20e-06
ρq 0.20 0.20
φq 0.10e-06 0.10e-06
δ 0.9949 0.9949
γ 8.00 8.00

ψ 1.50 0.50

µc 0.163e-02 0.163e-02
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Dynamic Leverage Plot, VIX with S&P100 Return, Daily

Day

Figure 1: The figure shows shows the correlation Corr(∆pt, vixt+k), at the daily fre-
quency for k = 0, 1, . . . 50 and for k = −1,−2, . . . ,−50. The daily log-price change
is for the S&P 100 Index and the VIX index is the daily closing value. The sample
period is 1990-01-02–2004-05-21
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Dynamic Leverage Plot, VIX with S&P100 Return, Monthly

Month

Figure 2: The figure shows shows the correlation Corr(∆pj), vixj+l), at the monthly
frequency for l = 0, 1, . . . 5 and for l = −1,−2, . . . ,−5. The monthly average log-price
change ∆p is for the S&P 100 Index and the monthly VIX value vix is the average
of daily closing values. The sample period is 1990-01–2004-05
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Autocorrelations of Conditional Volatility, Case A: ψ=1.50
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Autocorrelations of Conditional Volatility, Case B: ψ=0.50

Figure 3: Each panel shows the autocorrelation function of the conditional variance
process: Corr(σ2

pt, σ
2
p,t+j), j = −50, . . . , 50. The top panel is computed under the

parameter settings A of Table 1, where the inter-temporal elasticity of substitution
is ψ = 1.50; the bottom panel is computed under settings B of Table 1, where the
inter-temporal elasticity of substitution is ψ = 0.50. Comparison of the two panels
indicates that the the autocorrelation function of the conditional variance process is
very insensitive to the value of ψ.
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Dynamic Leverage Correlations, Case B: ψ=0.50

Figure 4: The right side of each panel shows the unconditional correlation of the price
change with subsequent volatility, Corr(∆pt, σ

2
p,t+j), j = 1, 2, . . . 50, and the left side

shows the correlation of the price change with lagged volatility, Corr(∆pt, σ
2
p,t−j), j =

1, 2, . . . 50. The top panel pertains to the parameter settings A of Table 1, where the
inter-temporal elasticity of substitution is ψ = 1.50; the bottom panel pertains to the
parameter settings B of Table 1, where the inter-temporal elasticity of substitution is
ψ = 0.50. Comparison of the two panels indicates that the sign of the leverage effect
depends upon the value of ψ relative to unity.
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