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Abstract
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1 Introduction

Asset prices often “jump” simultaneously in response to important market-wide events such as

macroeconomic announcements, political news and natural disasters. Linear factor models which

are widely used in asset pricing have strong implications regarding this co-jump structure of assets

in the cross-section. To fix ideas, consider a continuous-time factor model given by

dYt = αtdt+ BdFt + dỸt, (1.1)

where Yt is a N × 1 vector of asset prices, Ft is a r× 1 vector of factors capturing systematic risk,

αt is a drift term due to the compensation for risk and time demanded by investors for holding

the stocks, B is a N × r matrix of factor loadings, and Ỹt is a N × 1 vector of idiosyncratic

risks. Idiosyncratic risk is formally defined as being orthogonal to the systematic one, that is,

having zero quadratic covariation with it. Regarding the jumps, this orthogonality condition

means ∆Ft∆Ỹt = 0 for every t, where for a generic process Z we denote with ∆Zt = Zt − Zt− its

jump at time t.1 Therefore, we have

∆Yτ = B∆Fτ , for τ such that ∆Fτ 6= 0. (1.2)

That is, at the times of the factor jumps, the whole cross-section of asset prices follows an exact

factor model with no idiosyncratic risk, i.e., Ỹ is not present in (1.2).2

Moreover, if the jumps in the components of the vector F are normalized such that they are

orthogonal to each other, i.e., have zero quadratic covariation, then we also have

∆Yτ = b∆Zτ , for τ ∈ T ≡ {t ∈ [0, T ] : ∆Zt 6= 0}, (1.3)

where Zt is one of the elements of the vector Ft and b is the corresponding vector of factor loadings

in the matrix B.3 That is, we have an exact one-factor structure of the jumps in Y at the jump

times of the univariate factor Zt. This one-factor structure of jumps in Y holds true for the jump

times of each of the factors in F , but with different factor loadings in general.

1In many applications, orthogonality of systematic and idiosyncratic risk is defined in a much stronger sense by
imposing independence between F and Ỹ .

2Put differently, if τ1, τ2,...,τk are the jump times of the systematic factors in the observation interval [0, T ]
(these times are in general random) and if without loss of generality we assume k > r and N > r, then the matrix
[∆Yτ1 ,∆Yτ2 , ....,∆Yτk ] is of reduced-rank r and the same holds true for the quadratic variation of Y at the factor
jump times

∑k
i=1 ∆Yτi∆Y

>
τi . Only when we aggregate the quadratic variation of all jump risk in Y over the interval

[0, T ], given by
∑
t∈[0,T ] ∆Yt∆Y

>
t , we restore the full rank of N . This is because

∑
t∈[0,T ] ∆Yt∆Y

>
t includes also the

quadratic variation due to the jumps in the idiosyncratic component Ỹ (which happen outside the set T of factor
jump times) which is a diagonal matrix.

3Note that b is a N × 1 vector that contains the slope coefficients (i.e., betas) for the N assets. There is no
restriction on the relationship among individual assets’ betas.

2



Our goal in this paper is to test whether a hypothesis of exact factor structure for the systematic

jumps in (1.3) is true.4 The test is based on a large cross-section of assets sampled at high-frequency

on a time interval of fixed length. In its most basic form, which will be generalized in our formal

analysis, our test discriminates (1.3) from its “noisy” counterpart given by

∆Yτ = b∆Zτ + χ̄τ , for τ ∈ T , (1.4)

where χ̄τ is a random N × 1 vector that captures deviations from the exact factor model at the

systematic jump events; we refer to (1.4) as the noisy linear factor model henceforth. This model

can be equivalently written in the form of a random jump beta model as

βτ ≡
∆Yτ
∆Zτ

= b+ χ̃τ , (1.5)

where χ̃τ ≡ χ̄τ/∆Zτ .5 There are many reasons for the presence of χ̃τ in the jump factor loadings

(i.e., betas). One of them is predictable time-variations in these loadings. Indeed, factor loadings in

asset pricing are often modeled as functions of assets’ characteristics and/or macro state variables;

see, for example, Connor, Hagmann, and Linton (2012) and Gagliardini, Ossola, and Scaillet

(2016b) and the theoretical analysis of Hansen and Richard (1987). Typically, such time-variation

in the factor loadings happens at low frequencies and by performing our tests on intervals of short

time span we will minimize the possibility for such a violation of the null hypothesis in (1.3).

Another reason for χ̄τ in (1.4) is the presence of (locally unpredictable) firm-specific shocks in

Y even at the times of systematic jumps. In this case, we have Eτ−[χ̄τ∆Zτ ] = 0, i.e., χ̄τ is

uncorrelated with the jump ∆Zτ conditional on the information prior to the jump time τ , and

(1.3) gets replaced by the weaker linear projection condition

Eτ− [∆Yτ∆Zτ ] = bEτ−
[
∆Z2

τ

]
. (1.6)

Obviously, (1.3) implies (1.6) but the reverse is generally not true. The test we propose here will

be able to discriminate (1.3) from alternatives under which we have firm-specific shocks at the

systematic jump events and only (1.6) holds.

From a practical point of view, separating the null from such an alternative hypothesis is

important as this has strong implications regarding the inference for the matrix of jump factor

loadings B. Indeed, if the null hypothesis holds, we can use a fixed (small) number of systematic

jump times to identify the (constant) jump factor loadings. On the other hand, if only (1.6) holds,

4When the factors in the vector F do not have orthogonal jump components, then for τ ∈ T , we will have in
general an exact multifactor model. The analysis of the paper can be extended to cover this more general setup
but at the cost of significantly more involved derivations and notation. Given the empirical evidence presented in
Section 6, however, such an extension seems to be of little practical relevance.

5The random jump betas may be viewed as “random coefficients” like in classical panel data analysis. However,
we note that the jump betas only concern the jump returns, which form a small subset of all high-frequency returns.
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then we need to use a long span of data to identify the permanent component of B, which would

be further complicated by the possible time-variation in the factor loadings at low frequencies.

The separation of the null from the alternative hypothesis is also important for practical risk

management decisions and more generally can help shed light on the sources of priced jump risk

in the cross-section of asset prices.

Figure 1: Stock Jump Returns versus Jump Beta
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Note: The vertical axis is the time series average two-minute stock return at times when a
positive jump in the S&P 500 index futures is detected; the horizontal axis is the average
jump beta measured from two-minute asset returns at times when a negative jump in the
index futures is detected. The straight line is a linear fit implied by the exact linear jump
factor model in (1.3) and the recovered jump betas. The panel comprises S&P 100 stocks,
2007-2015, and the market jump returns are selected according the thresholding procedure
described in Section 5.

To motivate empirically our theoretical analysis, we show in Figure 1 the cross-sectional rela-

tionship between stock returns versus their market jump betas for S&P 100 stocks: the two-minute

average stock returns are computed at the times when a positive market jump is detected (i.e.,

∆Zτ > 0), and the jump betas are calculated from the two-minute asset returns at the times when

a negative market jump is detected (i.e., ∆Zτ < 0). We use negative jump betas because the

estimation error is relatively lower for negative jumps, while we measure average stock returns at

times of positive market jumps to maintain complete separation of the data sets for computing the

variables on the x and y axes of the figure. This cross-sectional relationship appears quite tight,

even though the market betas were computed from only 44 two-minute returns when negative

market jumps were detected in our sample — hence the question: Is this fit consistent with the

exact linear jump factor model (1.3)?

To address this question, we develop a formal test for deciding whether such hypothesis is
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true and we further propose a measure for the magnitude of the firm-specific risk at factor jump

events. Our asymptotic theory employs a joint asymptotic setting in which both the cross-sectional

dimension of the panel and the sampling frequency increase simultaneously, while keeping the time

span of the sample fixed. To compute the test statistic, we first use high-frequency returns to

nonparametrically estimate the individual assets’ betas at the jump times of Z; the test statistic

is then formed as the cross-sectional average of the temporal variations in these beta estimates.

Under the null hypothesis, changes in the beta estimates across jump times are due to high-

frequency estimation error that shrinks to zero asymptotically, but is non-degenerate under the

alternative. We characterize theoretically the asymptotic behavior of the test statistic and propose

an easy-to-implement algorithm for computing its critical values.

The asymptotic theory underlying our test is non-standard for several reasons. Firstly, we allow

individual assets’ returns to be strongly dependent in the cross-section, through their loadings on

the common diffusive factors. Importantly, these systematic shocks are not “averaged out” under

the cross-sectional aggregation (only the loadings on them are), but they remain to have non-

degenerate distributions in the limit. As a result, unlike conventional econometric settings, the

limiting behavior of the aggregated systematic shocks is not obtained from a central limit theory

for weakly dependent data; instead, it is implied by the local Gaussianity of diffusive processes.

Secondly, the limit distribution of our test statistic depends on the spot covariance process of the

latent diffusive factors and individual assets’ time-varying loadings on them within local windows

around jump times. Therefore, our feasible inference on the panel of jumps actually involves

estimating characteristics of the diffusive factor component as a by-product. We provide novel

theoretical results in this direction, which are further used to construct critical values of our test.

Thirdly, the limit behavior of our test statistic is of “mixing” type. More precisely, the limit

distribution can be realized on an extension of the original probability space and changes (in

general) depending on the realizations of various sources of randomness on the original space,

e.g., it depends on the realized value of the systematic risk factors. Finally, we impose essentially

no assumption on the relative growth rates of the cross-section dimension with respect to the

sampling frequency. This accommodates situations in which either the cross-section or the sampling

frequency is much higher than the other dimension of our panel and is very convenient empirically.

Going one step further, we develop an estimator for assessing the magnitude of the firm-specific

risk at the times of systematic jump events. In particular, we measure the cross-sectional mean

of the squared difference (χ̃j,τ − χ̃j,η)2 for two jump times τ and η, where χ̃j,τ denotes the jth

element of χ̃τ . This measure provides an estimate of the temporal variation in jump betas for a

“representative” asset. We show that the asymptotic distribution of this estimator is doubly-mixed

Gaussian. The limit distribution captures two sources of sampling errors. One is the cross-sectional
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sampling variability in χ̃j,τ and its magnitude depends on the cross-sectional dimension. The other

source of sampling error is due to the systematic diffusive component underlying individual asset

returns and its size is governed by the length of the sampling interval. We provide confidence

intervals and justify their asymptotic validity.

We examine the performance of our inference procedures on simulated data from a model that

captures salient features of typical financial data sets. In an empirical application to high-frequency

data on stocks in the S&P 100 index covering the period 2007–2015, we test the exact jump factor

model in (1.3) with the sole jump factor being the market jump. Our results provide strong

empirical support for the model with no statistically significant role for firm-specific shocks in the

assets at the market-wide extreme events.6 These findings are consistent with the empirical results

in Savor and Wilson (2014) regarding the validity of CAPM around macroeconomic announcement

days as well as earlier empirical evidence, see e.g., Longin and Solnik (2001) and Ang and Chen

(2002), for increased asset correlation during extreme market events.

The theoretical results of the current paper are related to several strands of literature. First,

the nonparametric separation of jumps from diffusive volatility using high-frequency data was

initiated in work by Barndorff-Nielsen and Shephard (2004, 2006) and Mancini (2001, 2009).

Second, in Li, Todorov, and Tauchen (2017), we developed univariate methods for estimating

and testing the validity of the exact jump factor model for a single asset, while being silent about

the co-jump behavior of the cross-section of assets. We further extended these results to a cross-

section of fixed size in Li, Todorov, Tauchen, and Lin (2017). The asymptotics in these papers is of

in-fill type for high-frequency data. By sharp contrast, here we consider a joint asymptotic setup in

which the number of assets also grows asymptotically so as to accommodate the large cross-section.

Relative to prior work, a key theoretical challenge in the current paper is the strong dependence

among a large cross-section of asset returns resulting from the latent factor structure of the diffusive

price components. We address this problem by developing factor-analytical tools in the spirit of

Stock and Watson (2002) and Bai (2003, 2009) (see also the recent work of Gagliardini, Ossola,

and Scaillet (2016a)), but in the non-standard (infill, non-ergodic and non-stationary) setting for

a large panel of high-frequency data. This theoretical innovation is absent from Li, Todorov, and

Tauchen (2017) and Li, Todorov, Tauchen, and Lin (2017). The novel econometric setup of the

current paper thus leads to a very different inference procedure and asymptotic theory than prior

work, reflected in particular in the distinct roles of the systematic and idiosyncratic diffusive shocks

in the limiting behavior of the test. In addition, unlike our prior work, the current setup allows us

to study how the whole cross-section of assets reacts to economy-wide events, and further make

inference for the firm-specific risk at the systematic factor jump times in the case when the null

6We note, however, that our evidence is for the “big” jumps only as separating the “small” jumps from the
diffusive component of returns is statistically much harder.
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hypothesis of an exact jump factor model is not satisfied.

Third, Pelger (2015a,b) develops methods for determining the number of systematic jump

factors and further proposes inference procedures for recovering the latent systematic jump factors

from a large cross-section of high-frequency return data. The inference in Pelger (2015a,b) is

based on the quadratic variation of the jumps of the assets over the observation interval. The

latter includes the contribution of the idiosyncratic jump risks and, hence, it cannot be used to

separate between the null in (1.3) and alternatives that satisfy (1.6).

Fourth, our results are also related to the panel data literature but with very distinctive features.

Unlike conventional panel regressions, the identification strategy underlying our inference for jump

betas can be viewed as “identification-by-discontinuity.”7 An important consequence is that we

can use high-frequency data at a fixed number of jump events to estimate firm-specific jump betas

nonparametrically. The “error terms” generated from this nonparametric measurement consist of

diffusive returns in the vicinity of jumps, which shrink with the sampling interval, and the asymp-

totics of our statistics is mainly driven by their local Gaussianity (which is a generic property of

Itô processes). Our in-fill asymptotic theory works under very weak conditions allowing for essen-

tially unrestricted non-stationarity and heteroskedasticity for the underlying stochastic processes

in a non-ergodic setting. The theory in the current paper is thus very different from conventional

panel data settings where weakly dependent disturbance terms in the regression equation are “av-

eraged out” with a Gaussian limit distribution, which in turn drives the asymptotics underlying

the econometric inference.

Finally, since we allow the diffusive “error terms” to have a latent factor structure, our results

are closely related to the growing literature in panel data analysis with interactive fixed effects; see,

for example, Pesaran (2006) and Bai (2009). Besides the very different settings mentioned above,

we stress an important unique feature in our asymptotic theory relative to this literature. Unlike

Bai (2009) where the asymptotic distribution of the estimator is only driven by the aggregated

idiosyncratic shocks,8 here in our setting systematic shocks in the error term also have a non-

degenerate contribution to the limit distribution. Intuitively, the systematic shocks are clearly

not “averaged out” in the cross-section and, because we consider a fixed number of jump events

(as they are rare), they also “survive” the time-series aggregation. Nevertheless, we show that

feasible inference is still possible by relying on the local Gaussianity of the underlying Itô process,

formally represented as a stable convergence in law under the in-fill asymptotics. In addition, we

allow the latent diffusive factors to have general stochastic volatility and the stocks’ loadings on

7Identification-by-discontinuity is also widely used in microeconometric applications with regression discontinuity
designs (RDD); see, for example, Lee and Lemieux (2010) for a review. However, we use jumps to identify the
equilibrium relationship between asset prices, instead of a causal effect as is typically done in the RDD.

8See Proposition A.3 of Bai (2009), which is used in the proofs of the main theorems in that paper.
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them to be (nonparametrically) time-varying; indeed, we allow these processes to jump, which

leads to an additional source of “non-diversifiable” sampling variability due to the indeterminacy

of exact systematic jump times within a discrete observation interval. Another useful feature of

our theory is that it does not require knowing exactly the number of latent diffusive factors; this

feature is clearly desirable in practice and has been recently studied by Moon and Weidner (2015)

in standard linear panel regressions with interactive fixed effects using different techniques.

The rest of this paper is organized as follows. In Section 2 we introduce the econometric

setting. Our main theoretical results are given in Section 3 where we propose a pairwise test for

the exact jump factor model and derive feasible limit theory for it. In this section we also develop

inference procedures for assessing the magnitude of the firm-specific risk in assets at the times of

the systematic jump events. Section 4 proposes various extensions to our main theory. Section 5

contains results from a Monte Carlo study and Section 6 presents our empirical application, with

additional results reported in a Supplemental Appendix. Section 7 concludes. Further theoretical

results and the proofs are given in Section 8.

2 The Econometric Setup and Assumptions

2.1 The Panel of Jump Betas

We start with introducing formally the asset price dynamics on the filtered probability space

(Ω,F , (Ft)t≥0,P). The dynamics for the vector of asset prices Yt, to which our analysis applies,

generalizes the linear factor model in (1.1) and is given by:

dYj,t = αj,tdt+ λ>j,tdft + dJY,j,t + dεj,t, 1 ≤ j ≤ N, (2.1)

where as in the introduction αj,t is a drift term in the asset price. Here, we denote with ft a r-

dimensional diffusive factor process and with λj,t the time-varying loading on it, and JY,j,t denotes

the jump component of Yj,t. Finally, εj,t is a one-dimensional diffusive idiosyncratic component

that is orthogonal to the systematic factor ft (in the sense that it has zero quadratic covariation

with ft; see Assumption 3 below).

The main object of interest of the current paper is the factor structure of the jump component

JY,j,t. The diffusive component
∫ t

0 λ
>
j,sdfs+εj,t, on the other hand, plays the role of a “disturbance”

as in classical regression settings.9 We stress that these “disturbance” terms in the asset prices

are allowed to be strongly dependent in the cross-section through their loadings on the common

9The diffusive component of returns can have different factor structure and factor loadings from that of the jump
component, and this can have asset pricing implications, see e.g., Bollerslev, Li, and Todorov (2016) for the case
when the factor is the return on the market portfolio. We leave for future work the development of tests for deciding
whether diffusive and jump factor loadings are the same and efficient inference techniques under such a scenario.
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factors. This has important implications for the asymptotic theory and is a non-trivial departure

from classical panel data applications in econometrics.

Turning to the jump component JY,j,t, we will be interested in its behavior only at the jump

times of an one-dimensional reference asset (systematic factor) which we denote with Z. In our

application, Z will be the market portfolio and hence our attention will be on the co-jump behavior

of the cross-section of assets during market-wide events, located at times of “big” market jumps.

Economically speaking, such jumps are mostly due to important public news arrival, such as

macroeconomic announcements, major political events and natural disasters. In addition to co-

jumping with Z, we will also allow Y to jump at different times. As the model in the introduction,

this can allow for asset prices to have idiosyncratic jumps as in Merton (1976) (in the sense that

these jumps are asset-specific and arrive at different times) as well as to have exposure to systematic

jump factors which jump at different times than Z.

The dynamics of the reference asset Z is given by

dZt = λ>Z,tdft + dJZ,t, (2.2)

with JZ,t denoting its jump component. When Z is the market portfolio, it will typically be one

of the factors itself as in the market factor model and its extensions. Hence, in this case, one can

set the first element of f to be the continuous part of Z and λZ,t will be a vector with the first

entry being 1 and the rest being zero.

We collect the jump times of Z in the random set T ≡ {t ∈ [0, T ] : |∆Zt| 6= 0}. The relationship

between the asset price jumps and those of the one-dimensional Z is succinctly summarized by the

jump betas of individual assets with respect to Z. At each jump time τ ∈ T , the spot jump beta

of asset j is simply defined by

βj,τ ≡
∆Yj,τ
∆Zτ

.

We note that these betas are defined in a nonparametric fashion and in general they are random

quantities. However, when a factor model as noted in the introduction is in force, the above spot

jump betas will be constant. That is, we will have

βj,τ = βj ⇐⇒ ∆Yj,τ = βj∆Zτ for all τ ∈ T .

We note that for the above to be true, we do not require that Z is the only jump factor that

affects the asset prices in the vector Y . This is because the above exact one-factor relationship

only concerns the set of jump times T . Jumps of Y at times outside the set T do not need to obey

this exact factor structure.

In this paper, we are interested in testing whether the above constant beta restriction holds

jointly for a large cross-section of assets (N will be asymptotically increasing). This is clearly a
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very strong hypothesis, especially when T involves many jump times. Hence, we start with the

shortest possible event horizon by focusing on pairs of consecutive jump times of the systematic

factor Z. That is, we examine, for the successful jump times η, τ ∈ T with η < τ ,

βj,s = βj , s ∈ {η, τ} all 1 ≤ j ≤ N. (2.3)

The extension to the more general case with multiple jump times is discussed in Section 4.1.

The hypothesis of the constant jump beta in (2.3) can be nested within a more general alter-

native of the random jump beta model given by

βj,s = βj + χ̃j,s, 1 ≤ j ≤ N. (2.4)

The constant beta model (2.3) is a special case of (2.4) with χ̃j,s = 0 identically. The random term

χ̃j,s captures the possible violation of an exact linear one-factor model for the jumps {∆Yj,s}s∈{η,τ}.
In particular, if there are firm-specific shocks at the times when Z jumps, then this risk will be

reflected in χ̃j,s. Our test will be able to discriminate this alternative from the exact jump factor

model in (2.3).

We stress the importance of separating the null from the alternative hypothesis on a practical

level. If the null hypothesis is true, then one can in principle estimate consistently the jump beta

from a single jump event or, more generally from a fixed number of jump events. Intuitively, by

zooming into the short window around the big jump of Z, we obtain high signal-to-noise measure-

ment of the shocks to the underlying efficient prices. This gives rise to a type of “identification-

by-discontinuity.” On the other hand, if χ̃j,s in (2.4) is non-degenerate, then we cannot estimate

consistently the permanent component βj from a fixed number of jump events. This is because

χ̃j,s is Op(1) and, hence, one would need to appeal to long-span asymptotics in this case in order

to “average out” χ̃j,s (this is exactly as in the first-step of the classical Fama-MacBeth regression

that is widely used in cross-sectional asset pricing).

By focusing on two jump times, the structure of (2.4) resembles that of the “large N small T”

setting in microeconometric panel data analysis. In particular, the time-invariant coefficient βj

plays the role of a fixed effect (or the permanent component) and χ̃j,s plays the role of a random

shock (or the transitory component) in the spot jump betas.

The challenge in our analysis is that the jump betas (βj,η, βj,τ ) are not directly observed from

discrete return data. We will use data sampled at high frequencies to recover them nonparamet-

rically. The econometric problem at hand may thus be classified as one with large cross-sectional

dimension, short and fixed time span, and with nonparametrically generated dependent variables

(i.e., the high-frequency beta estimates). In addition, due to the factor structure in the diffu-

sive returns, the estimation errors for these betas are strongly cross-sectionally dependent with
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nonstandard asymptotic distribution, which further sets our study apart from prior work in mi-

croeconometric panels.

We now describe our test statistic. If the jump betas were observed, we could use the following

(infeasible) statistic to detect deviations from the constant beta restriction:

V ?
N ≡

1

N

N∑
j=1

L (|βj,τ − βj,η|)

where L(·) is a loss function that we use to gauge the temporal variation in the jump betas. In

particular, if the innovation terms χ̃j,τ − χ̃j,η are non-degenerate, we expect V ?
N to converge to the

cross-sectional mean of the loss L (|βj,τ − βj,η|), which summarizes the temporal variation in beta

for any “average” stock.

In this paper, we consider loss functions that are “quadratic near zero.” More precisely, we

maintain the following assumption for the loss function.

Assumption 1. The function L : R 7→ [0,∞) satisfies the following: (i) for some fixed x̄ ∈ [0,∞],

L (x) = x2 for all x ∈ [0, x̄); (ii) L(x) is non-decreasing in |x|; (iii) L(·) is Lipschitz on bounded

sets.

Assumption 1 ensures that L(·) behaves for our testing purposes like the quadratic loss function

under the null hypothesis. On the other hand, the finite-sample power of the test naturally depends

on the global shape of the loss function. In this way, Assumption 1 provides some flexibility in

“directing” the power of the test. For example, one may consider a “Huber-like” loss function

L(x) = min{|x|, x2} that is less sensitive to outliers than the quadratic one (Huber (2004)).

Our feasible test statistic is constructed as a sample analogue of V ?
N by replacing the spot

betas with their high-frequency estimates. We suppose that the processes Yj and Z are observed

at discrete times {i∆n : 0 ≤ i ≤ [T/∆n]}, where ∆n is the sampling interval. For the limit theory

that we develop below, we consider an asymptotic setting in which the sample span T is fixed, but

both ∆n → 0 and N →∞ jointly. Since the number of assets N also depends on the asymptotic

stage n, we write Nn to emphasize this dependency. Below, we index all estimators by n and all

limits are for n→∞.

For each τ ∈ T , we denote by i (n, τ) the unique integer i such that τ ∈ ((i− 1)∆n, i∆n]. We

then collect these indices using In = {i(n, τ) : τ ∈ T }, which is finite almost surely. This set can

be consistently recovered by

În ≡ {i : |∆n
i Z| > un},

where the truncation threshold satisfies un � ∆$
n for some $ ∈ (0, 1/2).10 In light of this jump

detection result, we can assume that i (n, τ) is observed for each τ ∈ T without loss of generality.

10It can be shown that În = In with probability approaching one; see Proposition 1 in Li, Todorov, and Tauchen
(2017).
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The spot jump beta estimator associated with each jump time τ is then given by,

β̂n,j,τ =
∆n
i(n,τ)Yj

∆n
i(n,τ)Z

, 1 ≤ j ≤ Nn.

The corresponding feasible test statistic can be constructed naturally as

V̂ ∗n ≡
1

Nn

Nn∑
j=1

L
(
β̂n,j,τ − β̂n,j,η

)
. (2.5)

Under the null hypothesis of (2.3) and in the absence of idiosyncratic jumps in Yj , the leading term

of β̂n,j,τ − β̂n,j,η is due to the diffusive component in Yj − βjZ in the high-frequency increments

containing the two jumps. Therefore, this difference is of order Op(
√

∆n) under the null, and thus

V̂ ∗n should be Op(∆n). On the other hand, under the alternative hypothesis, β̂n,j,τ − β̂n,j,η will

contain also the difference χ̃j,τ − χ̃j,η which is Op(1) and hence so is V̂ ∗n . This explains on an

intuitive level how V̂ ∗n can discriminate between the exact and noisy linear jump factor model.

Below, we develop formal statistical tests based on this intuition.

The situation becomes more complicated when individual assets also contain idiosyncratic

jumps. Although the idiosyncratic jumps of each asset do not occur exactly at systematic jump

times, there is a small probability that these jumps occur in the same high-frequency sampling

interval containing the jump in Z. This effect would be asymptotically negligible if the number of

assets were fixed, but this will generally not be the case in the current setting in which the number

of assets goes to infinity. This issue can be addressed via winsorization. Formally, we consider a

sequence qwn → 0 which specifies the proportion of data to be winsorized. We denote by B̄n,η,τ the

1− qwn quantile of the variables (|β̂n,j,τ − β̂n,j,η|)1≤j≤Nn . The winsorized test statistic is then

V̂n =
1

Nn

Nn∑
j=1

L
(
|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ

)
. (2.6)

Below, we focus on the asymptotic properties of the above winsorized statistic, while noting that

the unwinsorized statistic can be used equivalently if the jump arrivals in Y outside of the set T are

driven by a finite counting measure.11 We maintain the following condition for the winsorization

quantile qwn .

Assumption 2. qwn � ∆κ
n for some constant κ ∈ (0, 1) .

2.2 Regularity Conditions

We proceed with some regularity conditions that will be used throughout. We start with some

standard conditions regarding the pathwise regularities of the underlying processes.

11That is, when the total number of idiosyncratic jump times in all stocks is finite almost surely. Technical details
are available upon request.
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Assumption 3. The processes (Yj)1≤j≤Nn and Z are given by (2.1) and (2.2) such that the

following conditions hold.

(i) The jump processes JZ and (JY,j)1≤j≤Nn have the form

JZ,t =

∫ t

0

∫
E
δZ(s, u)µ (ds, du) , (2.7)

JY,j,t =

∫ t

0

∫
E
δY,j(s, u)µ (ds, du) +

∫ t

0

∫
E
δ̃Y,j(s, u)µ̃j (ds, du) , (2.8)

where µ is a Poisson random measure on R+×E with compensator ν(ds, du) = ds⊗v′(du) for some

finite measure v′ on a Polish space E; (µ̃j)1≤j≤Nn are Poisson random measures that satisfy the

same conditions as µ; and the jump size functions δZ , (δY,j)j≥1 and (δ̃Y,j)j≥1, which are mappings

Ω×R+ ×E 7→ R, are predictable. Moreover, the jump processes J̃Y,j,s ≡
∫ t

0

∫
E δ̃Y,j(s, u)µ̃j (ds, du)

are uniformly locally bounded and satisfy ∆J̃Y,j,s∆JZ,s = 0 almost surely for s ∈ [0, T ].

(ii) The diffusive factor process f is a r-dimensional continuous Itô semimartingale of the form:

ft =

∫ t

0
bf,sds+

∫ t

0
σf,sdWs,

where the processes bf and σf are locally bounded and W is a r-dimensional Brownian motion.

Moreover, the spot covariance process Σf = σfσ
>
f is non-singular almost surely.

(iii) For each j, εj is a one-dimensional continuous local martingale given by

εj,t =

∫ t

0
σ̃j,sdW̃j,s,

where (W̃j)1≤j≤Nn are one-dimensional Brownian motions that are orthogonal to W and the pro-

cesses (σ̃j)1≤j≤Nn are locally uniformly bounded.12

(iv) The processes αj, λj and λZ are locally bounded and the spot jump betas (βj,τ )τ∈T are

bounded, uniformly for 1 ≤ j ≤ Nn.

(v) For an increasing sequence (Tm)m≥1 of stopping times that goes to infinity and a sequence

(Km)m≥1 of constants,

E

[
sup

s,t∈[0,T∧Tm]

(∣∣σ̃2
j,s − σ̃2

j,t

∣∣2 + |λj,s − λj,t|2 + |λZ,s − λZ,t|2
)]
≤ Km |s− t| ,

uniformly in 1 ≤ j ≤ Nn.

Assumption 3 imposes a set of regularity conditions that are commonly used in the analysis

of high-frequency data. Conditions (i)–(iii) mainly require that the price processes are Itô semi-

martingales. We allow for leverage effect, price-volatility co-jumps, as well as co-jumps between the

12That is, for a sequence (Tm)m≥1 of stopping times that increases to infinity, the processes σ̃j , 1 ≤ j ≤ Nn, are
uniformly bounded on [0, T ∧ Tm].
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factor volatility and idiosyncratic volatility. We further allow for idiosyncratic jump risk in Y and

multiple systematic jump factors (in addition to Z) in the jump component J̃Y,j,t. Condition (iv)

requires (local) boundedness for the factor loadings and the jump betas, which is reasonable from

an empirical point of view. Condition (v) requires that the idiosyncratic volatility and the factor

loading processes are (1/2)-Hölder continuous under the L2-norm and locally in time. Note that

these processes are allowed to have jumps in their sample paths with arbitrary activity. This con-

dition holds for many stochastic processes such as Itô semimartingales and long-memory processes

driven by the fractional Brownian motion.

We note that Assumption 3 imposes a finite activity restriction on the jump measures µ and

µ̃j . Therefore, our analysis here applies for the “big” jumps in asset price. Allowing for jumps of

infinite activity is nontrivial and we leave such an extension for future work.

In order to obtain well-defined asymptotic limits, we shall assume that the factor loadings

and the idiosyncratic variances are “moderately heterogeneous” in the sense that they are well-

behaved under cross-sectional aggregation; see Assumption 4 below. In the analysis that follows,

it is convenient to introduce factor loadings for the residual process that are defined as

λ̃j,τ± = λj,τ± − βj,τλZ,τ±, τ ∈ T . (2.9)

In particular, λ̃j,τ− and λ̃j,τ+ are the factor loadings on f for the residual process Yj−βj,τZ before

and after the jump time τ , respectively. For notational simplicity, below, we abuse our notation

slightly by writing λ̃j,q in place of λ̃j,τ− (resp. λ̃j,τ+) with q = τ− (resp. q = τ+) indicating the

pre-jump (resp. post-jump) window; the same convention also applies to other variables.

Assumption 4. For p, q ∈ {τ−, τ+, η−, η+}, the following hold:

(i) N−1
n

∑Nn
j=1 λ̃j,pλ̃

>
j,q

P−→MΛ(p, q) for some F-measurable r × r random matrix MΛ(p, q);

(ii) N−1
n

∑Nn
j=1 σ̃

2
j,q

P−→Mε(q) for some F-measurable random variable Mε(q).

(iii) The factor loadings (λ̃j,q)1≤j≤Nn are independent of the idiosyncratic diffusive components

(εj)1≤j≤Nn conditional on the jump times in T .

Conditions (i,ii) in Assumption 4 concern the convergence of cross-sectional sample averages.

These conditions can be verified with an appeal to the law of large numbers provided that the

loadings λ̃j and the idiosyncratic variances σ̃2
j are conditionally weakly dependent in the cross-

section. We note that these variables can still be unconditionally strongly dependent, in which

case the limiting variables MΛ(p, q) and Mε(q) are generally non-degenerate random variables.

We allow this complication in our econometric inference, which requires characterizing asymptotic

distributions in terms of stable convergence in law. Condition (iii) appears to be mild; indeed, this

assumption holds automatically if the factor loadings are non-random, which is typically assumed

in the factor analysis literature.
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Assumption 4 allows us to characterize precisely the aggregate behavior of the residual diffusive

disturbances. Indeed, the cross-sectional average of the spot variances of the residual returns (i.e.,

dYj,t − βj,tdZt) before/after each jump time τ can be written as

1

Nn

Nn∑
j=1

(
λ̃>j,τ±Σf,τ±λ̃j,τ± + σ̃2

j,τ±

)
= Trace

Σf,τ±

 1

Nn

Nn∑
j=1

λ̃j,τ±λ̃
>
j,τ±

+
1

Nn

Nn∑
j=1

σ̃2
j,τ±,

which converges in probability (under Assumption 4) to

Mtotal(τ±) ≡ Trace [Σf,τ±MΛ(τ±, τ±)] +Mε(τ±). (2.10)

The two components on the right-hand side of (2.10) are due to the diffusive factor component in

the residual process and the diffusive idiosyncratic components in Y , respectively.

Finally, we maintain a very mild condition for the relative growth rates of ∆n and Nn.

Assumption 5. Nn grows to infinity at most polynomially in ∆−1
n , that is, Nn = O(∆−kn ) for

some (arbitrary but fixed) constant k > 0.

Assumption 5 is very weak because it does not require any specific rate at which Nn grows

to infinity relative to ∆n. This assumption is used to show that the cross-section of diffusive

increments around the jump time fall uniformly in any fixed (small) neighborhood around zero, so

that the loss function L (·) behaves like the quadratic function when acting on these returns. This

assumption is not needed if the loss function is (globally) quadratic.

3 Testing the Exact Linear Jump Factor Model

This section contains the core of our econometric analysis. We derive a feasible test on the basis of

the statistic V̂n to test the null hypothesis of the exact linear jump factor model at two jump times

of the systematic factor Z. We further derive a measure for the magnitude of the firm-specific

shocks in the jump betas when the null might be violated.

3.1 Asymptotic Properties of the Test Statistic

We start with characterizing the asymptotic behavior of our test statistic. We first show the

convergence in probability of the test statistic under the general random jump beta model (2.4),

for which we need the following condition.

Assumption 6. The innovations in jump betas {χj,η,τ ≡ χ̃j,τ − χ̃j,η : 1 ≤ j ≤ Nn} are Fη−-

conditionally independent on the cross-section.
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Assumption 6 mainly requires that the innovations in the jump beta (i.e., χj,η,τ ) are cross-

sectionally independent conditional on the information set before the jumps occur. We can further

accommodate in the analysis, situations in which χj,η,τ are cross-sectionally dependent. Such a

situation can happen, if for example, there are extra factors at the jump times of Z (in addition

to the jump size of Z). In this case, under some weak regularity conditions for the factor loadings

on the omitted factor(s), the asymptotic behavior of our test statistic L(χj,η,τ ) will be similar to

that under Assumption 6 in terms of asymptotic order of magnitude. For ease of exposition, we

do not consider this situation here.

Proposition 1 below describes the first-order asymptotic behavior of the test statistic.

Proposition 1. Under Assumptions 1, 2, 3 and 6, V̂n = N−1
n

∑Nn
j=1 E[L(χj,η,τ )|Fη−] + op(1). In

particular, under the constant beta restriction (2.3), V̂n = op(1).

Proposition 1 shows that V̂n converges to the cross-sectional average of the conditional expected

loss that is due to the temporal variation in jump betas. This convergence result readily accom-

modates cross-sectional heterogeneity in the data. Of course, if the loss L (χj,η,τ ) has identical

conditional mean over the cross-section, the limit of V̂n is simply E[L(χj,η,τ )|Fη−]. This proposi-

tion suggests that the test statistic V̂n is able to detect on-average deviations from the exact jump

factor model.

In view of Proposition 1, we can state the hypotheses to be tested precisely as follows. The

testing problem is to decide in which of the two events the observed sample path falls:

Ω0 ≡ {βj,η = βj,τ = βj for all j} ,

Ωa ≡

lim inf
n→∞

1

Nn

Nn∑
j=1

E[L(χj,η,τ )|Fη−] > 0

 ,

where Ω0 and Ωa play the role of the null and alternative hypotheses, respectively. Stating the

hypotheses in terms of random events is typical in the infill asymptotic setting because the “pop-

ulation” quantities are (random) sample paths; see Jacod and Protter (2012) and Aı̈t-Sahalia and

Jacod (2014) for many similar examples. In addition, formulating the alternative hypothesis in

terms of the limit inferior is also common in testing problems involving heterogeneous data (see,

e.g., Giacomini and White (2006)).

In order to construct a proper test, we need to characterize the asymptotic distribution of the

test statistic under the null hypothesis. Theorem 1, below, presents the result. We need some

additional notation to represent the limit distribution. To this end, we consider random variables

(κτ , ζτ−, ζτ+)τ∈T that, conditional on F , are mutually independent with the following marginal

distributions: κτ is uniformly distributed on [0, 1] and ζτ± are r-dimensional standard normal.
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With each s ∈ T , we associate the following weights

ws− ≡
√
κs

∆Zs
, ws+ ≡

√
1− κs
∆Zs

. (3.1)

Following our notational convention in Assumption 4, we write the weights in (3.1) as wq indexed

by q ∈ {s−, s+}; similarly, we denote for p, q ∈ {η−, η+, τ−, τ+},

MC (p, q) = Σ
1/2
f,pMΛ(p, q)Σ

1/2
f,q . (3.2)

Finally, we set
A(s) ≡

∑
p,q∈{s−,s+}

wpwqζ
>
p MC (p, q) ζq +

∑
q∈{s−,s+}

w2
qMε (q) , s ∈ {η, τ},

B (η, τ) ≡
∑

p∈{τ−,τ+}

∑
q∈{η−,η+}

wpwqζ
>
p MC (p, q) ζq.

(3.3)

Theorem 1. Suppose that Assumptions 1–5 hold. In restriction to Ω0, the sequence ∆−1
n V̂n of

variables converges F-stably in law towards L (η, τ) given by

L (η, τ) ≡ A(η) +A (τ)− 2B (η, τ) . (3.4)

Comments. (i) The limiting variable L (η, τ) given in (3.4) captures two types of sampling vari-

ability. The first type is generated by the diffusive factor process and it takes the form of quadratic

functions of the Gaussian variables ζη± and ζτ±. The F-conditional distributions of these terms

are non-degenerate. Intuitively, the variable ζτ− (resp. ζτ+) represents the asymptotic distribution

of the normalized diffusive factor returns before (resp. after) the jump time τ , that is,

Σ
−1/2
f,τ−

(
fτ − f(i(n,τ)−1)∆n

)√
τ − (i (n, τ)− 1)∆n

resp.
Σ
−1/2
f,τ

(
fi(n,τ)∆n

− fτ
)√

i (n, τ) ∆n − τ

 .

Importantly, the factor diffusive returns represent systematic risk and, hence, they have a nontrivial

conditional distribution even after the cross-sectional aggregation. This is in sharp contrast to

conventional econometric settings, because the (mixed) normality of the limiting variable here is

not obtained from the aggregation of weakly dependent variables via a central limit theorem, but

is implied from the local Gaussianity of the continuous Itô process f .

(ii) The second type of sampling variability reflected in L (η, τ) (more specifically the second

term
∑

q∈{s−,s+}w
2
qMε (q) in the definition of A(s)) is attributed to the idiosyncratic diffusive

components of Y . Although the idiosyncratic Brownian shocks dW̃j are “averaged out” in the cross-

sectional averaging, this term can still have a non-degenerate F-conditional distribution because

of the variables (κη, κτ ) that appear in the weights wq for q = {η−, η+, τ−, τ+}. Intuitively, κτ

represents the relative location of the exact jump time τ within its observation interval. This
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source of sampling variability is, again, systematic (as it is due to Z), so it “survives” the cross-

sectional aggregation. In the case when average idiosyncratic spot variance does not co-jump with

the price (i.e., Mε(s−) = Mε(s+), for s = η, τ), the F-conditional distribution of this term becomes

degenerate.

(iii) Jumps in the vector Y that happen outside the set T of jump times of Z play no role in

the limit result for our test statistic in Theorem 1. This is because jump arrivals are “sparsely”

scattered in time. Hence, with probability approaching one, each high-frequency interval containing

one of the jump times in the set T will not contain jump times outside of T for “most” components

in Y ; the number of exceptions is small and their effect is “regularized” by the winsorization.

We note that the test statistic V̂n is non-negative and, hence, the limiting variable L(η, τ)

concentrates on the positive line. We can gauge the relative contribution of the components in

(3.4) by computing their F-conditional means. It is easy to see that E[B (η, τ) |F ] = 0 and, for

s ∈ {η, τ}, we have

E[A(s)|F ] =
Mtotal(s−) +Mtotal(s+)

2∆Z2
s

,

where Mtotal(s±) is the (large-sample) cross-sectional average of individual stocks’ residual spot

variances after/before the jump time s; recall (2.10). Consequently, the limit distribution L (η, τ)

has a strictly positive conditional mean depending on the relative magnitude of the residual spot

variances with respect to the jump size. In the current setting, it is therefore natural to define the

signal-to-noise ratio for the post- and pre-jump window as

SNRs± ≡
∆Z2

s

Mtotal(s±)
. (3.5)

The F-conditional mean of the limiting variable can then be succinctly written as

E [L (η, τ) |F ] =
∑

s∈{η,τ}

(
1

2 · SNRs−
+

1

2 · SNRs+

)
. (3.6)

From this expression, we see that under the null hypothesis, the test statistic tends to be centered

“more positively” when the signal-to-noise ratios around the jump times are lower. These are

exactly the times when it will be more difficult to separate the null hypothesis from the alternative.

In order to implement the test, we need to consistently estimate the critical values defined

as the F-conditional quantiles of the limiting variable L (η, τ). This is a nontrivial task because

the F-conditional distribution of L (η, τ) is highly nonstandard. Most importantly, it depends on

the unknown random quantities MC(·, ·) and Mε(·), which in turn involve the spot covariance of

the latent diffusive factor process f , the factor loadings of a large cross-section of assets and the

average idiosyncratic spot variances, before and after each jump time. The next subsection is

devoted to addressing this problem.
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3.2 Critical Values

For a matrix A, we denote ‖A‖ = Trace[A>A]1/2. To proceed, we suppose that some preliminary

estimator β̃n,j,τ of the jump beta is available and it satisfies the following assumption.

Assumption 7. The following conditions hold for some variables (β∗j,τ )1≤j≤Nn,τ∈T :

(i) N−1
n

∑Nn
j=1 |β̃n,j,τ − β∗j,τ |2 = op(1);

(ii) for all τ ∈ T , β̃n,j,τ and β∗j,τ are F-measurable and bounded with probability approaching

one;

(iii) β∗j,τ = βj in restriction to Ω0.

One possible choice for the preliminary beta estimators is to set β̃n,j,τ to be the spot beta

estimator β̂n,j,τ . In this case, β∗j,τ = βj,τ over the entire sample space. Condition (i) requires

that these preliminary estimates are consistent in a cross-sectional average sense, which is easy to

verify; see Lemma 3(b) for the formal result. More generally, the variables β∗j,τ in Assumption 7 are

interpreted as pseudo-true parameters in the sense that they coincide with the true parameter under

the null hypothesis but are allowed to differ from the latter under the alternative. For example,

we can take β̃n,j,η = β̃n,j,τ = (β̂n,j,η + β̂n,j,τ )/2 which corresponds to β∗j,η = β∗j,τ = (βj,η + βj,τ )/2.

This type of averaging typically produces less noisy preliminary estimates under the null, which

tends to have better size control in finite samples.13

We now describe how to calculate the critical values. The first step is to extract information

concerning the spot covariance of the factors (i.e., Σf ) and the factor loadings (i.e., λj and λZ)

from the diffusive returns in local windows before and after the jump times. We consider an integer

sequence kn of local window sizes such that

kn →∞ and kn∆n → 0.

For each detected jump time τ , we denote i (n, τ−) ≡ i (n, τ)− kn − 1 and i (n, τ+) ≡ i (n, τ). We

use X∗n(τ±) to denote the Nn × kn matrix whose (j, l) element is given by

X∗n(τ±)j,l ≡
∆n
i(n,τ±)+lYj − β

∗
j,τ∆n

i(n,τ±)+lZ√
∆n

. (3.7)

These matrices collect the (scaled) residual diffusive returns of the assets in the local windows.

We note that X∗n(τ±) have an approximate factor structure

X∗n (τ±)j,l ≈
(
λj,τ± − β∗j,τλZ,τ±

)> ∆n
i(n,τ±)+lf√

∆n
+

∆n
i(n,τ±)+lεj√

∆n
. (3.8)

13We can similarly use an average of jump betas over a larger number of systematic jump events, provided we are
willing to assume the null hypothesis of the exact jump factor model holds true for this larger number of events.

19



This is only an approximation because the (time-varying) factor loadings (λj , λZ) before and

after each jump time τ are only approximately (λj,τ−, λZ,τ−) and (λj,τ , λZ,τ ), respectively.14 It is

convenient to rewrite (3.8) in matrix form as

X∗n(τ±) ≈ Λ∗n(τ±)Fn(τ±)> + En (τ±) ,

where we denote 
Fn(τ±) ≡ ∆−1/2

n

(
∆n
i(n,τ±)+1f, . . . ,∆

n
i(n,τ±)+kn

f
)>

,

Λ∗n(τ±) ≡
(
λ1,τ± − β∗1,τλZ,τ±, . . . , λNn,τ± − β∗Nn,τλZ,τ±

)>
,

En(τ±) ≡ ∆−1/2
n

[
∆n
i(n,τ±)+lεj

]
1≤j≤Nn,1≤l≤kn

.

(3.9)

Assumption 8 extends Assumption 4 in order to accommodate the more general situation with

pseudo-true parameters.

Assumption 8. (i) For p, q ∈ {η−, η+, τ−, τ+}, N−1
n Λ∗n(p)>Λ∗n(q)

P−→ M∗Λ(p, q) for some F-

measurable r × r random matrix M∗Λ(p, q).

(ii) For each q ∈ {η−, η+, τ−, τ+}, the eigenvalues of M∗Λ(q, q) are distinct almost surely.

(iii) The factor loadings in Λ∗n(τ±) are independent of the idiosyncratic diffusive components

(εj)1≤j≤Nn.

Since β∗j,τ = βj for each τ ∈ T under the null hypothesis, the matrix M∗Λ(p, q) coincides with

MΛ(p, q) as well (recall Assumption 4). With this notation, we further complement the definition

in (3.2) by setting

M∗C(p, q) ≡ Σ
1/2
f,pM

∗
Λ(p, q)Σ

1/2
f,q . (3.10)

Then, the key to conducting feasible inference is to consistently estimate M∗C(p, q). To do this,

we assume that the dimension r of the diffusive factors is bounded by a known constant r̄. This

assumption is much weaker than knowing the exact value of r. Since the number of the diffusive

factors is not the main object of interest in our analysis of jumps, we aim to be agnostic on its exact

value. Instead, we only assume that a bound r̄ is known, for which the vast empirical literature

provides reliable guidance. We shall show theoretically that knowing the upper bound is enough

for constructing valid critical values for our test statistic.15

14The approximation error is also contributed by the drift and the idiosyncratic jump terms in Yj . All these
approximation errors are accounted for in our analysis.

15The number of diffusive factors may be consistently estimated by adapting the general strategy of Bai and Ng
(2002). Like our setting, such methods also assume the availability of an upper bound for the number of factors
(see the recent work of Gagliardini, Ossola, and Scaillet (2016a) which proposes a diagnostic criterion that does not
need such a bound), subject to which a criterion function is minimized for estimating the number of factors. The
resulting estimate may differ when using different methods (often associated with different penalty functions for
model complexity). We avoid this potential ambiguity by only relying on the upper bound.
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We now introduce our estimator for M∗C(p, q). We denote the sample analogue of X∗n(q) by

X̂n(q), which is constructed as

X̂n(τ±)j,l ≡

(
∆n
i(n,τ±)+lYj ∧ un ∨ (−un)− β̃n,j,τ∆n

i(n,τ±)+lZ√
∆n

)
, (3.11)

where we recall that un is the sequence of threshold used for winsorizing jumps. We set F̂n(q)

as the kn × r̄ matrix that consists of the eigenvectors associated with the r̄ largest eigenvalues of

X̂n (q)> X̂n (q) under the normalization F̂n (q)> F̂n (q) /kn = Ir̄, where Ir̄ denotes the r̄-dimensional

identity matrix. We then set

Λ̂n (q) ≡ X̂n (q) F̂n(q)/kn. (3.12)

Due to the normalization of the eigenvector matrix F̂n(q), it no longer “carries” information con-

cerning the spot covariance Σf,q of the factor process f . Instead, this information is now embedded

in the estimator Λ̂n(q), which also contains information about the loading matrix Λ∗n(q). With

this intuition in mind, we shall show that M∗C (p, q) can be estimated (in a proper sense) using

M̂C,n(p, q) ≡ 1

Nn
Λ̂n(p)>Λ̂n(q), p, q ∈ {η−, η+, τ−, τ+}. (3.13)

It is interesting to note that the above estimator is the cross-variation of the extracted diffusive

factor loadings across (possibly) different local windows, on which our feasible inference is based.

Subsequently, the average idiosyncratic variance Mε(q) can be estimated by

M̂ε,n(q) ≡ 1

Nnkn
‖X̂n(q)‖2 − Trace[M̂C,n(q, q)]. (3.14)

In Theorem 2 below, we describe the asymptotic properties of the estimators Λ̂n, M̂C,n and

M̂ε,n. We present explicitly the intermediate result for Λ̂n in order to streamline the intuition

underlying our constructions. Below, we partition Λ̂n(q) = [Λ̂∗n(q)
...Λ̂0
n(q)] where the two blocks

contain r and r̄ − r columns, respectively. Similarly, we partition F̂n(q) = [F̂ ∗n(q)
...F̂ 0
n(q)]. We

denote the sign function by sign(x) = 1{x≥0} − 1{x<0} and apply it component-wise on matrices.

Theorem 2. Suppose that Assumptions 3, 4, 7 and 8 hold. For p, q ∈ {η−, η+, τ−, τ+}, we have

the following:

(a) N−1
n ‖Λ̂∗n(q)− Λ∗n (q) Σ

1/2
f,qHqS

∗
n(q)‖2 = op(1) where

S∗n(q) = diag
(

sign
(
F̂ ∗n(q)>Fn (q) (Fn(q)>Fn(q)/kn)−1/2Hq

))
,

and Hq is the ordered orthogonal eigenvector matrix of M∗C(q, q);16

(b) N−1
n ‖Λ̂0

n(q)‖2 = op(1);

16That is, M∗C(q, q) = HqDH
>
q , where D is the diagonal matrix that collects the eigenvalues of M∗C(q, q) in

descending order.
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(c) the r̄ × r̄ matrix M̂C,n(p, q) satisfies

M̂C,n(p, q) =

 S∗n(p)H>p M
∗
C(p, q)HqS

∗
n(q) 0

0 0

+ op(1),

where we note that the upper-left block S∗n(p)H>p M
∗
C(p, q)HqS

∗
n(q) is r × r dimensional;

(d) M̂ε,n(q)
P−→Mε(q).

Comments. (i) Part (a) shows that, in a cross-sectional average sense, Λ̂∗n(q) approximates

Λn (q) Σ
1/2
f,q , up to the transformation HqS

∗
n(q). Despite the presence of the latter “unobserved

nuisance,” this result is sufficient for our purpose of estimating the critical values. This is because

the law of an F-conditional standard normal vector is invariant to the transformation associated

with the orthogonal matrix HqS
∗
n(q).17

(ii) Part (b) shows that the “null” columns collected by Λ̂0
n(q) are “asymptotically small.”

Hence, estimating the factor structure conservatively by (potentially over-) extracting factors leads

to no effect asymptotically.

(iii) Parts (c,d) follow from parts (a,b) and establish a type of consistent estimation result for

M̂C,n and M̂ε,n. Again, we note that the result of part (c) is sufficient for our feasible inference

described below in spite of the appearance of the transformation HqS
∗
n(q). We also note that when

p 6= q, M̂C,n(p, q) estimates the cross-variation of factor loadings between two distinct blocks of

data. For example, M̂C,n(η−, τ+) concerns data blocks before the η-jump and after the τ -jump.

This type of estimation is needed because we allow the factor loadings to change across jump times

and actually we also allow them to co-jump with Z. This is why we need to characterize precisely

the behavior of Λ̂∗n(q) in the form of part (a). Such analysis is not common in conventional factor

analysis (cf. Stock and Watson (2002), Bai (2003)).18

We remind the reader that our analysis is not about the diffusive factors per se. Rather,

Theorem 2 is an intermediate (but important) step for making inference regarding the cross-

sectional behavior of jump betas, which is the focus of the current paper. We are now ready

to introduce the critical value cvn,α for our test statistic V̂n at some nominal level α ∈ (0, 1).

Algorithm 1 below provides the details and is quite intuitive as it follows closely from Theorem 1.

The asymptotic validity of this algorithm is provided in Theorem 3 that follows.

Algorithm 1. Step 1. Simulate (κ̃s, ζ̃s−, ζ̃s+)s∈{η,τ} independently such that κ̃s ∼Uniform[0, 1]

and ζ̃s± ∼ N (0, Ir̄).

17In Bai (2003) and Pelger (2015a), the transformation matrix is only known to be invertible. Such a result would
be sufficient for the consistency of the column space spanned the estimator, but is not enough for the inference
problem considered here.

18See also Pelger (2015a,b) and Aı̈t-Sahalia and Xiu (2017) for recent development in the high-frequency setting.
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Step 2. Set w̃n,s− =
√
κ̃s/∆

n
i(n,s)Z and w̃n,s+ =

√
1− κ̃s/∆n

i(n,s)Z for s ∈ {η, τ}. Then compute

Ãn(s) =
∑

p,q∈{s−,s+}

w̃n,pw̃n,q ζ̃
>
p M̂C,n (p, q) ζ̃q +

∑
q∈{s−,s+}

w̃2
n,qM̂ε,n (q) , s ∈ {η, τ},

B̃n(η, τ) =
∑

p∈{τ−,τ+}

∑
q∈{η−,η+}

w̃n,pw̃n,q ζ̃
>
p M̂C,n (p, q) ζ̃q,

L̃n(η, τ) = Ãn(η) + Ãn(τ)− 2B̃n(η, τ).

Step 3. Repeat step 1 and step 2 for a large number of times and report the critical value cvn,α as

the 1− α quantile of L̃n(η, τ) in the Monte Carlo sample. �

Theorem 3. The following statements hold under Assumptions 1–8.

(a) The sequence cvn,α of critical values is Op(1). Moreover, in restriction to Ω0, cvn,α
P−→ cvα

where cvα is the F-conditional 1− α quantile of L (η, τ).

(b) The test associated with the critical region {∆−1
n V̂n > cvn,α} has asymptotic level α under

the null hypothesis and has asymptotic power one under the alternative hypothesis, that is

P
(

∆−1
n V̂n > cvn,α|Ω0

)
→ α, P

(
∆−1
n V̂n > cvn,α|Ωa

)
→ 1.

Comment. Part (a) of Theorem 3 shows that the critical value cvn,α consistently estimates the

corresponding F-conditional quantile of the limit distribution L(η, τ) of the test statistic, and it

remains stochastically bounded (i.e., tight) under the alternative. As a direct consequence, part (b)

shows that the proposed test has correct size control under the null hypothesis, and is consistent

under the alternative hypothesis.

3.3 Measuring Temporal Variation in Jump Betas

We have so far developed tests for the exact jump factor model in the cross-section. The test

detects positive cross-sectional average losses resulting from innovations in the jump beta, i.e.,

χj,η,τ = χ̃j,τ − χ̃j,η. From an estimation point of view, this loss also serves naturally as a measure

for the variation of jump beta for a “representative” asset. Since this measure is of economic

interest in its own, we further develop in this subsection econometric tools for making inference

about it. We focus on the quadratic loss function, in which case the test statistic is given by

V̂n =
1

Nn

Nn∑
j=1

(|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ )2.

As shown in equation (3.6), in the boundary case with χj,η,τ = 0 (i.e., when jump betas are

time-invariant), the “raw” estimator V̂n is not asymptotically centered, but has a positive bias

that is high in situations with low signal-to-noise ratio. While this bias term is accounted for

in the critical values of the test described in Theorem 3, it is of course more conventional from
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an estimation point of view to use a centered estimator in practice. To this end, we consider a

bias-corrected estimator given by

v̂n ≡
1

Nn

Nn∑
j=1

(|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ )2 −∆nb̂n(η, τ), (3.15)

where the correction term b̂n(η, τ) is defined as

b̂n(η, τ) ≡ 1

Nnkn

∑
s∈{η,τ}

‖X̂n(s−)‖2 + ‖X̂n(s+)‖2

2
(

∆n
i(n,s)Z

)2

 . (3.16)

We note that b̂n(η, τ) is constructed as the sample analogue of the asymptotic bias described in

(3.6).19 In fact, as an intermediate step in the proof of Theorem 2, we have shown that

1

Nnkn
‖X̂n(s±)‖2 P−→M∗total(s±) ≡ Trace [Σf,s±M

∗
Λ(s±, s±)] +Mε(s±).

We note that M∗total = Mtotal holds under the null hypothesis and, hence,

b̂n(η, τ)
P−→ E [L (η, τ) |F ] . (3.17)

The estimator v̂n is consistent for the cross-sectional average (conditional) second moment of χj,η,τ ,

denoted with v(η, τ). We further derive feasible CLT for it which allows constructing confidence

intervals. The details are provided in the appendix.

4 Extensions

In this section, we briefly discuss two extensions of the main theoretical results developed in Section

3 above. Section 4.1 proposes a test for the joint hypothesis of constant jump beta involving

multiple jump times. Section 4.2 describes how to use a mixed-scale approach to address the issue

of gradual response to systematic jump events of individual stock prices, which is relevant for

empirical studies about jumps of less liquid assets.

4.1 Joint Tests at Multiple Jump Times

The test described in Theorem 3 involves only a pair of jump times. The corresponding pairwise

test can be easily extended to a joint analysis involving multiple jump times.20 Among many pos-

sibilities, we describe here a specific implementation in which we simply compute the consecutive

19The correction term ∆nb̂n(η, τ) in (3.15) is of order Op(∆n). This rate is consistent with that in Theorem 1,
because this bias term is asymptotically relevant only when the jump betas are constant. That said, this correction
should also be effective in finite-samples when innovations in jump betas are “local to zero,” though a complete
analysis under drifting sequences of data generating processes is beyond the scope of the current paper.

20We consider a Kolmogorov-type test. Another approach is to use multiple-testing techniques for controlling
the false discovery rate; see, for example, Bajgrowicz, Scaillet, and Treccani (2010) and Bajgrowicz, Scaillet, and
Treccani (2016) for this type of applications on jumps.
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pairwise test statistics and then take their average. The theoretical justification for this procedure

can be adapted straightforwardly from the main theory in Section 3; we thus omit the formal

statements and instead provide only the algorithm for conducting the test.21

To fix ideas, we consider P + 1 jump times {τ1, . . . , τP+1} of Z. The pairwise test statistic for

the pth pair of consecutive jump times {τp, τp+1}, 1 ≤ p ≤ P , is denoted by

V̂n(τp, τp+1) ≡ 1

Nn

Nn∑
j=1

L(|β̂n,j,τp+1 − β̂n,j,τp | ∧ B̄n,τp,τp+1).

The null asymptotic distribution of ∆−1
n V̂n(τp, τp+1) is L(τp, τp+1) as shown in Theorem 1. By a

simple extension of that theorem, we can show that these convergences hold jointly, that is,(
∆−1
n V̂n(τp, τp+1)

)
1≤p≤P

L-s−→ (L(τp, τp+1))1≤p≤P , (4.18)

where
L-s−→ denotes stable convergence in law. Importantly, the limiting variables are repre-

sented using the same variables (κτp , ζτp−, ζτp+)1≤p≤P+1 that are described in Section 3.1; in

particular, L(τp−1, τp) and L(τp, τp+1) are F-conditionally dependent because they both involve(
κτp , ζτp−, ζτp+

)
.

One possibility to implement a joint test is to “combine” the pairwise test statistics by taking

their average, P−1
∑P

p=1 V̂n(τp, τp+1). One drawback of this (joint) test statistic, however, is that

it is not scale-invariant. In particular, it will tend to put a lot of weight to the pairwise tests

which happen in very volatile periods and much less weight to those during calm periods within

the testing time window.

For this reason, we consider instead a scaled statistic. In view of (3.6), we use the conditional

mean of the limit distribution L (τp, τp+1) as the scaling factor of the pairwise test, which can be

estimated by b̂n(τp, τp+1) as shown in (3.17). The resulting joint test statistic becomes

ĴTn ≡
1

P

P∑
p=1

V̂n(τp, τp+1)

b̂n(τp, τp+1)
.

By the joint convergence (4.18), we see that under the joint null hypothesis, ∆−1
n ĴTn converges

stably in law to

1

P

P∑
p=1

L(τp, τp+1)

E [L(τp, τp+1)|F ]
.

Under the alternative, ∆−1
n ĴTn diverges to +∞ in probability. We reject the joint null hypothesis

at significance level α ∈ (0, 1) if ∆−1
n ĴTn > cvJTn,α, where the critical value cvJTn,α is computed using

the following algorithm.

21Technical details are available upon request.
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Algorithm 3. Step 1. Simulate independent (κ̃s, ζ̃s±)s∈{τ1,...,τP+1} such that κ̃s ∼Uniform[0, 1]

and ζ̃s± ∼ N (0, Ir̄).

Step 2. Compute L̃n(τp, τp+1) as in Algorithm 1 and set L̃JTn = P−1
∑P

p=1 L̃n(τp, τp+1)/b̂n(τp, τp+1).

Step 3. Repeat step 1 and step 2 for a large number of times and report the critical value cvJTn,α as

the 1− α quantile of L̃JTn in the Monte Carlo sample. �

We note that for the joint test we can take β̃n,j,τp = P−1
∑P

p=1 β̂n,j,τp in the construction of

X̂n(τ±) (see (3.11)) which in turn is used for computing M̂C,n(p, q). This is because the hypothesis

now is that the jump beta remains constant across the P + 1 jump events.

4.2 Gradual Jumps and the Mixed-Scale Approach

In practice, the analysis of the co-jump behavior among assets is often complicated by the so-called

“gradual jump” phenomenon (Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009)). That is,

jumps in the efficient price (e.g., due to a surprising macroeconomic announcement) may take a

longer time to be fully incorporated in the observed prices of less liquid stocks than is the case for

the highly liquid market index. Clearly, the resulting asynchronicity between jumps can lead to

(downward) biases in the jump beta estimates and thus distort our testing results. In the jump

regression setting, Li, Todorov, Tauchen, and Chen (2017) proposed a mixed-scale approach to

address this issue. The idea is to precisely detect jump times in the market portfolio at the fine

time scale ∆n, and then to analyze the relationship between individual assets’ price jumps with

market jumps at a coarse time scale k∆n so as to mitigate the aforementioned asynchronicity.

Li, Todorov, Tauchen, and Chen (2017) documented the empirical effectiveness of this simple

approach. In this subsection, we introduce the mixed-scale strategy into our current problem

of testing and estimating the noisy linear factor model. The theory underlying the mixed-scale

extension is straightforward and, hence, we only focus on the implementation but we leave out the

technical details for brevity.22

The mixed-scale version of our econometric procedure goes as follows. As in Section 2.1, we

detect the jumps in the systematic factor Z at the (fine) scale ∆n. However, we estimate the

jump betas at a (possibly) coarse scale k∆n for some k ≥ 1. A larger k makes the procedure

more robust against the presence of gradual jumps, but at the cost of reducing the signal-to-noise

ratio for making inference about the jumps.23 We denote the coarsely sampled returns of Yj

by ∆n
i,kYj = Yj,(i+k−1)∆n

− Yj,(i−1)∆n
and define ∆n

i,kZ similarly. The corresponding jump beta

22Technical details are available upon request.
23Empirically, we find that taking the coarse scale to be 3 minutes is often sufficiently conservative. For robustness,

it is also advisable to report results for different levels of mixed-scales which we do in our empirical section.
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estimates are given by

β̂
(k)
n,j,τ ≡

∆n
i(n,τ),kYj

∆n
i(n,τ),kZ

,

where we emphasize the degree k of mixed-scale in our notation. Analogous to (2.5), we can define

the mixed-scale test statistic V̂
(k)
n using these mixed-scale beta estimates.

The null asymptotic distribution of V̂
(k)
n is similar to that of V̂n, except that it uses different

weights in the before/after jump windows as we now describe. We first generalize the definitions

in (3.1) and (3.3) by setting,

w
(k)
s− ≡

√
κs

∆Zs
, w

(k)
s+ ≡

√
k − κs
∆Zs

, s ∈ T ,

A(k)(s) ≡
∑

p,q∈{s−,s+}

w(k)
p w(k)

q ζ>p MC (p, q) ζq +
∑

q∈{s−,s+}

(w(k)
q )2Mε (q) ,

B(k)(η, τ) ≡
∑

p∈{τ−,τ+}

∑
q∈{η−,η+}

w(k)
p w(k)

q ζ>p MC (p, q) ζq.

(4.19)

By a straightforward adaptation of Theorem 1, we can show that under the null hypothesis, the

normalized mixed-scale test statistic ∆−1
n V̂

(k)
n converges F-stably in law towards

L(k)(η, τ) ≡ A(k)(η) +A(k)(τ)− 2B(k)(η, τ).

In the general case with mixed-scale k, the F-conditional mean of this limiting variable is now

E[L(k)(η, τ)|F ] =
∑

s∈{η,τ}

(
1

2

1

SNRs−
+

(
k − 1

2

)
1

SNRs+

)
, (4.20)

with the signal-to-noise ratio SNR defined as in (3.5). From (4.20), we see that the conditional

mean of mixed-scaled test statistic depends more on the signal-to-noise ratio in the post-jump than

the pre-jump window.

The critical values for the mixed-scaled test can be calculated by modifying the procedure in

Section 3.2 as follows. First, we extend the definition of residual return matrices X̂n(τ±) to the

k-mixed-scale version X̂
(k)
n (τ±) by replacing i(n, τ+) with i (n, τ+) + k − 1 in equation (3.11).

Note that this actually only affects the definition of X̂
(k)
n (τ+) while leaving X̂

(k)
n (τ−) = X̂n(τ−).

The estimators M̂C,n and M̂ε,n are then modified correspondingly. Second, we change the weights

w̃n,s± in Algorithm 1 as follows

w̃
(k)
n,s− =

√
κ̃s

∆n
i(n,s),kZ

, w̃
(k)
s+ =

√
k − κ̃s

∆n
i(n,s),kZ

.

With these modifications, we can follow the same steps as in Algorithm 1 to compute the critical

values for the mixed-scale test statistic V̂
(k)
n .

Next, we describe how to adapt the estimator v̂n for the variance of beta innovations (recall

(3.15)) to the mixed-scale setting. Besides using the mixed-scale jump beta estimates, we also

27



need to adjust the bias-correction term in view of (4.20). The mixed-scale generalization of v̂n is

given by 
v̂(k)
n ≡ 1

Nn

Nn∑
j=1

(
β̂

(k)
n,j,τ − β̂

(k)
n,j,η

)2
−∆nb̂

(k)
n , where

b̂(k)
n ≡

1

Nnkn

∑
s∈{η,τ}

(
1

2

‖X̂(k)
n (s−)‖2

(∆n
i(n,s),kZ)2

+

(
k − 1

2

)
‖X̂(k)

n (s+)‖2

(∆n
i(n,s),kZ)2

)
.

(4.21)

Similar to v̂n, the estimator v̂
(k)
n is consistent for the cross-sectional average (conditional) second-

moment of χj,η,τ and in the appendix we further provide a feasible CLT for it.

5 Monte Carlo Study

We now examine the finite-sample performance of the proposed test in simulation settings that are

calibrated to match some key features of the data that is used in our empirical analysis. Below we

present the results of our main simulation setup while in the Supplementary Appendix we provide

additional results from a variety of extensions of this setup.

5.1 Simulation Settings

We start with describing the Monte Carlo setup. We consider N = 100 and ∆n = 1/400 which are

very close to the corresponding numbers for the data set used in the empirical application. The

unit of time is one day, so this sampling frequency corresponds roughly to sampling every minute.

The log returns of the assets are generated from the following model: dYj,t = λ>j dft + σ̃j,tdW̃j,t + βj,tϕtdNt,

dZj,t = λ>Zdft + ϕtdNt,
(5.1)

where the process Nt is a counting process for the jumps. The diffusive systematic factor process

f is a three-factor model given by

dft = Σ
1/2
f,t dWt, Σf,t = diag(σ2

f,1,t, σ
2
f,2,t, σ

2
f,3,t),

and Wt = (W1,t,W2,t,W3,t)
> is a three-dimensional standard Brownian motion. The log-variance

process of factor k ∈ {1, 2, 3} is generated from an Ornstein–Uhlenbeck process of the from

d log(σ2
f,k,t) = 0.3

(
log(σ̄2

f,k)− log(σ2
f,k,t)

)
dt

+0.3
(
ρ (dW1,t + dW2,t + dW3,t) +

√
1− ρ2dBk,t

)
+ ϕ̃k,tdNt,

where ρ = −0.6 captures the so-called leverage effect between the volatility and the price process

and (Bk,t)1≤k≤3 are standard Brownian motions that are independent of W . We set

(σ̄2
f,1, σ̄

2
f,2, σ̄

2
f,3) = (0.92, 0.21, 0.07),
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and draw the log-volatility jump sizes ϕ̃k,t independently from a Uniform[0, 0.2] distribution. We

draw the price jump size ϕt independently from

ϕt ∼ Uniform[−ϕ− 0.4,−ϕ] ∪ [ϕ,ϕ+ 0.4].

We set the lower bound ϕ = 0.4, which is about 8 times of the local diffusive standard deviation

of Z for ∆n = 1/400. This is close to what we observe in the empirical application. The frequency

of jump arrivals is set to one jump per month.

In each simulation, we draw the diffusive factor loadings λj independently from

λj,1 ∼ Uniform[0.3, 1.7], λj,2, λj,3 ∼ Uniform[−1, 1],

and the factor loading of Z is fixed at λZ = (1, 0, 0)>.

Turning next to the idiosyncratic diffusive component of Y , we set

σ̃2
j,t = γ̃j(σ

2
f,1,t + σ2

f,2,t + σ2
f,3,t). (5.2)

In this setting, the idiosyncratic variances comove with the factor variances, which is empirically

realistic. The “variance betas” γ̃j are drawn independently from a Uniform[0.8, 1.2] distribution.

We note that the idiosyncratic diffusive variance in our simulation is quite sizable; indeed, it is

equal to the sum of all diffusive factor variances on average, so it is greater, in particular, than the

variance of the leading factor Z. This simulation setting thus corresponds to a low signal-to-noise

scenario for estimating the spot jump betas and, hence, presents a nontrivial challenge to the

proposed test.

The above specification of Z and the diffusive part of Y is designed to mimic key features of the

data set that we use in the empirical application. In particular, the volatility dynamics of Z, the

frequencies of jumps and their magnitude in the Monte Carlo match approximately those of the

market portfolio which we use in the next section as the reference process Z. Further, the diffusive

factor structure and the magnitude of the idiosyncratic variance in Y match those of the empirical

data set (recall that these quantities determine the limiting distribution of our test statistic).24

Finally, our specification of the jump betas is as follows. At the first jump time τ1, the jump

betas are drawn independently from

βj,τ1 ∼ Uniform [0.7, 1.3] .

Under the null hypothesis, we set βj,τp = βj,τ1 for p > 1, and under the alternative we set:

βj,τp = βj,τp−1 + χj,τp−1,τp , χj,τp−1,τp ∼ N
(
0, vτp−1,τp

)
, vτp−1,τp =

 0.1 Alternative 1,

0.2 Alternative 2.

24More specifically, the eigenvalues of the matrix MC(τ±, τ±) decay on average as those in the real data and the
ratio Mε(τ±)/Trace[MC(τ±, τ±)] is similar to that in the data as well.
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Note that Alternative 2 implies larger deviation from the null hypothesis than Alternative 1.

Below, we examine the test specified in Theorem 3 and refer to it as the baseline test. We

also consider the mixed-scale versions implemented at scales k = 2 and k = 3 as described in

Section 4.2. We remind the reader that the baseline test is a special case of the mixed-scale test

with k = 1. In the empirical analysis, the mixed-scale approach is more robust to the presence

of gradual jumps, but at the cost of lowering the signal-to-noise ratio; we aim to examine this

trade-off in the simulation exercise. Finally, we also assess the performance of the joint test of

Section 4.1. We use nine consecutive jumps for the construction of this test which is similar to the

average number of jumps used in our empirical implementation. The joint test is expected to have

more power relative to the pairwise test and we will study this in our Monte Carlo experiment.

The simulation results are based on 1,000 sample paths in total and the tuning parameters

of the test are as follows. We set the loss function L(x) = min{|x|, x2}, which will also be used

in our empirical analysis below. With the true number of diffusive factors being 3, we consider

r̄ ∈ {1, 3, 5} in our Monte Carlo experiments. The benchmark case is r̄ = 3, which coincides with

the true number of factors. The case with r̄ = 1 is generally not justified by our asymptotic theory,

but it allows us to understand the consequence of “undershooting” the number of diffusive factors.

The case r̄ = 5 is justified by our theory and shows the effect of conservatively including “non-

factors” in finite-samples. The local window parameter kn is taken from {25, 30}. The algorithm

for computing critical values is implemented using 1,000 simulations.

Finally, we set the truncation un in an adaptive way. In particular, for determining the jumps in

Z, un is equal to 7×∆0.49
n ×

√
RV ∧BV , where RV and BV denote the daily realized variance and

so-called bipower variation (Barndorff-Nielsen and Shephard (2004)), respectively.25 The former

is a measure of total daily quadratic variation and the latter is a measure of the continuous part

of the quadratic variation. The above high threshold minimizes the probability of erroneously

classifying a diffusive increment as one containing a jump. For the truncation of the elements in

Y in the calculation of X̂n(τ±) in (3.11), we use twice the threshold for Z in order to account for

the additional idiosyncratic risk in Y .

5.2 Simulation Results for the Pairwise Test

We start with the case with kn = 30. Table 1 presents the Monte Carlo rejection rates for testing

βj,τ = βj,η, 1 ≤ j ≤ N . We report rejection rates at nominal levels 10%, 5% and 1%. Panel

A shows results for the case when r̄ coincides with the number of diffusive factors (i.e., r̄ = 3).

Under the null hypothesis, the finite-sample rejection rates for our baseline test are very close to

25We use a relatively stringent jump detection rule so as to avoid mis-classifying diffusive returns as jumps. This
is particularly important in our current testing context, because the asymptotic theory depends crucially on using
only the jump returns. The adverse effect of mis-classifying diffusive returns as jumps is illustrated in a simulation
in the Supplemental Appendix.
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the nominal levels. We also see similarly good performance at mixed-scale k = 2. These results

are in line with our asymptotic theory. The test at mixed-scale k = 3 appears to be somewhat

undersized under null hypothesis, reflecting the cost of using a larger mixed-scale.

Turning to the power analysis, we first observe that the baseline test rejects essentially with

probability one under Alternative 1, which is consistent with the asymptotic theory. The mixed-

scale tests are more conservative but still exhibit good power properties. The somewhat lower

rejection rate at k = 3 is expected, because the jump signal gets weaker relative to the disturbance

from the diffusive part, rendering sharp inference concerning the jumps more difficult. As the data

generating process further deviates away from the null hypothesis (i.e., Alternative 2), the rejection

rates of all tests become very close to one, even for the more conservative k = 3 mixed-scale test.

We now examine the effect of misspecifying the number of diffusive factors. Panel B of Table 1

shows the rejection rates when we “undershoot” the number of diffusive factors by setting r̄ = 1. We

remind the reader that our asymptotic theory does not justify the validity of this implementation.

Under the null hypothesis, the baseline test slightly overrejects at the 5% and 1% levels, but the

overrejection appears to be more severe at the 10% level. For the mixed-scale tests with k = 2

and 3, the overrejection is offset by the underrejection seen in Panel A; such “offsetting” of course

needs to be taken with a grain of salt. By contrast, Panel C of Table 1 shows that “overshooting”

the number of diffusive factors does not lead to overrejection under the null. Indeed, the baseline

test with k = 1 has rejection rates that are very close to the nominal levels, and the mixed-scale

tests underreject only slightly in comparison with the same tests implemented using r̄ = 3. Under

the alternative, results in Panel C are quite similar to those in Panel A, suggesting that the test

have desirable power properties even if we set r̄ conservatively.

Next, we investigate the sensitivity of the rejection rates with respect to the local window

parameter kn. To do so, we repeat the exercise in Table 1 except that we replace kn = 30 with

kn = 25. The rejection rates are presented in Table 2, which are generally very similar to those in

Table 1. These results suggest that reducing moderately the window size does not have much of

an effect on the test. We hence focus on the case kn = 30 in our numerical work below.

In summary, we find that the proposed test controls size well under the null hypothesis and has

high rejection rates under the alternatives. The performance of the baseline test is closely in line

with our asymptotic theory. The mixed-scale approach with k = 2 performs very similarly as the

baseline test. When we increase the mixed-scale to k = 3, the test tends to be slightly undersized

but it still has nontrivial power under the alternative. Finally, we find that the test is robust with

respect to the choice of r̄ and the local window kn. Overall, we have seen that the finite-sample

performance of the proposed test is satisfactory in empirically realistic settings.
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Table 1: Rejection Rates of Pairwise Constant Beta Tests

Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Case r̄ = 3 (correct number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 9.7 3.8 0.5 99.9 99.9 98.5 100 100 99.9

k = 2 9.4 4.2 0.6 98.9 97.0 84.4 99.7 99.1 96.2

k = 3 7.9 2.6 0.7 93.8 87.6 64.5 99.7 99.1 96.2

Panel B: Case r̄ = 1 (underestimated number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 15.2 7.1 1.5 100 100 99.6 100 99.9 99.8

k = 2 10.8 5.4 0.7 98.6 96.9 87.7 99.7 99.2 96.5

k = 3 8.6 3.5 0.6 93.7 87.6 65.0 98.2 96.6 86.0

Panel C: Case r̄ = 5 (overestimated number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 10.5 5.5 0.9 100 100 99.4 100 100 99.8

k = 2 7.1 3.0 0.3 99.0 97.0 84.7 99.5 99.1 96.0

k = 3 6.6 2.9 0.2 93.3 86.6 60.2 97.8 95.1 83.5

Note: The table presents rejection rates of pairwise tests for constant beta in the setting with
kn = 30. Critical values are based on Algorithm 1 with 1,000 simulations.
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Table 2: Rejection Rates of Pairwise Constant Beta Tests

10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Case r̄ = 3 (correct number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 11.1 5.0 0.9 100 100 99.0 100 100 99.8

k = 2 7.3 3.3 0.4 98.3 96.4 84.8 99.8 99.3 96.3

k = 3 7.5 3.3 0.5 90.5 83.3 56.1 98.3 96.1 84.0

Panel B: Case r̄ = 1 (underestimated number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 14.6 6.8 1.4 100 100 99.4 100 100 99.9

k = 2 12.3 4.5 0.9 98.4 97.4 85.9 99.7 99.4 96.7

k = 3 9.9 4.6 0.5 94.4 86.7 63.9 98.2 96.1 87.0

Panel C: Case r̄ = 5 (overestimated number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 9.4 4.5 0.5 99.9 99.9 98.3 99.9 99.9 99.9

k = 2 9.2 3.4 0.1 98.7 95.8 84.0 99.7 99.3 95.3

k = 3 6.8 2.9 0.4 93.4 84.3 59.0 97.3 94.7 82.4

Note: The table presents rejection rates of pairwise tests for constant beta in the setting with
kn = 25. Critical values are based on Algorithm 1 with 1,000 simulations.
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Table 3: Rejection Rates of Joint Constant Beta Tests

Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Case r̄ = 3 (correct number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 10.0 4.1 0.8 100 100 100 100 100 100

k = 2 8.3 4.3 0.5 100 100 99.5 100 100 100

k = 3 4.3 1.0 0.0 99.3 97.7 85.6 99.9 99.6 97.5

Panel B: Case r̄ = 1 (underestimated number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 12.6 6.1 1.3 100 100 100 100 100 100

k = 2 9.2 3.2 0.3 100 100 99.7 100 100 99.8

k = 3 6.2 3.0 0.4 99.4 97.6 84.0 99.8 99.3 94.6

Panel C: Case r̄ = 5 (overestimated number of diffusive factors)

Null Alternative 1 Alternative 2

k = 1 11.0 5.0 1.2 100 100 100 100 100 100

k = 2 6.5 2.8 0.3 100 100 98.9 100 100 100

k = 3 4.5 1.5 0.1 99.4 97.1 85.0 99.7 99.1 94.3

Note: The table presents rejection rates of joint tests for constant beta in the setting with
kn = 30. The number of jump times included in the test is 9. Critical values are based on

Algorithm 3 with 1,000 simulations.

5.3 Simulation Results for the Joint Test

We finish this section with presenting simulation results for the performance of the joint test in

Table 3. For brevity, we only consider the case with kn = 30. Compared to the pairwise test,

the under-rejection under the null hypothesis now becomes more significant for the mixed-scale

k = 3. Intuitively, the small finite-sample biases in the pairwise test play a more prominent rule

in the joint test as pooling the pairwise tests across the different jump times reduces the sampling

variability without affecting these biases. On the other hand, and as expected, we now have

uniformly significantly more power to reject the two alternatives.

6 Empirical Application

We now apply the econometric techniques developed above to a data set from the U.S. equity

market. Our interest in this analysis will be the factor structure and presence of firm-specific risk
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in the cross-section of asset returns during market-wide jump events.

6.1 Data

We start with describing the data. Our sample consists of one-minute returns for a panel of 93

stocks that were in the S&P 100 index for the entire period 2007–2015.26 The data is from the

Trade and Quote (TAQ) database. Standard cleaning procedures were used in assembling the data.

Our proxy for the market (which is our systematic factor Z) is the S&P 500 E-Mini futures Index

on the nearest contract with appropriate rollovers. The futures data were obtained from Tick Data.

Of course, nothing in our theory requires Z to be the market factor, and empirical extensions could

consider alternative sets of interesting event times such as macro and/or monetary announcement

times, volatility jumps, as well as jumps in the various S&P 500 industry sub-components, among

others.

The detection of jumps in Z as well as the truncation needed for the construction of X̂n(τ±)

in (3.11) is done exactly as in the Monte Carlo, with the only difference being the scaling of the

threshold by a time-of-day function in order to account for the well-known diurnal intraday pattern

in volatility. We find 91 putative jump moves in Z in our sample. We further filter these moves

based on the following criteria: remove detections that occur within 5 minutes of each other and

remove detections of size less than 0.10 (i.e., 10 basis points); the latter occurred only in the very

late part of the sample with exceptionally low volatility. These steps yield 83 (one-minute) jump

returns over the 2007–2015 period.27 Evidently, the 83 jump returns are very large moves in the

futures index relative to its local volatility. Our analysis below will be based on these 83 market

jump events in the sample.

6.2 Test Outcomes

We first perform tests for the constant jump beta hypothesis to each of the 82 consecutive pairs

of market jump events in our sample. As in the simulations, we use the Huber-type loss function

L(x) = min{|x|, x2} and take the local window parameter to be kn = 30. This exercise consists

of testing 82 hypotheses independently, and we summarize the results by reporting the proportion

of tests that reject the null hypothesis at the 5% and 1% nominal levels when averaged over the

whole sample. These separate pairwise tests are for the null hypothesis of no variation in adjacent

jump betas. To further increase power, we also implement the joint test of Section 4.1 for the

26There are 107 ticker symbols that were in the S&P 100 Index for at least four years over the same period. Our
inference techniques do not require a balanced panel, but we retained the 93 stocks mainly for transparency and ease
of exposition. In initial work, we did the pairwise tests for all 107 stocks with essentially no difference in outcomes
relative to those reported here.

27Similar to Bajgrowicz, Scaillet, and Treccani (2016), we do not find much evidence for clustering of these very
big jumps although the statistical power for detection of such clustering is probably not very high given the rare
nature of these jumps.
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jumps in each of the calendar years in our sample and report the average of the p-values across

the nine years in the data set. As shown in our simulation experiment, the joint test is expected

to have more power to detect violations of the null hypothesis as those considered in the Monte

Carlo. We choose the time span of one calendar year for the joint test in order to avoid violations

of the null hypothesis of the exact jump factor model that are due to predictable changes in the

factor loadings. Indeed, the latter are typically associated with changes in the firms’ characteristics

and they are not expected to change much over periods of one year.28 Therefore, violations of the

null hypothesis in our setting will be more likely due to the presence of unpredictable firm-specific

shocks at the market-wide jump events.

For implementing the tests, we choose r̄ = 3 as motivated by the popular Fama-French model

(Fama and French (1993)) and consider r̄ = 5 as a more conservative robustness check. Since

the results are not sensitive to the choice of r̄, below we focus the discussion on the case r̄ = 3.

Finally, we present results with and without winsorization; the winsorization is implemented at

the 0.05 level (i.e., qwn = 0.05). Recall from Section 2 that the winsorization is needed in order

to guard against the possible occurrence of idiosyncratic jumps in the high-frequency increment

at which a systematic jump event has been detected. In finite samples, the winsorization also

provides robustness against possible presence of outliers in the data.

We turn now to a discussion of the test results. From Panel A of Table 4, the baseline test

at the one-minute frequency (i.e., k = 1) rejects the constant beta hypothesis for a majority of

consecutive jump pairs: the rejection rate is 0.94 at the 5% level and 0.76 at the 1% level. The

average p-value of the joint test is very low, suggesting a strong rejection of the joint hypothesis.

However, as recognized in Li, Todorov, Tauchen, and Chen (2017), the constant beta hypothesis

at a fine scale will be rejected if there is a gradual response in individual assets to a market jump

event due to less liquidity in the trading process of some of the stocks in the cross-section at such

frequency. The mixed-scale version of our test described in Section 4.1 mitigates the effect of such

microstructure issues, and we consider it therefore as the more reliable method. By “zooming out”

and measuring returns at the two-minute sampling interval (i.e., k = 2), we find that the rejection

rate drops substantially: for example, only 23% of the tests reject at the 1% level, which is far below

the rejection rate of the baseline test with k = 1. In addition, the averaged p-value of the joint

test is slightly below the conventional significance level of 5%, suggesting only borderline rejection

for the joint hypothesis. When we further zoom out by increasing the mixed-scale parameter to

k = 3, the majority of pairwise tests no longer reject the constant beta hypothesis. Furthermore,

the p-value for the joint test is far above the conventional significance level.

As seen from Panel B of Table 4, after performing winsorization, the rejection rates of the tests

28Our pairwise test is most “conservative” in this regard as the time between the market jumps is typically around
one month.
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drop uniformly across all considered settings. However, qualitatively the results are the same as

in the case of no winsorization.

Overall, the significant drop in the rejection rate of both the pairwise and joint tests, when

going from k = 1 to k = 3 observed in our data, is inconsistent with the behavior of the tests

under a typical alternative hypothesis of a noisy jump factor model as illustrated in our simulation

experiments. Instead, such behavior is consistent with a null hypothesis of exact jump factor model

which is “clouded” at the fine time scale of one-minute by liquidity-related microstructure issues.29

We can further contrast this result for the jumps with the factor structure of the diffusive

returns before and after the systematic jump events. The cross-sectional average contribution of

idiosyncratic diffusive risk in the total return variation of the residual component X∗n(τ±)j,l in (3.7)

(computed as the time series of the ratio M̂ε,n/(Trace[M̂C,n(q, q)] + M̂ε,n) for r̄ = 3) is a nontrivial

67%. This decomposition of systematic and idiosyncratic variance in X∗n(τ±)j,l reveals also that

the market cannot solely account for the cross-sectional dependence in asset returns before and

after the systematic jump events which is in sharp contrast to our empirical evidence in support

of the exact jump factor model at market jump times.

6.3 The Magnitude of Firm-specific Shocks at Market-wide Jump Events

We next estimate the variance v(η, τ) of the innovations in jump betas using the estimator v̂n

(see (3.15)), as well as the mixed-scaled version v̂
(k)
n (see (4.21)). Although the estimand v(η, τ) is

non-negative, the bias-corrected estimator v̂
(k)
n occasionally takes negative values in finite-samples

because of the subtraction of the positive bias-correction term. Therefore, we report results for a

sign-regularized version of v̂
(k)
n given by30

v̂(k)+
n = max{v̂(k)

n , 0}. (6.1)

To evaluate economically the relative magnitude of these estimates, we also report the following

measure

Normalized v̂(k)+
n ≡ v̂(k)+

n


(

∆n
i(n,τ),kZ

)2
+
(

∆n
i(n,η),kZ

)2

2

/Dn, (6.2)

where

Dn ≡ 1

Nn

Nn∑
j=1

(∆n
i(n,τ)Yj)

2 +
1

Nn

Nn∑
j=1

(∆n
i(n,η)Yj)

2 +
1

2

∑
s∈{τ,η}

1

knNn

Nn∑
j=1

kn∑
l=1

(
∆n
i(n,s−)+lYj

)2

+

(
k − 1

2

) ∑
s∈{τ,η}

1

knNn

Nn∑
j=1

kn∑
l=1

(
∆n
i(n,s+)+k−1+lYj

)2
.

29Of course, such a behavior of the test can be also consistent with very short-lived volatility bursts which are
confused for jumps, see e.g., Bajgrowicz, Scaillet, and Treccani (2016).

30In the Supplementary Appendix, we investigate the effect from the bias-correction as well as from imposing the
non-negativity constraint.
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Table 4: Test Results for U.S. Equity Data

Mixed Rejection Rate Joint Test Rejection Rate Joint Test

Scale 5% Level 1% Level Mean P-value 5% Level 1% Level Mean P-value

Panel A: Full Sample (qwn = 0)

r̄ = 3 r̄ = 5

k = 1 0.94 0.76 0.00 0.91 0.72 0.00

k = 2 0.38 0.23 0.04 0.35 0.21 0.05

k = 3 0.18 0.00 0.37 0.17 0.00 0.37

Panel B: Winsorized Sample (qwn = 0.05)

r̄ = 3 r̄ = 5

k = 1 0.89 0.66 0.00 0.89 0.63 0.00

k = 2 0.32 0.21 0.08 0.32 0.21 0.08

k = 3 0.13 0.00 0.44 0.10 0.00 0.45

Note: P-values are computed using Algorithm 1 based on 1,000 simulations. The joint test is
done by grouping jumps in periods of calendar years.
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The ratio in (6.2) measures an average stock’s price variation due to time-varying jump beta (i.e.,

the numerator) relative to the total price variation during market jump times (i.e., Dn).

Panel A of Table 5 displays the empirical quantiles (across jumps and stocks) of the estimates

v̂
(k)+
n and the normalized v̂

(k)+
n for all 82 pairs of consecutive jumps; the quantiles are invariant to

the monotonic transformation used in the regularization (6.1). Panel A1 suggests that the median

value of v̂
(k)+
n is about 0.17 and this estimate varies little across various levels of mixed-scales. To

gauge their relative magnitudes, we observe in Panel A2 that the median value of the normalized

measure at mixed-scale k = 1, 2 and 3 are 7.70%, 6.80% and 5.38%, respectively. This means,

for example, for jump returns measured at the 2-minute frequency, return variance due to the

temporal variation of the jump betas explains only about 6.80% of the total jump return variation.

This rather small percent is consistent with our testing result that the majority of pairwise tests

do not reject the null hypotheses at the conventional significance levels (for k = 2).

In Panel B of Table 5 we report the same statistics but after performing winsorization in the

cross-section. This winsorization is to guard against distortions resulting from the idiosyncratic

jump risk. Indeed, the estimators of variance can be very sensitive to outliers and the estimates in

Panel A may be overly influenced by a few stocks, which makes them of less interest as measures

of jump beta variations for the majority of stocks.31 Clearly, the estimates after winsorization

are much smaller than those based on the full sample, suggesting that the estimates in Panel A

have likely exaggerated the variations in jump betas for a typical stock because of a few influential

observations.

The estimates reported in Panel B1 of Table 5 indicate that between consecutive large rare

jumps the typical betas differ randomly with a variance of about 0.02, based on the estimate for

k = 3. For perspective on this estimate, the corresponding normalized measure (6.2) indicates that

such variation of beta explains only 0.99% of the total return variation of the median stock in our

sample at the systematic jump event. By contrast, the relative contribution of idiosyncratic risk

in the total diffusive return variation in the local windows before and after the systematic jump

events (based on r̄ = 3) is a rather nontrivial 48%.

Taken together, the results in Table 5 document a rather small role for firm-specific shocks in

asset returns at the times of market-wide jump events. This evidence is in line with the support

for the exact jump factor model reported earlier.

31After all, as formalized in Assumption 9, we can only hope to make inference about v(η, τ) if the stocks are
relatively homogeneous.
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Table 5: Idiosyncratic Risk at Market-wide Jump Events

Mixed Percentiles Percentiles

Scale 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

Panel A: Full Sample (qwn = 0)

(A1) v̂
(k)+
n (A2) Normalized v̂

(k)+
n (%)

k = 1 0.09 0.12 0.17 0.23 0.30 3.92 5.11 7.70 11.26 14.91

k = 2 0.04 0.09 0.19 0.34 0.70 1.31 3.64 6.80 11.74 22.43

k = 3 0.00 0.03 0.16 0.30 0.85 0.00 0.91 5.38 11.58 24.04

Panel B: Winsorized Sample (qwn = 0.05)

(B1) v̂
(k)+
n (B2) Normalized v̂

(k)+
n (%)

k = 1 0.06 0.09 0.13 0.19 0.22 2.51 3.61 5.84 8.37 10.86

k = 2 0.00 0.04 0.11 0.18 0.37 0.00 1.42 4.33 7.79 11.97

k = 3 0.00 0.00 0.02 0.15 0.35 0.00 0.00 0.99 6.11 10.64

7 Conclusion

In this paper we develop a formal test for deciding whether an exact factor model holds for asset

returns in a large cross-section at the jump times of discretely-observed systematic risk factors.

The inference is based on a panel of high-frequency asset returns in which the cross-sectional

dimension and the sampling frequency increase simultaneously but with no restriction on their

relative asymptotic order. The test is based on comparing temporal variation of estimates for the

factor loadings from detected consecutive jump times of the risk factor. This difference in factor

loading estimates shrinks asymptotically when the null hypothesis is true and is Op(1) otherwise.

The limit distribution of the test is non-standard and depends on systematic and idiosyncratic

diffusive risks around the jump times of the factors in distinct ways. We further develop an

estimator and inference tools that allow the econometrician to formally assess the magnitude of

firm-specific shocks in assets at the times of systematic factor jump events. Empirical application

to stocks in the S&P 100 index provides support for an exact market jump model over the period

2007-2015. This stands in sharp contrast to our evidence for the presence of multiple systematic

risk factors in the asset returns prior to and following the systematic jump events.
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8 Appendix

8.1 Additional Results for Measuring the Temporal Variation in Jump Betas

Our goal in this section is to derive the asymptotic properties of the estimator v̂n and develop a

feasible inference procedure for it. Unlike the limit theory developed for the test, understanding

the asymptotic behavior of v̂n under the more general random jump beta model requires a joint

characterization of the (cross-sectional) sampling variability resulting from the innovation terms

χj,η,τ and the (time-series) high-frequency estimation error in the jump beta estimates. Technically

speaking, one needs to properly combine a type of conditional convergence in law for the former

with the stable convergence for the latter. To this end, we need some additional assumptions on

the dependence structure concerning the underlying variables.

Assumption 9. Let C be a sub σ-field of F and Ct be the smallest filtration that contains Ft and

C. The following conditions hold:

(i) Zt and ft are C-measurable for all t ∈ [0, T ];

(ii) conditional on Cη−, the variables (χj,η,τ )1≤j≤Nn are independent with zero mean and bounded

4 + ι moments for some fixed (small) constant ι > 0;

(iii) conditional on Cη−, the variables (χj,η,τ )1≤j≤Nn are independent of the diffusive compo-

nents of (Yj)1≤j≤Nn, the jump components (J̃Y,j)1≤j≤Nn and the jump betas (βj,η)1≤j≤Nn at time

η.

(iv) N
−1/2
n

∑Nn
j=1(E[χ2

j,η,τ |Cη−] − v(η, τ)) = op(1) and N−1
n

∑Nn
j=1(E[χ2

j,η,τ |Cη−] − v(η, τ))2 =

op(1).

(v) N−1
n

∑Nn
j=1 V ar[χ

2
j,η,τ |Cη−]

P−→ ΣS.

The information set C mentioned in Assumption 9 can be considered as a “common-shock” σ-

field following the terminology of Andrews (2005). Intuitively, C contains systematic information

through which various variables are strongly dependent in the cross-section. Along with this

intuition, condition (i) of Assumption 9 suggests that the asset Z and the diffusive factor f are

part of the “common shocks.” Conditions (ii) and (iii) further impose conditional independence

on the innovation terms χj,η,τ , formalizing the sense in which these innovations constitute “noise.”

Note that these conditions do not rule out unconditional dependence. Condition (iv) allows χ2
j,η,τ

to be heterogeneous in mean, but “moderately” so. In particular, the cross-sectional average of

the conditional means has a well-defined limit v(η, τ), which is the limit of the estimator v̂n as

we show below. Of course, this condition holds automatically if the conditional mean E[χ2
j,η,τ |Cη−]

does not depend on j. It is perhaps possible to relax this condition to a more general version, but

we leave such an extension for future work. Condition (v) imposes a mild requirement that the

average finite-sample conditional variance has a limit.
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Theorem 4, below, characterizes the asymptotic distribution of v̂n under the general noisy jump

factor model.

Theorem 4. Suppose that Assumptions 3, 4 and 9 hold and (N
1/2
n +∆

−1/2
n )qwn → 0. The following

statement hold:

(a) if Nn∆n → θ for some constant θ ∈ [0,∞), then the sequence N
1/2
n (v̂n − v(η, τ)) converges

Cη−-stably in law to

S +
2
√
θv(η, τ)(

√
κτζ

′
τ− +

√
1− κτζ ′τ+)

∆Zτ
, (8.3)

where the variables S, κτ , ζ ′τ− and ζ ′τ+ are Cη−-conditionally independent, κτ is uniformly dis-

tributed on the unit interval, and S and ζ ′τ± are centered Gaussian with conditional variances ΣS

and ΣZ,τ± ≡ λ>Z,τ±Σf,τ±λZ,τ±, respectively;

(b) if Nn∆n →∞, then the sequence ∆
−1/2
n (v̂n − v(η, τ)) converges F-stably in law to

2v(η, τ)(
√
κτζ

′
τ− +

√
1− κτζ ′τ+)

∆Zτ
.

Comments. The limiting variable in (8.3) consists of two components. The first component S cap-

tures the sampling variability in the infeasible statistic N−1
n

∑Nn
j=1 χ

2
j,η,τ which would be attained if

the jump betas βj,τ were directly observed. The second component accounts for the estimation er-

ror in the jump beta estimates. Although the estimation errors are aggregated in the cross-section,

they still have an asymptotic effect because of their strong cross-sectional dependence driven by

the systematic diffusive factors; by contrast, estimation errors due to idiosyncratic disturbances are

“averaged out.” It is interesting to note that the second term in (8.3) only involves the estimation

error of the jump beta at the (later) jump time τ . Finally, we note that part (a) and part (b)

cover all cases for the relative size of Nn and ∆n. The “balanced” case with θ ∈ (0,∞) is the most

interesting one because the limiting distribution captures both cross-sectional and high-frequency

sampling variabilities.

We finish this section with describing how to build confidence intervals for the average variance

v(η, τ) of the innovation terms based on the above theorem. We focus on the case with θ ∈ (0,∞)

so that the two sources of sampling variabilities are both accounted for. From a practical point

of view, it is useful to consider more generally the estimation of g(v(η, τ)) for some continuously

differentiable function g(·). We estimate ΣS and spot variances ΣZ,τ± using, respectively,
Σ̂S,n ≡

1

Nn

Nn∑
j=1

(|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ )4 − v̂2
n,

Σ̂Z,n,τ± ≡
1

kn∆n

kn∑
l=1

(
∆n
i(n,τ±)+lZ

)2
.
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Algorithm 2 below provides a simulation-based method for estimating the limit distribution in

(8.3), which is theoretically justified by Theorem 5.

Algorithm 2. Step 1. Simulate

κ̃τ ∼ Uniform [0, 1] , S̃n ∼ N (0, Σ̂S,n), ζ̃ ′n,τ± ∼ N (0, Σ̂Z,n,τ±).

Step 2. Compute

ṽn ≡ S̃n +
2
√
Nn∆nv̂n(

√
κ̃τ−ζ̃

′
n,τ− +

√
1− κ̃τ ζ̃ ′n,τ+)

∆n
i(n,τ)Z

.

Step 3. Repeat Step 1 and Step 2 for a large number of times, and use the Monte Carlo distribution

of g′(v̂n)ṽn as an approximation of the limit distribution of N
1/2
n (g(v̂n)− g(v(η, τ))). �

Theorem 5. Under the same conditions as Theorem 4(a), we have the following:

(a) the conditional law of ṽn given data converges in probability to the Cη−-conditional law of

S + 2
√
θv(η, τ)(

√
κτζ

′
τ− +

√
1− κτζ ′τ+)/∆Zτ under the uniform metric;

(b) consequently, with q̂n,α being the (1− α/2) conditional quantile of |g′(v̂n)ṽn| given data,

the two-sided confidence interval CIn = [g(v̂n) −N−1/2
n q̂n,α, g(v̂n) + N

−1/2
n q̂n,α] for g(v(η, τ)) has

asymptotic level 1− α.

Comment. Part (a) of Theorem 5 shows that the simulated distribution of ṽn consistently approx-

imates the limit distribution of
√
Nn(v̂n−v(η, τ)). As a result, the simulated conditional quantiles

of ṽn converge in probability to those of the limit distribution. Part (b) specializes this result

to establish the validity of a symmetric two-sided confidence interval. Other types of confidence

intervals can be justified similarly using part (a).

Finally, Algorithm 2 can be modified to simulate the asymptotic distribution of the normalized

mixed-scale estimator N
1/2
n (v̂

(k)
n − v(η, τ)), recall Section 4.2. The modification is to replace ṽn

with

ṽ(k)
n ≡ S̃n +

2
√
Nn∆nv̂

(k)
n (
√
κ̃τ ζ̃

′
n,τ− +

√
k − κ̃τ ζ̃ ′n,τ+)

∆n
i(n,τ),kZ

.

Confidence intervals for v(η, τ) can then be constructed using simulated quantiles of ṽ
(k)
n similar

to the procedure described in Theorem 5(b) above.

8.2 Proofs

Throughout the proofs, we use K to denote a generic constant that may change from line to

line. For a sub σ-field G ⊆ F and a sequence Xn of random variables, we write Xn
L|G−→ X if the

G-conditional law of Xn converges in probability to that of X under a metric that is associated

with the weak convergence of probability measures. By a standard localization procedure, we can

strengthen Assumption 3 as the following without loss of generality:
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Assumption 10. We have Assumption 3 holds with T1 =∞. Moreover, the processes αj, λj, λZ ,

bf , σf , σ̃2
j and J̃Y,j are bounded, uniformly in j.

8.2.1 Preliminary Results

In this subsection, we introduce some notations and preliminary estimates that are used in the

sequel. We consider a sequence Ωn of random events defined by Ωn ≡ {distinct jump times of the

Poisson process t 7→ µ ([0, t], E) are at least 2kn∆n apart}. Since kn∆n → 0 and the jumps of

Z is of finite activity, P (Ωn) → 1. Therefore, we can restrict our calculations to Ωn without loss

of generality. It is (notationally) convenient to extend the definition of the spot jump beta to all

t ∈ [0, T ] such that, on each path, βj,t = βj,τ for t ∈ [τ − kn∆n, τ + kn∆n]. This extension is well-

behaved on Ωn and our analysis only concerns the behavior of βj,t around shrinking neighborhoods

around the jump times. (It should be noted that βj,t defined as such is not adapted to Ft.)
We also consider the following sequence of events:

Ω′n ≡


Nn∑
j=1

1{
∆n
i(n,τ)

J̃Y,j 6=0
} ≤ bNnq

w
n c /2 for some τ ∈ T

 . (8.4)

By Markov’s inequality,

P

Nn∑
j=1

1{
∆n
i(n,τ)

J̃Y,j 6=0
} > bNnq

w
n c /2

 ≤ 2

bNnqwn c

Nn∑
j=1

P
(

∆n
i(n,τ)J̃Y,j 6= 0

)
≤ K∆n/q

w
n → 0.

Since T is finite, we have P (Ω′n)→ 1.

We denote the continuous part of Yj and Z as, respectively,

Y ′j,t ≡
∫ t

0
αj,udu+

∫ t

0
λ>j,udfu + εj,t, Z ′t ≡

∫ t

0
λ>Z,udfu. (8.5)

The diffusive residual process is then defined as

Ỹ ′j,t ≡ Y ′j,t − βj,tZ ′t =

∫ t

0
αj,udu+

(∫ t

0
λ>j,udfu − βj,t

∫ t

0
λ>Z,udfu

)
+ εj,t. (8.6)

We denote

ξn,j,s ≡
∆n
i(n,s)Ỹ

′
j

∆n
i(n,s)Z

, (8.7)

which can be decomposed as

ξn,j,s = ξ′n,j,s + ξ′′n,j,s, (8.8)
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where

ξ′n,j,s ≡
1

∆Zs

(
λ̃>j,s−

(
fs − f(i(n,s)−1)∆n

)
+ λ̃>j,s

(
fi(n,s)∆n

− fs
)

+ εi(n,s)∆n
− ε(i(n,s)−1)∆n

)
,

ξ′′n,j,s ≡
1

∆Zs

∫ i(n,s)∆n

(i(n,s)−1)∆n

αj,udu+ ∆n
i(n,s)Ỹ

′
j

(
1

∆n
i(n,s)Z

− 1

∆Zs

)
+

1

∆Zs

∫ s

(i(n,s)−1)∆n

(λj,u − λj,s−)> dfu −
βj,s
∆Zs

∫ s

(i(n,s)−1)∆n

(λZ,u − λZ,s−)> dfu

+
1

∆Zs

∫ i(n,s)∆n

s
(λj,u − λj,s)> dfu −

βj,s
∆Zs

∫ i(n,s)∆n

s
(λZ,u − λZ,s)> dfu.

(8.9)

We further rewrite ξ′n,j,s as

ξ′n,j,s = ∆1/2
n

∑
q∈{s−,s+}

wn,q

(
λ̃>j,qΣ

1/2
f,q ζn,q +Rn,j,q

)
, (8.10)

where we define

ζn,s− ≡ Σ
−1/2
f,s−

fs − f(i(n,s)−1)∆n√
s− (i (n, s)− 1) ∆n

, ζn,s+ ≡ Σ
−1/2
f,s

fi(n,s)∆n
− fs√

i (n, s) ∆n − s
,

Rn,j,s− ≡
εj,s − εj,(i(n,s)−1)∆n√
s− (i (n, s)− 1) ∆n

, Rn,j,s+ ≡
εj,i(n,s)∆n

− εj,s√
i (n, s) ∆n − s

,

wn,s− ≡
1

∆Zs

√
s− (i (n, s)− 1) ∆n

∆n
, wn,s+ ≡

1

∆Zs

√
i (n, s) ∆n − s

∆n
.

(8.11)

Lemma 1. Under Assumptions 3 and 4, we have for p, q ∈ {τ−, τ+, η−, η+}:
(a) N−1

n

∑Nn
j=1Rn,j,pRn,j,q = Op(N

−1/2
n ) when p 6= q;

(b) N−1
n

∑Nn
j=1R

2
n,j,q

P−→Mε(q);

(c) N−1
n

∑Nn
j=1Rn,j,pλ̃j,q = Op(N

−1/2
n );

(d) N−1
n ∆−1

n

∑Nn
j=1(ξ′′n,j,τ − ξ′′n,j,η)2 = Op(∆n).

Proof of Lemma 1. (a) We prove the case with p = τ− and q = τ+ in detail, while noting

that the other cases can be proved in exactly the same way. Note that the jump times of the

Poisson measure µ are necessarily independent of the Brownian motions W̃j , 1 ≤ j ≤ Nn. Let

Gt be the smallest filtration such that Ft ⊆ Gt and the jump times of µ are Gt-measurable. The

processes (W̃j)1≤j≤Nn remain to be Brownian motions with respect to (Gt)t≥0. Consequently, εj is

a (Gt)t≥0-martingale and, hence,

E[Rn,j,τ−Rn,j,τ+] = 0. (8.12)

Moreover, for j 6= m,

E [Rn,j,τ−Rn,j,τ+Rn,m,τ−Rn,m,τ+] = E [Rn,j,τ−Rn,m,τ−E [Rn,j,τ+Rn,m,τ+|Gτ ]] = 0, (8.13)

where the first equality holds because Rn,j,τ−Rn,m,τ− is Gτ -measurable and the second equal-

ity holds because W̃j and W̃m are orthogonal. Since the processes σ̃2
j are uniformly bounded,
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E[R4
n,j,τ±] ≤ K holds due to a standard estimate for continuous Itô processes. By the Cauchy–

Schwarz inequality, this further implies that

E
[
R2
n,j,τ−R

2
n,j,τ+

]
≤ K. (8.14)

From (8.12), (8.13) and (8.14), we deduce

E

N−1
n

Nn∑
j=1

Rn,j,pRn,j,q

2 ≤ KN−1
n .

The assertion of part (a) then readily follows.

(b) We consider the case q = τ− in details while noting that the other cases can be proved in

the same way. By using Itô’s formula, we can decompose

R2
n,j,τ− = Un,j + U ′n,j , where

Un,j ≡
1

τ − (i (n, τ)− 1) ∆n

∫ τ

(i(n,τ)−1)∆n

σ̃2
j,udu,

U ′n,j ≡
2

τ − (i (n, τ)− 1) ∆n

∫ τ

(i(n,τ)−1)∆n

(εj,u − εj,(i(n,τ)−1)∆n
)dW̃j,u.

We note that E[U ′n,j ] = 0 for each j and E[U ′n,jU
′
n,m] = 0 for j 6= m. In addition, E|U ′n,j |2 ≤ K.

From these estimates, it readily follows that

1

Nn

Nn∑
j=1

U ′n,j = Op(N
−1/2
n ). (8.15)

Next, note that by Assumption 3(v),

E
∣∣Un,j − σ̃2

j,τ−
∣∣ ≤ E

[
sup

s,t,|s−t|≤∆n

∣∣σ̃2
j,s − σ̃2

j,t

∣∣] ≤ K∆1/2
n .

From this estimate and Assumption 4, we deduce

1

Nn

Nn∑
j=1

Un,j =
1

Nn

Nn∑
j=1

σ̃2
j,τ− + op(1) = Mε(τ−) + op(1). (8.16)

The assertion of part (b) then follows from (8.15) and (8.16).

(c) By Assumption 4, λ̃j,q is conditionally independent of Rn,j,p and, hence, E[Rn,j,pλ̃j,q|G0] =

E[Rn,j,p|G0]E[λ̃j,q|G0] = 0. In addition, for j 6= m,

E[Rn,j,pRn,m,pλ̃j,qλ̃
>
m,q|G0] = E[Rn,j,pRn,m,p|G0]E[λ̃j,qλ̃

>
m,q|G0] = 0,

where the second equality follows from the orthogonality between W̃j and W̃m. Since λ̃j,q is

bounded, Rn,j,pλ̃j,q has bounded second moment. The assertion of part (c) readily follows from

these facts.
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(d) First, since the αj ’s are uniformly bounded, it is easy to see that (∆Zs)
−1 ∫ i(n,s)∆n

(i(n,s)−1)∆n
αj,udu =

Op(∆n) uniformly in j. Hence,

1

Nn∆n

Nn∑
j=1

(
1

∆Zs

∫ i(n,s)∆n

(i(n,s)−1)∆n

αj,udu

)2

= Op(∆n). (8.17)

Further note that, uniformly in j, we have E|∆n
i(n,s)Ỹ

′
j |2 ≤ K∆n and, hence,

1

Nn∆n

Nn∑
j=1

(∆n
i(n,s)Ỹ

′
j )2 = Op(1). (8.18)

It is easy to see that
1

∆n
i(n,s)Z

− 1

∆Zs
= Op(∆

1/2
n ). (8.19)

From (8.18) and (8.19), we deduce

1

Nn∆n

Nn∑
j=1

(
∆n
i(n,s)Ỹ

′
j

(
1

∆n
i(n,s)Z

− 1

∆Zs

))2

= Op(∆n). (8.20)

We then note that, since the processes λj ’s are (1/2)-Hölder continuous under L2-norm uni-

formly in j (Assumption 3(v)), the following estimate also holds uniformly

E

(∫ s

(i(n,s)−1)∆n

(λj,u − λj,s−)> dfu

)2
 ≤ K∆2

n.

Hence,

1

Nn∆n

Nn∑
j=1

(
1

∆Zs

∫ s

(i(n,s)−1)∆n

(λj,u − λj,s−)> dfu

)2

= Op(∆n). (8.21)

Similarly, 

1

Nn∆n

Nn∑
j=1

(
βj,s
∆Zs

∫ s

(i(n,s)−1)∆n

(λZ,u − λZ,s−)> dfu

)2

= Op(∆n),

1

Nn∆n

Nn∑
j=1

(
1

∆Zs

∫ i(n,s)∆n

s
(λj,u − λj,s)> dfu

)2

= Op(∆n),

1

Nn∆n

Nn∑
j=1

(
βj,s
∆Zs

∫ i(n,s)∆n

s
(λZ,u − λZ,s)> dfu

)2

= Op(∆n).

(8.22)

With an appeal to the Cauchy–Schwarz inequality, the assertion of part (d) then follows from

(8.17), (8.20), (8.21) and (8.22). Q.E.D.

Next, we set 
An(s) ≡ 1

Nn∆n

Nn∑
j=1

(
ξ′n,j,s

)2
, s ∈ {η, τ} ,

Bn(η, τ) ≡ 1

Nn∆n

Nn∑
j=1

ξ′n,j,ηξ
′
n,j,τ .

(8.23)
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The following lemma collects some convergence results that we use for deriving limiting distribu-

tions.

Lemma 2. Suppose that Assumptions 3 and 4 hold. Then,

(An(η), An(τ), Bn(η, τ))
L-s−→ (A(η),A(τ),B (η, τ)) ,

where
L-s−→ denotes F-stable convergence in law.

Proof of Lemma 2. By Theorem 4.3.1 in Jacod and Protter (2012),

(wn,q, ζn,q)q∈{η−,η+,τ−,τ+}
L-s−→ (wq, ζq)q∈{η−,η+,τ−,τ+} . (8.24)

Recall the definitions in (8.10) and (8.23). We have, for s ∈ {η, τ} ,

An(s) =
1

Nn

Nn∑
j=1

 ∑
q∈{s−,s+}

wn,q

(
λ̃>j,qΣ

1/2
f,q ζn,q +Rn,j,q

)2

=
∑

p,q∈{s−,s+}

wn,pwn,qζ
>
n,pΣ

1/2
f,p

 1

Nn

Nn∑
j=1

λ̃j,pλ̃
>
j,q

Σ
1/2
f,q ζn,q

+
∑

q∈{s−,s+}

w2
n,q

 1

Nn

Nn∑
j=1

R2
n,j,q

+Op(N
−1/2
n ),

(8.25)

where the rate for the Op(N
−1
n ) term in the last line is obtained using Lemma 1(a,c). Similarly,

Bn(η, τ)

=
1

Nn

Nn∑
j=1

 ∑
p∈{τ−,τ+}

wn,p

(
λ̃>j,pΣ

1/2
f,p ζn,p +Rn,j,p

)
×

 ∑
q∈{η−,η+}

wn,q

(
λ̃>j,qΣ

1/2
f,q ζn,q +Rn,j,q

)
=

∑
p∈{τ−,τ+}

∑
q∈{η−,η+}

wn,pwn,qζ
>
n,pΣ

1/2
f,p

 1

Nn

Nn∑
j=1

λ̃j,pλ̃
>
j,q

Σ
1/2
f,q ζn,q +Op(N

−1/2
n ).

(8.26)

By Assumption 4 and Lemma 1(b),

Σ
1/2
f,p

 1

Nn

Nn∑
j=1

λ̃j,pλ̃
>
j,q

Σ
1/2
f,q

P−→MC(p, q),
1

Nn

Nn∑
j=1

R2
n,j,q

P−→Mε(q). (8.27)

We further note that the limiting variables MC(p, q) and Mε(q) are F-measurable. Hence, by the

property of stable convergence in law, we can deduce the assertion of Lemma 2 from (8.24), (8.25),

(8.26) and (8.27). Q.E.D.

Finally, we show in Lemma 3 some consistency results for the spot jump beta estimates.
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Lemma 3. Under Assumptions 3 and 5, the following holds for s ∈ T :

(a) sup1≤j≤Nn |β̂n,j,s − βj,s|1{∆n
i(n,s)

J̃Y,j=0
} = op(1);

(b) N−1
n

∑Nn
j=1 |β̂n,j,τ − βj,τ |2 = op(1).

Proof of Lemma 3. (a) Note that

β̂n,j,s − βj,s =
∆n
i(n,s)Yj − βj,s∆

n
i(n,s)Z

∆n
i(n,s)Z

. (8.28)

By localization, we can assume that σ̃2
j , Σf , λj and βj are bounded. By a standard estimate for

continuous Itô semimartingales (applied to the continuous parts of Yj and Z), we have for any

p ≥ 1,

E
[
|∆n

i(n,s)Yj − βj,s∆
n
i(n,s)Z|

p1{
∆n
i(n,s)

J̃Y,j=0
}] ≤ Kp∆

p/2
n ,

for some constant Kp. By using a maximal inequality, we deduce that

sup
1≤j≤Nn

|∆n
i(n,s)Yj − βj,s∆

n
i(n,s)Z|1{∆n

i(n,s)
J̃Y,j=0

} = Op(∆
1/2
n N ι

n) (8.29)

for some arbitrarily small (but fixed) constant ι > 0. Then, by Assumption 5,

sup
1≤j≤Nn

|∆n
i(n,s)Yj − βj,s∆

n
i(n,s)Z|1{∆n

i(n,s)
J̃Y,j=0

} = op(1).

Note that 1/∆n
i(n,s)Z = Op(1). The assertion of the lemma then readily follows from the above

estimate and equation (8.28).

(b) It is easy to see that β̂n,j,τ , 1 ≤ j ≤ Nn, are uniformly bounded with probability approaching

one. We then note that

1

Nn

Nn∑
j=1

|β̂n,j,τ − βj,τ |2

=
1

Nn

Nn∑
j=1

|β̂n,j,τ − βj,τ |21{
∆n
i(n,s)

J̃Y,j=0
} +

1

Nn

Nn∑
j=1

|β̂n,j,τ − βj,τ |21{
∆n
i(n,s)

J̃Y,j 6=0
}

≤

(
sup

1≤j≤Nn
|β̂n,j,s − βj,s|1{∆n

i(n,s)
J̃Y,j=0

}
)2

+
K

Nn

Nn∑
j=1

1{
∆n
i(n,s)

J̃Y,j 6=0
}

= op(1),

as claimed in part (b). Q.E.D.

8.2.2 Proof of Proposition 1

Proof of Proposition 1. Recall that the spot jump betas βj,s are bounded by assumption.

By Lemma 3 and the boundedness of J̃Y,j , we further deduce that the beta estimates β̂n,j,s are

uniformly (in j) bounded with probability approaching one. Since the loss function L(·) is Lipschitz
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on bounded sets (Assumption 1), we can now assume that L(·) is globally Lipschitz without loss

of generality. Hence, by Lemma 3,

1

Nn

Nn∑
j=1

∣∣∣L(β̂n,j,τ − β̂n,j,η)− L(χj,η,τ )
∣∣∣

≤ 1

Nn

Nn∑
j=1

∣∣∣L(β̂n,j,τ − β̂n,j,η)− L(χj,η,τ )
∣∣∣ 1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}

+
K

Nn

Nn∑
j=1

1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
}

≤ K max
s∈{η,τ},1≤j≤Nn

∣∣∣β̂n,j,s − βj,s∣∣∣ 1{∆n
i(n,s)

J̃Y,j=0
} +Op(∆n) = op(1).

(8.30)

Next, we set

ξn =
1

Nn

Nn∑
j=1

(L(χj,η,τ )− E[L(χj,η,τ )|Fη−]) .

Under Assumption 6, ξn is the average of Fη−-conditionally independent variables with zero con-

ditional mean. Hence,

E
[
ξ2
n|Fη−

]
=

1

N2
n

Nn∑
j=1

E
[

(L(χj,η,τ )− E[L(χj,η,τ )|Fη−])2
∣∣∣Fη−]

≤ 1

N2
n

Nn∑
j=1

E
[
L(χj,η,τ )2|Fη−

]
= Op(N

−1
n ) = op(1).

In particular, this implies that E [|ξn| ∧ 1|Fη−] = op(1). By the bounded convergence theorem, we

further deduce E [|ξn| ∧ 1] → 0. But this is equivalent to ξn = op(1). This, together with (8.30),

implies that

1

Nn

Nn∑
j=1

L(β̂n,j,τ − β̂n,j,η) =
1

Nn

Nn∑
j=1

E[L(χj,η,τ )|Fη−] + op(1). (8.31)

Since qwn → 0, the winsorized estimator V̂n differs from N−1
n

∑Nn
j=1 L(β̂n,j,τ − β̂n,j,η) by an op(1)

term. The assertion of the proposition then follows from (8.31). Q.E.D.

8.2.3 Proof of Theorem 1

Proof of Theorem 1. Step 1. The proof proceeds in two steps. Recall Ω′n from (8.4). Since

P (Ω′n)→ 1, we can restrict our calculations to Ω′n without loss of generality. In this step, we show

that

∆−1
n V̂n =

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) + op(1). (8.32)

From (8.29), we see that

sup
1≤j≤Nn

|β̂n,j,s − βj,s|1{∆n
i(n,s)

J̃Y,j=0
} = Op(∆

1/2
n N ι

n) (8.33)
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for some fixed but arbitrarily small constant ι > 0. In restriction to Ω′n and the null hypothesis,

B̄n,η,τ is bounded by two times of the left-hand of the above display. Hence,

B̄n,η,τ = Op(∆
1/2
n N ι

n). (8.34)

We note that∣∣∣∣ 1

∆nNn

Nn∑
j=1

∣∣∣L(|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ)
−L

(
|β̂n,j,τ − β̂n,j,η|

)∣∣∣ 1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}∣∣∣∣

≤ dq
w
nNne

∆nNn
sup

1≤j≤Nn
L
(
|β̂n,j,τ − β̂n,j,η|

)
1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}

= Op(q
w
nN

2ι
n ) = op(1),

(8.35)

where the inequality follows from the fact that the winsorization is active for at most dqwnNne
terms (d·e denotes the ceiling function); the first equality follows from (8.33); the second equality

follows from Assumptions 2 and 5 with ι chosen sufficiently small. Note that in restriction to

{|∆n
i(n,τ)J̃Y,j |+ |∆

n
i(n,η)J̃Y,j | = 0} and the null hypothesis, β̂n,j,τ − β̂n,j,η = ξn,j,τ − ξn,j,η. Hence,

1

∆nNn

Nn∑
j=1

L
(
|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ

)
1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
}

=
1

∆nNn

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) 1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣=0
} + op(1).

(8.36)

Next, we note that

1

Nn∆n

Nn∑
j=1

L
(
|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ

)
1{∣∣∣∆n

i(n,τ)
J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
}

≤
L
(
B̄n,η,τ

)
Nn∆n

Nn∑
j=1

1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
}

= Op(∆nN
2ι
n ) = op(1),

(8.37)

where the inequality follows from the monotonicity of L(·) and the last line follows from (8.34)

and the fact that P(∆n
i(n,s)J̃Y,j 6= 0) ≤ K∆n. Similarly, we can show that

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) 1{∣∣∣∆n
i(n,τ)

J̃Y,j

∣∣∣+∣∣∣∆n
i(n,η)

J̃Y,j

∣∣∣>0
} = op(1). (8.38)

From (8.36), (8.37) and (8.38), we deduce (8.32) as wanted.

Step 2. It remains to derive the convergence of (Nn∆n)−1∑Nn
j=1 L (ξn,j,τ − ξn,j,η). Recall the

definition of ξ′n,j,s from (8.9). Let Ln be defined as

Ln ≡
1

Nn∆n

Nn∑
j=1

(
ξ′n,j,τ − ξ′n,j,η

)2
. (8.39)

53



Recalling the definitions in (8.23), we can rewrite Ln as

Ln = An(η) +An(τ)− 2Bn(η, τ). (8.40)

Then, by Lemma 2,

Ln
L-s−→ L(η, τ) ≡ A (η) +A (τ)− 2B (η, τ) . (8.41)

From (8.8), we further see that

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η)

= Ln +
2

Nn∆n

Nn∑
j=1

(ξ′n,j,τ − ξ′n,j,η)(ξ′′n,j,τ − ξ′′n,j,η) +
1

Nn∆n

Nn∑
j=1

(ξ′′n,j,τ − ξ′′n,j,η)2.

(8.42)

By Lemma 1(d), the last term in (8.42) is Op(∆n). By the Cauchy–Schwarz inequality, this

estimate and (8.41) further imply that the second term on the right-hand side of (8.42) is op(1).

Therefore,

1

Nn∆n

Nn∑
j=1

L (ξn,j,τ − ξn,j,η) = Ln + op(1).

The assertion of the theorem then follows from (8.32) and (8.41). Q.E.D.

8.2.4 Proof of Theorem 2

We start with the proof of part (a) and part (b). We provide details for the case with q = τ−,

while noting that the case with q = τ+ only requires a change of notation. Hence, we suppress

(in most cases) the dependence on q in our notations for simplicity. More specifically, we write

X̂n, F̂n, Λ̂n, Λ∗n, En, H, Σf , M∗Λ and M∗C in place of X̂n(q), F̂n(q), Λ̂n(q), Λ∗n(q), En(q), Hq, Σf,q,

M∗Λ(q, q) and M∗C(q, q), respectively. We denote the jth column of a generic matrix A by A·j .

Recall the sequence Ωn of events defined as in Section 8.2.1. Since P (Ωn)→ 1, we can restrict our

calculations below in Ωn without loss of generality.

Below, we denote Γn ≡ {γ ∈ Rkn : γ>γ = kn}. Note that each column of F̂n is an element of

Γn. We collect some useful estimates in Lemma 4, where we denote

Λ̃∗n ≡
(
λ1,τ− − β̃n,1,τλZ,τ−, . . . , λNn,τ− − β̃n,Nn,τλZ,τ−

)>
. (8.43)

We also consider an Nn × kn matrix E ′n = [e′j,l]1≤j≤Nn,1≤l≤kn defined as

e′j,l ≡ ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

αj,sds+ ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λj,u − λj,τ−)> dfu

−β̃n,j,τ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λZ,u − λZ,τ−)> dfu.

(8.44)
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Lemma 4. Under the conditions of Theorem 2, the following statements hold:

(a) supγ∈Γn k
−2
n N−1

n γ>E>n Enγ = op(1);

(b) supγ∈Γn k
−2
n N−1

n γ>E ′>n E ′nγ = op(1);

(c) supγ∈Γn k
−1
n N−1

n

∣∣γ>E>n Λ∗n
∣∣ = op(1);

(d) supγ∈Γn k
−1
n N−1

n

∣∣γ>E ′>n Λ∗n
∣∣ = op(1);

(e) N−1
n Λ̃∗>n Λ∗n = M∗Λ + op(1) and N−1

n Λ̃∗>n Λ̃∗n = M∗Λ + op(1).

Proof of Lemma 4. (a) Recall that the (j, l) element of En is given by ej,l ≡ ∆n
i(n,τ−)+lεj/∆

1/2
n .

We observe

1

k2
nNn

γ>E>n Enγ

=
1

k2
nNn

kn∑
l=1

kn∑
m=1

γlγm

Nn∑
j=1

ej,lej,m

≤

(
1

k2
n

kn∑
l=1

kn∑
m=1

γ2
l γ

2
m

)1/2
 1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

ej,lej,m

21/2

=

 1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

ej,lej,m

21/2

,

(8.45)

where the first equality is by definition, the inequality is by the Cauchy–Schwarz inequality, and

the last line follows from γ>γ = kn.

We decompose the majorant side of (8.45) as

1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

ej,lej,m

2

=
1

k2
n

kn∑
l=1

 1

Nn

Nn∑
j=1

e2
j,l

2

+
1

k2
n

∑
l,m,l 6=m

 1

Nn

Nn∑
j=1

ej,lej,m

2

.

(8.46)

By a standard estimate for continuous Itô semimartingales, E[e4
j,l] ≤ K; this holds uniformly in

j ∈ {1, . . . , Nn} because the idiosyncratic variances σ̃2
j are uniformly (locally) bounded under

Assumption 3(iii). Hence, by Jensen’s inequality,

E

 1

Nn

Nn∑
j=1

e2
j,l

2 ≤ E

 1

Nn

Nn∑
j=1

e4
j,l

 ≤ K.
From here, it follows that the first term on the right-hand side of (8.46) is op(1). In view of (8.45)

and (8.46), it remains to show that the second term on the right-hand side of (8.46) is also op(1).

To this end, we observe the following for l 6= m: (i) E [ej,lej,m] = 0 because the process εj is

a martingale; (ii) E[e2
j,le

2
j,m] ≤ K; and (iii) the variables (ej,lej,m)1≤j≤Nn are uncorrelated, which
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can be shown by using repeated conditioning and the orthogonality among the Brownian motions

(W̃j)j≥1. Hence,

E

 1

Nn

Nn∑
j=1

ej,lej,m

2 ≤ KN−1
n → 0,

which implies, as wanted,

1

k2
n

∑
l,m,l 6=m

 1

Nn

Nn∑
j=1

ej,lej,m

2

= Op(N
−1
n ) = op(1).

This finishes the proof of part (a).

(b) Similar to (8.45), we can derive

sup
γ∈Γn

1

k2
nNn

γ>E ′>n E ′nγ ≤

 1

k2
n

kn∑
l=1

kn∑
m=1

 1

Nn

Nn∑
j=1

e′j,le
′
j,m

21/2

. (8.47)

In addition, we observe

E

∣∣∣∣∣∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λj,u − λj,τ−)> dfu

∣∣∣∣∣
4

≤ K∆−2
n E

(∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

‖λj,u − λj,τ−‖2 du

)2


≤ K∆−1
n E

[∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

‖λj,u − λj,τ−‖4 du

]

≤ K∆−1
n E

[∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

‖λj,u − λj,τ−‖2 du

]
≤ K∆n,

(8.48)

where the first inequality is by the Burkholder–Davis–Gundy inequality, the second inequality is

by Jensen’s inequality, and the last line holds because λj,u is bounded and (1/2)-Hölder continuous

under L2-norm uniformly in j. Similarly,

E

∣∣∣∣∣∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λZ,u − λZ,τ−)> dfu

∣∣∣∣∣
4

≤ K∆n. (8.49)

Under Assumption 7, (β̃j,n,τ )1≤j≤Nn are uniformly bounded with probability approaching one, so

we can assume that these variables are bounded without loss of generality. Hence, from (8.48) and

(8.49), we deduce that

E|e′j,l|4 ≤ K∆n. (8.50)

Hence, by the Cauchy–Schwarz inequality, we further have

E

 1

Nn

Nn∑
j=1

e′j,le
′
j,m

2 ≤ K∆n. (8.51)
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The assertion of part (b) then follows from (8.47) and (8.51).

(c) We denote the (j, k) element of Λ∗n by λ∗j,k. We note that for each k ∈ {1, . . . , r} (recalling

that Λ∗n,·k denotes the kth column of Λ∗n),

1

knNn

∣∣∣γ>E>n Λ∗n,·k

∣∣∣ =

∣∣∣∣∣∣ 1

kn

kn∑
l=1

γl

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

∣∣∣∣∣∣
≤

(
1

kn

kn∑
l=1

γ2
l

)1/2
 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

21/2

=

 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

21/2

, (8.52)

where the first line is by definition, the second line is by the Cauchy–Schwarz inequality and the

last line follows from γ ∈ Γn. Under Assumption 8, ej,l is independent of λ∗j,k; hence, the variables

(ej,lλ
∗
j,k)1≤j≤Nn are uncorrelated and have zero mean and bounded second moment. It is then easy

to see that

E

 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

2 ≤ K/Nn.

Therefore,

1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

ej,lλ
∗
j,k

2

= Op(N
−1
n ) = op(1). (8.53)

The assertion of part (c) then follows from (8.52) and (8.53).

(d) Like (8.52), we can derive

1

knNn

∣∣∣γ>E ′>n Λ∗n,·k

∣∣∣ ≤
 1

kn

kn∑
l=1

 1

Nn

Nn∑
j=1

e′j,lλ
∗
j,k

21/2

. (8.54)

We further note that,

E

 1

Nn

Nn∑
j=1

e′j,lλ
∗
j,k

2 ≤ E

 1

Nn

Nn∑
j=1

(
e′j,lλ

∗
j,k

)2
≤ K

Nn

Nn∑
j=1

E
[
(e′j,l)

2
]
≤ K∆n,

where the first inequality is by Jensen’s inequality, the second inequality holds because λ∗j,k is

bounded and the last inequality can be derived similarly as (8.50). In view of (8.54), the assertion

of part (d) readily follows.
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(e) From the definitions of Λ∗n and Λ̃∗n respectively from (3.9) and (8.43), we see that (recall

q = τ−)

Λ̃∗n − Λ∗n =
((
β∗1,τ − β̃n,1,τ

)
λZ,τ−, . . . ,

(
β∗n,Nn,τ − β̃n,Nn,τ

)
λZ,τ−

)>
.

Therefore, by Assumption 7,

1

Nn
(Λ̃∗n − Λ∗n)>(Λ̃∗n − Λ∗n) = op(1). (8.55)

That is, N−1
n ‖Λ̃∗n−Λ∗n‖2 = op(1). Since N−1

n Λ∗>n Λ∗n
P−→M∗Λ by Assumption 8, the estimate above

readily implies the assertions in part (e). Q.E.D.

We are now ready to prove part (a) and part (b) of Theorem 2. We remind the reader that we

fix q = τ− for proving these parts.

Proof of Theorem 2(a). Step 1. We prove part (a) of Theorem 2 in several steps. In this step,

we show that

sup
γ∈Γn

|Ξn(γ)− Ξ∗n(γ)| = op(1), (8.56)

where Ξn(·) and Ξ∗n(·) are defined as

Ξn(γ) ≡ 1

k2
nNn

γ>X̂>n X̂nγ, Ξ∗n(γ) ≡ 1

k2
nNn

γ>FnΛ∗>n Λ∗nF
>
n γ. (8.57)

Below, we denote the (j, l) element of X̂n by

ξn,j,l ≡
∆n
i(n,τ−)+lYj ∧ un ∨ (−un)− β̃n,j,τ∆n

i(n,τ−)+lZ√
∆n

.

We set

ξ′n,j,l ≡ ∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

αj,sds

+∆−1/2
n

∫ (i(n,τ−)+l)∆n

(i(n,τ−)+l−1)∆n

(λj,s − β̃n,j,τλZ,s)>dfs + ∆−1/2
n ∆n

i(n,τ−)+lεj .

Note that

E
∣∣ξn,j,l − ξ′n,j,l∣∣2 ≤ K∆n. (8.58)

We now define X̂ ′n as a Nn × kn matrix whose (j, l) element is given by ξ′n,j,l and let

Ξ′n(γ) =
1

k2
nNn

γ>X̂ ′>n X̂
′
nγ.

By (8.58),

1

knNn

∥∥∥X̂n − X̂ ′n
∥∥∥2

=
1

knNn

Nn∑
j=1

kn∑
l=1

∣∣ξn,j,l − ξ′n,j,l∣∣2 = op(1). (8.59)
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By the Cauchy–Schwarz inequality and the triangle inequality,

sup
γ∈Γn

∣∣Ξn (γ)− Ξ′n (γ)
∣∣ =

1

k2
nNn

sup
γ∈Γn

∣∣∣γ> (X̂>n X̂n − X̂ ′>n X̂ ′n
)
γ
∣∣∣

≤ 1

k2
nNn

sup
γ∈Γn

‖γ‖2
∥∥∥X̂>n X̂n − X̂ ′>n X̂ ′n

∥∥∥
=

1

knNn

∥∥∥X̂>n X̂n − X̂ ′>n X̂ ′n
∥∥∥

≤ 2

knNn

∥∥∥X̂ ′n∥∥∥∥∥∥X̂n − X̂ ′n
∥∥∥+

1

knNn

∥∥∥X̂n − X̂ ′n
∥∥∥2
.

It is easy to see that ‖X̂ ′n‖ = Op(
√
knNn). Hence, by (8.59),

sup
γ∈Γn

∣∣Ξn (γ)− Ξ′n (γ)
∣∣ = op(1). (8.60)

To show (8.56), it remains to show that supγ∈Γn |Ξ
′
n (γ)− Ξ∗n (γ)| = op(1). We note that, by a

standard result for spot covariance estimation

F>n Fn/kn
P−→ Σf . (8.61)

In particular, ‖Fn‖ = Op(k
1/2
n ). Hence,

sup
γ∈Γn

∥∥∥γ>Fn/kn∥∥∥ ≤ sup
γ∈Γn

‖γ‖ ‖Fn‖ /kn = Op(1). (8.62)

Under Assumption 8, Λ∗>n Λ∗n = Op(Nn). It then follows that

sup
γ∈Γn

Ξ∗n(γ) = Op(1). (8.63)

Recall the definitions in (3.9), (8.43) and (8.44). We can decompose X̂ ′n as

X̂ ′n = Λ̃∗nF
>
n + En + E ′n. (8.64)

Hence,

X̂ ′n − Λ∗nF
>
n = (Λ̃∗n − Λ∗n)F>n + En + E ′n. (8.65)

We can then decompose

Ξ′n(γ)− Ξ∗n(γ) =
2

k2
nNn

γ>FnΛ∗>n

[
(Λ̃∗n − Λ∗n)F>n + En + E ′n

]
γ

+
1

k2
nNn

γ>
(

(Λ̃∗n − Λ∗n)F>n + En + E ′n
)> (

(Λ̃∗n − Λ∗n)F>n + En + E ′n
)
γ.

(8.66)

By Lemma 4(a,b),

1

k2
nNn

sup
γ∈Γn

γ>E>n Enγ = op(1),
1

k2
nNn

sup
γ∈Γn

γ>E ′>n E ′nγ = op(1). (8.67)
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Further using the Cauchy–Schwarz inequality, we can deduce that supγ∈Γn

∣∣γ>E>n E ′nγ∣∣ = op(1);

hence,
1

k2
nNn

sup
γ∈Γn

γ>
(
En + E ′n

)> (En + E ′n
)
γ = op(1). (8.68)

In addition, by Lemma 4(e) and (8.62)

sup
γ∈Γn

1

k2
nNn

γ>F>n (Λ̃∗n − Λ∗n)>(Λ̃∗n − Λ∗n)F>n γ = op(1). (8.69)

By (8.68) and (8.69), as well as the Cauchy–Schwarz inequality, we deduce

1

k2
nNn

sup
γ∈Γn

γ>
((

Λ̃∗n − Λ∗n

)
F>n + En + E ′n

)> ((
Λ̃∗n − Λ∗n

)
F>n + En + E ′n

)
γ = op(1). (8.70)

By (8.63) and the Cauchy–Schwarz inequality, (8.70) further implies that

2

k2
nNn

sup
γ∈Γn

∣∣∣γ>FnΛ∗>n

[
(Λ̃∗n − Λ∗n)F>n + En + E ′n

]
γ
∣∣∣ = op(1). (8.71)

By (8.66), (8.70) and (8.71), we deduce supγ∈Γn |Ξ
′
n (γ)− Ξ∗n (γ)| = op(1) and, hence, (8.56) as

wanted.

Step 2. In this step, we show that

S∗n(F̂ ∗>n Fn/kn)Σ
−1/2
f H

P−→ Ir, (8.72)

where we recall that S∗n = diag(sign(F̂ ∗>n Fn(F>n Fn/kn)−1/2H)) and H is the ordered eigenvec-

tor matrix of M∗C . Below, we denote by Dj the jth largest eigenvalue of M∗C and write D =

diag(D1, . . . , Dr).

We first show that

sup
γ∈Γn

Ξ∗n(γ)
P−→ D1. (8.73)

To see this, we note that we can represent γ ∈ Γn as

γ = Fn(F>n Fn/kn)−1/2Hδ + γ̃, (8.74)

where γ̃ is the projection error of γ onto the column space of Fn such that F>n γ̃ = 0. We can then

rewrite

sup
γ∈Γn

Ξ∗n(γ) = sup
‖δ‖≤1

δ>H>M∗C,nHδ, where

M∗C,n ≡
(
F>n Fn
kn

)1/2(
Λ∗>n Λ∗n
Nn

)(
F>n Fn
kn

)1/2

.

Hence, supγ∈Γn Ξ∗n(γ) is the largest eigenvalue of M∗C,n. By (8.61) and Assumption 8,

M∗C,n
P−→ Σ

1/2
f M∗ΛΣ

1/2
f ≡M∗C .
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Since the mapping for calculating the unique largest eigenvalue is continuous, we deduce (8.73) by

using the continuous mapping theorem.

By the construction of F̂n, its first column F̂n,·1 satisfies

Ξn(F̂n,·1) = sup
γ∈Γn

Ξn(γ).

By (8.56), supγ∈Γn Ξn(γ) = supγ∈Γn Ξ∗n(γ) + op(1), which implies Ξn(F̂n,·1)
P−→ D1 because of

(8.73). Using the uniform convergence result in (8.56), we further deduce

Ξ∗n(F̂n,·1)
P−→ D1. (8.75)

We now represent F̂n,·1 in the format of (8.74), that is,

F̂n,·1 = Fn(F>n Fn/kn)−1/2Hδ̂1 + γ̃1, (8.76)

such that F>n γ̃1 = 0. From (8.75) and (8.76), we see

op(1) = Ξ∗n(F̂n,·1)−D1

= δ̂>1 H
>M∗C,nHδ̂1 −D1

= δ̂>1 H
> (M∗C,n −M∗C)Hδ̂1 + δ̂>1 H

>M∗CHδ̂1 −D1

= δ̂>1 H
> (M∗C,n −M∗C)Hδ̂1 + δ̂>1 Dδ̂1 −D1,

where the last line follows from the eigenvalue decomposition M∗C = HDH>. Since ‖δ̂1‖ ≤ 1 and

M∗C,n −M∗C = op(1), the above display implies that

δ̂>1 Dδ̂1 −D1 = op(1).

Since D1 is the unique largest eigenvalue, this further implies that δ̂2
11

P−→ 1 and δ̂2
1j

P−→ 0 for

j ≥ 2. In particular, ‖δ̂1‖
P−→ 1 which implies that γ̃>1 γ̃1/kn

P−→ 0.

Let S∗n,j denote the jth diagonal element of S∗n. Note that by (8.76),

F̂>n,·1Fn/kn = δ̂>1 H
>(F>n Fn/kn)1/2.

Hence,

δ̂>1 = (F̂>n,·1Fn/kn)(F>n Fn/kn)−1/2H.

By the definition of S∗n,1, the first element of S∗n,1(F̂>n,·1Fn/kn)(F>n Fn/kn)−1/2H is nonnegative.

Hence,

S∗n,1(F̂>n,·1Fn/kn)(F>n Fn/kn)−1/2H

=
(
|δ̂11|, S∗n,1δ̂12, . . . , S

∗
n,1δ̂1r

)
P−→ (1, 0, . . . , 0) .
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By (8.61), we further deduce that

S∗n,1(F̂>n,·1Fn/kn)Σ
−1/2
f H

P−→ (1, 0, . . . , 0) ,

which shows the convergence in (8.72) for the first row.

By repeating the same argument (by setting Γn as the subspace orthogonal to previous eigen-

vectors), we can prove the convergence in (8.72) for the jth row, 2 ≤ j ≤ r.
Step 3. In this step, we finish the proof for part (a) of Theorem 2. We denote

D̃n = N−1
n (Λ̂∗n − Λ∗nΣ

1/2
f HS∗n)>(Λ̂∗n − Λ∗nΣ

1/2
f HS∗n).

The assertion of part (a) can be rewritten as Trace[D̃n] = op(1).

We decompose

D̃n = D̃n,1 − D̃n,2 − D̃>n,2 + D̃n,3,

where  D̃n,1 ≡ N−1
n Λ̂∗>n Λ̂∗n, D̃n,2 ≡ N−1

n Λ̂∗>n Λ∗nΣ
1/2
f HS∗n,

D̃n,3 ≡ N−1
n S∗nH

>Σ
1/2
f Λ∗>n Λ∗nΣ

1/2
f HS∗n.

To prove Trace[D̃n] = op(1), it suffices to show that

D̃n,k
P−→ D, k = 1, 2, 3, (8.77)

where we recall that D is the diagonal matrix that collects the ordered eigenvalues of M∗C . Below,

we prove (8.77) for each case.

Case k = 1: Recall that we partition F̂n = [F̂ ∗n
...F̂ 0
n ], where F̂ ∗n collects the first r columns of

F̂n. We set

Λ̂′∗n =
1

kn
X̂ ′nF̂

∗
n =

1

kn

(
Λ̃∗nF

>
n + En + E ′n

)
F̂ ∗n . (8.78)

Note that∥∥∥D̃n,1 −N−1
n Λ̂′∗>n Λ̂′∗n

∥∥∥ = N−1
n

∥∥∥Λ̂∗>n Λ̂∗n − Λ̂′∗>n Λ̂′∗n

∥∥∥
= k−2

n N−1
n

∥∥∥F̂ ∗>n X̂>n X̂nF̂
∗
n − F̂ ∗>n X̂ ′>n X̂

′
nF̂
∗
n

∥∥∥ = op(1), (8.79)

where the first two equalities are by definition and the last one is by (8.60). Subsequently, by

(8.78), we can decompose D̃n,1 as

D̃n,1 =
1

k2
nNn

F̂ ∗>n

(
Λ̃∗nF

>
n + En + E ′n

)> (
Λ̃∗nF

>
n + En + E ′n

)
F̂ ∗n + op(1)

= D̃n,1,1 + D̃n,1,2 + D̃>n,1,2 + D̃n,1,3 + op(1),
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where 
D̃n,1,1 ≡

(
F̂ ∗>n Fn/kn

)(
Λ̃∗>n Λ̃∗n/Nn

)(
F>n F̂

∗
n/kn

)
,

D̃n,1,2 ≡
(
k−1
n N−1

n F̂ ∗>n
(
En + E ′n

)>
Λ̃∗n

)(
F>n F̂

∗
n/kn

)
,

D̃n,1,3 ≡ k−2
n N−1

n F̂ ∗>n
(
En + E ′n

)> (En + E ′n
)
F̂ ∗n .

From (8.72),
1

kn
F̂ ∗>n Fn − S∗nH>Σ

1/2
f = op(1),

1

kn
F̂ ∗>n Fn = Op(1). (8.80)

Hence, recalling that H is the eigenvector matrix of M∗C = Σ
1/2
f M∗ΛΣ

1/2
f and S∗n is a diagonal

matrix with ±1 on its diagonal, we deduce

D̃n,1,1 = S∗nH
>Σ

1/2
f M∗ΛΣ

1/2
f HS∗n + op(1) = D + op(1).

By Lemma 4, we see that D̃n,1,2 and D̃n,1,3 are both op(1). From these estimates, (8.77) for the

case k = 1 readily follows.

Case k = 2: By (8.79) and the Cauchy–Schwarz inequality,

D̃n,2 ≡ N−1
n Λ̂′∗>n Λ∗nΣ

1/2
f HS∗n + op(1).

By (8.78), we can thus decompose D̃n,2 as D̃n,2 = D̃n,2,1 + D̃n,2,2 + op(1) where D̃n,2,1 ≡
(
F̂ ∗>n Fn/kn

)(
Λ̃∗>n Λ∗n/Nn

)
Σ

1/2
f HS∗n,

D̃n,2,2 ≡
(
k−1
n N−1

n F̂ ∗>n
(
En + E ′n

)>
Λ∗n

)
Σ

1/2
f HS∗n.

By (8.80) and Lemma 4(e), we deduce

D̃n,2,1 = S∗nH
>Σ

1/2
f M∗ΛΣ

1/2
f HS∗n + op(1) = D + op(1).

By Lemma 4(c,d), D̃n,2,2 = op(1). This proves (8.77) for the case k = 2.

Case k = 3: By Assumption 8, it is obvious that

D̃n,3 = S∗nH
>Σ

1/2
f M∗ΛΣ

1/2
f HS∗n + op(1) = D + op(1).

This finishes the proof of (8.77) and, hence, part (a) of Theorem 2. Q.E.D.

Proof of Theorem 2(b). We fix j ∈ {r + 1, . . . , r̄}. Recall that Λ̂n,·j denote the jth column of

Λ̂n. By the definitions of Λ̂n and F̂n,

1

Nn
Λ̂>n,·jΛ̂n,·j = Ξn(F̂n,·j). (8.81)

Like in (8.76), for each k ∈ {1, . . . , r}, we can represent

F̂n,·k = Fn(F>n Fn/kn)−1/2Hδ̂k + γ̃k, (8.82)
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where F>n γ̃k = 0. Following a similar argument as in Step 2 of the proof of Theorem 2(a), we can

show that, for each k, k′ ∈ {1, . . . , r} with k 6= k′,

δ̂2
kk

P−→ 1, δ̂kk′
P−→ 0, γ̃>k γ̃k/kn

P−→ 0. (8.83)

We also represent

F̂n,·j = Fn(F>n Fn/kn)−1/2Hδ̂j + γ̃j , (8.84)

where F>n γ̃j = 0. Since F̂>n,·jF̂n,·k/kn = 0 for 1 ≤ k ≤ r (because F̂n collects the eigenvectors of

X̂>n X̂n), we have

δ̂>j δ̂k + γ̃>j γ̃k/kn = 0. (8.85)

Since γ̃>k γ̃k/kn
P−→ 0 and γ̃>j γ̃j/kn ≤ 1, we have γ̃>j γ̃k/kn = op(1) by the Cauchy–Schwarz in-

equality. Therefore, δ̂>j δ̂k = op(1) for 1 ≤ k ≤ r. By (8.83) above, this implies δ̂j = op(1).

Hence,

Ξ∗n(F̂n,·j) = δ̂>j HM
∗
C,nH

>δ̂j = op(1). (8.86)

By (8.56), Ξn(F̂n,·j) = op(1). The assertion of part (b) readily follows from (8.81). Q.E.D.

Proof of Theorem 2(c). By Assumption 8,

H>p Σ
1/2
f,p

Λ∗n(p)>Λ∗n(q)

Nn
Σ

1/2
f,qHq

P−→ H>p M
∗
C(p, q)Hq. (8.87)

We observe

1

Nn

∥∥∥Λ̂∗n(p)>Λ̂∗n(q)− S∗n(p)H>p Σ
1/2
f,pΛ∗n(p)>Λ∗n(q)Σ

1/2
f,qHqS

∗
n(q)

∥∥∥
≤ 1

Nn

∥∥∥∥(Λ̂∗n(p)− Λ∗n (p) Σ
1/2
f,pHpS

∗
n(p)

)>
Λ∗n(q)Σ

1/2
f,qHq

∥∥∥∥
+

1

Nn

∥∥∥H>p Σ
1/2
f,pΛ∗n(p)>

(
Λ̂∗n(q)− Λ∗n (q) Σ

1/2
f,qHqS

∗
n(q)

)∥∥∥
+

1

Nn

∥∥∥∥(Λ̂∗n(p)− Λ∗n (p) Σ
1/2
f,pHpS

∗
n(p)

)> (
Λ̂∗n(q)− Λ∗n (q) Σ

1/2
f,qHqS

∗
n(q)

)∥∥∥∥ .
By the Cauchy–Schwarz inequality and Theorem 2(a), we deduce that the terms on the majorant

side of the above display are all op(1). Hence, by (8.87),

1

Nn
Λ̂∗n(p)>Λ̂∗n(q)− S∗n(p)H>p M

∗
C(p, q)HqS

∗
n(q) = op(1). (8.88)

In particular,
1

Nn
Λ̂∗n(p)>Λ̂∗n(q) = Op(1). (8.89)

By Theorem 2(b),
1

Nn
Λ̂0
n(p)>Λ̂0

n(q) = op(1). (8.90)
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By the Cauchy–Schwarz inequality, (8.89) and (8.90), we deduce

1

Nn
Λ̂∗n(p)>Λ̂0

n(q) = op(1). (8.91)

The assertion of part (c) then follows from (8.88), (8.90) and (8.91). Q.E.D.

Proof of Theorem 2(d). By part (c) of Theorem 2,

Trace[M̂C,n(q, q)] = Trace[S∗n(q)H>q M
∗
C(q, q)HqS

∗
n(q)] + op(1)

= Trace[M∗C(q, q)] + op(1)

= Trace[M∗Λ(q, q)Σf,q] + op(1),

where the second inequality follows from the orthogonality of HqS
∗
n(q) and the last line holds

because M∗C(q, q) = Σ
1/2
f,qM

∗
Λ(q, q)Σ

1/2
f,q . We also note from (8.59) that

1

knNn
‖X̂n(q)‖2 =

1

knNn
‖X̂ ′n(q)‖2 + op(1).

Hence, it remains to show that

1

knNn
‖X̂ ′n(q)‖2 P−→ Trace[M∗Λ(q, q)Σf,q] +Mε(q). (8.92)

To show (8.92), we consider the following decomposition:

‖X̂ ′n(q)‖2 = Trace
[
X̂ ′n(q)>X̂ ′n(q)

]
= Trace

[
Λ̃∗n(q)>Λ̃∗n(q)Fn(q)>Fn(q)

]
+Trace

[(
En(q) + E ′n(q)

)> (En(q) + E ′n(q)
)]

+2 Trace
[
Fn(q)Λ̃∗n(q)>

(
En(q) + E ′n(q)

)]
. (8.93)

By Lemma 4(e) and (8.61),

1

knNn
Trace

[
Λ̃∗n(q)>Λ̃∗n(q)Fn(q)>Fn(q)

]
P−→ Trace [M∗Λ(q, q)Σf,q] . (8.94)

In the proof of Lemma 4(c,d), we have shown that

1

kn

∥∥∥∥ 1

Nn

(
En(q) + E ′n(q)

)>
Λ∗n(q)

∥∥∥∥2

= op(1).

In addition, by (8.55),

1

kn

∥∥∥∥ 1

Nn

(
En(q) + E ′n(q)

)> (
Λ̃∗n(q)− Λ∗n(q)

)∥∥∥∥2

≤ ‖En(q) + E ′n(q)‖2

knNn
·

∥∥∥Λ̃∗n(q)− Λ∗n(q)
∥∥∥2

Nn
= op(1).
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Hence, ‖ (En(q) + E ′n(q))> Λ̃∗n(q)‖ = op(Nnk
1/2
n ). Also note that ‖Fn(q)‖ = Op(k

1/2
n ). Therefore,

by the Cauchy–Schwarz inequality,∥∥∥∥ 1

knNn

(
En(q) + E ′n(q)

)>
Λ̃∗n(q)Fn(q)>

∥∥∥∥ ≤ 1

knNn
‖Fn(q)‖

∥∥∥(En(q) + E ′n(q)
)>

Λ̃∗n(q)
∥∥∥ = op(1).

Consequently,
1

knNn
Trace

[
Fn(q)Λ̃∗n(q)>

(
En(q) + E ′n(q)

)]
= op(1). (8.95)

In view of (8.93), (8.94) and (8.95), (8.92) will be implied by

1

knNn
Trace

[(
En(q) + E ′n(q)

)> (En(q) + E ′n(q)
)] P−→Mε(q). (8.96)

Finally, we show (8.96). For each j, we denote

ξn,j ≡
1

kn

kn∑
l=1

(
∆n
i(n,q)+lεj√

∆n

)2

,

ξ′n,j ≡
1

kn∆n

∫ i(n,q)∆n+kn∆n

i(n,q)∆n

σ̃2
j,udu, ξ′′n,j ≡ ξn,j − ξ′n,j .

Then, we can decompose

1

knNn
Trace

[
En(q)>En(q)

]
=

1

knNn

Nn∑
j=1

kn∑
l=1

(
∆n
i(n,q)+lεj√

∆n

)2

=
1

Nn

Nn∑
j=1

ξ′n,j +
1

Nn

Nn∑
j=1

ξ′′n,j .

We note that conditional on Fi(n,q)∆n
, the variables (ξ′′n,j)1≤j≤Nn are uncorrelated with zero mean

and bounded variances. Hence,

1

Nn

Nn∑
j=1

ξ′′n,j = op(1). (8.97)

In addition, we note that

1

Nn

Nn∑
j=1

ξ′n,j −
1

Nn

Nn∑
j=1

σ̃2
j,q =

1

Nn

Nn∑
j=1

1

kn∆n

∫ i(n,q)∆n+kn∆n

i(n,q)∆n

(
σ̃2
j,u − σ̃2

j,q

)
du

= Op(k
1/2
n ∆1/2

n ) = op(1).

It readily follows that

1

Nn

Nn∑
j=1

ξ′n,j
P−→Mε(q). (8.98)

By (8.97) and (8.98),
1

knNn
Trace

[
En(q)>En(q)

]
P−→Mε(q). (8.99)
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We further note that

1

knNn
Trace

[
E ′n(q)>E ′n(q)

]
=

1

knNn

Nn∑
j=1

kn∑
l=1

(
e′j,l
)2

= Op(∆n). (8.100)

With an appeal to the Cauchy–Schwarz inequality, we deduce (8.96) from (8.99) and (8.100). This

finishes the proof of part (d) of Theorem 2. Q.E.D.

8.2.5 Proof of Theorem 3

(a) Firstly, by Theorem 2(c,d), it is obvious that L̃n(η, τ) = Op(1). Hence, the quantile cvn,α =

Op(1). Next, we consider the case under the null hypothesis, so M∗C(p, q) coincides with MC(p, q).

We partition ζ̃>q = (ζ̃∗>q , ζ̃0>
q ), where ζ̃∗q is r-dimensional. By Theorem 2(c,d), we have, for

s ∈ {η, τ},
Ãn(s) =

∑
p,q∈{s−,s+}

w̃n,pw̃n,q ζ̃
∗>
p S∗n(p)H>p MC(p, q)HqS

∗
n(q)ζ̃∗q +

∑
q∈{s−,s+}

w̃2
n,qMε (q) + op(1),

B̃n(η, τ) =
∑

p∈{τ−,τ+}

∑
q∈{η−,η+}

w̃n,pw̃n,q ζ̃
∗>
p S∗n(p)H>p MC(p, q)HqS

∗
n(q)ζ̃∗q + op(1).

We note that the r-dimensional vectors HqS
∗
n(q)ζ̃∗q are, conditionally on F , standard normal

and mutually independent across q ∈ {τ−, τ+, η−, η+}. We also observe that for s ∈ {η, τ},
∆n
i(n,s)Z

P−→ ∆Zs. Hence,(
HqS

∗
n(q)ζ̃∗q , w̃n,q

)
q∈{τ−,τ+,η−,η+}

L|F−→ (ζq, wq)q∈{τ−,τ+,η−,η+}, (8.101)

where
L|F−→ denotes the convergence of conditional law in probability. It follows that(

Ãn(η), Ãn(τ), B̃n(η, τ)
) L|F−→ (A (η) ,A (τ) ,B (η, τ)) .

Consequently, L̃n(η, τ)
L|F−→ L (η, τ). We further note that the F-conditional distribution function

of L (η, τ) is continuous and strictly increasing. Hence, cvn,α
P−→ cvα.

(b) The assertion on the asymptotic level follows from part (a) and Theorem 1. Under the

alternative, ∆−1
n V̂n diverges to +∞ in probability by Proposition 1. The power property then

follows from cvn,α = Op(1). Q.E.D.

8.2.6 Proof of Theorem 4

Proof of Theorem 4. We write v in place of v (η, τ) for simplicity. We note that the winsoriza-

tion affects at most dqwnNne terms in the summation. Hence, under the condition N
1/2
n qwn → 0,

√
Nn (v̂n − v) =

1√
Nn

Nn∑
j=1

((
β̂n,j,τ − β̂n,j,η

)2
− v
)

+ op(1).
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Recall that β̂n,j,s−βj,s = ξn,j,s+ ∆n
i(n,s)J̃Y,j/∆

n
i(n,s)Z and χj,η,τ = βj,τ −βj,η, where ξn,j,s is defined

in (8.7). We can rewrite

1√
Nn

Nn∑
j=1

((
β̂n,j,τ − β̂n,j,η

)2
− v
)

=
1√
Nn

Nn∑
j=1

(ξn,j,τ − ξn,j,η +
∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

+ χj,η,τ

)2

− v


=

1√
Nn

Nn∑
j=1

(
χ2
j,η,τ − v

)
+

1√
Nn

Nn∑
j=1

(
ξn,j,τ − ξn,j,η +

∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

)2

+
2√
Nn

Nn∑
j=1

χj,η,τ

(
∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

)

+
2√
Nn

Nn∑
j=1

χj,η,τ (ξn,j,τ − ξn,j,η) .

(8.102)

Under Assumption 9, the variables (χ2
j,η,τ )j≥1 are Cη−-conditionally independent. By using a

central limit theorem under the Cη−-conditional probability, we deduce that

1√
Nn

Nn∑
j=1

(
χ2
j,η,τ − E[χ2

j,η,τ |Cη−]
) L|Cη−−→ S.

By Assumption 9(iv), we further deduce that

Sn ≡
1√
Nn

Nn∑
j=1

(
χ2
j,η,τ − v

) L|Cη−−→ S. (8.103)

We further note that the second term on the right-hand side of (8.102) satisfies

1√
Nn

Nn∑
j=1

(
ξn,j,τ − ξn,j,η +

∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

)2

= Op(N
1/2
n ∆n) = op(1). (8.104)

Turning to the third term on the right-hand side of (8.102), we note that the variables

χj,η,τ

(
∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

)
, 1 ≤ j ≤ Nn,

are, conditionally on Cη−, uncorrelated with zero mean. Hence,

E

 1√
Nn

Nn∑
j=1

χj,η,τ

(
∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

)2∣∣∣∣∣∣ Cη−


=
1

Nn

Nn∑
j=1

E

χ2
j,η,τ

(
∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

)2
∣∣∣∣∣∣ Cη−

 = Op(∆n),

(8.105)
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which further implies that

1√
Nn

Nn∑
j=1

χj,η,τ

(
∆n
i(n,τ)J̃Y,j

∆n
i(n,τ)Z

−
∆n
i(n,η)J̃Y,j

∆n
i(n,η)Z

)
= Op(∆

1/2
n ). (8.106)

It remains to consider the fourth term on the right-hand side of (8.102). Recall that

ξn,j,η =
∆n
i(n,η)Y

′
j − βj,η∆n

i(n,η)Z
′

∆n
i(n,η)Z

,

ξn,j,τ =
∆n
i(n,τ)Y

′
j − βj,τ∆n

i(n,τ)Z
′

∆n
i(n,τ)Z

=
∆n
i(n,τ)Y

′
j − (βj,η + χj,η,τ ) ∆n

i(n,τ)Z
′

∆n
i(n,τ)Z

.

We first observe that

1√
Nn

Nn∑
j=1

χj,η,τξn,j,η =
1√
Nn

Nn∑
j=1

χj,η,τ

(
∆n
i(n,η)Y

′
j − βj,η∆n

i(n,η)Z
′
)

∆n
i(n,η)Z

.

Under Assumption 9(iii), we see that

E[χj,η,τ∆n
i(n,η)Y

′
j |Cη−] = E[χj,η,τ |Cη−]E[∆n

i(n,η)Y
′
j |Cη−] = 0. (8.107)

Since ∆n
i(n,η)Z

′ is C-measurable and χj,η,τ is Cη−-conditionally independent of βj,η, we have

E
[
χj,η,τβj,η∆

n
i(n,η)Z

′|Cη−
]

= E [χj,η,τ |Cη−]E [βj,η|Cη−] ∆n
i(n,η)Z

′ = 0. (8.108)

From (8.107) and (8.108), and the fact that ∆n
i(n,η)Z is C-measurable, we deduce that

E [χj,η,τξn,j,η|Cη−] = 0. (8.109)

By using a similar argument, we can show that E [χj,η,τξn,j,ηχm,η,τξn,m,η|Cη−] = 0 for j 6= m.

Hence,

E

 1√
Nn

Nn∑
j=1

χj,η,τξn,j,η

2∣∣∣∣∣∣ Cη−
 =

1

Nn

Nn∑
j=1

E
[
χ2
j,η,τξ

2
n,j,η|Cη−

]
= Op(∆n),

which implies that

1√
Nn

Nn∑
j=1

χj,η,τξn,j,η = Op(∆
1/2
n ). (8.110)

Next, we observe

1√
Nn

Nn∑
j=1

χj,η,τξn,j,τ =
1√
Nn

Nn∑
j=1

χj,η,τ

(
∆n
i(n,τ)Y

′
j − (βj,η + χj,η,τ ) ∆n

i(n,τ)Z
′

∆n
i(n,τ)Z

)

=
1√
Nn

Nn∑
j=1

χj,η,τ

(
∆n
i(n,τ)Y

′
j − βj,η∆n

i(n,τ)Z
′

∆n
i(n,τ)Z

)
(8.111)

−
√
Nn∆n

 1

Nn

Nn∑
j=1

χ2
j,η,τ

(∆n
i(n,τ)Z

′/
√

∆n

∆n
i(n,τ)Z

)
.
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Following a similar argument that leads to (8.110), we can show that

1√
Nn

Nn∑
j=1

χj,η,τ

(
∆n
i(n,τ)Y

′
j − βj,η∆n

i(n,τ)Z
′

∆n
i(n,τ)Z

)
= Op(∆

1/2
n ).

In addition, we note that

∆n
i(n,τ)Z

′/
√

∆n

∆n
i(n,τ)Z

L-s−→ −
√
κτζ

′
τ− +

√
1− κτζ ′τ+

∆Zτ
. (8.112)

Since the sequence in (8.112) is Cη−-measurable, by Proposition 5 of Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008) and (8.103), we further deduce the following Cη−-stable convergence

in law: (
Sn,

∆n
i(n,τ)Z

′/
√

∆n

∆n
i(n,τ)Z

)
L-s−→

(
S,−

√
κτζ

′
τ− +

√
1− κτζ ′τ+

∆Zτ

)
. (8.113)

Since N−1
n

∑Nn
j=1 χ

2
j,η,τ

P−→ v and v is Cη−-measurable,Sn, 1√
Nn

Nn∑
j=1

χj,η,τξn,j,τ

 L-s−→

(
S,
√
θv
(√
κτζ

′
τ− +

√
1− κτζ ′τ+

)
∆Zτ

)
. (8.114)

From (8.104), (8.106), (8.110) and (8.114), the assertion of Theorem 4(a) readily follows. Part (b)

can be proved similarly. Q.E.D.

8.2.7 Proof of Theorem 5

Proof of Theorem 5. We first observe that

1

Nn

Nn∑
j=1

V ar[χ2
j,η,τ |Cη−] =

1

Nn

Nn∑
j=1

E[χ4
j,η,τ |Cη−]− 1

Nn

Nn∑
j=1

(
E[χ2

j,η,τ |Cη−]
)2
.

Under Assumption 9(iv),

1

Nn

Nn∑
j=1

(
E[χ2

j,η,τ |Cη−]
)2

=
1

Nn

Nn∑
j=1

(
E[χ2

j,η,τ |Cη−]− v (η, τ)
)2

+
2v (η, τ)

Nn

Nn∑
j=1

(
E[χ2

j,η,τ |Cη−]− v (η, τ)
)

+ v (η, τ)2 P−→ v (η, τ)2 .

Then by Assumption 9(v),

1

Nn

Nn∑
j=1

E[χ4
j,η,τ |Cη−]

P−→ ΣS + v(η, τ)2. (8.115)

By a similar proof as that in Proposition 1,

1

Nn

Nn∑
j=1

(|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ )4 =
1

Nn

Nn∑
j=1

E[χ4
j,η,τ |Cη−] + op(1). (8.116)
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By (8.115) and (8.116), N−1
n

∑Nn
j=1(|β̂n,j,τ − β̂n,j,η| ∧ B̄n,η,τ )4 P−→ ΣS + v(η, τ)2. We also note that

v̂n
P−→ v(η, τ). Therefore, Σ̂S,n

P−→ ΣS . Since Σ̂Z,n,τ±
P−→ Σ̂Z,τ±, the assertion of part (a) readily

follows from the construction of Algorithm 2. Part (b) follows as a corollary of part (a). Q.E.D.
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