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Abstract

The paper estimates and examines the empirical plausibiltiy of asset pricing models
that attempt to explain features of financial markets such as the size of the equity
premium and the volatility of the stock market. In one model, the long run risks model
of Bansal and Yaron (2004), low frequency movements and time varying uncertainty
in aggregate consumption growth are the key channels for understanding asset prices.
In another, as typified by Campbell and Cochrane (1999), habit formation, which
generates time-varying risk-aversion and consequently time-variation in risk-premia, is
the key channel. These models are fitted to data using simulation estimators. Both
models are found to fit the data equally well at conventional significance levels, and they
can track quite closely a new measure of realized annual volatility. Further scrutiny
using a rich array of diagnostics suggests that the long run risk model is preferred.
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1 Introduction

Asset market models provide alternative explanations for a wide range of asset markets

anomalies. Campbell and Cochrane (1999) and Bansal and Yaron (2004) use calibration

to verify that their models can account for the equity premium, risk free rate, and asset

price volatility puzzles. The empirical plausibility of the key risk channels, which are the

slow moving habits in the Campbell-Cochrane model and the long run risks in the Bansal

and Yaron model, are not tested against data. Hence, it is not clear if aggregate economic

data support the risk channels highlighted in these papers. Our simulation based estima-

tion approach provides data driven estimates of structural parameters and a rich array of

diagnostics that help discriminate between these models.

The primary contribution of this paper is to estimate, using simulation techniques, the

Campbell and Cochrane (1999) and Bansal and Yaron (2004) models and evaluate if there

is any empirical support for the risk channels developed in these papers. We provide esti-

mates of the structural parameters and highlight the differences between these models. We

also impose in estimation the cointegration restriction between consumption and dividends,

unlike Campbell-Cochrane (1999) and Bansal and Yaron (2004). Imposing this restriction

is economically well motivated because aggregated dividends and consumption cannot per-

manently deviate from each other and financial wealth cannot permanently deviate from

aggregate wealth.

Below, we set forth the Long Run Risks (LRR) model, which is patterned after Bansal

and Lundblad (2002) and Bansal and Yaron (2004). In the LRR model, growth rates of cash

flows contain a statistically small but economically important slow moving component. As

is well known from the familiar Gordon growth formula, small, near permanent movements

in the forecasted growth rates of cash flows can be expected to generate large movements

in asset valuations relative to current cash flows. The LRR model couples these cash flow

dynamics with preferences of the Epstein-Zin-Weil type. One departure from the Bansal

and Yaron (2004) specification is the inclusion of cointegration restriction between between

aggregate stock market dividends and consumption.

We also present a model with habit persistence (HAB) that follows Campbell and

Cochrane (1999) rather closely. Their dynamics must be modified slightly to be compatible

with the cointegration relationships in the data. The HAB model presumes quite simple

cash flow dynamics, in contrast to the LRR model, but it assumes an involved preference

structure with a time-varying habit stock that evolves with conditionally heteroskedastic in-
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novations. Like the LRR model, the HAB model also generates long-term swings in stock

market valuations.

In addition to these models we also provide evidence on a short-run risks model SRR,

which is similar to the type considered in Mehra and Prescott (1985), Hall (1978), and

Hansen and Singleton (1982). This model is the traditional baseline which emphasizes short

run risks in consumption as the key risk channel in the economy.

We undertake econometric estimation of both the LRR and HAB models using a

simulation-based procedure similar to that of Smith (1993). Intuitively, the estimation tech-

nique minimizes a statistical measure of distance between a vector autoregression model

fitted to observed data and to simulated data at the annual frequency. The simulations

are generated by operating the models in monthly time, numerically solving for the equi-

librium, and then aggregating appropriately to the annual frequency. The estimation is a

type of GMM estimation, and it therefore delivers a chi squared measure of fit to the data.

We also undertake extensive additional diagnostic assessments using reprojection (Gallant

and Tauchen, 1998, 2006). As part of this effort, we develop a new measure of realized

annual volatility, which is patterned after the measure developed by Andersen, Bollerslev,

and Diebold (2002), and we assess the models’ capabilities to track this new variable.

The empirical work, which simultaneously imposes restrictions on consumption and asset

market data, shows that the SRR model is sharply rejected in the data. Further, very large

persistence is required in the habit process of the HAB model to account for the volatility

of the dividend yield and the equity premium. Our estimation finds support for the key

channels highlighted in the LRR model—low frequency movements in consumption growth

and in movements in consumption volatility. The preference parameters for both models are

estimated at plausible values. Model specification tests do not reject the HAB and LRR

models.

While the omnibus chi-square statistic provides support for both models our diagnostics

permit discrimination across them. One channel for discrimination is the role that high

frequency movements in consumption play in accounting for the risk-return relation across

the two models. The consumption beta of the market return in the HAB model is 4.19, for

the LRR model it is 0.52. In the observed data the consumption beta is 0.79. Unlike the

HAB model, high frequency consumption movements are not significantly compensated in

the LRR model. Kiku (2006) uses this intuition and the LRR model to account for the value

premium puzzle and the general failure of the standard consumption beta (i.e., C-CAPM)
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model. The role for high frequency consumption movements in accounting for risk in the

HAB model, and the role of low frequency movements in consumption to account for the

risk-return relation in the LRR provides a clear distinction between the two models. The

data, as we document, does not support a significant role for the high frequency consumption

movements in accounting for risk premia. In this sense, we find greater support for the LRR

model.

To further underscore the different channels across the HAB and LRR models we also

consider the valuation of hypothetical contingent claims on the market index (price of div-

idend claim) and aggregate wealth claims (price of aggregate consumption claim). The

contingent claim prices on the market index are very similar across both models, suggesting

that the underlying market return distribution is very similar across these models. How-

ever, there are big differences in the contingent claim prices for aggregate wealth index. The

aggregate wealth contingent claim prices are very large in the HAB model relative to the

LRR model. Further, the contingent claim prices for the market index and the aggregate

wealth index are very similar to each other in the the HAB model, implying that return

distribution for both claims is very similar in the HAB model. This suggests that consump-

tion insurance, from the perspective of HAB model, is very expensive relative to the LRR

model.

Section 2 below sets out the LRR model and Section 3 sets forth HAB model. Section 4

develops the observation equations along with the new measure of realized annual volatility.

Section 5 describes the data and the cointegration analysis. Section 6 contains the estima-

tion results and is followed by Section 7 which evaluates the fitted models’ performance.

Section 8 contains concluding remarks. Details of the simulation based methods described

in a technical appendix.

2 Long Run Risks (LRR)

We develop an asset pricing model that is extension of Bansal and Yaron (2004). Some key

features of the model are that consumption and dividends are separate stochastic processes

but are tied together by a long run cointegrating relationship. Other features include pref-

erences of the Epstein-Zin (1989) and Weil (1989) type along with time varying stochastic

volatility.
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2.1 Dynamics of Driving Variables

Let dt = log(Dt), and ct = log(Ct) denote log real per capita values of the stock dividend

and the consumption endowment. The log endowment ct is assumed to be generated as

ct = ct−1 + µc + xt−1 + εct (1)

where µc is the average growth rate of ct, xt−1 is the stochastic part of the conditional

mean of consumption growth, i.e. the long-run risk process, and εct is the error. Let ∆ct =

ct − ct−1. We impose (and later test) the restriction that log consumption and log dividends

are cointegrated,

dt − ct = µdc + st,

where µdc is a constant and st is an I(0) process. Note that the cointegration coefficient is

set at one and the deviation dt − ct is strictly stationary; that is dividends and consump-

tion share the same deterministic and stochastic trends. Finally we introduce a stochastic

volatility factor νt and below adopt a standard exponential stochastic volatility process for

the dynamics of the variables of interest. For compactness, collect the four variables into the

vector

qt =



















∆ct

xt

st

νt



















, (2)

which we assume is a VAR(1) process with stochastic volatility that takes the form

qt = a+ Aqt−1 + exp(Λt)Ψzt (3)

where zt is a 4 × 1 standard normal random variable, the parameters of the VAR are

a =



















µc

0

−µdc

µσ



















, A =



















0 1 0 0

0 ρx 0 0

0 λsx ρs 0

0 0 0 ρν



















, (4)

with volatility structure

Λt =



















bccνt 0 0 0

0 bxxνt 0 0

0 0 bssνt 0

0 0 0 0



















Ψ =



















Ψcc Ψcx Ψcx 0

0 Ψxx 0 0

0 0 Ψss 0

0 0 0 1



















. (5)
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From the matrix A it is seen that the long run risk factor xt is Granger causally prior and

the volatility factor νt evolves autonomously. The zero restrictions within A, along with the

diagonality of Λt, and the zero restrictions within Ψ shut down many paths of cross-variable

feedback in the interests of parsimony. On these assumptions, the minimal state vector is

ut =











xt

st

νt











, (6)

knowledge of which suffices to simulate the system one step forward.

Note that cointegration between ct and dt implies that ∆dt+1 = ∆ct+1 + ∆st+1. Hence,

given equation (3) and the dynamics of st+1, the implied dividend growth rate specification

is identical to Bansal and Yaron (2004) save for the fact that st is needed in addition to xt

to forecast dividend growth rates. Cointegration between dt and ct ensures that the long run

variances of dividend and consumption growth rates are equal to each other and the levels

of these processes cannot deviate from each other permanently. This is turn ensures that

the present value of the consumption stream (aggregate wealth) and the present value of the

dividend stream (financial wealth) are cointegrated and cannot permanently deviate from

each other.

In the LRR model innovations in the xt correspond to low frequency or long run risks,

and the εct correspond to high frequency risks in consumption. Both these risks carry a

distinct and different risk compensation, with the risk compensation associated with shocks

to xt being critical for accounting for asset prices. The common volatility process across

consumption and dividends, νt, as in Bansal and Yaron, is for parsimony. This variation in

volatility is important for capturing time variation in risk premia.

2.2 Asset Pricing

Let Pct denote the price of an asset that pays the consumption endowment and let

vct =
Pct

Ct

(7)

denote the corresponding price dividend ratio. The Epstein-Zin-Weil utility function is

Ut =
[

(1 − δ)C
1−γ

θ
t + δ(EtU

1−γ
t+1 )

1

θ

]
θ

1−γ

(8)

where γ is the coefficient of risk aversion,

θ =
1 − γ

1 − 1/ψ
, (9)
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and ψ is the elasticity of intertemporal substitution. As noted in Campbell (2002), Bansal

and Yaron (2004), and elsewhere, the first order conditions derived in Epstein and Zin (1989,

1991) imply that the price dividend ratio, vct, is the solution to the nonlinear expectational

equation

vct = Et

{

δθ exp[−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1] (1 + vc,t+1) exp(∆ct+1)
}

. (10)

where

rc,t+1 = log
[

1 + vc,t+1

vct

exp(∆ct+1)
]

(11)

is the geometric return on the asset. Evidently, the one-period marginal rate of substitution

is

Mt,t+1 = δθ exp[−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1]. (12)

The price dividend ratio vdt = Pdt/Dt on the asset that pays Dt is the solution to

vdt = Et

{

δθ exp [−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1] (1 + vd,1+1) exp(∆dt+1)]
}

.

The one-step-ahead risk-free rate rft is the solution to

e−rft = Et

{

δθ exp [−(θ/ψ)∆ct+1 + (θ − 1)rc,t+1]
}

.

The outcome variables of interest are the price-dividend ratios, the risk free rate, and returns.

These are obtained by evaluating the pricing functions

vct = vc(ut)

vdt = vd(ut)

rft = rf (ut),

(13)

which are determined as functions of the state vector (6) using the solution method described

in the Appendix, and then generating returns via

rct = log
[

(1+vct) exp(∆ct)
vc,t−1

]

rdt = log
[

(1+vdt) exp(∆dt)
vd,t−1

]

.
(14)

Cecchetti, Lam, and Mark (1993) consider asset price implications of consumption and

or dividends models that incorporate regime shifts in the context of time separable utility.

Similarly, Evans (1998) uses regime shift in dividends to interpret the behavior of dividend

yields across time. Models of regime shifts in growth rates may provide an alternative way

to capture predictable variation in fundamentals, such as consumption growth.
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3 Habit Persistence (HAB)

We now set forth a model of habit persistence that follows the specification of Campbell and

Cochrane (1999) with the exception that we impose cointegration on their driving variables.

The agent is assumed to maximize the utility function

Et

∞
∑

i=0

δi (Ct+i −Xt+i)
1−γ − 1

1 − γ

where Ct denotes real consumption, Xt denotes the habit stock, δ is a discount rate, and γ

is a risk aversion parameter, although relative risk aversion itself depends on Xt as well and

will be much higher than γ for plausible values of Xt. Define the surplus ratio

Ht =
Ct −Xt

Ct

and assume that

ht = log(Ht)

evolves as

ht+1 = (1 − ρh)h+ ρhht + λ(ht)εc,t+1,

where ρh and h are parameters, εc,t+1 is the consumption innovation defined in (1) above,

and the sensitivity function λ(ht) is

λ(ht) =







1
H

√

1 − 2(ht − h) − 1 ht ≤ hmax

0 ht > hmax

where

H = σεc

√

γ

1 − ρh

and σεc
is the standard deviation of εct. The value hmax is the value at which λ(ht) first

touches zero; by inspection,

hmax = h+
1

2

[

1 − (H)2
]

,

and, in the continuous time limit, hmax is an upper bound on ht. These dynamics for ht

imply, among other things, that the risk free rate is constant to a first approximation.

Under the assumption of external habit, the intertemporal marginal rate of substitution

is

Mt+1 = δ
(

Ht+1

Ht

Ct+1

Ct

)−γ

,

7



or, equivalently,

Mt+1 = δ exp [−γ(∆ht+1 + ∆ct+1)] (15)

where ∆ht+1 = ht+1 − ht and ∆ct+1 is as defined in Section 2 above. Thus, in notation

consistent with the preceding sections, the expectational equation for the price dividend

ratio vct = Pct/Ct for the asset that pays the consumption endowment Ct is

vct = Et {δ exp[−γ(∆ht+1 + ∆ct+1)](1 + vc,t+1) exp(∆ct+1)} , (16)

and the expectational equation for the price dividend ratio vdt = Pdt/Dt for the asset that

pays the dividend Dt is

vdt = Et {δ exp[−γ(∆ht+1 + ∆ct+1)](1 + vd,t+1) exp(∆dt+1)} (17)

The risk free rate rft is the solution to

exp(−rft) = Et {δ exp[−γ(∆ht+1 + ∆ct+1)]} . (18)

The above three equations correspond directly to their counterparts above for Epstein-Zin-

Weil preferences. The geometric return is

rc,t+1 = log
[

1 + vc,t+1

vct

exp(∆ct+1)
]

(19)

on the consumption asset and

rd,t+1 = log
[

1 + vd,t+1

vdt

exp(∆dt+1)
]

(20)

on the equity asset.

Campbell and Cochrane (1999) assume that log consumption ct and the log dividend dt

processes are each I(1) with the same growth rates and correlated innovations. We can easily

modify the dynamics (3) of Section 2 to retain the essential features of their model while

incorporating cointegration between consumption and dividends. We retain the equation

dt = µdc + ct + st.

We set xt = 0 for all t; so that

∆ct = µc + εct

∆dt = µc + (ρs − 1)st−1 + εct + εst
(21)

8



and turn off stochastic volatility, i.e., νt = 0 for all t, so that εct and εst immediately above

are iid Gaussian. This setup, with correlation between εct and εst, is a direct extension

of Campbell and Cochrane (1999). If ρs = 1 the setup reduces to that of Campbell and

Cochrane (1999) specification of iid dividend growth; in this case dividends and consumption

are not cointegrated and have separate stochastic trends. However, the imposition of unit

cointegration implies that dividend growth rates are not iid, as they are predictable via the

error-correction variable st.

The outcome variables of interest are the same as for the LRR model above. Using the

same solution technique we solve for the pricing functions

vct = vc(ut)

vdt = vd(ut)

rft = rf (ut)

(22)

and then generate returns. The minimal state vector for HAB is st and ht. Here we augment

it to

ut =











st

ht

λ(ht)











. (23)

for numerical reasons.

4 Time Aggregation and the Observation Equations

The LRR and HAB models defined in Sections 2 and 3 operate in monthly time while we

observe annual consumption data and annual summary measures from the financial markets.

To simulated the model, we run the VAR with stochastic volatility (3) at the monthly

frequency, burn off the transients, and form the monthly levels of consumption Ct and

dividends Dt. The annual aggregate consumption and dividends, Ca
t and Da

t , are twelve

month moving sums sampled annually, which are then converted to logs:

cat = log(Ca
t ) t = 12, 24, 36, . . .

da
t = log(Da

t ) t = 12, 24, 36, . . .

The annual price dividend ratio is computed as

pa
dt − da

t = log

(

vdt
Dt

Da
t

)

t = 12, 24, 36, . . .
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We also compute the annual geometric returns

ra
dt =

11
∑

k=0

rd,t−k

,

ra
ft =

11
∑

k=0

rf,t−k

.

As an additional diagnostic on the asset pricing models, which to our knowledge is new,

we employ ideas from realized variance literature (Andersen, Bollerslev, and Diebold, 2006).

Specifically we compute log of the within-year realized variance

qa
t = log

(

11
∑

k=0

r2
d,t−k

)

, (24)

as a measure of within year variation (Andersen, Bollerslev, and Diebold, 2002). A closely

related volatility measure is

stda
t =

√

√

√

√

11
∑

k=0

r2
d,t−k, (25)

which we shall often use when reporting results.

In results reported in Section 6, we estimate models using an observation equation com-

prised of the four variables

yt =



















da
t − cat

cat − cat−12

pa
dt − da

t

ra
dt



















(26)

annually. If the observations were monthly, inclusion of rdt in the observation equation (26)

would induce a nonlinear intertemporal redundancy; however, at an annual frequency, the

aggregation protocol just described implies that including ra
dt adds additional information.

We evaluate the LRR and HAB models by studying their implications for the the dynamics

of these four variables along with their implications for the dynamics of realized volatility,

which is nowhere used in estimation.

5 Data

5.1 Raw Data

Our data set consists of annual observations 1929–2001. All variables, except population

and consumption, are computed using monthly data from CRSP and then converted to the
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annual frequency. Annual real ($1996) per capita consumption, nondurables and services,

along with the mid-year population data are taken from the Bureau of Economic Analysis

(BEA) web site.

To construct the annual per capita stock market valuation series, we start with the

month-end combined nominal capitalizations of the NYSE and the AMEX, convert to $1996

using the monthly CPI, take the year-end value, and divide by the BEA population figure.

To compute the annual dividend series, we use the difference between the nominal value

weighted return and the capital return (i.e. the return excluding dividend) to compute an

implied monthly nominal dividend yield on the NYSE+AMEX. Applying this dividend yield

to the preceding month’s market capitalization gives an implied monthly nominal dividend

series. This series is converted to a real ($1996) monthly dividend series using the monthly

CPI, aggregated over the year, and then divided by the BEA population figure. To compute

the annual real return series, we use the monthly nominal value weighted return on the

NYSE+AMEX and the CPI to compute a monthly real geometric return, which is then

cumulated over the year to form a real annual geometric return. The annual quadratic

variation is the sum of the monthly squared real geometric returns.

For consistency with the presentation of the model, we let t denote the time index in

months, so that P a
dt, t = 12, 24, . . . denotes the end-of-year per capita stock market value

observations; Da
t , t = 12, 24, . . . denotes the annual aggregate per capita dividend obser-

vations; Ca
t , t = 12, 24, . . . denotes the annual per capita observations; ra

dt, t = 12, 24, . . .

denotes the annual real geometric return observations; qa
t , t = 12, 24, . . . denotes the log

annual realized variation observations. While in principle it would be possible to use mixed

monthly and annual data, this would entail a more complicated likelihood and additional

assumptions. Our preference here is to use a more standard estimation approach.

Figure 1 shows time series plots of the annual observations on the logged series pa
dt =

log(P a
dt), d

a
t = log(Da

t ), c
a
t = log(Ca

t ), ra
t , and qa

t = log(Qa
t ). The three series pa

dt, d
a
t , and cat ,

are upward trending series, while ra
t and qa

t appear stationary.

5.2 Cointegrating Relationships

One would expect there to be cointegrating relationships among the three trending variables.

A simple regression of (pa
dt d

a
t c

a
t ) on (pa

d,t−12 d
a
t−12 c

a
t−12), annual data 1930–2001, yields an

autoregressive matrix with one eigenvalue nearly exactly equal to unity and two others

about 0.90 in magnitude. Two eigenvalues separated from unity suggests that there are
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two cointegrating relationships among the three variables. One relationship, which has been

explored extensively in the literature and which we imposed a priori in the development of

the LRR and HAB models above, is that the log price dividend ratio va
dt = pa

dt − da
t is

stationary.

It is natural to presume that there is also a cointegrating relationship between the log

dividend and the log consumption variable. Thus we conjecture the relationship

da
t − λdcc

a
t = I(0)

where λdc is a parameter that should be unity. We first constrain λdc = 1 and do a

heteroskedasticity-robust augmented Dickey-Fuller test for a unit root in da
t − cat . The BIC

criterion suggests that one lag in the ADF equation is better than none or two, and for that

model the unit-root t-statistic is 3.56 (p-value = 0.009), which is rather strong evidence for

a cointegrating relationship between the log dividend and log consumption variables with a

coefficient of unity.

Another strategy is to estimate λdc by running a reduced rank regression model (Ander-

son, 2001). We did this and the estimate was λdc = 0.9497, which is consistent with the unit

root test above.

In what follows we shall take the series pa
dt − da

t , d
a
t − cat , and cat − cat−12 as the three

jointly I(0) variables embodied in the three trending series. Of course the above analysis

only identifies the two dimensional subspace of <3 that determines the two cointegrating

relationships among (pa
dt d

a
t c

a
t ). Put another way, given any nonsingular 2× 2 matrix times

the vector




1 −1 0

0 1 −1















pa
dt

da
t

cat











could, on statistical grounds, also be taken as the I(0) linear combinations of the three

trending series. However, the normalization above leads to very simple and easy to interpret

variables: the log price dividend ratio, the log dividend consumption ratio, and consumption

growth, all jointly I(0).

6 Model Parameter Estimates

In order to estimate the models described in Section 2 and 3 one must handle the fact that

the ex ante real risk free rate of interest is not directly observable. Campbell (2002) notes
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that any reasonable asset pricing model must incorporate the indirect evidence that the

mean risk-free rate rft is very low with low volatility. Campbell’s evidence suggests that the

mean risk-free rate for the U.S. is 0.896 percent per annum. We want to impose Campbell’s

empirical evidence on the parameter estimates; to do so, we impose a Campbell’s restriction

on E(rft) within the monthly simulations. In practical terms, we constrain E(rft) to lie within

a small band of approximately 50 annual basis points around 0.896 percent per annum. The

reason for treating the constraint on the risk-free rate as a small inequality constraint is

numerical: doing so gives the optimization software a small amount of slack and it makes

feasible the task of finding start values for the numerical optimization. Treating it as an

exact constraint is numerically infeasible. It bears noting that Campbell’s auxiliary evidence

sharply restricts the parameter space and thereby challenges any model so constrained.

Indeed, at the start of a run, we found it difficult and tedious to find start values for the

parameters that generate simulated data consistent with Campbell’s evidence.

In results reported below, we use as the auxiliary model a four-variable VAR(1) at the

annual frequency:

yt = b0 +Byt−12 + et (27)

where

yt =



















da
t − cat

cat − cat−12

pa
dt − da

t

ra
t



















(28)

The definition of yt above corresponds exactly with that of the observation equation (26) for

the theoretical model. The period of the dependent variable in (27) is 1931–2001. We do

not include the log realized variance qa
t , but we do check how well the asset pricing model

can match the dynamics of that variable.

In some initial work, we used an unrestricted 4 × 4 VAR(1). However, many of the

estimates of the off-diagonal elements of B are statistically insignificant and the diagonal

elements clearly dominate; rather than adopt some arbitrary scheme for dropping variables,

we use a VAR that is diagonal in both location and scale for estimation. The intercept

and AR(1) coefficients are shown in the columns labeled “Observed” in Table 4, which is

discussed more fully below. The simulation estimator described in the Appendix remains

consistent and asymptotically normal with this choice of the auxiliary model. The estimation

begins with a simplified version where the long run risk factor of LRR is turned off and all
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risks are presumed short run; this version corresponds closely to the model of Hall (1978).

In this version, labeled the Short-Run Risk (SRR) model, the xt process is set to zero,

so consumption growth is a random walk with drift, and the driving processes in (3) are

homoskedastic, so that the risk premia are constant. The restrictions are implemented by

setting ρx = 0, by setting the elements of Ψ corresponding to xt to zero, and by setting to zero

the parameters governing the stochastic volatility in (5). The assumption that consumption

growth is iid is quite common, e.g., Campbell and Cochrane (1999), as is the assumption

of homoskedastic driving variables. We use the term Short Run Risk (SRR) because the

only exposure of the dividend to consumption risk arises through innovation correlations.

We use linear functional forms for the solution functions of the SRR model in the numerical

solution of the model as described in the Appendix; we could find little indication of a need

for quadratic terms. The use of a linear form is typical in the literature. A major difference

is that we maintain cointegration between the consumption and dividend process.

The second model, labeled the Long Run Risk (LRR) model, is more general with

underlying dynamics given by (3) above. This model incorporates a stochastic mean, µc +

xt, for consumption growth and it includes stochastic volatility as embodied in (5). A

normalization for identification is that bc = bs = bx = 0. Initial estimation was done with

both linear and quadratic terms in the solution functions. Inspection of the results indicated

that the only important quadratic term was the interaction term of xt with the log-volatility

variable, νt, and that other quadratic terms could be set to zero without altering the results.

The initial work suggested that freely estimating the LRR model using an unconstrained

4× 4 VAR(1) as the auxiliary model gives results almost exactly the same as those reported

below, except that consumption volatility tends to be underestimated somewhat and there-

fore returns volatility is underestimated. We elected to fix the scale parameters of the

consumption process in (4) and (5) to values that, after some experimentation, would give

rise to consumption volatility matching that of the observed data. These values are

bcc = 0.14320

bxx = 0.11000

Ψcc = 0.00340

Ψxx = 0.00012

(29)

and they remain fixed throughout the estimation, so they are calibrated parameters; Ψss is a

free parameter while the the off-diagonal elements of Ψ in (5) are set to zero. Also, estimates

of the elasticity of substitution parameter, ψ, typically land in the region 1.50–2.50, but the
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objective function is very flat in ψ, so we constrain ψ = 2.00. The remaining parameters,

including the dynamic parameters, ρx and ρσ, and the parameter, λsx, are freely estimated.

Note that ρσ affects the dynamics of the price to dividend ratio and stock returns which

identifies ρσ as can be see for the expressions for the price to dividend and stock returns

given in Bansal and Yaron (2004).

Table 1 displays parameter estimates for the SRR and LRR models along with the chi-

squared measure of fit. The chi-squared statistics suggest that the SRR model is rejected,

as might be expected, though the LRR model appears to give an adequate fit given the

well known tendency of this type of chi-squared test to over reject. Both point estimates

of ρs are close to unity, indicating that shocks to the log dividend consumption ratio are

highly persistent in both models. The estimate of ρx is close to unity in the LRR model,

which is evidence for a very persistent component xt to consumption growth, though the

small conditional standard deviation suggests that this component is small. Likewise, the

estimate of ρσ is very close to unity, a finding consistent with all other empirical evidence on

volatility persistence. Interestingly, the estimate of ρσ close to unity is obtained only using

mean dynamics without regard to the log realized variance process, qa
t , as that process was

not included in the VAR on which LRR was estimated.

Perhaps the sharpest difference between SRR and LRR is the estimates of the risk

aversion parameter γ, which is huge in the SRR model but much more reasonable in the

LRR model. The difference can be traced directly to very different dynamics of the driving

variables across the models. In the SRR model, consumption shocks are completely tran-

sient, while in the LRR model the transient consumption shocks are superimposed with the

very persistent process xt. Thus, in the latter model, the asset that pays the consumption

endowment Ct is much riskier and thereby commands a higher risk premium, Et(rc,t+1− rft),

other things equal. In addition, the near permanent shocks to xt affect the mean growth rate

of the dividend in (4) the amount λsx, estimated to be about 2.5. Thus, the asset paying

the dividend stream Dt is likewise much riskier in the LRR model and commands a higher

risk premium, Et(rd,t+1 − rft). Taken together, these characteristics of the dynamics of the

driving processes imply that the LRR model can generate higher equity risk premia without

appeal to an (implausible) high coefficient of risk aversion γ.

Another model we considered was one with long run dynamics but with the utility func-

tion constrained to be the constant relative risk aversion (CRR) instead of the more general

Epstein-Zin-Weil form considered in the LRR model. This estimation is achieved by setting
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θ = 1 in (8) and estimating risk aversion, γ, which corresponds to 1/ψ, along with the other

free parameters. The empirical failures of CRR utility have been extensively documented in

the literature, so we not report the results in detail. The model is sharply rejected (p-value =

4.98e-13). Interesting, the fitted model estimates a modest value for the risk aversion param-

eter, γ̂ = 7.285 (2.223), but it also estimates a very small value for µc, and thereby predicts

an absurdly low value for mean annual average consumption growth. The low estimate of µc

is the only way this model can satisfy the real interest constraint; of course it cannot then

generate a sufficient equity premium, as has been long understood. Table 2 shows parameter

estimates and the chi-squared statistic for the model of habit persistence (HAB) described

in Section 3 above. Initial work suggested that Ψcs is difficult to estimate as a free param-

eter, so we constrain Ψcs = 0. Keep in mind that the consumption and dividend growth

innovations are still correlated in (21); the parameter estimates imply correlations very close

to 0.20, which is the value imposed by Campbell and Cochrane (1999). As seen in the table,

the HAB model does well on the χ2 criterion and the point estimates appear reasonable. As

expected, the estimates of ρh and ρs are close to unity as is δ. The risk aversion parameter γ

is estimated to be close to unity and is reasonably precisely estimated. A conventional Wald

confidence interval would include a range of values above unity but would exclude the value

2.00 imposed by Campbell and Cochrane (1999).

7 Contrasts between Models

7.1 Unconditional Moments

Table 3 shows unconditional means and standard deviations computed from the data and

the predicted values under the models SRR, LRR, and HAB. In this, and in subsequent

tables, the predicted values should be regarded as population values implied by the model at

the estimated parameter values corrupted by very small Monte Carlo noise. All three models

agree rather closely with the data on the means and standard deviations of the log dividend

consumption ratio and also for consumption growth, except that the HAB model under

predicts consumption growth volatility somewhat. Also, the three models agree quite closely

with the data on the mean of the price dividend ratio, though the SRR model seriously

underestimates its volatility, while the LRR and HAB models are much closer, though still

below that of the data.

All three models predict an annual return on the stock market, i.e., the dividend asset, at
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just over 6 percent per year, which is consistent with the data. Likewise, since the mean of

the risk-free is tightly constrained, the three models also predict about the same equity pre-

mium. The mechanisms, however, are quite different. The unrealistically high degree of risk

aversion of the SRR model generates an expected return on the consumption asset, E(rct),

of about 5.60 percent per year, which, via the correlation between consumption innovations

and dividend innovations, is stepped up to a predicted value of 6.15 percent per year for

the dividend asset. On the other hand, for the LRR model, the risk aversion parameter is

much smaller, but the inherent higher riskiness of the consumption asset implies an expected

return E(rct) on the consumption asset of about 2.33 percent per year. Cointegration, inno-

vation correlation, and the effects of xt innovations implied by a positive estimate of λsx (see

(3)) increase the expected return on the equity E(rdt) to the predicted value of 6.29 percent

per year. Finally, as explained at length in Campbell and Cochrane (1999), the dynamics

of the surplus consumption ratio make stocks rather unappealing to investors who therefore

require a relatively large premium over cash. As seen from the table, the unconditional first

two moments of the dividend asset and the consumption asset are about the same under

the HAB model, and for the dividend asset, are in close agreement with the data, which is

largely consistent with Campbell and Cochrane (1999, Table 2, p. 225).

One quite remarkable finding in Table 3 is how well both the LRR and HAB models

do in terms of matching the unconditional moments of the volatility measure defined by the

square root of the quadratic variance variable (25). Both models are nearly right on the

observed values despite the fact that this variable is not used in the estimation.

7.2 Conditional First and Second Moments

Table 4 shows observed and predicted univariate AR(1) models. It includes an AR(1) model

for the log quadratic variance variable, qa
t defined in (24), which was not used in estimation

but is still available for model assessment of return volatility dynamics. The shortcomings of

the SRR model are readily apparent. This model under predicts the persistence in annual

consumption growth, cat − cat−12, and it misses very badly on volatility dynamics.

The LRR model, on the other hand, matches quite well nearly all of the univariate

features of the data. Interestingly, this model captures the serial correlation properties of

return volatility quite while only slightly underestimating the level of volatility. Overall, the

HAB does just about as well, though there are two exceptions worth noting: First, the HAB

model, just like the SRR model, predicts a value of 0.25 for the first order autocorrelation
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in consumption growth, while the observed value is about 0.45. This under prediction can

be traced directly to the presumption that consumption growth process lacks the long-term

component xt of the LRR model. Second, the persistence parameter of the realized volatility,

qa
t is too large for the HAB model relative to the data whereas it is comparable to the data

in the LRR model,

7.3 Data Tracking

Figures 3–5 show time series plots of the observed data along with the predicted values from

an unrestricted VAR estimate and the restricted VAR implied by the SRR, LRR, HAB

models. The unrestricted VAR is a four-variable VAR estimated on yt in (28) augmented

by the log quadratic variance variable qa
t , but set up to be block diagonal in (yt q

a
t ). The

restricted VAR is the same thing except it is estimated on a long simulation (based on 50,000

months) from the model evaluated at the fitted parameters and is therefore the reprojected

VAR; the one-step ahead predictions are the reprojected data series. To ease interpretation,

the values for qa
t are converted from logs to levels and annualized.

The figures are quite conclusive on the abilities of the models to track the data. The

reprojected series from the SRR model are a disaster, as see in Figure 3. The reprojected

series from the LRR and HAB model, however, are seen in Figures 4 and 5 to track

very closely the predictable components of the log dividend consumption ratio, consumption

growth, the log price dividend ratio, and the equity return. Indeed, the LRR and HAB

predict well ahead of time the drop in equity returns that occurs between 1999 and 2001.

Also, the LRR and HAB models track rather well the conditional volatility of the return

as is evident from the bottom panels of these figures.

It seems quite striking that two models with such quite different internal structures as

the LRR and HAB can come to such a close agreement on the data, at least on a one-step-

ahead basis; we thus investigate further the multi-step characteristics of these two models

using selected pairwise projections of financial and macro variables analogously to Wachter

(2002).

7.4 Predictability Regressions

Table 5 shows projections of the end-of-year log price dividend ratio on contemporaneous

and five (annual) lags of the consumption growth variable. The table suggests a rather

weak link between the log price dividend ratio and the history of consumption in both the
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observed data and under the LRR model: the R2’s are nearly negligible. On the other, the

HAB model suggests a much tighter link than is consistent with the data. The link between

consumption (its lags) and the price-dividend ratio helps discriminate across the two models.

Table 6 shows linear projections of cumulative n-year-ahead geometric stock returns on

the log price dividend ratio, for n = 1, 2, ..., 5 years out. The R2’s increase with the horizon

for all three sets of projections. For those done on the observed data the increase is rather

mild, while for those done for the LRR model there is steeper increase with horizon, while

for the HAB model, there is an even steeper increase with horizon. Table 5, and to some

extent 6, appear to contain evidence supportive of the LRR model over the HAB model.

Recent papers in the literature also entertain other returns forecasting variables. Lettau and

Ludvigson (2001) consider an empirical proxy for the consumption wealth ratio and show

that it has some ability to forecast returns. We evaluate this in the context of our models.

For the LRR and HAB models, regressions of cumulative stock returns on the log wealth

consumption ratio, which is available in a theoretically consistent form directly within each

model, reveal no appreciable differences in the R2’s across LRR and HAB models and are

similar in pattern and magnitude to those reported for the price dividend ratio in Table 6.

This suggests that regressions of cumulative stock returns on the log wealth consumption

ratio do not distinguish between the two models.

Predictability of consumption and dividend growth rates is also an issue of considerable

interest. Papers by Ang and Beakert(2001), Bansal, Khatcharian, and Yaron (2005), and

Lettau and Ludvigson (2005) show that dividend growth rates are predictable, particularly at

long horizons. We consider cumulative n-year-ahead geometric growth rates of consumption

and dividends on the log consumption wealth ratio and the price dividend ratio and that there

are no substantive differences across models. For the consumption regressions, the R2 are

low (about one percent at the five year horizon) in the case of the LRR model, as discussed

in Bansal and Yaron (2004), because the right-hand side variable is affected by several other

state variables that diminish its ability to forecast future growth rates. In the HAB model

the lack of predictability is due to iid consumption growth. For the dividend regressions,

one must keep in mind that we have imposed cointegration on all models, including the

HAB model, see (21), unlike Campbell and Cochrane (1999). Consequently, we find that

dividend growth rates are forecastable, even in the HAB model. Specifically, the error

correction variable st in (21) is a state variable that drives price dividend ratios, and hence

this valuation ratio can forecast dividend growth rates to some extent; e.g. at the five year
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horizon the R2 is about 20 percent for both models. Note that the error correction state

variable st captures similar intuition to the the business cycle variable considered in Lettau

and Ludvigson (2005) for the predictability regressions.

One potential source of discrimination across models is the variance decomposition of

the price dividend ratio into portions attributable to variations in expected dividends and

expected returns (see Cochrane (1992), for example). We find that even on this score there

is no great discrimination across models either. In our simulation, we find that 65 percent

of the price-dividend variability is due to expected returns and about 35 percent due to

dividend growth rates for the HAB model. The numbers for the LRR model are about

60 percent and 40 percent for expected returns and dividends, respectively — quite similar

to those reported in Bansal and Yaron (2004). For the HAB model, as discussed above,

cointegration implies that dividend growth rates are predictable in contrast to the HAB

model considered in Campbell and Cochrane (1999). In the data, the point estimate for the

expected return contribution to the long price-dividend variation is is around 100 percent;

however, these estimates in the data have fairly large standard errors (of the order of 40

percent) and the variance decompositions avove can be regarded as consistent with the data.

7.5 Consumption-Return Relationships

Table 7 summarizes consumption beta regressions, i.e., regressions of the stock market return

on consumption growth estimated on the observed data and simulated data from the models.

The contrasts between the LRR and HAB models are quite sharp in this respect. In the

data the stock market’s consumption beta is 0.79 and the projection adjusted R2 is zero.

The HAB predicts a much higher beta of 4.19 and an adjusted R2 of 19 percent. In contrast

the LRR predicts values quite comparable to those observed in the data. (The estimated

standard errors using observed and simulated data are not comparable because the simulated

sample sizes are far larger.) The evidence suggests that the HAB predicts an overly tight

relationship between stock returns and consumption growth. Kiku (2006) uses the risk and

return links in the LRR model to explain the empirical failure of standard consumption

CAPM and the market CAPM in accounting for the differences in mean returns across

assets.

A related exercise is to evaluate the ability of the two models to account for the findings

of Hansen and Singleton (1982) regarding the empirical implausibility of the power utility

specification for the stochastic discount factor. Table 8 summarizes the results of using GMM
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to estimate the subjective discount factor and risk aversion parameters using simulated data

from each model at both the monthly and annual frequencies. This is a form of encompass-

ing, i.e., a check on whether a maintained model can explain previous empirical findings.

There are three Euler-equation errors corresponding to the risk free rate, the dividend asset,

and the consumption asset. GMM was used to minimize the length of the vector of average

pricing errors using the appropriate covariance matrix to form the over identification test,

which is chi-squared on one degree of freedom. Not surprisingly, both models produce rather

large estimates of risk aversion. Note, however, that LRR generates far larger chi-squared

test statistics than HAB, suggesting it accounts better for previous empirical findings us-

ing power utility. While this exercise is similar is spirit to that conducted in Lettau and

Ludvigson (2005), there are important differences: our test assets differ from theirs, and the

model implementations are different. For example, we impose conintegration which affects

predictability of dividend growth rates and returns as discussed above.

The consumption beta and the power utility-based diagnostic highlights that the HAB

model, through the habit function, emphasizes the risks associated with high frequency move-

ments in consumption to account for the risk and return relation. The data do not support

this channel. The LRR model on the other hand emphasizes the low frequency movements

in consumption as the key channel for risks in asset markets; these risks are handsomely

compensated while high frequency risks do not receive significant risk compensation. This

feature of the LRR explains its smaller consumption beta and the large chi-square statis-

tic discussed above. Bansal, Dittmar, and Lundblad (2005) and Kiku (2006), for example,

utilize this feature of the LRR model to examine cross-sectional differences in risk premia

between assets.

7.6 Derivatives Prices

We now examine the implications of the two models for derivatives pricing, and for simplicity

we restrict the analysis to standard European call and put options written on the stock

and consumption assets. The computations are numerically intensive but conceptually very

straightforward, because the functional form of each models’ asset pricing kernel is generated

as a byproduct of the estimation. These call and put derivatives do not directly correspond

to actual real-world traded securities, and so the computed prices cannot be compared to

actual data. Nonetheless, the contrasts between the two models’ derivative prices can provide

additional insight into their internal structures.
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As is well understood, the price Pgt at time t of a financial instrument with payoff Gt+k

at t+ k is given by

Pgt = Et



exp





k
∑

j=1

mt+j−1,t+j



 Gt+k



 (30)

where mt,t+1 is the log of the one-period marginal rate of substitution. Define the pricing

operator

Vtk(·) = Et



exp





k
∑

j=1

mt+j−1,t+j



 (·)


 (31)

so the valuation can be expressed simply as Pgt = Vtk(Gt+k).

Consider a European call option written on the stock price process Pdt with strike price X

and expiration k steps ahead. The payoff Gd,t+k = max (Pd,t+k −X, 0) expressed in relative

terms is
Gd,t+k

Pdt

= max
(

Pd,t+k

Pdt

− x∗t , 0
)

,

where x∗t = X/Pdt denote the strike-to-underlying ratio of the call. Using the pricing operator

(31) the relative price of the call is

vd,kt = Vtk

(

Gd,t+k

Pdt

)

,

which is computed using the solution technique described in the Appendix.

Evidently, the computations proceed in analogous manner for a European put option

starting from

Gp,t+k = max (X − Pd,t+k, 0) .

A put-call parity relationship holds for these options, but the formula is awkward because

of the stochastic dividend stream.

Table 9 shows for both the LRR and HAB models the unconditional means of the

implied relative call and put prices written on the dividend asset Pdt. The expiration dates

range from one through twelve months ahead and the strike-to-underlying ratios are 0.99,

1.00, and 1.01. The derivative prices are in percent relative to the level of the stock price at

the time the option is written. For example, under the LRR model, a one month call option

with strike-to-underlying ratio of 1.00 costs 1.65 percent of the price of a share of the stock,

with a similar interpretation for the other reported average prices. The average put prices

might seem high relative to the average call prices but one must keep in mind the dividend,

which tends to increase the value of puts relative to calls. Overall, the average prices shown

in Table 9 exhibit the usual properties of call and put options. There does not seem to be
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much difference between the prices computed under the LRR and HAB models, indicating

that the models are generally in agreement on the prices of call and put derivatives written

on the dividend asset.

For derivatives written on the consumption asset, Pct, it is helpful to keep in mind that

Pct is just wealth in the economies considered above, so derivatives written on Pct represent

derivatives on wealth. Consider a European call option written on Pc,t+k. It has payoff

Gc,t+k = max (Pc,t+k −X, 0) that can be normalized as

Gc,t+k

Pct

= max
(

Pc,t+k

Pct

− x∗t , 0
)

,

where now x∗t represents the wealth strike-to-underlying of the call. The relative price of

this call is

vw,kt = Vt

(

Gt+k

Pdt

)

and would interpreted as the fraction of wealth that must be paid for a call with payoff

max
(

Pc,t+k

Pct
− x∗t , 0

)

. The analysis is completely analogous for wealth puts starting from the

scaled payoff max
(

x∗t −
Pc,t+k

Pct
, 0
)

.

Table 10 shows the computed average relative prices for puts and calls written on the

consumption asset Pct
expressed as a percentage of total wealth Pct

. Thus, the LRR model

implies that, on average, the cost of a twelve month at-the-money put option on wealth is

1.26 percent of current wealth. By way of contrast, the HAB models implies the same put

option would cost 7.93 percent of current wealth.

There are sharp differences between the wealth derivative implications of the two models.

The HAB model implies a substantially higher costs across the board for both the call and

put derivatives. A factor accounting for the differences appears to be the different volatilities

of the return on the consumption asset under the two models. From Table 3 above, the

HAB model implies that the annual volatility on the return on the consumption asset is

18.12 percent per year, which is about the same as that on the dividend asset. In contrast,

the LRR model implies the much lower value of 3.95 percent per year for the volatility of the

consumption asset. Thus the HAB model generates about the same values for derivatives

written on either the dividend or consumption asset, while the LRR model generates much

smaller values for derivatives written on the consumption asset. Put another way, using

derivatives to protect or hedge the value of the stock index would cost about the same in

either model, but using derivatives to protect wealth would be much cheaper in an LRR

economy than in a HAB economy.
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8 Conclusion

A simulated method of moments method proposed by Smith (1993) was used to estimate

consumption based rational expectations asset pricing models using aggregate data on con-

sumption, dividends, and stock prices from 1929 to 2001, taking cognizance of the cointe-

grating relationships among these variables both with respect to the data and with respect

to the dynamics of the models themselves.

The first model, patterned after Bansal and Yaron (2004) and termed long run risks

(LRR), has Epstein-Zin-Weil preferences and slowly time-varying growth dynamics for the

consumption and dividend driving processes. A special case of this model, termed short run

risks (SRR), is patterned after Hall (1978), has the same preferences but constant growth

dynamics for the consumption and dividend driving processes. The second, patterned after

Campbell and Cochrane (1999) and termed habit (HAB), has power utility preferences with

external habit formation and constant growth dynamics for the consumption and dividend

driving processes. For these models, a practicable simulation-based numerical method for

pricing dividend flows, consumption flows, and derivatives on the stock market and on wealth

developed and implemented in the paper.

The SRR was overwhelmingly rejected by the test of overidentifying restrictions and

it did a poor job of matching conditional and unconditional moments of the data. It was

dismissed from further consideration.

On the other hand, both LRR and HAB did well on the tests of overidentification and

did an excellent job of matching conditional moments, unconditional moments, and first

order dynamics in general. The models account for the equity premium, the long swings

in stock market valuations relative to underlying cash flows, the high level of stock market

volatility, and the persistence of long term swings in stock market volatility. The models

were further validated by considering the match of predicted to realized conditional and

unconditional moments used in estimation and also to a realized variance measure, newly

developed in this paper, that had been held out from the data used for estimation. Also

of interest is the fact that both models predicted the stock market downturn around 2000

whereas VAR forecasts did not. According to conventional determinants of the adequacy of

asset pricing models, both LRR and HAB appear successful; one can conclude that there

is no need to abandon rationality and behavioral models might be unnecessary.

A choice between LRR and HAB must be made on the basis of a more extensive scrutiny

of their structural characteristics. Regressions designed to reveal differences in multi-step-
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ahead dynamics were undertaken. These are regressions of the log price-dividend ratio on

current and lagged consumption growth and regressions of future stock returns on the price-

dividend ratio. Regressions for LRR simulations agreed more closely with regressions for

the data than did regressions for HAB simulations. Also, consumption beta regressions

and encompassing GMM estimations suggested that LRR better reflects the co-movements

between consumption and returns. Finally, analysis of prices of put and call option written on

the stock market and wealth suggest that HAB makes little distinction between stock market

wealth and overall wealth, while LRR finds a sharp distinction. A bottom-line decision is

very difficult to make, but on the basis of the more extensive scrutiny one concludes that

probably the long run risks model is preferred to the habit model.

Appendix: Model Solution Technique and Estimation

Methodology

We use a simulation-based methodology based on Smith (1993) and implemented using a

score-based estimation strategy proposed by Gallant and Tauchen (1996). Central to the

methodology is the use of long simulations to compute unconditional expectations of the

functions of the state vector involving one or more leads and lags. In particular, an expecta-

tion of a random variable of the form g(ut+1, ut), which depends on a contemporaneous and

a one-step-ahead value of the state vector, can be computed from a simulation {ût}N+1
t=1 as

E(g)
.
=

1

N

N
∑

t=1

g(ût+1, ût)

to any desired degree of accuracy by taking N sufficiently large.

Because one must bear the cost of generating the simulation {ût}N+1
t=1 for the purpose

of estimation anyway, it becomes convenient to use this same simulation to determine the

pricing functions vc(u), vd(u), and rf (u) using a Bubnov-Galerkin method (Miranda and

Fackler, 2002, p. 152–3). Consider, for example, the determination of vc(u) for the LRR

model, which, like all other policy functions in this paper, can be adequately approximated

by the quadratic vc(u)
.
= a0 + a′1u + u′A2u. Using (10) and (11), vc(u) must satisfy the

conditional expression

E{vc(ut) −M(ut+1, ut)[1 + vc(ut+1)] exp(∆ct+1) |ut = u} = 0 (32)

for all u ∈ <3, where

M(ut+1, ut) = δθ exp[−(θ/ψ)∆ct+1 + (θ − 1)rc(ut+1, ut)]
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rc(ut+1, ut) = log

[

1 + vc(ut+1)

vc(ut)
exp(∆ct+1)

]

.

Let

g(ut+1, ut) = {vc(ut) −M(ut+1, ut)[1 + vc(ut+1)] exp(∆ct+1)}Zt

where Zt = [1, u′t, vech′(ut, ut)]
′ and vech(A) denotes the vector comprised of the elements of

the upper triangle of a symmetric matrix A. Then, by the law of iterated expectations, the

conditional expression (32) implies that the unconditional expression Eg = 0 must also be

satisfied by vc(u). Let g(ut+1, ut, αc) denote g(ut+1, ut) with vc(u) replaced by its quadratic

approximation and let αc = [a0, a
′

1, vech′(A2)]
′ denote the ten distinct coefficients of the

quadratic approximation. Because both αc and Zt are vectors of length ten, the unconditional

expression Eg(·, αc) = 0 becomes a system of ten nonlinear equations that can be solved for

αc. As integrals are computed by averaging over a long simulation {ût}N+1
t=1 , it is actually

the system
1

N

N
∑

t=1

g(ût+1, ût, αc) = 0 (33)

that is to be solved for αc. One solves for vd(u) and rf (u) similarly. As the marginal rate of

substitution M(ut+1, ut) depends on vc(ut+1) and vc(ut), one must solve for vc(u) first. The

solution strategy for HAB is exactly the same using (15) as the marginal rate of substitution

and (23) as the state vector. Because vc(u) is needed to price macro risks as described later,

we compute it for the habit model. At this stage of the computations, both the simulation

{ût}N+1
t=1 and the values vc(ût), vd(ût), and rf (ût) at the monthly frequency become available.

The corresponding values for {ŷt}N/12
t=12,24,... at the annual frequency can now be computed by

applying the expressions for aggregation set forth in Section 4.

Let the transition density of the VAR be written as f(yt|yt−12, θ), t = 12, 24, . . .; let θ̃

denote the maximum likelihood estimate of θ computed from the data{ỹt}n/12
t=12,24,... Collect the

parameters of one of the structural models, e.g. LLR, into a vector denoted ρ. Simulations

from the structural model will follow a stationary density that we denote by p(yt, yt−12|ρ).
Consider the unconditional moment functions

m(ρ, θ̃) =
∫ ∫ ∂

∂θ
log f(yt|yt−12, θ̃) p(yt, yt−12|ρ) dyt dyt−12. (34)

The integral in (34) is computed by specifying ρ, simulating the structural model, and

averaging over the simulation as discussed above. Using these moment conditions, ρ can be

estimated by minimizing the GMM criterion

s(ρ) = m′(ρ, θ̃)(Ĩ)−1m(ρ, θ̃), (35)
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where

Ĩ =
n/12
∑

t=12,24,...

{

∂

∂θ
log f(ỹt|ỹt−12, θ̃)

}{

∂

∂θ
log f(ỹt|ỹt−12, θ̃)

}

′

. (36)

The EMM estimator is ρ̂ that maximizes s(ρ). It is
√
n-consistent and asymptotically

normally distributed as proved in Gallant and Tauchen (1996) under regularity conditions

set forth there. The most important of these conditions is an identification condition, that,

excepting pathological examples, will be satisfied when dim(θ) ≥ dim(ρ), which is essentially

the requirement that the number of moments used to define a method of moments estimator

must equal or exceed the number of parameters estimated. Gouriéroux, Monfort, and Re-

nault (1993) show that, for the particular choice of auxiliary model f(yt|yt−12, θ) used here,

equation (27), the EMM estimator is asymptotically equivalent to Smith’s (1993) estimator.

The Gallant and Tauchen regularity conditions do not require that the data follow the dis-

tribution f(yt|yt−12, θ) because the proof strategy relies only on quasi-maximum likelihood

estimation theory (Gallant, 1987). However, when using (36) as the weighting matrix, it

is good practice to subject f(yt|yt−12, θ) to specification tests; we used BIC. With respect

to setting off diagonal terms of f(yt|yt−12, θ) to zero in Section 6, a good analogy is to the

problem of bias caused by weak instruments. Removing the moments corresponding to the

poorly estimated off diagonal moments is like removing weak instruments and therefore rela-

tively conservative. One would expect it to reduce bias rather than increase it. We possibly

pay a price in efficiency.

The EMM estimator is a GMM estimator whence ns(ρ̂) is asymptotically distributed

as a (non-central) chi-square random variable on dim(θ) − dim(ρ) degress freedom. When

m(ρo, θo) = 0, where θo and ρo are the almost sure limits of θ̃ and ρ̂, expressions for which are

given in Gallant and Tauchen (1996), then ns(ρ̂) follows the central chi square distribution.

If the data do, in fact, follow the structural model p(yt, yt−12|ρ), then m(ρo, θo) = 0. Thus,

comparing ns(ρ̂) to the chi square critical value, as we do in Section 6, is a test of model

specification. This logic is exactly the same as the logic of the GMM test of overidentifying

restrictions.
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Table 1. Parameter Estimates: Four Variable Score

SRR Model LRR Model

Parameter Estimate Std Err Estimate Std Err

µc 0.002178 0.000290 0.001921 0.000332
ρs 0.9892 0.0080 0.9583 0.1032
λsx 2.5004 16.9346
ρx 0.9871 0.0088
bcc 0.1432 c
bss 0.8188 0.2788
bxx 0.1100 c
ψcc 0.00646 0.00458 0.0034 c
ψcs 0.00146 0.01746
ψss 0.02487 0.00809 .4109e-06 .2203e-05
ψxx 0.000120 c
ρσ 0.9866 0.0011

δ 0.997488 0.004369 0.999566 0.000343
θ -195.79 233.59 -12.2843 7.6243
ψ 2.00 c 2.00 c
γ 98.8969 116.7968 7.1421 3.8122

µdc -3.3965 0.0428 -3.3857 0.0540

χ2(5) = 41.051 (.9e-7) χ2(3) = 10.501 (0.0148)

* Notes: (1) γ is a derived parameter computed from θ and ψ.

(2) ”c” indicates a calibrated parameter.
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Table 2. Parameter Estimates for the

Habit Persistence (HAB) Model

Parameter Estimate Std Err

µc 0.002116 0.000250

ρs 0.9719 0.0154

ψcc 0.006151 0.000896
ψss 0.036503 0.007716

ρh 0.9853 0.002597

δ 0.9939 0.000526
γ 0.8386 0.2463

µdc -3.3587 0.0380

χ2(5) = 7.109 (0.213)
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Table 3. Comparision of Model Predicitons with Observed Unconditional Moments

Observed Predicted-SRR Predicted-LRR Predicted-HAB

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

log Dividend consumption ratio da
t − cat -3.399 0.162 -3.414 0.163 -3.384 0.154 -3.37 0.148

Consumption growth (% Per Year) 100(×cat − cat−12
) 1.95 2.24 2.58 1.91 2.34 2.36 2.52 1.76

Price dividend ratio exp(va
dt) 28.24 12.08 28.86 4.18 27.47 8.01 27.75 7.037

Return (% Per Year), dividend asset 100 × ra
dt 6.02 19.29 6.15 2.82 6.29 16.00 6.54 16.89

100 ×
√

Quadratic variation 100 × stda
t 16.69 09.32 3.22 0.64 14.95 8.21 14.41 9.69

Risk free rate (% Per Year) 100 × ra
ft 0.39 0.00 0.78 0.41 1.07 0.99

Return (% Per Year), consumption asset 100 × ra
ct 5.60 2.33 2.34 3.95 6.60 16.99

Equity premium (% Per Year) 100 × ra
dt − ra

ft 5.76 2.82 5.51 16.09 5.46 17.14

Notes. Observed values are sample statistics computed from annual data, 1930–2001; predicted values are computed from a long

simulation from the indicated model.
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Table 4: AR(1) Models for Each Series

Observed Predicted(SRR) Predicted(LRR) Predicted(HAB)

zt α0 α1 α0 α1 α0 α1 α0 α1

da
t − cat -0.6879 0.7992 -0.30281 0.91128 -1.0358 0.6939 -0.6784 0.7985

0.3542 0.1034

cat − cat−12
0.0116 0.4495 0.01894 0.2666 0.0119 0.4916 0.0185 0.2645
0.0031 0.0909

pa
dt − da

t 0.4926 0.8542 0.3467 0.8966 0.7880 0.7598 0.54924 0.8326
0.3678 0.1077

ra
dt 0.0675 0.0088 0.0582 0.0546 0.0673 -0.0694 0.0689 -0.0536

0.0639 0.1454

qa
t -0.8972 0.5352 -6.7936 0.0177 -1.73212 0.5621 -1.2400 0.7114

0.2545 0.1275

Notes. Each line of the table shows the coefficients for a regression of the form zt =

α0 + α1zt−1 + εzt for the variable named in the first column. The regressions in the

columns labeled observed are for the annual data where the span of the dependent

variable is 1931–2001. The regressions in the columns labeled predicted are for a

simulation of the model.
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Table 5. Predictability Projections: Price Dividend Ratios

Observed Predicted
Coef Std Err LRR HAB

Intercept 3.4168 0.0055 3.2520 2.7183
∆ct -0.3021 0.1744 1.0716 6.7533
∆ct−24 -1.0560 0.1926 0.0383 3.7708
∆ct−48 -0.6209 0.1925 0.2521 3.4854
∆ct−60 -0.3480 0.1926 -0.0176 3.1036
∆ct−72 -0.1263 0.1926 -0.0442 2.4550
∆ct−84 -0.2006 0.1744 -0.0857 2.7694

R2 0.036 0.011 0.422

Notes: Shown above are the linear projections of the log price

dividend ratio, vd on contemporaneous and five annual lags of log

consumption growth ∆c. The period for the observed projection

is 1935–2001. The predicted values are from long simulations

from the Long Run Risks LRR Model and the Habit Persistence

HAB Model.

Table 6. Long Horizon Predictability Projections:

Cumulative Future Return on the Price Dividend Ratio

R2

Horizon(Years) Observed LRR HAB

1 0.038 0.088 0.084
2 0.060 0.129 0.154
3 0.071 0.172 0.213
4 0.071 0.202 0.262
5 0.070 0.229 0.299

Notes: The table shows R2’s from projections of cumulative an-

nual geometric returns for 1,2,...,5 years ahead onto the log price

dividend ratio for the observed data, 1935–2001, and for long

simulations from the Long Run Risks LRR Model and the Habit

Persistence HAB Model.
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Table 7. Consumption Betas: Annual Frequency

Data LRR HAB

β̂ 0.790 0.521 4.19
σ̂

β̂
1.124 0.176 0.17

R̄2 -0.006 0.006 0.19

Notes: For the observed data the period of the dependent variable

for the beta regression is annual data, 1929–2001, while the other

two regressions are estimated on long annual simulated data sets

from the estimated models.

Table 8. GMM Estimation of the Power Utility Model

Annual
LRR HAB

χ2(1) 242.65 2.61
p-value 0.00 0.11

β̂ 1.38 2.39
γ̂ 16.62 50.40

Monthly
LRR HAB

χ2(1) 26.28 1.49
p-value 0.00 0.22

β̂ 1.01 1.04
γ̂ 9.60 23.22

Notes: β and γ represent the subjective time preference and

curvature parameter for power utility, respectively. Parameter

estimates and test statistics are based on simulations from the

estimated models.
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Table 9. Average Put and Call Prices on the Stock

Long Run Risks (LRR)

Call Put

Strike-to-Underlying: 0.99 1.00 1.01 0.99 1.00 1.01

Expiration (months)
1 2.19 1.65 1.22 1.38 1.85 2.41
2 2.79 2.28 1.84 2.18 2.67 3.23
3 3.25 2.75 2.31 2.83 3.33 3.89
4 3.61 3.13 2.69 3.38 3.89 4.45
5 3.93 3.45 3.01 3.88 4.40 4.96
6 4.21 3.73 3.30 4.34 4.86 5.42
7 4.46 3.99 3.56 4.76 5.29 5.85
8 4.69 4.23 3.80 5.15 5.68 6.25
9 4.90 4.44 4.01 5.54 6.07 6.64
10 5.08 4.63 4.21 5.92 6.45 7.02
11 5.25 4.80 4.38 6.28 6.82 7.39
12 5.40 4.96 4.54 6.64 7.19 7.76

Habit (HAB)

Call Put

Strike-to-Underlying: 0.99 1.00 1.01 0.99 1.00 1.01

Expiration (months)
1 2.06 1.51 1.12 1.31 1.76 2.37
2 2.63 2.09 1.67 2.13 2.60 3.17
3 3.05 2.52 2.08 2.82 3.29 3.85
4 3.39 2.87 2.42 3.41 3.88 4.43
5 3.68 3.16 2.70 3.97 4.44 4.98
6 3.94 3.42 2.96 4.50 4.97 5.51
7 4.18 3.66 3.20 5.02 5.50 6.03
8 4.40 3.88 3.42 5.54 6.02 6.54
9 4.59 4.08 3.61 6.02 6.50 7.03
10 4.78 4.27 3.80 6.50 6.98 7.50
11 4.95 4.44 3.97 6.96 7.44 7.97
12 5.10 4.60 4.13 7.44 7.92 8.45

Note. Prices are percent of the stock price at the time the option is written.
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Table 10. Average Put and Call Prices on Wealth

Long Run Risks (LRR)

Call Put

Strike-to-Underlying: 0.99 1.00 1.01 0.99 1.00 1.01

Expiration (months)
1 1.18 0.43 0.10 0.11 0.36 1.03
2 1.35 0.63 0.22 0.22 0.50 1.09
3 1.51 0.80 0.35 0.32 0.61 1.15
4 1.65 0.95 0.47 0.40 0.70 1.21
5 1.79 1.09 0.59 0.48 0.78 1.27
6 1.92 1.23 0.71 0.55 0.85 1.32
7 2.05 1.36 0.82 0.62 0.92 1.38
8 2.18 1.48 0.93 0.68 0.98 1.43
9 2.30 1.61 1.04 0.75 1.05 1.48
10 2.42 1.72 1.15 0.81 1.12 1.54
11 2.53 1.84 1.26 0.88 1.18 1.60
12 2.65 1.95 1.37 0.96 1.26 1.66

Habit (HAB)

Call Put

Strike-to-Underlying: 0.99 1.00 1.01 0.99 1.00 1.01

Expiration (months)
1 2.07 1.52 1.13 1.33 1.77 2.38
2 2.64 2.10 1.68 2.15 2.61 3.19
3 3.06 2.53 2.09 2.84 3.31 3.86
4 3.40 2.88 2.43 3.43 3.91 4.45
5 3.69 3.17 2.72 3.99 4.47 5.01
6 3.95 3.44 2.97 4.53 5.00 5.54
7 4.19 3.68 3.21 5.05 5.53 6.06
8 4.41 3.90 3.43 5.57 6.05 6.58
9 4.61 4.10 3.62 6.07 6.55 7.07
10 4.79 4.28 3.81 6.54 7.03 7.55
11 4.96 4.45 3.98 7.01 7.49 8.01
12 5.12 4.61 4.14 7.48 7.97 8.49

Note. Prices are percent of wealth at the time the option is written.
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Figure 1. Raw Data. In the notation of the text, the variables shown are pa
dt =

log(P a
dt), d

a
t = log(Da

t ), cat = log(Ca
t ) ra

dt, and qa
t = log(Qa

t ), in order.
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Figure 2. Nominal Arithmetic and Real Geometric Returns. The figure

compares the more familiar nominal arithmetic returns series with the real per-capita

geometric returns series used to fit the model.
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Figure 3. One Step Ahead Forecasts of the Data Confronted by the SRR

Model The variables shown are da
t − cat , c

a
t − cat−12

pa
dt − da

t , r
a
dt, and qa

t of the text,

in order. The dotted line is the data. The dashed line is a one-step-ahead forecast

of a VAR fitted to the data. The solid line is the one-step-ahead forecast of a VAR

computed from a simulation from the SRR Model.
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Figure 4. One Step Ahead Forecasts of the Data Confronted by the LRR

Model The variables shown are da
t − cat , c

a
t − cat−12

pa
dt − da

t , r
a
dt, and qa

t of the text,

in order. The dotted line is the data. The dashed line is a one-step-ahead forecast

of a VAR fitted to the data. The solid line is the one-step-ahead forecast of a VAR

computed from a simulation from the LRR Model.
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Figure 5. One Step Ahead Forecasts of the Data Confronted by the Habit

Persistence (HAB) Model The variables shown are da
t − cat , cat − cat−12

pa
dt −da

t , r
a
dt,

and qa
t of the text, in order. The dotted line is the data. The dashed line is a one-

step-ahead forecast of a VAR fitted to the data. The solid line is the one-step-ahead

forecast of a VAR computed from a simulation from the HAB model.
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