Risk and return: Long-run relations, fractional cointegration, and return predictability

Tim Bollersleva,b,c,*, Daniela Osterriederc, Natalia Sizovad, George Tauchena

a Department of Economics, Duke University, Durham, NC 27708, USA
b NBER, Cambridge, MA 02138, USA
c CREATES, Department of Economics and Business, Aarhus University, 8210 Aarhus V, Denmark
d Department of Economics, Rice University, Houston, TX 77251, USA

\textbf{Abstract}

Univariate dependencies in market volatility, both objective and risk neutral, are best described by long-memory fractionally integrated processes. Meanwhile, the ex post difference, or the variance swap payoff reflecting the reward for bearing volatility risk, displays far less persistent dynamics. Using intraday data for the Standard & Poor's 500 and the volatility index (VIX), coupled with frequency domain methods, we separate the series into various components. We find that the coherence between volatility and the volatility-risk reward is the strongest at long-run frequencies. Our results are consistent with generalized long-run risk models and help explain why classical efforts of establishing a naïve return-volatility relation fail. We also estimate a fractionally cointegrated vector autoregression (CFVAR). The model-implied long-run equilibrium relation between the two variance variables results in nontrivial return predictability over interdaily and monthly horizons, supporting the idea that the cointegrating relation between the two variance measures proxies for the economic uncertainty rewarded by the market.

\section{Introduction}

We develop a unified framework for jointly modeling the dynamic dependencies and interrelatedness in aggregate stock market returns, realized volatilities, and options implied volatilities. Our estimation results rely on newly available high-frequency intraday data for the Standard & Poor's (S&P) 500 market portfolio and the corresponding Chicago Board Options Exchange (CBOE) Market Volatility Index (VIX), along with frequency domain inference procedures that allow us to focus on specific dependencies in the data. Our formal model setup is based on the co-fractional vector autoregression (VAR) of Johansen (2008a,b). We show that the longer-run dependencies inherent in the high-frequency data are consistent with the implications...
from the stylized equilibrium model in Bollerslev, Sizova and Tauchen (2012) that directly links the dynamics of the two volatility measures and the returns. Further corroborating the qualitative implications from that same theoretical model, we show that the variance risk premium estimated as the long-run equilibrium relation within the fractionally cointegrated system results in nontrivial return predictability over longer interdaily and monthly return horizons. An enormous empirical literature has been devoted to characterizing the dynamic dependencies in stock market volatility and the linkages between volatilities and returns. The most striking empirical regularities to emerge from this burgeoning literature are that volatility appears to be highly persistent, with the longer-run dependencies well described by a fractionally integrated process (see, e.g., Ding, Granger, and Engle, 1993; Baillie, Bollerslev, and Mikkelsen, 1996; Andersen and Bollerslev, 1997a; Comte and Renault, 1998); volatilities implied from options prices typically exceed the corresponding subsequent realized volatilities, suggesting that the reward for bearing pure volatility risk is negative on average (see, e.g., Bakshi and Kapadia, 2003; Carr and Wu, 2009; Bollerslev, Gibson, and Zhou, 2011); the volatility risk premium, defined as the difference between options implied and realized volatilities, tends to be much less persistent than the two individual volatility series, pointing to the existence of a fractional cointegration-type relation (see, e.g., Christensen and Nielsen, 2006; Bandi and Perron, 2006); volatility responds asymmetrically to lagged negative and positive returns, typically referred to as a leverage effect (see, e.g., Black, 1976; Nelson, 1991; Bollerslev, Litvinova, and Tauchen, 2006); and counter to the implications from a traditional risk-return trade-off-, or volatility feedback-, type relation, returns are at best weakly positively related, and sometimes even negatively related, to past volatilities (see, e.g., French, Schwert, and Stambaugh, 1987; Glosten, Jagannathan, and Runkle, 1993; Campbell and Hentschel, 1992).

The co-fractional VAR for the S&P 500 returns, realized volatilities, and VIX developed here is generally consistent with all of these empirical regularities. In contrast to most of the studies cited above, which are based on daily or coarser sampled data, our use of high-frequency five-minute observations on returns and volatilities allows for much sharper empirical inference concerning the second-order dynamic dependencies and frequency-specific linkages between the different variables. This, in turn, helps us to identify the periodicities in volatility and risk premia that are likely more important economically.

Our formal theoretical motivation for the use of high-frequency data is essentially twofold. First, the spectral density on \([-π, π]\) of a discretely sampled continuous time covariance stationary process could be seen as a folded-up version of the spectral density of the underlying continuous time process.1 If the five minutes are thought of as very close to continuous time, the distortions invariably induced by the use of discretely sampled data are, therefore, minimal. In the same vein, the estimation in the time domain of the co-fractional VAR captures nearly all dynamics with arguably minimal distorting aliasing effects. Second, the coefficients of the co-fractional VAR are defined by second-order moments. These are known to be more precisely estimated the more finely sampled the data, so long as the number of parameters to be estimated remains small relative to the size of the data. As such, the efficiency of the inference is generally enhanced by the use of high-frequency data.

The plan for the rest of the paper is as follows. Section 2 provides a description of the high-frequency data underlying our empirical investigations. Section 3 characterizes the long-run dynamic dependencies in the two variance series, including the variance risk premium and the evidence for fractional cointegration. Section 4 details the risk-return relations inherent in the high-frequency data based on different variance proxies across different frequency bands. These results, in turn, motivate our empirical implementation of the fractionally cointegrated VAR system discussed in Section 5. Section 6 concludes.

2. Data

Our analysis is based on high-frequency tick-by-tick observations on the Chicago Mercantile Exchange (CME) futures contract for the S&P 500 aggregate market portfolio and the corresponding CBOE VIX volatility index. The data were obtained from Tick Data Inc. and cover the period from September 22, 2003 to January 31, 2012 and to December 30, 2011, respectively; further details concerning the data are available in Bollerslev, Sizova, and Tauchen (2012), where the same data have been analyzed from a different perspective over a shorter time period. Following standard practice in the literature as a way to guard against market-microstructure contaminants (see, e.g., Andersen, Bollerslev, Diebold, and Ebens, 2001), we transform the original tick-by-tick data into equally spaced five-minute observations using the last price within each five-minute interval. We denoted the corresponding geometric (log) returns by

$$r_{t+1} = \log(P_{t+1}) - \log(P_t),$$

(1)

where the time subscript \(t\) refers to the 77 intraday return observations plus the one overnight return per trading day. We define the corresponding risk-neutral return variation from the CBOE VIX as follows:

$$VIX^2 = \frac{30}{365} (VIX_{t+1}^{CBOE})^2,$$

(2)

where the scaling by \(30/365\) transforms the squared annualized observations on the CBOE index into monthly units.

It is well known that return volatility varies over the trading day and that it is typically higher around the open and close of trading than during the middle of the day (see, e.g., Andersen and Bollerslev, 1997b). The average variation of the overnight returns also far exceeds that of the intraday five-minute returns. This diurnal pattern in the return volatility could in turn result in a few observations each day dominating the analysis. To guard against this, we further standardize the raw returns in Eq. (1) by

1 More technically, the spectral density of a discrete time scalar process could be thought of as identical copies over \((-\infty, \infty)\) on intervals \((2k-1)\pi, (2k+1)\pi]\), \(k=0, \pm 1, \pm 2, \ldots\), with the obvious analogy in the \(m\)-dimensional vector case on \([2k-1]\pi, (2k+1)\pi[^m]\).
Table 1
Summary statistics.
The table reports standard summary statistics for the returns, \(r_t \), monthly realized variances, \(rvt \), and risk-neutral variances, \(\text{vix}^2 \). All of the statistics are based on five-minute observations from September 22, 2003 through December 30, 2011, for a total of 162,786 observations.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_t)</td>
<td>-0.0000</td>
<td>0.1478</td>
</tr>
<tr>
<td>(rvt)</td>
<td>2.9914</td>
<td>0.9948</td>
</tr>
<tr>
<td>(\text{vix}^2)</td>
<td>3.4133</td>
<td>0.8259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>10</th>
<th>78</th>
<th>78 \times 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_t)</td>
<td>-0.0343</td>
<td>-0.0151</td>
<td>-0.0075</td>
<td>-0.0041</td>
<td>-0.0016</td>
<td>0.0039</td>
</tr>
<tr>
<td>(rvt)</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9981</td>
<td>0.8045</td>
</tr>
<tr>
<td>(\text{vix}^2)</td>
<td>0.9999</td>
<td>0.9997</td>
<td>0.9996</td>
<td>0.9985</td>
<td>0.9884</td>
<td>0.8630</td>
</tr>
</tbody>
</table>

the sample standard deviations for each of the 78 time intervals. All of the estimation results reported on below are based on these standardized returns. However, when assessing the return predictability implied by the different models, we always report the relevant measures in terms of the unstandardized returns of practical interest.

Following the simple realized volatility estimators of Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002), a number of alternative nonparametric procedures have been developed for more efficiently estimating the ex post return variation from high-frequency data, including the realized kernels of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), the multi-scale estimators of Zhang, Mykland, and Aıt-Sahalia (2005), and the pre-averaging estimator of Jacod, Li, Mykland, Podolskij, and Vetter (2009). Here we rely on a simple-to-implement subsampling and averaging estimator for the one-month (or 22 trading days) ex post return variation obtained by summing the within month five-minute and overnight squared returns.

\[
RV_t = \frac{1}{5} \sum_{j=1}^{5} \sum_{i=1}^{78+22} r_{t+i+j-1.5}^2,
\]

where \(r_{t+i+j-1.5} \) for \(j = 1, \ldots, 5 \) refer to the five different five-minute return series obtained by initializing the day at five different one-minute time stamps. This averaging of the five separate squared return series naturally enhances the efficiency of the estimator relative to the basic realized volatility estimator based on a single five-minute return series, or \(j=1 \). The one-month forward horizon of \(RV_t \), as defined in Eq. (3), exactly matches the return variation prized by the \(\text{vix}^2 \), as defined in Eq. (2). As such, the difference between \(\text{vix}^2 \) and \(RV_t \) corresponds directly to the ex post payoff from selling a variance swap contract.

Finally, to help stabilize the two variance measures and render them more amenable to linear time series modeling, we transform both into logarithmic units:

\[
rv_t = \log(RV_t),
\]

\[
\text{vix}^2_t = \log(\text{vix}^2).
\]

With the loss of one month at the end of the sample due to the calculation of \(rv_t \), our common data set for the three series thus covers the period from September 22, 2003 to December 30, 2011, for a total of \(T = 2087 \times 78 = 162,786 \) observations; comparable results based on a shorter sample through December 31, 2008 are available in an earlier working paper version of the paper.

Standard summary statistics for each of the three series are reported in Table 1. The high-frequency returns are approximately serially uncorrelated, with a mean indistinguishable from zero. Consist with the extant literature, the unconditional mean of the realized variance is lower than the mean of the risk-neutral variance, indicative of an on average positive risk premium for bearing volatility risk. At the same time, the risk-neutral variance appears slightly less volatile than the realized variance. Both of the variance series exhibit substantial persistence with extremely slow decay in their autocorrelations. The next section further details these dynamic dependencies in the two variance series.

3. Variance dynamics

3.1. Long-run volatility dependencies

The notion of fractional integration often provides a convenient statistical framework for capturing long-run dependencies in economic time series (see, e.g., the discussion in Baillie, 1996). A stationary time series \(y_t \) is said to be fractionally integrated of order \(d \in (0,0.5) \), written \(l(d) \), if

\[
A^d y_t = e_t,
\]

where \(e_t \) is an \(l(0) \) process and \(A^d = (1-L)^d \) denotes the fractional difference operator

\[
A^d \equiv (1-L)^d = \sum_{i=0}^{\infty} (-1)^i \binom{d}{i} L^i.
\]

The spectral density of the process \(y_t \) has a pole of the order \(\omega^{-2d} \) for frequency \(\omega \) near the origin, while the filtered series \(A^d y_t \) has finite spectral density at the origin.

Ample empirical evidence shows that financial market volatilities are well described by covariance stationary \(l(d) \) processes with fractional integration parameter close to but less than one-half. For instance, Andersen, Bollerslev, Diebold, and Ebens (2001) report average

\footnote{2 One notable exception is Bandi and Perron (2006), who argue that \(d \) is in excess of 0.5 and, thus, outside the stationary region. There is also a long history of using superpositions of short-memory processes as a way to capture long-range dependence in realized volatilities (see, e.g., Barndorff-Nielsen and Shephard, 2002; Corsi, 2009).}
fractional integration parameters for a set of realized equity return volatilities of approximately 0.35, and the results for foreign exchange rates in Andersen, Bollerslev, Diebold, and Labys (2003) suggest that \(d \) is close to 0.4. Similarly, Christensen and Nielsen (2006) find that daily realized and options implied equity index volatilities are fractionally integrated with \(d \) around 0.4.

Most of the existing literature, including the above-cited studies, have relied on daily or coarser sampled realized and options implied volatility measures for determining the order of fractional integration. By contrast, both of our volatility series are recorded at a five-minute sampling frequency. Hence, as a precursor to our more detailed joint empirical analysis, we begin by double-checking that the folding of the spectral densities associated with the lower sampling frequency have not distorted the previously reported estimates for \(d \).

To this end, Fig. 1 shows the raw log-periodograms of the five-minute \(\nu_t^2 \) and \(\nu_t \) series at the harmonic frequencies \(\omega_j = (2\pi/T) j, j = 1, 2, \ldots, T/2 \). The periodograms of the two variance variables are similar, with most of the power concentrated at the low frequencies. At the same time, there appears to be three distinct regions within the frequency domain: a relatively short left-most low-frequency region up until \(\omega \approx 0.0010 \), where the log-periodograms are linear and nearly flat; an intermediate region between \(\omega \) and \(\pi \approx 0.0806 \), with more steeply sloped periodograms; and a third right-most region to the right of \(\pi \) corresponding to the within-day variation in the volatilities, where the periodograms are erratic.

The approximate linearity of the log-periodograms for the low frequencies close to zero directly points to long-memory dependencies, or fractional integration. We estimate the fractional integration parameter \(d \) using both the log-periodogram regression of Geweke and Porter-Hudak (1983) and the local-Whittle likelihood procedure of Künsch (1987). For both estimators, we set the required truncation parameter to \(j_{\text{max}} = 26 \), corresponding to \(\omega \) and periodicities of 3.5 months and longer being used in the estimation. Based on visual inspection of Fig. 1 this seemingly covers the frequency range where the long-memory behavior hold true; see also the related discussion in Sowell (1992). The resulting estimates for \(d \), with

3 Some studies have also sought to estimate \(d \) based on high-frequency squared, or absolute, returns interpreted as noisy proxies for the true volatility. See, e.g., Andersen and Bollerslev (1997a) and Ohanissian, Russell, and Tsay (2009) and the many references therein.
asymptotic standard errors in parentheses, for the vix_t^2 series are 0.398 (0.126) using the log-periodogram and 0.416 (0.098) using the local Whittle approach. For the rvt series, the same two estimates are 0.399 (0.126) and 0.403 (0.098), respectively. As such, our findings for the two five-minute volatility series are entirely consistent with the typical estimates for d reported in the existing literature.

3.2. Fractional cointegration in variances

The preceding results strongly suggest that each of the two high-frequency variance series are individually long-memory processes. At the same time, one might naturally expect that the two variance series are tied together in the long run in the form of fractionally cointegrated-type relation. Following Granger (1986), if a linear combination of two fractionally integrated variables is integrated of a lower order than those of the individual series, then the variables are said to be fractionally cointegrated; see also Robinson and Marinucci (2003).

The simplest case of fractional cointegration occurs when the two individual series share the same order of fractional integration, but their difference is integrated of a lower order. In the present context, this difference naturally corresponds to the ex post payoff from selling a variance swap, $VIX_t^2 - RV_t$, or in logarithmic form

$$vdt = vix_t^2 - rvt.$$

The fact that vdt exhibits less persistence than the two individual variance series has previously been documented with daily and lower frequency data by Christensen and Nielsen (2006), Bandi and Perron (2006), and Chernov (2007), among others.4

To establish a similar long-run relation between our two high-frequency variance series, we begin by testing for equality of the fractional difference parameters using the Wald test of Robinson (1995). The asymptotically distributed χ^2 test statistic equals 0.018 when the ds are estimated by the local Whittle procedure and 0.000 for the d's estimated by the log-periodogram estimator. Either way, little evidence seems to exist against the hypothesis that the two variance series are fractionally integrated of the same order.

To further explore the possibility of fractional cointegration, we next consider the following linear regression:

$$rvt = \beta_0 + \beta_1 vix_t^2 + y_t.$$

This regression is analogous to the Mincer-Zarnowitz style regression commonly used for evaluating the quality of macroeconomic time series forecasts. That is, it evaluates whether vix_t^2 is conditionally unbiased for the ex post realized variance rvt. The residuals from this regression reduce to the variance difference defined in Eq. (8) for $\beta_0 = 0$ and $\beta_1 = 1$. However, instead of restricting the relation between rvt and vix_t^2 to be the same across all frequencies, we estimate the regression using low-pass frequency domain least squares (FDLS) (see, e.g., Robinson, 1994). As before, we truncate the regression at $j_{max} = 26$, corresponding to periodicities of 3.5 months and longer. We rely on the local Whittle approach for estimating d for the error term v, together with the techniques developed by Christensen and Nielsen (2006) and Shimotsu and Phillips (2006) for estimating the asymptotic standard errors.

The resulting FDLS estimate for the degree of fractional integration of the residuals equals $d^{(v)} = 0.093(0.110)$, clearly supporting the idea that the high-frequency vix_t^2 and rvt series are fractionally cointegrated. Moreover, the FDLS estimate of β_1 equals 1.090(0.116), slightly larger than unity but insignificantly so.

3.3. Dynamic dependencies across frequencies

In addition to assessing the integration order of rvt and vix_t^2, and the long-run relation between the two variance measures, the joint distribution of the variance measures could be illuminated by decomposing each of the variables into their long-run, intermediate, and short-run components. In order to do so, we rely on time-domain band-pass filters for extracting the specific periodicities from the observed series.5

Fig. 1 reveals a change in the slopes of the periodograms for the realized and risk-neutral variances for frequencies around $\omega \approx 0.0010$, or periods around 3.5 months. Motivated by this observation, we, therefore, extract a low-frequency, or long-run, component corresponding to dependencies in excess of 3.5 months. That is, for frequency ω we define a low-pass-filtered series by

$$y_t^{(low)} = \sum_{i = -k}^{k} a_i l^i y_t,$$

where

$$a_i = \begin{cases} \frac{\sin(i\omega)}{i\pi} & (2k+1), \; i = \pm 1, \ldots, \pm k, \\ 1 - \sum_{k = -k}^{k} a_{-i} - \sum_{k = 1}^{k} a_{i}, \; & i = 0. \end{cases}$$

Intuitively, the $y_t^{(low)}$ series essentially equates the part of the spectrum in Fig. 1 to the right of ω to zero.

Looking at the two sample periodograms in Fig. 1, a distinct change is evident in the general patterns for frequencies in excess of the daily frequency $\bar{\omega} \approx 0.0806$.6 To isolate the interdaily component with

4 The overlapping nature of rvt invariably generates substantial serial correlation in the high-frequency vdt series.

5 Compared with frequency-domain filters (see, e.g., Hassler, Lundvink, Persson, and Söderlind, 1994), the time-domain filters applied here have the advantage that the filtered series are time invariant and do not depend on the length of the sample. Similar filters to the ones used here have previously been applied by Andersen and Bollerslev (1997a) for decomposing high-frequency foreign exchange rates into interday and intraday components. For additional discussion of band-pass filtering see Baxter and King (1999), where the same techniques have been used for extracting business cycle components of macroeconomic times series.

6 It is well known that the volatilities of high-frequency returns, or point-in-time volatilities, exhibit strong U-shaped patterns across the
periodicities of less than 3.5 months from the intraday dynamics, we, therefore, compute an intermediate-frequency series. Specifically, for bands in the interval \(\omega < \omega < \bar{\omega} \), we define the band-pass filtered series by

\[
y_t^{(\text{band})} = \sum_{i=-k}^{k} (b_i - a_i) L^i y_t, \tag{12}
\]

where

\[
b_i = \left\{ \begin{array}{ll}
\frac{\sin(i\pi \tau)}{i\pi} \left(\frac{\tau f}{\pi} + 2 \sum_{j=1}^{k} \sin(j\pi \tau) \right)^{-1} & i = \pm 1, \ldots, \pm k, \\
1 - \sum_{i=-k}^{k} b_i - \sum_{i=1}^{k} b_i, & i = 0.
\end{array} \right.
\]

Finally, the high-pass filtered series corresponding to periodicities of a day and shorter is simply computed by

\[
y_t^{(\text{high})} = y_t - \sum_{i=-k}^{k} b_i L^i y_t. \tag{14}
\]

By definition, \(y_t \equiv y_t^{(\text{low})} + y_t^{(\text{pass})} + y_t^{(\text{high})} \).

The higher the value of the truncation parameter \(k \), the closer the gains of the approximate filters in Eqs. (10), (12), and (14) are to the ideal gains of zero for the frequencies that are filtered out and unity for the desired dynamics of the low-pass filtered series should, therefore, result in a loss of one month of observations at the beginning and the end of the sample.

We first focus on the dynamics of the long-run components. Assuming that the effects of market frictions and short-run fluctuations disappear in the long run, the dynamics of the low-pass filtered series should, therefore, more clearly reveal the underlying equilibrium relations between the variables. Fig. 2 plots the two filtered variance measures \(\sqrt{\text{corr}}([\text{var}^{(\text{low})}], \sqrt{\text{var}^{(\text{low})}}) \) defined by applying the filter in Eq. (10). Consistent with the results in Section 3.2, the figure reveals strong co-movements between the two low-frequency variance components. Indeed, the sample correlation between the two low-pass filtered series equals \(\text{corr}(\sqrt{\text{var}^{(\text{low})}}, \sqrt{\text{var}^{(\text{low})}}) = 0.916 \).

We further detail the relation between \(\sqrt{\text{var}^{2}} \) and \(\sqrt{\text{var}^{2}} \) across all frequencies through measures of their interrelatedness, or coherence. Our estimates of the coherence measures are based on the classic Tukey-Hanning method; see, e.g., the discussion in Granger and Hatanaka (1964). The coherence is analogous to the square of the correlation between two series, taking values from zero (no relation) to one (perfect correlation). In contrast to the standard correlation coefficient, however, the coherence is a function of frequency. The coherence being close to zero for a certain frequency range thus indicates the absence of any relation between the two series across those periodicities. As follows from

the first panel in Fig. 3 labeled “Total,” the coherence between \(\sqrt{\text{var}^{2}} \) and \(\sqrt{\text{var}^{2}} \) is close to one for the lowest frequencies but decreases to close to zero for the higher frequencies. The almost perfect dynamic relation between the \(\sqrt{\text{var}^{2}} \) and \(\sqrt{\text{var}^{2}} \) series, therefore, holds only in the long run.

To get a more nuanced picture of these dependencies, the remaining panels in Fig. 3 show the coherence for the high-pass, pass-band, and low-pass filtered variance series. The coherence for the long-run components is large and generally in excess of 0.6, across all frequencies. The coherence for the band-pass filter variances is substantially lower and around 0.05, and the coherence for the high-frequency components is practically zero.

To interpret these patterns, it is instructive to think about \(\sqrt{\text{var}^{2}} \) as the sum of the ex post realized volatility \(\sqrt{\text{var}^{2}} \), a premium for bearing volatility risk, \(\sqrt{\text{var}^{2}} \), along with the corresponding forecast error, say \(\xi_t \):

\[
\sqrt{\text{var}^{2}} = \sqrt{\text{var}^{2}} + \sqrt{\text{var}^{2}} + \xi_t. \tag{15}
\]

For low frequencies the coherence between \(\sqrt{\text{var}^{2}} \) and \(\sqrt{\text{var}^{2}} \) is close to one, implying that the influences of \(\xi_t \) and \(\sqrt{\text{var}^{2}} \) are both fairly minor. This is also consistent with the findings that \(\sqrt{\text{var}^{2}} \) is integrated of a higher order than \(\sqrt{\text{var}^{2}} \) and that most of the low-frequency dynamics in \(\sqrt{\text{var}^{2}} \) are due to changes in the volatility. This close coherence is broken at the intermediate and ultra-high intraday frequencies, in which most of the changes in \(\sqrt{\text{var}^{2}} \) stem from changes in the risk premium or expectation errors vis-à-vis the future realized volatility. These arguments also facilitate the interpretation of the empirical risk-return relations, which we discuss next.

4. Risk-return relations

A large empirical literature has been devoted to the estimation of risk-return trade-off relations in aggregate equity market returns (see, e.g., the discussion in Rossi and Timmermann, 2012, and the many references therein). Much of this research is motivated by simple dynamic capital asset pricing model (CAPM)-type reasoning along the lines of

\[
E(\sqrt{\text{var}^{2}}) = \gamma \sigma_t^2. \tag{16}
\]

where \(\sigma_t^2 \) represents the local return variance and \(\gamma \) is interpreted as a risk-aversion parameter.\(^7\) The actual estimation of this equation necessitates a proxy for \(\sigma_t^2 \). By far the most commonly employed empirical approach relies on the (G)ARCH-M model (Engle, Lilien, and Robins, 1987) for jointly estimating the conditional mean of the returns together with the conditional variance of the returns in place of \(\sigma_t^2 = \text{Var}(\sqrt{\text{var}^{2}}) \). Instead, by relying on the variance measures analyzed above as directly observable proxies for risk, Eq. (16) can be estimated directly. The following subsection explores this idea in our high-frequency

(footnote continued)

\(^7\) The Merton (1980) model sometimes used as additional justification for this relation formally involves the excess return on the market. The requisite Jensen’s correction term for the logarithmic returns analyzed here simple adds 1/2 to the value of \(\gamma \). Also, the risk-free rate is essentially zero at the five-minute level.

TRADING DAY. See, e.g., Harris (1986) and Andersen and Bollerslev (1997b). By contrast, the two volatility series analyzed here both measure the variation over a month, and as such even though they behave differently intraday they do not show the same strong, almost deterministic, intraday patterns.
data setting, keeping in mind the preceding characterization of the underlying volatility dynamics.\footnote{The use of high-frequency-based realized volatility measures in the estimation of a daily risk-return trade-off relation has previously been explored by Bali and Peng (2006).}

4.1. Return-variance regressions

The basic risk-return relation in Eq. (16) can be conveniently expressed in regression form as

\[r_{t+1} = \alpha + \beta v_t + u_{t+1}, \]

where \(v_t \) denotes the specific variance proxy used in place of \(\sigma_t^2 \). The first two rows of Table 2 labeled “Raw” show

Fig. 2. Co-movement between low-frequency realized and risk-neutral variances. The figure plots the low-pass filtered realized variance \(\mathrm{rv}_t \) (solid line) and risk-neutral variance \(\mathrm{vix}_t^2 \) (dashed line) over the October 22, 2003 to November 28, 2011 sample period.

Fig. 3. Relation between realized and risk-neutral variances across frequencies. The figure plots the coherence between the realized variance \(\mathrm{rv}_t \) and the risk-neutral variance \(\mathrm{vix}_t^2 \), as well as their high-pass (less than one day), band-pass (one day to 3.5 months), and low-pass (longer than 3.5 months) filtered counterparts. All of the estimates are based on five-minute observations from October 22, 2003 to November 28, 2011.
the context of regression-based tests for unbiasedness in statistical problems has also previously been discussed in (the realized or risk-neutral variance). This same Christensen and Nielsen (2007) is given by the fractionally filtered variance series.

VAR framework in which the level of returns is predicted by rebalance the regression. A similar approach has also been is fractionally integrated and propose an approach to focus explicitly on the case in which the predictor variable Bollerslev (2000). Several means to cope with such unba-

ted returns to affect current returns. 9 In implementing the fractional filters, we truncate the series expansion for (1-L)^d v_t at the beginning of the sample, discarding the first week of filtered observations. Based on the results reported in Section 3 we fix d = 0.4. The resulting long-memory-adjusted regressions using A^d r_t or A^d v_t^2 as risk proxies are reported in the next two rows of Table 2. All of the regressions reported in the table are based on the identical sample period from September 30, 2003 to December 30, 2011.

Compared with the “raw” regressions, both of the R^2’s are somewhat higher. The estimated coefficient for the realized variance is now strongly statistically significant but signals a negative risk-return trade-off. By contrast, the fractionally differenced risk-neutral variance results in a statistically significant positive \(\beta \) estimate, albeit a lower R^2. These mixed results are perhaps again not surprising in view of the existing literature.

As highlighted in Section 3.2, another way to render the two variance series stationary, and, in turn, balance the regression, is to consider their difference. The last row in Table 2 labeled “Variance difference” reports the results from the regression considering \(v_d \) as a proxy for risk,

\[
\begin{align*}
r_{t+1} = \alpha + \beta v_{d, t} + u_{t+1}. \\
\end{align*}
\]

The estimate of \(\beta \) is now positive and statistically significant. The regression R^2 is also larger than for any of the other regressions reported in the table. Thus, the difference between the two variance variables appears much more informative for the returns than each of the two variance variables in isolation, whether in their raw or fractionally filtered form. To help further gauge these simple regression-based results, it is informative to decompose the variables into their periodic components.

4.2. Risk-return relations across frequencies

Following the analysis in Section 3.3, the return \(r_t \) and the variance variables \(r_{vt}, v_{t}^2, \) and \(v_d \) are naturally decomposed via band-pass filtering into their short-, intermediate-, and long-run components. Table 3 summarizes the correlations between the resulting components for the

| Table 2 | Univariate return regressions. The table reports five-minute return regressions, \(r_t = \alpha + \beta v_{t-1} + u_t \), based on data from September 30, 2003 to December 30, 2011. The first two columns report the ordinary least squares estimates for \(\beta \) and the corresponding Newey-West standard errors (SE). The last column reports the regression R^2’s. The fractional difference parameter is fixed at \(d = 0.4 \).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk proxy ((v_t))</td>
<td>(\beta)</td>
<td>SE</td>
<td>R^2</td>
</tr>
<tr>
<td>Level</td>
<td>(-0.00144)</td>
<td>0.00066</td>
<td>0.0094%</td>
</tr>
<tr>
<td>(v_{t}^2)</td>
<td>0.00028</td>
<td>0.00082</td>
<td>0.0002%</td>
</tr>
<tr>
<td>Long-memory adjusted</td>
<td>(-0.0599)</td>
<td>0.0123</td>
<td>0.0210%</td>
</tr>
<tr>
<td>(A^d r_{vt})</td>
<td>0.0480</td>
<td>0.0170</td>
<td>0.0151%</td>
</tr>
<tr>
<td>Variance difference</td>
<td>(v_{d, t} = v_{t}^2 - r_{vt})</td>
<td>0.00554</td>
<td>0.0077</td>
</tr>
</tbody>
</table>

9 More precisely, Christensen and Nielsen (2007) consider a modified version of Eq. (18), where both \(r_{t-1} \) and \(v_t \) are detrended by their unconditional means and \(\alpha = 0 \). In addition, their VAR structure allows past returns to affect current returns.
different variance variables with the same components of the return. Evidently, not much of a relation exists at the high and intermediate frequencies. Again, this is not surprising as one might expect the association between risk and return to be more of a long-run than a short-run phenomenon. These results are also consistent with the monthly return regressions in Bollerslev, Tauchen, and Zhou (2009), which suggest that the return predictability of the variance risk premium is maximized at a four-month horizon. Four months lie within the frequency-band classified as low-frequency here.

Corroborating this conjecture, the low-frequency correlations reported in the right-most column in the table are much higher in magnitude for \(r_{vt} \) and \(v_{dt} \) and marginally higher for \(v_{ix}^2_t \). Somewhat paradoxically, however, the correlations are negative for both of the individual variance variables, but positive and larger in magnitude for the variance difference. To visualize this relation, Fig. 4 shows the low-pass filtered \(v_{dt}^{(low)} \) and \(r^{(low)} \) series. The co-movement between the two series is apparent.

In a sum, neither of the two variance series, \(r_{vt} \) and \(v_{ix}^2 \), exhibit dynamic co-movements with the returns over any of the three frequency bands that would support the notion of a positive risk-return trade-off relation. If instead their difference is employed as a proxy for risk, the results are more in line with intuitive expectations regarding a positive low-frequency risk-return trade-off relation.

The continuous time model developed by Bollerslev, Sizova, and Tauchen (2012) is useful for interpreting these results. In the first place, the volatility \(\sigma_t^2 \) in the basic dynamic CAPM and Eq. (16) does not have the actual role of a volatility risk premium per se but can rather be viewed as a time-varying price on endowment (consumption) risk. The only variable in that simplistic framework that carries a risk premium is consumption, so, despite the intuitive appeal of model (16), there really is no reason to expect raw variance variables to relate to returns in any manner, except, perhaps, through some indirect mechanism that could be of either sign.\(^{10}\) However, in a generalized long-run risk model with uncertainty about the variability of economic prospects (vol-of-vol), the difference in the variance variables, or the variance risk premium corresponding to \(r_{vt} \), is the key factor connecting returns and variability. The difference is most highly associated with the vol-of-vol and overall economic uncertainty, and that factor commands a substantial risk premium by investors with recursive utility and a strong preference for early resolution of uncertainty. Consequently, the regression in Eq. (18) is entirely consistent with more sophisticated versions of the dynamic CAPM.

To fully explore these relations between the return and the two variance measures, and the implications thereof for return predictability, we next turn to the estimation of a joint model for \(r_t, r_{vt}, \) and \(v_{ix}^2_t \), explicitly designed to accommodate the intricate dynamic and cross-variable dependencies highlighted so far.

5. Co-fractional system

The co-fractional VAR model of Johansen (2008a,b) affords a convenient statistical framework to distinguish long-run and short-run effects in a system setting involving fractionally integrated \(I(d) \) variables. Specifically, let \(z_t = (r_{vt}, v_{ix}^2, r_t) \) denote the five-minute \(3 \times 1 \) vector process. Guided by the empirical findings in the previous sections, the simplified versions of the co-fractional VAR model for \(z_t \) estimated here, say CFVAR\((d)\), takes the form

\[
A^d z_t = \gamma \delta (1 - A^d) z_t + \rho' + \sum_{i=1}^{p} \Gamma_i (1 - A^d)^i A^d z_t + \epsilon_t.
\]

\(^{10}\) The sign of the relation between returns and variances have also previously been called into question on theoretical grounds by Backus and Gregory (1993), among others.
where \(\epsilon_t \) denotes a vector white noise process with unconditional covariance matrix \(\Omega \).\(^{11}\)

This dynamic CFVAR representation directly parallels the classical error-correction-type representation with cointegrated \(I(1) \) variables. The process \(z_t \) contains the fractionally integrated \(I(d) \) variables, analogous to the \(I(1) \)-level variables in standard cointegration. The fractional difference operator \(A^d = (1-L)^d \) thus reduces the left-hand side of Eq. (20) from an \(I(d) \) to an \(I(0) \) process, just like the first-difference operator for standard cointegrated systems reduces the \(I(1) \) variables to \(I(0) \).\(^{12}\) The right-hand side of the equation, therefore, must also be \(I(0) \). The first term \((1-A^d)z_t\) is what remains after applying the fractional difference operator and, thereby, must be \(I(d) \). The matrix \(\gamma \delta' \), therefore, has to be of reduced rank for this to be an \(I(0) \) process. In this situation, \(\delta'(1-A^d)z_t \) has the interpretation of a (fractional) error-correction matrix, with \(\gamma \) the conformable matrix of impact coefficients. The second term on the right-hand side, involving the matrix fractional distributed lag and powers of \((1-A^d)\) applied to \(A^dz_t \), directly mirrors the matrix distributed lag in standard error-correction models, in which powers of \(L \) are applied to first-differences of the underlying variables. The corresponding \(F_t \) matrices are essentially nuisance parameters, with \(p \) taken sufficiently large to render the disturbance term \(\epsilon_t \) serially uncorrelated.

The empirical evidence presented in Section 3 suggests that \(r_t \) and \(vix_t^2 \) are both \(I(d) \) but that they fractionally cointegrate to an \(I(0) \) process, while \(r_t \) is \(I(0) \). Consequently, the column rank of \(\gamma \delta' \) should be equal to two, with the natural normalization

\[
\delta = \begin{pmatrix} -\hat{\delta} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

and the corresponding matrix of impact coefficients

\[
\gamma = \begin{pmatrix} \hat{\gamma}_{11} & \hat{\gamma}_{12} \\ \hat{\gamma}_{21} & \hat{\gamma}_{22} \\ \hat{\gamma}_{31} & \hat{\gamma}_{32} \end{pmatrix}
\]

left unrestricted. The parameter \(\hat{\delta} \) naturally governs the long-run tie between \(r_t \) and \(vix_t^2 \), which in turn defines the variance error correction term as a linear combination of multiple lags of \((1-A^d)vix^2_t-\hat{\delta}rvt_t\).\(^{13}\)

The parameters \(\hat{\gamma}_{11} \) and \(\hat{\gamma}_{21} \) capture any internal long-run relations between the variance error-correction term and the variance variables themselves, while \(\hat{\gamma}_{31} \) captures the relation between the variance error-correction term and the returns, or the long-run dynamic “volatility feedback” effect implied by the model. The corresponding short-run counterparts are determined by the \(\Gamma_{1}^{(31)} \) and \(\Gamma_{1}^{(32)} \) parameters. Similarly, the long-run dynamic “leverage effect” depends on the values of \(\hat{\gamma}_{12} \) and \(\hat{\gamma}_{22} \), with the corresponding short-run effects determined by \(\Gamma_{i}^{(13)} \) and \(\Gamma_{i}^{(32)} \). The overall degree of return predictability implied by the model is jointly determined by the \(\gamma_{3j} \) and \(\Gamma_{i}^{(3j)} \) parameters.

In sum, by estimating the CFVAR\(_d(p)\) model we draw on a richer information set than we did in the previous sections. Importantly, by separately parameterizing the long-run and the short-run dynamics of returns and the variance series, the model is able to accommodate empirically realistic \(I(d) \) long-memory in the realized and the risk-neutral variances and their fractional cointegration, while maintaining that the returns are \(I(0) \).

5.1. Estimation results

To facilitate the estimation of the CFVAR\(_d(p)\) model we begin by fixing the value of the fractional integration parameter \(d \). The estimation then proceeds in two stages. In the first step, we use the preset fractional differencing parameter \(d \) to construct the vector time series \(A^dz_t \) of filtered realized variances, risk-neutral variances, and returns.\(^{14}\) In the second stage, we obtain parameter estimates for the co-fractional model by iterated seemingly unrelated regression (SUR). We separately select the number of lags for each of the three equations, allowing for different number of lags of \(rv_t \), \(vix_t^2 \), and \(r_t \) in each of the equations as determined by Schwarz’s Bayesian Information Criterion (BIC). Finally, we select the value of \(d \) that maximizes the Gaussian likelihood function subject to the BIC chosen lag specifications.

Turning to the actual CFVAR estimation results reported in Table 4, we find that the likelihood function is maximized at \(d=0.4 \). This value of \(d \) is directly in line with the semiparametric estimates discussed in Section 3.1. According to the BIC, the short-run dynamics of the realized variance depends on five lags of the differenced \(rv_t \) series and three lags of the differenced \(vix_t^2 \) series, and the short-run dynamics of the implied variance depends on two lags of the differenced \(rv_t \) series, three lags of the differenced \(vix_t^2 \) series, and one lag of the differenced \(r_t \) series. Meanwhile, the return equation does not require the inclusion of any short-run lags. We refer to this particular specification as the CFVAR\(_d(4,5)\) model below. The corresponding standard errors for the parameter estimates reported in the right column of the table are based on three thousand replications of a moving block bootstrap. Specifically, using the semiparametric estimates for \(d \) we first fractionally filter the two variance series. We then jointly resample blocks of the trivariate \(I(0) \) vector \((A^d rvt, A^d vix^2, r_t)' \), with the length of the blocks set to 3.5 months. We then apply the inverse fractional filter to the resampled variance series and finally reestimate the CFVAR model using the same SUR approach discussed in the text. With the exception of the

\(^{11}\) Formal regularity conditions for the \(\epsilon_t \) white noise process are spelled out in Johansen (2008a,b).

\(^{12}\) The application of the fractional difference operator \(A^d \) to the returns might seemingly result in over-differencing. However, as shown in Appendix A.1 for the specific representation of the CFVAR model adopted here, the resulting return series is still \(I(0) \).

\(^{13}\) Note, the operator \((1-A^d)\) involves only lags \(L^j \), \(j \geq 1 \), with no \(L^0 \) term.

\(^{14}\) We again truncate the fractional filter at the beginning of the sample, discarding the first weeks worth of observation, so that the estimation is based on the identical September 30, 2003 to December 30, 2011 sample period underlying the previously reported results in Tables 2 and 3.
This fully parametric CFVAR-based estimate for
and, therefore, persists over relatively long time periods.

\[A^d x_t = \gamma (1-A^d)^2 x_t + \rho + \sum_{i=1}^{5} \Gamma_i A^d (1-A^d)^2 \epsilon_t + \epsilon_t, \]

based on five-minute observations from September 30, 2003 to December 30, 2011. The fractional difference parameter is fixed at \(d = 0.40 \). The reported standard errors (SE) for the parameter estimates are calculated from the bootstrap procedure discussed in the text.

Table 4
Co-fractional vector autoregression (CFVAR) model estimates.

The table reports seemingly unrelated regression (SUR) estimates of the CFVAR\(_{0.40}(5)\) model,

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimates</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>(-0.000, -0.0000)</td>
<td>(0.111, 0.0001)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(0.000473, -0.00212, 0.00542)</td>
<td>(0.000078, 0.00030, 0.00124)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>(-1.070, 1.0)</td>
<td>(0.202, -)</td>
</tr>
<tr>
<td>(\Gamma_1)</td>
<td>(1.639, -0.048, 0)</td>
<td>(0.066, 0.034, -)</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(-0.542, 0.090, 0)</td>
<td>(0.112, 0.073, -)</td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(-0.101, -0.233, 0)</td>
<td>(0.033, 0.043, -)</td>
</tr>
<tr>
<td>(\Gamma_4)</td>
<td>(-0.062, -0.053, 0)</td>
<td>(0.049, 0.040, -)</td>
</tr>
<tr>
<td>(\Gamma_5)</td>
<td>(-0.159, 0, 0)</td>
<td>(0.046, -)</td>
</tr>
</tbody>
</table>

The two transitory shocks both decay at a fast exponential rate. The identification of these shocks does not depend a priori on any known relations between the volatility and return series.\(^{16}\) However, given the estimates of \(\gamma \) and \(\delta \) in Table 4, the three shocks have clear meanings. The first transitory shock, in particular, drives the wedge between \(\nu_t \) and \(\nu_{vt} \), i.e., the variance difference, and contains the changes to the variance risk premium. The second transitory shock affects only the returns. The permanent shock is effectively a shock to \(\nu_{vt} \) that is unrelated to changes in the variance difference. This shock naturally also affects \(\nu_t^2 \) through expectations of future variances.

To more clearly illuminate the dynamic dependencies implied by the CFVAR\(_{0.40}(5)\) model, it is instructive to consider Impulse-Response Functions (IRF) associated with the shocks to the “permanent” and two transitory components defined within the model. By definition, the effect of the permanent shock decays hyperbolically and, therefore, persists over relatively long time periods.

\(^{15}\) Comparable results based on coarser sampled monthly realized and options implied variances and semiparametric estimates for \(\delta = 1 \) have previously been reported by Bandi and Perron (2006), among others.

\(^{16}\) Following Gonzalo and Granger (1995), the permanent and transitory shocks could be constructed mechanically from the \(\epsilon_t \)s by multiplication with the matrix \(G = [\Gamma_1, \delta \] \). The shocks are further orthogonalized using the method in Gonzalo and Ng (2001).
Fig. 5. Co-fractional vector autoregression (CFVAR) model implied spectra. The figure plots the CFVAR model implied spectra (solid lines) for the realized variance r_v, the risk-neutral variance v_{ix}^2, the variance difference v_{dt}, and the returns r, along with their corresponding sample periodograms (grey lines). All of the estimates are based on five-minute observations from September 30, 2003 to December 30, 2011.

Fig. 6. Impulse response functions for realized and risk-neutral variances. The figure plots the co-fractional vector autoregression (CFVAR) model implied impulse response functions (IRF) for the realized variance r_v (solid line) and the risk-neutral variance v_{ix}^2 (dashed line) with respect to the permanent variance shock (Panel A), the transitory shock to the variance difference (Panel B), and the transitory shock to the returns (Panel C). All of the estimates are based on five-minute observations from September 30, 2003 to December 30, 2011.
risk premium and a shock to the realized variance forecast error, or \(r_{vt} \), respectively, in the notation of Eq. (15). The first effect naturally increases \(vix_t^2 \), and the second effect decreases \(r_v \). The first effect is by far the largest over within-day horizons.

Panel C in the figure shows the effects of the second transitory return shock, from which the simultaneous correlations with the variance and variance difference shocks have been removed. This shock has no initial effect on either variance series. However, there is a negative impact on the \(vix_t^2 \) lasting for up to a week akin to a multi-period dynamic leverage effect, as previously discussed by Bollerslev, Litvinova, and Tauchen (2006).

In Fig. 7, we show the IRFs for the returns and the two variance shocks. The initial effect both shocks is to decrease the returns. This is entirely consistent with the widely documented leverage effect and negative contemporaneous correlations between returns and volatilities. Both of the shocks, in turn, result in an increase in future return predictability, as previously discussed by Bollerslev, Litvinova, and Tauchen (2006).

5.2. Return predictability

Until now we have relied on the forward monthly \(r_{vt} \), or the realized variance over the subsequent month relative to time \(t \). This ensures that \(r_{vt} \) is properly aligned with the future expected variance underlying the definition of \(vix_t^2 \). This also ties in more directly with the theoretical model in Bollerslev, Sizova, and Tauchen (2012) and the forward (expected) variance risk premium defined therein.

However, the “structural” CFVAR\(_0\.4\) model for \(z_t = (r_{vt}, vix_t^2, r_v) \) estimated above does not easily lend itself to out-of-sample forecasting, as \(r_{vt} \) is not known at time \(t \). To circumvent this problem, we replace \(r_{vt} \) with \(r_{vt}^{1-.78+.22} \) in the estimation of a CFVAR model for the \(\tilde{z}_t = (r_{vt}, vix_t^2, r_v) \) vector process. The CFVAR\(_0\.4\) model for \(z_t \) formally implies a CFVAR\(_0\.4\) model for \(\tilde{z}_t \). We, therefore, fix \(d = 0.4 \) and rely on the same BIC used above for determining the number of lags in each of the three equations in this new CFVAR\(_0\.4\) model for \(\tilde{z}_t \).

To convert the dynamic relations implied by the CFVAR model for \(\tilde{z}_t \) into forecasts for the returns and corresponding predictive \(R^2\)'s, it is convenient to represent the model in moving average form. In particular, let \(e^3 = (0,0,1) \) so that \(r_t = e^3 \tilde{z}_t \). The implied infinite moving average representation for the returns can then be expressed as

\[
r_t = e^3 \sum_{j=0}^{\infty} \Phi_j \epsilon_{t-j},
\]

(23)

where the impulse responses matrices \(\Phi_j \) follow the recursion

\[
\Phi_0 = I, \\
\Phi_j = \sum_{i=0}^{j-1} \Xi_{j-i} \Phi_i,
\]

(24)

for

\[
\Xi_j = -I \{ \theta_1^{(d)} (d) - (\gamma^*) \theta_1^{(0)} (d) \} + \sum_{j=1}^{\infty} (-1)^j \Gamma_j \{ \theta_1^{(d)} (d) \},
\]

(25)

and the previously defined parameters of the fractional filter are given by \(\theta_1^{(d)} (d) = (-1)^d (\gamma^*) \) and \(\theta_1^{(0)} (d) = \sum_{j=1}^{\infty} \theta_1^{(d)} (j) \) respectively, with \(j \geq 1 \). These expressions readily allow for the calculation of \(h \)-step ahead return forecasts by simply equating all of the values of \(\epsilon_{t+h-j} \) for \(h-j > 0 \) to zero in the corresponding expression for \(r_{t+h} \) in Eq. (23).

In practice, we are typically interested in the cumulative forecasts of the high-frequency returns over longer time intervals, as opposed to the multi-period forecasts of the high-frequency returns themselves. For illustration,
consider the case of one-day returns. With 78 intraday returns per trading day, the continuously compounded daily return can be written as

$$r_t^{(day)} = \frac{1}{78} \sum_{j=0}^{78-1} r_t + j = e^3 \sum_{j=0}^{78-1} \sum_{i=0}^{\infty} \phi_i e^{(t-j-i)}.$$

(26)

Going one step further, this expression for the daily return is naturally decomposed into an expected and an unexpected part,

$$r_t^{(day)} = e^3 \sum_{j=0}^{78-1} \sum_{i=0}^{\infty} \phi_i e^{(t-j-i)} + e^3 \sum_{j=0}^{78-1} \sum_{i=0}^{\infty} \phi_i e^{(t-j-i)}.$$

(27)

with the first term on the right-hand side corresponding to the former and the second term the latter. Consequently, the R^2 for the daily return implied by the CFVAR model can be conveniently expressed as

$$R^2_{day} = \frac{\sum_{k=-\infty}^{\infty} e^3 \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \phi_k e^{(t-j-i)} e^3 \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \phi_k e^{(t-j-i)} e^3}{\sum_{k=-\infty}^{\infty} e^3 \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \phi_k e^{(t-j-i)} e^3 \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \phi_k e^{(t-j-i)} e^3}.$$

(28)

Similar expressions for the R^2s associated with forecasting five-minute, hourly, weekly, and monthly returns are readily available by replacing 78 in the equation above with 1, 12, 390, and 1,716. For returns that are initially standardized by the diurnal pattern weights $[1/w_1, \ldots, 1/w_{78}]$ for $[r_t, \ldots, r_{t+78-1}]$ respectively, the impulse response functions ϕ_k in Eq. (28) are replaced by $w_{t+1} \phi_{k+j}$. The unconditional R^2_{day} is calculated by averaging over possible combinations of weights $[w_1, \ldots, w_{78}]$ for different times of the day.

The results obtained from evaluating the comparable expression in Eq. (28) for the five-minute, hourly, weekly, and monthly forecast horizons at the CFVAR0,4(8) model estimates for \tilde{z}_t are reported in the first row in Table 5.

As seen from the table, the CFVAR model for \tilde{z}_t implies substantial R^2s of 1.683% and 6.354% at the weekly and monthly horizons, respectively. As such, these results further corroborate the empirical evidence pertaining to return predictability and a significant risk-return trade-off relation discussed above.

To help gauge where this predictability is coming from, we calculate the implied R^2s for three restricted versions of the CFVAR0,4(8) model. In the first and second models, we restrict the returns to depend on the lags of r_t and νvix^2, respectively, leaving the other dynamic dependencies in the CFVAR0,4(8) model intact. The third restricted CFVAR model rules out any volatility feedback effects, so that the returns simply follow an autoregressive model. In each case, we reestimate the CFVAR model with the relevant restrictions imposed on the return equation and compute the corresponding VAR representation and implied R^2s. Further details concerning the calculation of the R^2s for the restricted CFVAR models are given in Appendix A.2.

The resulting R^2s are reported in rows 2 through 4 in Table 5. The models that include only the lagged r_t, and νvix^2 in the return equation result in almost no predictability at the daily horizon, but the R^2s increase to 1.390% and 4.789%, respectively, at the monthly horizon. By contrast, a simple autoregressive model for the returns, which does not include any of the variances in the return equation, performs comparatively well in predicting five-minute and hourly returns, but it has less forecasting power over longer horizons. By accounting for the joint dynamic dependencies in the returns and the two separate variance measures, the general CFVAR0,4(8) model effectively combines the forecasting performance of the autoregressive model at the highest frequencies with that of the risk-based models at lower frequencies and, in turn, the predictability inherent in the variance risk premium.

To further underscore the gains afforded by jointly modeling the three series, the last three rows in Table 5 report the results from a set of simple univariate balanced predictive regressions, in which we regress the five-minute, hourly, daily, weekly, and monthly future returns on $A^t r_t$, $A^t \nu vix^2$, and $\nu p_t = \nu vix^2 - r_t$. These regressions directly mirror the non-predictive regressions of the contemporaneous returns on the same three predictor variables reported in Table 2. In parallel to the results for CFVAR models, all of the regressions are estimated with the standardized returns, while the reported R^2s are based on the raw returns. As expected, all of the R^2s are noticeably lower than those for the general CFVAR0,4(8) model reported in the first row of the table.

6. Conclusion

We provide a detailed characterization of the dynamic dependencies and interrelatedness in aggregate stock market returns and volatilities using newly available high-frequency intraday data on both. The time series of actual realized volatilities and the market’s risk-neutralized expectation thereof are both well described by long-memory fractional integrated processes. At the same time, the two volatility processes appear to be fractionally cointegrated and move in a one-to-one relation with one another in the long run. Using frequency domain inference procedures that allow us to focus on specific components of the spectra, we also uncover strong evidence for an otherwise elusive positive risk-return trade-off relation in the high-frequency data. Instead of a trade-off between returns and variances, however, the data clearly point to a trade-off between returns and the cointegrating relation between the two variance series. Moreover, we show that the strength of this relation varies importantly across frequencies and, as a result, simple risk-return regressions, as estimated in much of the existing literature, can easily give rise to misleading conclusions. Combining these results, we formulate and estimate a fractionally cointegrated VAR model for the high-frequency returns and two variance series that is able to accommodate all of these dependencies within a coherent joint modeling framework. Going one step further, we show how this high-frequency-based multivariate model implies nontrivial return predictability over longer monthly horizons.
The cointegrating relation between the two variance series uncovered in the paper is intimately related to the variance risk premium. The new class of stochastic volatility models proposed by Barndorff-Nielsen and Veraart (2013) provides a direct link between the variance risk premium and time-varying volatility-of-volatility. Our quantitative findings are also consistent with the qualitative implications from the stylized equilibrium model in Bollerslev, Sizova, and Tauchen (2012), in which the variance risk premium is linked to notions of aggregate economic uncertainty and time-varying equity risk premia. It would be interesting to further expand on these models to allow for a more structural explanation of the intricate cross-frequency empirical relations and dynamic dependencies in returns and risk-neutral and realized variances documented here.

Appendix A

A.1. CFVAR model solution for returns

Let $e^1 \equiv (1,0,0)$, $e^2 \equiv (0,1,0)$, and $e^3 \equiv (0,0,1)$. The preliminary univariate estimates for the two variance series in Section 3 suggest that the first and the second equations of the CFVAR$_{\tau}$ model, $e^1 A^d z_t \equiv A^d r_t$, and $e^2 A^d z_t \equiv A^d vix_t$, respectively, are both $I(0)$. But the fractional filter A^d is also applied to the third equation $e^3 A^d z_t$, and the returns. This seemingly could result in over-differencing. However, following Theorem 8 of Johansen (2008b), if the conditions for inversion of the CFVAR$_{\tau}$ model are satisfied and $d < \frac{1}{2}$, then Eq. (20) has the solution

$$z_t = D \sum_{i=0}^{\infty} \theta_i^{(0)} (-d)^i \ell_i + Y_t + \mu_t,$$

where $\theta_i^{(0)} (-d) = (-1)^i (-d)^i$ are the coefficients of the inverse fractional filter, μ_t is a function of the restricted constant ρ, Y_t is a stationary I(0) series, and the parameter matrix D is defined by

$$D = \delta_\perp \left(\gamma_{\perp} \left[\frac{1}{2} \sum_{i=1}^{p} G_i \right] \delta_{\perp} \right)^{-1} \gamma_{\perp},$$

where γ_{\perp} and δ_{\perp} are 3×1 vectors such that $\gamma_{\perp}' \gamma_{\perp} = 0$ and $\delta_{\perp}' \delta_{\perp} = 0$, respectively. With γ and δ defined by Eqs. (22) and (21), the last row of D, therefore, has only zero elements. Consequently, the solution of the CFVAR model for the third equation and the return process reduces to

$$r_t = e^3 Y_t + e^3 \mu_t,$$

which is an $I(0)$ process, plus the initial contribution associated with ρ.

A.2. CFVAR restricted R^2's

For illustration, consider a daily forecast horizon. Let

$$z_t = \sum_{j=0}^{\infty} \Phi_j z_{t-j},$$

denote the moving average representation of the CFVAR model for z_t with the appropriate restrictions on the return equation imposed on the coefficients. Moving average coefficients are calculated using the recursions in Eq. (24). Define the polynomial

$$\Psi_1 + \Psi_2 L + \Psi_3 L^2 + \cdots = \left(\sum_{j=0}^{\infty} \Phi_j L^j \right) \left(\sum_{j=0}^{\infty} \Phi_j L^j \right)^{-1} \left(\sum_{j=0}^{\infty} \Phi_j L^j \right) = \left(\sum_{j=0}^{\infty} \Phi_j L^j \right) \left(\frac{1}{1 - \Psi_1 - \Psi_2 L - \Psi_3 L^2} \right) \left(\sum_{j=0}^{\infty} \Phi_j L^j \right).$$

The daily return forecast implied by the restricted CFVAR model is then given by $e^3 \sum_{j=0}^{\infty} \Psi_{\ell-j} \epsilon_t$. The fraction of the cumulative daily returns that can be explained by the restricted model could, therefore, be computed as

$$\hat{R}_t^2 = \frac{\sum_{j=0}^{\infty} e^3 \Psi_j \Omega \sum_{j=0}^{\infty} \Phi_{k+j} \epsilon_3}{\sum_{j=0}^{\infty} e^3 \Psi_j \Omega \epsilon_3} \left(\sum_{j=0}^{\infty} e^3 \Psi_j \Omega \epsilon_3 \right) \left(\sum_{j=0}^{\infty} \Phi_{k+j} \epsilon_3 \right) \epsilon_3,$$

where $\sigma_{\Phi} = \sum_{j = \max(0,-k)}^{\infty} \Phi_{k+j}$. Again, similar expressions for the five-minute, hourly, weekly, and monthly
returns are readily available by replacing 78 in the formula above by the integer value corresponding to the relevant forecast horizon.

References

