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1 Introduction

The relatively large credit spreads on high grade investment bonds has long been an anomaly

in financial economics. Historically, firms that issue such bonds appear to entail very little

default risk yet their credit spreads are sizable and positive (Amato and Remolona, 2003). A

natural explanation is that these firms are exposed to large sudden and unforeseen movements

in the financial markets. In other words, the spread accounts for exposure to market jump

risk. Jump risk has been proposed before as a possible source of the credit premium puzzle

(Zhou, 2001; Huang and Huang, 2003), but the empirical validation in literature has met

with mixed and inconclusive results (Collin-Dufresne, Goldstein, and Martin, 2001; Collin-

Dufresne, Goldstein, and Helwege, 2003; Cremers, Driessen, Maenhout, and Weinbaum, 2005,

2004). In this paper, we develop a jump risk measure based on identified realized jumps (as

opposed to latent or implied jumps) as an explanatory variable for high investment grade

credit spread indices.

The continuous-time jump-diffusion modeling of asset return process has a long history

in finance, dating back to at least Merton (1976). However, the empirical estimation of the

jump-diffusion processes has always been a challenge to econometricians. In particular, the

identification of actual jumps is not readily available from the time-series data of underlying

asset returns. Most of the econometric work relies on complicated numerical methods, or

numerically intensive simulation-based procedures, and/or joint identification schemes from

both the underlying asset and the derivative prices (see, e.g., Bates, 2000; Andersen, Benzoni,

and Lund, 2002; Pan, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Eraker, Johannes,

and Polson, 2003, among others).

This paper takes a different and direct approach to identify the realized jumps based

on the seminal work by Barndorff-Nielsen and Shephard (2004b, 2006). Recent literature

suggests that the realized variance measure from high frequency data provides an accurate

measure of the true variance of the underlying continuous-time process (Andersen, Boller-

slev, Diebold, and Labys, 2003b; Barndorff-Nielsen and Shephard, 2004a; Meddahi, 2002).

Within the realized variance framework, the continuous and jump part contributions can be

separated by comparing the difference between realized variance and bi-power variation (see,

Barndorff-Nielsen and Shephard, 2004b; Andersen, Bollerslev, and Diebold, 2004; Huang and
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Tauchen, 2005).1 Under the reasonable presumption that jumps on financial markets are usu-

ally rare and large, we assume that there is at most one jump per day and that the jump

dominates the daily return when it occurs. This allows us to filter out the realized jumps,

and further to directly estimate the jump distributions (intensity, mean, and variance). Such

an estimation strategy based on identified realized jumps stands in contrast with existing

literature that generate noisy parameter estimates based on daily returns.

Aı̈t-Sahalia (2004) examines how to estimate the Brownian motion component by maxi-

mum likelihood, while treating the Poisson or Lévy jump component as a nuisance or noise.

Our approach is exactly the opposite — we estimate the jump component directly and then

use the results for further economic analysis. The advantages of this approach include that we

do not require the specification and estimation of the underlying drift and diffusion functions

and that the jump process can be flexible. Such a jump detection and estimation strategy

could be invalid for certain highly active Lévy process with infinite small jumps in a finite

time period (Bertoin, 1996; Barndorff-Nielsen and Shephard, 2001; Carr and Wu, 2004).

The approach here is more applicable to the compound Poisson jump process, where rare

and potentially large jumps in financial markets are presumably the responses to significant

economic news arrivals (Merton, 1976).

In Monte Carlo work, we examine two main settings where the jump contribution to

total variance is 10% and 80%. In these situations, our realized jump identification approach

performs well, in that the parameter estimates are accurate and converge as the sample size

increases (long-span asymptotics). One important caveat is that these convergence results

depend on choosing appropriately the level of the jump detection test. The significance level

needs to be set rather loosely at 0.99 when jump contribution to total variance is low (10%),

but set rather tightly at 0.999 when the jump contribution is high (80%). Note that a smaller

jump contribution like 10% seems to be the main empirical finding in the literature (see,

Andersen, Bollerslev, and Diebold, 2004; Huang and Tauchen, 2005, e.g.).

The proposed jump detection mechanism is implemented for the S&P500 market index,

the 10-year US treasury bond, and the Dollar/Yen exchange rate, to cover a representative

spectrum of asset classes. The jump intensity is estimated to be smallest for the equity index

1Other jump detection methods have been proposed in literature based on the swap variance contract
(Jiang and Oomen, 2005) or the range statistics (Christensen and Podolski, 2006).
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(13%), but larger for government bond (18%) and exchange rate (20%), while the jump mean

estimates are insignificant from zero. The jump volatility estimates are for the stock market

(0.54%), the bond market (0.65%), and the currency market (0.39%). Rolling estimates

reveal interesting jump dynamics. The jump probabilities are quite variable for equity index

and treasury bond (from 5% to 25%), but relatively stable for Dollar/Yen currency (20%).

Although the jump means are mostly indistinguishable from zero for all assets considered

here, there are obvious deviations from zero for the S&P500 index in late 1990s. Finally, the

jump volatilities have not changed much for government bond, except for a hike in 1994, and

exchange rate, but have increased significantly for the US equity market from 2000 to 2004.

It turns out that the capability to identify realized jumps has important implications for

estimating financial market risk adjustments. For the Moody’s AAA and BAA credit spread

indices, we find that the rolling estimates of stock market jump volatility can predict the

spread variation with R-squares of 0.65 and 0.72, which are considerably higher than ob-

tained with the standard interest rate factors, volatility factors including the option-implied

volatility, and the systematic Fama-French factors. This result is important, since explaining

high investment grade credit spreads has not been very successful and the empirical role of

jumps in explaining these credit spreads has not been largely confirmed in literature so far.

This evidence is also consistent with the finding in Zhang, Zhou, and Zhu (2005) that credit

spreads of individual firms are well explained by the realized jump risk measures estimated

similarly from high frequency individual equity prices.

The rest of the paper is organized as follows: the next section introduces the jump

identification mechanism based on high frequency intraday data, then Section 3 provides

some Monte Carlo evidence on the small sample performance of such an estimation strategy.

Section 4 illustrates the approach with four financial market assets, Section 5 discusses the

implications for predicting credit risk spreads, and Section 6 concludes.

2 Identifying Realized Jumps

Jumps are important for asset pricing (Merton, 1976), yet the estimation of jump distribution

is very difficult, especially when only low frequency daily data are employed (Bates, 2000;

Andersen, Benzoni, and Lund, 2002; Pan, 2002; Chernov, Gallant, Ghysels, and Tauchen,

3



2003; Eraker, Johannes, and Polson, 2003; Aı̈t-Sahalia, 2004). In recent years, Andersen and

Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys (2001); Andersen, Bollerslev,

and Diebold (2005b), Barndorff-Nielsen and Shephard (2002a,b), and Meddahi (2002), have

advocated the use of so-called realized variance measures by utilizing the information in

the intra-day data for measuring and forecasting volatilities. More recent work on bi-power

variation measures developed in a series of papers by Barndorff-Nielsen and Shephard (2003,

2004b, 2006) allows for the use of high-frequency data to disentangle realized volatility into

separate continuous and jump components (see, Andersen, Bollerslev, and Diebold, 2004;

Huang and Tauchen, 2005, as well). In this paper, we rely on the presumption that jumps

on financial markets are rare and large in order to extract the realized jumps and to explicitly

estimate the jump intensity, mean, and volatility parameters. Empirical evidence presented

by Lee and Mykland (2006, Table V) is generally supportive of the notion of very rare jumps.

2.1 Filtering Jumps from Bi-Power Variation

Let pt = log(Pt) denotes the time t logarithmic price of the asset, and it evolves in continuous

time as a jump diffusion process:

dpt = µtdt + σtdWt + Jtdqt (1)

where µt and σt are the instantaneous drift and diffusion functions that are completely general

and may be stochastic (subject to the regularity conditions), Wt is the standard Brownian

motion, dqt is a Poisson jump process with intensity λJ , and Jt refers to the corresponding

(log) jump size distributed as Normal(µJ , σJ). Note that this approach also allows for time-

varying jump rate λJ,t, jump mean µJ,t, and jump volatility σJ,t, which can be implemented

empirically once the actual jumps are filtered out. Time is measured in daily units and the

intra-daily returns are defined as follows:

rt,j ≡ pt,j·∆ − pt,(j−1)·∆ (2)

where rt,j refers to the jth within-day return on day t, and ∆ is the sampling frequency

within each day.

Barndorff-Nielsen and Shephard (2004b) propose two general measures for the quadratic

variation process—realized variance and realized bi-power variation—which converge uni-
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formly (as ∆ → 0 or m = 1/∆ →∞) to different quantities of the underlying jump-diffusion

process,

RVt ≡
m∑

j=1

r2
t,j →

∫ t

t−1

σ2
sds +

∫ t

t−1

J2
s dqs (3)

BVt ≡ π

2

m

m− 1

m∑
j=2

|rt,j||rt,j−1| →
∫ t

t−1

σ2
sds. (4)

Therefore the difference between the realized variance and bi-power variation is zero when

there is no jump and strictly positive when there is a jump (asymptotically).

A variety of jump detection techniques are proposed and studied by Barndorff-Nielsen

and Shephard (2004b), Andersen, Bollerslev, and Diebold (2004), and Huang and Tauchen

(2005). Here we adopted the ratio statistics favored by their findings,

RJt ≡ RVt −BVt

RVt

(5)

which converges to a standard normal distribution with appropriate scaling

ZJt ≡ RJt√
[(π

2
)2 + π − 5] 1

m
max(1, TPt

BV 2
t
)

d−→ N (0, 1) (6)

where TPt is the Tri-Power Quarticity robust to jumps, and as shown by Barndorff-Nielsen

and Shephard (2004b),

TPt ≡ mµ−3
4/3

m

m− 2

m∑
j=3

|rt,j−2|4/3|rt,j−1|4/3|rt,j|4/3 →
∫ t

t−1

σ4
sds (7)

with µk ≡ 2k/2Γ((k+1)/2)/Γ(1/2) for k > 0. This test has excellent size and power properties

and is quite accurate at detecting jumps as documented in Monte Carlo work (Huang and

Tauchen, 2005).

Based on the economic intuition regarding the nature and source of jumps on financial

market (Merton, 1976), we further assume that there is at most one jump per day and that

the jump size dominates the return when a jump occurs. These assumptions allow us to

filter out the daily realized jumps as

Ĵt = sign(rt)×
√

(RVt −BVt)× I(ZJt≥Φ−1
α ) (8)

where Φ is the cumulative distribution function of a standard Normal, α is the significance

level of the z-test, and I(ZJt≥Φ−1
α ) is the resulting indicator function on whether there is a
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jump during the day. Our approach of filtering out the realized jumps is a simple extension to

the concept of a “significant jump” in Andersen, Bollerslev, and Diebold (2004), the signed

square-root of which is equivalent to our Jt.

2.2 Estimating the Jump Distribution

Once the individual jump size is filtered out, we can further estimate the jump intensity,

mean, and variance, by imposing a simple model of Poisson-mixing-Normal jump specifica-

tion,

λ̂J =
Number of Realized Jump Days

Number of Total Trading Days

µ̂J = Mean of Realized Jumps

σ̂J = Standard Deviation of Realized Jumps

with appropriate formulas for the standard error estimates. Such an approach for estimating

jumps is robust to the specifications of time-varying or even stochastic drift and diffusion

functions, as long as the diffusion volatility noise is not too large (to be made more precise

in the Monte Carlo study of the next section). It also allows us to specify more flexible

dynamic structures of the underlying jump arrival rate and/or jump size distribution (see,

for example, Andersen, Bollerslev, and Huang, 2006). Realized jumps therefore can help us

to avoid those estimation methods such as EMM or MCMC that rely heavily on numerical

simulations.

2.3 Pre-Test Level and Noise-to-Signal Ratio

There appears to be no conclusive agreement about the optimal significance level α of the

jump-detection z-test in various empirical settings (Barndorff-Nielsen and Shephard, 2004b;

Andersen, Bollerslev, and Diebold, 2004; Huang and Tauchen, 2005). However, our finite

sample evidence presented bellow suggests that when relative jump contribution to total

variance is small (10%) a more generous test level (α = 0.99) performs better, while for large

jump contribution (80%) a more stringent test level (α = 0.999) is preferred. This rela-

tionship may be formalized as determined by a “noise-to-signal” in identifying jumps, with

the presence of diffusion as a measurement error. More precisely, the ratio of unconditional
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expectations of
∫ t

t−1
J2

s dqs over RVt,

E
(∫ t

t−1
J2

s dqs

)

E
(∫ t

t−1
J2

s dqs

)
+ E

(∫ t

t−1
σ2

sds
) ≡ Signal

Signal + Noise
(9)

appears to indicate the optimal choice of the test level α, but clearly there is substantial

room for future research.

2.4 When Jumps Are not so Large and Rare

The assumption of large jumps is rather innocuous, as long as jumps remain discretely dis-

tinct from the continuous diffusion, and therefore higher sampling frequency can eventually

capture the jumps. The resulting estimates of jump parameters becomes more noisy but have

no asymptotic bias as both sample size increases and sampling interval decreases. However,

more frequent jumps might distort the finite sample properties and cause bias.

3 Finite Sample Experiment

It is important to evaluate whether the proposed jump filtering and estimation procedure

works well under the assumptions of large and rare jumps. In particular, we want to know

whether the jump parameters can be accurately estimated and whether the correct inferences

can be made, as both the sample size increases and the sampling interval decreases.

3.1 Experimental Design

Here we adopt the following benchmark specification of a stochastic volatility jump-diffusion

process,

dpt = µtdt + σtdW1t + Jtdqt (10)

dσ2
t = β(θ − σ2

t )dt + γ
√

σ2
t dW2t (11)

with log price drift µt = 0; volatility mean reversion β = 0.10 and volatility-of-volatility

γ = 0.05; jump parameters λJ = 0.05, µJ = 0.20, σJ = 1.40; and leverage coefficient

ρ ≡ corr(dW1t, dW2t) = −0.50. The volatility long-run mean parameter θ is chosen for two

scenarios to cover a possible range of financial asset classes. Scenario (a) has θ = 0.9 such
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that the discontinuous part contribution to total variance is 10%. Such a scenario applies

more likely to the US equity market, major currencies, and blue chip stocks. In fact, 10%

is about the average empirical findings in Andersen, Bollerslev, and Diebold (2004) and

Huang and Tauchen (2005). Scenario (b) with θ = 0.025 and 80% jump contribution to

variance, resembles the illiquid and infrequently traded assets, like corporate bond, small

stock, and emerging market equity or currency. The choice of jump parameters also reflects

the empirical findings in literature that (1) jumps are rare, (2) jumps are large in terms of

standard deviation, and (3) the jump mean is hard to distinguish from zero.

The Monte Carlo experiment is designed as follows. Each day one simulates the jump-

diffusion process, using 1-second as a tick size totaling six and a half trading hours, imitating

the US equity market in recent years. The diffusion process with stochastic volatility is sim-

ulated by the Euler scheme, the jump timing is simulated from an Exponential distribution,

and the jump size is simulated from a Normal distribution. Then the realized jumps are com-

bined with the realized diffusion, and sampled by an econometrician at both 1-minute and

5-minute intervals, illustrating the in-fill asymptotics. To contrast the long-span asymptotics

of sample sizes, we use both T = 1000 days and T = 4000 days. Further, the choice of sig-

nificance level in the jump detection test is also compared between α = 0.99 and α = 0.999.

The appropriate choice of the pre-test level seems to be relevant for achieving consistent

parameter estimates, given varying degree of jump contribution to the total variance. In

addition, the simulation provides us the exact jump timing (Exponential) and jump size

(Normal), therefore a maximum likelihood estimator (MLE) can be used as a benchmark for

judging the relative efficiency of the jump filtering approach examined in this paper.

3.2 Parameter Estimation

The finite sample results on various jump parameter estimates are presented in Tables 1-2.

The first column of each table gives the true parameter values, and the first row gives the

mean bias, median bias, and root-mean-squared-error (RMSE) of the maximum likelihood

estimator (MLE). Note that the MLE results do not vary across the two scenarios (since only

the diffusion variance level is altered), nor across the pre-test α = 0.99 and α = 0.999 levels

(since no pre-estimation filtering is involved), nor across the 5-minute and 1-minute sampling
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intervals (since jumps are observed exactly in simulations). For MLE, the estimation biases at

both 1000 and 4000 days are negligible for all three parameters, relative to their true values.

In terms of the estimation efficiency, both jump rate λJ and jump volatility σJ can be very

accurately estimated with RMSE’s much smaller than the parameter values. However, for

the jump mean parameter µJ , the estimate is not accurate at 1000 days (RMSE about the

size of parameter value), but can be accurate at 4000 days (RMSE about half the size of

parameter value). In addition, all the RMSE’s decrease almost exactly at the rate of
√

4, as

predicted by the asymptotic theory.

For the jump filtering mechanism based on the bi-power variation measure (Tables 1-2),

the parameter estimation efficiency approaches that of MLE very differently, depending upon

whether the jump contribution to total variance is small or large. In Scenario (a) where the

jump contribution to total variance is as small as 10%, the RMSE’s of parameter estimates

are all closer to those of MLE and the convergence rates are closer to
√

4, as the sample

size increases from T = 1000 to T = 4000, when we set the pre-test level α = 0.99 but not

α = 0.999. In other words, when the jump contribution is relatively small as is typical in

observed data, the asymptotic filtering scheme seems to work better when the pre-test level

is less stringent. In contrast, for Scenario (b) where the jump contribution to total variance

is as large as 80%, the scheme seems to work much better when we set α = 0.999 rather than

α = 0.99, where the RMSE’s can almost match those of MLE. These findings are intuitive

in the following sense. It is clearly more difficult to detect jumps when they are relatively

small, therefore loosening the jump detection standard can reveal more jumps that otherwise

would have been missed (minimizing the type-I error). On the other hand, when jumps are

large they are easier to detect, so we want a more stringent jump filtering standard, such that

false revelation of jumps can be avoided as much as possible (minimizing the type-II error).

In short, the jump filtering approach based on the bi-power variation measure can bring us

efficient parameter estimates relative to MLE, provided that we appropriately choose the

significance level α according to the relative contributions of jumps to total variance.
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3.3 Statistical Inference

In addition to the parameter estimation efficiency, we also need to know whether the asymp-

totic standard error estimated in finite samples can provide a reliable statistical inference

about the true parameter value. To set the right benchmark, Figure 1 plots the finite sam-

ple rejection rates from the Monte Carlo replications against the asymptotic test size. The

rejection rate is based on the Chi-square (1) test statistics of each parameter. The deviation

between the dashed line (Monte Carlo finite sample result) and dotted diagonal line (asymp-

totic result), indicates how big is the size distortion. It is clear from Figure 1 that the MLE

asymptotic variance estimated in finite sample behaves extremely well, so there is effectively

no size distortion at all.

The Wald test statistics based on bi-power variation approach are reported in Figures 2-3.

In general, the t-test for the jump mean µJ is well behaved, while the result for jump rate λJ

and jump volatility σJ varies with the setting. In Scenario (a) where jumps contribute 10%

to total variance, the chi-square statistics under the choice of α = 0.999 have a much higher

over-rejection bias compared to the choice of α = 0.99. In Scenario (b) with relative jump

contribution being 80%, there is almost no over-rejection bias at α = 0.999 level, while the

chi-square test does not converge at all for α = 0.99. In short, if jumps are small then less

stringent jump detection test generates more reliable inferences about the true parameters,

while if jumps are large then more stringent test generates more reliable inferences.

4 Application to Financial Markets

We apply the jump detecting and filtering scheme to three financial markets: stocks, bonds,

and foreign exchange. The intraday high frequency data for S&P500 index (1986-2005) is

obtained from the Institute of Financial Market, the 10-year US treasury bond (1991-2005)

from the Federal Reserve Board, and the Dollar/Yen exchange rate (1997-2004) from Olsen

& Associates. These choices are meant to give a representative view of the available major

asset classes. All the data are transformed to five minute log returns, which are generally

known to be quite robust to market microstructure noise. We eliminate days with less than

60 trades or quotes. We also drop the after-hour tradings due to the liquidity concern, except

for the Dollar/Yen exchange rate, which is traded rather liquid for 24 hours.
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Summary statistics for daily percentage returns and realized volatility (square-root of

realized variance) are reported in Table 3. The sample means suggest annualized returns of

8.7% for the S&P 500, 4.1% for the t-bond, and 2.4% for Yen currency (six trading days per

week). The average realized volatilities are for the stock market index 0.73%, the t-bond

0.56%, and the exchange rate 0.62%. The return skewness is negative for S&P 500 index and

government bond, while positive for exchange rate. The kurtosis statistics suggests all three

returns deviate from the Normal distribution, as is expected. The returns are approximately

serially uncorrelated, while the volatility series exhibit pronounced serial dependencies. In

fact, the first ten autocorrelations reported in the bottom part of the table are all highly

significant with the gradual, but very slow, decay suggestive of long-memory type features.

This is also evident from the time series plots of realized volatility series given in the top

panels of Figures 4-6.

4.1 Unconditional Jump Parameter Estimates

As shown in the top panel of Table 4, the jump contribution to total variance is about

5.28% for S&P500, 19.11% for t-bond, and 6.47% for the exchange rate. These numbers

are very close to the findings in Andersen, Bollerslev, and Diebold (2004) and Huang and

Tauchen (2005), and quite similar to Scenario (a) of our Monte Carlo section. We expect

the jump filtering and estimation method based on the bi-power variation approach to work

reasonably well. The realized jumps filtered by our method are plotted in the second panels

of Figures 4-6. Jumps in S&P 500 index clearly haave jump sizes between -2% and +2%.

Treasury bond has less frequent jumps with a range -2% and +4%. The Yen currency has

more frequent jumps with jump size between -1.2% and +1.6%.

The bottom panel of Table 4 reports the parametric distribution estimates based on the

filtered realized jumps. Except for the S&P 500 index (µJ = 0.05 with s.e. = 0.02), all

the jump mean estimates are statistically indistinguishable from zero. The jump intensity

estimates are highly significant and vary across assets, with the S&P 500 index being the

lowest (0.13 with s.e. 0.01), the Treasury bond moderate (0.18 with s.e. 0.02), and the

exchange rate the highest (0.20 with s.e. 0.01). The standard deviations of jumps are

estimated the most accurately and very close to each other (0.55 with s.e. 0.02 for the stock
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index, 0.65 with s.e. 0.02 for bond, and 0.39 with s.e. 0.01 for currency).

These results differ from the usual jump estimation results in empirical finance that use

latent variable simulation-based methods on daily data. Our findings regarding jump fre-

quency and jump size can be reconciled with the notion that significant jumps on financial

markets are related to market responses to fundamental economic news (Andersen, Boller-

slev, Diebold, and Vega, 2003a, 2005a).

4.2 Time-Varying Jump Distribution Estimates

Another interesting feature that can be seen from the second panels of Figures 4-6, is that

the clustering and amplitude of jumps change over time, which leads to the usual conjecture

of time-varying jump rate and jump size distribution. To get an initial handle of such a

possibility, we perform a two-year rolling estimation of the jump parameters λJ,t, µJ,t, and

σJ,t, with corresponding 95% standard error bands.

As seen from Figure 4, the jump intensity of S&P 500 index was fairly high during the

early 1990s (above 20%), then dropped considerably during the late 1990s (around 5%), and

has started to rise again since 2002. The jump size mean is usually close to zero, except for

the during late 1990s, where positive jump means are statistically significant and coinciding

with the stock market run-up. Jump volatility had been largely stable from the late 1980s

to the late 1990s around 40%, but has been elevated since 1999 and peaked around 2002

at a high of 100%. As Figure 5 shows, the jump intensity of the bond market was high in

the early 1990s and around 2001-2002, then kept falling until 2004 to around 10%; while

jump mean is mostly zero and jump volatility is little changed around its unconditional level

of 60% (except for early 1990s around 100%). For the Dollar/Yen exchange rate in Figure

6, jump intensity is mostly stable around 20%, jump mean is statistically indistinguishable

from zero, and jump volatility is somewhat elevated during 1991-1992 and 1998-2000.

Time-varying jump intensity and jump volatility are very important risk factors in asset

pricing, but until recently most of the evidence has been drawn from the option implied

or latent jump specifications (see, for example, Duffie, Pan, and Singleton, 2000; Eraker,

Johannes, and Polson, 2003, among others). A recent paper by Andersen, Bollerslev, and

Huang (2006) use the realized jump timing to examine the temporal dependency in jump
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durations.

5 Jump Risks and Credit Spreads

Direct identification of realized jumps and the characterizations of time-varying jump dis-

tributions make it straightforward to study the relationship between jumps and risk adjust-

ments. The reason is that jump parameters are generally very hard to pin down even with

both underlying and derivative assets prices, due to the fact that jumps are latent in daily

return data and are rare events in financial markets. Inaccurate estimates of the underlying

jump dynamics makes the jump risk premia even harder to quantify. However, as seen bel-

low, a reliable estimate of stock market jump volatility based on identified realized jumps,

can have a superior predicting power for the bond market risk premia.

5.1 Predicting Corporate Bond Spread Indices

Here we examine the daily forecasting powers for Moody’s AAA and BAA bond spreads,

using the estimated S&P 500 jump volatility from the identified realized jumps, which is

illustrated in Section 4. A longstanding puzzle has been how to explain the credit spreads of

high investment grade bonds, since those firms entertain very little default risk historically,

yet their credit spreads are sizable and positive (Amato and Remolona, 2003). Although

jump risk has been proposed as a possible source of such a credit premium puzzle (Zhou,

2001; Huang and Huang, 2003), the empirical validation in literature has met with mixed

and unsatisfactory results (Collin-Dufresne, Goldstein, and Martin, 2001; Collin-Dufresne,

Goldstein, and Helwege, 2003; Cremers, Driessen, Maenhout, and Weinbaum, 2004, 2005).

Here we use an alternative jump risk measure, based on identified realized jumps as opposed

to latent or implied jumps, to provide some contrasting positive evidence in explaining high

investment grade credit spread indices. For comparison purposes, we also include standard

predictors like the short rate and term spread in Longstaff and Schwartz (1995), long-run

historical volatility (Campbell and Taksler, 2003) and short-run realized volatility (Zhang,

Zhou, and Zhu, 2005), and option implied volatility (Cao, Yu, and Zhong, 2006), with a

control for market return, book-to-market, and size risk factors (Fama and French, 1993).

Table 5 presents the univariate forecasting regressions for Moody’s AAA and BAA bond
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spreads indices. The OLS coefficients show remarkable similarity between the two rating

grades. To be more precise, one percentage increase in short rate lowers credit spreads 14

and 16 basis points; positive term spread increases default premium 5 and 12 basis points.

Short rate predicts 44% and 36% of spread variation, while term spread by itself has very

little forecasting power. Short-run volatility (1-day) has R-squares around 30% with marginal

impact around 4 basis points, while long-run volatility (2-year) has higher R-squares about

50-60% and higher impact coefficient of 7 to 9 basis points. It is worth pointing out that

option implied volatility (VIX index) has about the same predicting power and marginal

effect as the long-run and short-run volatilities. In comparison, the S&P500 jump volatility

not only has a larger impact on credit spreads — one percentage increase raises spreads

about 150-190 basis points, but also has the highest forecasting power — with R-squares

being 65% for the AAA bond spread and 72% for the BAA bond spread. The close association

between credit risk premium and market jump volatility can be more clearly seen in Figure

7. Although the daily credit spread is very noisy, there clearly exist certain long term trends

and short term cycles from 1988 to 2004. It is obvious that the time-varying jump volatility

traces closely these trends and cycles, while discarding the day-to-day fluctuations in credit

spread indices.

Given the common finding that typical default risk factors can only account for a very

small fraction of the corporate bond spreads, recent effort has been directed more to the role

of systematic risk premia in the economy (see, Elton, Gruber, Agrawal, and Mann, 2001;

Huang and Huang, 2003; Chen, Collin-Dufresne, and Goldstein, 2005, e.g.). However, those

business cycle effects usually explain only the spread variations of low investment grade or

speculative grade credit spreads, but has very little or no explaining power for the high

investment grade credit spreads. As Table 6 shows, the systematic risk factors—market

return, SMB, and HML Fama-French variables—have zero predicting capability for the high

investment grade credit spread at the daily frequency. The fact that these bonds have little

default risk yet command a sizable risk premium constitutes a major challenge in the credit

risk pricing literature. In comparison, jump volatility risk measure stands out as the most

powerful instrument in forecasting the credit spread indices, suggesting that a systematic

jump risk factor may be important in pricing the top quality corporate credit.
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Table 7 presents multiple regressions in forecasting the bond spreads. It seems that two

interest rate factors are complementary, in that the combined R-square is much higher than

the sum of two univariate regressions. The signs of both short rate and term spread are

now negative and larger. Intuitively, when the economy is in expansion, short rate and

term spread tend to be rising, and the credit default condition is also improving. Note

that when combining short- and long-run volatilities or implied and jump volatilities, the

coefficient magnitude and significance level mostly remain the same. It suggests that two

volatility components may be needed in explaining the risk premium dynamics (Adrian and

Rosenberg, 2006). The last columns in Table 7 are the multiple regressions that reach R-

squares around 80-81%.

In short, contrary to the negative finding in empirical literature about the jump impact

on credit spread, our measure of market realized jump volatility has strong predictability

for high investment grade credit spreads. The forecasting power is higher than the interest

rate factors, short-run and long-run volatility factors, or even the option implied volatility

factor, with controlling for the systematic risks of market return, SMB and HML.

5.2 Explaining Credit Default Spreads of Individual Firms

In a related paper, Zhang, Zhou, and Zhu (2005) apply the jump identification strategy

of this paper to individual firms, and find that the realized jump risk measures (intensity,

mean, and volatility) from firm level equity returns all have strong explaining power for

credit default swap (CDS) spreads. In particular, jump risk alone can predict about 19%

variation of the CDS spreads. By separating realized volatility and jump measures, they also

strengthen the forecasting power of equity volatility measures as in Campbell and Taksler

(2003), and increase the overall forecasting R-square to 77%. Furthermore, they find that the

nonlinear effects of jump and volatility risk measures on credit spreads are largely consistent

with a structural model with stochastic volatility and jumps.

6 Conclusion

Disentangling jumps from diffusion has always been a challenge for pricing financial assets

and for estimating the jump-diffusion processes. Building on the recent jump detection

15



literature for separating realized variance and bi-power variation (Barndorff-Nielsen and

Shephard, 2003, 2004b, 2006; Andersen, Bollerslev, and Diebold, 2004; Huang and Tauchen,

2005), we extend the methodology to filter out the realized jumps, under two key assumptions

typically adopted in financial economics: (1) jumps are rare and there is at most one jump

per day, and (2) jumps are large and dominate return signs when occurring.

These approximations provide a powerful tool to identify the realized jumps on finan-

cial markets. Our Monte Carlo experiments under realistic empirical settings suggest that

accurate parameter estimates and properly sized inference tests can be obtained with an

appropriate choice of the significance level of the jump detection pre-test.

The proposed jump identification method is applied to three financial markets — S&P500

index, treasury bond, and Dollar/Yen exchange rate. We find that the jump intensity varies

among these asset classes from 13% to 20%. All the jump mean estimates are insignificantly

different from zero, except for the S&P500 index driven by a positive run in late 1990s. Jump

volatility is similar for exchange rate (0.39%), equity market (0.54%), and bond market

(0.65%). Rolling estimates reveal that the jump probabilities are quite variable for equity

index and treasury bond (from 5% to 25%), but relatively stable for the Yen currency (20%).

The jump volatility is little changed for government bond (except for the run up in 1992-

1994), while elevated a great deal for the stock market from 2000 to 2004 and moderately

for the Dollar/Yen in early and late 1990s.

The identification of realized jumps and direct estimation of jump distributions has im-

portant implications in assessing financial market risk adjustments. Given more reliable

estimates of the jump dynamics, the impact on jump risk premia can be more precisely

quantified. For example, the Moody’s AAA and BAA credit risk premia can be predicted by

the realized jump volatility measure, much better than the by interest rate factors, volatility

factors including option-implied volatility, and Fama-French risk factors. Explaining the

credit spreads of high investment grade entities has always been a challenge in credit risk

pricing, and a systematic jump risk factor holds some promise in resolving such an puz-

zle. Individual firm’s credit spreads can also be better predicted by the realized jump risk

measures from each firm’s equity returns (Zhang, Zhou, and Zhu, 2005).
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Table 1 Monte Carlo Experiment with Scenario (a)

This table reports the Monte Carlo evidence for estimating the jump rate, mean, and volatil-
ity parameters. Scenario (a) has the jump contribution to total variance as 10%. The results
are organized across two sample sizes (1000 days versus 4000 days), two sampling frequencies
(5-minute versus 1-minute), and two jump test significance levels (0.99 versus 0.999).

Mean Bias Medium Bias RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Benchmark Maximum Likelihood Estimation

λJ = 0.05 0.0006 0.0004 0.0005 0.0004 0.0068 0.0035

µJ = 0.2 -0.0020 0.0017 -0.0060 0.0046 0.1989 0.1033

σJ = 1.2 -0.0094 -0.0005 -0.0042 -0.0030 0.1443 0.0690

Sampling Frequency ∆ = 5-minute, Level of Significance α = 0.99

λJ = 0.05 -0.0065 -0.0061 -0.0070 -0.0060 0.0092 0.0068

µJ = 0.2 -0.0131 -0.0079 -0.0147 -0.0082 0.2152 0.1116

σJ = 1.2 -0.0116 -0.0006 -0.0126 0.0023 0.1443 0.0706

Sampling Frequency ∆ = 1-minute, Level of Significance α = 0.99

λJ = 0.05 -0.0006 -0.0001 0.0000 0.0000 0.0067 0.0035

µJ = 0.2 -0.0239 -0.0194 -0.0233 -0.0238 0.1965 0.1039

σJ = 1.2 -0.0464 -0.0363 -0.0550 -0.0348 0.1504 0.0766

Sampling Frequency ∆ = 5-minute, Level of Significance α = 0.999

λJ = 0.05 -0.0204 -0.0199 -0.0210 -0.0200 0.0211 0.0201

µJ = 0.2 0.0719 0.0791 0.0699 0.0778 0.3199 0.1772

σJ = 1.2 0.2415 0.2492 0.2475 0.2514 0.2959 0.2616

Sampling Frequency ∆ = 1-minute, Level of Significance α = 0.999

λJ = 0.05 -0.0116 -0.0111 -0.0120 -0.0113 0.0131 0.0115

µJ = 0.2 0.0267 0.0315 0.0289 0.0311 0.2529 0.1330

σJ = 1.2 0.1236 0.1323 0.1261 0.1331 0.1976 0.1510
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Table 2 Monte Carlo Experiment with Scenario (b)

This table reports the Monte Carlo evidence for estimating the jump rate, mean, and volatil-
ity parameters. Scenario (b) has the jump contribution to total variance as 80%. The results
are organized across two sample sizes (1000 days versus 4000 days), two sampling frequencies
(5-minute versus 1-minute), and two jump test significance levels (0.99 versus 0.999).

Mean Bias Medium Bias RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Benchmark Maximum Likelihood Estimation

λJ = 0.05 0.0006 0.0004 0.0005 0.0004 0.0068 0.0035

µJ = 0.2 -0.0020 0.0017 -0.0060 0.0046 0.1989 0.1033

σJ = 1.2 -0.0094 -0.0005 -0.0042 -0.0030 0.1443 0.0690

Sampling Frequency ∆ = 5-minute, Level of Significance α = 0.99

λJ = 0.05 0.0090 0.0094 0.0090 0.0095 0.0116 0.0101

µJ = 0.2 -0.0374 -0.0337 -0.0391 -0.0313 0.1690 0.0920

σJ = 1.2 -0.1388 -0.1272 -0.1332 -0.1284 0.1926 0.1436

Sampling Frequency ∆ = 1-minute, Level of Significance α = 0.99

λJ = 0.05 0.0081 0.0087 0.0080 0.0085 0.0107 0.0094

µJ = 0.2 -0.0336 -0.0304 -0.0321 -0.0290 0.1719 0.0918

σJ = 1.2 -0.1214 -0.1109 -0.1228 -0.1113 0.1842 0.1291

Sampling Frequency ∆ = 5-minute, Level of Significance α = 0.999

λJ = 0.05 -0.0033 -0.0026 -0.0040 -0.0025 0.0073 0.0042

µJ = 0.2 0.0059 0.0083 -0.0029 0.0084 0.2099 0.1075

σJ = 1.2 0.0136 0.0214 0.0188 0.0206 0.1475 0.0734

Sampling Frequency ∆ = 1-minute, Level of Significance α = 0.999

λJ = 0.05 -0.0020 -0.0015 -0.0020 -0.0015 0.0067 0.0036

µJ = 0.2 0.0013 0.0053 -0.0007 0.0089 0.2038 0.1053

σJ = 1.2 0.0042 0.0149 0.0037 0.0148 0.1457 0.0718
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Table 3 Summary Statistics for Daily Returns and Realized Variances

This table reports summary statistics of moments, percentiles, and auto-correlations for
daily returns and volatilities aggregated from high frequency intraday 5-minute data. The
three assets are S&P500 index (1986-2005), 10-year US treasury bond (1991-2005), and the
Dollar/Yen exchange rate (1997-2004).

Asset Type S&P500 Index (%) T-Bond (%) Dollar/Yen (%)

Statistics Returnt

√
RVt Returnt

√
RVt Returnt

√
RVt

Mean 0.0348 0.7341 0.0164 0.5598 0.0076 0.6227

Std. Dev. 1.0868 0.4162 0.5995 0.2894 0.6153 0.2882

Skewness -2.1087 2.2511 -0.3418 3.3803 0.6392 2.3871

Kurtosis 48.2123 13.2551 4.3559 24.9531 10.7761 24.9966

Minimum -22.8867 0.1309 -3.3200 0.1327 -4.7029 0.0027

5% Qntl. -1.6453 0.2945 -0.9900 0.2755 -0.9336 0.2407

25% Qntl. -0.4495 0.4473 -0.3300 0.3861 -0.3214 0.4481

50% Qntl. 0.0524 0.6330 0.0380 0.4932 -0.0083 0.5844

75% Qntl. 0.5660 0.9086 0.3900 0.6550 0.3186 0.7444

95% Qntl. 1.6081 1.5189 0.9488 1.0361 0.9962 1.1309

Maximum 8.3795 5.4363 2.2200 4.0919 7.1117 5.6396

ρ1 0.0146 0.7533 0.0348 0.2415 0.0329 0.5474

ρ2 -0.0474 0.7013 -0.0138 0.2011 0.0562 0.3740

ρ3 -0.0088 0.6669 -0.0446 0.1568 -0.0261 0.3255

ρ4 -0.0208 0.6465 -0.0421 0.1651 -0.0259 0.3075

ρ5 -0.0182 0.6379 0.0002 0.1959 -0.0226 0.3716

ρ6 -0.0056 0.6164 -0.0079 0.1576 0.0335 0.5173

ρ7 -0.0431 0.6062 0.0213 0.1260 -0.0222 0.3370

ρ8 0.0116 0.6042 0.0013 0.1767 0.0246 0.2380

ρ9 0.0308 0.5917 0.0020 0.1502 -0.0013 0.2243

ρ10 0.0228 0.5819 0.0189 0.1453 -0.0057 0.2155
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Table 4 Jump Parameter Estimation for Three Assets

The top panel summarizes the average realized volatility, average jump contribution to total
variance, average jump contribution to standard deviation, and total trading days — five days
per week for S&P500 index, 10 year Treasury bond, and six days per week for Dollar/Yen
exchange rate. The bottom panel gives the parameter estimates of jump intensity, jump
mean, and jump standard deviation, based on the realized jump identification procedure
discussed in Section 2.

Statistics S&P500 T-bond Dollar/Yen

Mean
√

RVt 0.7341 0.5598 0.6227

sum (J2
t ) / sum (RVt) 0.0528 0.1911 0.0647

sum (
√

J2
t ) / sum (

√
RVt) 0.0822 0.1551 0.1083

Total Trading Days 4752 3376 5345

Parameter S&P500 T-bond Dollar/Yen

λJ 0.1303 0.1795 0.1989

(s.e.) (0.0135) (0.0156) (0.0122)

µJ 0.0546 -0.0002 0.0024

(s.e.) (0.0215) (0.0264) (0.0120)

σJ 0.5351 0.6498 0.3916

(s.e.) (0.0152) (0.0187) (0.0085)
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Table 5 Credit Spreads with Interest Rate and Volatility Factors

The left-hand-side variable is daily Moody’s AAA or BAA bond spread indices. The right-
hand-side variables are daily 6 month short rate and 10yr - 6mn term spread (from Federal
Reserve H.15 release), short-run volatility of 1 day and long-run volatility of 2 years (from
S&P500 5-minute data), option-implied volatility (VIX from CBOE), and jump volatility
from 2 year rolling estimation result discussed in Section 4.

Regressors Moody’s AAA Bond Yield Spread

Constant 1.8733 1.1216 0.7971 0.3414 0.5537 0.4361
(s.e.) (0.0126) (0.0127) (0.0115) (0.0148) (0.0178) (0.0096)
Short Rate -0.1425
(s.e.) (0.0025)
Term Spread 0.0546
(s.e.) (0.0062)
Short-Run Volatility 0.0359
(s.e.) (0.0009)
Long-Run Volatility 0.0679
(s.e.) (0.0011)
Implied Volatility 0.0316
(s.e.) (0.0008)
Jump Volatility 1.4998
(s.e.) (0.0168)

Adj. R-Square 0.4352 0.0181 0.2921 0.4816 0.2679 0.6537

Regressors Moody’s BAA Bond Yield Spread

Constant 2.7966 1.8608 1.5473 0.8806 1.1193 1.0716
(s.e.) (0.0163) (0.0151) (0.0139) (0.0159) (0.0201) (0.0105)
Short Rate -0.1577
(s.e.) (0.0032)
Term Spread 0.1196
(s.e.) (0.0073)
Short-Run Volatility 0.0447
(s.e.) (0.0010)
Long-Run Volatility 0.0923
(s.e.) (0.0012)
Implied Volatility 0.0454
(s.e.) (0.0009)
Jump Volatility 1.9181
(s.e.) (0.0184)

Adj. R-Square 0.3594 0.0591 0.3056 0.5996 0.3714 0.7211
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Table 6 Credit Spreads with Fama-French and Jump Risk Factors

The left-hand-side variable is daily Moody’s AAA or BAA bond spread indices. The right-
hand-side variables are daily market return, SMB and HML originally from Fama and French
(1993) and updated at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french;
the jump intensity, mean, and volatility from 2 year rolling estimation result discussed in
Section 4.

Regressors Moody’s AAA Bond Yield Spread

Constant 1.2175 1.2173 1.2171 1.6213 1.2342 0.4361
(s.e.) (0.0067) (0.0067) (0.0067) (0.0211) (0.0101) (0.0096)
Market Return -0.0061
(s.e.) (0.0068)
SMB 0.0136
(s.e.) (0.0119)
HML 0.0171
(s.e.) (0.0120)
Jump Intensity -1.7271
(s.e.) (0.0862)
Jump Mean -0.2821
(s.e.) (0.1260)
Jump Volatility 1.4998
(s.e.) (0.0168)

Adj. R-Square 0.0001 0.0001 0.0002 0.0869 0.0010 0.6537

Regressors Moody’s BAA Bond Yield Spread

Constant 2.0709 2.0706 2.0704 2.3399 2.1735 1.0716
(s.e.) (0.0081) (0.0081) (0.0081) (0.0266) (0.0121) (0.0105)
Market Return -0.0077
(s.e.) (0.0083)
SMB 0.0228
(s.e.) (0.0145)
HML 0.0151
(s.e.) (0.0146)
Jump Intensity -1.1512
(s.e.) (0.1084)
Jump Mean -1.7229
(s.e.) (0.1512)
Jump Volatility 1.9181
(s.e.) (0.0184)

Adj. R-Square 0.0000 0.0004 0.0000 0.0259 0.0297 0.7211
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Table 7 Multivariate Prediction of Credit Spreads

The variable definitions are the same as those used in the univariate regressions in Table 8.

Regressors Moody’s AAA Bond Yield Spread

Constant 2.6484 0.3196 0.2924 1.6572 1.3947 0.4081 1.4138
(s.e.) (0.0208) (0.0143) (0.0124) (0.0285) (0.0262) (0.0130) (0.0254)
Short Rate -0.2243 -0.1555 -0.1338 -0.1256
(s.e.) (0.0028) (0.0028) (0.0028) (0.0028)
Term Spread -0.2271 -0.1356 -0.1279 -0.1325
(s.e.) (0.0053) (0.0048) (0.0042) (0.0041)
Short-Run Volatility 0.0155 0.0128 0.0055 -0.0015
(s.e.) (0.0008) (0.0007) (0.0009) (0.0008)
Long-Run Volatility 0.0556 0.0282 -0.0443 -0.0327
(s.e.) (0.0012) (0.0010) (0.0022) (0.0019)
Implied Volatility 0.0107 0.0144 0.0133 0.0190
(s.e.) (0.0006) (0.0005) (0.0009) (0.0008)
Jump Volatility 1.3469 0.6938 1.9920 1.2580
(s.e.) (0.0184) (0.0211) (0.0377) (0.0379)

Adj. R-Square 0.6089 0.5199 0.6772 0.7338 0.7898 0.7113 0.8042

Regressors Moody’s BAA Bond Yield Spread

Constant 3.2851 0.8590 0.8026 1.3596 1.0111 0.8508 1.0371
(s.e.) (0.0311) (0.0154) (0.0125) (0.0360) (0.0305) (0.0135) (0.0302)
Short Rate -0.2093 -0.0756 -0.0451 -0.0438
(s.e.) (0.0042) (0.0036) (0.0033) (0.0034)
Term Spread -0.1432 0.0262 0.0368 0.0283
(s.e.) (0.0079) (0.0061) (0.0049) (0.0049)
Short-Run Volatility 0.0153 0.0180 -0.0057 -0.0061
(s.e.) (0.0009) (0.0008) (0.0010) (0.0009)
Long-Run Volatility 0.0801 0.0622 -0.0353 -0.0213
(s.e.) (0.0013) (0.0013) (0.0022) (0.0022)
Implied Volatility 0.0199 0.0261 0.0286 0.0325
(s.e.) (0.0006) (0.0006) (0.0010) (0.0009)
Jump Volatility 1.6321 1.2570 2.1899 1.6303
(s.e.) (0.0187) (0.0246) (0.0392) (0.0451)

Adj. R-Square 0.4058 0.6248 0.7768 0.7127 0.8076 0.7897 0.8130
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Figure 1 Wald Test for Realized Jumps with Maximum Likelihood Estimator

The estimates are based on simulated jump timing and jump sizes. The dotted line is the
reference Uniform distribution, the dash line is for Monte Carlo replication of 500 and for
sample size of 1000 days or 4000 days.
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Figure 2 Asymptotic Wald Test for Scenario (a)

The estimates are based on filtered jumps with the bi-power variation approach. The relative
contribution of diffusion and jump to variance is 90% versus 10%. The dotted line is the
reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute, and the
solid line is for sampling interval ∆ = 1-minute.
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Figure 3 Asymptotic Wald Test for Scenario (b)

The estimates are based on filtered jumps with the bi-power variation approach. The relative
contribution of diffusion and jump to variance is 20% versus 80%. The dotted line is the
reference Uniform distribution, the dash line is for sampling interval ∆ = 5-minute, and the
solid line is for sampling interval ∆ = 1-minute.
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Figure 4 S&P500 Realized Variance and Jump Dynamics

The realized variance is from intraday 5-minute returns, the realized jumps are filtered by
the bi-power variation method, and the jump parameters are estimated with a 2-year rolling
sample.
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Figure 5 Treasury Bond Realized Variance and Jump Dynamics

The realized variance is from intraday 5-minute returns, the realized jumps are filtered by
the bi-power variation method, and the jump parameters are estimated with a 2-year rolling
sample.
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Figure 6 Dollar/Yen Realized Variance and Jump Dynamics

The realized variance is from intraday 5-minute returns, the realized jumps are filtered by
the bi-power variation method, and the jump parameters are estimated with a 2-year rolling
sample.
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Figure 7 Bond Spread and Jump Volatility

This figure plots the daily Moody’s AAA and BAA bond spread indices and the 2-year rolling
estimates of S&P500 index jump volatility. These series are standardized as mean zero and
variance one.
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