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Abstract

We develop a model-free Bayesian extraction procedure for the stochastic discount factor

under a yield curve prior. Previous methods in the literature, Bayes or frequentist, use

directly or indirectly some particular parametric asset pricing model such as long run risks

or habit as the prior. Here, in contrast, we use no such model at all, but rather we adopt a

prior that enforces external information about the historically very low levels of U.S. short-

and long-term interest rates. For clarity and simplicity our data are annual time series. We

use the extracted stochastic discount factor to determine the stripped cash flow risk premiums

on a panel of industrial profits and consumption. Interestingly, the results align very closely

with recent limited information (bounded rationality) models of the term structure of equity

risk premiums, although nowhere did we use any theory of the discount factor other than its

implied moment restrictions.

Keywords and Phrases: Stochastic discount factor, Discounting, Cash flows, Yield curve,

Moment functions, Bounded Rationality, Bayesian
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1 Introduction

Under very mild conditions there exists a scalar stochastic discount factor (SDF) process that

generates moment restrictions on the returns (or cash flows) of traded securities. Knowledge

of the SDF process allows one to check if a particular security is priced consistently with

other traded assets, and it allows the valuation of uncertain future cash flows on non-traded

assets so long one is confident the pricing implications extend appropriately. In the literature

there is a plethora of methods either to extract non parametrically the SDF process from

historical data or to evaluate particular theories of the SDF process such as long run risk

models or habit models.

One difficulty with such such approaches concerns the ex-post implied level of real interest

rates. Extant procedures use moment conditions based on asset returns, and the return

horizons typically range from monthly to annual. The returns series are like first differenced

asset prices and thus nearly white noise processes; information on the level of asset prices, and

bond prices in particular, is negligible leaving interest rates ill determined. Left to its own,

an extracted SDF can give rise to somewhat implausible levels of real interest rates. As an

example, in a recent long run risk application, Christensen (2017) reports the long interest

rate as a rather high 7 percent per year; in additional computations using this author’s

code we found that the entire yield curve from one year on out is essentially flat at just

over 7 percent. Poorly determined real yield curves were encountered using the extraction

procedure of this paper where, absent prior knowledge, implied yield curves shifted and

bent in implausible configurations. As just noted, the moment conditions contain little, if

any, level information, and external information from other sources needs to be imposed to

discipline the SDF extraction.

An agreed upon fact is that U.S. real interest rates are very low. From Campbell (2003, p.

812) the average short-term U.S. real rate was 0.896 percent over the period 1947–1998, and

few would argue for higher real short rates since then. As for longer term real rates, Table 3

of Tesar and Obstfeld (2015) indicates that the 10-year real rate of interest over the period

1930–2014 was often negative, generally fluctuated between 0 and 2.5 percent per year, and

only briefly bumped 5 percent during the interwar era and again during dis-inflation period
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of the early 1980s. Additional information from TIPS real yields is seen in Table 1, which

are remarkably low.

(Table 1 about here)

In what follows we implement a Bayesian SDF extraction procedure subject to a prior

that enforces these known low values for U.S. real interest rates. The method’s mathematical

foundation requires a prior to ensure all random variables are actually defined on a proper

probability space, and here we elect the yield curve prior in place of a specific model of the

SDF. Specifically, the prior centers the one year yield at 0.896 percent with standard devi-

ation 1.00 percent, and it centers the 30-year yield at 2.00 percent with standard deviation

1.00 percent. The prior generally accommodate both the levels and fluctuations in real rates

suggested in the above discussion and by Table 1. This prior is maintained throughout the

entire sample period, although it would be relatively easy to impose a time-varying prior with

possibly higher yields in the earlier parts of the sample if reliable real rates were available

to inform development of such a prior.

Post extraction, we use the dynamics of the SDF and related variables in a standard log-

Gaussian pricing framework to value various cash flows, with a focus on the risk premiums

on stripped cash flows, often termed dividend strips in the literature. The concept is simple:

if, from the perspective of period 0, an investment pays off the uncertain stream {CFt}∞t=1

into the indefinite future, then the stripped cash flow is the asset that pays just CFt in

period t > 0, and zero in all other periods. Recently, researchers have been investigating

the term structure of the equity risk premiums on stripped cash flows to understand better

the relationship between risk and reward at short- and long-term horizons. Asset pricing

models (van Binsbergen et al., 2012; Maggiori et al., 2015) suggest that the term structure of

risk premiums is upward sloping, with more distant cash flows earning higher risk premiums

due to a long-run risk (Bansal and Yaron, 2004) mechanism that makes investors fearful of

volatility in the distant future. This prediction seems at odds with common sense intuition,

but theory alone is not powerful enough to make an unambiguous prediction on the slope

of the equity risk premium term structure. Backus et al. (2016) show how a wide range of

levels and shapes of the term structures of claims can be achieved by modifying the dynamics
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of the pricing kernel, the cash flow growth, and their interaction. Empirically, discussions

about the true average slope of the equity returns term structure have not yet been settled

(Cochrane, 2017; Bansal et al., 2017), and reconciling asset pricing models with possible

slopes of term structure of equity returns has recently become a very active area of research.

Of particular interest here is Croce et al. (2014), who develop a bounded rationality model

with long run risk that appears to explain our findings below.

2 Ex-post Stochastic Discount Factor

The ex-post realized values of SDFt−1,t are extracted annually 1930–2015 using the method-

ology developed in Gallant and Hong (2007). The differences are that the data set is longer

due to the passage of time, that all of the Fama-French portfolios (Fama and French, 1992,

1993) can be used because a missing data problem has been resolved, and that the prior tilts

values toward a specified yield curve instead of toward long run risk dynamics (Bansal and

Yaron, 2004). In brief, the ideas are as follows.

For time t = 1, . . . , n = 86, where t = 1 corresponds to 1930 and t = n to 2015, denote

real gross returns on the 25 Fama-French portfolios by the vector Rst, denote the real gross

return on the thirty day T-bill by Rbt, denote real per capita consumption growth by Ct

Ct−1

,

denote per capita labor income growth by Lt

Lt−1

. Let xt let a vector of length 29 containing

these variables. Let x be an array with these variable as columns; x has dimension 29 by

n = 86. Let θt denote the stochastic discount factor SDFt−1,t and set θ = (θ1, . . . , θ86).

Conceptually, a fully articulated dynamic stochastic general equilibrium model (DSGE)

with a financial sector would define a probability space on which the random variables

(x, θ) ∈ X × Θ live. This probability space would determine a conditional distribution of x

given θ. For ease of exposition we presume it has density po(x | θ) and omit consideration

of the structural parameters of the DSGE. Let p(θ) denote the prior we intend to use for

Bayesian inference. Our analysis is with reference to the probability space (X × Θ, Co, P o)

where P o has density po(x | θ) p(θ). This construction is necessitated by the fact that θ is

endogenous and some care must be taken to define a likelihood po(x | θ). Were we willing

to undertake a parametric analysis, we would proceed directly to Bayesian inference based

on this construction using po(x | θ) as the likelihood if it were analytically tractable or using
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the simulation method of Gallant and Tauchen (2018) if not. Here our preference is to use a

model free method in the sense that we only use moment conditions to extract the ex-post

realization of θ. Nonetheless, we presume the existence of although not knowledge of the

probability space (X ×Θ, Co, P o).

Denote the vector of (conditional) moment-equation errors by

et,t−1(θt) = 1 − θt





Rs,t

Rb,t



 , (1)

where 1 denotes a vector of 1’s of length twenty-six. Define the instruments

Vt =























Rst − 1

Rbt − 1

Ct/Ct−1 − 1

Lt/Lt−1 − 1

1























,

where Rst−1 denotes 1 subtracted from each element of Rst. Consider the moment conditions

m(xt, xt−1, θt) = Vt−1⊗ et,t−1(θ), (2)

where ⊗ denotes Kronecker product, and their sample average

m̄(x, θ) =
1

n

n
∑

t=2

m(xt, xt−1, θt). (3)

The length of the vector m(xt, xt−1, θt) is K = 754 so that the number of overidentifying

restrictions on θ2, . . . , θ86 is 669. Note that θ1 is not yet identified because θ1 does not appear

in (3); it is identified by the prior as discussed later in this subsection.

Following Gallant and Hong (2004), we assume that et,t−1(θ) has a factor structure.

There is one error common to all elements of θtRst and twenty-six idiosyncratic errors, one

for each element of (θtRst, θtRbt). Denote this matrix by Σe (or by Σe,t if one wants to allow

for heterogeneity, which makes no difference in what follows). A set of orthogonal eigen

vectors Ue for Σe are easy to construct (Gallant and Hong, 2004, p. 535), and can be used to

diagonalize Σe. Similarly Uv and Σv for Vt. Let Ht(θ) = (Uv⊗Ue)
′m(xt, xt−1θ) with elements
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hi,t(θ). Diagonalization implies that we can estimate the variance of Ht(θ) by a diagonal

matrix Sn(θ) with elements

si(θ) =
1

n

n
∑

t=2

(

ht,i(θ)−
1

n

n
∑

t=2

ht,i(θ)

)2

.

Let S
−1/2
n (θ) denote this matrix with the diagonal elements replaced by their square roots.

Extraction of the ex-post realization of the SDF is based on the random variable

Z(x, θ) =
√
nS−1/2

n (θ)(Uz ⊗ Ue)
′m̄n(x, θ) (4)

defined on the aforementioned probability space (X × Θ, Co, P o). Z(x, θ) is the normalized

sum of transformed draws (xt, θt) and will obey a central limit theorem under plausible

regularity conditions on (X × Θ, Co, P o). Note specifically that θt is random and jointly

distributed with xt so that issues of uniformity in θ do not arise. Thus, it is reasonable to

assume that Z follows the standard normal distribution Φ(z) with density φ(z).

The assumption that Z(x, θ) has density φ(z) induces a probability space (X ×Θ, C, P ),

where C is the σ-algebra of preimages C = {C = Z−1(B), B ⊂ X ×Θ, B Borel} and P [C =

Z−1(B)] =
´

B
dΦ(z). Define C∗ to be the smallest σ-algebra that contains all sets in C plus

all sets of the form RB = (X×B), where B is a Borel subset of Θ. Under a semi-pivotal

assumption on (4), which is that {x : Z(x, θ) = z} not be empty for any choice of (z, θ) in

the parameter space Θ and range space Z, there is an extension of (X ×Θ, C, P ) to a space

(X ×Θ, C∗, P ∗) on which the conditional density of x given θ is

f(x | θ) = φ[Z(x, θ)] (5)

(Gallant, 2017a). This density is termed the “method of moments representation” of the

likelihood and may be used for Bayesian inference in connection with the prior p(θ) (Gallant,

2017a, 2017b).

In short, the Bayesian method used in Gallant and Hong (2007) and here uses moment

conditions z = Z(x, θ) given by (4) takes

p(x | θ) = φ(z) (6)

as the likelihood and proceeds directly to Bayesian inference using a prior p(θ).
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Next we describe the prior.

Let wt =
(

log(θt), log(
GDPt

GDPt−1

)
)

′

where is observed GDPt growth for t = 1, 2, . . . , n = 86.

GDP not involved in the SDF extraction to this point. It is included now as prior information

regarding past cycle conditions. Consider the recursion

wt = d0 +Dwt−1 + ut, (7)

where the ut are independent, bivariate normal with mean zero and variance Σd. Markov

chain Monte Carlo (MCMC) (Gamerman and Lopes, 2006) is used in the Gallant and Hong

(2007) method which means that proposed θt are available to compute wt before the prior

and likelihood need to be computed. From the wt the parameters of (7) can be determined

by least squares. With least squares values replacing parameters in (7), a yield curve for

maturities one year through thirty years can be computed analytically from (7) conditional

on a specified initial condition w0; see equations (12) and (13) and (15) of Section 3. In

particular, the one-year and 30-year yields, Y ∗

1,t and Y ∗

30,t can be computed successively for

w0 = wt, t = 1, ..., n = 86. Our prior is

p(θ) =
n
∏

t=1

φ[(Y ∗

1,t − 0.896)/0.01]φ[(Y ∗

30,t − 2.0)/0.01)] (8)

Note, in particular, that the prior identifies θ1.

With likelihood (5) and prior (8) in hand, Bayesian inference can be carried out using

MCMC in the usual way; see, e.g., Gamerman and Lopes (2006). After transients died out,

we ran a MCMC chain of length 8,000,000. That θ in the chain with the highest value of

the posterior was selected as the estimate θ̂ of the ex-post SDFs for the years 1930 through

2015. The estimate is plotted as Figure 1. The shaded areas are NBER recessions.

Figure 1 about here

3 Discounted Cash Flow Estimation

We now illustrate how to use the extracted SDF series to value cash flows on assets outside

the span of returns used in the extraction step. For this part we use annual data on corpo-

rate profits from various large sectors of the U.S. economy. We assembled annual data for
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seven sectors but for the shorter period 1959–2015, as data limitations precluded going any

farther back. These data are concatenated with the extracted SDF data and various macro

aggregates for this shorter time span.

For the valuation step, consider the trivariate series

yt =











log(SDFt−1,t)

log(GDPt)− log(CFt)

log(CFt)− log(CFt−1)











=











sdft−1,t

gdpt − cft

∆cft−1,t











(9)

where CFt denotes a cash flow payoff at time t, such as annual corporate profits in year

t, GDPt denotes gross domestic product, and SDFt−1,t denotes the extracted stochas-

tic discount factor θ̂t of Section 2. Note that the second variable in the autoregression,

log(GDPt) − log(CFt), plays no direct effect in subsequent pricing, but it is included be-

cause it conveys information of future cash flows. The specification presumes co-integration

between GDP and CF, which is discussed more fully in Section 4 below.

The time zero present value of the cash flow CFt is

PV 0,t(CF ) = E(S0,t CF t | F0) = E
[

exp

(

t
∑

s=1

∆cf s−1,s +
t
∑

s=1

sdf s−1,s

)

∣

∣

∣

∣

F0

]

(10)

where F0 denotes the time 0 information set. The time zero discounted value of the sum of

the cash flows through time t is the sum DCF 0,t =
∑t

s=1
PV 0,s(CF ). For a risk free payoff

of one real dollar at time t, the time zero present value is PV 0,t(1) = E(SDF0,t | F0), where

SDF0,t = exp(
∑t

s=1
sdf s−1,s). The corresponding yield is Y ∗

t = − log[PV 0,t(1))]/t.

Let

yt = b0 + Byt−1 + et, (11)

where the et are independent, trivariate normal with mean zero and variance Σb. The sum

t
∑

s=1

ys =

(

t
∑

s=1

(t+ 1− s)Bs−1

)

b0 +

(

t
∑

s=1

Bs

)

y0 +
t
∑

s=1

(

s
∑

u=1

Bu−1

)

et+1−s

where B0 = I, B1 = B, B2 = BB, etc., has moments

E
t
∑

s=1

ys =

(

t
∑

s=1

(t+ 1− s)Bs−1

)

b0 +

(

t
∑

s=1

Bs

)

y0 (12)

Var
t
∑

s=1

ys =
t
∑

s=1

(

s
∑

u=1

Bu−1

)

Σb

(

s
∑

u=1

Bu−1

)

′

(13)
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One can use (12) and (13) to evaluate

PV 0,t(CF ) = exp

[

E
(

t
∑

s=1

∆cf s−1,s

)

+ E
(

t
∑

s=1

ms−1,s

)]

+ exp

[

1

2
Var

(

t
∑

s=1

∆cf s−1,s

)

+
1

2
Var

(

t
∑

s=1

ms−1,s

)]

+ exp

[

Cov

(

t
∑

s=1

∆cf t−1,t,

t
∑

s=1

ms−1,s

)]

(14)

PV 0,t(1) = exp

[

E
(

t
∑

s=1

ms−1,s

)

+
1

2
Var

(

t
∑

s=1

ms−1,s

)]

(15)

EV 0,t(CF ) = exp

[

E
(

t
∑

s=1

∆cf s−1,s

)

+
1

2
Var

(

t
∑

s=1

∆cf s−1,s

)]

(16)

We now describe imposition of a yield curve prior on the estimation of b0, B, and Σb that

appear in the VAR (11). Consider a state-space representation of VAR (11)

vt =





























sdft−2,t−1

gdpt−1 − cft−1

∆cf t−2,t−1

sdft−1,t

gdpt − cft

∆cft−1,t





























=





0

b0



+





0 I

0 B



 vt−1 +





0

et



 (17)

Estimation of (17) subject to the indicated parameter restrictions gives the same estimates

b̂0, B̂, Σ̂b as does unconstrained estimation of (11). Let

A =





























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 −1 0 0 1 0

0 0 0 0 0 1





























and note that the fourth and fifth elements of Axt are sdft−1,t and ∆gdpt−1,t = log(GDPt)−
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log(GDPt−1). An implication is that we can insert the parameters b∗0, B
∗, and Σ∗

b of

Avt = b∗0 + B∗Avt−1 + e∗t = A





0

b0



+ A





0 I

0 B



A−1Avt−1 + A





0

et



 (18)

into equations (12), (13), and (15) to compute Y ∗

1,t for year one and yield Y ∗

30,t for year 30

with y0 set to vt successively for t = 1, ..., n = 86 and impose the prior

p(θ) =
n
∏

t=1

φ[(Y ∗

1,t − 0.896)/0.01]φ[(Y ∗

30,t − 2.0)/0.01)] (19)

The computational procedure is, within an MCMC loop, for proposed b0, B, and Σb,

evaluate the likelihood implied by VAR (11), compute b∗0, B
∗, and Σ∗

b as indicated by ex-

pression (18) from the proposed b0, B, and Σb, evaluate prior (19), and use the likelihood

and prior so computed to make the accept/reject decision of the MCMC loop.

Serendipitously, the state-space complications can be avoided because it turns out that

the yields Y ∗

1,t and Y ∗

30,t obtained by applying equations (12), (13), and (15) directly to b0,

B, and Σb of VAR (11) are identical to those computed from b∗0, B
∗, and Σ∗

b of VAR (18).

Apparently, the reason is that the only difference between the distributions of Avt and vt is

the location parameter of their fifth element and the location parameter of the fifth element is

not involved in equations (12), (13), or (15). For ourselves, we are more comfortable relying

on having performed the computations using both (18) and (11) and obtaining identical

results than relying on the distributional argument.

4 Empirical Implementation

4.1 Valuation, Expectation, and Risk Premiums

Display (14) shows the valuation operator PV 0,t(CF ) as the economic value in period 0 of

the cash flow CFt received in t; evidently PV 0,t(•) is a linear operation on random variables

realized at time t. Likewise (16) shows the conventional statistical expected value operator

EV 0,t(CF ), also linear operator on the same space of time t random variables as PV 0,t(•)
operates. As usual, two linear operators on a space with minimal structure are connected via

a Randon-Nikodym style change of measure/density, which is the usual risk-neutral change

of measure, noted, but not used here.
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For the risk free asset,

bond price0,t = PV 0,t(1).

The (geometric) risk free yield to maturity rf0,t at time 0 of the t-maturity zero-coupon bond

is defined via the relationship

et r
f
0,t × PV 0,t(1) = 1,

because the investing the amount PV 0,t(1) grows at the continuously compounded rate rf,0,t

up to the $1 at time t. Equivalently, the rate is defined by

rf0,t = − log(PV 0,t(1))

t
.

Just as a coupon bearing bond can be thought of as a portfolio of stripped coupon pay-

ments valued as immediately above, finance economists have become interested in “dividend

strips,” where the dividend asset that pays the owner the infinite stream {CF s}∞s=1 is a port-

folio of stripped payments CF t. The value of each stripped coupon is given by the pricing

operation worked out above as PV 0,t(CF ). Only if agents are neutral to risk would it be

the case that PV 0,t(•) = e−rf,0,ttEV 0,t(•).
By analogy with the pure discount bond, we can define the geometric rate r0,t at which

the amount PV 0,t(CF ) invested at time 0 grows continuously compounded to its statistical

expected value at time t by way of

et r0,t × PV 0,t(CF ) = EV 0,t(CF ) ⇒

r0,t =
1

t
log

(

EV 0,t(CF )

PV 0,t(CF )

) (20)

Note that r0,t is a number known at time 0 that pertains to a cash flow received at time t.

The quantity

risk premium: r0,t − rf0,t (21)

is the excess (geometric) return over cash of the investment (stripped cash flow) that pays

CFt. The amount (21) represents the required rate of return above cash necessary to com-

pensate for the economic risk embedded in the investment. To guide interpretation farther

below, we recall from elementary asset pricing that in the iid log-Gaussian case,

r0,t = rf0,t + Cov(∆cft−1,t, sdft−1,t), ∀t ≥ 1, (22)
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using notation defined in (9). The risk premium in (21) is −Cov(∆cft−1,t, sdft−1,t), the

fundamental notion in finance of reward for bearing covariance risk.

4.2 Cash Flow Data

We now apply the preceding to valuation of eight cash flows: seven industrial profit series,

real per capita, and real per capita consumption of nondurables and services, annual, 1959–

2015. Treating measured consumption as a cash flow just means that we compute the risk

premium on the (endowment) asset that pays out annual consumption. Basic statistics for

the cash flows, labeled 1–8 are available in Table 2.

(Table 2 about here)

Some of the industrial cash flows are aggregates but none is a complete aggregate of any

of the others. For example, cash flow 1, Total Corporate profits, includes items such as

transportation and utilities, which are not among the other categories because of lack of

consistent data over the entire sample period. The bottom section of Table 2 also shows the

basic statistics for the extracted log-SDF and GDP growth processes.

These cash flows do not correspond to the payoffs of traded securities, but using the

above methods we can compute the risk premiums on the stripped cash flows. Among other

things, we can then examine issues such as the reasonableness of the risk premiums relative

to characteristics of the industries and their term structure at short- and long-term horizons.

The dynamics (9) presumes that log-cash flow and log-GDP processes are co-integrated

with gdpt − cft as the stationary error correction process. As a check, the first seven panels

(exluding cash flow 8) of Figure 2 show time series plots of the gdpt − cft process for the

seven industrial profit series, each of which appears to be reasonably treated as realizations

of a stationary process.

Figure 2 about here

We estimated autoregressions of the form

gdpt − cft = a+ ρ (gdpt−1 − cft−1) + et, (23)
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and for the seven industrial profit series the estimates of ρ ranged between 0.71 and 0.93,

median 0.86, and generally we rejected quite strongly H0: ρ = 1 in favor of H1: ρ < 1. For the

consumption cash flow series the results are different, as consumption of nondurables and

services grew steadily relative to GDP during the transition from a production to a service

economy over our particular sample period. Thus, for the consumption cash flow we cannot

invoke cointegration, and we simply use gdpt − gdpt−1 in place of gdpt − cft as the predictor

variable in the vector autoregression (11). The log consumption growth series is displayed

in in the lower right corner of Figure 2.

To verify predictability, we estimated forecasting regressions of the form

∆cft,t+1 = a+ b1∆cft−1,t + b2 (gdpt − cft) + ut, (24)

for each of the seven industrial cash flows, and we found very strong evidence for additional

predictability coming from the error correction variable gdpt − cft. For consumption (the

eighth cash flow) we did the regression as

∆cft,t+1 = a+ b1∆cft−1,t + b2 (gdpt − gdpt−1) + ut, (25)

and found only mild evidence for additional predictability coming from the second right-hand

variable.

4.3 Risk Premiums

Using the methods described in Section 3 we computed for each of the nine cash flows the

implied risk premiums (21) at horizons t = 1, 2, . . . , 50 for each available year (1960–2015

after lags). Since the risk premiums show only modest temporal variation, we just report

and discuss the full sample averages. For brevity, we consider the average risk premium

for horizon 1-year ahead, and the risk premiums averaged over ten year stretches ahead,

i.e., 1–10 years, 11–20 years ahead, through 41–50 years ahead. The results are displayed

in Table 3. The table also shows Cov(∆cft−1,t, sdft−1,t), i.e., the average covariance of each

cash flow growth with the extracted log-SDF, which is the exposure of the cash flow to SDF

risk; to ease interpretation, the table shows the average correlations as well.

(Table 3 about here)
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As seen from the table, the average 1-year risk premiums are the negatives of the average

covariance exposures, which has to be true in this log-Gaussian framework. All cash flows

carry positive risk premiums except for Retail Trade, which is plausibly seen to be a hedging

cash flow. For easier interpretation, we convert the covariance exposure to beta exposure,

β = −Cov(∆cft−1,t, sdft−1,t)/Var(sdft−1,t) (26)

and plot the relationship between the risk premiums and the (negative) log-SDF beta expo-

sure in Figure 3.

Figure 3 about here

The essentially exact linear relationship seen in the figure is a mechanical consequence of the

computations, but nonetheless it is interesting to note that the price of risk is very close to

0.05, meaning an increase in average return of 5 percent per year per unit exposure of the

cash flow to moves in −sdft−1,t.

A far more interesting feature seen in Table 3 is that for the industrial cash flows 1–7,

i.e. those other than the hedging cash flow, the risk premiums are seen to decrease with

horizon, and they decrease by a factor of one half from 1 to 50 years out; in contrast, for the

consumption cash flow, the risk premium increases from about 1 percent per year to 4 percent

per year moving from 1 to 50 years out. These results are exactly in line with what one would

expect from Croce et al (2015, p. 723). In their limited information (bounded rationality)

model, there is long run risk embedded in consumption, which under usual parameterizations

thereby carries an increasing risk premium at longer horizons, just as seen in Table 2. There

is also long run risk embedded in individual cash flows but it is obscured by a high level of

cash flow noise that can be correlated with short-term consumption risk. Agents following

optimal filtering rules thereby view the assets as much more covariance-riskier in the short

run than in the long run, and so we expect to observe higher risk premiums for the short

run than the long run.

A final matter is summability of the stripped cash flows, which relates to the issue of

whether the asset that pays the entire stream {CF s}∞s=1 is even sensible. Using basic com-

putations like those of Burnside (1998) for log-Gaussian models, in the iid case convergence
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of
∑

∞

t=1
PV 0,t(CF ) is assured if

E(∆cft−1,t)− rf + Cov(∆cft−1,t, sdft−1,t) < 0. (27)

In the general case such as that considered by De Groot (2015), the summability conditions

are more involved as they involved interactions between conditional means and variances,

but the basic intuition of (27) remains: the covariance between the cash flow growth has

to be sufficiently negative to overcome any excess of the expected cash flows over the risk

free rate. In our case, the cash flows grow at implied rates around 2 percent per year while

the long term interest rate prior centers on 2 percent, but the covariances in Table 3 are

negative so the sums converge numerically, albeit very slowly. An exception is Retail Trade,

the hedging cash flow where the average covariance is positive. Some numerical instability

of the partial sums for this cash flow was seen if the range is extended to 100+ years, which

is not surprising for an extrapolation so far beyond the range of the data.
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5 Conclusion

We develop a model free Bayesian procedure to extract the SDF process using an interest

rate prior that enforces the historically very low U.S. short and long term interest rates.

Using annual data 1959–2015 we use the extracted SDF to compute the implied stripped

cash flow risk premiums on a panel corporate profits for eight major industrial sectors and

consumption. The magnitudes of the the risk premiums on the stripped cash flows are

plausible, and, with one exception, the risk premiums show a decreasing term structure for

1–50 year horizons. The exception is Retail Trade which is found to be a hedging asset in the

short run but not the long run. In contrast, the risk premiums on the stripped consumption

cash flow are found to be positive and rather low in the short term but increase with horizon

to about 4 percent per year 50 years out. The observed term structures of equity risk

premiums generally confirm the limited information (bounded rationality) model of Croce

et al (2015).

17



6 Appendix: Data

6.1 SDF Extraction

In the extraction step, all data are annual for the years 1930 through 2015. Raw data are

converted from nominal to real using the annual consumer price index obtained from Table

2.3.4 at the Bureau of Economic Analysis web site. Conversions to per capita are by means

of the mid-year population data from Table 7.1 at the Bureau of Economic Analysis web

site.

The raw data for stock returns are value weighted returns including dividends for NYSE,

AMEX, and NASDAQ from the Center for Research in Security Prices data at the Wharton

Research Data Services web site (http://wrds.wharton.upenn.edu). Likewise, the raw data

for returns on U.S. Treasury 30 day debt are from the Center for Research in Security Prices

data at the Wharton Research Data Services web site.

Raw annual returns including dividends on the twenty-five Fama-French (1993) portfo-

lios were obtained from Kenneth French’s web site, http://mba.tuck.dartmouth.edu/pages

/faculty/ken.french. The portfolios are the intersections of five portfolios formed on market

equity and five portfolios formed on the ratio of book equity to market equity. The portfolios

are for all NYSE, AMEX, and NASDAQ stocks for which equity data are not missing and

book equity data are positive. The portfolios are constructed at the end of each June with

breakpoints determined by the NYSE quintiles at the end of June. Complete details are at

Kenneth French’s web site. The advantage of the Fama-French portfolios here is that they

appear to isolate and exhaust the risk factors for holding equities (Fama and French, 1992,

1993).

Raw labor income data is “compensation of employees received” from Table 2.2 at the

Bureau of Economic Analysis web site.

Real Treasury Inflation Protected Securities (TIPS yields displayed in Table 1 are annual

averages of daily values from https://www.treasury.gov/resource-center/data-chart-center/

interest-rates/Pages/TextView.aspx?data=realyieldAll. According to Treasury, “These

rates are commonly referred to as ”Real Constant Maturity Treasury” rates, or R-CMTs.

Real yields on Treasury Inflation Protected Securities (TIPS) at ”constant maturity” are
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interpolated by the U.S. Treasury from Treasury’s daily real yield curve. These real market

yields are calculated from composites of secondary market quotations obtained by the Fed-

eral Reserve Bank of New York. This method provides a real yield for a 10 year maturity,

for example, even if no outstanding security has exactly 10 years remaining to maturity.”

6.2 Valuation

Raw data for the cash flow valuation step are annual 1959–2015, for 56 observations net after

the provision for the initial lag.

The industrial cash flow data are annual corporate profits with inventory valuation ad-

justment and without capital consumption allowance for major sectors. Data were spliced

together for consistency from Table B-6 of the 2017 Economic Report of the President and

Table B-91 of the 2004 Economic Report of the President. GDP data are from NIPA Table

1.1.5; consumption of nondurable goods services data are from NIPA Table 2.3.5; nominal

data are converted to real using the implicit GDP deflator (Price Index for Gross Domestic

Product) from NIPA Table 1.1.4. All data series converted to per capita using total U.S. res-

ident population plus armed forces overseas (annual average of monthly estimates) obtained

from FRED https://fred.stlouisfed.org/series/B230RC0A052NBEA.
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Tables and Figures

Table 1. TIPS (real) Yields

Year 5-year 7-year 10-year 20-year

2004 1.02 1.39 1.76 2.13

2005 1.50 1.63 1.81 1.97

2006 2.28 2.30 2.31 2.31

2007 2.15 2.25 2.29 2.36

2008 1.30 1.63 1.77 2.18

2009 1.06 1.32 1.66 2.21

2010 0.26 0.68 1.15 1.73

2011 -0.41 0.10 0.55 1.20

2012 -1.20 -0.88 -0.48 0.21

2013 -0.76 -0.30 0.07 0.75

2014 -0.09 0.32 0.44 0.86

2015 0.15 0.36 0.45 0.78

Displayed are annual average of daily fixed term Treasury Inflation Protected Securities (TIPS) yields.
See Section 6 for details.
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Table 2. Summary Statistics

Industry gdpt − cft ∆cft−1,t

Mean Std Dev Mean Std Dev

1 Total Corporate 2.572 0.227 0.019 0.131

2 Federal Reserve Banks 5.834 0.343 0.045 0.131

3 Other Financial 4.366 0.468 0.028 0.360

4 Total NonFinancial 2.828 0.272 0.016 0.146

5 Manufacturing 3.626 0.473 0.004 0.239

6 Wholesale Trade 5.194 0.260 0.027 0.137

7 Retail Trade 5.141 0.332 0.028 0.252

8 Consumption (NDS) 0.597 0.063 0.022 0.013

sdft−1,t gdpt − gdpt−1

log-MRS and GDP growth -1.2231 1.8595 0.0196 0.0202

Displayed are sample means and standard deviations. See display (9) of the text for notation and the
Appendix sources.

Table 3. Averaged Risk Premiums on Stripped Cash Flows

Industry Exposure Average Risk Premium, Horizons in Years

Cov Corr 1 1–10 11–20 21–30 31–40 41–50

1 Total Corporate -0.083 -0.37 0.083 0.104 0.079 0.059 0.049 0.042

2 Fed Reserve Banks -0.042 -0.21 0.042 0.107 0.099 0.073 0.056 0.045

3 Other Financial -0.138 -0.23 0.138 0.174 0.115 0.077 0.057 0.045

4 Total NonFinancial -0.087 -0.36 0.087 0.102 0.086 0.071 0.060 0.054

5 Manufacturing -0.161 -0.41 0.161 0.158 0.129 0.108 0.094 0.085

6 Wholesale Trade -0.082 -0.34 0.082 0.104 0.088 0.070 0.056 0.046

7 Retail Trade 0.044 0.11 -0.044 -0.070 -0.053 -0.035 -0.023 -0.014

8 Consumption -0.010 -0.35 0.010 0.022 0.033 0.037 0.039 0.040
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Figure 1. Posterior Valuation Plotted is the posterior mode of θ1 = SDF1930,1931

through θ86 = SDF2014,2015.
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Figure 2. Plotted are gdpt − cft for the seven industrial cash flows 1–7 and ∆cft−1,t

for cash flow 8 (consumption), where the variables are defined via display (9) of the

text.
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Figure 3. Plotted are the average 1-year risk premi-

ums versus the cash flow beta exposures to sdf risk.

Points for cash flows 6 and 8 nearly over plot creating

the illusion of seven points, while there are actually

eight.
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